This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
CHOSEN 1792x268899.19 6799.10 6699.45 11399.89 898.52 19199.39 17699.94 198.73 5199.11 18399.89 1095.50 17799.94 4999.50 899.97 399.89 2
PVSNet_Blended_VisFu99.36 4799.28 4599.61 8099.86 2199.07 12999.47 14099.93 297.66 15699.71 4399.86 2397.73 10799.96 1899.47 1399.82 7899.79 53
PVSNet_BlendedMVS98.86 11798.80 11299.03 16399.76 5298.79 16899.28 20899.91 397.42 18299.67 5699.37 24897.53 11099.88 11498.98 5797.29 24498.42 305
PVSNet_Blended99.08 9498.97 8899.42 11999.76 5298.79 16898.78 30499.91 396.74 23599.67 5699.49 21597.53 11099.88 11498.98 5799.85 5899.60 125
HyFIR lowres test99.11 8898.92 9499.65 7099.90 399.37 9399.02 26899.91 397.67 15599.59 8099.75 10795.90 16599.73 17999.53 599.02 16199.86 11
MVS_111021_LR99.41 4099.33 2799.65 7099.77 4999.51 8098.94 28999.85 698.82 4299.65 6499.74 11398.51 7199.80 15798.83 8499.89 3399.64 115
MVS_111021_HR99.41 4099.32 2999.66 6699.72 7799.47 8498.95 28799.85 698.82 4299.54 8999.73 12098.51 7199.74 17298.91 6799.88 3699.77 62
PHI-MVS99.30 5399.17 5999.70 6299.56 13799.52 7899.58 8099.80 897.12 20899.62 7199.73 12098.58 6999.90 10198.61 11499.91 1699.68 99
PatchMatch-RL98.84 12798.62 13599.52 10199.71 8399.28 10399.06 25799.77 997.74 14899.50 9699.53 20295.41 17999.84 13297.17 24299.64 11699.44 164
3Dnovator97.25 999.24 6399.05 7199.81 3699.12 24299.66 5099.84 699.74 1099.09 1098.92 21899.90 795.94 16299.98 598.95 6199.92 1199.79 53
QAPM98.67 14198.30 15799.80 3899.20 22499.67 4899.77 2199.72 1194.74 30698.73 24399.90 795.78 16999.98 596.96 25399.88 3699.76 65
OpenMVScopyleft96.50 1698.47 14998.12 16699.52 10199.04 25899.53 7599.82 1099.72 1194.56 30998.08 29299.88 1594.73 20699.98 597.47 22199.76 9299.06 196
CHOSEN 280x42099.12 8399.13 6299.08 15699.66 10597.89 22598.43 32899.71 1398.88 3799.62 7199.76 10296.63 14099.70 19599.46 1499.99 199.66 105
MSLP-MVS++99.46 2499.47 999.44 11899.60 12899.16 11699.41 16499.71 1398.98 2799.45 10499.78 9299.19 799.54 22299.28 2999.84 6599.63 119
UA-Net99.42 3699.29 4299.80 3899.62 12199.55 7099.50 11999.70 1598.79 4799.77 3399.96 197.45 11299.96 1898.92 6699.90 2399.89 2
PVSNet_094.43 1996.09 29295.47 29497.94 27999.31 19894.34 32297.81 33999.70 1597.12 20897.46 30698.75 31589.71 30799.79 16097.69 20081.69 34199.68 99
AdaColmapbinary99.01 10598.80 11299.66 6699.56 13799.54 7299.18 23499.70 1598.18 9799.35 13499.63 16696.32 15099.90 10197.48 21999.77 8999.55 136
ACMMPcopyleft99.45 2699.32 2999.82 3399.89 899.67 4899.62 6199.69 1898.12 10299.63 6799.84 3898.73 5899.96 1898.55 12699.83 7299.81 41
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 12899.74 11398.81 4599.94 4998.79 9099.86 5199.84 18
X-MVStestdata96.55 28295.45 29599.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 12864.01 35198.81 4599.94 4998.79 9099.86 5199.84 18
UGNet98.87 11498.69 12399.40 12099.22 22098.72 17299.44 14899.68 1999.24 399.18 17499.42 23592.74 25799.96 1899.34 2399.94 999.53 142
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ZNCC-MVS99.47 2299.33 2799.87 1199.87 1599.81 2199.64 5599.67 2298.08 11199.55 8899.64 16198.91 3699.96 1898.72 9899.90 2399.82 36
GST-MVS99.40 4399.24 5299.85 2599.86 2199.79 2799.60 6899.67 2297.97 12399.63 6799.68 14198.52 7099.95 4198.38 14099.86 5199.81 41
HFP-MVS99.49 1599.37 1999.86 1899.87 1599.80 2399.66 4699.67 2298.15 9899.68 5099.69 13699.06 1399.96 1898.69 10399.87 4099.84 18
#test#99.43 3299.29 4299.86 1899.87 1599.80 2399.55 10099.67 2297.83 13599.68 5099.69 13699.06 1399.96 1898.39 13899.87 4099.84 18
ACMMPR99.49 1599.36 2199.86 1899.87 1599.79 2799.66 4699.67 2298.15 9899.67 5699.69 13698.95 2899.96 1898.69 10399.87 4099.84 18
region2R99.48 1999.35 2499.87 1199.88 1199.80 2399.65 5399.66 2798.13 10099.66 6199.68 14198.96 2599.96 1898.62 11199.87 4099.84 18
EU-MVSNet97.98 20198.03 17697.81 28998.72 29996.65 27799.66 4699.66 2798.09 10798.35 28199.82 4995.25 18898.01 32897.41 22795.30 28998.78 218
DELS-MVS99.48 1999.42 1399.65 7099.72 7799.40 9299.05 25999.66 2799.14 699.57 8499.80 7498.46 7599.94 4999.57 399.84 6599.60 125
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Vis-MVSNetpermissive99.12 8398.97 8899.56 8899.78 4499.10 12699.68 4099.66 2798.49 6599.86 1199.87 2094.77 20399.84 13299.19 3799.41 13199.74 70
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CSCG99.32 5199.32 2999.32 13099.85 2598.29 20599.71 3199.66 2798.11 10499.41 11699.80 7498.37 8499.96 1898.99 5699.96 599.72 83
PGM-MVS99.45 2699.31 3699.86 1899.87 1599.78 3399.58 8099.65 3297.84 13499.71 4399.80 7499.12 1199.97 1098.33 14699.87 4099.83 29
SR-MVS99.43 3299.29 4299.86 1899.75 6099.83 1499.59 7399.62 3398.21 9399.73 4099.79 8698.68 6299.96 1898.44 13699.77 8999.79 53
sss99.17 7199.05 7199.53 9699.62 12198.97 14199.36 18899.62 3397.83 13599.67 5699.65 15497.37 11799.95 4199.19 3799.19 14599.68 99
D2MVS98.41 15598.50 14498.15 26799.26 21096.62 27899.40 17299.61 3597.71 15098.98 20999.36 25196.04 15799.67 20098.70 10097.41 24098.15 318
tfpnnormal97.84 22097.47 23598.98 16999.20 22499.22 11099.64 5599.61 3596.32 26898.27 28699.70 12993.35 24499.44 23295.69 28795.40 28798.27 314
AllTest98.87 11498.72 11999.31 13199.86 2198.48 19799.56 9299.61 3597.85 13299.36 13199.85 2995.95 16099.85 12796.66 26999.83 7299.59 129
TestCases99.31 13199.86 2198.48 19799.61 3597.85 13299.36 13199.85 2995.95 16099.85 12796.66 26999.83 7299.59 129
FC-MVSNet-test98.75 13598.62 13599.15 15399.08 25199.45 8699.86 599.60 3998.23 9098.70 25199.82 4996.80 13399.22 27399.07 5096.38 26298.79 217
PVSNet96.02 1798.85 12598.84 10798.89 18899.73 7297.28 24498.32 33199.60 3997.86 13099.50 9699.57 18896.75 13799.86 12198.56 12399.70 10499.54 138
LTVRE_ROB97.16 1298.02 19497.90 19098.40 24799.23 21696.80 27299.70 3399.60 3997.12 20898.18 28999.70 12991.73 28299.72 18398.39 13897.45 23698.68 245
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVS_030496.79 27996.52 27997.59 29699.22 22094.92 31599.04 26499.59 4296.49 25598.43 27598.99 30280.48 34199.39 23997.15 24399.27 14098.47 298
FIs98.78 13298.63 13099.23 14799.18 22999.54 7299.83 999.59 4298.28 8498.79 23899.81 6096.75 13799.37 24499.08 4996.38 26298.78 218
WR-MVS_H98.13 17997.87 19598.90 18599.02 26198.84 16199.70 3399.59 4297.27 19498.40 27799.19 28495.53 17699.23 27098.34 14593.78 31398.61 284
abl_699.44 2999.31 3699.83 3199.85 2599.75 3499.66 4699.59 4298.13 10099.82 2099.81 6098.60 6899.96 1898.46 13499.88 3699.79 53
114514_t98.93 11198.67 12599.72 5999.85 2599.53 7599.62 6199.59 4292.65 32499.71 4399.78 9298.06 9999.90 10198.84 8199.91 1699.74 70
