This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 6899.48 13399.08 1199.91 199.81 6099.20 599.96 1898.91 6799.85 5899.79 53
test_241102_ONE99.84 3299.90 199.48 13399.07 1399.91 199.74 11399.20 599.76 169
EI-MVSNet-UG-set99.58 499.57 199.64 7599.78 4499.14 12199.60 6899.45 17499.01 1899.90 399.83 4298.98 2399.93 6499.59 199.95 699.86 11
EI-MVSNet-Vis-set99.58 499.56 399.64 7599.78 4499.15 12099.61 6799.45 17499.01 1899.89 499.82 4999.01 1699.92 7599.56 499.95 699.85 14
test_241102_TWO99.48 13399.08 1199.88 599.81 6098.94 3199.96 1898.91 6799.84 6599.88 5
DPE-MVS99.46 2499.32 2999.91 299.78 4499.88 799.36 18899.51 9698.73 5199.88 599.84 3898.72 5999.96 1898.16 15999.87 4099.88 5
Regformer-499.59 399.54 499.73 5699.76 5299.41 9099.58 8099.49 12299.02 1599.88 599.80 7499.00 2299.94 4999.45 1599.92 1199.84 18
SD-MVS99.41 4099.52 699.05 16099.74 6799.68 4599.46 14399.52 8699.11 799.88 599.91 599.43 197.70 33598.72 9899.93 1099.77 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2599.56 5499.02 1599.88 599.85 2999.18 899.96 1899.22 3499.92 1199.90 1
Regformer-399.57 799.53 599.68 6399.76 5299.29 10299.58 8099.44 18299.01 1899.87 1099.80 7498.97 2499.91 8699.44 1799.92 1199.83 29
test072699.85 2599.89 399.62 6199.50 11499.10 899.86 1199.82 4998.94 31
Vis-MVSNetpermissive99.12 8398.97 8899.56 8899.78 4499.10 12699.68 4099.66 2798.49 6599.86 1199.87 2094.77 20399.84 13299.19 3799.41 13199.74 70
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IU-MVS99.84 3299.88 799.32 24298.30 8399.84 1398.86 7799.85 5899.89 2
xiu_mvs_v1_base_debu99.29 5599.27 4799.34 12599.63 11598.97 14199.12 24499.51 9698.86 3899.84 1399.47 22498.18 9399.99 199.50 899.31 13799.08 192
xiu_mvs_v1_base99.29 5599.27 4799.34 12599.63 11598.97 14199.12 24499.51 9698.86 3899.84 1399.47 22498.18 9399.99 199.50 899.31 13799.08 192
xiu_mvs_v1_base_debi99.29 5599.27 4799.34 12599.63 11598.97 14199.12 24499.51 9698.86 3899.84 1399.47 22498.18 9399.99 199.50 899.31 13799.08 192
Regformer-199.53 1199.47 999.72 5999.71 8399.44 8799.49 12999.46 16298.95 3299.83 1799.76 10299.01 1699.93 6499.17 4099.87 4099.80 49
Regformer-299.54 999.47 999.75 4999.71 8399.52 7899.49 12999.49 12298.94 3399.83 1799.76 10299.01 1699.94 4999.15 4399.87 4099.80 49
DeepPCF-MVS98.18 398.81 12899.37 1997.12 30599.60 12891.75 33698.61 31899.44 18299.35 199.83 1799.85 2998.70 6199.81 15299.02 5499.91 1699.81 41
TSAR-MVS + GP.99.36 4799.36 2199.36 12499.67 9698.61 18299.07 25499.33 23499.00 2299.82 2099.81 6099.06 1399.84 13299.09 4899.42 13099.65 109
abl_699.44 2999.31 3699.83 3199.85 2599.75 3499.66 4699.59 4298.13 10099.82 2099.81 6098.60 6899.96 1898.46 13499.88 3699.79 53
DVP-MVS99.57 799.47 999.88 699.85 2599.89 399.57 8599.37 21799.10 899.81 2299.80 7498.94 3199.96 1898.93 6499.86 5199.81 41
test_0728_THIRD98.99 2599.81 2299.80 7499.09 1299.96 1898.85 7999.90 2399.88 5
MVSFormer99.17 7199.12 6499.29 13899.51 14598.94 15099.88 199.46 16297.55 16599.80 2499.65 15497.39 11399.28 26299.03 5299.85 5899.65 109
lupinMVS99.13 7799.01 8399.46 11299.51 14598.94 15099.05 25999.16 26797.86 13099.80 2499.56 19197.39 11399.86 12198.94 6299.85 5899.58 133
tttt051798.42 15398.14 16499.28 14099.66 10598.38 20399.74 2896.85 34097.68 15399.79 2699.74 11391.39 29099.89 10998.83 8499.56 12399.57 134
APD-MVS_3200maxsize99.48 1999.35 2499.85 2599.76 5299.83 1499.63 5799.54 6898.36 7699.79 2699.82 4998.86 4099.95 4198.62 11199.81 8099.78 60
jason99.13 7799.03 7699.45 11399.46 16198.87 15799.12 24499.26 25798.03 12099.79 2699.65 15497.02 12799.85 12799.02 5499.90 2399.65 109
jason: jason.
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2199.59 7399.51 9698.62 5799.79 2699.83 4299.28 399.97 1098.48 13099.90 2399.84 18
Skip Steuart: Steuart Systems R&D Blog.
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4599.63 11599.59 6399.36 18899.46 16299.07 1399.79 2699.82 4998.85 4199.92 7598.68 10599.87 4099.82 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SMA-MVS99.44 2999.30 3899.85 2599.73 7299.83 1499.56 9299.47 15297.45 17799.78 3199.82 4999.18 899.91 8698.79 9099.89 3399.81 41
TSAR-MVS + MP.99.58 499.50 899.81 3699.91 199.66 5099.63 5799.39 20398.91 3699.78 3199.85 2999.36 299.94 4998.84 8199.88 3699.82 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_part299.81 4099.83 1499.77 33
MSP-MVS99.42 3699.27 4799.88 699.89 899.80 2399.67 4299.50 11498.70 5399.77 3399.49 21598.21 9299.95 4198.46 13499.77 8999.88 5
UA-Net99.42 3699.29 4299.80 3899.62 12199.55 7099.50 11999.70 1598.79 4799.77 3399.96 197.45 11299.96 1898.92 6699.90 2399.89 2
APD-MVScopyleft99.27 5899.08 6999.84 3099.75 6099.79 2799.50 11999.50 11497.16 20499.77 3399.82 4998.78 4899.94 4997.56 21299.86 5199.80 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMP_NAP99.47 2299.34 2699.88 699.87 1599.86 1099.47 14099.48 13398.05 11799.76 3799.86 2398.82 4499.93 6498.82 8899.91 1699.84 18
HPM-MVS_fast99.51 1499.40 1699.85 2599.91 199.79 2799.76 2499.56 5497.72 14999.76 3799.75 10799.13 1099.92 7599.07 5099.92 1199.85 14
VNet99.11 8898.90 9799.73 5699.52 14399.56 6899.41 16499.39 20399.01 1899.74 3999.78 9295.56 17599.92 7599.52 698.18 20399.72 83
SR-MVS99.43 3299.29 4299.86 1899.75 6099.83 1499.59 7399.62 3398.21 9399.73 4099.79 8698.68 6299.96 1898.44 13699.77 8999.79 53
thisisatest053098.35 16098.03 17699.31 13199.63 11598.56 18499.54 10396.75 34297.53 17099.73 4099.65 15491.25 29399.89 10998.62 11199.56 12399.48 154
diffmvs99.14 7599.02 7999.51 10399.61 12598.96 14599.28 20899.49 12298.46 6899.72 4299.71 12596.50 14499.88 11499.31 2699.11 15199.67 102
xxxxxxxxxxxxxcwj99.43 3299.32 2999.75 4999.76 5299.59 6399.14 24299.53 8099.00 2299.71 4399.80 7498.95 2899.93 6498.19 15499.84 6599.74 70
SF-MVS99.38 4599.24 5299.79 4199.79 4299.68 4599.57 8599.54 6897.82 14099.71 4399.80 7498.95 2899.93 6498.19 15499.84 6599.74 70
xiu_mvs_v2_base99.26 6099.25 5199.29 13899.53 14198.91 15499.02 26899.45 17498.80 4699.71 4399.26 27598.94 3199.98 599.34 2399.23 14298.98 204
PS-MVSNAJ99.32 5199.32 2999.30 13599.57 13398.94 15098.97 28299.46 16298.92 3599.71 4399.24 27799.01 1699.98 599.35 1999.66 11398.97 205
PGM-MVS99.45 2699.31 3699.86 1899.87 1599.78 3399.58 8099.65 3297.84 13499.71 4399.80 7499.12 1199.97 1098.33 14699.87 4099.83 29
114514_t98.93 11198.67 12599.72 5999.85 2599.53 7599.62 6199.59 4292.65 32499.71 4399.78 9298.06 9999.90 10198.84 8199.91 1699.74 70
PVSNet_Blended_VisFu99.36 4799.28 4599.61 8099.86 2199.07 12999.47 14099.93 297.66 15699.71 4399.86 2397.73 10799.96 1899.47 1399.82 7899.79 53
