This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
CHOSEN 1792x268899.19 8099.10 8099.45 12899.89 898.52 21199.39 22199.94 198.73 7699.11 22199.89 2995.50 19299.94 6999.50 3799.97 799.89 20
PVSNet_Blended_VisFu99.36 5699.28 5699.61 8799.86 2099.07 14699.47 18699.93 297.66 20099.71 7299.86 4797.73 11199.96 3099.47 4499.82 9499.79 74
PVSNet_BlendedMVS98.86 13498.80 13099.03 18799.76 6598.79 18799.28 25899.91 397.42 22899.67 8299.37 28297.53 11899.88 13398.98 9397.29 28998.42 347
PVSNet_Blended99.08 10898.97 10599.42 13399.76 6598.79 18798.78 35799.91 396.74 28399.67 8299.49 24897.53 11899.88 13398.98 9399.85 7399.60 146
HyFIR lowres test99.11 10298.92 11199.65 7399.90 499.37 10399.02 32099.91 397.67 19999.59 11399.75 13895.90 17999.73 21399.53 3399.02 18699.86 33
MVS_111021_LR99.41 4799.33 3899.65 7399.77 6299.51 8698.94 34199.85 698.82 6599.65 9399.74 14398.51 7899.80 18898.83 12199.89 5299.64 136
MVS_111021_HR99.41 4799.32 4099.66 6999.72 9199.47 9398.95 33999.85 698.82 6599.54 12399.73 14998.51 7899.74 20798.91 10299.88 5599.77 82
PHI-MVS99.30 6499.17 7399.70 6799.56 15699.52 8599.58 10999.80 897.12 25499.62 10499.73 14998.58 7299.90 11698.61 14999.91 3599.68 119
PatchMatch-RL98.84 14498.62 15399.52 11499.71 9699.28 11599.06 31099.77 997.74 19099.50 13099.53 23695.41 19499.84 15797.17 28499.64 13599.44 197
3Dnovator97.25 999.24 7799.05 8799.81 4499.12 28499.66 5399.84 1299.74 1099.09 3298.92 25499.90 2595.94 17699.98 1398.95 9699.92 2899.79 74
QAPM98.67 16098.30 17799.80 4699.20 26299.67 5199.77 3499.72 1194.74 36098.73 27999.90 2595.78 18399.98 1396.96 29499.88 5599.76 87
OpenMVScopyleft96.50 1698.47 16998.12 18999.52 11499.04 30499.53 8299.82 1699.72 1194.56 36398.08 33299.88 3594.73 22599.98 1397.47 26299.76 11499.06 241
CHOSEN 280x42099.12 9899.13 7799.08 18099.66 12097.89 25098.43 38199.71 1398.88 5999.62 10499.76 13596.63 15199.70 22999.46 4599.99 199.66 125
MSLP-MVS++99.46 3199.47 1799.44 13299.60 14699.16 13099.41 20999.71 1398.98 4899.45 13999.78 12399.19 999.54 26299.28 6699.84 8199.63 140
UA-Net99.42 4299.29 5499.80 4699.62 13799.55 7799.50 16299.70 1598.79 7099.77 5299.96 197.45 12099.96 3098.92 10199.90 4399.89 20
PVSNet_094.43 1996.09 33195.47 33797.94 31499.31 23794.34 36797.81 39699.70 1597.12 25497.46 35098.75 36089.71 34399.79 19197.69 24281.69 39999.68 119
AdaColmapbinary99.01 12098.80 13099.66 6999.56 15699.54 7999.18 28699.70 1598.18 13299.35 17099.63 19896.32 16399.90 11697.48 26099.77 11199.55 160
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9799.58 10999.69 1899.43 799.98 699.91 1998.62 70100.00 199.97 199.95 1999.90 17
ACMMPcopyleft99.45 3399.32 4099.82 4199.89 899.67 5199.62 8899.69 1898.12 14299.63 10099.84 6398.73 6099.96 3098.55 16499.83 9099.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5699.68 2098.98 4899.37 16499.74 14398.81 4499.94 6998.79 12699.86 6699.84 40
X-MVStestdata96.55 32095.45 33899.87 1199.85 2699.83 1699.69 5699.68 2098.98 4899.37 16464.01 41298.81 4499.94 6998.79 12699.86 6699.84 40
UGNet98.87 13198.69 14199.40 13599.22 25998.72 19299.44 19699.68 2099.24 1799.18 21299.42 26692.74 28699.96 3099.34 5999.94 2599.53 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
fmvsm_s_conf0.5_n99.51 1899.40 2599.85 2899.84 3299.65 5799.51 15599.67 2399.13 2299.98 699.92 1496.60 15299.96 3099.95 899.96 1499.95 9
ZNCC-MVS99.47 2999.33 3899.87 1199.87 1599.81 2599.64 7999.67 2398.08 15299.55 12299.64 19298.91 3499.96 3098.72 13399.90 4399.82 54
GST-MVS99.40 5099.24 6599.85 2899.86 2099.79 3099.60 9599.67 2397.97 16499.63 10099.68 17498.52 7799.95 5998.38 17799.86 6699.81 61
HFP-MVS99.49 2299.37 3099.86 2199.87 1599.80 2799.66 7099.67 2398.15 13499.68 7899.69 16899.06 1699.96 3098.69 13899.87 5899.84 40
ACMMPR99.49 2299.36 3299.86 2199.87 1599.79 3099.66 7099.67 2398.15 13499.67 8299.69 16898.95 2799.96 3098.69 13899.87 5899.84 40
region2R99.48 2699.35 3499.87 1199.88 1199.80 2799.65 7699.66 2898.13 13999.66 8799.68 17498.96 2499.96 3098.62 14699.87 5899.84 40
EU-MVSNet97.98 22598.03 20197.81 32598.72 34796.65 31499.66 7099.66 2898.09 14898.35 31799.82 7595.25 20398.01 38197.41 26795.30 33498.78 261
DELS-MVS99.48 2699.42 2299.65 7399.72 9199.40 10299.05 31299.66 2899.14 2199.57 11799.80 10498.46 8199.94 6999.57 2799.84 8199.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Vis-MVSNetpermissive99.12 9898.97 10599.56 9799.78 5699.10 14099.68 6299.66 2898.49 9699.86 2899.87 4394.77 22299.84 15799.19 7599.41 15299.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CSCG99.32 6299.32 4099.32 14799.85 2698.29 22699.71 5299.66 2898.11 14499.41 15299.80 10498.37 8899.96 3098.99 9299.96 1499.72 103
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14799.65 3399.10 2799.98 699.92 1497.35 12599.96 3099.94 1099.92 2899.95 9
SDMVSNet99.11 10298.90 11499.75 5899.81 4699.59 7099.81 2099.65 3398.78 7399.64 9799.88 3594.56 23599.93 8499.67 2198.26 23099.72 103
PGM-MVS99.45 3399.31 4899.86 2199.87 1599.78 3699.58 10999.65 3397.84 17799.71 7299.80 10499.12 1399.97 2198.33 18399.87 5899.83 49
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 18099.64 3699.45 599.92 1599.92 1498.62 7099.99 499.96 799.99 199.96 7
test_cas_vis1_n_192099.16 8699.01 9999.61 8799.81 4698.86 17899.65 7699.64 3699.39 1099.97 1399.94 693.20 27699.98 1399.55 3099.91 3599.99 1
patch_mono-299.26 7299.62 598.16 29999.81 4694.59 36299.52 14799.64 3699.33 1399.73 6699.90 2599.00 2299.99 499.69 1999.98 499.89 20
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12299.63 3999.48 399.98 699.83 6798.75 5599.99 499.97 199.96 1499.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12299.63 3999.47 499.98 699.82 7598.75 5599.99 499.97 199.97 799.94 11
fmvsm_s_conf0.1_n_a99.26 7299.06 8699.85 2899.52 16899.62 6599.54 13899.62 4198.69 7999.99 299.96 194.47 24199.94 6999.88 1499.92 2899.98 2
fmvsm_s_conf0.1_n99.29 6699.10 8099.86 2199.70 10199.65 5799.53 14699.62 4198.74 7599.99 299.95 394.53 23999.94 6999.89 1399.96 1499.97 4
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21799.37 10399.58 10999.62 4199.41 999.87 2599.92 1498.81 44100.00 199.97 199.93 2699.94 11
sd_testset98.75 15398.57 16099.29 15699.81 4698.26 22899.56 12299.62 4198.78 7399.64 9799.88 3592.02 30799.88 13399.54 3198.26 23099.72 103
test_vis1_n_192098.63 16498.40 17099.31 14899.86 2097.94 24999.67 6599.62 4199.43 799.99 299.91 1987.29 368100.00 199.92 1299.92 2899.98 2
SR-MVS99.43 4099.29 5499.86 2199.75 7399.83 1699.59 10199.62 4198.21 12799.73 6699.79 11798.68 6499.96 3098.44 17499.77 11199.79 74
sss99.17 8499.05 8799.53 10899.62 13798.97 15899.36 23299.62 4197.83 17899.67 8299.65 18697.37 12499.95 5999.19 7599.19 16899.68 119
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 19899.65 5799.50 16299.61 4899.45 599.87 2599.92 1497.31 12699.97 2199.95 899.99 199.97 4
ZD-MVS99.71 9699.79 3099.61 4896.84 27999.56 11899.54 23298.58 7299.96 3096.93 29799.75 116
D2MVS98.41 17598.50 16598.15 30299.26 24996.62 31599.40 21799.61 4897.71 19298.98 24699.36 28596.04 17099.67 23798.70 13597.41 28498.15 363
tfpnnormal97.84 24697.47 26198.98 19399.20 26299.22 12499.64 7999.61 4896.32 31598.27 32399.70 15893.35 27299.44 27395.69 33195.40 33298.27 357
AllTest98.87 13198.72 13799.31 14899.86 2098.48 21799.56 12299.61 4897.85 17599.36 16799.85 5295.95 17499.85 15096.66 31099.83 9099.59 150
TestCases99.31 14899.86 2098.48 21799.61 4897.85 17599.36 16799.85 5295.95 17499.85 15096.66 31099.83 9099.59 150
FC-MVSNet-test98.75 15398.62 15399.15 17799.08 29599.45 9699.86 1199.60 5498.23 12498.70 28799.82 7596.80 14599.22 31399.07 8696.38 30798.79 260
PVSNet96.02 1798.85 14198.84 12798.89 21299.73 8797.28 27198.32 38799.60 5497.86 17299.50 13099.57 22096.75 14899.86 14498.56 16199.70 12699.54 162
LTVRE_ROB97.16 1298.02 21897.90 21598.40 27999.23 25596.80 30899.70 5399.60 5497.12 25498.18 32999.70 15891.73 31599.72 21798.39 17697.45 27998.68 289
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
FIs98.78 14998.63 14899.23 16799.18 26899.54 7999.83 1599.59 5798.28 11698.79 27499.81 9096.75 14899.37 28499.08 8596.38 30798.78 261
