This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
hse-mvs397.70 25397.28 27198.97 17899.70 9397.27 25399.36 19699.45 18298.94 3399.66 6599.64 16694.93 20199.99 199.48 1584.36 35099.65 113
xiu_mvs_v1_base_debu99.29 5999.27 5299.34 13099.63 12098.97 14899.12 25599.51 10398.86 4099.84 1399.47 23398.18 9999.99 199.50 1099.31 14399.08 197
xiu_mvs_v1_base99.29 5999.27 5299.34 13099.63 12098.97 14899.12 25599.51 10398.86 4099.84 1399.47 23398.18 9999.99 199.50 1099.31 14399.08 197
xiu_mvs_v1_base_debi99.29 5999.27 5299.34 13099.63 12098.97 14899.12 25599.51 10398.86 4099.84 1399.47 23398.18 9999.99 199.50 1099.31 14399.08 197
EPNet98.86 12198.71 12699.30 14097.20 34898.18 21799.62 6898.91 31199.28 298.63 27299.81 6295.96 16599.99 199.24 3899.72 10599.73 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
xiu_mvs_v2_base99.26 6599.25 5699.29 14399.53 14798.91 16199.02 27999.45 18298.80 4899.71 4699.26 28798.94 3199.98 699.34 2899.23 14898.98 212
PS-MVSNAJ99.32 5599.32 3199.30 14099.57 14098.94 15798.97 29399.46 17098.92 3799.71 4699.24 29099.01 1699.98 699.35 2499.66 11998.97 213
QAPM98.67 14698.30 16399.80 4099.20 23599.67 5299.77 2499.72 1194.74 32198.73 25399.90 795.78 17599.98 696.96 26399.88 3699.76 68
3Dnovator97.25 999.24 6899.05 7699.81 3899.12 25399.66 5499.84 699.74 1099.09 1098.92 22899.90 795.94 16899.98 698.95 6599.92 1199.79 53
OpenMVScopyleft96.50 1698.47 15498.12 17299.52 10599.04 26999.53 8199.82 1199.72 1194.56 32498.08 30499.88 1594.73 21699.98 697.47 23199.76 9699.06 203
CANet_DTU98.97 11398.87 10699.25 14999.33 20198.42 20999.08 26499.30 26099.16 599.43 11899.75 11195.27 19299.97 1198.56 13199.95 699.36 177
zzz-MVS99.49 1599.36 2199.89 499.90 399.86 1099.36 19699.47 16098.79 4999.68 5399.81 6298.43 8199.97 1198.88 7499.90 2399.83 29
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 5099.47 16098.79 4999.68 5399.81 6298.43 8199.97 1198.88 7499.90 2399.83 29
PGM-MVS99.45 2699.31 3899.86 1899.87 1599.78 3799.58 8899.65 3297.84 14199.71 4699.80 7699.12 1199.97 1198.33 15599.87 4099.83 29
mPP-MVS99.44 3099.30 4299.86 1899.88 1199.79 3099.69 3799.48 14298.12 10999.50 10499.75 11198.78 4899.97 1198.57 12899.89 3399.83 29
CP-MVS99.45 2699.32 3199.85 2599.83 3699.75 3899.69 3799.52 9098.07 11999.53 9999.63 17398.93 3599.97 1198.74 9999.91 1699.83 29
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2499.59 8199.51 10398.62 5999.79 2699.83 4299.28 399.97 1198.48 13999.90 2399.84 18
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+97.12 1399.18 7398.97 9399.82 3599.17 24699.68 4999.81 1399.51 10399.20 498.72 25499.89 1095.68 17999.97 1198.86 8199.86 5199.81 41
ZD-MVS99.71 8699.79 3099.61 3596.84 24199.56 9299.54 20798.58 7099.96 1996.93 26699.75 98
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 7599.48 14299.08 1199.91 199.81 6299.20 599.96 1998.91 7199.85 5899.79 53
test_241102_TWO99.48 14299.08 1199.88 599.81 6298.94 3199.96 1998.91 7199.84 6599.88 5
ZNCC-MVS99.47 2299.33 2999.87 1199.87 1599.81 2499.64 6099.67 2298.08 11899.55 9699.64 16698.91 3699.96 1998.72 10399.90 2399.82 36
testtj99.12 8798.87 10699.86 1899.72 8099.79 3099.44 15799.51 10397.29 20199.59 8799.74 11798.15 10299.96 1996.74 27499.69 11199.81 41
DVP-MVS99.57 799.47 999.88 699.85 2599.89 399.57 9399.37 22899.10 899.81 2299.80 7698.94 3199.96 1998.93 6899.86 5199.81 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.99 2599.81 2299.80 7699.09 1299.96 1998.85 8399.90 2399.88 5
test_0728_SECOND99.91 299.84 3299.89 399.57 9399.51 10399.96 1998.93 6899.86 5199.88 5
SR-MVS99.43 3399.29 4699.86 1899.75 6299.83 1499.59 8199.62 3398.21 10099.73 4399.79 8898.68 6399.96 1998.44 14599.77 9399.79 53
DPE-MVScopyleft99.46 2499.32 3199.91 299.78 4499.88 799.36 19699.51 10398.73 5399.88 599.84 3898.72 6099.96 1998.16 16899.87 4099.88 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
UA-Net99.42 3899.29 4699.80 4099.62 12699.55 7699.50 12899.70 1598.79 4999.77 3399.96 197.45 11899.96 1998.92 7099.90 2399.89 2
HFP-MVS99.49 1599.37 1999.86 1899.87 1599.80 2699.66 5099.67 2298.15 10599.68 5399.69 14099.06 1399.96 1998.69 10899.87 4099.84 18
region2R99.48 1999.35 2499.87 1199.88 1199.80 2699.65 5799.66 2798.13 10799.66 6599.68 14698.96 2599.96 1998.62 11799.87 4099.84 18
#test#99.43 3399.29 4699.86 1899.87 1599.80 2699.55 10999.67 2297.83 14299.68 5399.69 14099.06 1399.96 1998.39 14799.87 4099.84 18
HPM-MVS++copyleft99.39 4799.23 5999.87 1199.75 6299.84 1399.43 16399.51 10398.68 5799.27 15999.53 21198.64 6899.96 1998.44 14599.80 8499.79 53
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2899.56 5699.02 1599.88 599.85 2999.18 899.96 1999.22 3999.92 1199.90 1
ACMMPR99.49 1599.36 2199.86 1899.87 1599.79 3099.66 5099.67 2298.15 10599.67 6099.69 14098.95 2899.96 1998.69 10899.87 4099.84 18
MP-MVScopyleft99.33 5499.15 6699.87 1199.88 1199.82 2099.66 5099.46 17098.09 11499.48 10899.74 11798.29 9399.96 1997.93 18699.87 4099.82 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
abl_699.44 3099.31 3899.83 3399.85 2599.75 3899.66 5099.59 4398.13 10799.82 2099.81 6298.60 6999.96 1998.46 14399.88 3699.79 53
CPTT-MVS99.11 9298.90 10299.74 5699.80 4199.46 9399.59 8199.49 13097.03 22899.63 7399.69 14097.27 12699.96 1997.82 19599.84 6599.81 41
PVSNet_Blended_VisFu99.36 5099.28 5099.61 8299.86 2199.07 13799.47 14999.93 297.66 16499.71 4699.86 2397.73 11399.96 1999.47 1799.82 7899.79 53
UGNet98.87 11898.69 12899.40 12499.22 23198.72 17999.44 15799.68 1999.24 399.18 18499.42 24492.74 26799.96 1999.34 2899.94 999.53 147