zzz-MVS99.49 1599.36 2199.89 499.90 399.86 1099.36 18899.47 15298.79 4799.68 5099.81 6098.43 7799.97 1098.88 7099.90 2399.83 29
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 4699.47 15298.79 4799.68 5099.81 6098.43 7799.97 1098.88 7099.90 2399.83 29
HFP-MVS99.49 1599.37 1999.86 1899.87 1599.80 2399.66 4699.67 2298.15 9899.68 5099.69 13699.06 1399.96 1898.69 10399.87 4099.84 18
#test#99.43 3299.29 4299.86 1899.87 1599.80 2399.55 10099.67 2297.83 13599.68 5099.69 13699.06 1399.96 1898.39 13899.87 4099.84 18
VDDNet97.55 25797.02 27299.16 15199.49 15498.12 21499.38 18199.30 24995.35 29999.68 5099.90 782.62 33899.93 6499.31 2698.13 20899.42 166
HPM-MVScopyleft99.42 3699.28 4599.83 3199.90 399.72 3899.81 1299.54 6897.59 16099.68 5099.63 16698.91 3699.94 4998.58 11899.91 1699.84 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
VDD-MVS97.73 23997.35 25598.88 19199.47 16097.12 25099.34 19698.85 30298.19 9499.67 5699.85 2982.98 33699.92 7599.49 1298.32 19799.60 125
ACMMPR99.49 1599.36 2199.86 1899.87 1599.79 2799.66 4699.67 2298.15 9899.67 5699.69 13698.95 2899.96 1898.69 10399.87 4099.84 18
PVSNet_BlendedMVS98.86 11798.80 11299.03 16399.76 5298.79 16899.28 20899.91 397.42 18299.67 5699.37 24897.53 11099.88 11498.98 5797.29 24498.42 305
PVSNet_Blended99.08 9498.97 8899.42 11999.76 5298.79 16898.78 30499.91 396.74 23599.67 5699.49 21597.53 11099.88 11498.98 5799.85 5899.60 125
sss99.17 7199.05 7199.53 9699.62 12198.97 14199.36 18899.62 3397.83 13599.67 5699.65 15497.37 11799.95 4199.19 3799.19 14599.68 99
region2R99.48 1999.35 2499.87 1199.88 1199.80 2399.65 5399.66 2798.13 10099.66 6199.68 14198.96 2599.96 1898.62 11199.87 4099.84 18
RPSCF98.22 16898.62 13596.99 30699.82 3791.58 33799.72 2999.44 18296.61 24699.66 6199.89 1095.92 16399.82 14897.46 22299.10 15499.57 134
OMC-MVS99.08 9499.04 7499.20 14899.67 9698.22 20899.28 20899.52 8698.07 11299.66 6199.81 6097.79 10599.78 16497.79 18899.81 8099.60 125
LFMVS97.90 21197.35 25599.54 9099.52 14399.01 13599.39 17698.24 32697.10 21299.65 6499.79 8684.79 33499.91 8699.28 2998.38 19299.69 95
MVS_111021_LR99.41 4099.33 2799.65 7099.77 4999.51 8098.94 28999.85 698.82 4299.65 6499.74 11398.51 7199.80 15798.83 8499.89 3399.64 115
9.1499.10 6699.72 7799.40 17299.51 9697.53 17099.64 6699.78 9298.84 4299.91 8697.63 20399.82 78
GST-MVS99.40 4399.24 5299.85 2599.86 2199.79 2799.60 6899.67 2297.97 12399.63 6799.68 14198.52 7099.95 4198.38 14099.86 5199.81 41
CPTT-MVS99.11 8898.90 9799.74 5499.80 4199.46 8599.59 7399.49 12297.03 21899.63 6799.69 13697.27 12099.96 1897.82 18699.84 6599.81 41
ACMMPcopyleft99.45 2699.32 2999.82 3399.89 899.67 4899.62 6199.69 1898.12 10299.63 6799.84 3898.73 5899.96 1898.55 12699.83 7299.81 41
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS98.35 299.30 5399.19 5799.64 7599.82 3799.23 10999.62 6199.55 6198.94 3399.63 6799.95 295.82 16899.94 4999.37 1899.97 399.73 77
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CHOSEN 280x42099.12 8399.13 6299.08 15699.66 10597.89 22598.43 32899.71 1398.88 3799.62 7199.76 10296.63 14099.70 19599.46 1499.99 199.66 105
PHI-MVS99.30 5399.17 5999.70 6299.56 13799.52 7899.58 8099.80 897.12 20899.62 7199.73 12098.58 6999.90 10198.61 11499.91 1699.68 99
ETH3D-3000-0.199.21 6499.02 7999.77 4599.73 7299.69 4399.38 18199.51 9697.45 17799.61 7399.75 10798.51 7199.91 8697.45 22499.83 7299.71 90
test_yl98.86 11798.63 13099.54 9099.49 15499.18 11399.50 11999.07 27998.22 9199.61 7399.51 20995.37 18199.84 13298.60 11598.33 19399.59 129
DCV-MVSNet98.86 11798.63 13099.54 9099.49 15499.18 11399.50 11999.07 27998.22 9199.61 7399.51 20995.37 18199.84 13298.60 11598.33 19399.59 129
MG-MVS99.13 7799.02 7999.45 11399.57 13398.63 17999.07 25499.34 22798.99 2599.61 7399.82 4997.98 10199.87 11897.00 24999.80 8299.85 14
MP-MVS-pluss99.37 4699.20 5699.88 699.90 399.87 999.30 20299.52 8697.18 20299.60 7799.79 8698.79 4799.95 4198.83 8499.91 1699.83 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CDPH-MVS99.13 7798.91 9699.80 3899.75 6099.71 4099.15 24099.41 19396.60 24899.60 7799.55 19498.83 4399.90 10197.48 21999.83 7299.78 60
EPP-MVSNet99.13 7798.99 8499.53 9699.65 11099.06 13099.81 1299.33 23497.43 18099.60 7799.88 1597.14 12299.84 13299.13 4498.94 16599.69 95
testtj99.12 8398.87 10199.86 1899.72 7799.79 2799.44 14899.51 9697.29 19299.59 8099.74 11398.15 9699.96 1896.74 26399.69 10599.81 41
HyFIR lowres test99.11 8898.92 9499.65 7099.90 399.37 9399.02 26899.91 397.67 15599.59 8099.75 10795.90 16599.73 17999.53 599.02 16199.86 11
MVS_Test99.10 9198.97 8899.48 10799.49 15499.14 12199.67 4299.34 22797.31 19099.58 8299.76 10297.65 10999.82 14898.87 7499.07 15799.46 161
MDTV_nov1_ep13_2view95.18 31199.35 19396.84 23199.58 8295.19 18997.82 18699.46 161
DELS-MVS99.48 1999.42 1399.65 7099.72 7799.40 9299.05 25999.66 2799.14 699.57 8499.80 7498.46 7599.94 4999.57 399.84 6599.60 125
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CR-MVSNet98.17 17597.93 18898.87 19599.18 22998.49 19599.22 23099.33 23496.96 22299.56 8599.38 24594.33 22199.00 30494.83 30498.58 18399.14 183
RPMNet96.61 28195.85 28998.87 19599.18 22998.49 19599.22 23099.08 27688.72 33599.56 8597.38 33194.08 23199.00 30486.87 34098.58 18399.14 183
IS-MVSNet99.05 9898.87 10199.57 8699.73 7299.32 9799.75 2599.20 26498.02 12199.56 8599.86 2396.54 14399.67 20098.09 16399.13 15099.73 77
ZNCC-MVS99.47 2299.33 2799.87 1199.87 1599.81 2199.64 5599.67 2298.08 11199.55 8899.64 16198.91 3699.96 1898.72 9899.90 2399.82 36
thisisatest051598.14 17897.79 19999.19 14999.50 15298.50 19498.61 31896.82 34196.95 22499.54 8999.43 23291.66 28699.86 12198.08 16799.51 12799.22 180
MVS_111021_HR99.41 4099.32 2999.66 6699.72 7799.47 8498.95 28799.85 698.82 4299.54 8999.73 12098.51 7199.74 17298.91 6799.88 3699.77 62
CP-MVS99.45 2699.32 2999.85 2599.83 3699.75 3499.69 3599.52 8698.07 11299.53 9199.63 16698.93 3599.97 1098.74 9499.91 1699.83 29
WTY-MVS99.06 9698.88 10099.61 8099.62 12199.16 11699.37 18499.56 5498.04 11899.53 9199.62 17196.84 13299.94 4998.85 7998.49 19099.72 83
MCST-MVS99.43 3299.30 3899.82 3399.79 4299.74 3799.29 20699.40 19998.79 4799.52 9399.62 17198.91 3699.90 10198.64 10999.75 9399.82 36
PatchT97.03 27796.44 28098.79 21098.99 26498.34 20499.16 23699.07 27992.13 32599.52 9397.31 33394.54 21698.98 30788.54 33498.73 17999.03 198
CANet99.25 6299.14 6199.59 8299.41 17199.16 11699.35 19399.57 4998.82 4299.51 9599.61 17596.46 14599.95 4199.59 199.98 299.65 109
mPP-MVS99.44 2999.30 3899.86 1899.88 1199.79 2799.69 3599.48 13398.12 10299.50 9699.75 10798.78 4899.97 1098.57 12099.89 3399.83 29
