This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
CHOSEN 1792x268899.19 6999.10 6999.45 11599.89 898.52 19599.39 18099.94 198.73 5199.11 18799.89 1095.50 18299.94 5399.50 899.97 399.89 2
PVSNet_Blended_VisFu99.36 4999.28 4899.61 8299.86 2199.07 13499.47 14599.93 297.66 16099.71 4699.86 2397.73 11199.96 1899.47 1399.82 7899.79 53
PVSNet_BlendedMVS98.86 11998.80 11599.03 16799.76 5298.79 17299.28 21299.91 397.42 18799.67 5999.37 25597.53 11499.88 11898.98 5797.29 24898.42 310
PVSNet_Blended99.08 9698.97 9199.42 12199.76 5298.79 17298.78 30999.91 396.74 24199.67 5999.49 22197.53 11499.88 11898.98 5799.85 5899.60 128
HyFIR lowres test99.11 9098.92 9799.65 7299.90 399.37 9899.02 27399.91 397.67 15999.59 8399.75 11095.90 16999.73 18399.53 599.02 16599.86 11
MVS_111021_LR99.41 4299.33 2899.65 7299.77 4999.51 8598.94 29499.85 698.82 4299.65 6799.74 11698.51 7599.80 16198.83 8499.89 3399.64 118
MVS_111021_HR99.41 4299.32 3099.66 6899.72 8099.47 8998.95 29299.85 698.82 4299.54 9399.73 12398.51 7599.74 17698.91 6799.88 3699.77 63
PHI-MVS99.30 5599.17 6299.70 6499.56 14299.52 8399.58 8499.80 897.12 21399.62 7499.73 12398.58 7099.90 10598.61 11699.91 1699.68 102
PatchMatch-RL98.84 12998.62 13899.52 10399.71 8699.28 10899.06 26299.77 997.74 15199.50 10099.53 20895.41 18499.84 13697.17 24799.64 12099.44 167
3Dnovator97.25 999.24 6599.05 7499.81 3899.12 24899.66 5499.84 699.74 1099.09 1098.92 22399.90 795.94 16699.98 598.95 6199.92 1199.79 53
QAPM98.67 14398.30 16099.80 4099.20 23099.67 5299.77 2199.72 1194.74 31698.73 24899.90 795.78 17399.98 596.96 25899.88 3699.76 68
OpenMVScopyleft96.50 1698.47 15198.12 16999.52 10399.04 26499.53 8099.82 1099.72 1194.56 31998.08 29999.88 1594.73 21199.98 597.47 22699.76 9599.06 200
CHOSEN 280x42099.12 8599.13 6599.08 16099.66 10997.89 23098.43 33399.71 1398.88 3799.62 7499.76 10596.63 14499.70 19999.46 1499.99 199.66 108
MSLP-MVS++99.46 2499.47 999.44 12099.60 13299.16 12199.41 16899.71 1398.98 2799.45 10899.78 9599.19 799.54 22799.28 2999.84 6599.63 122
UA-Net99.42 3899.29 4499.80 4099.62 12599.55 7599.50 12499.70 1598.79 4799.77 3399.96 197.45 11699.96 1898.92 6699.90 2399.89 2
PVSNet_094.43 1996.09 29795.47 30097.94 28399.31 20494.34 33197.81 34899.70 1597.12 21397.46 31598.75 32289.71 31699.79 16497.69 20581.69 34799.68 102
AdaColmapbinary99.01 10798.80 11599.66 6899.56 14299.54 7799.18 23999.70 1598.18 10099.35 13899.63 17096.32 15499.90 10597.48 22499.77 9299.55 139
ACMMPcopyleft99.45 2699.32 3099.82 3599.89 899.67 5299.62 6499.69 1898.12 10599.63 7099.84 3898.73 5999.96 1898.55 13099.83 7299.81 41
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 13299.74 11698.81 4599.94 5398.79 9099.86 5199.84 18
X-MVStestdata96.55 28795.45 30199.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 13264.01 36198.81 4599.94 5398.79 9099.86 5199.84 18
UGNet98.87 11698.69 12699.40 12299.22 22698.72 17699.44 15399.68 1999.24 399.18 17899.42 24192.74 26299.96 1899.34 2399.94 999.53 145
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ZNCC-MVS99.47 2299.33 2899.87 1199.87 1599.81 2499.64 5699.67 2298.08 11499.55 9299.64 16598.91 3699.96 1898.72 9999.90 2399.82 36
GST-MVS99.40 4599.24 5599.85 2599.86 2199.79 3099.60 7199.67 2297.97 12699.63 7099.68 14598.52 7499.95 4298.38 14599.86 5199.81 41
HFP-MVS99.49 1599.37 1999.86 1899.87 1599.80 2699.66 4699.67 2298.15 10199.68 5399.69 13999.06 1399.96 1898.69 10499.87 4099.84 18
#test#99.43 3399.29 4499.86 1899.87 1599.80 2699.55 10599.67 2297.83 13899.68 5399.69 13999.06 1399.96 1898.39 14399.87 4099.84 18
ACMMPR99.49 1599.36 2199.86 1899.87 1599.79 3099.66 4699.67 2298.15 10199.67 5999.69 13998.95 2899.96 1898.69 10499.87 4099.84 18
region2R99.48 1999.35 2499.87 1199.88 1199.80 2699.65 5399.66 2798.13 10399.66 6499.68 14598.96 2599.96 1898.62 11399.87 4099.84 18
EU-MVSNet97.98 20498.03 17997.81 29398.72 30596.65 28399.66 4699.66 2798.09 11098.35 28899.82 4995.25 19398.01 33597.41 23295.30 29398.78 222
DELS-MVS99.48 1999.42 1399.65 7299.72 8099.40 9799.05 26499.66 2799.14 699.57 8799.80 7698.46 7999.94 5399.57 399.84 6599.60 128
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Vis-MVSNetpermissive99.12 8598.97 9199.56 9099.78 4499.10 13199.68 4099.66 2798.49 6599.86 1199.87 2094.77 20899.84 13699.19 3799.41 13599.74 73
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CSCG99.32 5399.32 3099.32 13299.85 2598.29 20999.71 3199.66 2798.11 10799.41 12099.80 7698.37 8899.96 1898.99 5699.96 599.72 86
PGM-MVS99.45 2699.31 3799.86 1899.87 1599.78 3799.58 8499.65 3297.84 13799.71 4699.80 7699.12 1199.97 1098.33 15199.87 4099.83 29
SR-MVS99.43 3399.29 4499.86 1899.75 6299.83 1499.59 7799.62 3398.21 9699.73 4399.79 8898.68 6399.96 1898.44 14199.77 9299.79 53
sss99.17 7399.05 7499.53 9899.62 12598.97 14599.36 19299.62 3397.83 13899.67 5999.65 15897.37 12199.95 4299.19 3799.19 14999.68 102
ZD-MVS99.71 8699.79 3099.61 3596.84 23699.56 8899.54 20498.58 7099.96 1896.93 26199.75 96
D2MVS98.41 15798.50 14798.15 27199.26 21696.62 28499.40 17699.61 3597.71 15398.98 21499.36 25896.04 16199.67 20498.70 10197.41 24498.15 324
tfpnnormal97.84 22397.47 23998.98 17399.20 23099.22 11599.64 5699.61 3596.32 27398.27 29399.70 13293.35 24999.44 23895.69 29395.40 29198.27 319
AllTest98.87 11698.72 12299.31 13399.86 2198.48 20199.56 9699.61 3597.85 13599.36 13599.85 2995.95 16499.85 13196.66 27599.83 7299.59 132
TestCases99.31 13399.86 2198.48 20199.61 3597.85 13599.36 13599.85 2995.95 16499.85 13196.66 27599.83 7299.59 132
FC-MVSNet-test98.75 13798.62 13899.15 15799.08 25799.45 9199.86 599.60 4098.23 9398.70 25699.82 4996.80 13799.22 27899.07 5096.38 26798.79 221
PVSNet96.02 1798.85 12798.84 11098.89 19199.73 7597.28 24998.32 33999.60 4097.86 13399.50 10099.57 19396.75 14199.86 12598.56 12799.70 10899.54 141
LTVRE_ROB97.16 1298.02 19797.90 19498.40 25199.23 22296.80 27899.70 3399.60 4097.12 21398.18 29699.70 13291.73 29099.72 18798.39 14397.45 24098.68 251
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVS_030496.79 28496.52 28497.59 30099.22 22694.92 32499.04 26999.59 4396.49 26098.43 28298.99 30980.48 35299.39 24597.15 24899.27 14498.47 303
FIs98.78 13498.63 13399.23 15099.18 23599.54 7799.83 999.59 4398.28 8698.79 24399.81 6296.75 14199.37 25099.08 4996.38 26798.78 222
WR-MVS_H98.13 18297.87 19998.90 18899.02 26798.84 16599.70 3399.59 4397.27 19998.40 28499.19 29195.53 18199.23 27598.34 15093.78 31798.61 289
abl_699.44 3099.31 3799.83 3399.85 2599.75 3899.66 4699.59 4398.13 10399.82 2099.81 6298.60 6999.96 1898.46 13999.88 3699.79 53
114514_t98.93 11398.67 12899.72 6199.85 2599.53 8099.62 6499.59 4392.65 33499.71 4699.78 9598.06 10399.90 10598.84 8199.91 1699.74 73
COLMAP_ROBcopyleft97.56 698.86 11998.75 12199.17 15499.88 1198.53 19199.34 20099.59 4397.55 16998.70 25699.89 1095.83 17199.90 10598.10 16699.90 2399.08 195