COLMAP_ROBcopyleft97.56 698.86 11798.75 11899.17 15099.88 1198.53 18799.34 19699.59 4297.55 16598.70 25199.89 1095.83 16799.90 10198.10 16299.90 2399.08 192
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VPA-MVSNet98.29 16597.95 18599.30 13599.16 23799.54 7299.50 11999.58 4898.27 8599.35 13499.37 24892.53 26699.65 20699.35 1994.46 30298.72 230
CANet99.25 6299.14 6199.59 8299.41 17199.16 11699.35 19399.57 4998.82 4299.51 9599.61 17596.46 14599.95 4199.59 199.98 299.65 109
Anonymous2023121197.88 21297.54 22898.90 18599.71 8398.53 18799.48 13599.57 4994.16 31298.81 23499.68 14193.23 24599.42 23798.84 8194.42 30498.76 223
VPNet97.84 22097.44 24399.01 16599.21 22298.94 15099.48 13599.57 4998.38 7599.28 14699.73 12088.89 31499.39 23999.19 3793.27 31898.71 232
DP-MVS Recon99.12 8398.95 9299.65 7099.74 6799.70 4299.27 21299.57 4996.40 26699.42 11299.68 14198.75 5699.80 15797.98 17399.72 9999.44 164
LS3D99.27 5899.12 6499.74 5499.18 22999.75 3499.56 9299.57 4998.45 6999.49 9999.85 2997.77 10699.94 4998.33 14699.84 6599.52 143
test_prior399.21 6499.05 7199.68 6399.67 9699.48 8298.96 28399.56 5498.34 7899.01 20199.52 20598.68 6299.83 14197.96 17499.74 9599.74 70
test_prior99.68 6399.67 9699.48 8299.56 5499.83 14199.74 70
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2599.56 5499.02 1599.88 599.85 2999.18 899.96 1899.22 3499.92 1199.90 1
HPM-MVS_fast99.51 1499.40 1699.85 2599.91 199.79 2799.76 2499.56 5497.72 14999.76 3799.75 10799.13 1099.92 7599.07 5099.92 1199.85 14
WTY-MVS99.06 9698.88 10099.61 8099.62 12199.16 11699.37 18499.56 5498.04 11899.53 9199.62 17196.84 13299.94 4998.85 7998.49 19099.72 83
API-MVS99.04 9999.03 7699.06 15899.40 17699.31 10099.55 10099.56 5498.54 6199.33 13899.39 24498.76 5399.78 16496.98 25199.78 8798.07 320
ACMH97.28 898.10 18297.99 18098.44 24399.41 17196.96 26699.60 6899.56 5498.09 10798.15 29099.91 590.87 29799.70 19598.88 7097.45 23698.67 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CVMVSNet98.57 14798.67 12598.30 25699.35 18595.59 29999.50 11999.55 6198.60 5999.39 12399.83 4294.48 21799.45 22798.75 9398.56 18699.85 14
XVG-OURS98.73 13698.68 12498.88 19199.70 8997.73 23398.92 29099.55 6198.52 6399.45 10499.84 3895.27 18599.91 8698.08 16798.84 17399.00 201
LPG-MVS_test98.22 16898.13 16598.49 23299.33 19097.05 25799.58 8099.55 6197.46 17499.24 15799.83 4292.58 26499.72 18398.09 16397.51 22998.68 245
LGP-MVS_train98.49 23299.33 19097.05 25799.55 6197.46 17499.24 15799.83 4292.58 26499.72 18398.09 16397.51 22998.68 245
XXY-MVS98.38 15898.09 17099.24 14599.26 21099.32 9799.56 9299.55 6197.45 17798.71 24599.83 4293.23 24599.63 21398.88 7096.32 26498.76 223
DeepC-MVS98.35 299.30 5399.19 5799.64 7599.82 3799.23 10999.62 6199.55 6198.94 3399.63 6799.95 295.82 16899.94 4999.37 1899.97 399.73 77
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSDG98.98 10798.80 11299.53 9699.76 5299.19 11198.75 30799.55 6197.25 19699.47 10199.77 9897.82 10499.87 11896.93 25699.90 2399.54 138
SF-MVS99.38 4599.24 5299.79 4199.79 4299.68 4599.57 8599.54 6897.82 14099.71 4399.80 7498.95 2899.93 6498.19 15499.84 6599.74 70
CS-MVS99.21 6499.13 6299.45 11399.54 14099.34 9599.71 3199.54 6898.26 8698.99 20899.24 27798.25 9099.88 11498.98 5799.63 11899.12 186
PS-MVSNAJss98.92 11298.92 9498.90 18598.78 29198.53 18799.78 1999.54 6898.07 11299.00 20699.76 10299.01 1699.37 24499.13 4497.23 24598.81 215
新几何199.75 4999.75 6099.59 6399.54 6896.76 23499.29 14499.64 16198.43 7799.94 4996.92 25799.66 11399.72 83
旧先验199.74 6799.59 6399.54 6899.69 13698.47 7499.68 11099.73 77
APD-MVS_3200maxsize99.48 1999.35 2499.85 2599.76 5299.83 1499.63 5799.54 6898.36 7699.79 2699.82 4998.86 4099.95 4198.62 11199.81 8099.78 60
XVG-OURS-SEG-HR98.69 13998.62 13598.89 18899.71 8397.74 23299.12 24499.54 6898.44 7299.42 11299.71 12594.20 22599.92 7598.54 12798.90 17099.00 201
HPM-MVScopyleft99.42 3699.28 4599.83 3199.90 399.72 3899.81 1299.54 6897.59 16099.68 5099.63 16698.91 3699.94 4998.58 11899.91 1699.84 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ab-mvs98.86 11798.63 13099.54 9099.64 11299.19 11199.44 14899.54 6897.77 14399.30 14199.81 6094.20 22599.93 6499.17 4098.82 17499.49 153
F-COLMAP99.19 6799.04 7499.64 7599.78 4499.27 10599.42 16199.54 6897.29 19299.41 11699.59 18198.42 8099.93 6498.19 15499.69 10599.73 77
ACMH+97.24 1097.92 20997.78 20298.32 25499.46 16196.68 27699.56 9299.54 6898.41 7397.79 30499.87 2090.18 30499.66 20398.05 17197.18 24898.62 275
MAR-MVS98.86 11798.63 13099.54 9099.37 18299.66 5099.45 14499.54 6896.61 24699.01 20199.40 24097.09 12499.86 12197.68 20299.53 12699.10 187
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
xxxxxxxxxxxxxcwj99.43 3299.32 2999.75 4999.76 5299.59 6399.14 24299.53 8099.00 2299.71 4399.80 7498.95 2899.93 6498.19 15499.84 6599.74 70
UniMVSNet_ETH3D97.32 27096.81 27598.87 19599.40 17697.46 24099.51 11399.53 8095.86 29498.54 27099.77 9882.44 33999.66 20398.68 10597.52 22899.50 152
EIA-MVS99.18 6999.09 6899.45 11399.49 15499.18 11399.67 4299.53 8097.66 15699.40 12199.44 23098.10 9799.81 15298.94 6299.62 12099.35 172
jajsoiax98.43 15298.28 15898.88 19198.60 31298.43 20099.82 1099.53 8098.19 9498.63 26299.80 7493.22 24799.44 23299.22 3497.50 23198.77 221
mvs_tets98.40 15798.23 16098.91 18398.67 30598.51 19399.66 4699.53 8098.19 9498.65 26099.81 6092.75 25599.44 23299.31 2697.48 23598.77 221
UniMVSNet_NR-MVSNet98.22 16897.97 18298.96 17298.92 27398.98 13899.48 13599.53 8097.76 14498.71 24599.46 22896.43 14899.22 27398.57 12092.87 32398.69 240
ETV-MVS99.26 6099.21 5599.40 12099.46 16199.30 10199.56 9299.52 8698.52 6399.44 10899.27 27498.41 8199.86 12199.10 4799.59 12299.04 197
MP-MVS-pluss99.37 4699.20 5699.88 699.90 399.87 999.30 20299.52 8697.18 20299.60 7799.79 8698.79 4799.95 4198.83 8499.91 1699.83 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SD-MVS99.41 4099.52 699.05 16099.74 6799.68 4599.46 14399.52 8699.11 799.88 599.91 599.43 197.70 33598.72 9899.93 1099.77 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PS-CasMVS97.93 20697.59 22498.95 17498.99 26499.06 13099.68 4099.52 8697.13 20698.31 28399.68 14192.44 27299.05 29698.51 12894.08 31098.75 225
XVG-ACMP-BASELINE97.83 22297.71 21298.20 26399.11 24496.33 28799.41 16499.52 8698.06 11699.05 19799.50 21289.64 30899.73 17997.73 19597.38 24298.53 292
CNVR-MVS99.42 3699.30 3899.78 4399.62 12199.71 4099.26 22099.52 8698.82 4299.39 12399.71 12598.96 2599.85 12798.59 11799.80 8299.77 62
CP-MVS99.45 2699.32 2999.85 2599.83 3699.75 3499.69 3599.52 8698.07 11299.53 9199.63 16698.93 3599.97 1098.74 9499.91 1699.83 29