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CSCG99.32 5599.32 3199.32 13599.85 2598.29 21299.71 3499.66 2798.11 11199.41 12599.80 7698.37 8899.96 1998.99 6199.96 599.72 87
ACMMPcopyleft99.45 2699.32 3199.82 3599.89 899.67 5299.62 6899.69 1898.12 10999.63 7399.84 3898.73 5999.96 1998.55 13499.83 7299.81 41
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test117299.43 3399.29 4699.85 2599.75 6299.82 2099.60 7599.56 5698.28 9199.74 4199.79 8898.53 7299.95 4398.55 13499.78 9099.79 53
SR-MVS-dyc-post99.45 2699.31 3899.85 2599.76 5299.82 2099.63 6299.52 9098.38 7899.76 3799.82 4998.53 7299.95 4398.61 12099.81 8099.77 63
GST-MVS99.40 4599.24 5799.85 2599.86 2199.79 3099.60 7599.67 2297.97 13099.63 7399.68 14698.52 7499.95 4398.38 14999.86 5199.81 41
CANet99.25 6799.14 6799.59 8499.41 18199.16 12399.35 20299.57 5198.82 4499.51 10399.61 18396.46 15199.95 4399.59 199.98 299.65 113
MP-MVS-pluss99.37 4999.20 6299.88 699.90 399.87 999.30 21199.52 9097.18 21199.60 8499.79 8898.79 4799.95 4398.83 8899.91 1699.83 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.42 3899.27 5299.88 699.89 899.80 2699.67 4599.50 12298.70 5599.77 3399.49 22498.21 9799.95 4398.46 14399.77 9399.88 5
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mvs-test198.86 12198.84 11298.89 19599.33 20197.77 23999.44 15799.30 26098.47 6899.10 19699.43 24196.78 14099.95 4398.73 10199.02 16898.96 215
testdata299.95 4396.67 279
APD-MVS_3200maxsize99.48 1999.35 2499.85 2599.76 5299.83 1499.63 6299.54 7398.36 8199.79 2699.82 4998.86 4099.95 4398.62 11799.81 8099.78 61
RPMNet96.72 29095.90 30099.19 15599.18 24098.49 20299.22 24199.52 9088.72 35199.56 9297.38 34894.08 24199.95 4386.87 35798.58 19099.14 189
sss99.17 7599.05 7699.53 9999.62 12698.97 14899.36 19699.62 3397.83 14299.67 6099.65 15997.37 12399.95 4399.19 4299.19 15199.68 103
TSAR-MVS + MP.99.58 499.50 899.81 3899.91 199.66 5499.63 6299.39 21398.91 3899.78 3199.85 2999.36 299.94 5498.84 8599.88 3699.82 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Regformer-499.59 399.54 499.73 5899.76 5299.41 9899.58 8899.49 13099.02 1599.88 599.80 7699.00 2299.94 5499.45 1999.92 1199.84 18
Regformer-299.54 999.47 999.75 5199.71 8699.52 8499.49 13899.49 13098.94 3399.83 1799.76 10699.01 1699.94 5499.15 4899.87 4099.80 49
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3799.68 1998.98 2799.37 13799.74 11798.81 4599.94 5498.79 9499.86 5199.84 18
X-MVStestdata96.55 29295.45 30799.87 1199.85 2599.83 1499.69 3799.68 1998.98 2799.37 13764.01 36898.81 4599.94 5498.79 9499.86 5199.84 18
旧先验298.96 29496.70 24999.47 10999.94 5498.19 163
新几何199.75 5199.75 6299.59 6999.54 7396.76 24599.29 15499.64 16698.43 8199.94 5496.92 26899.66 11999.72 87
testdata99.54 9399.75 6298.95 15499.51 10397.07 22399.43 11899.70 13398.87 3999.94 5497.76 20099.64 12399.72 87
HPM-MVScopyleft99.42 3899.28 5099.83 3399.90 399.72 4299.81 1399.54 7397.59 16899.68 5399.63 17398.91 3699.94 5498.58 12699.91 1699.84 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CHOSEN 1792x268899.19 7199.10 7199.45 11799.89 898.52 19899.39 18499.94 198.73 5399.11 19399.89 1095.50 18499.94 5499.50 1099.97 399.89 2
APD-MVScopyleft99.27 6299.08 7499.84 3299.75 6299.79 3099.50 12899.50 12297.16 21399.77 3399.82 4998.78 4899.94 5497.56 22299.86 5199.80 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DELS-MVS99.48 1999.42 1399.65 7299.72 8099.40 10099.05 27099.66 2799.14 699.57 9199.80 7698.46 7999.94 5499.57 499.84 6599.60 130
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WTY-MVS99.06 10098.88 10599.61 8299.62 12699.16 12399.37 19299.56 5698.04 12599.53 9999.62 17996.84 13899.94 5498.85 8398.49 19799.72 87
DeepC-MVS98.35 299.30 5799.19 6399.64 7799.82 3799.23 11699.62 6899.55 6698.94 3399.63 7399.95 295.82 17499.94 5499.37 2399.97 399.73 81
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D99.27 6299.12 6999.74 5699.18 24099.75 3899.56 10099.57 5198.45 7199.49 10799.85 2997.77 11299.94 5498.33 15599.84 6599.52 148
xxxxxxxxxxxxxcwj99.43 3399.32 3199.75 5199.76 5299.59 6999.14 25399.53 8499.00 2299.71 4699.80 7698.95 2899.93 6998.19 16399.84 6599.74 74
SF-MVS99.38 4899.24 5799.79 4399.79 4299.68 4999.57 9399.54 7397.82 14799.71 4699.80 7698.95 2899.93 6998.19 16399.84 6599.74 74
Anonymous2024052998.09 18997.68 22199.34 13099.66 11098.44 20699.40 18099.43 19993.67 33199.22 17299.89 1090.23 31699.93 6999.26 3798.33 20099.66 109
ACMMP_NAP99.47 2299.34 2799.88 699.87 1599.86 1099.47 14999.48 14298.05 12499.76 3799.86 2398.82 4499.93 6998.82 9299.91 1699.84 18
EI-MVSNet-UG-set99.58 499.57 199.64 7799.78 4499.14 12899.60 7599.45 18299.01 1899.90 399.83 4298.98 2399.93 6999.59 199.95 699.86 11
Regformer-199.53 1199.47 999.72 6199.71 8699.44 9599.49 13899.46 17098.95 3299.83 1799.76 10699.01 1699.93 6999.17 4599.87 4099.80 49
无先验98.99 28699.51 10396.89 23899.93 6997.53 22599.72 87
112199.09 9698.87 10699.75 5199.74 7099.60 6599.27 22299.48 14296.82 24499.25 16699.65 15998.38 8699.93 6997.53 22599.67 11899.73 81
VDDNet97.55 26597.02 28299.16 15899.49 16198.12 22299.38 18999.30 26095.35 31099.68 5399.90 782.62 35599.93 6999.31 3198.13 21599.42 172
ab-mvs98.86 12198.63 13599.54 9399.64 11799.19 11899.44 15799.54 7397.77 15099.30 15199.81 6294.20 23599.93 6999.17 4598.82 18199.49 158
F-COLMAP99.19 7199.04 7999.64 7799.78 4499.27 11299.42 17099.54 7397.29 20199.41 12599.59 18998.42 8499.93 6998.19 16399.69 11199.73 81
ETH3D cwj APD-0.1699.06 10098.84 11299.72 6199.51 15299.60 6599.23 23699.44 19197.04 22699.39 13299.67 15298.30 9299.92 8097.27 24199.69 11199.64 120