WR-MVS_H98.13 20097.87 22098.90 20999.02 30698.84 18099.70 5399.59 5797.27 24098.40 31499.19 31995.53 19199.23 31098.34 18293.78 36298.61 326
114514_t98.93 12698.67 14399.72 6599.85 2699.53 8299.62 8899.59 5792.65 38199.71 7299.78 12398.06 10299.90 11698.84 11899.91 3599.74 92
COLMAP_ROBcopyleft97.56 698.86 13498.75 13699.17 17299.88 1198.53 20799.34 24099.59 5797.55 21098.70 28799.89 2995.83 18199.90 11698.10 19899.90 4399.08 235
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CS-MVS-test99.49 2299.48 1599.54 10099.78 5699.30 11399.89 299.58 6198.56 8999.73 6699.69 16898.55 7599.82 17799.69 1999.85 7399.48 181
VPA-MVSNet98.29 18697.95 21099.30 15399.16 27899.54 7999.50 16299.58 6198.27 11899.35 17099.37 28292.53 29699.65 24599.35 5394.46 34998.72 274
EC-MVSNet99.44 3799.39 2799.58 9399.56 15699.49 8999.88 399.58 6198.38 10599.73 6699.69 16898.20 9599.70 22999.64 2499.82 9499.54 162
CANet99.25 7699.14 7699.59 9099.41 20699.16 13099.35 23799.57 6498.82 6599.51 12999.61 20796.46 15899.95 5999.59 2599.98 499.65 129
Anonymous2023121197.88 23897.54 25498.90 20999.71 9698.53 20799.48 18099.57 6494.16 36698.81 27099.68 17493.23 27399.42 27898.84 11894.42 35198.76 266
VPNet97.84 24697.44 26999.01 18999.21 26098.94 16899.48 18099.57 6498.38 10599.28 18399.73 14988.89 35099.39 28099.19 7593.27 36798.71 276
DP-MVS Recon99.12 9898.95 10999.65 7399.74 8099.70 4699.27 26399.57 6496.40 31399.42 14899.68 17498.75 5599.80 18897.98 21199.72 12299.44 197
LS3D99.27 7099.12 7899.74 6199.18 26899.75 3999.56 12299.57 6498.45 9999.49 13399.85 5297.77 11099.94 6998.33 18399.84 8199.52 169
FOURS199.91 199.93 199.87 899.56 6999.10 2799.81 38
test_prior99.68 6899.67 11199.48 9199.56 6999.83 17099.74 92
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 6999.02 3899.88 2099.85 5299.18 1099.96 3099.22 7399.92 2899.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
HPM-MVS_fast99.51 1899.40 2599.85 2899.91 199.79 3099.76 3799.56 6997.72 19199.76 5899.75 13899.13 1299.92 9599.07 8699.92 2899.85 36
casdiffmvs_mvgpermissive99.15 8899.02 9599.55 9999.66 12099.09 14199.64 7999.56 6998.26 11999.45 13999.87 4396.03 17199.81 18299.54 3199.15 17299.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WTY-MVS99.06 11098.88 11999.61 8799.62 13799.16 13099.37 22899.56 6998.04 15999.53 12599.62 20396.84 14499.94 6998.85 11598.49 21999.72 103
API-MVS99.04 11399.03 9199.06 18399.40 21199.31 11199.55 13499.56 6998.54 9299.33 17499.39 27798.76 5299.78 19696.98 29299.78 10898.07 366
ACMH97.28 898.10 20397.99 20598.44 27499.41 20696.96 29999.60 9599.56 6998.09 14898.15 33099.91 1990.87 33199.70 22998.88 10597.45 27998.67 296
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CS-MVS99.50 2099.48 1599.54 10099.76 6599.42 9999.90 199.55 7798.56 8999.78 4899.70 15898.65 6899.79 19199.65 2399.78 10899.41 201
CVMVSNet98.57 16698.67 14398.30 28999.35 22595.59 34099.50 16299.55 7798.60 8699.39 16099.83 6794.48 24099.45 26898.75 12998.56 21499.85 36
XVG-OURS98.73 15698.68 14298.88 21499.70 10197.73 25798.92 34399.55 7798.52 9499.45 13999.84 6395.27 20099.91 10598.08 20398.84 19899.00 246
LPG-MVS_test98.22 18998.13 18898.49 26299.33 23097.05 28799.58 10999.55 7797.46 22099.24 19499.83 6792.58 29499.72 21798.09 19997.51 27298.68 289
LGP-MVS_train98.49 26299.33 23097.05 28799.55 7797.46 22099.24 19499.83 6792.58 29499.72 21798.09 19997.51 27298.68 289
XXY-MVS98.38 17998.09 19499.24 16599.26 24999.32 10799.56 12299.55 7797.45 22398.71 28199.83 6793.23 27399.63 25398.88 10596.32 30998.76 266
DeepC-MVS98.35 299.30 6499.19 7199.64 7899.82 4299.23 12399.62 8899.55 7798.94 5499.63 10099.95 395.82 18299.94 6999.37 5299.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSDG98.98 12298.80 13099.53 10899.76 6599.19 12598.75 36099.55 7797.25 24299.47 13699.77 13197.82 10899.87 14196.93 29799.90 4399.54 162
SF-MVS99.38 5499.24 6599.79 4999.79 5499.68 4899.57 11699.54 8597.82 18299.71 7299.80 10498.95 2799.93 8498.19 19299.84 8199.74 92
PS-MVSNAJss98.92 12798.92 11198.90 20998.78 33798.53 20799.78 3299.54 8598.07 15399.00 24499.76 13599.01 1899.37 28499.13 8097.23 29198.81 259
新几何199.75 5899.75 7399.59 7099.54 8596.76 28299.29 18299.64 19298.43 8399.94 6996.92 29999.66 13299.72 103
旧先验199.74 8099.59 7099.54 8599.69 16898.47 8099.68 13099.73 97
APD-MVS_3200maxsize99.48 2699.35 3499.85 2899.76 6599.83 1699.63 8399.54 8598.36 10999.79 4399.82 7598.86 3899.95 5998.62 14699.81 9799.78 80
XVG-OURS-SEG-HR98.69 15898.62 15398.89 21299.71 9697.74 25699.12 29799.54 8598.44 10299.42 14899.71 15494.20 24999.92 9598.54 16598.90 19499.00 246
HPM-MVScopyleft99.42 4299.28 5699.83 4099.90 499.72 4299.81 2099.54 8597.59 20499.68 7899.63 19898.91 3499.94 6998.58 15599.91 3599.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ab-mvs98.86 13498.63 14899.54 10099.64 12899.19 12599.44 19699.54 8597.77 18699.30 17999.81 9094.20 24999.93 8499.17 7898.82 20099.49 179
F-COLMAP99.19 8099.04 8999.64 7899.78 5699.27 11799.42 20799.54 8597.29 23999.41 15299.59 21298.42 8599.93 8498.19 19299.69 12799.73 97
ACMH+97.24 1097.92 23497.78 22798.32 28799.46 19196.68 31399.56 12299.54 8598.41 10397.79 34699.87 4390.18 34099.66 24098.05 20797.18 29498.62 317
MAR-MVS98.86 13498.63 14899.54 10099.37 22199.66 5399.45 19099.54 8596.61 29599.01 24099.40 27397.09 13499.86 14497.68 24399.53 14599.10 230
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
UniMVSNet_ETH3D97.32 30296.81 31098.87 21899.40 21197.46 26799.51 15599.53 9695.86 34198.54 30799.77 13182.44 39099.66 24098.68 14097.52 27199.50 178
EIA-MVS99.18 8299.09 8399.45 12899.49 18299.18 12799.67 6599.53 9697.66 20099.40 15799.44 26298.10 9999.81 18298.94 9799.62 13899.35 211
jajsoiax98.43 17298.28 17898.88 21498.60 36098.43 22199.82 1699.53 9698.19 12998.63 29899.80 10493.22 27599.44 27399.22 7397.50 27498.77 264
mvs_tets98.40 17898.23 18098.91 20798.67 35398.51 21399.66 7099.53 9698.19 12998.65 29699.81 9092.75 28499.44 27399.31 6297.48 27898.77 264
UniMVSNet_NR-MVSNet98.22 18997.97 20798.96 19698.92 32098.98 15599.48 18099.53 9697.76 18798.71 28199.46 26096.43 16199.22 31398.57 15892.87 37298.69 284
iter_conf05_1199.40 5099.32 4099.63 8399.53 16399.47 9399.75 4199.52 10198.11 14499.87 2599.85 5297.72 11299.89 12799.56 2899.97 799.53 167
SR-MVS-dyc-post99.45 3399.31 4899.85 2899.76 6599.82 2299.63 8399.52 10198.38 10599.76 5899.82 7598.53 7699.95 5998.61 14999.81 9799.77 82
RE-MVS-def99.34 3699.76 6599.82 2299.63 8399.52 10198.38 10599.76 5899.82 7598.75 5598.61 14999.81 9799.77 82
dcpmvs_299.23 7899.58 798.16 29999.83 3994.68 36099.76 3799.52 10199.07 3599.98 699.88 3598.56 7499.93 8499.67 2199.98 499.87 31
ETV-MVS99.26 7299.21 6999.40 13599.46 19199.30 11399.56 12299.52 10198.52 9499.44 14499.27 30998.41 8699.86 14499.10 8399.59 14099.04 242
MP-MVS-pluss99.37 5599.20 7099.88 599.90 499.87 1299.30 24899.52 10197.18 24899.60 11099.79 11798.79 4799.95 5998.83 12199.91 3599.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SD-MVS99.41 4799.52 1199.05 18599.74 8099.68 4899.46 18999.52 10199.11 2699.88 2099.91 1999.43 197.70 38898.72 13399.93 2699.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PS-CasMVS97.93 23197.59 25098.95 19898.99 31199.06 14799.68 6299.52 10197.13 25298.31 31999.68 17492.44 30299.05 33898.51 16694.08 35798.75 268
XVG-ACMP-BASELINE97.83 24897.71 23898.20 29699.11 28696.33 32599.41 20999.52 10198.06 15799.05 23699.50 24589.64 34599.73 21397.73 23697.38 28798.53 335
CNVR-MVS99.42 4299.30 5099.78 5299.62 13799.71 4499.26 27299.52 10198.82 6599.39 16099.71 15498.96 2499.85 15098.59 15499.80 10199.77 82
CP-MVS99.45 3399.32 4099.85 2899.83 3999.75 3999.69 5699.52 10198.07 15399.53 12599.63 19898.93 3399.97 2198.74 13099.91 3599.83 49
RPMNet96.72 31895.90 33099.19 17099.18 26898.49 21599.22 28199.52 10188.72 39599.56 11897.38 38994.08 25599.95 5986.87 39798.58 21199.14 227
FMVSNet596.43 32496.19 32397.15 34399.11 28695.89 33599.32 24399.52 10194.47 36598.34 31899.07 33087.54 36797.07 39392.61 37595.72 32598.47 341
OMC-MVS99.08 10899.04 8999.20 16999.67 11198.22 23099.28 25899.52 10198.07 15399.66 8799.81 9097.79 10999.78 19697.79 22799.81 9799.60 146