FMVSNet596.43 28696.19 28397.15 30399.11 24495.89 29699.32 19899.52 8694.47 31198.34 28299.07 29587.54 32797.07 33892.61 32595.72 28098.47 298
OMC-MVS99.08 9499.04 7499.20 14899.67 9698.22 20899.28 20899.52 8698.07 11299.66 6199.81 6097.79 10599.78 16497.79 18899.81 8099.60 125
PLCcopyleft97.94 499.02 10298.85 10699.53 9699.66 10599.01 13599.24 22499.52 8696.85 23099.27 14999.48 22198.25 9099.91 8697.76 19199.62 12099.65 109
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
9.1499.10 6699.72 7799.40 17299.51 9697.53 17099.64 6699.78 9298.84 4299.91 8697.63 20399.82 78
testtj99.12 8398.87 10199.86 1899.72 7799.79 2799.44 14899.51 9697.29 19299.59 8099.74 11398.15 9699.96 1896.74 26399.69 10599.81 41
ETH3D-3000-0.199.21 6499.02 7999.77 4599.73 7299.69 4399.38 18199.51 9697.45 17799.61 7399.75 10798.51 7199.91 8697.45 22499.83 7299.71 90
test_0728_SECOND99.91 299.84 3299.89 399.57 8599.51 9699.96 1898.93 6499.86 5199.88 5
DPE-MVS99.46 2499.32 2999.91 299.78 4499.88 799.36 18899.51 9698.73 5199.88 599.84 3898.72 5999.96 1898.16 15999.87 4099.88 5
xiu_mvs_v1_base_debu99.29 5599.27 4799.34 12599.63 11598.97 14199.12 24499.51 9698.86 3899.84 1399.47 22498.18 9399.99 199.50 899.31 13799.08 192
xiu_mvs_v1_base99.29 5599.27 4799.34 12599.63 11598.97 14199.12 24499.51 9698.86 3899.84 1399.47 22498.18 9399.99 199.50 899.31 13799.08 192
xiu_mvs_v1_base_debi99.29 5599.27 4799.34 12599.63 11598.97 14199.12 24499.51 9698.86 3899.84 1399.47 22498.18 9399.99 199.50 899.31 13799.08 192
cdsmvs_eth3d_5k24.64 32332.85 3250.00 3370.00 3560.00 3570.00 34899.51 960.00 3520.00 35399.56 19196.58 1410.00 3540.00 3510.00 3510.00 350
HPM-MVS++copyleft99.39 4499.23 5499.87 1199.75 6099.84 1399.43 15499.51 9698.68 5599.27 14999.53 20298.64 6799.96 1898.44 13699.80 8299.79 53
无先验98.99 27599.51 9696.89 22899.93 6497.53 21599.72 83
testdata99.54 9099.75 6098.95 14799.51 9697.07 21399.43 10999.70 12998.87 3999.94 4997.76 19199.64 11699.72 83
PEN-MVS97.76 23297.44 24398.72 21598.77 29498.54 18699.78 1999.51 9697.06 21598.29 28599.64 16192.63 26398.89 31998.09 16393.16 31998.72 230
UniMVSNet (Re)98.29 16598.00 17999.13 15499.00 26399.36 9499.49 12999.51 9697.95 12498.97 21199.13 29096.30 15199.38 24198.36 14493.34 31698.66 261
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2199.59 7399.51 9698.62 5799.79 2699.83 4299.28 399.97 1098.48 13099.90 2399.84 18
Skip Steuart: Steuart Systems R&D Blog.
UnsupCasMVSNet_eth96.44 28596.12 28497.40 30298.65 30695.65 29799.36 18899.51 9697.13 20696.04 32498.99 30288.40 32098.17 32696.71 26590.27 33198.40 308
3Dnovator+97.12 1399.18 6998.97 8899.82 3399.17 23599.68 4599.81 1299.51 9699.20 498.72 24499.89 1095.68 17399.97 1098.86 7799.86 5199.81 41
TAPA-MVS97.07 1597.74 23897.34 25898.94 17599.70 8997.53 23899.25 22299.51 9691.90 32699.30 14199.63 16698.78 4899.64 20888.09 33699.87 4099.65 109
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test072699.85 2599.89 399.62 6199.50 11499.10 899.86 1199.82 4998.94 31
DVP-MVS99.42 3699.27 4799.88 699.89 899.80 2399.67 4299.50 11498.70 5399.77 3399.49 21598.21 9299.95 4198.46 13499.77 8999.88 5
Effi-MVS+98.81 12898.59 14099.48 10799.46 16199.12 12598.08 33799.50 11497.50 17399.38 12699.41 23896.37 14999.81 15299.11 4698.54 18799.51 149
anonymousdsp98.44 15198.28 15898.94 17598.50 31798.96 14599.77 2199.50 11497.07 21398.87 22699.77 9894.76 20499.28 26298.66 10797.60 22198.57 290
casdiffmvs99.13 7798.98 8799.56 8899.65 11099.16 11699.56 9299.50 11498.33 8199.41 11699.86 2395.92 16399.83 14199.45 1599.16 14699.70 92
APD-MVScopyleft99.27 5899.08 6999.84 3099.75 6099.79 2799.50 11999.50 11497.16 20499.77 3399.82 4998.78 4899.94 4997.56 21299.86 5199.80 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MIMVSNet195.51 29695.04 29996.92 30997.38 33095.60 29899.52 10999.50 11493.65 31796.97 31699.17 28585.28 33396.56 34188.36 33595.55 28498.60 287
DP-MVS99.16 7398.95 9299.78 4399.77 4999.53 7599.41 16499.50 11497.03 21899.04 19899.88 1597.39 11399.92 7598.66 10799.90 2399.87 10
Fast-Effi-MVS+-dtu98.77 13498.83 11198.60 22199.41 17196.99 26299.52 10999.49 12298.11 10499.24 15799.34 25796.96 13099.79 16097.95 17699.45 12899.02 200
IterMVS-SCA-FT97.82 22597.75 20898.06 27199.57 13396.36 28699.02 26899.49 12297.18 20298.71 24599.72 12492.72 25899.14 28397.44 22595.86 27698.67 253
Regformer-499.59 399.54 499.73 5699.76 5299.41 9099.58 8099.49 12299.02 1599.88 599.80 7499.00 2299.94 4999.45 1599.92 1199.84 18
Regformer-299.54 999.47 999.75 4999.71 8399.52 7899.49 12999.49 12298.94 3399.83 1799.76 10299.01 1699.94 4999.15 4399.87 4099.80 49
test22299.75 6099.49 8198.91 29299.49 12296.42 26499.34 13799.65 15498.28 8999.69 10599.72 83
131498.68 14098.54 14399.11 15598.89 27598.65 17799.27 21299.49 12296.89 22897.99 29799.56 19197.72 10899.83 14197.74 19499.27 14098.84 214
diffmvs99.14 7599.02 7999.51 10399.61 12598.96 14599.28 20899.49 12298.46 6899.72 4299.71 12596.50 14499.88 11499.31 2699.11 15199.67 102
TranMVSNet+NR-MVSNet97.93 20697.66 21698.76 21398.78 29198.62 18099.65 5399.49 12297.76 14498.49 27299.60 17894.23 22498.97 31498.00 17292.90 32198.70 236
RRT_test8_iter0597.72 24197.60 22298.08 26999.23 21696.08 29399.63 5799.49 12297.54 16898.94 21599.81 6087.99 32599.35 25299.21 3696.51 25998.81 215
CPTT-MVS99.11 8898.90 9799.74 5499.80 4199.46 8599.59 7399.49 12297.03 21899.63 6799.69 13697.27 12099.96 1897.82 18699.84 6599.81 41
ACMP97.20 1198.06 18697.94 18798.45 24099.37 18297.01 26099.44 14899.49 12297.54 16898.45 27499.79 8691.95 27799.72 18397.91 17897.49 23498.62 275
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 6899.48 13399.08 1199.91 199.81 6099.20 599.96 1898.91 6799.85 5899.79 53
test_241102_TWO99.48 13399.08 1199.88 599.81 6098.94 3199.96 1898.91 6799.84 6599.88 5
test_241102_ONE99.84 3299.90 199.48 13399.07 1399.91 199.74 11399.20 599.76 169
test_part10.00 3370.00 3570.00 34899.48 1330.00 3580.00 3540.00 3510.00 3510.00 350
ACMMP_NAP99.47 2299.34 2699.88 699.87 1599.86 1099.47 14099.48 13398.05 11799.76 3799.86 2398.82 4499.93 6498.82 8899.91 1699.84 18
canonicalmvs99.02 10298.86 10599.51 10399.42 16899.32 9799.80 1699.48 13398.63 5699.31 14098.81 31197.09 12499.75 17199.27 3197.90 21399.47 159
112199.09 9298.87 10199.75 4999.74 6799.60 6099.27 21299.48 13396.82 23399.25 15699.65 15498.38 8299.93 6497.53 21599.67 11299.73 77
testgi97.65 25397.50 23298.13 26899.36 18496.45 28399.42 16199.48 13397.76 14497.87 30099.45 22991.09 29498.81 32094.53 30698.52 18899.13 185
DTE-MVSNet97.51 26297.19 26898.46 23998.63 30898.13 21399.84 699.48 13396.68 23997.97 29899.67 14792.92 25198.56 32396.88 25992.60 32698.70 236