Anonymous20240521198.30 16997.98 18799.26 14899.57 14098.16 21899.41 17298.55 33796.03 30399.19 18199.74 11791.87 29099.92 8099.16 4798.29 20599.70 96
EI-MVSNet-Vis-set99.58 499.56 399.64 7799.78 4499.15 12799.61 7499.45 18299.01 1899.89 499.82 4999.01 1699.92 8099.56 599.95 699.85 14
VDD-MVS97.73 24697.35 26298.88 19899.47 16997.12 25999.34 20598.85 31798.19 10199.67 6099.85 2982.98 35399.92 8099.49 1498.32 20499.60 130
VNet99.11 9298.90 10299.73 5899.52 14999.56 7499.41 17299.39 21399.01 1899.74 4199.78 9595.56 18299.92 8099.52 798.18 21099.72 87
XVG-OURS-SEG-HR98.69 14498.62 14098.89 19599.71 8697.74 24099.12 25599.54 7398.44 7499.42 12199.71 12994.20 23599.92 8098.54 13698.90 17799.00 209
HPM-MVS_fast99.51 1499.40 1699.85 2599.91 199.79 3099.76 2799.56 5697.72 15699.76 3799.75 11199.13 1099.92 8099.07 5599.92 1199.85 14
HY-MVS97.30 798.85 12998.64 13499.47 11499.42 17899.08 13599.62 6899.36 22997.39 19499.28 15699.68 14696.44 15399.92 8098.37 15198.22 20699.40 175
DP-MVS99.16 7798.95 9799.78 4599.77 4999.53 8199.41 17299.50 12297.03 22899.04 20999.88 1597.39 11999.92 8098.66 11399.90 2399.87 10
IB-MVS95.67 1896.22 29895.44 30898.57 23399.21 23396.70 28598.65 32797.74 35196.71 24897.27 32498.54 33586.03 34799.92 8098.47 14286.30 34899.10 192
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4799.63 12099.59 6999.36 19699.46 17099.07 1399.79 2699.82 4998.85 4199.92 8098.68 11099.87 4099.82 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETH3 D test640098.70 14298.35 15899.73 5899.69 9699.60 6599.16 24799.45 18295.42 30999.27 15999.60 18697.39 11999.91 9195.36 30799.83 7299.70 96
9.1499.10 7199.72 8099.40 18099.51 10397.53 17899.64 7299.78 9598.84 4299.91 9197.63 21399.82 78
ETH3D-3000-0.199.21 6999.02 8499.77 4799.73 7599.69 4799.38 18999.51 10397.45 18599.61 8099.75 11198.51 7599.91 9197.45 23499.83 7299.71 94
SMA-MVScopyleft99.44 3099.30 4299.85 2599.73 7599.83 1499.56 10099.47 16097.45 18599.78 3199.82 4999.18 899.91 9198.79 9499.89 3399.81 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TEST999.67 10199.65 5799.05 27099.41 20396.22 28798.95 22399.49 22498.77 5199.91 91
train_agg99.02 10698.77 12099.77 4799.67 10199.65 5799.05 27099.41 20396.28 28098.95 22399.49 22498.76 5399.91 9197.63 21399.72 10599.75 69
test_899.67 10199.61 6399.03 27699.41 20396.28 28098.93 22799.48 23098.76 5399.91 91
agg_prior199.01 10998.76 12299.76 5099.67 10199.62 6198.99 28699.40 20996.26 28398.87 23699.49 22498.77 5199.91 9197.69 21099.72 10599.75 69
agg_prior99.67 10199.62 6199.40 20998.87 23699.91 91
Regformer-399.57 799.53 599.68 6599.76 5299.29 10999.58 8899.44 19199.01 1899.87 1099.80 7698.97 2499.91 9199.44 2199.92 1199.83 29
原ACMM199.65 7299.73 7599.33 10399.47 16097.46 18299.12 19199.66 15898.67 6699.91 9197.70 20999.69 11199.71 94
LFMVS97.90 21797.35 26299.54 9399.52 14999.01 14399.39 18498.24 34197.10 22199.65 7099.79 8884.79 35199.91 9199.28 3498.38 19999.69 99
XVG-OURS98.73 14198.68 12998.88 19899.70 9397.73 24198.92 30199.55 6698.52 6599.45 11399.84 3895.27 19299.91 9198.08 17698.84 18099.00 209
PLCcopyleft97.94 499.02 10698.85 11199.53 9999.66 11099.01 14399.24 23599.52 9096.85 24099.27 15999.48 23098.25 9699.91 9197.76 20099.62 12699.65 113
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS97.08 1497.66 26097.06 28199.47 11499.61 13099.09 13498.04 35299.25 27091.24 34598.51 28199.70 13394.55 22599.91 9192.76 33899.85 5899.42 172
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MCST-MVS99.43 3399.30 4299.82 3599.79 4299.74 4199.29 21599.40 20998.79 4999.52 10199.62 17998.91 3699.90 10698.64 11599.75 9899.82 36
CDPH-MVS99.13 8198.91 10199.80 4099.75 6299.71 4499.15 25199.41 20396.60 25999.60 8499.55 20298.83 4399.90 10697.48 22999.83 7299.78 61
NCCC99.34 5299.19 6399.79 4399.61 13099.65 5799.30 21199.48 14298.86 4099.21 17599.63 17398.72 6099.90 10698.25 15999.63 12599.80 49
114514_t98.93 11598.67 13099.72 6199.85 2599.53 8199.62 6899.59 4392.65 34099.71 4699.78 9598.06 10599.90 10698.84 8599.91 1699.74 74
1112_ss98.98 11198.77 12099.59 8499.68 10099.02 14199.25 23399.48 14297.23 20899.13 18999.58 19296.93 13799.90 10698.87 7898.78 18499.84 18
PHI-MVS99.30 5799.17 6599.70 6499.56 14499.52 8499.58 8899.80 897.12 21799.62 7799.73 12498.58 7099.90 10698.61 12099.91 1699.68 103
AdaColmapbinary99.01 10998.80 11799.66 6899.56 14499.54 7899.18 24599.70 1598.18 10499.35 14399.63 17396.32 15699.90 10697.48 22999.77 9399.55 141
COLMAP_ROBcopyleft97.56 698.86 12198.75 12399.17 15799.88 1198.53 19499.34 20599.59 4397.55 17398.70 26199.89 1095.83 17399.90 10698.10 17199.90 2399.08 197
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
thisisatest053098.35 16598.03 18299.31 13699.63 12098.56 19199.54 11296.75 35897.53 17899.73 4399.65 15991.25 30699.89 11498.62 11799.56 12999.48 159
tttt051798.42 15898.14 17099.28 14699.66 11098.38 21099.74 3196.85 35697.68 16099.79 2699.74 11791.39 30399.89 11498.83 8899.56 12999.57 139
test1299.75 5199.64 11799.61 6399.29 26599.21 17598.38 8699.89 11499.74 10199.74 74
Test_1112_low_res98.89 11798.66 13399.57 8899.69 9698.95 15499.03 27699.47 16096.98 23099.15 18799.23 29196.77 14299.89 11498.83 8898.78 18499.86 11
CNLPA99.14 7998.99 8999.59 8499.58 13899.41 9899.16 24799.44 19198.45 7199.19 18199.49 22498.08 10499.89 11497.73 20499.75 9899.48 159
diffmvs99.14 7999.02 8499.51 10799.61 13098.96 15299.28 21799.49 13098.46 7099.72 4599.71 12996.50 15099.88 11999.31 3199.11 15799.67 106