PLCcopyleft97.94 499.02 11698.85 12599.53 10899.66 12099.01 15399.24 27699.52 10196.85 27899.27 18899.48 25398.25 9399.91 10597.76 23299.62 13899.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_fmvsmconf0.01_n99.22 7999.03 9199.79 4998.42 36899.48 9199.55 13499.51 11699.39 1099.78 4899.93 994.80 21799.95 5999.93 1199.95 1999.94 11
DVP-MVS++99.59 899.50 1399.88 599.51 17199.88 899.87 899.51 11698.99 4599.88 2099.81 9099.27 599.96 3098.85 11599.80 10199.81 61
GeoE98.85 14198.62 15399.53 10899.61 14199.08 14499.80 2599.51 11697.10 25899.31 17699.78 12395.23 20499.77 19898.21 19099.03 18499.75 88
9.1499.10 8099.72 9199.40 21799.51 11697.53 21499.64 9799.78 12398.84 4199.91 10597.63 24499.82 94
test_0728_SECOND99.91 299.84 3299.89 499.57 11699.51 11699.96 3098.93 9999.86 6699.88 26
DPE-MVScopyleft99.46 3199.32 4099.91 299.78 5699.88 899.36 23299.51 11698.73 7699.88 2099.84 6398.72 6199.96 3098.16 19699.87 5899.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
xiu_mvs_v1_base_debu99.29 6699.27 6099.34 14199.63 13198.97 15899.12 29799.51 11698.86 6099.84 3099.47 25698.18 9699.99 499.50 3799.31 16199.08 235
xiu_mvs_v1_base99.29 6699.27 6099.34 14199.63 13198.97 15899.12 29799.51 11698.86 6099.84 3099.47 25698.18 9699.99 499.50 3799.31 16199.08 235
xiu_mvs_v1_base_debi99.29 6699.27 6099.34 14199.63 13198.97 15899.12 29799.51 11698.86 6099.84 3099.47 25698.18 9699.99 499.50 3799.31 16199.08 235
cdsmvs_eth3d_5k24.64 38032.85 3830.00 3960.00 4190.00 4210.00 40799.51 1160.00 4140.00 41599.56 22396.58 1530.00 4150.00 4140.00 4130.00 411
HPM-MVS++copyleft99.39 5399.23 6799.87 1199.75 7399.84 1599.43 20099.51 11698.68 8199.27 18899.53 23698.64 6999.96 3098.44 17499.80 10199.79 74
无先验98.99 32999.51 11696.89 27699.93 8497.53 25699.72 103
testdata99.54 10099.75 7398.95 16599.51 11697.07 26099.43 14599.70 15898.87 3799.94 6997.76 23299.64 13599.72 103
PEN-MVS97.76 25897.44 26998.72 23998.77 34298.54 20699.78 3299.51 11697.06 26298.29 32299.64 19292.63 29398.89 36198.09 19993.16 36898.72 274
UniMVSNet (Re)98.29 18698.00 20499.13 17899.00 30899.36 10599.49 17699.51 11697.95 16598.97 24899.13 32596.30 16499.38 28198.36 18193.34 36598.66 304
mvsmamba98.92 12798.87 12099.08 18099.07 29699.16 13099.88 399.51 11698.15 13499.40 15799.89 2997.12 13299.33 29499.38 5097.40 28598.73 273
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10199.51 11698.62 8499.79 4399.83 6799.28 499.97 2198.48 16899.90 4399.84 40
Skip Steuart: Steuart Systems R&D Blog.
UnsupCasMVSNet_eth96.44 32396.12 32497.40 33998.65 35495.65 33899.36 23299.51 11697.13 25296.04 37498.99 34088.40 35898.17 37796.71 30690.27 38598.40 350
3Dnovator+97.12 1399.18 8298.97 10599.82 4199.17 27699.68 4899.81 2099.51 11699.20 1898.72 28099.89 2995.68 18799.97 2198.86 11399.86 6699.81 61
TAPA-MVS97.07 1597.74 26497.34 28498.94 19999.70 10197.53 26599.25 27499.51 11691.90 38399.30 17999.63 19898.78 4899.64 24888.09 39299.87 5899.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test072699.85 2699.89 499.62 8899.50 13699.10 2799.86 2899.82 7598.94 29
MSP-MVS99.42 4299.27 6099.88 599.89 899.80 2799.67 6599.50 13698.70 7899.77 5299.49 24898.21 9499.95 5998.46 17299.77 11199.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
Effi-MVS+98.81 14598.59 15999.48 12299.46 19199.12 13998.08 39499.50 13697.50 21899.38 16299.41 27096.37 16299.81 18299.11 8298.54 21699.51 175
anonymousdsp98.44 17198.28 17898.94 19998.50 36598.96 16299.77 3499.50 13697.07 26098.87 26399.77 13194.76 22399.28 30298.66 14297.60 26498.57 332
mamv499.33 6099.23 6799.62 8499.39 21499.50 8799.50 16299.50 13698.13 13999.76 5899.81 9097.69 11499.88 13399.35 5399.95 1999.49 179
casdiffmvspermissive99.13 9298.98 10499.56 9799.65 12699.16 13099.56 12299.50 13698.33 11399.41 15299.86 4795.92 17799.83 17099.45 4699.16 16999.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVScopyleft99.27 7099.08 8499.84 3999.75 7399.79 3099.50 16299.50 13697.16 25099.77 5299.82 7598.78 4899.94 6997.56 25399.86 6699.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MIMVSNet195.51 33795.04 34296.92 35397.38 38395.60 33999.52 14799.50 13693.65 37196.97 36599.17 32085.28 37896.56 39788.36 39195.55 32998.60 329
DP-MVS99.16 8698.95 10999.78 5299.77 6299.53 8299.41 20999.50 13697.03 26699.04 23799.88 3597.39 12199.92 9598.66 14299.90 4399.87 31
MVSMamba_pp99.36 5699.28 5699.62 8499.38 21799.50 8799.50 16299.49 14598.55 9199.77 5299.82 7597.62 11799.88 13399.39 4999.96 1499.47 187
test_vis1_n97.92 23497.44 26999.34 14199.53 16398.08 23799.74 4599.49 14599.15 20100.00 199.94 679.51 39699.98 1399.88 1499.76 11499.97 4
test_fmvs1_n98.41 17598.14 18699.21 16899.82 4297.71 26199.74 4599.49 14599.32 1499.99 299.95 385.32 37799.97 2199.82 1699.84 8199.96 7
test_fmvs198.88 13098.79 13399.16 17399.69 10697.61 26499.55 13499.49 14599.32 1499.98 699.91 1991.41 32399.96 3099.82 1699.92 2899.90 17
test_one_060199.81 4699.88 899.49 14598.97 5199.65 9399.81 9099.09 14
Fast-Effi-MVS+-dtu98.77 15198.83 12998.60 24899.41 20696.99 29499.52 14799.49 14598.11 14499.24 19499.34 29296.96 14299.79 19197.95 21399.45 14999.02 245
IterMVS-SCA-FT97.82 25197.75 23498.06 30599.57 15296.36 32499.02 32099.49 14597.18 24898.71 28199.72 15392.72 28799.14 32497.44 26595.86 32198.67 296
test22299.75 7399.49 8998.91 34599.49 14596.42 31199.34 17399.65 18698.28 9299.69 12799.72 103
131498.68 15998.54 16399.11 17998.89 32298.65 19799.27 26399.49 14596.89 27697.99 33799.56 22397.72 11299.83 17097.74 23599.27 16498.84 258
diffmvspermissive99.14 9099.02 9599.51 11699.61 14198.96 16299.28 25899.49 14598.46 9899.72 7199.71 15496.50 15699.88 13399.31 6299.11 17599.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TranMVSNet+NR-MVSNet97.93 23197.66 24298.76 23698.78 33798.62 20099.65 7699.49 14597.76 18798.49 31099.60 21094.23 24898.97 35598.00 21092.90 37098.70 280
CPTT-MVS99.11 10298.90 11499.74 6199.80 5299.46 9599.59 10199.49 14597.03 26699.63 10099.69 16897.27 12999.96 3097.82 22599.84 8199.81 61
ACMP97.20 1198.06 20897.94 21298.45 27199.37 22197.01 29299.44 19699.49 14597.54 21398.45 31299.79 11791.95 30999.72 21797.91 21597.49 27798.62 317
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MGCFI-Net99.01 12098.85 12599.50 12199.42 20199.26 11999.82 1699.48 15898.60 8699.28 18398.81 35597.04 13899.76 20299.29 6597.87 25199.47 187
sasdasda99.02 11698.86 12399.51 11699.42 20199.32 10799.80 2599.48 15898.63 8299.31 17698.81 35597.09 13499.75 20599.27 6897.90 24899.47 187
mvsany_test199.50 2099.46 2099.62 8499.61 14199.09 14198.94 34199.48 15899.10 2799.96 1499.91 1998.85 3999.96 3099.72 1899.58 14199.82 54
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9599.48 15899.08 3399.91 1699.81 9099.20 799.96 3098.91 10299.85 7399.79 74
test_241102_TWO99.48 15899.08 3399.88 2099.81 9098.94 2999.96 3098.91 10299.84 8199.88 26
test_241102_ONE99.84 3299.90 299.48 15899.07 3599.91 1699.74 14399.20 799.76 202
ACMMP_NAP99.47 2999.34 3699.88 599.87 1599.86 1399.47 18699.48 15898.05 15899.76 5899.86 4798.82 4399.93 8498.82 12599.91 3599.84 40
canonicalmvs99.02 11698.86 12399.51 11699.42 20199.32 10799.80 2599.48 15898.63 8299.31 17698.81 35597.09 13499.75 20599.27 6897.90 24899.47 187
testgi97.65 27997.50 25898.13 30399.36 22496.45 32199.42 20799.48 15897.76 18797.87 34299.45 26191.09 32898.81 36394.53 35198.52 21799.13 229
DTE-MVSNet97.51 28997.19 29798.46 27098.63 35698.13 23599.84 1299.48 15896.68 28797.97 33999.67 18092.92 28098.56 37096.88 30192.60 37598.70 280
mPP-MVS99.44 3799.30 5099.86 2199.88 1199.79 3099.69 5699.48 15898.12 14299.50 13099.75 13898.78 4899.97 2198.57 15899.89 5299.83 49
baseline99.15 8899.02 9599.53 10899.66 12099.14 13699.72 5099.48 15898.35 11099.42 14899.84 6396.07 16999.79 19199.51 3699.14 17399.67 122
NCCC99.34 5999.19 7199.79 4999.61 14199.65 5799.30 24899.48 15898.86 6099.21 20299.63 19898.72 6199.90 11698.25 18899.63 13799.80 70
GBi-Net97.68 27497.48 25998.29 29099.51 17197.26 27499.43 20099.48 15896.49 30399.07 22999.32 29990.26 33698.98 34897.10 28596.65 30098.62 317
UnsupCasMVSNet_bld93.53 35492.51 36096.58 35997.38 38393.82 37098.24 38999.48 15891.10 38793.10 38996.66 39474.89 39898.37 37394.03 35987.71 39197.56 385