mPP-MVS99.44 2999.30 3899.86 1899.88 1199.79 2799.69 3599.48 13398.12 10299.50 9699.75 10798.78 4899.97 1098.57 12099.89 3399.83 29
baseline99.15 7499.02 7999.53 9699.66 10599.14 12199.72 2999.48 13398.35 7799.42 11299.84 3896.07 15699.79 16099.51 799.14 14999.67 102
NCCC99.34 4999.19 5799.79 4199.61 12599.65 5399.30 20299.48 13398.86 3899.21 16599.63 16698.72 5999.90 10198.25 15099.63 11899.80 49
GBi-Net97.68 24897.48 23398.29 25799.51 14597.26 24699.43 15499.48 13396.49 25599.07 19299.32 26490.26 30098.98 30797.10 24496.65 25498.62 275
UnsupCasMVSNet_bld93.53 30892.51 31096.58 31597.38 33093.82 32598.24 33399.48 13391.10 33093.10 33396.66 33574.89 34298.37 32494.03 31387.71 33697.56 333
test197.68 24897.48 23398.29 25799.51 14597.26 24699.43 15499.48 13396.49 25599.07 19299.32 26490.26 30098.98 30797.10 24496.65 25498.62 275
FMVSNet196.84 27896.36 28198.29 25799.32 19797.26 24699.43 15499.48 13395.11 30198.55 26999.32 26483.95 33598.98 30795.81 28496.26 26598.62 275
1112_ss98.98 10798.77 11599.59 8299.68 9599.02 13399.25 22299.48 13397.23 19999.13 17999.58 18496.93 13199.90 10198.87 7498.78 17799.84 18
IterMVS97.83 22297.77 20498.02 27499.58 13196.27 28999.02 26899.48 13397.22 20098.71 24599.70 12992.75 25599.13 28697.46 22296.00 27098.67 253
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CMPMVSbinary69.68 2394.13 30694.90 30091.84 32497.24 33480.01 34598.52 32499.48 13389.01 33391.99 33599.67 14785.67 33299.13 28695.44 29297.03 25196.39 337
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
SMA-MVS99.44 2999.30 3899.85 2599.73 7299.83 1499.56 9299.47 15297.45 17799.78 3199.82 4999.18 899.91 8698.79 9099.89 3399.81 41
zzz-MVS99.49 1599.36 2199.89 499.90 399.86 1099.36 18899.47 15298.79 4799.68 5099.81 6098.43 7799.97 1098.88 7099.90 2399.83 29
MTGPAbinary99.47 152
pmmvs696.53 28396.09 28597.82 28898.69 30395.47 30499.37 18499.47 15293.46 32097.41 30799.78 9287.06 32899.33 25696.92 25792.70 32598.65 263
Fast-Effi-MVS+98.70 13798.43 14799.51 10399.51 14599.28 10399.52 10999.47 15296.11 28799.01 20199.34 25796.20 15499.84 13297.88 18098.82 17499.39 170
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 4699.47 15298.79 4799.68 5099.81 6098.43 7799.97 1098.88 7099.90 2399.83 29
原ACMM199.65 7099.73 7299.33 9699.47 15297.46 17499.12 18199.66 15398.67 6599.91 8697.70 19999.69 10599.71 90
HQP_MVS98.27 16798.22 16198.44 24399.29 20396.97 26499.39 17699.47 15298.97 3099.11 18399.61 17592.71 26099.69 19897.78 18997.63 21898.67 253
plane_prior599.47 15299.69 19897.78 18997.63 21898.67 253
Test_1112_low_res98.89 11398.66 12899.57 8699.69 9198.95 14799.03 26599.47 15296.98 22099.15 17799.23 27996.77 13699.89 10998.83 8498.78 17799.86 11
ppachtmachnet_test97.49 26597.45 23897.61 29598.62 30995.24 30898.80 30299.46 16296.11 28798.22 28799.62 17196.45 14698.97 31493.77 31495.97 27498.61 284
nrg03098.64 14498.42 14899.28 14099.05 25799.69 4399.81 1299.46 16298.04 11899.01 20199.82 4996.69 13999.38 24199.34 2394.59 30198.78 218
v7n97.87 21497.52 22998.92 17998.76 29598.58 18399.84 699.46 16296.20 27898.91 21999.70 12994.89 19599.44 23296.03 28093.89 31298.75 225
PS-MVSNAJ99.32 5199.32 2999.30 13599.57 13398.94 15098.97 28299.46 16298.92 3599.71 4399.24 27799.01 1699.98 599.35 1999.66 11398.97 205
Regformer-199.53 1199.47 999.72 5999.71 8399.44 8799.49 12999.46 16298.95 3299.83 1799.76 10299.01 1699.93 6499.17 4099.87 4099.80 49
MP-MVScopyleft99.33 5099.15 6099.87 1199.88 1199.82 2099.66 4699.46 16298.09 10799.48 10099.74 11398.29 8899.96 1897.93 17799.87 4099.82 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVSNet98.09 18397.78 20299.01 16598.97 26999.24 10899.67 4299.46 16297.25 19698.48 27399.64 16193.79 23899.06 29598.63 11094.10 30998.74 228
MVSFormer99.17 7199.12 6499.29 13899.51 14598.94 15099.88 199.46 16297.55 16599.80 2499.65 15497.39 11399.28 26299.03 5299.85 5899.65 109
test_djsdf98.67 14198.57 14198.98 16998.70 30298.91 15499.88 199.46 16297.55 16599.22 16299.88 1595.73 17199.28 26299.03 5297.62 22098.75 225
CDS-MVSNet99.09 9299.03 7699.25 14399.42 16898.73 17199.45 14499.46 16298.11 10499.46 10399.77 9898.01 10099.37 24498.70 10098.92 16899.66 105
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS99.12 8399.08 6999.24 14599.46 16198.55 18599.51 11399.46 16298.09 10799.45 10499.82 4998.34 8599.51 22398.70 10098.93 16699.67 102
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4599.63 11599.59 6399.36 18899.46 16299.07 1399.79 2699.82 4998.85 4199.92 7598.68 10599.87 4099.82 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETH3 D test640098.70 13798.35 15299.73 5699.69 9199.60 6099.16 23699.45 17495.42 29899.27 14999.60 17897.39 11399.91 8695.36 29699.83 7299.70 92
xiu_mvs_v2_base99.26 6099.25 5199.29 13899.53 14198.91 15499.02 26899.45 17498.80 4699.71 4399.26 27598.94 3199.98 599.34 2399.23 14298.98 204
EI-MVSNet-UG-set99.58 499.57 199.64 7599.78 4499.14 12199.60 6899.45 17499.01 1899.90 399.83 4298.98 2399.93 6499.59 199.95 699.86 11
EI-MVSNet-Vis-set99.58 499.56 399.64 7599.78 4499.15 12099.61 6799.45 17499.01 1899.89 499.82 4999.01 1699.92 7599.56 499.95 699.85 14
pm-mvs197.68 24897.28 26498.88 19199.06 25498.62 18099.50 11999.45 17496.32 26897.87 30099.79 8692.47 26899.35 25297.54 21493.54 31598.67 253
DU-MVS98.08 18597.79 19998.96 17298.87 28098.98 13899.41 16499.45 17497.87 12998.71 24599.50 21294.82 19799.22 27398.57 12092.87 32398.68 245
ACMM97.58 598.37 15998.34 15398.48 23499.41 17197.10 25199.56 9299.45 17498.53 6299.04 19899.85 2993.00 24999.71 18998.74 9497.45 23698.64 265
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Gipumacopyleft90.99 31090.15 31293.51 32098.73 29790.12 33993.98 34499.45 17479.32 34192.28 33494.91 33869.61 34497.98 32987.42 33795.67 28192.45 341
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ETH3D cwj APD-0.1699.06 9698.84 10799.72 5999.51 14599.60 6099.23 22599.44 18297.04 21699.39 12399.67 14798.30 8799.92 7597.27 23199.69 10599.64 115
Regformer-399.57 799.53 599.68 6399.76 5299.29 10299.58 8099.44 18299.01 1899.87 1099.80 7498.97 2499.91 8699.44 1799.92 1199.83 29
RPSCF98.22 16898.62 13596.99 30699.82 3791.58 33799.72 2999.44 18296.61 24699.66 6199.89 1095.92 16399.82 14897.46 22299.10 15499.57 134
Vis-MVSNet (Re-imp)98.87 11498.72 11999.31 13199.71 8398.88 15699.80 1699.44 18297.91 12899.36 13199.78 9295.49 17899.43 23697.91 17899.11 15199.62 121
CNLPA99.14 7598.99 8499.59 8299.58 13199.41 9099.16 23699.44 18298.45 6999.19 17199.49 21598.08 9899.89 10997.73 19599.75 9399.48 154