PVSNet_BlendedMVS98.86 12198.80 11799.03 17099.76 5298.79 17599.28 21799.91 397.42 19199.67 6099.37 26097.53 11699.88 11998.98 6297.29 25198.42 315
PVSNet_Blended99.08 9898.97 9399.42 12399.76 5298.79 17598.78 31599.91 396.74 24699.67 6099.49 22497.53 11699.88 11998.98 6299.85 5899.60 130
MVS97.28 28096.55 28899.48 11198.78 30298.95 15499.27 22299.39 21383.53 35598.08 30499.54 20796.97 13599.87 12294.23 32199.16 15299.63 124
MG-MVS99.13 8199.02 8499.45 11799.57 14098.63 18699.07 26599.34 23898.99 2599.61 8099.82 4997.98 10799.87 12297.00 25999.80 8499.85 14
MSDG98.98 11198.80 11799.53 9999.76 5299.19 11898.75 31899.55 6697.25 20599.47 10999.77 10297.82 11099.87 12296.93 26699.90 2399.54 143
ETV-MVS99.26 6599.21 6199.40 12499.46 17099.30 10899.56 10099.52 9098.52 6599.44 11799.27 28698.41 8599.86 12599.10 5299.59 12899.04 205
thisisatest051598.14 18497.79 20699.19 15599.50 15998.50 20198.61 32996.82 35796.95 23499.54 9799.43 24191.66 29999.86 12598.08 17699.51 13399.22 186
thres600view797.86 22297.51 23898.92 18699.72 8097.95 23199.59 8198.74 32597.94 13299.27 15998.62 33291.75 29399.86 12593.73 32698.19 20998.96 215
lupinMVS99.13 8199.01 8899.46 11699.51 15298.94 15799.05 27099.16 28397.86 13799.80 2499.56 19997.39 11999.86 12598.94 6699.85 5899.58 138
PVSNet96.02 1798.85 12998.84 11298.89 19599.73 7597.28 25298.32 34599.60 4097.86 13799.50 10499.57 19696.75 14399.86 12598.56 13199.70 11099.54 143
MAR-MVS98.86 12198.63 13599.54 9399.37 19399.66 5499.45 15399.54 7396.61 25799.01 21299.40 25297.09 13099.86 12597.68 21299.53 13299.10 192
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
AllTest98.87 11898.72 12499.31 13699.86 2198.48 20499.56 10099.61 3597.85 13999.36 14099.85 2995.95 16699.85 13196.66 28099.83 7299.59 134
TestCases99.31 13699.86 2198.48 20499.61 3597.85 13999.36 14099.85 2995.95 16699.85 13196.66 28099.83 7299.59 134
jason99.13 8199.03 8199.45 11799.46 17098.87 16499.12 25599.26 26898.03 12799.79 2699.65 15997.02 13399.85 13199.02 5999.90 2399.65 113
jason: jason.
CNVR-MVS99.42 3899.30 4299.78 4599.62 12699.71 4499.26 23199.52 9098.82 4499.39 13299.71 12998.96 2599.85 13198.59 12599.80 8499.77 63
PAPM_NR99.04 10398.84 11299.66 6899.74 7099.44 9599.39 18499.38 21997.70 15899.28 15699.28 28398.34 9099.85 13196.96 26399.45 13499.69 99
test_yl98.86 12198.63 13599.54 9399.49 16199.18 12099.50 12899.07 29498.22 9899.61 8099.51 21895.37 18899.84 13698.60 12398.33 20099.59 134
DCV-MVSNet98.86 12198.63 13599.54 9399.49 16199.18 12099.50 12899.07 29498.22 9899.61 8099.51 21895.37 18899.84 13698.60 12398.33 20099.59 134
Fast-Effi-MVS+98.70 14298.43 15399.51 10799.51 15299.28 11099.52 11899.47 16096.11 29899.01 21299.34 26996.20 16099.84 13697.88 18998.82 18199.39 176
TSAR-MVS + GP.99.36 5099.36 2199.36 12999.67 10198.61 18999.07 26599.33 24599.00 2299.82 2099.81 6299.06 1399.84 13699.09 5399.42 13699.65 113
tpmrst98.33 16698.48 15197.90 29299.16 24894.78 33299.31 20999.11 28897.27 20399.45 11399.59 18995.33 19099.84 13698.48 13998.61 18799.09 196
Vis-MVSNetpermissive99.12 8798.97 9399.56 9099.78 4499.10 13399.68 4299.66 2798.49 6799.86 1199.87 2094.77 21399.84 13699.19 4299.41 13799.74 74
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPR98.63 15098.34 15999.51 10799.40 18699.03 14098.80 31399.36 22996.33 27799.00 21799.12 30598.46 7999.84 13695.23 30999.37 14299.66 109
PatchMatch-RL98.84 13298.62 14099.52 10599.71 8699.28 11099.06 26899.77 997.74 15599.50 10499.53 21195.41 18699.84 13697.17 25299.64 12399.44 169
EPP-MVSNet99.13 8198.99 8999.53 9999.65 11599.06 13899.81 1399.33 24597.43 18999.60 8499.88 1597.14 12899.84 13699.13 4998.94 17299.69 99
thres100view90097.76 23897.45 24598.69 22499.72 8097.86 23699.59 8198.74 32597.93 13399.26 16498.62 33291.75 29399.83 14593.22 33198.18 21098.37 321
tfpn200view997.72 24897.38 25898.72 22299.69 9697.96 22999.50 12898.73 33097.83 14299.17 18598.45 33791.67 29799.83 14593.22 33198.18 21098.37 321
test_prior399.21 6999.05 7699.68 6599.67 10199.48 8998.96 29499.56 5698.34 8499.01 21299.52 21498.68 6399.83 14597.96 18399.74 10199.74 74
test_prior99.68 6599.67 10199.48 8999.56 5699.83 14599.74 74
131498.68 14598.54 14999.11 16298.89 28698.65 18499.27 22299.49 13096.89 23897.99 30999.56 19997.72 11499.83 14597.74 20399.27 14698.84 222
thres40097.77 23797.38 25898.92 18699.69 9697.96 22999.50 12898.73 33097.83 14299.17 18598.45 33791.67 29799.83 14593.22 33198.18 21098.96 215
casdiffmvs99.13 8198.98 9299.56 9099.65 11599.16 12399.56 10099.50 12298.33 8799.41 12599.86 2395.92 16999.83 14599.45 1999.16 15299.70 96
MVS_Test99.10 9598.97 9399.48 11199.49 16199.14 12899.67 4599.34 23897.31 19999.58 8999.76 10697.65 11599.82 15298.87 7899.07 16399.46 166
dp97.75 24297.80 20597.59 30599.10 25893.71 34299.32 20798.88 31596.48 26999.08 20299.55 20292.67 27399.82 15296.52 28298.58 19099.24 185
RPSCF98.22 17398.62 14096.99 31899.82 3791.58 35399.72 3299.44 19196.61 25799.66 6599.89 1095.92 16999.82 15297.46 23299.10 16099.57 139
PMMVS98.80 13698.62 14099.34 13099.27 21998.70 18098.76 31799.31 25697.34 19699.21 17599.07 30797.20 12799.82 15298.56 13198.87 17899.52 148
EIA-MVS99.18 7399.09 7399.45 11799.49 16199.18 12099.67 4599.53 8497.66 16499.40 13099.44 23998.10 10399.81 15698.94 6699.62 12699.35 178
Effi-MVS+98.81 13398.59 14699.48 11199.46 17099.12 13298.08 35199.50 12297.50 18199.38 13599.41 24896.37 15599.81 15699.11 5198.54 19499.51 154
thres20097.61 26397.28 27198.62 22799.64 11798.03 22399.26 23198.74 32597.68 16099.09 20198.32 34191.66 29999.81 15692.88 33598.22 20698.03 335