PatchMatch-RL98.84 12798.62 13599.52 10199.71 8399.28 10399.06 25799.77 997.74 14899.50 9699.53 20295.41 17999.84 13297.17 24299.64 11699.44 164
PVSNet96.02 1798.85 12598.84 10798.89 18899.73 7297.28 24498.32 33199.60 3997.86 13099.50 9699.57 18896.75 13799.86 12198.56 12399.70 10499.54 138
LS3D99.27 5899.12 6499.74 5499.18 22999.75 3499.56 9299.57 4998.45 6999.49 9999.85 2997.77 10699.94 4998.33 14699.84 6599.52 143
MP-MVScopyleft99.33 5099.15 6099.87 1199.88 1199.82 2099.66 4699.46 16298.09 10799.48 10099.74 11398.29 8899.96 1897.93 17799.87 4099.82 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
旧先验298.96 28396.70 23899.47 10199.94 4998.19 154
MSDG98.98 10798.80 11299.53 9699.76 5299.19 11198.75 30799.55 6197.25 19699.47 10199.77 9897.82 10499.87 11896.93 25699.90 2399.54 138
CDS-MVSNet99.09 9299.03 7699.25 14399.42 16898.73 17199.45 14499.46 16298.11 10499.46 10399.77 9898.01 10099.37 24498.70 10098.92 16899.66 105
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MSLP-MVS++99.46 2499.47 999.44 11899.60 12899.16 11699.41 16499.71 1398.98 2799.45 10499.78 9299.19 799.54 22299.28 2999.84 6599.63 119
XVG-OURS98.73 13698.68 12498.88 19199.70 8997.73 23398.92 29099.55 6198.52 6399.45 10499.84 3895.27 18599.91 8698.08 16798.84 17399.00 201
tpmrst98.33 16198.48 14597.90 28399.16 23794.78 31799.31 20099.11 27297.27 19499.45 10499.59 18195.33 18399.84 13298.48 13098.61 18099.09 191
TAMVS99.12 8399.08 6999.24 14599.46 16198.55 18599.51 11399.46 16298.09 10799.45 10499.82 4998.34 8599.51 22398.70 10098.93 16699.67 102
ETV-MVS99.26 6099.21 5599.40 12099.46 16199.30 10199.56 9299.52 8698.52 6399.44 10899.27 27498.41 8199.86 12199.10 4799.59 12299.04 197
CANet_DTU98.97 10998.87 10199.25 14399.33 19098.42 20299.08 25399.30 24999.16 599.43 10999.75 10795.27 18599.97 1098.56 12399.95 699.36 171
SCA98.19 17298.16 16298.27 26199.30 19995.55 30099.07 25498.97 28797.57 16399.43 10999.57 18892.72 25899.74 17297.58 20799.20 14499.52 143
testdata99.54 9099.75 6098.95 14799.51 9697.07 21399.43 10999.70 12998.87 3999.94 4997.76 19199.64 11699.72 83
DPM-MVS98.95 11098.71 12199.66 6699.63 11599.55 7098.64 31799.10 27397.93 12699.42 11299.55 19498.67 6599.80 15795.80 28599.68 11099.61 123
XVG-OURS-SEG-HR98.69 13998.62 13598.89 18899.71 8397.74 23299.12 24499.54 6898.44 7299.42 11299.71 12594.20 22599.92 7598.54 12798.90 17099.00 201
baseline99.15 7499.02 7999.53 9699.66 10599.14 12199.72 2999.48 13398.35 7799.42 11299.84 3896.07 15699.79 16099.51 799.14 14999.67 102
DP-MVS Recon99.12 8398.95 9299.65 7099.74 6799.70 4299.27 21299.57 4996.40 26699.42 11299.68 14198.75 5699.80 15797.98 17399.72 9999.44 164
Effi-MVS+-dtu98.78 13298.89 9998.47 23899.33 19096.91 26899.57 8599.30 24998.47 6699.41 11698.99 30296.78 13499.74 17298.73 9699.38 13298.74 228
casdiffmvs99.13 7798.98 8799.56 8899.65 11099.16 11699.56 9299.50 11498.33 8199.41 11699.86 2395.92 16399.83 14199.45 1599.16 14699.70 92
MIMVSNet97.73 23997.45 23898.57 22499.45 16697.50 23999.02 26898.98 28696.11 28799.41 11699.14 28990.28 29998.74 32195.74 28698.93 16699.47 159
CSCG99.32 5199.32 2999.32 13099.85 2598.29 20599.71 3199.66 2798.11 10499.41 11699.80 7498.37 8499.96 1898.99 5699.96 599.72 83
F-COLMAP99.19 6799.04 7499.64 7599.78 4499.27 10599.42 16199.54 6897.29 19299.41 11699.59 18198.42 8099.93 6498.19 15499.69 10599.73 77
EIA-MVS99.18 6999.09 6899.45 11399.49 15499.18 11399.67 4299.53 8097.66 15699.40 12199.44 23098.10 9799.81 15298.94 6299.62 12099.35 172
MDTV_nov1_ep1398.32 15599.11 24494.44 32099.27 21298.74 31097.51 17299.40 12199.62 17194.78 20099.76 16997.59 20698.81 176
ETH3D cwj APD-0.1699.06 9698.84 10799.72 5999.51 14599.60 6099.23 22599.44 18297.04 21699.39 12399.67 14798.30 8799.92 7597.27 23199.69 10599.64 115
CVMVSNet98.57 14798.67 12598.30 25699.35 18595.59 29999.50 11999.55 6198.60 5999.39 12399.83 4294.48 21799.45 22798.75 9398.56 18699.85 14
CNVR-MVS99.42 3699.30 3899.78 4399.62 12199.71 4099.26 22099.52 8698.82 4299.39 12399.71 12598.96 2599.85 12798.59 11799.80 8299.77 62
Effi-MVS+98.81 12898.59 14099.48 10799.46 16199.12 12598.08 33799.50 11497.50 17399.38 12699.41 23896.37 14999.81 15299.11 4698.54 18799.51 149
mvs_anonymous99.03 10198.99 8499.16 15199.38 18098.52 19199.51 11399.38 20997.79 14199.38 12699.81 6097.30 11899.45 22799.35 1998.99 16399.51 149
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 12899.74 11398.81 4599.94 4998.79 9099.86 5199.84 18
X-MVStestdata96.55 28295.45 29599.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 12864.01 35198.81 4599.94 4998.79 9099.86 5199.84 18
PatchmatchNetpermissive98.31 16298.36 15098.19 26499.16 23795.32 30799.27 21298.92 29397.37 18699.37 12899.58 18494.90 19499.70 19597.43 22699.21 14399.54 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
AllTest98.87 11498.72 11999.31 13199.86 2198.48 19799.56 9299.61 3597.85 13299.36 13199.85 2995.95 16099.85 12796.66 26999.83 7299.59 129
TestCases99.31 13199.86 2198.48 19799.61 3597.85 13299.36 13199.85 2995.95 16099.85 12796.66 26999.83 7299.59 129
Vis-MVSNet (Re-imp)98.87 11498.72 11999.31 13199.71 8398.88 15699.80 1699.44 18297.91 12899.36 13199.78 9295.49 17899.43 23697.91 17899.11 15199.62 121
alignmvs98.81 12898.56 14299.58 8599.43 16799.42 8999.51 11398.96 28998.61 5899.35 13498.92 30894.78 20099.77 16699.35 1998.11 20999.54 138
VPA-MVSNet98.29 16597.95 18599.30 13599.16 23799.54 7299.50 11999.58 4898.27 8599.35 13499.37 24892.53 26699.65 20699.35 1994.46 30298.72 230
AdaColmapbinary99.01 10598.80 11299.66 6699.56 13799.54 7299.18 23499.70 1598.18 9799.35 13499.63 16696.32 15099.90 10197.48 21999.77 8999.55 136
test22299.75 6099.49 8198.91 29299.49 12296.42 26499.34 13799.65 15498.28 8999.69 10599.72 83
API-MVS99.04 9999.03 7699.06 15899.40 17699.31 10099.55 10099.56 5498.54 6199.33 13899.39 24498.76 5399.78 16496.98 25199.78 8798.07 320
v14419297.92 20997.60 22298.87 19598.83 28698.65 17799.55 10099.34 22796.20 27899.32 13999.40 24094.36 22099.26 26796.37 27695.03 29598.70 236
canonicalmvs99.02 10298.86 10599.51 10399.42 16899.32 9799.80 1699.48 13398.63 5699.31 14098.81 31197.09 12499.75 17199.27 3197.90 21399.47 159
V4298.06 18697.79 19998.86 19998.98 26798.84 16199.69 3599.34 22796.53 25399.30 14199.37 24894.67 20999.32 25797.57 21194.66 29998.42 305
ab-mvs98.86 11798.63 13099.54 9099.64 11299.19 11199.44 14899.54 6897.77 14399.30 14199.81 6094.20 22599.93 6499.17 4098.82 17499.49 153
TAPA-MVS97.07 1597.74 23897.34 25898.94 17599.70 8997.53 23899.25 22299.51 9691.90 32699.30 14199.63 16698.78 4899.64 20888.09 33699.87 4099.65 109
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