test197.68 27497.48 25998.29 29099.51 17197.26 27499.43 20099.48 15896.49 30399.07 22999.32 29990.26 33698.98 34897.10 28596.65 30098.62 317
FMVSNet196.84 31696.36 32098.29 29099.32 23697.26 27499.43 20099.48 15895.11 35098.55 30699.32 29983.95 38498.98 34895.81 32796.26 31098.62 317
1112_ss98.98 12298.77 13499.59 9099.68 11099.02 15199.25 27499.48 15897.23 24599.13 21799.58 21696.93 14399.90 11698.87 10898.78 20399.84 40
IterMVS97.83 24897.77 22998.02 30899.58 15096.27 32799.02 32099.48 15897.22 24698.71 28199.70 15892.75 28499.13 32797.46 26396.00 31598.67 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CMPMVSbinary69.68 2394.13 35194.90 34391.84 37697.24 38780.01 40698.52 37799.48 15889.01 39391.99 39499.67 18085.67 37399.13 32795.44 33797.03 29796.39 394
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
bld_raw_dy_0_6499.05 11199.15 7498.74 23799.46 19196.95 30099.02 32099.47 17898.15 13499.75 6399.56 22397.63 11699.88 13399.35 5399.97 799.40 203
SMA-MVScopyleft99.44 3799.30 5099.85 2899.73 8799.83 1699.56 12299.47 17897.45 22399.78 4899.82 7599.18 1099.91 10598.79 12699.89 5299.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MTGPAbinary99.47 178
pmmvs696.53 32196.09 32697.82 32498.69 35195.47 34599.37 22899.47 17893.46 37497.41 35199.78 12387.06 36999.33 29496.92 29992.70 37498.65 306
Fast-Effi-MVS+98.70 15798.43 16799.51 11699.51 17199.28 11599.52 14799.47 17896.11 33399.01 24099.34 29296.20 16799.84 15797.88 21798.82 20099.39 205
MTAPA99.52 1799.39 2799.89 499.90 499.86 1399.66 7099.47 17898.79 7099.68 7899.81 9098.43 8399.97 2198.88 10599.90 4399.83 49
原ACMM199.65 7399.73 8799.33 10699.47 17897.46 22099.12 21999.66 18598.67 6699.91 10597.70 24199.69 12799.71 112
HQP_MVS98.27 18898.22 18198.44 27499.29 24296.97 29699.39 22199.47 17898.97 5199.11 22199.61 20792.71 28999.69 23497.78 22897.63 26198.67 296
plane_prior599.47 17899.69 23497.78 22897.63 26198.67 296
Test_1112_low_res98.89 12998.66 14699.57 9599.69 10698.95 16599.03 31799.47 17896.98 26899.15 21599.23 31496.77 14799.89 12798.83 12198.78 20399.86 33
ppachtmachnet_test97.49 29597.45 26497.61 33398.62 35795.24 35098.80 35599.46 18896.11 33398.22 32699.62 20396.45 15998.97 35593.77 36095.97 31998.61 326
nrg03098.64 16398.42 16899.28 16099.05 30399.69 4799.81 2099.46 18898.04 15999.01 24099.82 7596.69 15099.38 28199.34 5994.59 34898.78 261
v7n97.87 24097.52 25598.92 20398.76 34398.58 20399.84 1299.46 18896.20 32498.91 25599.70 15894.89 21399.44 27396.03 32293.89 36098.75 268
PS-MVSNAJ99.32 6299.32 4099.30 15399.57 15298.94 16898.97 33599.46 18898.92 5799.71 7299.24 31399.01 1899.98 1399.35 5399.66 13298.97 250
MP-MVScopyleft99.33 6099.15 7499.87 1199.88 1199.82 2299.66 7099.46 18898.09 14899.48 13499.74 14398.29 9199.96 3097.93 21499.87 5899.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVSNet98.09 20497.78 22799.01 18998.97 31699.24 12299.67 6599.46 18897.25 24298.48 31199.64 19293.79 26599.06 33798.63 14594.10 35698.74 271
MVSFormer99.17 8499.12 7899.29 15699.51 17198.94 16899.88 399.46 18897.55 21099.80 4199.65 18697.39 12199.28 30299.03 8899.85 7399.65 129
test_djsdf98.67 16098.57 16098.98 19398.70 35098.91 17299.88 399.46 18897.55 21099.22 19999.88 3595.73 18599.28 30299.03 8897.62 26398.75 268
CDS-MVSNet99.09 10799.03 9199.25 16399.42 20198.73 19199.45 19099.46 18898.11 14499.46 13899.77 13198.01 10399.37 28498.70 13598.92 19299.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS99.12 9899.08 8499.24 16599.46 19198.55 20599.51 15599.46 18898.09 14899.45 13999.82 7598.34 8999.51 26398.70 13598.93 19099.67 122
DeepC-MVS_fast98.69 199.49 2299.39 2799.77 5599.63 13199.59 7099.36 23299.46 18899.07 3599.79 4399.82 7598.85 3999.92 9598.68 14099.87 5899.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
h-mvs3397.70 27197.28 29298.97 19599.70 10197.27 27299.36 23299.45 19998.94 5499.66 8799.64 19294.93 20999.99 499.48 4284.36 39599.65 129
xiu_mvs_v2_base99.26 7299.25 6499.29 15699.53 16398.91 17299.02 32099.45 19998.80 6999.71 7299.26 31198.94 2999.98 1399.34 5999.23 16598.98 249
EI-MVSNet-UG-set99.58 999.57 899.64 7899.78 5699.14 13699.60 9599.45 19999.01 4099.90 1899.83 6798.98 2399.93 8499.59 2599.95 1999.86 33
EI-MVSNet-Vis-set99.58 999.56 1099.64 7899.78 5699.15 13599.61 9499.45 19999.01 4099.89 1999.82 7599.01 1899.92 9599.56 2899.95 1999.85 36
pm-mvs197.68 27497.28 29298.88 21499.06 30098.62 20099.50 16299.45 19996.32 31597.87 34299.79 11792.47 29899.35 29197.54 25593.54 36498.67 296
DU-MVS98.08 20697.79 22498.96 19698.87 32698.98 15599.41 20999.45 19997.87 17198.71 28199.50 24594.82 21599.22 31398.57 15892.87 37298.68 289
ACMM97.58 598.37 18098.34 17398.48 26499.41 20697.10 28199.56 12299.45 19998.53 9399.04 23799.85 5293.00 27899.71 22398.74 13097.45 27998.64 308
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Gipumacopyleft90.99 36290.15 36793.51 37098.73 34590.12 39093.98 40399.45 19979.32 40192.28 39294.91 39869.61 39997.98 38287.42 39495.67 32692.45 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
KD-MVS_self_test95.00 34394.34 34896.96 35097.07 39195.39 34899.56 12299.44 20795.11 35097.13 36197.32 39191.86 31197.27 39290.35 38481.23 40098.23 361
RPSCF98.22 18998.62 15396.99 34899.82 4291.58 38799.72 5099.44 20796.61 29599.66 8799.89 2995.92 17799.82 17797.46 26399.10 17899.57 157
Vis-MVSNet (Re-imp)98.87 13198.72 13799.31 14899.71 9698.88 17499.80 2599.44 20797.91 16999.36 16799.78 12395.49 19399.43 27797.91 21599.11 17599.62 142
CNLPA99.14 9098.99 10199.59 9099.58 15099.41 10199.16 28899.44 20798.45 9999.19 20899.49 24898.08 10199.89 12797.73 23699.75 11699.48 181
DeepPCF-MVS98.18 398.81 14599.37 3097.12 34699.60 14691.75 38698.61 37199.44 20799.35 1299.83 3599.85 5298.70 6399.81 18299.02 9099.91 3599.81 61
CLD-MVS98.16 19798.10 19198.33 28499.29 24296.82 30798.75 36099.44 20797.83 17899.13 21799.55 22792.92 28099.67 23798.32 18597.69 25898.48 339
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2024052998.09 20497.68 24099.34 14199.66 12098.44 22099.40 21799.43 21393.67 37099.22 19999.89 2990.23 33999.93 8499.26 7098.33 22499.66 125
IterMVS-LS98.46 17098.42 16898.58 25299.59 14898.00 24199.37 22899.43 21396.94 27499.07 22999.59 21297.87 10699.03 34198.32 18595.62 32798.71 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
NR-MVSNet97.97 22897.61 24899.02 18898.87 32699.26 11999.47 18699.42 21597.63 20297.08 36299.50 24595.07 20799.13 32797.86 22093.59 36398.68 289
FMVSNet297.72 26797.36 27998.80 23299.51 17198.84 18099.45 19099.42 21596.49 30398.86 26799.29 30490.26 33698.98 34896.44 31596.56 30398.58 331
TEST999.67 11199.65 5799.05 31299.41 21796.22 32398.95 25099.49 24898.77 5199.91 105
train_agg99.02 11698.77 13499.77 5599.67 11199.65 5799.05 31299.41 21796.28 31798.95 25099.49 24898.76 5299.91 10597.63 24499.72 12299.75 88
test_899.67 11199.61 6799.03 31799.41 21796.28 31798.93 25399.48 25398.76 5299.91 105
v897.95 23097.63 24798.93 20198.95 31898.81 18699.80 2599.41 21796.03 33899.10 22499.42 26694.92 21199.30 30096.94 29694.08 35798.66 304
v1097.85 24397.52 25598.86 22198.99 31198.67 19599.75 4199.41 21795.70 34298.98 24699.41 27094.75 22499.23 31096.01 32494.63 34798.67 296
CDPH-MVS99.13 9298.91 11399.80 4699.75 7399.71 4499.15 29199.41 21796.60 29799.60 11099.55 22798.83 4299.90 11697.48 26099.83 9099.78 80
save fliter99.76 6599.59 7099.14 29399.40 22399.00 43
agg_prior99.67 11199.62 6599.40 22398.87 26399.91 105
MCST-MVS99.43 4099.30 5099.82 4199.79 5499.74 4199.29 25399.40 22398.79 7099.52 12799.62 20398.91 3499.90 11698.64 14499.75 11699.82 54
Syy-MVS97.09 31297.14 29896.95 35199.00 30892.73 38299.29 25399.39 22697.06 26297.41 35198.15 37893.92 26198.68 36891.71 37898.34 22299.45 195
myMVS_eth3d96.89 31496.37 31998.43 27699.00 30897.16 27899.29 25399.39 22697.06 26297.41 35198.15 37883.46 38698.68 36895.27 34298.34 22299.45 195
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8399.39 22698.91 5899.78 4899.85 5299.36 299.94 6998.84 11899.88 5599.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MVS97.28 30396.55 31599.48 12298.78 33798.95 16599.27 26399.39 22683.53 39998.08 33299.54 23296.97 14199.87 14194.23 35699.16 16999.63 140