tpmvs97.98 20798.02 18497.84 29599.04 26994.73 33399.31 20999.20 27896.10 30298.76 25199.42 24494.94 20099.81 15696.97 26298.45 19898.97 213
DeepPCF-MVS98.18 398.81 13399.37 1997.12 31799.60 13491.75 35298.61 32999.44 19199.35 199.83 1799.85 2998.70 6299.81 15699.02 5999.91 1699.81 41
DPM-MVS98.95 11498.71 12699.66 6899.63 12099.55 7698.64 32899.10 28997.93 13399.42 12199.55 20298.67 6699.80 16195.80 29699.68 11699.61 128
DP-MVS Recon99.12 8798.95 9799.65 7299.74 7099.70 4699.27 22299.57 5196.40 27699.42 12199.68 14698.75 5699.80 16197.98 18299.72 10599.44 169
MVS_111021_LR99.41 4299.33 2999.65 7299.77 4999.51 8698.94 30099.85 698.82 4499.65 7099.74 11798.51 7599.80 16198.83 8899.89 3399.64 120
Fast-Effi-MVS+-dtu98.77 13998.83 11698.60 22899.41 18196.99 27399.52 11899.49 13098.11 11199.24 16799.34 26996.96 13699.79 16497.95 18599.45 13499.02 208
CS-MVS-test99.27 6299.22 6099.40 12499.39 18999.60 6599.67 4599.56 5698.30 8999.47 10999.25 28898.27 9599.79 16499.41 2299.66 11998.81 223
baseline198.31 16797.95 19299.38 12899.50 15998.74 17799.59 8198.93 30698.41 7599.14 18899.60 18694.59 22299.79 16498.48 13993.29 32799.61 128
baseline99.15 7899.02 8499.53 9999.66 11099.14 12899.72 3299.48 14298.35 8299.42 12199.84 3896.07 16299.79 16499.51 999.14 15599.67 106
PVSNet_094.43 1996.09 30395.47 30697.94 28899.31 20994.34 33797.81 35499.70 1597.12 21797.46 32098.75 32989.71 32199.79 16497.69 21081.69 35499.68 103
API-MVS99.04 10399.03 8199.06 16599.40 18699.31 10799.55 10999.56 5698.54 6399.33 14799.39 25698.76 5399.78 16996.98 26199.78 9098.07 332
OMC-MVS99.08 9899.04 7999.20 15499.67 10198.22 21699.28 21799.52 9098.07 11999.66 6599.81 6297.79 11199.78 16997.79 19799.81 8099.60 130
GeoE98.85 12998.62 14099.53 9999.61 13099.08 13599.80 1799.51 10397.10 22199.31 14999.78 9595.23 19699.77 17198.21 16199.03 16699.75 69
alignmvs98.81 13398.56 14899.58 8799.43 17799.42 9799.51 12298.96 30498.61 6099.35 14398.92 32294.78 21099.77 17199.35 2498.11 21699.54 143
tpm cat197.39 27797.36 26097.50 30999.17 24693.73 34199.43 16399.31 25691.27 34498.71 25599.08 30694.31 23399.77 17196.41 28698.50 19699.00 209
CostFormer97.72 24897.73 21797.71 30299.15 25194.02 33999.54 11299.02 29894.67 32299.04 20999.35 26692.35 28599.77 17198.50 13897.94 21999.34 180
test_241102_ONE99.84 3299.90 199.48 14299.07 1399.91 199.74 11799.20 599.76 175
CS-MVS99.34 5299.31 3899.43 12299.44 17699.47 9199.68 4299.56 5698.41 7599.62 7799.41 24898.35 8999.76 17599.52 799.76 9699.05 204
MDTV_nov1_ep1398.32 16199.11 25594.44 33599.27 22298.74 32597.51 18099.40 13099.62 17994.78 21099.76 17597.59 21698.81 183
canonicalmvs99.02 10698.86 11099.51 10799.42 17899.32 10499.80 1799.48 14298.63 5899.31 14998.81 32597.09 13099.75 17899.27 3697.90 22099.47 164
Effi-MVS+-dtu98.78 13798.89 10498.47 24799.33 20196.91 27999.57 9399.30 26098.47 6899.41 12598.99 31696.78 14099.74 17998.73 10199.38 13898.74 239
patchmatchnet-post98.70 33094.79 20999.74 179
SCA98.19 17798.16 16898.27 27099.30 21095.55 31399.07 26598.97 30297.57 17199.43 11899.57 19692.72 26899.74 17997.58 21799.20 15099.52 148
DWT-MVSNet_test97.53 26797.40 25697.93 28999.03 27194.86 33199.57 9398.63 33496.59 26198.36 29298.79 32689.32 32599.74 17998.14 17098.16 21499.20 188
BH-untuned98.42 15898.36 15698.59 22999.49 16196.70 28599.27 22299.13 28797.24 20798.80 24699.38 25795.75 17699.74 17997.07 25799.16 15299.33 181
BH-RMVSNet98.41 16098.08 17799.40 12499.41 18198.83 17199.30 21198.77 32197.70 15898.94 22599.65 15992.91 26399.74 17996.52 28299.55 13199.64 120
MVS_111021_HR99.41 4299.32 3199.66 6899.72 8099.47 9198.95 29899.85 698.82 4499.54 9799.73 12498.51 7599.74 17998.91 7199.88 3699.77 63
test_post65.99 36694.65 22199.73 186
XVG-ACMP-BASELINE97.83 22897.71 21998.20 27299.11 25596.33 29899.41 17299.52 9098.06 12399.05 20899.50 22189.64 32399.73 18697.73 20497.38 24998.53 302
HyFIR lowres test99.11 9298.92 9999.65 7299.90 399.37 10199.02 27999.91 397.67 16399.59 8799.75 11195.90 17199.73 18699.53 699.02 16899.86 11
DeepMVS_CXcopyleft93.34 33599.29 21482.27 35999.22 27485.15 35396.33 33799.05 31090.97 30999.73 18693.57 32897.77 22398.01 336
Patchmatch-test97.93 21297.65 22498.77 21899.18 24097.07 26499.03 27699.14 28696.16 29398.74 25299.57 19694.56 22499.72 19093.36 33099.11 15799.52 148
LPG-MVS_test98.22 17398.13 17198.49 24199.33 20197.05 26699.58 8899.55 6697.46 18299.24 16799.83 4292.58 27599.72 19098.09 17297.51 23698.68 256
LGP-MVS_train98.49 24199.33 20197.05 26699.55 6697.46 18299.24 16799.83 4292.58 27599.72 19098.09 17297.51 23698.68 256
BH-w/o98.00 20597.89 20198.32 26399.35 19696.20 30299.01 28498.90 31396.42 27498.38 29099.00 31595.26 19499.72 19096.06 29098.61 18799.03 206
ACMP97.20 1198.06 19297.94 19498.45 24999.37 19397.01 27199.44 15799.49 13097.54 17698.45 28599.79 8891.95 28999.72 19097.91 18797.49 24198.62 285
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LTVRE_ROB97.16 1298.02 20097.90 19798.40 25699.23 22796.80 28399.70 3599.60 4097.12 21798.18 30199.70 13391.73 29599.72 19098.39 14797.45 24398.68 256
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_post199.23 23665.14 36794.18 23899.71 19697.58 217
ADS-MVSNet98.20 17698.08 17798.56 23599.33 20196.48 29399.23 23699.15 28496.24 28599.10 19699.67 15294.11 23999.71 19696.81 27199.05 16499.48 159
JIA-IIPM97.50 27197.02 28298.93 18498.73 30897.80 23899.30 21198.97 30291.73 34398.91 22994.86 35695.10 19899.71 19697.58 21797.98 21899.28 184
DROMVSNet99.40 4599.35 2499.55 9299.52 14999.50 8799.84 699.58 4998.35 8299.68 5399.64 16698.19 9899.71 19699.59 199.80 8499.43 171