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VPA-MVSNet98.29 16797.95 18999.30 13799.16 24399.54 7799.50 12499.58 4998.27 8899.35 13899.37 25592.53 27299.65 21199.35 1994.46 30698.72 236
CANet99.25 6499.14 6499.59 8499.41 17799.16 12199.35 19799.57 5098.82 4299.51 9999.61 18096.46 14999.95 4299.59 199.98 299.65 112
Anonymous2023121197.88 21597.54 23298.90 18899.71 8698.53 19199.48 14099.57 5094.16 32298.81 23999.68 14593.23 25099.42 24398.84 8194.42 30898.76 228
VPNet97.84 22397.44 24799.01 16999.21 22898.94 15499.48 14099.57 5098.38 7599.28 15099.73 12388.89 32399.39 24599.19 3793.27 32398.71 238
DP-MVS Recon99.12 8598.95 9599.65 7299.74 7099.70 4699.27 21699.57 5096.40 27199.42 11699.68 14598.75 5699.80 16197.98 17799.72 10399.44 167
LS3D99.27 6099.12 6799.74 5699.18 23599.75 3899.56 9699.57 5098.45 6999.49 10399.85 2997.77 11099.94 5398.33 15199.84 6599.52 146
test117299.43 3399.29 4499.85 2599.75 6299.82 2099.60 7199.56 5598.28 8699.74 4199.79 8898.53 7299.95 4298.55 13099.78 8999.79 53
test_prior399.21 6699.05 7499.68 6599.67 10099.48 8798.96 28899.56 5598.34 8099.01 20699.52 21198.68 6399.83 14597.96 17899.74 9999.74 73
test_prior99.68 6599.67 10099.48 8799.56 5599.83 14599.74 73
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2599.56 5599.02 1599.88 599.85 2999.18 899.96 1899.22 3499.92 1199.90 1
HPM-MVS_fast99.51 1499.40 1699.85 2599.91 199.79 3099.76 2499.56 5597.72 15299.76 3799.75 11099.13 1099.92 7999.07 5099.92 1199.85 14
WTY-MVS99.06 9898.88 10399.61 8299.62 12599.16 12199.37 18899.56 5598.04 12199.53 9599.62 17696.84 13699.94 5398.85 7998.49 19499.72 86
API-MVS99.04 10199.03 7999.06 16299.40 18299.31 10599.55 10599.56 5598.54 6199.33 14299.39 25198.76 5399.78 16896.98 25699.78 8998.07 326
ACMH97.28 898.10 18597.99 18398.44 24799.41 17796.96 27299.60 7199.56 5598.09 11098.15 29799.91 590.87 30599.70 19998.88 7097.45 24098.67 258
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CVMVSNet98.57 14998.67 12898.30 26099.35 19195.59 30799.50 12499.55 6398.60 5999.39 12799.83 4294.48 22299.45 23398.75 9498.56 19099.85 14
XVG-OURS98.73 13898.68 12798.88 19499.70 9397.73 23898.92 29599.55 6398.52 6399.45 10899.84 3895.27 19099.91 9098.08 17198.84 17799.00 205
LPG-MVS_test98.22 17098.13 16898.49 23699.33 19697.05 26299.58 8499.55 6397.46 17899.24 16199.83 4292.58 27099.72 18798.09 16797.51 23398.68 251
LGP-MVS_train98.49 23699.33 19697.05 26299.55 6397.46 17899.24 16199.83 4292.58 27099.72 18798.09 16797.51 23398.68 251
XXY-MVS98.38 16098.09 17399.24 14899.26 21699.32 10299.56 9699.55 6397.45 18198.71 25099.83 4293.23 25099.63 21898.88 7096.32 26998.76 228
DeepC-MVS98.35 299.30 5599.19 6099.64 7799.82 3799.23 11499.62 6499.55 6398.94 3399.63 7099.95 295.82 17299.94 5399.37 1899.97 399.73 80
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSDG98.98 10998.80 11599.53 9899.76 5299.19 11698.75 31299.55 6397.25 20199.47 10599.77 10197.82 10899.87 12296.93 26199.90 2399.54 141
SF-MVS99.38 4799.24 5599.79 4399.79 4299.68 4999.57 8999.54 7097.82 14399.71 4699.80 7698.95 2899.93 6898.19 15899.84 6599.74 73
CS-MVS99.21 6699.13 6599.45 11599.54 14599.34 10099.71 3199.54 7098.26 8998.99 21399.24 28498.25 9499.88 11898.98 5799.63 12299.12 189
PS-MVSNAJss98.92 11498.92 9798.90 18898.78 29798.53 19199.78 1999.54 7098.07 11599.00 21199.76 10599.01 1699.37 25099.13 4497.23 24998.81 219
新几何199.75 5199.75 6299.59 6899.54 7096.76 24099.29 14899.64 16598.43 8199.94 5396.92 26399.66 11799.72 86
旧先验199.74 7099.59 6899.54 7099.69 13998.47 7899.68 11499.73 80
APD-MVS_3200maxsize99.48 1999.35 2499.85 2599.76 5299.83 1499.63 5899.54 7098.36 7899.79 2699.82 4998.86 4099.95 4298.62 11399.81 8099.78 61
XVG-OURS-SEG-HR98.69 14198.62 13898.89 19199.71 8697.74 23799.12 24999.54 7098.44 7299.42 11699.71 12894.20 23099.92 7998.54 13298.90 17499.00 205
HPM-MVScopyleft99.42 3899.28 4899.83 3399.90 399.72 4299.81 1299.54 7097.59 16499.68 5399.63 17098.91 3699.94 5398.58 12299.91 1699.84 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ab-mvs98.86 11998.63 13399.54 9299.64 11699.19 11699.44 15399.54 7097.77 14699.30 14599.81 6294.20 23099.93 6899.17 4098.82 17899.49 156
F-COLMAP99.19 6999.04 7799.64 7799.78 4499.27 11099.42 16699.54 7097.29 19799.41 12099.59 18698.42 8499.93 6898.19 15899.69 10999.73 80
ACMH+97.24 1097.92 21297.78 20698.32 25899.46 16796.68 28299.56 9699.54 7098.41 7397.79 31199.87 2090.18 31299.66 20798.05 17597.18 25298.62 280
MAR-MVS98.86 11998.63 13399.54 9299.37 18899.66 5499.45 14999.54 7096.61 25299.01 20699.40 24797.09 12899.86 12597.68 20799.53 13099.10 190
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
xxxxxxxxxxxxxcwj99.43 3399.32 3099.75 5199.76 5299.59 6899.14 24799.53 8299.00 2299.71 4699.80 7698.95 2899.93 6898.19 15899.84 6599.74 73
UniMVSNet_ETH3D97.32 27496.81 28098.87 19899.40 18297.46 24599.51 11899.53 8295.86 30098.54 27599.77 10182.44 35099.66 20798.68 10697.52 23299.50 155
EIA-MVS99.18 7199.09 7199.45 11599.49 15999.18 11899.67 4299.53 8297.66 16099.40 12599.44 23698.10 10199.81 15698.94 6299.62 12499.35 175
jajsoiax98.43 15498.28 16198.88 19498.60 31898.43 20499.82 1099.53 8298.19 9798.63 26799.80 7693.22 25299.44 23899.22 3497.50 23598.77 226
mvs_tets98.40 15998.23 16398.91 18698.67 31198.51 19799.66 4699.53 8298.19 9798.65 26599.81 6292.75 26099.44 23899.31 2697.48 23998.77 226
UniMVSNet_NR-MVSNet98.22 17097.97 18598.96 17598.92 27998.98 14299.48 14099.53 8297.76 14798.71 25099.46 23496.43 15299.22 27898.57 12492.87 32898.69 246
SR-MVS-dyc-post99.45 2699.31 3799.85 2599.76 5299.82 2099.63 5899.52 8898.38 7599.76 3799.82 4998.53 7299.95 4298.61 11699.81 8099.77 63
RE-MVS-def99.34 2699.76 5299.82 2099.63 5899.52 8898.38 7599.76 3799.82 4998.75 5698.61 11699.81 8099.77 63
ETV-MVS99.26 6299.21 5899.40 12299.46 16799.30 10699.56 9699.52 8898.52 6399.44 11299.27 28198.41 8599.86 12599.10 4799.59 12699.04 201
MP-MVS-pluss99.37 4899.20 5999.88 699.90 399.87 999.30 20699.52 8897.18 20799.60 8099.79 8898.79 4799.95 4298.83 8499.91 1699.83 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SD-MVS99.41 4299.52 699.05 16499.74 7099.68 4999.46 14899.52 8899.11 799.88 599.91 599.43 197.70 34298.72 9999.93 1099.77 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PS-CasMVS97.93 20997.59 22898.95 17798.99 27099.06 13599.68 4099.52 8897.13 21198.31 29099.68 14592.44 27899.05 30298.51 13394.08 31498.75 230
XVG-ACMP-BASELINE97.83 22597.71 21698.20 26799.11 25096.33 29399.41 16899.52 8898.06 11999.05 20299.50 21889.64 31799.73 18397.73 19997.38 24698.53 297
CNVR-MVS99.42 3899.30 4099.78 4599.62 12599.71 4499.26 22599.52 8898.82 4299.39 12799.71 12898.96 2599.85 13198.59 12199.80 8499.77 63
CP-MVS99.45 2699.32 3099.85 2599.83 3699.75 3899.69 3599.52 8898.07 11599.53 9599.63 17098.93 3599.97 1098.74 9599.91 1699.83 29