DeepPCF-MVS98.18 398.81 12899.37 1997.12 30599.60 12891.75 33698.61 31899.44 18299.35 199.83 1799.85 2998.70 6199.81 15299.02 5499.91 1699.81 41
CLD-MVS98.16 17698.10 16798.33 25299.29 20396.82 27198.75 30799.44 18297.83 13599.13 17999.55 19492.92 25199.67 20098.32 14897.69 21798.48 296
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2024052998.09 18397.68 21499.34 12599.66 10598.44 19999.40 17299.43 18993.67 31699.22 16299.89 1090.23 30399.93 6499.26 3298.33 19399.66 105
IterMVS-LS98.46 15098.42 14898.58 22399.59 13098.00 21799.37 18499.43 18996.94 22699.07 19299.59 18197.87 10299.03 29998.32 14895.62 28298.71 232
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
NR-MVSNet97.97 20497.61 22199.02 16498.87 28099.26 10699.47 14099.42 19197.63 15897.08 31399.50 21295.07 19199.13 28697.86 18293.59 31498.68 245
FMVSNet297.72 24197.36 25398.80 20999.51 14598.84 16199.45 14499.42 19196.49 25598.86 23199.29 26990.26 30098.98 30796.44 27396.56 25798.58 289
TEST999.67 9699.65 5399.05 25999.41 19396.22 27798.95 21399.49 21598.77 5199.91 86
train_agg99.02 10298.77 11599.77 4599.67 9699.65 5399.05 25999.41 19396.28 27098.95 21399.49 21598.76 5399.91 8697.63 20399.72 9999.75 66
test_899.67 9699.61 5899.03 26599.41 19396.28 27098.93 21799.48 22198.76 5399.91 86
v897.95 20597.63 22098.93 17798.95 27198.81 16799.80 1699.41 19396.03 29299.10 18699.42 23594.92 19399.30 26096.94 25594.08 31098.66 261
v1097.85 21797.52 22998.86 19998.99 26498.67 17599.75 2599.41 19395.70 29598.98 20999.41 23894.75 20599.23 27096.01 28194.63 30098.67 253
CDPH-MVS99.13 7798.91 9699.80 3899.75 6099.71 4099.15 24099.41 19396.60 24899.60 7799.55 19498.83 4399.90 10197.48 21999.83 7299.78 60
save fliter99.76 5299.59 6399.14 24299.40 19999.00 22
agg_prior199.01 10598.76 11799.76 4899.67 9699.62 5698.99 27599.40 19996.26 27398.87 22699.49 21598.77 5199.91 8697.69 20099.72 9999.75 66
agg_prior99.67 9699.62 5699.40 19998.87 22699.91 86
MCST-MVS99.43 3299.30 3899.82 3399.79 4299.74 3799.29 20699.40 19998.79 4799.52 9399.62 17198.91 3699.90 10198.64 10999.75 9399.82 36
TSAR-MVS + MP.99.58 499.50 899.81 3699.91 199.66 5099.63 5799.39 20398.91 3699.78 3199.85 2999.36 299.94 4998.84 8199.88 3699.82 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MVS97.28 27196.55 27899.48 10798.78 29198.95 14799.27 21299.39 20383.53 33998.08 29299.54 19996.97 12999.87 11894.23 31099.16 14699.63 119
VNet99.11 8898.90 9799.73 5699.52 14399.56 6899.41 16499.39 20399.01 1899.74 3999.78 9295.56 17599.92 7599.52 698.18 20399.72 83
HQP3-MVS99.39 20397.58 223
cascas97.69 24697.43 24698.48 23498.60 31297.30 24398.18 33699.39 20392.96 32398.41 27698.78 31493.77 23999.27 26598.16 15998.61 18098.86 212
HQP-MVS98.02 19497.90 19098.37 25099.19 22696.83 26998.98 27999.39 20398.24 8798.66 25499.40 24092.47 26899.64 20897.19 23997.58 22398.64 265
OPM-MVS98.19 17298.10 16798.45 24098.88 27697.07 25599.28 20899.38 20998.57 6099.22 16299.81 6092.12 27599.66 20398.08 16797.54 22798.61 284
RRT_MVS98.60 14698.44 14699.05 16098.88 27699.14 12199.49 12999.38 20997.76 14499.29 14499.86 2395.38 18099.36 24898.81 8997.16 24998.64 265
EI-MVSNet98.67 14198.67 12598.68 21899.35 18597.97 21999.50 11999.38 20996.93 22799.20 16899.83 4297.87 10299.36 24898.38 14097.56 22598.71 232
test20.0396.12 29195.96 28896.63 31397.44 32995.45 30599.51 11399.38 20996.55 25296.16 32299.25 27693.76 24096.17 34287.35 33894.22 30798.27 314
mvs_anonymous99.03 10198.99 8499.16 15199.38 18098.52 19199.51 11399.38 20997.79 14199.38 12699.81 6097.30 11899.45 22799.35 1998.99 16399.51 149
MVSTER98.49 14898.32 15599.00 16799.35 18599.02 13399.54 10399.38 20997.41 18399.20 16899.73 12093.86 23799.36 24898.87 7497.56 22598.62 275
FMVSNet398.03 19297.76 20798.84 20399.39 17998.98 13899.40 17299.38 20996.67 24099.07 19299.28 27192.93 25098.98 30797.10 24496.65 25498.56 291
PAPM_NR99.04 9998.84 10799.66 6699.74 6799.44 8799.39 17699.38 20997.70 15199.28 14699.28 27198.34 8599.85 12796.96 25399.45 12899.69 95
MSP-MVS99.57 799.47 999.88 699.85 2599.89 399.57 8599.37 21799.10 899.81 2299.80 7498.94 3199.96 1898.93 6499.86 5199.81 41
miper_lstm_enhance98.00 19997.91 18998.28 26099.34 18997.43 24198.88 29499.36 21896.48 25998.80 23699.55 19495.98 15898.91 31797.27 23195.50 28698.51 294
v124097.69 24697.32 26198.79 21098.85 28498.43 20099.48 13599.36 21896.11 28799.27 14999.36 25193.76 24099.24 26994.46 30795.23 29098.70 236
v2v48298.06 18697.77 20498.92 17998.90 27498.82 16599.57 8599.36 21896.65 24299.19 17199.35 25494.20 22599.25 26897.72 19794.97 29698.69 240
HY-MVS97.30 798.85 12598.64 12999.47 11099.42 16899.08 12899.62 6199.36 21897.39 18599.28 14699.68 14196.44 14799.92 7598.37 14298.22 19999.40 169
PAPR98.63 14598.34 15399.51 10399.40 17699.03 13298.80 30299.36 21896.33 26799.00 20699.12 29398.46 7599.84 13295.23 29899.37 13699.66 105
cl-mvsnet198.01 19797.85 19698.48 23499.24 21597.95 22398.71 31199.35 22396.50 25498.60 26799.54 19995.72 17299.03 29997.21 23595.77 27798.46 302
v114497.98 20197.69 21398.85 20298.87 28098.66 17699.54 10399.35 22396.27 27299.23 16199.35 25494.67 20999.23 27096.73 26495.16 29298.68 245
WR-MVS98.06 18697.73 21099.06 15898.86 28399.25 10799.19 23399.35 22397.30 19198.66 25499.43 23293.94 23499.21 27898.58 11894.28 30698.71 232
test1199.35 223
cl-mvsnet_98.01 19797.84 19798.55 22899.25 21497.97 21998.71 31199.34 22796.47 26198.59 26899.54 19995.65 17499.21 27897.21 23595.77 27798.46 302
v14419297.92 20997.60 22298.87 19598.83 28698.65 17799.55 10099.34 22796.20 27899.32 13999.40 24094.36 22099.26 26796.37 27695.03 29598.70 236
v192192097.80 22997.45 23898.84 20398.80 28798.53 18799.52 10999.34 22796.15 28499.24 15799.47 22493.98 23399.29 26195.40 29495.13 29398.69 240
v119297.81 22797.44 24398.91 18398.88 27698.68 17499.51 11399.34 22796.18 28099.20 16899.34 25794.03 23299.36 24895.32 29795.18 29198.69 240
V4298.06 18697.79 19998.86 19998.98 26798.84 16199.69 3599.34 22796.53 25399.30 14199.37 24894.67 20999.32 25797.57 21194.66 29998.42 305
MVS_Test99.10 9198.97 8899.48 10799.49 15499.14 12199.67 4299.34 22797.31 19099.58 8299.76 10297.65 10999.82 14898.87 7499.07 15799.46 161
MG-MVS99.13 7799.02 7999.45 11399.57 13398.63 17999.07 25499.34 22798.99 2599.61 7399.82 4997.98 10199.87 11897.00 24999.80 8299.85 14
cl-mvsnet297.85 21797.64 21998.48 23499.09 24997.87 22698.60 32099.33 23497.11 21198.87 22699.22 28092.38 27399.17 28298.21 15395.99 27198.42 305
cl_fuxian98.12 18198.04 17598.38 24999.30 19997.69 23798.81 30199.33 23496.67 24098.83 23299.34 25797.11 12398.99 30697.58 20795.34 28898.48 296