EPMVS97.82 23197.65 22498.35 26098.88 28795.98 30599.49 13894.71 36497.57 17199.26 16499.48 23092.46 28299.71 19697.87 19099.08 16299.35 178
TDRefinement95.42 30994.57 31597.97 28789.83 36396.11 30399.48 14498.75 32296.74 24696.68 33499.88 1588.65 33299.71 19698.37 15182.74 35398.09 331
ACMM97.58 598.37 16498.34 15998.48 24399.41 18197.10 26099.56 10099.45 18298.53 6499.04 20999.85 2993.00 25999.71 19698.74 9997.45 24398.64 275
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CHOSEN 280x42099.12 8799.13 6899.08 16399.66 11097.89 23398.43 33999.71 1398.88 3999.62 7799.76 10696.63 14699.70 20399.46 1899.99 199.66 109
PatchmatchNetpermissive98.31 16798.36 15698.19 27399.16 24895.32 32199.27 22298.92 30897.37 19599.37 13799.58 19294.90 20499.70 20397.43 23699.21 14999.54 143
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ACMH97.28 898.10 18897.99 18698.44 25299.41 18196.96 27799.60 7599.56 5698.09 11498.15 30299.91 590.87 31099.70 20398.88 7497.45 24398.67 263
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP_MVS98.27 17298.22 16798.44 25299.29 21496.97 27599.39 18499.47 16098.97 3099.11 19399.61 18392.71 27099.69 20697.78 19897.63 22598.67 263
plane_prior599.47 16099.69 20697.78 19897.63 22598.67 263
D2MVS98.41 16098.50 15098.15 27699.26 22196.62 28999.40 18099.61 3597.71 15798.98 21999.36 26396.04 16399.67 20898.70 10597.41 24798.15 330
IS-MVSNet99.05 10298.87 10699.57 8899.73 7599.32 10499.75 2899.20 27898.02 12899.56 9299.86 2396.54 14999.67 20898.09 17299.13 15699.73 81
CLD-MVS98.16 18198.10 17398.33 26199.29 21496.82 28298.75 31899.44 19197.83 14299.13 18999.55 20292.92 26199.67 20898.32 15797.69 22498.48 306
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
AUN-MVS96.88 28796.31 29298.59 22999.48 16897.04 26999.27 22299.22 27497.44 18898.51 28199.41 24891.97 28899.66 21197.71 20783.83 35199.07 202
UniMVSNet_ETH3D97.32 27996.81 28598.87 20299.40 18697.46 24899.51 12299.53 8495.86 30598.54 28099.77 10282.44 35699.66 21198.68 11097.52 23599.50 157
OPM-MVS98.19 17798.10 17398.45 24998.88 28797.07 26499.28 21799.38 21998.57 6299.22 17299.81 6292.12 28699.66 21198.08 17697.54 23498.61 294
ACMH+97.24 1097.92 21597.78 20998.32 26399.46 17096.68 28799.56 10099.54 7398.41 7597.79 31699.87 2090.18 31799.66 21198.05 18097.18 25598.62 285
hse-mvs297.50 27197.14 27898.59 22999.49 16197.05 26699.28 21799.22 27498.94 3399.66 6599.42 24494.93 20199.65 21599.48 1583.80 35299.08 197
VPA-MVSNet98.29 17097.95 19299.30 14099.16 24899.54 7899.50 12899.58 4998.27 9399.35 14399.37 26092.53 27799.65 21599.35 2494.46 31198.72 241
TR-MVS97.76 23897.41 25598.82 21199.06 26597.87 23498.87 30798.56 33696.63 25698.68 26399.22 29292.49 27899.65 21595.40 30597.79 22298.95 218
gm-plane-assit98.54 32792.96 34894.65 32399.15 30099.64 21897.56 222
HQP4-MVS98.66 26499.64 21898.64 275
HQP-MVS98.02 20097.90 19798.37 25999.19 23796.83 28098.98 29099.39 21398.24 9498.66 26499.40 25292.47 27999.64 21897.19 24997.58 23098.64 275
PAPM97.59 26497.09 28099.07 16499.06 26598.26 21598.30 34699.10 28994.88 31898.08 30499.34 26996.27 15899.64 21889.87 34798.92 17599.31 182
TAPA-MVS97.07 1597.74 24597.34 26598.94 18299.70 9397.53 24699.25 23399.51 10391.90 34299.30 15199.63 17398.78 4899.64 21888.09 35399.87 4099.65 113
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
XXY-MVS98.38 16398.09 17699.24 15199.26 22199.32 10499.56 10099.55 6697.45 18598.71 25599.83 4293.23 25599.63 22398.88 7496.32 27298.76 233
ITE_SJBPF98.08 27899.29 21496.37 29698.92 30898.34 8498.83 24299.75 11191.09 30799.62 22495.82 29497.40 24898.25 326
LF4IMVS97.52 26897.46 24497.70 30398.98 27895.55 31399.29 21598.82 32098.07 11998.66 26499.64 16689.97 31899.61 22597.01 25896.68 26097.94 342
tpm97.67 25997.55 23298.03 28199.02 27295.01 32799.43 16398.54 33896.44 27299.12 19199.34 26991.83 29299.60 22697.75 20296.46 26899.48 159
tpm297.44 27697.34 26597.74 30199.15 25194.36 33699.45 15398.94 30593.45 33698.90 23199.44 23991.35 30499.59 22797.31 23998.07 21799.29 183
baseline297.87 22097.55 23298.82 21199.18 24098.02 22499.41 17296.58 36096.97 23196.51 33599.17 29793.43 25299.57 22897.71 20799.03 16698.86 220
MS-PatchMatch97.24 28297.32 26896.99 31898.45 33093.51 34698.82 31199.32 25397.41 19298.13 30399.30 27988.99 32899.56 22995.68 29999.80 8497.90 345
TinyColmap97.12 28496.89 28497.83 29699.07 26395.52 31698.57 33298.74 32597.58 17097.81 31599.79 8888.16 33899.56 22995.10 31097.21 25398.39 319
USDC97.34 27897.20 27697.75 30099.07 26395.20 32398.51 33699.04 29797.99 12998.31 29599.86 2389.02 32799.55 23195.67 30097.36 25098.49 305
MSLP-MVS++99.46 2499.47 999.44 12199.60 13499.16 12399.41 17299.71 1398.98 2799.45 11399.78 9599.19 799.54 23299.28 3499.84 6599.63 124
TAMVS99.12 8799.08 7499.24 15199.46 17098.55 19299.51 12299.46 17098.09 11499.45 11399.82 4998.34 9099.51 23398.70 10598.93 17399.67 106
EPNet_dtu98.03 19897.96 19098.23 27198.27 33295.54 31599.23 23698.75 32299.02 1597.82 31499.71 12996.11 16199.48 23493.04 33499.65 12299.69 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_part197.75 24297.24 27599.29 14399.59 13699.63 6099.65 5799.49 13096.17 29198.44 28699.69 14089.80 32099.47 23598.68 11093.66 32398.78 227
EG-PatchMatch MVS95.97 30495.69 30496.81 32497.78 33992.79 34999.16 24798.93 30696.16 29394.08 34899.22 29282.72 35499.47 23595.67 30097.50 23898.17 329
MVP-Stereo97.81 23397.75 21597.99 28697.53 34196.60 29098.96 29498.85 31797.22 20997.23 32599.36 26395.28 19199.46 23795.51 30299.78 9097.92 344