RPMNet96.72 28595.90 29599.19 15299.18 23598.49 19999.22 23599.52 8888.72 34599.56 8897.38 34194.08 23699.95 4286.87 35098.58 18799.14 186
FMVSNet596.43 29196.19 28997.15 30999.11 25095.89 30299.32 20299.52 8894.47 32198.34 28999.07 30287.54 33897.07 34692.61 33395.72 28498.47 303
OMC-MVS99.08 9699.04 7799.20 15199.67 10098.22 21399.28 21299.52 8898.07 11599.66 6499.81 6297.79 10999.78 16897.79 19299.81 8099.60 128
PLCcopyleft97.94 499.02 10498.85 10999.53 9899.66 10999.01 14099.24 22999.52 8896.85 23599.27 15399.48 22798.25 9499.91 9097.76 19599.62 12499.65 112
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
9.1499.10 6999.72 8099.40 17699.51 10197.53 17499.64 6999.78 9598.84 4299.91 9097.63 20899.82 78
testtj99.12 8598.87 10499.86 1899.72 8099.79 3099.44 15399.51 10197.29 19799.59 8399.74 11698.15 10099.96 1896.74 26999.69 10999.81 41
ETH3D-3000-0.199.21 6699.02 8299.77 4799.73 7599.69 4799.38 18599.51 10197.45 18199.61 7699.75 11098.51 7599.91 9097.45 22999.83 7299.71 93
test_0728_SECOND99.91 299.84 3299.89 399.57 8999.51 10199.96 1898.93 6499.86 5199.88 5
DPE-MVS99.46 2499.32 3099.91 299.78 4499.88 799.36 19299.51 10198.73 5199.88 599.84 3898.72 6099.96 1898.16 16399.87 4099.88 5
xiu_mvs_v1_base_debu99.29 5799.27 5099.34 12799.63 11998.97 14599.12 24999.51 10198.86 3899.84 1399.47 23098.18 9799.99 199.50 899.31 14199.08 195
xiu_mvs_v1_base99.29 5799.27 5099.34 12799.63 11998.97 14599.12 24999.51 10198.86 3899.84 1399.47 23098.18 9799.99 199.50 899.31 14199.08 195
xiu_mvs_v1_base_debi99.29 5799.27 5099.34 12799.63 11998.97 14599.12 24999.51 10198.86 3899.84 1399.47 23098.18 9799.99 199.50 899.31 14199.08 195
cdsmvs_eth3d_5k24.64 33132.85 3340.00 3450.00 3660.00 3670.00 35799.51 1010.00 3620.00 36399.56 19696.58 1450.00 3630.00 3610.00 3610.00 359
HPM-MVS++copyleft99.39 4699.23 5799.87 1199.75 6299.84 1399.43 15999.51 10198.68 5599.27 15399.53 20898.64 6899.96 1898.44 14199.80 8499.79 53
无先验98.99 28099.51 10196.89 23399.93 6897.53 22099.72 86
testdata99.54 9299.75 6298.95 15199.51 10197.07 21899.43 11399.70 13298.87 3999.94 5397.76 19599.64 12099.72 86
PEN-MVS97.76 23597.44 24798.72 21898.77 30098.54 19099.78 1999.51 10197.06 22098.29 29299.64 16592.63 26998.89 32498.09 16793.16 32498.72 236
UniMVSNet (Re)98.29 16798.00 18299.13 15899.00 26999.36 9999.49 13499.51 10197.95 12798.97 21699.13 29796.30 15599.38 24798.36 14993.34 32198.66 266
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2499.59 7799.51 10198.62 5799.79 2699.83 4299.28 399.97 1098.48 13599.90 2399.84 18
Skip Steuart: Steuart Systems R&D Blog.
UnsupCasMVSNet_eth96.44 29096.12 29097.40 30698.65 31295.65 30599.36 19299.51 10197.13 21196.04 33598.99 30988.40 32998.17 33196.71 27190.27 33698.40 313
3Dnovator+97.12 1399.18 7198.97 9199.82 3599.17 24199.68 4999.81 1299.51 10199.20 498.72 24999.89 1095.68 17799.97 1098.86 7799.86 5199.81 41
TAPA-MVS97.07 1597.74 24297.34 26298.94 17899.70 9397.53 24399.25 22799.51 10191.90 33699.30 14599.63 17098.78 4899.64 21388.09 34699.87 4099.65 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test072699.85 2599.89 399.62 6499.50 11999.10 899.86 1199.82 4998.94 31
MSP-MVS99.42 3899.27 5099.88 699.89 899.80 2699.67 4299.50 11998.70 5399.77 3399.49 22198.21 9699.95 4298.46 13999.77 9299.88 5
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
Effi-MVS+98.81 13098.59 14399.48 10999.46 16799.12 13098.08 34599.50 11997.50 17799.38 13099.41 24496.37 15399.81 15699.11 4698.54 19199.51 152
anonymousdsp98.44 15398.28 16198.94 17898.50 32398.96 14999.77 2199.50 11997.07 21898.87 23199.77 10194.76 20999.28 26898.66 10997.60 22598.57 295
casdiffmvs99.13 7998.98 9099.56 9099.65 11499.16 12199.56 9699.50 11998.33 8399.41 12099.86 2395.92 16799.83 14599.45 1599.16 15099.70 95
APD-MVScopyleft99.27 6099.08 7299.84 3299.75 6299.79 3099.50 12499.50 11997.16 20999.77 3399.82 4998.78 4899.94 5397.56 21799.86 5199.80 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MIMVSNet195.51 30195.04 30596.92 31697.38 33795.60 30699.52 11499.50 11993.65 32796.97 32799.17 29285.28 34496.56 35088.36 34595.55 28898.60 292
DP-MVS99.16 7598.95 9599.78 4599.77 4999.53 8099.41 16899.50 11997.03 22399.04 20399.88 1597.39 11799.92 7998.66 10999.90 2399.87 10
test_part197.75 23997.24 27199.29 14099.59 13499.63 6099.65 5399.49 12796.17 28698.44 28199.69 13989.80 31599.47 23098.68 10693.66 31898.78 222
Fast-Effi-MVS+-dtu98.77 13698.83 11498.60 22499.41 17796.99 26899.52 11499.49 12798.11 10799.24 16199.34 26496.96 13499.79 16497.95 18099.45 13299.02 204
IterMVS-SCA-FT97.82 22897.75 21298.06 27599.57 13896.36 29299.02 27399.49 12797.18 20798.71 25099.72 12792.72 26399.14 28997.44 23095.86 28098.67 258
Regformer-499.59 399.54 499.73 5899.76 5299.41 9599.58 8499.49 12799.02 1599.88 599.80 7699.00 2299.94 5399.45 1599.92 1199.84 18
Regformer-299.54 999.47 999.75 5199.71 8699.52 8399.49 13499.49 12798.94 3399.83 1799.76 10599.01 1699.94 5399.15 4399.87 4099.80 49
test22299.75 6299.49 8698.91 29799.49 12796.42 26999.34 14199.65 15898.28 9399.69 10999.72 86
131498.68 14298.54 14699.11 15998.89 28198.65 18199.27 21699.49 12796.89 23397.99 30499.56 19697.72 11299.83 14597.74 19899.27 14498.84 218
diffmvs99.14 7799.02 8299.51 10599.61 12998.96 14999.28 21299.49 12798.46 6899.72 4599.71 12896.50 14899.88 11899.31 2699.11 15599.67 105
TranMVSNet+NR-MVSNet97.93 20997.66 22098.76 21598.78 29798.62 18499.65 5399.49 12797.76 14798.49 27899.60 18394.23 22998.97 31998.00 17692.90 32698.70 242
RRT_test8_iter0597.72 24597.60 22698.08 27399.23 22296.08 29999.63 5899.49 12797.54 17298.94 22099.81 6287.99 33499.35 25899.21 3696.51 26498.81 219
CPTT-MVS99.11 9098.90 10099.74 5699.80 4199.46 9099.59 7799.49 12797.03 22399.63 7099.69 13997.27 12499.96 1897.82 19099.84 6599.81 41
ACMP97.20 1198.06 18997.94 19198.45 24499.37 18897.01 26699.44 15399.49 12797.54 17298.45 28099.79 8891.95 28499.72 18797.91 18297.49 23898.62 280
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 7199.48 13999.08 1199.91 199.81 6299.20 599.96 1898.91 6799.85 5899.79 53
test_241102_TWO99.48 13999.08 1199.88 599.81 6298.94 3199.96 1898.91 6799.84 6599.88 5
test_241102_ONE99.84 3299.90 199.48 13999.07 1399.91 199.74 11699.20 599.76 173
ACMMP_NAP99.47 2299.34 2699.88 699.87 1599.86 1099.47 14599.48 13998.05 12099.76 3799.86 2398.82 4499.93 6898.82 8899.91 1699.84 18
canonicalmvs99.02 10498.86 10899.51 10599.42 17499.32 10299.80 1699.48 13998.63 5699.31 14498.81 31897.09 12899.75 17599.27 3197.90 21799.47 162
112199.09 9498.87 10499.75 5199.74 7099.60 6599.27 21699.48 13996.82 23999.25 16099.65 15898.38 8699.93 6897.53 22099.67 11699.73 80
testgi97.65 25797.50 23698.13 27299.36 19096.45 28999.42 16699.48 13997.76 14797.87 30799.45 23591.09 30298.81 32594.53 31298.52 19299.13 188