VNet99.11 10298.90 11499.73 6499.52 16899.56 7599.41 20999.39 22699.01 4099.74 6499.78 12395.56 19099.92 9599.52 3598.18 23799.72 103
HQP3-MVS99.39 22697.58 266
cascas97.69 27297.43 27398.48 26498.60 36097.30 27098.18 39299.39 22692.96 37898.41 31398.78 35993.77 26699.27 30598.16 19698.61 20898.86 256
HQP-MVS98.02 21897.90 21598.37 28299.19 26596.83 30598.98 33299.39 22698.24 12198.66 29099.40 27392.47 29899.64 24897.19 28197.58 26698.64 308
CL-MVSNet_self_test94.49 34893.97 35296.08 36296.16 39393.67 37598.33 38699.38 23495.13 34897.33 35598.15 37892.69 29196.57 39688.67 38979.87 40197.99 373
OPM-MVS98.19 19398.10 19198.45 27198.88 32397.07 28599.28 25899.38 23498.57 8899.22 19999.81 9092.12 30599.66 24098.08 20397.54 27098.61 326
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EI-MVSNet98.67 16098.67 14398.68 24499.35 22597.97 24399.50 16299.38 23496.93 27599.20 20599.83 6797.87 10699.36 28898.38 17797.56 26898.71 276
test20.0396.12 33095.96 32996.63 35797.44 38295.45 34699.51 15599.38 23496.55 30096.16 37299.25 31293.76 26796.17 39887.35 39594.22 35498.27 357
mvs_anonymous99.03 11598.99 10199.16 17399.38 21798.52 21199.51 15599.38 23497.79 18399.38 16299.81 9097.30 12799.45 26899.35 5398.99 18799.51 175
MVSTER98.49 16798.32 17599.00 19199.35 22599.02 15199.54 13899.38 23497.41 22999.20 20599.73 14993.86 26399.36 28898.87 10897.56 26898.62 317
FMVSNet398.03 21697.76 23398.84 22599.39 21498.98 15599.40 21799.38 23496.67 28899.07 22999.28 30692.93 27998.98 34897.10 28596.65 30098.56 333
PAPM_NR99.04 11398.84 12799.66 6999.74 8099.44 9799.39 22199.38 23497.70 19599.28 18399.28 30698.34 8999.85 15096.96 29499.45 14999.69 115
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11699.37 24299.10 2799.81 3899.80 10498.94 2999.96 3098.93 9999.86 6699.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
testing397.28 30396.76 31298.82 22799.37 22198.07 23899.45 19099.36 24397.56 20997.89 34198.95 34583.70 38598.82 36296.03 32298.56 21499.58 154
miper_lstm_enhance98.00 22397.91 21498.28 29399.34 22997.43 26898.88 34799.36 24396.48 30698.80 27299.55 22795.98 17298.91 35997.27 27495.50 33198.51 337
v124097.69 27297.32 28798.79 23398.85 33098.43 22199.48 18099.36 24396.11 33399.27 18899.36 28593.76 26799.24 30994.46 35295.23 33598.70 280
v2v48298.06 20897.77 22998.92 20398.90 32198.82 18499.57 11699.36 24396.65 29099.19 20899.35 28894.20 24999.25 30797.72 23894.97 34198.69 284
HY-MVS97.30 798.85 14198.64 14799.47 12599.42 20199.08 14499.62 8899.36 24397.39 23199.28 18399.68 17496.44 16099.92 9598.37 17998.22 23299.40 203
PAPR98.63 16498.34 17399.51 11699.40 21199.03 15098.80 35599.36 24396.33 31499.00 24499.12 32898.46 8199.84 15795.23 34399.37 16099.66 125
DIV-MVS_self_test98.01 22197.85 22198.48 26499.24 25497.95 24798.71 36499.35 24996.50 30298.60 30399.54 23295.72 18699.03 34197.21 27795.77 32298.46 344
v114497.98 22597.69 23998.85 22498.87 32698.66 19699.54 13899.35 24996.27 31999.23 19899.35 28894.67 23099.23 31096.73 30595.16 33798.68 289
WR-MVS98.06 20897.73 23699.06 18398.86 32999.25 12199.19 28499.35 24997.30 23898.66 29099.43 26493.94 25999.21 31898.58 15594.28 35398.71 276
test1199.35 249
cl____98.01 22197.84 22298.55 25899.25 25397.97 24398.71 36499.34 25396.47 30898.59 30499.54 23295.65 18899.21 31897.21 27795.77 32298.46 344
v14419297.92 23497.60 24998.87 21898.83 33298.65 19799.55 13499.34 25396.20 32499.32 17599.40 27394.36 24499.26 30696.37 31895.03 34098.70 280
v192192097.80 25597.45 26498.84 22598.80 33398.53 20799.52 14799.34 25396.15 33099.24 19499.47 25693.98 25899.29 30195.40 33995.13 33898.69 284
v119297.81 25397.44 26998.91 20798.88 32398.68 19499.51 15599.34 25396.18 32699.20 20599.34 29294.03 25699.36 28895.32 34195.18 33698.69 284
V4298.06 20897.79 22498.86 22198.98 31498.84 18099.69 5699.34 25396.53 30199.30 17999.37 28294.67 23099.32 29797.57 25294.66 34698.42 347
MVS_Test99.10 10698.97 10599.48 12299.49 18299.14 13699.67 6599.34 25397.31 23799.58 11499.76 13597.65 11599.82 17798.87 10899.07 18199.46 192
MG-MVS99.13 9299.02 9599.45 12899.57 15298.63 19999.07 30799.34 25398.99 4599.61 10799.82 7597.98 10499.87 14197.00 29099.80 10199.85 36
MSC_two_6792asdad99.87 1199.51 17199.76 3799.33 26099.96 3098.87 10899.84 8199.89 20
No_MVS99.87 1199.51 17199.76 3799.33 26099.96 3098.87 10899.84 8199.89 20
cl2297.85 24397.64 24698.48 26499.09 29297.87 25198.60 37399.33 26097.11 25798.87 26399.22 31592.38 30399.17 32298.21 19095.99 31698.42 347
c3_l98.12 20298.04 20098.38 28199.30 23897.69 26298.81 35499.33 26096.67 28898.83 26899.34 29297.11 13398.99 34797.58 24895.34 33398.48 339
v14897.79 25697.55 25198.50 26198.74 34497.72 25899.54 13899.33 26096.26 32098.90 25799.51 24294.68 22999.14 32497.83 22493.15 36998.63 315
MDA-MVSNet-bldmvs94.96 34493.98 35197.92 31598.24 37197.27 27299.15 29199.33 26093.80 36980.09 40699.03 33588.31 35997.86 38593.49 36494.36 35298.62 317
TSAR-MVS + GP.99.36 5699.36 3299.36 14099.67 11198.61 20299.07 30799.33 26099.00 4399.82 3699.81 9099.06 1699.84 15799.09 8499.42 15199.65 129
CR-MVSNet98.17 19697.93 21398.87 21899.18 26898.49 21599.22 28199.33 26096.96 27099.56 11899.38 27994.33 24599.00 34694.83 34998.58 21199.14 227
Patchmtry97.75 26297.40 27698.81 23099.10 28998.87 17599.11 30399.33 26094.83 35898.81 27099.38 27994.33 24599.02 34396.10 32095.57 32898.53 335
EPP-MVSNet99.13 9298.99 10199.53 10899.65 12699.06 14799.81 2099.33 26097.43 22699.60 11099.88 3597.14 13199.84 15799.13 8098.94 18999.69 115
APD_test195.87 33396.49 31794.00 36899.53 16384.01 39799.54 13899.32 27095.91 34097.99 33799.85 5285.49 37599.88 13391.96 37798.84 19898.12 364
IU-MVS99.84 3299.88 899.32 27098.30 11599.84 3098.86 11399.85 7399.89 20
miper_enhance_ethall98.16 19798.08 19598.41 27798.96 31797.72 25898.45 38099.32 27096.95 27298.97 24899.17 32097.06 13799.22 31397.86 22095.99 31698.29 356
MS-PatchMatch97.24 30797.32 28796.99 34898.45 36793.51 37798.82 35399.32 27097.41 22998.13 33199.30 30288.99 34999.56 25995.68 33299.80 10197.90 379
miper_ehance_all_eth98.18 19598.10 19198.41 27799.23 25597.72 25898.72 36399.31 27496.60 29798.88 26099.29 30497.29 12899.13 32797.60 24695.99 31698.38 352
eth_miper_zixun_eth98.05 21397.96 20898.33 28499.26 24997.38 26998.56 37699.31 27496.65 29098.88 26099.52 23996.58 15399.12 33197.39 26895.53 33098.47 341
iter_conf0598.76 15298.90 11498.33 28499.07 29696.97 29699.50 16299.31 27498.13 13999.48 13499.80 10497.89 10599.46 26699.25 7197.68 25998.56 333
tpm cat197.39 29997.36 27997.50 33799.17 27693.73 37299.43 20099.31 27491.27 38598.71 28199.08 32994.31 24799.77 19896.41 31798.50 21899.00 246
PMMVS98.80 14898.62 15399.34 14199.27 24798.70 19398.76 35999.31 27497.34 23499.21 20299.07 33097.20 13099.82 17798.56 16198.87 19599.52 169
our_test_397.65 27997.68 24097.55 33598.62 35794.97 35698.84 35199.30 27996.83 28198.19 32899.34 29297.01 14099.02 34395.00 34796.01 31498.64 308
Effi-MVS+-dtu98.78 14998.89 11898.47 26999.33 23096.91 30299.57 11699.30 27998.47 9799.41 15298.99 34096.78 14699.74 20798.73 13299.38 15398.74 271
CANet_DTU98.97 12498.87 12099.25 16399.33 23098.42 22399.08 30699.30 27999.16 1999.43 14599.75 13895.27 20099.97 2198.56 16199.95 1999.36 210
VDDNet97.55 28597.02 30499.16 17399.49 18298.12 23699.38 22699.30 27995.35 34699.68 7899.90 2582.62 38999.93 8499.31 6298.13 24199.42 199
Anonymous2024052196.20 32895.89 33197.13 34597.72 38094.96 35799.79 3199.29 28393.01 37797.20 35999.03 33589.69 34498.36 37491.16 38196.13 31298.07 366
test1299.75 5899.64 12899.61 6799.29 28399.21 20298.38 8799.89 12799.74 11999.74 92
EGC-MVSNET82.80 37077.86 37697.62 33297.91 37496.12 33199.33 24299.28 2858.40 41325.05 41499.27 30984.11 38399.33 29489.20 38798.22 23297.42 387
new-patchmatchnet94.48 34994.08 35095.67 36495.08 40192.41 38399.18 28699.28 28594.55 36493.49 38897.37 39087.86 36597.01 39491.57 37988.36 38997.61 383
WB-MVS93.10 35694.10 34990.12 38295.51 40081.88 40299.73 4899.27 28795.05 35393.09 39098.91 35194.70 22891.89 40676.62 40494.02 35996.58 392
jason99.13 9299.03 9199.45 12899.46 19198.87 17599.12 29799.26 28898.03 16199.79 4399.65 18697.02 13999.85 15099.02 9099.90 4399.65 129
jason: jason.