v14897.79 23097.55 22598.50 23198.74 29697.72 23499.54 10399.33 23496.26 27398.90 22199.51 20994.68 20899.14 28397.83 18593.15 32098.63 273
MDA-MVSNet-bldmvs94.96 30193.98 30697.92 28198.24 32297.27 24599.15 24099.33 23493.80 31580.09 34599.03 30088.31 32197.86 33293.49 31794.36 30598.62 275
TSAR-MVS + GP.99.36 4799.36 2199.36 12499.67 9698.61 18299.07 25499.33 23499.00 2299.82 2099.81 6099.06 1399.84 13299.09 4899.42 13099.65 109
CR-MVSNet98.17 17597.93 18898.87 19599.18 22998.49 19599.22 23099.33 23496.96 22299.56 8599.38 24594.33 22199.00 30494.83 30498.58 18399.14 183
Patchmtry97.75 23697.40 24998.81 20799.10 24798.87 15799.11 25099.33 23494.83 30498.81 23499.38 24594.33 22199.02 30196.10 27895.57 28398.53 292
EPP-MVSNet99.13 7798.99 8499.53 9699.65 11099.06 13099.81 1299.33 23497.43 18099.60 7799.88 1597.14 12299.84 13299.13 4498.94 16599.69 95
IU-MVS99.84 3299.88 799.32 24298.30 8399.84 1398.86 7799.85 5899.89 2
miper_enhance_ethall98.16 17698.08 17198.41 24598.96 27097.72 23498.45 32799.32 24296.95 22498.97 21199.17 28597.06 12699.22 27397.86 18295.99 27198.29 313
MS-PatchMatch97.24 27397.32 26196.99 30698.45 31993.51 33098.82 30099.32 24297.41 18398.13 29199.30 26788.99 31399.56 21995.68 28899.80 8297.90 329
miper_ehance_all_eth98.18 17498.10 16798.41 24599.23 21697.72 23498.72 31099.31 24596.60 24898.88 22499.29 26997.29 11999.13 28697.60 20595.99 27198.38 310
eth_miper_zixun_eth98.05 19197.96 18398.33 25299.26 21097.38 24298.56 32399.31 24596.65 24298.88 22499.52 20596.58 14199.12 29097.39 22895.53 28598.47 298
tpm cat197.39 26897.36 25397.50 30099.17 23593.73 32699.43 15499.31 24591.27 32898.71 24599.08 29494.31 22399.77 16696.41 27598.50 18999.00 201
PMMVS98.80 13198.62 13599.34 12599.27 20898.70 17398.76 30699.31 24597.34 18799.21 16599.07 29597.20 12199.82 14898.56 12398.87 17199.52 143
our_test_397.65 25397.68 21497.55 29898.62 30994.97 31498.84 29899.30 24996.83 23298.19 28899.34 25797.01 12899.02 30195.00 30296.01 26998.64 265
Effi-MVS+-dtu98.78 13298.89 9998.47 23899.33 19096.91 26899.57 8599.30 24998.47 6699.41 11698.99 30296.78 13499.74 17298.73 9699.38 13298.74 228
CANet_DTU98.97 10998.87 10199.25 14399.33 19098.42 20299.08 25399.30 24999.16 599.43 10999.75 10795.27 18599.97 1098.56 12399.95 699.36 171
mvs-test198.86 11798.84 10798.89 18899.33 19097.77 23199.44 14899.30 24998.47 6699.10 18699.43 23296.78 13499.95 4198.73 9699.02 16198.96 207
VDDNet97.55 25797.02 27299.16 15199.49 15498.12 21499.38 18199.30 24995.35 29999.68 5099.90 782.62 33899.93 6499.31 2698.13 20899.42 166
test1299.75 4999.64 11299.61 5899.29 25499.21 16598.38 8299.89 10999.74 9599.74 70
new-patchmatchnet94.48 30394.08 30595.67 31895.08 33992.41 33499.18 23499.28 25594.55 31093.49 33297.37 33287.86 32697.01 33991.57 32788.36 33597.61 331
testing_294.44 30492.93 30998.98 16994.16 34199.00 13799.42 16199.28 25596.60 24884.86 33896.84 33470.91 34399.27 26598.23 15296.08 26898.68 245
jason99.13 7799.03 7699.45 11399.46 16198.87 15799.12 24499.26 25798.03 12099.79 2699.65 15497.02 12799.85 12799.02 5499.90 2399.65 109
jason: jason.
test_040296.64 28096.24 28297.85 28598.85 28496.43 28499.44 14899.26 25793.52 31896.98 31599.52 20588.52 31999.20 28092.58 32697.50 23197.93 327
PCF-MVS97.08 1497.66 25297.06 27199.47 11099.61 12599.09 12798.04 33899.25 25991.24 32998.51 27199.70 12994.55 21599.91 8692.76 32499.85 5899.42 166
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MDA-MVSNet_test_wron95.45 29794.60 30298.01 27598.16 32397.21 24999.11 25099.24 26093.49 31980.73 34498.98 30593.02 24898.18 32594.22 31194.45 30398.64 265
YYNet195.36 29994.51 30497.92 28197.89 32597.10 25199.10 25299.23 26193.26 32280.77 34399.04 29992.81 25498.02 32794.30 30894.18 30898.64 265
DeepMVS_CXcopyleft93.34 32199.29 20382.27 34399.22 26285.15 33796.33 32099.05 29890.97 29699.73 17993.57 31697.77 21698.01 323
pmmvs498.13 17997.90 19098.81 20798.61 31198.87 15798.99 27599.21 26396.44 26299.06 19699.58 18495.90 16599.11 29197.18 24196.11 26798.46 302
tpmvs97.98 20198.02 17897.84 28699.04 25894.73 31899.31 20099.20 26496.10 29198.76 24199.42 23594.94 19299.81 15296.97 25298.45 19198.97 205
new_pmnet96.38 28796.03 28697.41 30198.13 32495.16 31299.05 25999.20 26493.94 31397.39 30898.79 31291.61 28899.04 29790.43 33095.77 27798.05 321
IS-MVSNet99.05 9898.87 10199.57 8699.73 7299.32 9799.75 2599.20 26498.02 12199.56 8599.86 2396.54 14399.67 20098.09 16399.13 15099.73 77
lupinMVS99.13 7799.01 8399.46 11299.51 14598.94 15099.05 25999.16 26797.86 13099.80 2499.56 19197.39 11399.86 12198.94 6299.85 5899.58 133
GA-MVS97.85 21797.47 23599.00 16799.38 18097.99 21898.57 32199.15 26897.04 21698.90 22199.30 26789.83 30699.38 24196.70 26698.33 19399.62 121
ADS-MVSNet98.20 17198.08 17198.56 22699.33 19096.48 28299.23 22599.15 26896.24 27599.10 18699.67 14794.11 22999.71 18996.81 26099.05 15899.48 154
Patchmatch-test97.93 20697.65 21798.77 21299.18 22997.07 25599.03 26599.14 27096.16 28298.74 24299.57 18894.56 21499.72 18393.36 31899.11 15199.52 143
BH-untuned98.42 15398.36 15098.59 22299.49 15496.70 27499.27 21299.13 27197.24 19898.80 23699.38 24595.75 17099.74 17297.07 24799.16 14699.33 175
tpmrst98.33 16198.48 14597.90 28399.16 23794.78 31799.31 20099.11 27297.27 19499.45 10499.59 18195.33 18399.84 13298.48 13098.61 18099.09 191
DPM-MVS98.95 11098.71 12199.66 6699.63 11599.55 7098.64 31799.10 27397.93 12699.42 11299.55 19498.67 6599.80 15795.80 28599.68 11099.61 123
pmmvs-eth3d95.34 30094.73 30197.15 30395.53 33895.94 29599.35 19399.10 27395.13 30093.55 33197.54 32988.15 32497.91 33094.58 30589.69 33497.61 331
PAPM97.59 25697.09 27099.07 15799.06 25498.26 20798.30 33299.10 27394.88 30398.08 29299.34 25796.27 15299.64 20889.87 33198.92 16899.31 176
Anonymous2023120696.22 28896.03 28696.79 31297.31 33394.14 32399.63 5799.08 27696.17 28197.04 31499.06 29793.94 23497.76 33486.96 33995.06 29498.47 298
ADS-MVSNet298.02 19498.07 17497.87 28499.33 19095.19 31099.23 22599.08 27696.24 27599.10 18699.67 14794.11 22998.93 31696.81 26099.05 15899.48 154
RPMNet96.61 28195.85 28998.87 19599.18 22998.49 19599.22 23099.08 27688.72 33599.56 8597.38 33194.08 23199.00 30486.87 34098.58 18399.14 183
test_yl98.86 11798.63 13099.54 9099.49 15499.18 11399.50 11999.07 27998.22 9199.61 7399.51 20995.37 18199.84 13298.60 11598.33 19399.59 129
DCV-MVSNet98.86 11798.63 13099.54 9099.49 15499.18 11399.50 11999.07 27998.22 9199.61 7399.51 20995.37 18199.84 13298.60 11598.33 19399.59 129
PatchT97.03 27796.44 28098.79 21098.99 26498.34 20499.16 23699.07 27992.13 32599.52 9397.31 33394.54 21698.98 30788.54 33498.73 17999.03 198