DTE-MVSNet97.51 26697.19 27398.46 24398.63 31498.13 21899.84 699.48 13996.68 24597.97 30599.67 15192.92 25698.56 32896.88 26592.60 33198.70 242
mPP-MVS99.44 3099.30 4099.86 1899.88 1199.79 3099.69 3599.48 13998.12 10599.50 10099.75 11098.78 4899.97 1098.57 12499.89 3399.83 29
baseline99.15 7699.02 8299.53 9899.66 10999.14 12699.72 2999.48 13998.35 7999.42 11699.84 3896.07 16099.79 16499.51 799.14 15399.67 105
NCCC99.34 5199.19 6099.79 4399.61 12999.65 5799.30 20699.48 13998.86 3899.21 16999.63 17098.72 6099.90 10598.25 15599.63 12299.80 49
GBi-Net97.68 25297.48 23798.29 26199.51 15097.26 25199.43 15999.48 13996.49 26099.07 19799.32 27190.26 30898.98 31297.10 24996.65 25898.62 280
UnsupCasMVSNet_bld93.53 31692.51 31996.58 32297.38 33793.82 33498.24 34199.48 13991.10 34093.10 34496.66 34574.89 35398.37 32994.03 31987.71 34197.56 342
test197.68 25297.48 23798.29 26199.51 15097.26 25199.43 15999.48 13996.49 26099.07 19799.32 27190.26 30898.98 31297.10 24996.65 25898.62 280
FMVSNet196.84 28396.36 28698.29 26199.32 20397.26 25199.43 15999.48 13995.11 30898.55 27499.32 27183.95 34698.98 31295.81 29096.26 27098.62 280
1112_ss98.98 10998.77 11899.59 8499.68 9999.02 13899.25 22799.48 13997.23 20499.13 18399.58 18996.93 13599.90 10598.87 7498.78 18199.84 18
IterMVS97.83 22597.77 20898.02 27899.58 13696.27 29599.02 27399.48 13997.22 20598.71 25099.70 13292.75 26099.13 29297.46 22796.00 27498.67 258
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CMPMVSbinary69.68 2394.13 31494.90 30691.84 33297.24 34180.01 35598.52 32999.48 13989.01 34391.99 34699.67 15185.67 34399.13 29295.44 29897.03 25596.39 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
SMA-MVScopyleft99.44 3099.30 4099.85 2599.73 7599.83 1499.56 9699.47 15797.45 18199.78 3199.82 4999.18 899.91 9098.79 9099.89 3399.81 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
zzz-MVS99.49 1599.36 2199.89 499.90 399.86 1099.36 19299.47 15798.79 4799.68 5399.81 6298.43 8199.97 1098.88 7099.90 2399.83 29
MTGPAbinary99.47 157
pmmvs696.53 28896.09 29197.82 29298.69 30995.47 31299.37 18899.47 15793.46 33097.41 31699.78 9587.06 33999.33 26296.92 26392.70 33098.65 268
Fast-Effi-MVS+98.70 13998.43 15099.51 10599.51 15099.28 10899.52 11499.47 15796.11 29399.01 20699.34 26496.20 15899.84 13697.88 18498.82 17899.39 173
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 4699.47 15798.79 4799.68 5399.81 6298.43 8199.97 1098.88 7099.90 2399.83 29
原ACMM199.65 7299.73 7599.33 10199.47 15797.46 17899.12 18599.66 15798.67 6699.91 9097.70 20499.69 10999.71 93
HQP_MVS98.27 16998.22 16498.44 24799.29 20996.97 27099.39 18099.47 15798.97 3099.11 18799.61 18092.71 26599.69 20297.78 19397.63 22298.67 258
plane_prior599.47 15799.69 20297.78 19397.63 22298.67 258
Test_1112_low_res98.89 11598.66 13199.57 8899.69 9598.95 15199.03 27099.47 15796.98 22599.15 18199.23 28696.77 14099.89 11398.83 8498.78 18199.86 11
ppachtmachnet_test97.49 26997.45 24297.61 29998.62 31595.24 31798.80 30799.46 16796.11 29398.22 29499.62 17696.45 15098.97 31993.77 32095.97 27898.61 289
nrg03098.64 14698.42 15199.28 14399.05 26399.69 4799.81 1299.46 16798.04 12199.01 20699.82 4996.69 14399.38 24799.34 2394.59 30598.78 222
v7n97.87 21797.52 23398.92 18298.76 30198.58 18799.84 699.46 16796.20 28398.91 22499.70 13294.89 20099.44 23896.03 28693.89 31698.75 230
PS-MVSNAJ99.32 5399.32 3099.30 13799.57 13898.94 15498.97 28799.46 16798.92 3599.71 4699.24 28499.01 1699.98 599.35 1999.66 11798.97 209
Regformer-199.53 1199.47 999.72 6199.71 8699.44 9299.49 13499.46 16798.95 3299.83 1799.76 10599.01 1699.93 6899.17 4099.87 4099.80 49
MP-MVScopyleft99.33 5299.15 6399.87 1199.88 1199.82 2099.66 4699.46 16798.09 11099.48 10499.74 11698.29 9299.96 1897.93 18199.87 4099.82 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVSNet98.09 18697.78 20699.01 16998.97 27599.24 11399.67 4299.46 16797.25 20198.48 27999.64 16593.79 24399.06 30198.63 11294.10 31398.74 234
MVSFormer99.17 7399.12 6799.29 14099.51 15098.94 15499.88 199.46 16797.55 16999.80 2499.65 15897.39 11799.28 26899.03 5299.85 5899.65 112
test_djsdf98.67 14398.57 14498.98 17398.70 30898.91 15899.88 199.46 16797.55 16999.22 16699.88 1595.73 17599.28 26899.03 5297.62 22498.75 230
CDS-MVSNet99.09 9499.03 7999.25 14699.42 17498.73 17599.45 14999.46 16798.11 10799.46 10799.77 10198.01 10499.37 25098.70 10198.92 17299.66 108
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS99.12 8599.08 7299.24 14899.46 16798.55 18999.51 11899.46 16798.09 11099.45 10899.82 4998.34 8999.51 22898.70 10198.93 17099.67 105
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4799.63 11999.59 6899.36 19299.46 16799.07 1399.79 2699.82 4998.85 4199.92 7998.68 10699.87 4099.82 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETH3 D test640098.70 13998.35 15599.73 5899.69 9599.60 6599.16 24199.45 17995.42 30499.27 15399.60 18397.39 11799.91 9095.36 30299.83 7299.70 95
xiu_mvs_v2_base99.26 6299.25 5499.29 14099.53 14698.91 15899.02 27399.45 17998.80 4699.71 4699.26 28298.94 3199.98 599.34 2399.23 14698.98 208
EI-MVSNet-UG-set99.58 499.57 199.64 7799.78 4499.14 12699.60 7199.45 17999.01 1899.90 399.83 4298.98 2399.93 6899.59 199.95 699.86 11
EI-MVSNet-Vis-set99.58 499.56 399.64 7799.78 4499.15 12599.61 7099.45 17999.01 1899.89 499.82 4999.01 1699.92 7999.56 499.95 699.85 14
pm-mvs197.68 25297.28 26898.88 19499.06 26098.62 18499.50 12499.45 17996.32 27397.87 30799.79 8892.47 27499.35 25897.54 21993.54 32098.67 258
DU-MVS98.08 18897.79 20398.96 17598.87 28698.98 14299.41 16899.45 17997.87 13298.71 25099.50 21894.82 20299.22 27898.57 12492.87 32898.68 251
ACMM97.58 598.37 16198.34 15698.48 23899.41 17797.10 25699.56 9699.45 17998.53 6299.04 20399.85 2993.00 25499.71 19398.74 9597.45 24098.64 270
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Gipumacopyleft90.99 31890.15 32193.51 32898.73 30390.12 34993.98 35399.45 17979.32 35192.28 34594.91 34869.61 35497.98 33687.42 34795.67 28592.45 350
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DIV-MVS_2432*160095.00 30694.34 31196.96 31497.07 34595.39 31599.56 9699.44 18795.11 30897.13 32397.32 34391.86 28697.27 34590.35 33981.23 34898.23 322
ETH3D cwj APD-0.1699.06 9898.84 11099.72 6199.51 15099.60 6599.23 23099.44 18797.04 22199.39 12799.67 15198.30 9199.92 7997.27 23699.69 10999.64 118
Regformer-399.57 799.53 599.68 6599.76 5299.29 10799.58 8499.44 18799.01 1899.87 1099.80 7698.97 2499.91 9099.44 1799.92 1199.83 29
RPSCF98.22 17098.62 13896.99 31299.82 3791.58 34799.72 2999.44 18796.61 25299.66 6499.89 1095.92 16799.82 15297.46 22799.10 15899.57 137
Vis-MVSNet (Re-imp)98.87 11698.72 12299.31 13399.71 8698.88 16099.80 1699.44 18797.91 13199.36 13599.78 9595.49 18399.43 24297.91 18299.11 15599.62 124