test_040296.64 31996.24 32297.85 31998.85 33096.43 32299.44 19699.26 28893.52 37296.98 36499.52 23988.52 35799.20 32092.58 37697.50 27497.93 377
test_method91.10 36191.36 36390.31 38195.85 39473.72 41494.89 40299.25 29068.39 40595.82 37599.02 33780.50 39598.95 35793.64 36294.89 34598.25 359
PCF-MVS97.08 1497.66 27897.06 30399.47 12599.61 14199.09 14198.04 39599.25 29091.24 38698.51 30899.70 15894.55 23799.91 10592.76 37499.85 7399.42 199
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MDA-MVSNet_test_wron95.45 33894.60 34598.01 30998.16 37297.21 27799.11 30399.24 29293.49 37380.73 40598.98 34293.02 27798.18 37694.22 35794.45 35098.64 308
SSC-MVS92.73 35893.73 35389.72 38395.02 40281.38 40399.76 3799.23 29394.87 35792.80 39198.93 34794.71 22791.37 40774.49 40693.80 36196.42 393
YYNet195.36 34094.51 34797.92 31597.89 37597.10 28199.10 30599.23 29393.26 37680.77 40499.04 33492.81 28398.02 38094.30 35394.18 35598.64 308
hse-mvs297.50 29097.14 29898.59 24999.49 18297.05 28799.28 25899.22 29598.94 5499.66 8799.42 26694.93 20999.65 24599.48 4283.80 39799.08 235
AUN-MVS96.88 31596.31 32198.59 24999.48 18997.04 29099.27 26399.22 29597.44 22598.51 30899.41 27091.97 30899.66 24097.71 23983.83 39699.07 240
DeepMVS_CXcopyleft93.34 37199.29 24282.27 40099.22 29585.15 39796.33 37099.05 33390.97 33099.73 21393.57 36397.77 25698.01 370
pmmvs498.13 20097.90 21598.81 23098.61 35998.87 17598.99 32999.21 29896.44 30999.06 23499.58 21695.90 17999.11 33297.18 28396.11 31398.46 344
KD-MVS_2432*160094.62 34693.72 35497.31 34097.19 38995.82 33698.34 38499.20 29995.00 35497.57 34898.35 37287.95 36398.10 37892.87 37277.00 40398.01 370
miper_refine_blended94.62 34693.72 35497.31 34097.19 38995.82 33698.34 38499.20 29995.00 35497.57 34898.35 37287.95 36398.10 37892.87 37277.00 40398.01 370
tpmvs97.98 22598.02 20397.84 32199.04 30494.73 35999.31 24699.20 29996.10 33798.76 27799.42 26694.94 20899.81 18296.97 29398.45 22098.97 250
new_pmnet96.38 32596.03 32797.41 33898.13 37395.16 35499.05 31299.20 29993.94 36797.39 35498.79 35891.61 32199.04 33990.43 38395.77 32298.05 368
IS-MVSNet99.05 11198.87 12099.57 9599.73 8799.32 10799.75 4199.20 29998.02 16299.56 11899.86 4796.54 15599.67 23798.09 19999.13 17499.73 97
lupinMVS99.13 9299.01 9999.46 12799.51 17198.94 16899.05 31299.16 30497.86 17299.80 4199.56 22397.39 12199.86 14498.94 9799.85 7399.58 154
GA-MVS97.85 24397.47 26199.00 19199.38 21797.99 24298.57 37499.15 30597.04 26598.90 25799.30 30289.83 34299.38 28196.70 30798.33 22499.62 142
ADS-MVSNet98.20 19298.08 19598.56 25699.33 23096.48 32099.23 27799.15 30596.24 32199.10 22499.67 18094.11 25399.71 22396.81 30299.05 18299.48 181
Patchmatch-test97.93 23197.65 24398.77 23599.18 26897.07 28599.03 31799.14 30796.16 32898.74 27899.57 22094.56 23599.72 21793.36 36599.11 17599.52 169
BH-untuned98.42 17398.36 17198.59 24999.49 18296.70 31099.27 26399.13 30897.24 24498.80 27299.38 27995.75 18499.74 20797.07 28899.16 16999.33 215
tpmrst98.33 18298.48 16697.90 31799.16 27894.78 35899.31 24699.11 30997.27 24099.45 13999.59 21295.33 19899.84 15798.48 16898.61 20899.09 234
DPM-MVS98.95 12598.71 13999.66 6999.63 13199.55 7798.64 37099.10 31097.93 16799.42 14899.55 22798.67 6699.80 18895.80 32899.68 13099.61 144
pmmvs-eth3d95.34 34194.73 34497.15 34395.53 39895.94 33499.35 23799.10 31095.13 34893.55 38797.54 38788.15 36297.91 38394.58 35089.69 38897.61 383
PAPM97.59 28397.09 30299.07 18299.06 30098.26 22898.30 38899.10 31094.88 35698.08 33299.34 29296.27 16599.64 24889.87 38598.92 19299.31 217
tt080597.97 22897.77 22998.57 25399.59 14896.61 31699.45 19099.08 31398.21 12798.88 26099.80 10488.66 35499.70 22998.58 15597.72 25799.39 205
Anonymous2023120696.22 32696.03 32796.79 35697.31 38694.14 36899.63 8399.08 31396.17 32797.04 36399.06 33293.94 25997.76 38786.96 39695.06 33998.47 341
ADS-MVSNet298.02 21898.07 19897.87 31899.33 23095.19 35299.23 27799.08 31396.24 32199.10 22499.67 18094.11 25398.93 35896.81 30299.05 18299.48 181
test_yl98.86 13498.63 14899.54 10099.49 18299.18 12799.50 16299.07 31698.22 12599.61 10799.51 24295.37 19699.84 15798.60 15298.33 22499.59 150
DCV-MVSNet98.86 13498.63 14899.54 10099.49 18299.18 12799.50 16299.07 31698.22 12599.61 10799.51 24295.37 19699.84 15798.60 15298.33 22499.59 150
PatchT97.03 31396.44 31898.79 23398.99 31198.34 22599.16 28899.07 31692.13 38299.52 12797.31 39294.54 23898.98 34888.54 39098.73 20599.03 243
testing9197.44 29797.02 30498.71 24199.18 26896.89 30499.19 28499.04 31997.78 18598.31 31998.29 37585.41 37699.85 15098.01 20997.95 24699.39 205
USDC97.34 30197.20 29697.75 32799.07 29695.20 35198.51 37899.04 31997.99 16398.31 31999.86 4789.02 34899.55 26195.67 33397.36 28898.49 338
CostFormer97.72 26797.73 23697.71 32999.15 28294.02 36999.54 13899.02 32194.67 36199.04 23799.35 28892.35 30499.77 19898.50 16797.94 24799.34 214
FA-MVS(test-final)98.75 15398.53 16499.41 13499.55 16099.05 14999.80 2599.01 32296.59 29999.58 11499.59 21295.39 19599.90 11697.78 22899.49 14799.28 219
OurMVSNet-221017-097.88 23897.77 22998.19 29798.71 34996.53 31899.88 399.00 32397.79 18398.78 27599.94 691.68 31699.35 29197.21 27796.99 29898.69 284
LCM-MVSNet86.80 36885.22 37291.53 37887.81 41080.96 40498.23 39198.99 32471.05 40390.13 39896.51 39548.45 41196.88 39590.51 38285.30 39496.76 390
MIMVSNet97.73 26597.45 26498.57 25399.45 19797.50 26699.02 32098.98 32596.11 33399.41 15299.14 32490.28 33598.74 36695.74 32998.93 19099.47 187
SCA98.19 19398.16 18398.27 29499.30 23895.55 34199.07 30798.97 32697.57 20799.43 14599.57 22092.72 28799.74 20797.58 24899.20 16799.52 169
JIA-IIPM97.50 29097.02 30498.93 20198.73 34597.80 25599.30 24898.97 32691.73 38498.91 25594.86 39995.10 20699.71 22397.58 24897.98 24599.28 219
alignmvs98.81 14598.56 16299.58 9399.43 19999.42 9999.51 15598.96 32898.61 8599.35 17098.92 35094.78 21999.77 19899.35 5398.11 24299.54 162
tpm297.44 29797.34 28497.74 32899.15 28294.36 36699.45 19098.94 32993.45 37598.90 25799.44 26291.35 32599.59 25797.31 27298.07 24399.29 218
testing9997.36 30096.94 30798.63 24699.18 26896.70 31099.30 24898.93 33097.71 19298.23 32498.26 37684.92 37999.84 15798.04 20897.85 25399.35 211
baseline198.31 18397.95 21099.38 13999.50 18098.74 19099.59 10198.93 33098.41 10399.14 21699.60 21094.59 23399.79 19198.48 16893.29 36699.61 144
EG-PatchMatch MVS95.97 33295.69 33496.81 35597.78 37792.79 38199.16 28898.93 33096.16 32894.08 38599.22 31582.72 38899.47 26595.67 33397.50 27498.17 362
dmvs_re98.08 20698.16 18397.85 31999.55 16094.67 36199.70 5398.92 33398.15 13499.06 23499.35 28893.67 26999.25 30797.77 23197.25 29099.64 136
PatchmatchNetpermissive98.31 18398.36 17198.19 29799.16 27895.32 34999.27 26398.92 33397.37 23299.37 16499.58 21694.90 21299.70 22997.43 26699.21 16699.54 162
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ITE_SJBPF98.08 30499.29 24296.37 32398.92 33398.34 11198.83 26899.75 13891.09 32899.62 25495.82 32697.40 28598.25 359