RRT_MVS98.60 14698.44 14699.05 16098.88 27699.14 12199.49 12999.38 20997.76 14499.29 14499.86 2395.38 18099.36 24898.81 8997.16 24998.64 265
新几何199.75 4999.75 6099.59 6399.54 6896.76 23499.29 14499.64 16198.43 7799.94 4996.92 25799.66 11399.72 83
VPNet97.84 22097.44 24399.01 16599.21 22298.94 15099.48 13599.57 4998.38 7599.28 14699.73 12088.89 31499.39 23999.19 3793.27 31898.71 232
HY-MVS97.30 798.85 12598.64 12999.47 11099.42 16899.08 12899.62 6199.36 21897.39 18599.28 14699.68 14196.44 14799.92 7598.37 14298.22 19999.40 169
PAPM_NR99.04 9998.84 10799.66 6699.74 6799.44 8799.39 17699.38 20997.70 15199.28 14699.28 27198.34 8599.85 12796.96 25399.45 12899.69 95
ETH3 D test640098.70 13798.35 15299.73 5699.69 9199.60 6099.16 23699.45 17495.42 29899.27 14999.60 17897.39 11399.91 8695.36 29699.83 7299.70 92
HPM-MVS++copyleft99.39 4499.23 5499.87 1199.75 6099.84 1399.43 15499.51 9698.68 5599.27 14999.53 20298.64 6799.96 1898.44 13699.80 8299.79 53
v124097.69 24697.32 26198.79 21098.85 28498.43 20099.48 13599.36 21896.11 28799.27 14999.36 25193.76 24099.24 26994.46 30795.23 29098.70 236
thres600view797.86 21697.51 23198.92 17999.72 7797.95 22399.59 7398.74 31097.94 12599.27 14998.62 31891.75 28099.86 12193.73 31598.19 20298.96 207
PLCcopyleft97.94 499.02 10298.85 10699.53 9699.66 10599.01 13599.24 22499.52 8696.85 23099.27 14999.48 22198.25 9099.91 8697.76 19199.62 12099.65 109
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
thres100view90097.76 23297.45 23898.69 21799.72 7797.86 22899.59 7398.74 31097.93 12699.26 15498.62 31891.75 28099.83 14193.22 31998.18 20398.37 311
EPMVS97.82 22597.65 21798.35 25198.88 27695.98 29499.49 12994.71 34897.57 16399.26 15499.48 22192.46 27199.71 18997.87 18199.08 15699.35 172
112199.09 9298.87 10199.75 4999.74 6799.60 6099.27 21299.48 13396.82 23399.25 15699.65 15498.38 8299.93 6497.53 21599.67 11299.73 77
Fast-Effi-MVS+-dtu98.77 13498.83 11198.60 22199.41 17196.99 26299.52 10999.49 12298.11 10499.24 15799.34 25796.96 13099.79 16097.95 17699.45 12899.02 200
v192192097.80 22997.45 23898.84 20398.80 28798.53 18799.52 10999.34 22796.15 28499.24 15799.47 22493.98 23399.29 26195.40 29495.13 29398.69 240
LPG-MVS_test98.22 16898.13 16598.49 23299.33 19097.05 25799.58 8099.55 6197.46 17499.24 15799.83 4292.58 26499.72 18398.09 16397.51 22998.68 245
LGP-MVS_train98.49 23299.33 19097.05 25799.55 6197.46 17499.24 15799.83 4292.58 26499.72 18398.09 16397.51 22998.68 245
v114497.98 20197.69 21398.85 20298.87 28098.66 17699.54 10399.35 22396.27 27299.23 16199.35 25494.67 20999.23 27096.73 26495.16 29298.68 245
Anonymous2024052998.09 18397.68 21499.34 12599.66 10598.44 19999.40 17299.43 18993.67 31699.22 16299.89 1090.23 30399.93 6499.26 3298.33 19399.66 105
OPM-MVS98.19 17298.10 16798.45 24098.88 27697.07 25599.28 20899.38 20998.57 6099.22 16299.81 6092.12 27599.66 20398.08 16797.54 22798.61 284
test_djsdf98.67 14198.57 14198.98 16998.70 30298.91 15499.88 199.46 16297.55 16599.22 16299.88 1595.73 17199.28 26299.03 5297.62 22098.75 225
test1299.75 4999.64 11299.61 5899.29 25499.21 16598.38 8299.89 10999.74 9599.74 70
NCCC99.34 4999.19 5799.79 4199.61 12599.65 5399.30 20299.48 13398.86 3899.21 16599.63 16698.72 5999.90 10198.25 15099.63 11899.80 49
PMMVS98.80 13198.62 13599.34 12599.27 20898.70 17398.76 30699.31 24597.34 18799.21 16599.07 29597.20 12199.82 14898.56 12398.87 17199.52 143
v119297.81 22797.44 24398.91 18398.88 27698.68 17499.51 11399.34 22796.18 28099.20 16899.34 25794.03 23299.36 24895.32 29795.18 29198.69 240
EI-MVSNet98.67 14198.67 12598.68 21899.35 18597.97 21999.50 11999.38 20996.93 22799.20 16899.83 4297.87 10299.36 24898.38 14097.56 22598.71 232
MVSTER98.49 14898.32 15599.00 16799.35 18599.02 13399.54 10399.38 20997.41 18399.20 16899.73 12093.86 23799.36 24898.87 7497.56 22598.62 275
Anonymous20240521198.30 16497.98 18199.26 14299.57 13398.16 21099.41 16498.55 32296.03 29299.19 17199.74 11391.87 27899.92 7599.16 4298.29 19899.70 92
v2v48298.06 18697.77 20498.92 17998.90 27498.82 16599.57 8599.36 21896.65 24299.19 17199.35 25494.20 22599.25 26897.72 19794.97 29698.69 240
CNLPA99.14 7598.99 8499.59 8299.58 13199.41 9099.16 23699.44 18298.45 6999.19 17199.49 21598.08 9899.89 10997.73 19599.75 9399.48 154
UGNet98.87 11498.69 12399.40 12099.22 22098.72 17299.44 14899.68 1999.24 399.18 17499.42 23592.74 25799.96 1899.34 2399.94 999.53 142
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tfpn200view997.72 24197.38 25198.72 21599.69 9197.96 22199.50 11998.73 31597.83 13599.17 17598.45 32391.67 28499.83 14193.22 31998.18 20398.37 311
thres40097.77 23197.38 25198.92 17999.69 9197.96 22199.50 11998.73 31597.83 13599.17 17598.45 32391.67 28499.83 14193.22 31998.18 20398.96 207
Test_1112_low_res98.89 11398.66 12899.57 8699.69 9198.95 14799.03 26599.47 15296.98 22099.15 17799.23 27996.77 13699.89 10998.83 8498.78 17799.86 11
baseline198.31 16297.95 18599.38 12399.50 15298.74 17099.59 7398.93 29198.41 7399.14 17899.60 17894.59 21299.79 16098.48 13093.29 31799.61 123
1112_ss98.98 10798.77 11599.59 8299.68 9599.02 13399.25 22299.48 13397.23 19999.13 17999.58 18496.93 13199.90 10198.87 7498.78 17799.84 18
CLD-MVS98.16 17698.10 16798.33 25299.29 20396.82 27198.75 30799.44 18297.83 13599.13 17999.55 19492.92 25199.67 20098.32 14897.69 21798.48 296
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
原ACMM199.65 7099.73 7299.33 9699.47 15297.46 17499.12 18199.66 15398.67 6599.91 8697.70 19999.69 10599.71 90
tpm97.67 25197.55 22598.03 27299.02 26195.01 31399.43 15498.54 32396.44 26299.12 18199.34 25791.83 27999.60 21697.75 19396.46 26099.48 154
HQP_MVS98.27 16798.22 16198.44 24399.29 20396.97 26499.39 17699.47 15298.97 3099.11 18399.61 17592.71 26099.69 19897.78 18997.63 21898.67 253
plane_prior397.00 26198.69 5499.11 183
CHOSEN 1792x268899.19 6799.10 6699.45 11399.89 898.52 19199.39 17699.94 198.73 5199.11 18399.89 1095.50 17799.94 4999.50 899.97 399.89 2
mvs-test198.86 11798.84 10798.89 18899.33 19097.77 23199.44 14899.30 24998.47 6699.10 18699.43 23296.78 13499.95 4198.73 9699.02 16198.96 207
v897.95 20597.63 22098.93 17798.95 27198.81 16799.80 1699.41 19396.03 29299.10 18699.42 23594.92 19399.30 26096.94 25594.08 31098.66 261
ADS-MVSNet298.02 19498.07 17497.87 28499.33 19095.19 31099.23 22599.08 27696.24 27599.10 18699.67 14794.11 22998.93 31696.81 26099.05 15899.48 154
ADS-MVSNet98.20 17198.08 17198.56 22699.33 19096.48 28299.23 22599.15 26896.24 27599.10 18699.67 14794.11 22999.71 18996.81 26099.05 15899.48 154