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CVMVSNet98.57 15298.67 13098.30 26599.35 19695.59 31299.50 12899.55 6698.60 6199.39 13299.83 4294.48 22799.45 23898.75 9898.56 19399.85 14
test-LLR98.06 19297.90 19798.55 23798.79 29997.10 26098.67 32497.75 34997.34 19698.61 27598.85 32394.45 22899.45 23897.25 24399.38 13899.10 192
TESTMET0.1,197.55 26597.27 27498.40 25698.93 28396.53 29198.67 32497.61 35296.96 23298.64 27199.28 28388.63 33399.45 23897.30 24099.38 13899.21 187
test-mter97.49 27497.13 27998.55 23798.79 29997.10 26098.67 32497.75 34996.65 25398.61 27598.85 32388.23 33799.45 23897.25 24399.38 13899.10 192
mvs_anonymous99.03 10598.99 8999.16 15899.38 19198.52 19899.51 12299.38 21997.79 14899.38 13599.81 6297.30 12499.45 23899.35 2498.99 17099.51 154
tfpnnormal97.84 22697.47 24298.98 17699.20 23599.22 11799.64 6099.61 3596.32 27898.27 29899.70 13393.35 25499.44 24395.69 29895.40 29598.27 324
v7n97.87 22097.52 23698.92 18698.76 30698.58 19099.84 699.46 17096.20 28898.91 22999.70 13394.89 20599.44 24396.03 29193.89 32198.75 235
jajsoiax98.43 15798.28 16498.88 19898.60 32398.43 20799.82 1199.53 8498.19 10198.63 27299.80 7693.22 25799.44 24399.22 3997.50 23898.77 231
mvs_tets98.40 16298.23 16698.91 19098.67 31698.51 20099.66 5099.53 8498.19 10198.65 27099.81 6292.75 26599.44 24399.31 3197.48 24298.77 231
Vis-MVSNet (Re-imp)98.87 11898.72 12499.31 13699.71 8698.88 16399.80 1799.44 19197.91 13599.36 14099.78 9595.49 18599.43 24797.91 18799.11 15799.62 126
OPU-MVS99.64 7799.56 14499.72 4299.60 7599.70 13399.27 499.42 24898.24 16099.80 8499.79 53
Anonymous2023121197.88 21897.54 23598.90 19299.71 8698.53 19499.48 14499.57 5194.16 32798.81 24499.68 14693.23 25599.42 24898.84 8594.42 31398.76 233
MVS_030496.79 28996.52 28997.59 30599.22 23194.92 33099.04 27599.59 4396.49 26598.43 28798.99 31680.48 35999.39 25097.15 25399.27 14698.47 308
VPNet97.84 22697.44 25099.01 17299.21 23398.94 15799.48 14499.57 5198.38 7899.28 15699.73 12488.89 32999.39 25099.19 4293.27 32898.71 243
nrg03098.64 14998.42 15499.28 14699.05 26899.69 4799.81 1399.46 17098.04 12599.01 21299.82 4996.69 14599.38 25299.34 2894.59 31098.78 227
GA-MVS97.85 22397.47 24299.00 17499.38 19197.99 22698.57 33299.15 28497.04 22698.90 23199.30 27989.83 31999.38 25296.70 27798.33 20099.62 126
UniMVSNet (Re)98.29 17098.00 18599.13 16199.00 27499.36 10299.49 13899.51 10397.95 13198.97 22199.13 30296.30 15799.38 25298.36 15393.34 32698.66 271
FIs98.78 13798.63 13599.23 15399.18 24099.54 7899.83 1099.59 4398.28 9198.79 24899.81 6296.75 14399.37 25599.08 5496.38 27098.78 227
PS-MVSNAJss98.92 11698.92 9998.90 19298.78 30298.53 19499.78 2299.54 7398.07 11999.00 21799.76 10699.01 1699.37 25599.13 4997.23 25298.81 223
CDS-MVSNet99.09 9699.03 8199.25 14999.42 17898.73 17899.45 15399.46 17098.11 11199.46 11299.77 10298.01 10699.37 25598.70 10598.92 17599.66 109
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS-HIRNet95.75 30695.16 31097.51 30899.30 21093.69 34398.88 30595.78 36185.09 35498.78 24992.65 35891.29 30599.37 25594.85 31499.85 5899.46 166
v119297.81 23397.44 25098.91 19098.88 28798.68 18199.51 12299.34 23896.18 29099.20 17899.34 26994.03 24299.36 25995.32 30895.18 29998.69 251
RRT_MVS98.60 15198.44 15299.05 16798.88 28799.14 12899.49 13899.38 21997.76 15199.29 15499.86 2395.38 18799.36 25998.81 9397.16 25698.64 275
EI-MVSNet98.67 14698.67 13098.68 22599.35 19697.97 22799.50 12899.38 21996.93 23799.20 17899.83 4297.87 10899.36 25998.38 14997.56 23298.71 243
MVSTER98.49 15398.32 16199.00 17499.35 19699.02 14199.54 11299.38 21997.41 19299.20 17899.73 12493.86 24799.36 25998.87 7897.56 23298.62 285
gg-mvs-nofinetune96.17 30195.32 30998.73 22098.79 29998.14 22099.38 18994.09 36591.07 34798.07 30791.04 36189.62 32499.35 26396.75 27399.09 16198.68 256
pm-mvs197.68 25697.28 27198.88 19899.06 26598.62 18799.50 12899.45 18296.32 27897.87 31299.79 8892.47 27999.35 26397.54 22493.54 32598.67 263
RRT_test8_iter0597.72 24897.60 22998.08 27899.23 22796.08 30499.63 6299.49 13097.54 17698.94 22599.81 6287.99 34099.35 26399.21 4196.51 26798.81 223
OurMVSNet-221017-097.88 21897.77 21198.19 27398.71 31296.53 29199.88 199.00 29997.79 14898.78 24999.94 391.68 29699.35 26397.21 24596.99 25998.69 251
pmmvs696.53 29396.09 29697.82 29798.69 31495.47 31799.37 19299.47 16093.46 33597.41 32199.78 9587.06 34599.33 26796.92 26892.70 33598.65 273
V4298.06 19297.79 20698.86 20598.98 27898.84 16899.69 3799.34 23896.53 26399.30 15199.37 26094.67 21999.32 26897.57 22194.66 30898.42 315
lessismore_v097.79 29998.69 31495.44 31994.75 36395.71 34399.87 2088.69 33199.32 26895.89 29394.93 30698.62 285
OpenMVS_ROBcopyleft92.34 2094.38 31993.70 32396.41 32997.38 34393.17 34799.06 26898.75 32286.58 35294.84 34798.26 34281.53 35799.32 26889.01 34997.87 22196.76 351
v897.95 21197.63 22798.93 18498.95 28298.81 17499.80 1799.41 20396.03 30399.10 19699.42 24494.92 20399.30 27196.94 26594.08 31998.66 271
v192192097.80 23597.45 24598.84 20998.80 29898.53 19499.52 11899.34 23896.15 29599.24 16799.47 23393.98 24399.29 27295.40 30595.13 30198.69 251
anonymousdsp98.44 15698.28 16498.94 18298.50 32898.96 15299.77 2499.50 12297.07 22398.87 23699.77 10294.76 21499.28 27398.66 11397.60 22898.57 300
MVSFormer99.17 7599.12 6999.29 14399.51 15298.94 15799.88 199.46 17097.55 17399.80 2499.65 15997.39 11999.28 27399.03 5799.85 5899.65 113
test_djsdf98.67 14698.57 14798.98 17698.70 31398.91 16199.88 199.46 17097.55 17399.22 17299.88 1595.73 17799.28 27399.03 5797.62 22798.75 235