FPMVS84.93 36985.65 37082.75 39086.77 41163.39 41698.35 38398.92 33374.11 40283.39 40198.98 34250.85 40992.40 40584.54 40194.97 34192.46 400
TransMVSNet (Re)97.15 30996.58 31498.86 22199.12 28498.85 17999.49 17698.91 33795.48 34597.16 36099.80 10493.38 27199.11 33294.16 35891.73 37798.62 317
EPNet98.86 13498.71 13999.30 15397.20 38898.18 23199.62 8898.91 33799.28 1698.63 29899.81 9095.96 17399.99 499.24 7299.72 12299.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ETVMVS97.50 29096.90 30899.29 15699.23 25598.78 18999.32 24398.90 33997.52 21698.56 30598.09 38384.72 38199.69 23497.86 22097.88 25099.39 205
pmmvs597.52 28797.30 28998.16 29998.57 36296.73 30999.27 26398.90 33996.14 33198.37 31699.53 23691.54 32299.14 32497.51 25795.87 32098.63 315
BH-w/o98.00 22397.89 21998.32 28799.35 22596.20 33099.01 32698.90 33996.42 31198.38 31599.00 33995.26 20299.72 21796.06 32198.61 20899.03 243
MTMP99.54 13898.88 342
dp97.75 26297.80 22397.59 33499.10 28993.71 37399.32 24398.88 34296.48 30699.08 22899.55 22792.67 29299.82 17796.52 31398.58 21199.24 223
MM99.40 5099.28 5699.74 6199.67 11199.31 11199.52 14798.87 34499.55 199.74 6499.80 10496.47 15799.98 1399.97 199.97 799.94 11
test_fmvs297.25 30597.30 28997.09 34799.43 19993.31 37899.73 4898.87 34498.83 6499.28 18399.80 10484.45 38299.66 24097.88 21797.45 27998.30 355
MVP-Stereo97.81 25397.75 23497.99 31297.53 38196.60 31798.96 33698.85 34697.22 24697.23 35799.36 28595.28 19999.46 26695.51 33599.78 10897.92 378
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
VDD-MVS97.73 26597.35 28198.88 21499.47 19097.12 28099.34 24098.85 34698.19 12999.67 8299.85 5282.98 38799.92 9599.49 4198.32 22899.60 146
Baseline_NR-MVSNet97.76 25897.45 26498.68 24499.09 29298.29 22699.41 20998.85 34695.65 34398.63 29899.67 18094.82 21599.10 33498.07 20692.89 37198.64 308
testing1197.50 29097.10 30198.71 24199.20 26296.91 30299.29 25398.82 34997.89 17098.21 32798.40 37085.63 37499.83 17098.45 17398.04 24499.37 209
LF4IMVS97.52 28797.46 26397.70 33098.98 31495.55 34199.29 25398.82 34998.07 15398.66 29099.64 19289.97 34199.61 25597.01 28996.68 29997.94 376
testf190.42 36490.68 36589.65 38497.78 37773.97 41299.13 29498.81 35189.62 39091.80 39598.93 34762.23 40498.80 36486.61 39891.17 37996.19 395
APD_test290.42 36490.68 36589.65 38497.78 37773.97 41299.13 29498.81 35189.62 39091.80 39598.93 34762.23 40498.80 36486.61 39891.17 37996.19 395
FE-MVS98.48 16898.17 18299.40 13599.54 16298.96 16299.68 6298.81 35195.54 34499.62 10499.70 15893.82 26499.93 8497.35 27199.46 14899.32 216
BH-RMVSNet98.41 17598.08 19599.40 13599.41 20698.83 18399.30 24898.77 35497.70 19598.94 25299.65 18692.91 28299.74 20796.52 31399.55 14499.64 136
EPNet_dtu98.03 21697.96 20898.23 29598.27 37095.54 34399.23 27798.75 35599.02 3897.82 34499.71 15496.11 16899.48 26493.04 36999.65 13499.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TDRefinement95.42 33994.57 34697.97 31389.83 40996.11 33299.48 18098.75 35596.74 28396.68 36799.88 3588.65 35599.71 22398.37 17982.74 39898.09 365
OpenMVS_ROBcopyleft92.34 2094.38 35093.70 35696.41 36097.38 38393.17 37999.06 31098.75 35586.58 39694.84 38398.26 37681.53 39399.32 29789.01 38897.87 25196.76 390
thres100view90097.76 25897.45 26498.69 24399.72 9197.86 25399.59 10198.74 35897.93 16799.26 19298.62 36391.75 31399.83 17093.22 36698.18 23798.37 353
thres600view797.86 24297.51 25798.92 20399.72 9197.95 24799.59 10198.74 35897.94 16699.27 18898.62 36391.75 31399.86 14493.73 36198.19 23698.96 252
thres20097.61 28297.28 29298.62 24799.64 12898.03 23999.26 27298.74 35897.68 19799.09 22798.32 37491.66 31999.81 18292.88 37198.22 23298.03 369
MDTV_nov1_ep1398.32 17599.11 28694.44 36499.27 26398.74 35897.51 21799.40 15799.62 20394.78 21999.76 20297.59 24798.81 202
TinyColmap97.12 31096.89 30997.83 32299.07 29695.52 34498.57 37498.74 35897.58 20697.81 34599.79 11788.16 36199.56 25995.10 34497.21 29298.39 351
tfpn200view997.72 26797.38 27798.72 23999.69 10697.96 24599.50 16298.73 36397.83 17899.17 21398.45 36891.67 31799.83 17093.22 36698.18 23798.37 353
ambc93.06 37492.68 40582.36 39998.47 37998.73 36395.09 38197.41 38855.55 40699.10 33496.42 31691.32 37897.71 380
thres40097.77 25797.38 27798.92 20399.69 10697.96 24599.50 16298.73 36397.83 17899.17 21398.45 36891.67 31799.83 17093.22 36698.18 23798.96 252
SixPastTwentyTwo97.50 29097.33 28698.03 30698.65 35496.23 32999.77 3498.68 36697.14 25197.90 34099.93 990.45 33499.18 32197.00 29096.43 30698.67 296
testing22297.16 30896.50 31699.16 17399.16 27898.47 21999.27 26398.66 36797.71 19298.23 32498.15 37882.28 39299.84 15797.36 27097.66 26099.18 226
test0.0.03 197.71 27097.42 27498.56 25698.41 36997.82 25498.78 35798.63 36897.34 23498.05 33698.98 34294.45 24298.98 34895.04 34697.15 29598.89 255
test_fmvs392.10 35991.77 36293.08 37396.19 39286.25 39399.82 1698.62 36996.65 29095.19 38096.90 39355.05 40895.93 40096.63 31290.92 38397.06 389
TR-MVS97.76 25897.41 27598.82 22799.06 30097.87 25198.87 34998.56 37096.63 29498.68 28999.22 31592.49 29799.65 24595.40 33997.79 25598.95 254
Anonymous20240521198.30 18597.98 20699.26 16299.57 15298.16 23299.41 20998.55 37196.03 33899.19 20899.74 14391.87 31099.92 9599.16 7998.29 22999.70 113
tpm97.67 27797.55 25198.03 30699.02 30695.01 35599.43 20098.54 37296.44 30999.12 21999.34 29291.83 31299.60 25697.75 23496.46 30599.48 181
test_f91.90 36091.26 36493.84 36995.52 39985.92 39499.69 5698.53 37395.31 34793.87 38696.37 39655.33 40798.27 37595.70 33090.98 38297.32 388
Patchmatch-RL test95.84 33495.81 33395.95 36395.61 39690.57 38998.24 38998.39 37495.10 35295.20 37998.67 36294.78 21997.77 38696.28 31990.02 38699.51 175
WB-MVSnew97.65 27997.65 24397.63 33198.78 33797.62 26399.13 29498.33 37597.36 23399.07 22998.94 34695.64 18999.15 32392.95 37098.68 20796.12 397
LCM-MVSNet-Re97.83 24898.15 18596.87 35499.30 23892.25 38499.59 10198.26 37697.43 22696.20 37199.13 32596.27 16598.73 36798.17 19598.99 18799.64 136
mvsany_test393.77 35393.45 35794.74 36695.78 39588.01 39299.64 7998.25 37798.28 11694.31 38497.97 38568.89 40098.51 37297.50 25890.37 38497.71 380
LFMVS97.90 23797.35 28199.54 10099.52 16899.01 15399.39 22198.24 37897.10 25899.65 9399.79 11784.79 38099.91 10599.28 6698.38 22199.69 115
PM-MVS92.96 35792.23 36195.14 36595.61 39689.98 39199.37 22898.21 37994.80 35995.04 38297.69 38665.06 40197.90 38494.30 35389.98 38797.54 386
PMVScopyleft70.75 2275.98 37674.97 37779.01 39270.98 41555.18 41793.37 40498.21 37965.08 40961.78 41093.83 40021.74 41792.53 40478.59 40291.12 38189.34 405
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
pmmvs394.09 35293.25 35896.60 35894.76 40394.49 36398.92 34398.18 38189.66 38996.48 36998.06 38486.28 37097.33 39189.68 38687.20 39297.97 375
door-mid98.05 382
tmp_tt82.80 37081.52 37386.66 38666.61 41668.44 41592.79 40597.92 38368.96 40480.04 40799.85 5285.77 37296.15 39997.86 22043.89 40995.39 399
door97.92 383
dmvs_testset95.02 34296.12 32491.72 37799.10 28980.43 40599.58 10997.87 38597.47 21995.22 37898.82 35493.99 25795.18 40288.09 39294.91 34499.56 159