thres20097.61 25597.28 26498.62 22099.64 11298.03 21599.26 22098.74 31097.68 15399.09 19098.32 32591.66 28699.81 15292.88 32398.22 19998.03 322
dp97.75 23697.80 19897.59 29699.10 24793.71 32799.32 19898.88 30096.48 25999.08 19199.55 19492.67 26299.82 14896.52 27198.58 18399.24 179
GBi-Net97.68 24897.48 23398.29 25799.51 14597.26 24699.43 15499.48 13396.49 25599.07 19299.32 26490.26 30098.98 30797.10 24496.65 25498.62 275
test197.68 24897.48 23398.29 25799.51 14597.26 24699.43 15499.48 13396.49 25599.07 19299.32 26490.26 30098.98 30797.10 24496.65 25498.62 275
FMVSNet398.03 19297.76 20798.84 20399.39 17998.98 13899.40 17299.38 20996.67 24099.07 19299.28 27192.93 25098.98 30797.10 24496.65 25498.56 291
IterMVS-LS98.46 15098.42 14898.58 22399.59 13098.00 21799.37 18499.43 18996.94 22699.07 19299.59 18197.87 10299.03 29998.32 14895.62 28298.71 232
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs498.13 17997.90 19098.81 20798.61 31198.87 15798.99 27599.21 26396.44 26299.06 19699.58 18495.90 16599.11 29197.18 24196.11 26798.46 302
XVG-ACMP-BASELINE97.83 22297.71 21298.20 26399.11 24496.33 28799.41 16499.52 8698.06 11699.05 19799.50 21289.64 30899.73 17997.73 19597.38 24298.53 292
CostFormer97.72 24197.73 21097.71 29399.15 24094.02 32499.54 10399.02 28394.67 30799.04 19899.35 25492.35 27499.77 16698.50 12997.94 21299.34 174
DP-MVS99.16 7398.95 9299.78 4399.77 4999.53 7599.41 16499.50 11497.03 21899.04 19899.88 1597.39 11399.92 7598.66 10799.90 2399.87 10
ACMM97.58 598.37 15998.34 15398.48 23499.41 17197.10 25199.56 9299.45 17498.53 6299.04 19899.85 2993.00 24999.71 18998.74 9497.45 23698.64 265
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Fast-Effi-MVS+98.70 13798.43 14799.51 10399.51 14599.28 10399.52 10999.47 15296.11 28799.01 20199.34 25796.20 15499.84 13297.88 18098.82 17499.39 170
nrg03098.64 14498.42 14899.28 14099.05 25799.69 4399.81 1299.46 16298.04 11899.01 20199.82 4996.69 13999.38 24199.34 2394.59 30198.78 218
test_prior399.21 6499.05 7199.68 6399.67 9699.48 8298.96 28399.56 5498.34 7899.01 20199.52 20598.68 6299.83 14197.96 17499.74 9599.74 70
test_prior298.96 28398.34 7899.01 20199.52 20598.68 6297.96 17499.74 95
MAR-MVS98.86 11798.63 13099.54 9099.37 18299.66 5099.45 14499.54 6896.61 24699.01 20199.40 24097.09 12499.86 12197.68 20299.53 12699.10 187
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-MVSNAJss98.92 11298.92 9498.90 18598.78 29198.53 18799.78 1999.54 6898.07 11299.00 20699.76 10299.01 1699.37 24499.13 4497.23 24598.81 215
PAPR98.63 14598.34 15399.51 10399.40 17699.03 13298.80 30299.36 21896.33 26799.00 20699.12 29398.46 7599.84 13295.23 29899.37 13699.66 105
CS-MVS99.21 6499.13 6299.45 11399.54 14099.34 9599.71 3199.54 6898.26 8698.99 20899.24 27798.25 9099.88 11498.98 5799.63 11899.12 186
D2MVS98.41 15598.50 14498.15 26799.26 21096.62 27899.40 17299.61 3597.71 15098.98 20999.36 25196.04 15799.67 20098.70 10097.41 24098.15 318
v1097.85 21797.52 22998.86 19998.99 26498.67 17599.75 2599.41 19395.70 29598.98 20999.41 23894.75 20599.23 27096.01 28194.63 30098.67 253
miper_enhance_ethall98.16 17698.08 17198.41 24598.96 27097.72 23498.45 32799.32 24296.95 22498.97 21199.17 28597.06 12699.22 27397.86 18295.99 27198.29 313
UniMVSNet (Re)98.29 16598.00 17999.13 15499.00 26399.36 9499.49 12999.51 9697.95 12498.97 21199.13 29096.30 15199.38 24198.36 14493.34 31698.66 261
TEST999.67 9699.65 5399.05 25999.41 19396.22 27798.95 21399.49 21598.77 5199.91 86
train_agg99.02 10298.77 11599.77 4599.67 9699.65 5399.05 25999.41 19396.28 27098.95 21399.49 21598.76 5399.91 8697.63 20399.72 9999.75 66
RRT_test8_iter0597.72 24197.60 22298.08 26999.23 21696.08 29399.63 5799.49 12297.54 16898.94 21599.81 6087.99 32599.35 25299.21 3696.51 25998.81 215
BH-RMVSNet98.41 15598.08 17199.40 12099.41 17198.83 16499.30 20298.77 30697.70 15198.94 21599.65 15492.91 25399.74 17296.52 27199.55 12599.64 115
test_899.67 9699.61 5899.03 26599.41 19396.28 27098.93 21799.48 22198.76 5399.91 86
3Dnovator97.25 999.24 6399.05 7199.81 3699.12 24299.66 5099.84 699.74 1099.09 1098.92 21899.90 795.94 16299.98 598.95 6199.92 1199.79 53
v7n97.87 21497.52 22998.92 17998.76 29598.58 18399.84 699.46 16296.20 27898.91 21999.70 12994.89 19599.44 23296.03 28093.89 31298.75 225
JIA-IIPM97.50 26397.02 27298.93 17798.73 29797.80 23099.30 20298.97 28791.73 32798.91 21994.86 33995.10 19099.71 18997.58 20797.98 21199.28 178
v14897.79 23097.55 22598.50 23198.74 29697.72 23499.54 10399.33 23496.26 27398.90 22199.51 20994.68 20899.14 28397.83 18593.15 32098.63 273
GA-MVS97.85 21797.47 23599.00 16799.38 18097.99 21898.57 32199.15 26897.04 21698.90 22199.30 26789.83 30699.38 24196.70 26698.33 19399.62 121
tpm297.44 26797.34 25897.74 29299.15 24094.36 32199.45 14498.94 29093.45 32198.90 22199.44 23091.35 29199.59 21797.31 22998.07 21099.29 177
miper_ehance_all_eth98.18 17498.10 16798.41 24599.23 21697.72 23498.72 31099.31 24596.60 24898.88 22499.29 26997.29 11999.13 28697.60 20595.99 27198.38 310
eth_miper_zixun_eth98.05 19197.96 18398.33 25299.26 21097.38 24298.56 32399.31 24596.65 24298.88 22499.52 20596.58 14199.12 29097.39 22895.53 28598.47 298
cl-mvsnet297.85 21797.64 21998.48 23499.09 24997.87 22698.60 32099.33 23497.11 21198.87 22699.22 28092.38 27399.17 28298.21 15395.99 27198.42 305
agg_prior199.01 10598.76 11799.76 4899.67 9699.62 5698.99 27599.40 19996.26 27398.87 22699.49 21598.77 5199.91 8697.69 20099.72 9999.75 66
agg_prior99.67 9699.62 5699.40 19998.87 22699.91 86
anonymousdsp98.44 15198.28 15898.94 17598.50 31798.96 14599.77 2199.50 11497.07 21398.87 22699.77 9894.76 20499.28 26298.66 10797.60 22198.57 290
DSMNet-mixed97.25 27297.35 25596.95 30897.84 32693.61 32999.57 8596.63 34396.13 28698.87 22698.61 32094.59 21297.70 33595.08 30098.86 17299.55 136
FMVSNet297.72 24197.36 25398.80 20999.51 14598.84 16199.45 14499.42 19196.49 25598.86 23199.29 26990.26 30098.98 30796.44 27396.56 25798.58 289
cl_fuxian98.12 18198.04 17598.38 24999.30 19997.69 23798.81 30199.33 23496.67 24098.83 23299.34 25797.11 12398.99 30697.58 20795.34 28898.48 296
ITE_SJBPF98.08 26999.29 20396.37 28598.92 29398.34 7898.83 23299.75 10791.09 29499.62 21495.82 28397.40 24198.25 316
Anonymous2023121197.88 21297.54 22898.90 18599.71 8398.53 18799.48 13599.57 4994.16 31298.81 23499.68 14193.23 24599.42 23798.84 8194.42 30498.76 223
Patchmtry97.75 23697.40 24998.81 20799.10 24798.87 15799.11 25099.33 23494.83 30498.81 23499.38 24594.33 22199.02 30196.10 27895.57 28398.53 292
miper_lstm_enhance98.00 19997.91 18998.28 26099.34 18997.43 24198.88 29499.36 21896.48 25998.80 23699.55 19495.98 15898.91 31797.27 23195.50 28698.51 294