CNLPA99.14 7798.99 8799.59 8499.58 13699.41 9599.16 24199.44 18798.45 6999.19 17599.49 22198.08 10299.89 11397.73 19999.75 9699.48 157
DeepPCF-MVS98.18 398.81 13099.37 1997.12 31199.60 13291.75 34698.61 32399.44 18799.35 199.83 1799.85 2998.70 6299.81 15699.02 5499.91 1699.81 41
CLD-MVS98.16 17898.10 17098.33 25699.29 20996.82 27798.75 31299.44 18797.83 13899.13 18399.55 19992.92 25699.67 20498.32 15397.69 22198.48 301
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2024052998.09 18697.68 21899.34 12799.66 10998.44 20399.40 17699.43 19593.67 32699.22 16699.89 1090.23 31199.93 6899.26 3298.33 19799.66 108
IterMVS-LS98.46 15298.42 15198.58 22799.59 13498.00 22299.37 18899.43 19596.94 23199.07 19799.59 18697.87 10699.03 30598.32 15395.62 28698.71 238
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
NR-MVSNet97.97 20797.61 22599.02 16898.87 28699.26 11199.47 14599.42 19797.63 16297.08 32499.50 21895.07 19699.13 29297.86 18693.59 31998.68 251
FMVSNet297.72 24597.36 25798.80 21199.51 15098.84 16599.45 14999.42 19796.49 26098.86 23699.29 27690.26 30898.98 31296.44 27996.56 26198.58 294
TEST999.67 10099.65 5799.05 26499.41 19996.22 28298.95 21899.49 22198.77 5199.91 90
train_agg99.02 10498.77 11899.77 4799.67 10099.65 5799.05 26499.41 19996.28 27598.95 21899.49 22198.76 5399.91 9097.63 20899.72 10399.75 69
test_899.67 10099.61 6399.03 27099.41 19996.28 27598.93 22299.48 22798.76 5399.91 90
v897.95 20897.63 22498.93 18098.95 27798.81 17199.80 1699.41 19996.03 29899.10 19099.42 24194.92 19899.30 26696.94 26094.08 31498.66 266
v1097.85 22097.52 23398.86 20198.99 27098.67 17999.75 2599.41 19995.70 30198.98 21499.41 24494.75 21099.23 27596.01 28794.63 30498.67 258
CDPH-MVS99.13 7998.91 9999.80 4099.75 6299.71 4499.15 24599.41 19996.60 25499.60 8099.55 19998.83 4399.90 10597.48 22499.83 7299.78 61
save fliter99.76 5299.59 6899.14 24799.40 20599.00 22
agg_prior199.01 10798.76 12099.76 5099.67 10099.62 6198.99 28099.40 20596.26 27898.87 23199.49 22198.77 5199.91 9097.69 20599.72 10399.75 69
agg_prior99.67 10099.62 6199.40 20598.87 23199.91 90
MCST-MVS99.43 3399.30 4099.82 3599.79 4299.74 4199.29 21099.40 20598.79 4799.52 9799.62 17698.91 3699.90 10598.64 11199.75 9699.82 36
TSAR-MVS + MP.99.58 499.50 899.81 3899.91 199.66 5499.63 5899.39 20998.91 3699.78 3199.85 2999.36 299.94 5398.84 8199.88 3699.82 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MVS97.28 27596.55 28399.48 10998.78 29798.95 15199.27 21699.39 20983.53 34998.08 29999.54 20496.97 13399.87 12294.23 31699.16 15099.63 122
VNet99.11 9098.90 10099.73 5899.52 14899.56 7399.41 16899.39 20999.01 1899.74 4199.78 9595.56 18099.92 7999.52 698.18 20799.72 86
HQP3-MVS99.39 20997.58 227
cascas97.69 25097.43 25098.48 23898.60 31897.30 24898.18 34499.39 20992.96 33398.41 28398.78 32193.77 24499.27 27198.16 16398.61 18498.86 216
HQP-MVS98.02 19797.90 19498.37 25499.19 23296.83 27598.98 28499.39 20998.24 9098.66 25999.40 24792.47 27499.64 21397.19 24497.58 22798.64 270
CL-MVSNet_2432*160094.49 31193.97 31496.08 32496.16 34693.67 33898.33 33899.38 21595.13 30697.33 31898.15 33692.69 26796.57 34988.67 34379.87 34997.99 332
OPM-MVS98.19 17498.10 17098.45 24498.88 28297.07 26099.28 21299.38 21598.57 6099.22 16699.81 6292.12 28199.66 20798.08 17197.54 23198.61 289
RRT_MVS98.60 14898.44 14999.05 16498.88 28299.14 12699.49 13499.38 21597.76 14799.29 14899.86 2395.38 18599.36 25498.81 8997.16 25398.64 270
EI-MVSNet98.67 14398.67 12898.68 22199.35 19197.97 22499.50 12499.38 21596.93 23299.20 17299.83 4297.87 10699.36 25498.38 14597.56 22998.71 238
test20.0396.12 29695.96 29496.63 32097.44 33695.45 31399.51 11899.38 21596.55 25796.16 33399.25 28393.76 24596.17 35187.35 34894.22 31198.27 319
mvs_anonymous99.03 10398.99 8799.16 15599.38 18698.52 19599.51 11899.38 21597.79 14499.38 13099.81 6297.30 12299.45 23399.35 1998.99 16799.51 152
MVSTER98.49 15098.32 15899.00 17199.35 19199.02 13899.54 10899.38 21597.41 18899.20 17299.73 12393.86 24299.36 25498.87 7497.56 22998.62 280
FMVSNet398.03 19597.76 21198.84 20599.39 18598.98 14299.40 17699.38 21596.67 24699.07 19799.28 27892.93 25598.98 31297.10 24996.65 25898.56 296
PAPM_NR99.04 10198.84 11099.66 6899.74 7099.44 9299.39 18099.38 21597.70 15499.28 15099.28 27898.34 8999.85 13196.96 25899.45 13299.69 98
DVP-MVS99.57 799.47 999.88 699.85 2599.89 399.57 8999.37 22499.10 899.81 2299.80 7698.94 3199.96 1898.93 6499.86 5199.81 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
miper_lstm_enhance98.00 20297.91 19398.28 26499.34 19597.43 24698.88 29999.36 22596.48 26498.80 24199.55 19995.98 16298.91 32297.27 23695.50 29098.51 299
v124097.69 25097.32 26598.79 21298.85 29098.43 20499.48 14099.36 22596.11 29399.27 15399.36 25893.76 24599.24 27494.46 31395.23 29498.70 242
v2v48298.06 18997.77 20898.92 18298.90 28098.82 16999.57 8999.36 22596.65 24899.19 17599.35 26194.20 23099.25 27397.72 20194.97 30098.69 246
HY-MVS97.30 798.85 12798.64 13299.47 11299.42 17499.08 13399.62 6499.36 22597.39 19099.28 15099.68 14596.44 15199.92 7998.37 14798.22 20399.40 172
PAPR98.63 14798.34 15699.51 10599.40 18299.03 13798.80 30799.36 22596.33 27299.00 21199.12 30098.46 7999.84 13695.23 30499.37 14099.66 108
cl-mvsnet198.01 20097.85 20098.48 23899.24 22197.95 22898.71 31699.35 23096.50 25998.60 27299.54 20495.72 17699.03 30597.21 24095.77 28198.46 307
v114497.98 20497.69 21798.85 20498.87 28698.66 18099.54 10899.35 23096.27 27799.23 16599.35 26194.67 21499.23 27596.73 27095.16 29698.68 251
WR-MVS98.06 18997.73 21499.06 16298.86 28999.25 11299.19 23899.35 23097.30 19698.66 25999.43 23893.94 23999.21 28398.58 12294.28 31098.71 238
test1199.35 230
cl-mvsnet_98.01 20097.84 20198.55 23299.25 22097.97 22498.71 31699.34 23496.47 26698.59 27399.54 20495.65 17999.21 28397.21 24095.77 28198.46 307
v14419297.92 21297.60 22698.87 19898.83 29298.65 18199.55 10599.34 23496.20 28399.32 14399.40 24794.36 22599.26 27296.37 28295.03 29998.70 242
v192192097.80 23297.45 24298.84 20598.80 29398.53 19199.52 11499.34 23496.15 29099.24 16199.47 23093.98 23899.29 26795.40 30095.13 29798.69 246
v119297.81 23097.44 24798.91 18698.88 28298.68 17899.51 11899.34 23496.18 28599.20 17299.34 26494.03 23799.36 25495.32 30395.18 29598.69 246
V4298.06 18997.79 20398.86 20198.98 27398.84 16599.69 3599.34 23496.53 25899.30 14599.37 25594.67 21499.32 26397.57 21694.66 30398.42 310
MVS_Test99.10 9398.97 9199.48 10999.49 15999.14 12699.67 4299.34 23497.31 19599.58 8599.76 10597.65 11399.82 15298.87 7499.07 16199.46 164
MG-MVS99.13 7999.02 8299.45 11599.57 13898.63 18399.07 25999.34 23498.99 2599.61 7699.82 4997.98 10599.87 12297.00 25499.80 8499.85 14
cl-mvsnet297.85 22097.64 22398.48 23899.09 25597.87 23198.60 32599.33 24197.11 21698.87 23199.22 28792.38 27999.17 28798.21 15795.99 27598.42 310