test-LLR98.06 20897.90 21598.55 25898.79 33497.10 28198.67 36697.75 38697.34 23498.61 30198.85 35294.45 24299.45 26897.25 27599.38 15399.10 230
test-mter97.49 29597.13 30098.55 25898.79 33497.10 28198.67 36697.75 38696.65 29098.61 30198.85 35288.23 36099.45 26897.25 27599.38 15399.10 230
IB-MVS95.67 1896.22 32695.44 33998.57 25399.21 26096.70 31098.65 36997.74 38896.71 28597.27 35698.54 36686.03 37199.92 9598.47 17186.30 39399.10 230
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TESTMET0.1,197.55 28597.27 29598.40 27998.93 31996.53 31898.67 36697.61 38996.96 27098.64 29799.28 30688.63 35699.45 26897.30 27399.38 15399.21 225
MVS_030499.42 4299.32 4099.72 6599.70 10199.27 11799.52 14797.57 39099.51 299.82 3699.78 12398.09 10099.96 3099.97 199.97 799.94 11
ET-MVSNet_ETH3D96.49 32295.64 33699.05 18599.53 16398.82 18498.84 35197.51 39197.63 20284.77 39999.21 31892.09 30698.91 35998.98 9392.21 37699.41 201
PMMVS286.87 36785.37 37191.35 37990.21 40883.80 39898.89 34697.45 39283.13 40091.67 39795.03 39748.49 41094.70 40385.86 40077.62 40295.54 398
K. test v397.10 31196.79 31198.01 30998.72 34796.33 32599.87 897.05 39397.59 20496.16 37299.80 10488.71 35299.04 33996.69 30896.55 30498.65 306
tttt051798.42 17398.14 18699.28 16099.66 12098.38 22499.74 4596.85 39497.68 19799.79 4399.74 14391.39 32499.89 12798.83 12199.56 14299.57 157
thisisatest051598.14 19997.79 22499.19 17099.50 18098.50 21498.61 37196.82 39596.95 27299.54 12399.43 26491.66 31999.86 14498.08 20399.51 14699.22 224
thisisatest053098.35 18198.03 20199.31 14899.63 13198.56 20499.54 13896.75 39697.53 21499.73 6699.65 18691.25 32799.89 12798.62 14699.56 14299.48 181
test_vis1_rt95.81 33595.65 33596.32 36199.67 11191.35 38899.49 17696.74 39798.25 12095.24 37798.10 38274.96 39799.90 11699.53 3398.85 19797.70 382
DSMNet-mixed97.25 30597.35 28196.95 35197.84 37693.61 37699.57 11696.63 39896.13 33298.87 26398.61 36594.59 23397.70 38895.08 34598.86 19699.55 160
UWE-MVS97.58 28497.29 29198.48 26499.09 29296.25 32899.01 32696.61 39997.86 17299.19 20899.01 33888.72 35199.90 11697.38 26998.69 20699.28 219
baseline297.87 24097.55 25198.82 22799.18 26898.02 24099.41 20996.58 40096.97 26996.51 36899.17 32093.43 27099.57 25897.71 23999.03 18498.86 256
MVS-HIRNet95.75 33695.16 34197.51 33699.30 23893.69 37498.88 34795.78 40185.09 39898.78 27592.65 40191.29 32699.37 28494.85 34899.85 7399.46 192
E-PMN80.61 37279.88 37482.81 38990.75 40776.38 41097.69 39795.76 40266.44 40783.52 40092.25 40262.54 40387.16 40968.53 40861.40 40684.89 407
test111198.04 21498.11 19097.83 32299.74 8093.82 37099.58 10995.40 40399.12 2599.65 9399.93 990.73 33299.84 15799.43 4799.38 15399.82 54
ECVR-MVScopyleft98.04 21498.05 19998.00 31199.74 8094.37 36599.59 10194.98 40499.13 2299.66 8799.93 990.67 33399.84 15799.40 4899.38 15399.80 70
lessismore_v097.79 32698.69 35195.44 34794.75 40595.71 37699.87 4388.69 35399.32 29795.89 32594.93 34398.62 317
EPMVS97.82 25197.65 24398.35 28398.88 32395.98 33399.49 17694.71 40697.57 20799.26 19299.48 25392.46 30199.71 22397.87 21999.08 18099.35 211
gg-mvs-nofinetune96.17 32995.32 34098.73 23898.79 33498.14 23499.38 22694.09 40791.07 38898.07 33591.04 40589.62 34699.35 29196.75 30499.09 17998.68 289
GG-mvs-BLEND98.45 27198.55 36398.16 23299.43 20093.68 40897.23 35798.46 36789.30 34799.22 31395.43 33898.22 23297.98 374
dongtai93.26 35592.93 35994.25 36799.39 21485.68 39597.68 39893.27 40992.87 37996.85 36699.39 27782.33 39197.48 39076.78 40397.80 25499.58 154
MVEpermissive76.82 2176.91 37574.31 37984.70 38785.38 41376.05 41196.88 40193.17 41067.39 40671.28 40889.01 40721.66 41887.69 40871.74 40772.29 40590.35 404
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
kuosan90.92 36390.11 36893.34 37198.78 33785.59 39698.15 39393.16 41189.37 39292.07 39398.38 37181.48 39495.19 40162.54 41097.04 29699.25 222
ANet_high77.30 37474.86 37884.62 38875.88 41477.61 40897.63 39993.15 41288.81 39464.27 40989.29 40636.51 41383.93 41175.89 40552.31 40892.33 402
N_pmnet94.95 34595.83 33292.31 37598.47 36679.33 40799.12 29792.81 41393.87 36897.68 34799.13 32593.87 26299.01 34591.38 38096.19 31198.59 330
EMVS80.02 37379.22 37582.43 39191.19 40676.40 40997.55 40092.49 41466.36 40883.01 40291.27 40464.63 40285.79 41065.82 40960.65 40785.08 406
test_vis3_rt87.04 36685.81 36990.73 38093.99 40481.96 40199.76 3790.23 41592.81 38081.35 40391.56 40340.06 41299.07 33694.27 35588.23 39091.15 403
test250696.81 31796.65 31397.29 34299.74 8092.21 38599.60 9585.06 41699.13 2299.77 5299.93 987.82 36699.85 15099.38 5099.38 15399.80 70
testmvs39.17 37843.78 38025.37 39536.04 41816.84 42098.36 38226.56 41720.06 41138.51 41267.32 40829.64 41515.30 41437.59 41239.90 41043.98 409
wuyk23d40.18 37741.29 38236.84 39386.18 41249.12 41879.73 40622.81 41827.64 41025.46 41328.45 41321.98 41648.89 41255.80 41123.56 41212.51 410
test12339.01 37942.50 38128.53 39439.17 41720.91 41998.75 36019.17 41919.83 41238.57 41166.67 40933.16 41415.42 41337.50 41329.66 41149.26 408
test_blank0.13 3830.17 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4151.57 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas8.27 38211.03 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 41599.01 180.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
n20.00 420
nn0.00 420
ab-mvs-re8.30 38111.06 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41599.58 2160.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS97.16 27895.47 336
PC_three_145298.18 13299.84 3099.70 15899.31 398.52 37198.30 18799.80 10199.81 61
eth-test20.00 419
eth-test0.00 419
OPU-MVS99.64 7899.56 15699.72 4299.60 9599.70 15899.27 599.42 27898.24 18999.80 10199.79 74
test_0728_THIRD98.99 4599.81 3899.80 10499.09 1499.96 3098.85 11599.90 4399.88 26
GSMVS99.52 169
test_part299.81 4699.83 1699.77 52
sam_mvs194.86 21499.52 169
sam_mvs94.72 226
test_post199.23 27765.14 41194.18 25299.71 22397.58 248
test_post65.99 41094.65 23299.73 213
patchmatchnet-post98.70 36194.79 21899.74 207
gm-plane-assit98.54 36492.96 38094.65 36299.15 32399.64 24897.56 253
test9_res97.49 25999.72 12299.75 88
agg_prior297.21 27799.73 12199.75 88
test_prior499.56 7598.99 329
test_prior298.96 33698.34 11199.01 24099.52 23998.68 6497.96 21299.74 119
旧先验298.96 33696.70 28699.47 13699.94 6998.19 192
新几何299.01 326
原ACMM298.95 339
testdata299.95 5996.67 309
segment_acmp98.96 24
testdata198.85 35098.32 114
plane_prior799.29 24297.03 291
plane_prior699.27 24796.98 29592.71 289
plane_prior499.61 207
plane_prior397.00 29398.69 7999.11 221
plane_prior299.39 22198.97 51
plane_prior199.26 249
plane_prior96.97 29699.21 28398.45 9997.60 264
HQP5-MVS96.83 305
HQP-NCC99.19 26598.98 33298.24 12198.66 290
ACMP_Plane99.19 26598.98 33298.24 12198.66 290
BP-MVS97.19 281
HQP4-MVS98.66 29099.64 24898.64 308
HQP2-MVS92.47 298
NP-MVS99.23 25596.92 30199.40 273
MDTV_nov1_ep13_2view95.18 35399.35 23796.84 27999.58 11495.19 20597.82 22599.46 192
ACMMP++_ref97.19 293
ACMMP++97.43 283
Test By Simon98.75 55