BH-untuned98.42 15398.36 15098.59 22299.49 15496.70 27499.27 21299.13 27197.24 19898.80 23699.38 24595.75 17099.74 17297.07 24799.16 14699.33 175
FIs98.78 13298.63 13099.23 14799.18 22999.54 7299.83 999.59 4298.28 8498.79 23899.81 6096.75 13799.37 24499.08 4996.38 26298.78 218
OurMVSNet-221017-097.88 21297.77 20498.19 26498.71 30196.53 28099.88 199.00 28497.79 14198.78 23999.94 391.68 28399.35 25297.21 23596.99 25298.69 240
MVS-HIRNet95.75 29595.16 29897.51 29999.30 19993.69 32898.88 29495.78 34585.09 33898.78 23992.65 34191.29 29299.37 24494.85 30399.85 5899.46 161
tpmvs97.98 20198.02 17897.84 28699.04 25894.73 31899.31 20099.20 26496.10 29198.76 24199.42 23594.94 19299.81 15296.97 25298.45 19198.97 205
Patchmatch-test97.93 20697.65 21798.77 21299.18 22997.07 25599.03 26599.14 27096.16 28298.74 24299.57 18894.56 21499.72 18393.36 31899.11 15199.52 143
QAPM98.67 14198.30 15799.80 3899.20 22499.67 4899.77 2199.72 1194.74 30698.73 24399.90 795.78 16999.98 596.96 25399.88 3699.76 65
3Dnovator+97.12 1399.18 6998.97 8899.82 3399.17 23599.68 4599.81 1299.51 9699.20 498.72 24499.89 1095.68 17399.97 1098.86 7799.86 5199.81 41
IterMVS-SCA-FT97.82 22597.75 20898.06 27199.57 13396.36 28699.02 26899.49 12297.18 20298.71 24599.72 12492.72 25899.14 28397.44 22595.86 27698.67 253
UniMVSNet_NR-MVSNet98.22 16897.97 18298.96 17298.92 27398.98 13899.48 13599.53 8097.76 14498.71 24599.46 22896.43 14899.22 27398.57 12092.87 32398.69 240
DU-MVS98.08 18597.79 19998.96 17298.87 28098.98 13899.41 16499.45 17497.87 12998.71 24599.50 21294.82 19799.22 27398.57 12092.87 32398.68 245
tpm cat197.39 26897.36 25397.50 30099.17 23593.73 32699.43 15499.31 24591.27 32898.71 24599.08 29494.31 22399.77 16696.41 27598.50 18999.00 201
XXY-MVS98.38 15898.09 17099.24 14599.26 21099.32 9799.56 9299.55 6197.45 17798.71 24599.83 4293.23 24599.63 21398.88 7096.32 26498.76 223
IterMVS97.83 22297.77 20498.02 27499.58 13196.27 28999.02 26899.48 13397.22 20098.71 24599.70 12992.75 25599.13 28697.46 22296.00 27098.67 253
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FC-MVSNet-test98.75 13598.62 13599.15 15399.08 25199.45 8699.86 599.60 3998.23 9098.70 25199.82 4996.80 13399.22 27399.07 5096.38 26298.79 217
COLMAP_ROBcopyleft97.56 698.86 11798.75 11899.17 15099.88 1198.53 18799.34 19699.59 4297.55 16598.70 25199.89 1095.83 16799.90 10198.10 16299.90 2399.08 192
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TR-MVS97.76 23297.41 24898.82 20599.06 25497.87 22698.87 29698.56 32196.63 24598.68 25399.22 28092.49 26799.65 20695.40 29497.79 21598.95 210
WR-MVS98.06 18697.73 21099.06 15898.86 28399.25 10799.19 23399.35 22397.30 19198.66 25499.43 23293.94 23499.21 27898.58 11894.28 30698.71 232
HQP-NCC99.19 22698.98 27998.24 8798.66 254
ACMP_Plane99.19 22698.98 27998.24 8798.66 254
HQP4-MVS98.66 25499.64 20898.64 265
HQP-MVS98.02 19497.90 19098.37 25099.19 22696.83 26998.98 27999.39 20398.24 8798.66 25499.40 24092.47 26899.64 20897.19 23997.58 22398.64 265
LF4IMVS97.52 26097.46 23797.70 29498.98 26795.55 30099.29 20698.82 30598.07 11298.66 25499.64 16189.97 30599.61 21597.01 24896.68 25397.94 326
mvs_tets98.40 15798.23 16098.91 18398.67 30598.51 19399.66 4699.53 8098.19 9498.65 26099.81 6092.75 25599.44 23299.31 2697.48 23598.77 221
TESTMET0.1,197.55 25797.27 26698.40 24798.93 27296.53 28098.67 31397.61 33696.96 22298.64 26199.28 27188.63 31899.45 22797.30 23099.38 13299.21 181
jajsoiax98.43 15298.28 15898.88 19198.60 31298.43 20099.82 1099.53 8098.19 9498.63 26299.80 7493.22 24799.44 23299.22 3497.50 23198.77 221
Baseline_NR-MVSNet97.76 23297.45 23898.68 21899.09 24998.29 20599.41 16498.85 30295.65 29698.63 26299.67 14794.82 19799.10 29398.07 17092.89 32298.64 265
EPNet98.86 11798.71 12199.30 13597.20 33598.18 20999.62 6198.91 29699.28 298.63 26299.81 6095.96 15999.99 199.24 3399.72 9999.73 77
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test-LLR98.06 18697.90 19098.55 22898.79 28897.10 25198.67 31397.75 33397.34 18798.61 26598.85 30994.45 21899.45 22797.25 23399.38 13299.10 187
test-mter97.49 26597.13 26998.55 22898.79 28897.10 25198.67 31397.75 33396.65 24298.61 26598.85 30988.23 32299.45 22797.25 23399.38 13299.10 187
cl-mvsnet198.01 19797.85 19698.48 23499.24 21597.95 22398.71 31199.35 22396.50 25498.60 26799.54 19995.72 17299.03 29997.21 23595.77 27798.46 302
cl-mvsnet_98.01 19797.84 19798.55 22899.25 21497.97 21998.71 31199.34 22796.47 26198.59 26899.54 19995.65 17499.21 27897.21 23595.77 27798.46 302
FMVSNet196.84 27896.36 28198.29 25799.32 19797.26 24699.43 15499.48 13395.11 30198.55 26999.32 26483.95 33598.98 30795.81 28496.26 26598.62 275
UniMVSNet_ETH3D97.32 27096.81 27598.87 19599.40 17697.46 24099.51 11399.53 8095.86 29498.54 27099.77 9882.44 33999.66 20398.68 10597.52 22899.50 152
PCF-MVS97.08 1497.66 25297.06 27199.47 11099.61 12599.09 12798.04 33899.25 25991.24 32998.51 27199.70 12994.55 21599.91 8692.76 32499.85 5899.42 166
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TranMVSNet+NR-MVSNet97.93 20697.66 21698.76 21398.78 29198.62 18099.65 5399.49 12297.76 14498.49 27299.60 17894.23 22498.97 31498.00 17292.90 32198.70 236
CP-MVSNet98.09 18397.78 20299.01 16598.97 26999.24 10899.67 4299.46 16297.25 19698.48 27399.64 16193.79 23899.06 29598.63 11094.10 30998.74 228
ACMP97.20 1198.06 18697.94 18798.45 24099.37 18297.01 26099.44 14899.49 12297.54 16898.45 27499.79 8691.95 27799.72 18397.91 17897.49 23498.62 275
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVS_030496.79 27996.52 27997.59 29699.22 22094.92 31599.04 26499.59 4296.49 25598.43 27598.99 30280.48 34199.39 23997.15 24399.27 14098.47 298
cascas97.69 24697.43 24698.48 23498.60 31297.30 24398.18 33699.39 20392.96 32398.41 27698.78 31493.77 23999.27 26598.16 15998.61 18098.86 212
WR-MVS_H98.13 17997.87 19598.90 18599.02 26198.84 16199.70 3399.59 4297.27 19498.40 27799.19 28495.53 17699.23 27098.34 14593.78 31398.61 284
BH-w/o98.00 19997.89 19498.32 25499.35 18596.20 29199.01 27398.90 29896.42 26498.38 27899.00 30195.26 18799.72 18396.06 27998.61 18099.03 198
pmmvs597.52 26097.30 26398.16 26698.57 31496.73 27399.27 21298.90 29896.14 28598.37 27999.53 20291.54 28999.14 28397.51 21795.87 27598.63 273
DWT-MVSNet_test97.53 25997.40 24997.93 28099.03 26094.86 31699.57 8598.63 31996.59 25198.36 28098.79 31289.32 31099.74 17298.14 16198.16 20799.20 182
EU-MVSNet97.98 20198.03 17697.81 28998.72 29996.65 27799.66 4699.66 2798.09 10798.35 28199.82 4995.25 18898.01 32897.41 22795.30 28998.78 218
FMVSNet596.43 28696.19 28397.15 30399.11 24495.89 29699.32 19899.52 8694.47 31198.34 28299.07 29587.54 32797.07 33892.61 32595.72 28098.47 298