cl_fuxian98.12 18498.04 17898.38 25399.30 20597.69 24298.81 30699.33 24196.67 24698.83 23799.34 26497.11 12798.99 31197.58 21295.34 29298.48 301
v14897.79 23397.55 22998.50 23598.74 30297.72 23999.54 10899.33 24196.26 27898.90 22699.51 21594.68 21399.14 28997.83 18993.15 32598.63 278
MDA-MVSNet-bldmvs94.96 30793.98 31397.92 28598.24 32997.27 25099.15 24599.33 24193.80 32580.09 35599.03 30788.31 33097.86 33993.49 32394.36 30998.62 280
TSAR-MVS + GP.99.36 4999.36 2199.36 12699.67 10098.61 18699.07 25999.33 24199.00 2299.82 2099.81 6299.06 1399.84 13699.09 4899.42 13499.65 112
CR-MVSNet98.17 17797.93 19298.87 19899.18 23598.49 19999.22 23599.33 24196.96 22799.56 8899.38 25294.33 22699.00 31094.83 31098.58 18799.14 186
Patchmtry97.75 23997.40 25398.81 20999.10 25398.87 16199.11 25599.33 24194.83 31498.81 23999.38 25294.33 22699.02 30796.10 28495.57 28798.53 297
EPP-MVSNet99.13 7998.99 8799.53 9899.65 11499.06 13599.81 1299.33 24197.43 18599.60 8099.88 1597.14 12699.84 13699.13 4498.94 16999.69 98
IU-MVS99.84 3299.88 799.32 24998.30 8599.84 1398.86 7799.85 5899.89 2
miper_enhance_ethall98.16 17898.08 17498.41 24998.96 27697.72 23998.45 33299.32 24996.95 22998.97 21699.17 29297.06 13099.22 27897.86 18695.99 27598.29 318
MS-PatchMatch97.24 27797.32 26596.99 31298.45 32593.51 34098.82 30599.32 24997.41 18898.13 29899.30 27488.99 32299.56 22495.68 29499.80 8497.90 338
miper_ehance_all_eth98.18 17698.10 17098.41 24999.23 22297.72 23998.72 31599.31 25296.60 25498.88 22999.29 27697.29 12399.13 29297.60 21095.99 27598.38 315
eth_miper_zixun_eth98.05 19497.96 18798.33 25699.26 21697.38 24798.56 32899.31 25296.65 24898.88 22999.52 21196.58 14599.12 29697.39 23395.53 28998.47 303
tpm cat197.39 27297.36 25797.50 30499.17 24193.73 33599.43 15999.31 25291.27 33898.71 25099.08 30194.31 22899.77 17096.41 28198.50 19399.00 205
PMMVS98.80 13398.62 13899.34 12799.27 21498.70 17798.76 31199.31 25297.34 19299.21 16999.07 30297.20 12599.82 15298.56 12798.87 17599.52 146
our_test_397.65 25797.68 21897.55 30298.62 31594.97 32398.84 30399.30 25696.83 23898.19 29599.34 26497.01 13299.02 30795.00 30896.01 27398.64 270
Effi-MVS+-dtu98.78 13498.89 10298.47 24299.33 19696.91 27499.57 8999.30 25698.47 6699.41 12098.99 30996.78 13899.74 17698.73 9799.38 13698.74 234
CANet_DTU98.97 11198.87 10499.25 14699.33 19698.42 20699.08 25899.30 25699.16 599.43 11399.75 11095.27 19099.97 1098.56 12799.95 699.36 174
mvs-test198.86 11998.84 11098.89 19199.33 19697.77 23699.44 15399.30 25698.47 6699.10 19099.43 23896.78 13899.95 4298.73 9799.02 16598.96 211
VDDNet97.55 26197.02 27799.16 15599.49 15998.12 21999.38 18599.30 25695.35 30599.68 5399.90 782.62 34999.93 6899.31 2698.13 21299.42 169
test1299.75 5199.64 11699.61 6399.29 26199.21 16998.38 8699.89 11399.74 9999.74 73
new-patchmatchnet94.48 31294.08 31295.67 32695.08 35092.41 34499.18 23999.28 26294.55 32093.49 34397.37 34287.86 33797.01 34791.57 33588.36 34097.61 340
jason99.13 7999.03 7999.45 11599.46 16798.87 16199.12 24999.26 26398.03 12399.79 2699.65 15897.02 13199.85 13199.02 5499.90 2399.65 112
jason: jason.
test_040296.64 28696.24 28897.85 28998.85 29096.43 29099.44 15399.26 26393.52 32896.98 32699.52 21188.52 32899.20 28592.58 33497.50 23597.93 336
PCF-MVS97.08 1497.66 25697.06 27699.47 11299.61 12999.09 13298.04 34699.25 26591.24 33998.51 27699.70 13294.55 22099.91 9092.76 33299.85 5899.42 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MDA-MVSNet_test_wron95.45 30294.60 30898.01 27998.16 33097.21 25499.11 25599.24 26693.49 32980.73 35498.98 31293.02 25398.18 33094.22 31794.45 30798.64 270
YYNet195.36 30494.51 31097.92 28597.89 33297.10 25699.10 25799.23 26793.26 33280.77 35399.04 30692.81 25998.02 33494.30 31494.18 31298.64 270
AUN-MVS96.88 28296.31 28798.59 22599.48 16597.04 26499.27 21699.22 26897.44 18498.51 27699.41 24491.97 28399.66 20797.71 20283.83 34599.07 199
DeepMVS_CXcopyleft93.34 32999.29 20982.27 35399.22 26885.15 34796.33 33199.05 30590.97 30499.73 18393.57 32297.77 22098.01 329
pmmvs498.13 18297.90 19498.81 20998.61 31798.87 16198.99 28099.21 27096.44 26799.06 20199.58 18995.90 16999.11 29797.18 24696.11 27298.46 307
KD-MVS_2432*160094.62 30993.72 31597.31 30797.19 34395.82 30398.34 33699.20 27195.00 31197.57 31398.35 33287.95 33598.10 33292.87 33077.00 35198.01 329
miper_refine_blended94.62 30993.72 31597.31 30797.19 34395.82 30398.34 33699.20 27195.00 31197.57 31398.35 33287.95 33598.10 33292.87 33077.00 35198.01 329
tpmvs97.98 20498.02 18197.84 29099.04 26494.73 32799.31 20499.20 27196.10 29798.76 24699.42 24194.94 19799.81 15696.97 25798.45 19598.97 209
new_pmnet96.38 29296.03 29297.41 30598.13 33195.16 32199.05 26499.20 27193.94 32397.39 31798.79 31991.61 29699.04 30390.43 33895.77 28198.05 327
IS-MVSNet99.05 10098.87 10499.57 8899.73 7599.32 10299.75 2599.20 27198.02 12499.56 8899.86 2396.54 14799.67 20498.09 16799.13 15499.73 80
lupinMVS99.13 7999.01 8699.46 11499.51 15098.94 15499.05 26499.16 27697.86 13399.80 2499.56 19697.39 11799.86 12598.94 6299.85 5899.58 136
GA-MVS97.85 22097.47 23999.00 17199.38 18697.99 22398.57 32699.15 27797.04 22198.90 22699.30 27489.83 31499.38 24796.70 27298.33 19799.62 124
ADS-MVSNet98.20 17398.08 17498.56 23099.33 19696.48 28899.23 23099.15 27796.24 28099.10 19099.67 15194.11 23499.71 19396.81 26699.05 16299.48 157
Patchmatch-test97.93 20997.65 22198.77 21499.18 23597.07 26099.03 27099.14 27996.16 28898.74 24799.57 19394.56 21999.72 18793.36 32499.11 15599.52 146
BH-untuned98.42 15598.36 15398.59 22599.49 15996.70 28099.27 21699.13 28097.24 20398.80 24199.38 25295.75 17499.74 17697.07 25299.16 15099.33 178
tpmrst98.33 16398.48 14897.90 28799.16 24394.78 32699.31 20499.11 28197.27 19999.45 10899.59 18695.33 18899.84 13698.48 13598.61 18499.09 194
DPM-MVS98.95 11298.71 12499.66 6899.63 11999.55 7598.64 32299.10 28297.93 12999.42 11699.55 19998.67 6699.80 16195.80 29199.68 11499.61 126
pmmvs-eth3d95.34 30594.73 30797.15 30995.53 34995.94 30199.35 19799.10 28295.13 30693.55 34297.54 33988.15 33397.91 33794.58 31189.69 33997.61 340
PAPM97.59 26097.09 27599.07 16199.06 26098.26 21298.30 34099.10 28294.88 31398.08 29999.34 26496.27 15699.64 21389.87 34098.92 17299.31 179
Anonymous2023120696.22 29396.03 29296.79 31997.31 34094.14 33299.63 5899.08 28596.17 28697.04 32599.06 30493.94 23997.76 34186.96 34995.06 29898.47 303
ADS-MVSNet298.02 19798.07 17797.87 28899.33 19695.19 31999.23 23099.08 28596.24 28099.10 19099.67 15194.11 23498.93 32196.81 26699.05 16299.48 157
test_yl98.86 11998.63 13399.54 9299.49 15999.18 11899.50 12499.07 28798.22 9499.61 7699.51 21595.37 18699.84 13698.60 11998.33 19799.59 132
DCV-MVSNet98.86 11998.63 13399.54 9299.49 15999.18 11899.50 12499.07 28798.22 9499.61 7699.51 21595.37 18699.84 13698.60 11998.33 19799.59 132
PatchT97.03 28196.44 28598.79 21298.99 27098.34 20899.16 24199.07 28792.13 33599.52 9797.31 34494.54 22198.98 31288.54 34498.73 18399.03 202