USDC97.34 26997.20 26797.75 29199.07 25295.20 30998.51 32599.04 28297.99 12298.31 28399.86 2389.02 31299.55 22195.67 28997.36 24398.49 295
CostFormer97.72 24197.73 21097.71 29399.15 24094.02 32499.54 10399.02 28394.67 30799.04 19899.35 25492.35 27499.77 16698.50 12997.94 21299.34 174
OurMVSNet-221017-097.88 21297.77 20498.19 26498.71 30196.53 28099.88 199.00 28497.79 14198.78 23999.94 391.68 28399.35 25297.21 23596.99 25298.69 240
LCM-MVSNet86.80 31285.22 31591.53 32587.81 34780.96 34498.23 33598.99 28571.05 34390.13 33796.51 33648.45 35196.88 34090.51 32985.30 33996.76 335
MIMVSNet97.73 23997.45 23898.57 22499.45 16697.50 23999.02 26898.98 28696.11 28799.41 11699.14 28990.28 29998.74 32195.74 28698.93 16699.47 159
SCA98.19 17298.16 16298.27 26199.30 19995.55 30099.07 25498.97 28797.57 16399.43 10999.57 18892.72 25899.74 17297.58 20799.20 14499.52 143
JIA-IIPM97.50 26397.02 27298.93 17798.73 29797.80 23099.30 20298.97 28791.73 32798.91 21994.86 33995.10 19099.71 18997.58 20797.98 21199.28 178
alignmvs98.81 12898.56 14299.58 8599.43 16799.42 8999.51 11398.96 28998.61 5899.35 13498.92 30894.78 20099.77 16699.35 1998.11 20999.54 138
tpm297.44 26797.34 25897.74 29299.15 24094.36 32199.45 14498.94 29093.45 32198.90 22199.44 23091.35 29199.59 21797.31 22998.07 21099.29 177
baseline198.31 16297.95 18599.38 12399.50 15298.74 17099.59 7398.93 29198.41 7399.14 17899.60 17894.59 21299.79 16098.48 13093.29 31799.61 123
EG-PatchMatch MVS95.97 29395.69 29296.81 31197.78 32792.79 33399.16 23698.93 29196.16 28294.08 33099.22 28082.72 33799.47 22595.67 28997.50 23198.17 317
PatchmatchNetpermissive98.31 16298.36 15098.19 26499.16 23795.32 30799.27 21298.92 29397.37 18699.37 12899.58 18494.90 19499.70 19597.43 22699.21 14399.54 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ITE_SJBPF98.08 26999.29 20396.37 28598.92 29398.34 7898.83 23299.75 10791.09 29499.62 21495.82 28397.40 24198.25 316
FPMVS84.93 31385.65 31382.75 33186.77 34863.39 35298.35 33098.92 29374.11 34283.39 34198.98 30550.85 34992.40 34684.54 34294.97 29692.46 340
TransMVSNet (Re)97.15 27496.58 27798.86 19999.12 24298.85 16099.49 12998.91 29695.48 29797.16 31299.80 7493.38 24399.11 29194.16 31291.73 32898.62 275
EPNet98.86 11798.71 12199.30 13597.20 33598.18 20999.62 6198.91 29699.28 298.63 26299.81 6095.96 15999.99 199.24 3399.72 9999.73 77
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs597.52 26097.30 26398.16 26698.57 31496.73 27399.27 21298.90 29896.14 28598.37 27999.53 20291.54 28999.14 28397.51 21795.87 27598.63 273
BH-w/o98.00 19997.89 19498.32 25499.35 18596.20 29199.01 27398.90 29896.42 26498.38 27899.00 30195.26 18799.72 18396.06 27998.61 18099.03 198
MTMP99.54 10398.88 300
dp97.75 23697.80 19897.59 29699.10 24793.71 32799.32 19898.88 30096.48 25999.08 19199.55 19492.67 26299.82 14896.52 27198.58 18399.24 179
MVP-Stereo97.81 22797.75 20897.99 27797.53 32896.60 27998.96 28398.85 30297.22 20097.23 31099.36 25195.28 18499.46 22695.51 29199.78 8797.92 328
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
VDD-MVS97.73 23997.35 25598.88 19199.47 16097.12 25099.34 19698.85 30298.19 9499.67 5699.85 2982.98 33699.92 7599.49 1298.32 19799.60 125
Baseline_NR-MVSNet97.76 23297.45 23898.68 21899.09 24998.29 20599.41 16498.85 30295.65 29698.63 26299.67 14794.82 19799.10 29398.07 17092.89 32298.64 265
LF4IMVS97.52 26097.46 23797.70 29498.98 26795.55 30099.29 20698.82 30598.07 11298.66 25499.64 16189.97 30599.61 21597.01 24896.68 25397.94 326
BH-RMVSNet98.41 15598.08 17199.40 12099.41 17198.83 16499.30 20298.77 30697.70 15198.94 21599.65 15492.91 25399.74 17296.52 27199.55 12599.64 115
EPNet_dtu98.03 19297.96 18398.23 26298.27 32195.54 30299.23 22598.75 30799.02 1597.82 30299.71 12596.11 15599.48 22493.04 32299.65 11599.69 95
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TDRefinement95.42 29894.57 30397.97 27889.83 34696.11 29299.48 13598.75 30796.74 23596.68 31799.88 1588.65 31799.71 18998.37 14282.74 34098.09 319
OpenMVS_ROBcopyleft92.34 2094.38 30593.70 30796.41 31697.38 33093.17 33199.06 25798.75 30786.58 33694.84 32998.26 32681.53 34099.32 25789.01 33397.87 21496.76 335
thres100view90097.76 23297.45 23898.69 21799.72 7797.86 22899.59 7398.74 31097.93 12699.26 15498.62 31891.75 28099.83 14193.22 31998.18 20398.37 311
thres600view797.86 21697.51 23198.92 17999.72 7797.95 22399.59 7398.74 31097.94 12599.27 14998.62 31891.75 28099.86 12193.73 31598.19 20298.96 207
thres20097.61 25597.28 26498.62 22099.64 11298.03 21599.26 22098.74 31097.68 15399.09 19098.32 32591.66 28699.81 15292.88 32398.22 19998.03 322
MDTV_nov1_ep1398.32 15599.11 24494.44 32099.27 21298.74 31097.51 17299.40 12199.62 17194.78 20099.76 16997.59 20698.81 176
TinyColmap97.12 27596.89 27497.83 28799.07 25295.52 30398.57 32198.74 31097.58 16297.81 30399.79 8688.16 32399.56 21995.10 29997.21 24698.39 309
tfpn200view997.72 24197.38 25198.72 21599.69 9197.96 22199.50 11998.73 31597.83 13599.17 17598.45 32391.67 28499.83 14193.22 31998.18 20398.37 311
ambc93.06 32292.68 34282.36 34298.47 32698.73 31595.09 32797.41 33055.55 34899.10 29396.42 27491.32 32997.71 330
thres40097.77 23197.38 25198.92 17999.69 9197.96 22199.50 11998.73 31597.83 13599.17 17598.45 32391.67 28499.83 14193.22 31998.18 20398.96 207
SixPastTwentyTwo97.50 26397.33 26098.03 27298.65 30696.23 29099.77 2198.68 31897.14 20597.90 29999.93 490.45 29899.18 28197.00 24996.43 26198.67 253
test0.0.03 197.71 24597.42 24798.56 22698.41 32097.82 22998.78 30498.63 31997.34 18798.05 29698.98 30594.45 21898.98 30795.04 30197.15 25098.89 211
DWT-MVSNet_test97.53 25997.40 24997.93 28099.03 26094.86 31699.57 8598.63 31996.59 25198.36 28098.79 31289.32 31099.74 17298.14 16198.16 20799.20 182
TR-MVS97.76 23297.41 24898.82 20599.06 25497.87 22698.87 29698.56 32196.63 24598.68 25399.22 28092.49 26799.65 20695.40 29497.79 21598.95 210
Anonymous20240521198.30 16497.98 18199.26 14299.57 13398.16 21099.41 16498.55 32296.03 29299.19 17199.74 11391.87 27899.92 7599.16 4298.29 19899.70 92
tpm97.67 25197.55 22598.03 27299.02 26195.01 31399.43 15498.54 32396.44 26299.12 18199.34 25791.83 27999.60 21697.75 19396.46 26099.48 154
Patchmatch-RL test95.84 29495.81 29195.95 31795.61 33690.57 33898.24 33398.39 32495.10 30295.20 32698.67 31794.78 20097.77 33396.28 27790.02 33299.51 149
LCM-MVSNet-Re97.83 22298.15 16396.87 31099.30 19992.25 33599.59 7398.26 32597.43 18096.20 32199.13 29096.27 15298.73 32298.17 15898.99 16399.64 115
LFMVS97.90 21197.35 25599.54 9099.52 14399.01 13599.39 17698.24 32697.10 21299.65 6499.79 8684.79 33499.91 8699.28 2998.38 19299.69 95