PS-CasMVS97.93 20697.59 22498.95 17498.99 26499.06 13099.68 4099.52 8697.13 20698.31 28399.68 14192.44 27299.05 29698.51 12894.08 31098.75 225
USDC97.34 26997.20 26797.75 29199.07 25295.20 30998.51 32599.04 28297.99 12298.31 28399.86 2389.02 31299.55 22195.67 28997.36 24398.49 295
PEN-MVS97.76 23297.44 24398.72 21598.77 29498.54 18699.78 1999.51 9697.06 21598.29 28599.64 16192.63 26398.89 31998.09 16393.16 31998.72 230
tfpnnormal97.84 22097.47 23598.98 16999.20 22499.22 11099.64 5599.61 3596.32 26898.27 28699.70 12993.35 24499.44 23295.69 28795.40 28798.27 314
ppachtmachnet_test97.49 26597.45 23897.61 29598.62 30995.24 30898.80 30299.46 16296.11 28798.22 28799.62 17196.45 14698.97 31493.77 31495.97 27498.61 284
our_test_397.65 25397.68 21497.55 29898.62 30994.97 31498.84 29899.30 24996.83 23298.19 28899.34 25797.01 12899.02 30195.00 30296.01 26998.64 265
LTVRE_ROB97.16 1298.02 19497.90 19098.40 24799.23 21696.80 27299.70 3399.60 3997.12 20898.18 28999.70 12991.73 28299.72 18398.39 13897.45 23698.68 245
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH97.28 898.10 18297.99 18098.44 24399.41 17196.96 26699.60 6899.56 5498.09 10798.15 29099.91 590.87 29799.70 19598.88 7097.45 23698.67 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MS-PatchMatch97.24 27397.32 26196.99 30698.45 31993.51 33098.82 30099.32 24297.41 18398.13 29199.30 26788.99 31399.56 21995.68 28899.80 8297.90 329
MVS97.28 27196.55 27899.48 10798.78 29198.95 14799.27 21299.39 20383.53 33998.08 29299.54 19996.97 12999.87 11894.23 31099.16 14699.63 119
PAPM97.59 25697.09 27099.07 15799.06 25498.26 20798.30 33299.10 27394.88 30398.08 29299.34 25796.27 15299.64 20889.87 33198.92 16899.31 176
OpenMVScopyleft96.50 1698.47 14998.12 16699.52 10199.04 25899.53 7599.82 1099.72 1194.56 30998.08 29299.88 1594.73 20699.98 597.47 22199.76 9299.06 196
gg-mvs-nofinetune96.17 29095.32 29798.73 21498.79 28898.14 21299.38 18194.09 34991.07 33198.07 29591.04 34489.62 30999.35 25296.75 26299.09 15598.68 245
test0.0.03 197.71 24597.42 24798.56 22698.41 32097.82 22998.78 30498.63 31997.34 18798.05 29698.98 30594.45 21898.98 30795.04 30197.15 25098.89 211
131498.68 14098.54 14399.11 15598.89 27598.65 17799.27 21299.49 12296.89 22897.99 29799.56 19197.72 10899.83 14197.74 19499.27 14098.84 214
DTE-MVSNet97.51 26297.19 26898.46 23998.63 30898.13 21399.84 699.48 13396.68 23997.97 29899.67 14792.92 25198.56 32396.88 25992.60 32698.70 236
SixPastTwentyTwo97.50 26397.33 26098.03 27298.65 30696.23 29099.77 2198.68 31897.14 20597.90 29999.93 490.45 29899.18 28197.00 24996.43 26198.67 253
pm-mvs197.68 24897.28 26498.88 19199.06 25498.62 18099.50 11999.45 17496.32 26897.87 30099.79 8692.47 26899.35 25297.54 21493.54 31598.67 253
testgi97.65 25397.50 23298.13 26899.36 18496.45 28399.42 16199.48 13397.76 14497.87 30099.45 22991.09 29498.81 32094.53 30698.52 18899.13 185
EPNet_dtu98.03 19297.96 18398.23 26298.27 32195.54 30299.23 22598.75 30799.02 1597.82 30299.71 12596.11 15599.48 22493.04 32299.65 11599.69 95
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TinyColmap97.12 27596.89 27497.83 28799.07 25295.52 30398.57 32198.74 31097.58 16297.81 30399.79 8688.16 32399.56 21995.10 29997.21 24698.39 309
ACMH+97.24 1097.92 20997.78 20298.32 25499.46 16196.68 27699.56 9299.54 6898.41 7397.79 30499.87 2090.18 30499.66 20398.05 17197.18 24898.62 275
N_pmnet94.95 30295.83 29092.31 32398.47 31879.33 34699.12 24492.81 35393.87 31497.68 30599.13 29093.87 23699.01 30391.38 32896.19 26698.59 288
PVSNet_094.43 1996.09 29295.47 29497.94 27999.31 19894.34 32297.81 33999.70 1597.12 20897.46 30698.75 31589.71 30799.79 16097.69 20081.69 34199.68 99
pmmvs696.53 28396.09 28597.82 28898.69 30395.47 30499.37 18499.47 15293.46 32097.41 30799.78 9287.06 32899.33 25696.92 25792.70 32598.65 263
new_pmnet96.38 28796.03 28697.41 30198.13 32495.16 31299.05 25999.20 26493.94 31397.39 30898.79 31291.61 28899.04 29790.43 33095.77 27798.05 321
IB-MVS95.67 1896.22 28895.44 29698.57 22499.21 22296.70 27498.65 31697.74 33596.71 23797.27 30998.54 32186.03 33099.92 7598.47 13386.30 33899.10 187
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND98.45 24098.55 31598.16 21099.43 15493.68 35097.23 31098.46 32289.30 31199.22 27395.43 29398.22 19997.98 324
MVP-Stereo97.81 22797.75 20897.99 27797.53 32896.60 27998.96 28398.85 30297.22 20097.23 31099.36 25195.28 18499.46 22695.51 29199.78 8797.92 328
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TransMVSNet (Re)97.15 27496.58 27798.86 19999.12 24298.85 16099.49 12998.91 29695.48 29797.16 31299.80 7493.38 24399.11 29194.16 31291.73 32898.62 275
NR-MVSNet97.97 20497.61 22199.02 16498.87 28099.26 10699.47 14099.42 19197.63 15897.08 31399.50 21295.07 19199.13 28697.86 18293.59 31498.68 245
Anonymous2023120696.22 28896.03 28696.79 31297.31 33394.14 32399.63 5799.08 27696.17 28197.04 31499.06 29793.94 23497.76 33486.96 33995.06 29498.47 298
test_040296.64 28096.24 28297.85 28598.85 28496.43 28499.44 14899.26 25793.52 31896.98 31599.52 20588.52 31999.20 28092.58 32697.50 23197.93 327
MIMVSNet195.51 29695.04 29996.92 30997.38 33095.60 29899.52 10999.50 11493.65 31796.97 31699.17 28585.28 33396.56 34188.36 33595.55 28498.60 287
TDRefinement95.42 29894.57 30397.97 27889.83 34696.11 29299.48 13598.75 30796.74 23596.68 31799.88 1588.65 31799.71 18998.37 14282.74 34098.09 319
baseline297.87 21497.55 22598.82 20599.18 22998.02 21699.41 16496.58 34496.97 22196.51 31899.17 28593.43 24299.57 21897.71 19899.03 16098.86 212
pmmvs394.09 30793.25 30896.60 31494.76 34094.49 31998.92 29098.18 32989.66 33296.48 31998.06 32786.28 32997.33 33789.68 33287.20 33797.97 325
DeepMVS_CXcopyleft93.34 32199.29 20382.27 34399.22 26285.15 33796.33 32099.05 29890.97 29699.73 17993.57 31697.77 21698.01 323
LCM-MVSNet-Re97.83 22298.15 16396.87 31099.30 19992.25 33599.59 7398.26 32597.43 18096.20 32199.13 29096.27 15298.73 32298.17 15898.99 16399.64 115
test20.0396.12 29195.96 28896.63 31397.44 32995.45 30599.51 11399.38 20996.55 25296.16 32299.25 27693.76 24096.17 34287.35 33894.22 30798.27 314
K. test v397.10 27696.79 27698.01 27598.72 29996.33 28799.87 497.05 33997.59 16096.16 32299.80 7488.71 31599.04 29796.69 26796.55 25898.65 263
UnsupCasMVSNet_eth96.44 28596.12 28497.40 30298.65 30695.65 29799.36 18899.51 9697.13 20696.04 32498.99 30288.40 32098.17 32696.71 26590.27 33198.40 308
lessismore_v097.79 29098.69 30395.44 30694.75 34795.71 32599.87 2088.69 31699.32 25795.89 28294.93 29898.62 275