USDC97.34 27397.20 27297.75 29599.07 25895.20 31898.51 33099.04 29097.99 12598.31 29099.86 2389.02 32199.55 22695.67 29597.36 24798.49 300
CostFormer97.72 24597.73 21497.71 29799.15 24694.02 33399.54 10899.02 29194.67 31799.04 20399.35 26192.35 28099.77 17098.50 13497.94 21699.34 177
OurMVSNet-221017-097.88 21597.77 20898.19 26898.71 30796.53 28699.88 199.00 29297.79 14498.78 24499.94 391.68 29199.35 25897.21 24096.99 25698.69 246
LCM-MVSNet86.80 32085.22 32491.53 33387.81 35780.96 35498.23 34398.99 29371.05 35390.13 34896.51 34648.45 36196.88 34890.51 33785.30 34496.76 344
MIMVSNet97.73 24397.45 24298.57 22899.45 17297.50 24499.02 27398.98 29496.11 29399.41 12099.14 29690.28 30798.74 32695.74 29298.93 17099.47 162
SCA98.19 17498.16 16598.27 26599.30 20595.55 30899.07 25998.97 29597.57 16799.43 11399.57 19392.72 26399.74 17697.58 21299.20 14899.52 146
JIA-IIPM97.50 26797.02 27798.93 18098.73 30397.80 23599.30 20698.97 29591.73 33798.91 22494.86 34995.10 19599.71 19397.58 21297.98 21599.28 181
alignmvs98.81 13098.56 14599.58 8799.43 17399.42 9499.51 11898.96 29798.61 5899.35 13898.92 31594.78 20599.77 17099.35 1998.11 21399.54 141
tpm297.44 27197.34 26297.74 29699.15 24694.36 33099.45 14998.94 29893.45 33198.90 22699.44 23691.35 29999.59 22297.31 23498.07 21499.29 180
baseline198.31 16497.95 18999.38 12599.50 15798.74 17499.59 7798.93 29998.41 7399.14 18299.60 18394.59 21799.79 16498.48 13593.29 32299.61 126
EG-PatchMatch MVS95.97 29895.69 29896.81 31897.78 33492.79 34399.16 24198.93 29996.16 28894.08 34199.22 28782.72 34899.47 23095.67 29597.50 23598.17 323
PatchmatchNetpermissive98.31 16498.36 15398.19 26899.16 24395.32 31699.27 21698.92 30197.37 19199.37 13299.58 18994.90 19999.70 19997.43 23199.21 14799.54 141
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ITE_SJBPF98.08 27399.29 20996.37 29198.92 30198.34 8098.83 23799.75 11091.09 30299.62 21995.82 28997.40 24598.25 321
FPMVS84.93 32185.65 32282.75 33986.77 35863.39 36298.35 33598.92 30174.11 35283.39 35198.98 31250.85 35992.40 35584.54 35294.97 30092.46 349
TransMVSNet (Re)97.15 27896.58 28298.86 20199.12 24898.85 16499.49 13498.91 30495.48 30397.16 32299.80 7693.38 24899.11 29794.16 31891.73 33398.62 280
EPNet98.86 11998.71 12499.30 13797.20 34298.18 21499.62 6498.91 30499.28 298.63 26799.81 6295.96 16399.99 199.24 3399.72 10399.73 80
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs597.52 26497.30 26798.16 27098.57 32096.73 27999.27 21698.90 30696.14 29198.37 28699.53 20891.54 29799.14 28997.51 22295.87 27998.63 278
BH-w/o98.00 20297.89 19898.32 25899.35 19196.20 29799.01 27898.90 30696.42 26998.38 28599.00 30895.26 19299.72 18796.06 28598.61 18499.03 202
MTMP99.54 10898.88 308
dp97.75 23997.80 20297.59 30099.10 25393.71 33699.32 20298.88 30896.48 26499.08 19699.55 19992.67 26899.82 15296.52 27798.58 18799.24 182
MVP-Stereo97.81 23097.75 21297.99 28197.53 33596.60 28598.96 28898.85 31097.22 20597.23 32099.36 25895.28 18999.46 23295.51 29799.78 8997.92 337
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
VDD-MVS97.73 24397.35 25998.88 19499.47 16697.12 25599.34 20098.85 31098.19 9799.67 5999.85 2982.98 34799.92 7999.49 1298.32 20199.60 128
Baseline_NR-MVSNet97.76 23597.45 24298.68 22199.09 25598.29 20999.41 16898.85 31095.65 30298.63 26799.67 15194.82 20299.10 29998.07 17492.89 32798.64 270
LF4IMVS97.52 26497.46 24197.70 29898.98 27395.55 30899.29 21098.82 31398.07 11598.66 25999.64 16589.97 31399.61 22097.01 25396.68 25797.94 335
BH-RMVSNet98.41 15798.08 17499.40 12299.41 17798.83 16899.30 20698.77 31497.70 15498.94 22099.65 15892.91 25899.74 17696.52 27799.55 12999.64 118
EPNet_dtu98.03 19597.96 18798.23 26698.27 32795.54 31099.23 23098.75 31599.02 1597.82 30999.71 12896.11 15999.48 22993.04 32899.65 11999.69 98
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TDRefinement95.42 30394.57 30997.97 28289.83 35696.11 29899.48 14098.75 31596.74 24196.68 32899.88 1588.65 32699.71 19398.37 14782.74 34698.09 325
OpenMVS_ROBcopyleft92.34 2094.38 31393.70 31796.41 32397.38 33793.17 34199.06 26298.75 31586.58 34694.84 34098.26 33581.53 35199.32 26389.01 34297.87 21896.76 344
thres100view90097.76 23597.45 24298.69 22099.72 8097.86 23399.59 7798.74 31897.93 12999.26 15898.62 32591.75 28899.83 14593.22 32598.18 20798.37 316
thres600view797.86 21997.51 23598.92 18299.72 8097.95 22899.59 7798.74 31897.94 12899.27 15398.62 32591.75 28899.86 12593.73 32198.19 20698.96 211
thres20097.61 25997.28 26898.62 22399.64 11698.03 22099.26 22598.74 31897.68 15699.09 19598.32 33491.66 29499.81 15692.88 32998.22 20398.03 328
MDTV_nov1_ep1398.32 15899.11 25094.44 32999.27 21698.74 31897.51 17699.40 12599.62 17694.78 20599.76 17397.59 21198.81 180
TinyColmap97.12 27996.89 27997.83 29199.07 25895.52 31198.57 32698.74 31897.58 16697.81 31099.79 8888.16 33299.56 22495.10 30597.21 25098.39 314
tfpn200view997.72 24597.38 25598.72 21899.69 9597.96 22699.50 12498.73 32397.83 13899.17 17998.45 33091.67 29299.83 14593.22 32598.18 20798.37 316
ambc93.06 33092.68 35282.36 35298.47 33198.73 32395.09 33897.41 34055.55 35899.10 29996.42 28091.32 33497.71 339
thres40097.77 23497.38 25598.92 18299.69 9597.96 22699.50 12498.73 32397.83 13899.17 17998.45 33091.67 29299.83 14593.22 32598.18 20798.96 211
SixPastTwentyTwo97.50 26797.33 26498.03 27698.65 31296.23 29699.77 2198.68 32697.14 21097.90 30699.93 490.45 30699.18 28697.00 25496.43 26698.67 258
test0.0.03 197.71 24997.42 25198.56 23098.41 32697.82 23498.78 30998.63 32797.34 19298.05 30398.98 31294.45 22398.98 31295.04 30797.15 25498.89 215
DWT-MVSNet_test97.53 26397.40 25397.93 28499.03 26694.86 32599.57 8998.63 32796.59 25698.36 28798.79 31989.32 31999.74 17698.14 16598.16 21199.20 185
TR-MVS97.76 23597.41 25298.82 20799.06 26097.87 23198.87 30198.56 32996.63 25198.68 25899.22 28792.49 27399.65 21195.40 30097.79 21998.95 214
Anonymous20240521198.30 16697.98 18499.26 14599.57 13898.16 21599.41 16898.55 33096.03 29899.19 17599.74 11691.87 28599.92 7999.16 4298.29 20299.70 95
tpm97.67 25597.55 22998.03 27699.02 26795.01 32299.43 15998.54 33196.44 26799.12 18599.34 26491.83 28799.60 22197.75 19796.46 26599.48 157
Patchmatch-RL test95.84 29995.81 29795.95 32595.61 34790.57 34898.24 34198.39 33295.10 31095.20 33798.67 32494.78 20597.77 34096.28 28390.02 33799.51 152
LCM-MVSNet-Re97.83 22598.15 16696.87 31799.30 20592.25 34599.59 7798.26 33397.43 18596.20 33299.13 29796.27 15698.73 32798.17 16298.99 16799.64 118
LFMVS97.90 21497.35 25999.54 9299.52 14899.01 14099.39 18098.24 33497.10 21799.65 6799.79 8884.79 34599.91 9099.28 2998.38 19699.69 98
PM-MVS92.96 31792.23 32095.14 32795.61 34789.98 35099.37 18898.21 33594.80 31595.04 33997.69 33865.06 35597.90 33894.30 31489.98 33897.54 343