PM-MVS92.96 30992.23 31195.14 31995.61 33689.98 34099.37 18498.21 32794.80 30595.04 32897.69 32865.06 34597.90 33194.30 30889.98 33397.54 334
PMVScopyleft70.75 2275.98 31974.97 31979.01 33370.98 35255.18 35393.37 34598.21 32765.08 34861.78 34993.83 34021.74 35692.53 34578.59 34391.12 33089.34 344
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
pmmvs394.09 30793.25 30896.60 31494.76 34094.49 31998.92 29098.18 32989.66 33296.48 31998.06 32786.28 32997.33 33789.68 33287.20 33797.97 325
door-mid98.05 330
tmp_tt82.80 31481.52 31686.66 32766.61 35368.44 35192.79 34697.92 33168.96 34480.04 34699.85 2985.77 33196.15 34397.86 18243.89 34795.39 339
door97.92 331
test-LLR98.06 18697.90 19098.55 22898.79 28897.10 25198.67 31397.75 33397.34 18798.61 26598.85 30994.45 21899.45 22797.25 23399.38 13299.10 187
test-mter97.49 26597.13 26998.55 22898.79 28897.10 25198.67 31397.75 33396.65 24298.61 26598.85 30988.23 32299.45 22797.25 23399.38 13299.10 187
IB-MVS95.67 1896.22 28895.44 29698.57 22499.21 22296.70 27498.65 31697.74 33596.71 23797.27 30998.54 32186.03 33099.92 7598.47 13386.30 33899.10 187
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TESTMET0.1,197.55 25797.27 26698.40 24798.93 27296.53 28098.67 31397.61 33696.96 22298.64 26199.28 27188.63 31899.45 22797.30 23099.38 13299.21 181
ET-MVSNet_ETH3D96.49 28495.64 29399.05 16099.53 14198.82 16598.84 29897.51 33797.63 15884.77 33999.21 28392.09 27698.91 31798.98 5792.21 32799.41 168
PMMVS286.87 31185.37 31491.35 32690.21 34583.80 34198.89 29397.45 33883.13 34091.67 33695.03 33748.49 35094.70 34485.86 34177.62 34295.54 338
K. test v397.10 27696.79 27698.01 27598.72 29996.33 28799.87 497.05 33997.59 16096.16 32299.80 7488.71 31599.04 29796.69 26796.55 25898.65 263
tttt051798.42 15398.14 16499.28 14099.66 10598.38 20399.74 2896.85 34097.68 15399.79 2699.74 11391.39 29099.89 10998.83 8499.56 12399.57 134
thisisatest051598.14 17897.79 19999.19 14999.50 15298.50 19498.61 31896.82 34196.95 22499.54 8999.43 23291.66 28699.86 12198.08 16799.51 12799.22 180
thisisatest053098.35 16098.03 17699.31 13199.63 11598.56 18499.54 10396.75 34297.53 17099.73 4099.65 15491.25 29399.89 10998.62 11199.56 12399.48 154
DSMNet-mixed97.25 27297.35 25596.95 30897.84 32693.61 32999.57 8596.63 34396.13 28698.87 22698.61 32094.59 21297.70 33595.08 30098.86 17299.55 136
baseline297.87 21497.55 22598.82 20599.18 22998.02 21699.41 16496.58 34496.97 22196.51 31899.17 28593.43 24299.57 21897.71 19899.03 16098.86 212
MVS-HIRNet95.75 29595.16 29897.51 29999.30 19993.69 32898.88 29495.78 34585.09 33898.78 23992.65 34191.29 29299.37 24494.85 30399.85 5899.46 161
E-PMN80.61 31579.88 31782.81 33090.75 34476.38 34997.69 34095.76 34666.44 34683.52 34092.25 34262.54 34787.16 34868.53 34661.40 34484.89 346
lessismore_v097.79 29098.69 30395.44 30694.75 34795.71 32599.87 2088.69 31699.32 25795.89 28294.93 29898.62 275
EPMVS97.82 22597.65 21798.35 25198.88 27695.98 29499.49 12994.71 34897.57 16399.26 15499.48 22192.46 27199.71 18997.87 18199.08 15699.35 172
gg-mvs-nofinetune96.17 29095.32 29798.73 21498.79 28898.14 21299.38 18194.09 34991.07 33198.07 29591.04 34489.62 30999.35 25296.75 26299.09 15598.68 245
GG-mvs-BLEND98.45 24098.55 31598.16 21099.43 15493.68 35097.23 31098.46 32289.30 31199.22 27395.43 29398.22 19997.98 324
MVEpermissive76.82 2176.91 31874.31 32184.70 32885.38 35076.05 35096.88 34393.17 35167.39 34571.28 34789.01 34621.66 35787.69 34771.74 34572.29 34390.35 343
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high77.30 31774.86 32084.62 32975.88 35177.61 34797.63 34193.15 35288.81 33464.27 34889.29 34536.51 35283.93 35075.89 34452.31 34692.33 342
N_pmnet94.95 30295.83 29092.31 32398.47 31879.33 34699.12 24492.81 35393.87 31497.68 30599.13 29093.87 23699.01 30391.38 32896.19 26698.59 288
EMVS80.02 31679.22 31882.43 33291.19 34376.40 34897.55 34292.49 35466.36 34783.01 34291.27 34364.63 34685.79 34965.82 34760.65 34585.08 345
testmvs39.17 32143.78 32225.37 33636.04 35516.84 35698.36 32926.56 35520.06 35038.51 35167.32 34729.64 35415.30 35337.59 34939.90 34843.98 348
wuyk23d40.18 32041.29 32436.84 33486.18 34949.12 35479.73 34722.81 35627.64 34925.46 35228.45 35221.98 35548.89 35155.80 34823.56 35012.51 349
test12339.01 32242.50 32328.53 33539.17 35420.91 35598.75 30719.17 35719.83 35138.57 35066.67 34833.16 35315.42 35237.50 35029.66 34949.26 347
uanet_test0.02 3260.03 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 3530.00 3580.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas8.27 32511.03 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 35399.01 160.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.02 3260.03 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.02 3260.03 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.02 3260.03 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.02 3260.03 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 3530.00 3580.00 3540.00 3510.00 3510.00 350
n20.00 358
nn0.00 358
ab-mvs-re8.30 32411.06 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35399.58 1840.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.02 3260.03 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.27 3530.00 3580.00 3540.00 3510.00 3510.00 350
OPU-MVS99.64 7599.56 13799.72 3899.60 6899.70 12999.27 499.42 23798.24 15199.80 8299.79 53
test_0728_THIRD98.99 2599.81 2299.80 7499.09 1299.96 1898.85 7999.90 2399.88 5
GSMVS99.52 143
test_part299.81 4099.83 1499.77 33
sam_mvs194.86 19699.52 143
sam_mvs94.72 207
test_post199.23 22565.14 35094.18 22899.71 18997.58 207
test_post65.99 34994.65 21199.73 179
patchmatchnet-post98.70 31694.79 19999.74 172
gm-plane-assit98.54 31692.96 33294.65 30899.15 28899.64 20897.56 212
test9_res97.49 21899.72 9999.75 66
agg_prior297.21 23599.73 9899.75 66
test_prior499.56 6898.99 275
test_prior298.96 28398.34 7899.01 20199.52 20598.68 6297.96 17499.74 95
旧先验298.96 28396.70 23899.47 10199.94 4998.19 154
新几何299.01 273
原ACMM298.95 287
testdata299.95 4196.67 268
segment_acmp98.96 25
testdata198.85 29798.32 82
plane_prior799.29 20397.03 259
plane_prior699.27 20896.98 26392.71 260
plane_prior499.61 175
plane_prior397.00 26198.69 5499.11 183
plane_prior299.39 17698.97 30
plane_prior199.26 210
plane_prior96.97 26499.21 23298.45 6997.60 221
HQP5-MVS96.83 269
HQP-NCC99.19 22698.98 27998.24 8798.66 254
ACMP_Plane99.19 22698.98 27998.24 8798.66 254
BP-MVS97.19 239
HQP4-MVS98.66 25499.64 20898.64 265
HQP2-MVS92.47 268
NP-MVS99.23 21696.92 26799.40 240
MDTV_nov1_ep13_2view95.18 31199.35 19396.84 23199.58 8295.19 18997.82 18699.46 161
ACMMP++_ref97.19 247
ACMMP++97.43 239
Test By Simon98.75 56