Patchmatch-RL test95.84 29495.81 29195.95 31795.61 33690.57 33898.24 33398.39 32495.10 30295.20 32698.67 31794.78 20097.77 33396.28 27790.02 33299.51 149
ambc93.06 32292.68 34282.36 34298.47 32698.73 31595.09 32797.41 33055.55 34899.10 29396.42 27491.32 32997.71 330
PM-MVS92.96 30992.23 31195.14 31995.61 33689.98 34099.37 18498.21 32794.80 30595.04 32897.69 32865.06 34597.90 33194.30 30889.98 33397.54 334
OpenMVS_ROBcopyleft92.34 2094.38 30593.70 30796.41 31697.38 33093.17 33199.06 25798.75 30786.58 33694.84 32998.26 32681.53 34099.32 25789.01 33397.87 21496.76 335
EG-PatchMatch MVS95.97 29395.69 29296.81 31197.78 32792.79 33399.16 23698.93 29196.16 28294.08 33099.22 28082.72 33799.47 22595.67 28997.50 23198.17 317
pmmvs-eth3d95.34 30094.73 30197.15 30395.53 33895.94 29599.35 19399.10 27395.13 30093.55 33197.54 32988.15 32497.91 33094.58 30589.69 33497.61 331
new-patchmatchnet94.48 30394.08 30595.67 31895.08 33992.41 33499.18 23499.28 25594.55 31093.49 33297.37 33287.86 32697.01 33991.57 32788.36 33597.61 331
UnsupCasMVSNet_bld93.53 30892.51 31096.58 31597.38 33093.82 32598.24 33399.48 13391.10 33093.10 33396.66 33574.89 34298.37 32494.03 31387.71 33697.56 333
Gipumacopyleft90.99 31090.15 31293.51 32098.73 29790.12 33993.98 34499.45 17479.32 34192.28 33494.91 33869.61 34497.98 32987.42 33795.67 28192.45 341
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
CMPMVSbinary69.68 2394.13 30694.90 30091.84 32497.24 33480.01 34598.52 32499.48 13389.01 33391.99 33599.67 14785.67 33299.13 28695.44 29297.03 25196.39 337
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMMVS286.87 31185.37 31491.35 32690.21 34583.80 34198.89 29397.45 33883.13 34091.67 33695.03 33748.49 35094.70 34485.86 34177.62 34295.54 338
LCM-MVSNet86.80 31285.22 31591.53 32587.81 34780.96 34498.23 33598.99 28571.05 34390.13 33796.51 33648.45 35196.88 34090.51 32985.30 33996.76 335
testing_294.44 30492.93 30998.98 16994.16 34199.00 13799.42 16199.28 25596.60 24884.86 33896.84 33470.91 34399.27 26598.23 15296.08 26898.68 245
ET-MVSNet_ETH3D96.49 28495.64 29399.05 16099.53 14198.82 16598.84 29897.51 33797.63 15884.77 33999.21 28392.09 27698.91 31798.98 5792.21 32799.41 168
E-PMN80.61 31579.88 31782.81 33090.75 34476.38 34997.69 34095.76 34666.44 34683.52 34092.25 34262.54 34787.16 34868.53 34661.40 34484.89 346
FPMVS84.93 31385.65 31382.75 33186.77 34863.39 35298.35 33098.92 29374.11 34283.39 34198.98 30550.85 34992.40 34684.54 34294.97 29692.46 340
EMVS80.02 31679.22 31882.43 33291.19 34376.40 34897.55 34292.49 35466.36 34783.01 34291.27 34364.63 34685.79 34965.82 34760.65 34585.08 345
YYNet195.36 29994.51 30497.92 28197.89 32597.10 25199.10 25299.23 26193.26 32280.77 34399.04 29992.81 25498.02 32794.30 30894.18 30898.64 265
MDA-MVSNet_test_wron95.45 29794.60 30298.01 27598.16 32397.21 24999.11 25099.24 26093.49 31980.73 34498.98 30593.02 24898.18 32594.22 31194.45 30398.64 265
MDA-MVSNet-bldmvs94.96 30193.98 30697.92 28198.24 32297.27 24599.15 24099.33 23493.80 31580.09 34599.03 30088.31 32197.86 33293.49 31794.36 30598.62 275
tmp_tt82.80 31481.52 31686.66 32766.61 35368.44 35192.79 34697.92 33168.96 34480.04 34699.85 2985.77 33196.15 34397.86 18243.89 34795.39 339
MVEpermissive76.82 2176.91 31874.31 32184.70 32885.38 35076.05 35096.88 34393.17 35167.39 34571.28 34789.01 34621.66 35787.69 34771.74 34572.29 34390.35 343
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high77.30 31774.86 32084.62 32975.88 35177.61 34797.63 34193.15 35288.81 33464.27 34889.29 34536.51 35283.93 35075.89 34452.31 34692.33 342
PMVScopyleft70.75 2275.98 31974.97 31979.01 33370.98 35255.18 35393.37 34598.21 32765.08 34861.78 34993.83 34021.74 35692.53 34578.59 34391.12 33089.34 344
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test12339.01 32242.50 32328.53 33539.17 35420.91 35598.75 30719.17 35719.83 35138.57 35066.67 34833.16 35315.42 35237.50 35029.66 34949.26 347
testmvs39.17 32143.78 32225.37 33636.04 35516.84 35698.36 32926.56 35520.06 35038.51 35167.32 34729.64 35415.30 35337.59 34939.90 34843.98 348
wuyk23d40.18 32041.29 32436.84 33486.18 34949.12 35479.73 34722.81 35627.64 34925.46 35228.45 35221.98 35548.89 35155.80 34823.56 35012.51 349
uanet_test0.02 3260.03 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 3530.00 3580.00 3540.00 3510.00 3510.00 350
cdsmvs_eth3d_5k24.64 32332.85 3250.00 3370.00 3560.00 3570.00 34899.51 960.00 3520.00 35399.56 19196.58 1410.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas8.27 32511.03 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 35399.01 160.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.02 3260.03 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.02 3260.03 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.02 3260.03 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.02 3260.03 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re8.30 32411.06 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35399.58 1840.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.02 3260.03 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 3530.00 3580.00 3540.00 3510.00 3510.00 350
OPU-MVS99.64 7599.56 13799.72 3899.60 6899.70 12999.27 499.42 23798.24 15199.80 8299.79 53
save fliter99.76 5299.59 6399.14 24299.40 19999.00 22
test_0728_SECOND99.91 299.84 3299.89 399.57 8599.51 9699.96 1898.93 6499.86 5199.88 5
GSMVS99.52 143
test_part10.00 3370.00 3570.00 34899.48 1330.00 3580.00 3540.00 3510.00 3510.00 350
sam_mvs194.86 19699.52 143
sam_mvs94.72 207
MTGPAbinary99.47 152
test_post199.23 22565.14 35094.18 22899.71 18997.58 207
test_post65.99 34994.65 21199.73 179
patchmatchnet-post98.70 31694.79 19999.74 172
MTMP99.54 10398.88 300
gm-plane-assit98.54 31692.96 33294.65 30899.15 28899.64 20897.56 212
test9_res97.49 21899.72 9999.75 66
agg_prior297.21 23599.73 9899.75 66
test_prior499.56 6898.99 275
test_prior99.68 6399.67 9699.48 8299.56 5499.83 14199.74 70
新几何299.01 273
旧先验199.74 6799.59 6399.54 6899.69 13698.47 7499.68 11099.73 77
无先验98.99 27599.51 9696.89 22899.93 6497.53 21599.72 83
原ACMM298.95 287
testdata299.95 4196.67 268
segment_acmp98.96 25
testdata198.85 29798.32 82
plane_prior799.29 20397.03 259
plane_prior699.27 20896.98 26392.71 260
plane_prior599.47 15299.69 19897.78 18997.63 21898.67 253
plane_prior499.61 175
plane_prior299.39 17698.97 30
plane_prior199.26 210
plane_prior96.97 26499.21 23298.45 6997.60 221
n20.00 358
nn0.00 358
door-mid98.05 330
test1199.35 223
door97.92 331
HQP5-MVS96.83 269
BP-MVS97.19 239
HQP3-MVS99.39 20397.58 223
HQP2-MVS92.47 268
NP-MVS99.23 21696.92 26799.40 240
ACMMP++_ref97.19 247
ACMMP++97.43 239
Test By Simon98.75 56