PMVScopyleft70.75 2275.98 32774.97 32879.01 34170.98 36255.18 36393.37 35498.21 33565.08 35861.78 35993.83 35021.74 36692.53 35478.59 35391.12 33589.34 353
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
pmmvs394.09 31593.25 31896.60 32194.76 35194.49 32898.92 29598.18 33789.66 34296.48 33098.06 33786.28 34097.33 34489.68 34187.20 34297.97 334
door-mid98.05 338
bset_n11_16_dypcd98.16 17897.97 18598.73 21698.26 32898.28 21197.99 34798.01 33997.68 15699.10 19099.63 17095.68 17799.15 28898.78 9396.55 26298.75 230
tmp_tt82.80 32281.52 32586.66 33566.61 36368.44 36192.79 35597.92 34068.96 35480.04 35699.85 2985.77 34296.15 35297.86 18643.89 35795.39 348
door97.92 340
test-LLR98.06 18997.90 19498.55 23298.79 29497.10 25698.67 31897.75 34297.34 19298.61 27098.85 31694.45 22399.45 23397.25 23899.38 13699.10 190
test-mter97.49 26997.13 27498.55 23298.79 29497.10 25698.67 31897.75 34296.65 24898.61 27098.85 31688.23 33199.45 23397.25 23899.38 13699.10 190
IB-MVS95.67 1896.22 29395.44 30298.57 22899.21 22896.70 28098.65 32197.74 34496.71 24397.27 31998.54 32886.03 34199.92 7998.47 13886.30 34399.10 190
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TESTMET0.1,197.55 26197.27 27098.40 25198.93 27896.53 28698.67 31897.61 34596.96 22798.64 26699.28 27888.63 32799.45 23397.30 23599.38 13699.21 184
ET-MVSNet_ETH3D96.49 28995.64 29999.05 16499.53 14698.82 16998.84 30397.51 34697.63 16284.77 34999.21 29092.09 28298.91 32298.98 5792.21 33299.41 171
PMMVS286.87 31985.37 32391.35 33490.21 35583.80 35198.89 29897.45 34783.13 35091.67 34795.03 34748.49 36094.70 35385.86 35177.62 35095.54 347
K. test v397.10 28096.79 28198.01 27998.72 30596.33 29399.87 497.05 34897.59 16496.16 33399.80 7688.71 32499.04 30396.69 27396.55 26298.65 268
tttt051798.42 15598.14 16799.28 14399.66 10998.38 20799.74 2896.85 34997.68 15699.79 2699.74 11691.39 29899.89 11398.83 8499.56 12799.57 137
thisisatest051598.14 18197.79 20399.19 15299.50 15798.50 19898.61 32396.82 35096.95 22999.54 9399.43 23891.66 29499.86 12598.08 17199.51 13199.22 183
thisisatest053098.35 16298.03 17999.31 13399.63 11998.56 18899.54 10896.75 35197.53 17499.73 4399.65 15891.25 30199.89 11398.62 11399.56 12799.48 157
DSMNet-mixed97.25 27697.35 25996.95 31597.84 33393.61 33999.57 8996.63 35296.13 29298.87 23198.61 32794.59 21797.70 34295.08 30698.86 17699.55 139
baseline297.87 21797.55 22998.82 20799.18 23598.02 22199.41 16896.58 35396.97 22696.51 32999.17 29293.43 24799.57 22397.71 20299.03 16498.86 216
MVS-HIRNet95.75 30095.16 30497.51 30399.30 20593.69 33798.88 29995.78 35485.09 34898.78 24492.65 35191.29 30099.37 25094.85 30999.85 5899.46 164
E-PMN80.61 32379.88 32682.81 33890.75 35476.38 35997.69 34995.76 35566.44 35683.52 35092.25 35262.54 35787.16 35768.53 35661.40 35484.89 355
lessismore_v097.79 29498.69 30995.44 31494.75 35695.71 33699.87 2088.69 32599.32 26395.89 28894.93 30298.62 280
EPMVS97.82 22897.65 22198.35 25598.88 28295.98 30099.49 13494.71 35797.57 16799.26 15899.48 22792.46 27799.71 19397.87 18599.08 16099.35 175
gg-mvs-nofinetune96.17 29595.32 30398.73 21698.79 29498.14 21799.38 18594.09 35891.07 34198.07 30291.04 35489.62 31899.35 25896.75 26899.09 15998.68 251
GG-mvs-BLEND98.45 24498.55 32198.16 21599.43 15993.68 35997.23 32098.46 32989.30 32099.22 27895.43 29998.22 20397.98 333
MVEpermissive76.82 2176.91 32674.31 33084.70 33685.38 36076.05 36096.88 35293.17 36067.39 35571.28 35789.01 35621.66 36787.69 35671.74 35572.29 35390.35 352
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high77.30 32574.86 32984.62 33775.88 36177.61 35797.63 35093.15 36188.81 34464.27 35889.29 35536.51 36283.93 35975.89 35452.31 35692.33 351
N_pmnet94.95 30895.83 29692.31 33198.47 32479.33 35699.12 24992.81 36293.87 32497.68 31299.13 29793.87 24199.01 30991.38 33696.19 27198.59 293
EMVS80.02 32479.22 32782.43 34091.19 35376.40 35897.55 35192.49 36366.36 35783.01 35291.27 35364.63 35685.79 35865.82 35760.65 35585.08 354
testmvs39.17 32943.78 33125.37 34436.04 36516.84 36698.36 33426.56 36420.06 36038.51 36167.32 35729.64 36415.30 36237.59 35939.90 35843.98 357
wuyk23d40.18 32841.29 33336.84 34286.18 35949.12 36479.73 35622.81 36527.64 35925.46 36228.45 36221.98 36548.89 36055.80 35823.56 36012.51 358
test12339.01 33042.50 33228.53 34339.17 36420.91 36598.75 31219.17 36619.83 36138.57 36066.67 35833.16 36315.42 36137.50 36029.66 35949.26 356
uanet_test0.02 3340.03 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.27 3630.00 3680.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas8.27 33311.03 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.27 36399.01 160.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.02 3340.03 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.27 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.02 3340.03 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.27 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.02 3340.03 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.27 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.02 3340.03 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.27 3630.00 3680.00 3630.00 3610.00 3610.00 359
n20.00 367
nn0.00 367
ab-mvs-re8.30 33211.06 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36399.58 1890.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.02 3340.03 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.27 3630.00 3680.00 3630.00 3610.00 3610.00 359
OPU-MVS99.64 7799.56 14299.72 4299.60 7199.70 13299.27 499.42 24398.24 15699.80 8499.79 53
test_0728_THIRD98.99 2599.81 2299.80 7699.09 1299.96 1898.85 7999.90 2399.88 5
GSMVS99.52 146
test_part299.81 4099.83 1499.77 33
sam_mvs194.86 20199.52 146
sam_mvs94.72 212
test_post199.23 23065.14 36094.18 23399.71 19397.58 212
test_post65.99 35994.65 21699.73 183
patchmatchnet-post98.70 32394.79 20499.74 176
gm-plane-assit98.54 32292.96 34294.65 31899.15 29599.64 21397.56 217
test9_res97.49 22399.72 10399.75 69
agg_prior297.21 24099.73 10299.75 69
test_prior499.56 7398.99 280
test_prior298.96 28898.34 8099.01 20699.52 21198.68 6397.96 17899.74 99
旧先验298.96 28896.70 24499.47 10599.94 5398.19 158
新几何299.01 278
原ACMM298.95 292
testdata299.95 4296.67 274
segment_acmp98.96 25
testdata198.85 30298.32 84
plane_prior799.29 20997.03 265
plane_prior699.27 21496.98 26992.71 265
plane_prior499.61 180
plane_prior397.00 26798.69 5499.11 187
plane_prior299.39 18098.97 30
plane_prior199.26 216
plane_prior96.97 27099.21 23798.45 6997.60 225
HQP5-MVS96.83 275
HQP-NCC99.19 23298.98 28498.24 9098.66 259
ACMP_Plane99.19 23298.98 28498.24 9098.66 259
BP-MVS97.19 244
HQP4-MVS98.66 25999.64 21398.64 270
HQP2-MVS92.47 274
NP-MVS99.23 22296.92 27399.40 247
MDTV_nov1_ep13_2view95.18 32099.35 19796.84 23699.58 8595.19 19497.82 19099.46 164
ACMMP++_ref97.19 251
ACMMP++97.43 243
Test By Simon98.75 56