cascas97.69 25497.43 25398.48 24398.60 32397.30 25198.18 35099.39 21392.96 33998.41 28898.78 32893.77 24999.27 27698.16 16898.61 18798.86 220
v14419297.92 21597.60 22998.87 20298.83 29798.65 18499.55 10999.34 23896.20 28899.32 14899.40 25294.36 23099.26 27796.37 28795.03 30398.70 247
v2v48298.06 19297.77 21198.92 18698.90 28598.82 17299.57 9399.36 22996.65 25399.19 18199.35 26694.20 23599.25 27897.72 20694.97 30498.69 251
v124097.69 25497.32 26898.79 21698.85 29598.43 20799.48 14499.36 22996.11 29899.27 15999.36 26393.76 25099.24 27994.46 31895.23 29898.70 247
v114497.98 20797.69 22098.85 20898.87 29198.66 18399.54 11299.35 23496.27 28299.23 17199.35 26694.67 21999.23 28096.73 27595.16 30098.68 256
v1097.85 22397.52 23698.86 20598.99 27598.67 18299.75 2899.41 20395.70 30698.98 21999.41 24894.75 21599.23 28096.01 29294.63 30998.67 263
WR-MVS_H98.13 18597.87 20298.90 19299.02 27298.84 16899.70 3599.59 4397.27 20398.40 28999.19 29695.53 18399.23 28098.34 15493.78 32298.61 294
miper_enhance_ethall98.16 18198.08 17798.41 25498.96 28197.72 24298.45 33899.32 25396.95 23498.97 22199.17 29797.06 13299.22 28397.86 19195.99 27998.29 323
GG-mvs-BLEND98.45 24998.55 32698.16 21899.43 16393.68 36697.23 32598.46 33689.30 32699.22 28395.43 30498.22 20697.98 340
FC-MVSNet-test98.75 14098.62 14099.15 16099.08 26299.45 9499.86 599.60 4098.23 9798.70 26199.82 4996.80 13999.22 28399.07 5596.38 27098.79 226
UniMVSNet_NR-MVSNet98.22 17397.97 18898.96 17998.92 28498.98 14599.48 14499.53 8497.76 15198.71 25599.46 23796.43 15499.22 28398.57 12892.87 33398.69 251
DU-MVS98.08 19197.79 20698.96 17998.87 29198.98 14599.41 17299.45 18297.87 13698.71 25599.50 22194.82 20799.22 28398.57 12892.87 33398.68 256
cl-mvsnet____98.01 20397.84 20498.55 23799.25 22597.97 22798.71 32299.34 23896.47 27198.59 27899.54 20795.65 18199.21 28897.21 24595.77 28598.46 312
WR-MVS98.06 19297.73 21799.06 16598.86 29499.25 11499.19 24499.35 23497.30 20098.66 26499.43 24193.94 24499.21 28898.58 12694.28 31598.71 243
test_040296.64 29196.24 29397.85 29498.85 29596.43 29599.44 15799.26 26893.52 33396.98 33299.52 21488.52 33499.20 29092.58 34097.50 23897.93 343
SixPastTwentyTwo97.50 27197.33 26798.03 28198.65 31796.23 30199.77 2498.68 33397.14 21497.90 31199.93 490.45 31199.18 29197.00 25996.43 26998.67 263
cl-mvsnet297.85 22397.64 22698.48 24399.09 26097.87 23498.60 33199.33 24597.11 22098.87 23699.22 29292.38 28499.17 29298.21 16195.99 27998.42 315
bset_n11_16_dypcd98.16 18197.97 18898.73 22098.26 33398.28 21497.99 35398.01 34697.68 16099.10 19699.63 17395.68 17999.15 29398.78 9796.55 26598.75 235
IterMVS-SCA-FT97.82 23197.75 21598.06 28099.57 14096.36 29799.02 27999.49 13097.18 21198.71 25599.72 12892.72 26899.14 29497.44 23595.86 28498.67 263
pmmvs597.52 26897.30 27098.16 27598.57 32596.73 28499.27 22298.90 31396.14 29698.37 29199.53 21191.54 30299.14 29497.51 22795.87 28398.63 283
v14897.79 23697.55 23298.50 24098.74 30797.72 24299.54 11299.33 24596.26 28398.90 23199.51 21894.68 21899.14 29497.83 19493.15 33098.63 283
miper_ehance_all_eth98.18 17998.10 17398.41 25499.23 22797.72 24298.72 32199.31 25696.60 25998.88 23499.29 28197.29 12599.13 29797.60 21595.99 27998.38 320
NR-MVSNet97.97 21097.61 22899.02 17198.87 29199.26 11399.47 14999.42 20197.63 16697.08 33099.50 22195.07 19999.13 29797.86 19193.59 32498.68 256
IterMVS97.83 22897.77 21198.02 28399.58 13896.27 30099.02 27999.48 14297.22 20998.71 25599.70 13392.75 26599.13 29797.46 23296.00 27898.67 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CMPMVSbinary69.68 2394.13 32094.90 31291.84 33897.24 34780.01 36198.52 33599.48 14289.01 34991.99 35399.67 15285.67 34999.13 29795.44 30397.03 25896.39 353
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
eth_miper_zixun_eth98.05 19797.96 19098.33 26199.26 22197.38 25098.56 33499.31 25696.65 25398.88 23499.52 21496.58 14799.12 30197.39 23895.53 29398.47 308
pmmvs498.13 18597.90 19798.81 21398.61 32298.87 16498.99 28699.21 27796.44 27299.06 20799.58 19295.90 17199.11 30297.18 25196.11 27698.46 312
TransMVSNet (Re)97.15 28396.58 28798.86 20599.12 25398.85 16799.49 13898.91 31195.48 30897.16 32899.80 7693.38 25399.11 30294.16 32391.73 33898.62 285
ambc93.06 33692.68 35982.36 35898.47 33798.73 33095.09 34597.41 34755.55 36599.10 30496.42 28591.32 33997.71 346
Baseline_NR-MVSNet97.76 23897.45 24598.68 22599.09 26098.29 21299.41 17298.85 31795.65 30798.63 27299.67 15294.82 20799.10 30498.07 17992.89 33298.64 275
CP-MVSNet98.09 18997.78 20999.01 17298.97 28099.24 11599.67 4599.46 17097.25 20598.48 28499.64 16693.79 24899.06 30698.63 11694.10 31898.74 239
PS-CasMVS97.93 21297.59 23198.95 18198.99 27599.06 13899.68 4299.52 9097.13 21598.31 29599.68 14692.44 28399.05 30798.51 13794.08 31998.75 235
K. test v397.10 28596.79 28698.01 28498.72 31096.33 29899.87 497.05 35597.59 16896.16 33999.80 7688.71 33099.04 30896.69 27896.55 26598.65 273
new_pmnet96.38 29796.03 29797.41 31098.13 33695.16 32699.05 27099.20 27893.94 32897.39 32298.79 32691.61 30199.04 30890.43 34595.77 28598.05 334
cl-mvsnet198.01 20397.85 20398.48 24399.24 22697.95 23198.71 32299.35 23496.50 26498.60 27799.54 20795.72 17899.03 31097.21 24595.77 28598.46 312
IterMVS-LS98.46 15598.42 15498.58 23299.59 13698.00 22599.37 19299.43 19996.94 23699.07 20399.59 18997.87 10899.03 31098.32 15795.62 29098.71 243
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
our_test_397.65 26197.68 22197.55 30798.62 32094.97 32898.84 30999.30 26096.83 24398.19 30099.34 26997.01 13499.02 31295.00 31396.01 27798.64 275
Patchmtry97.75 24297.40 25698.81 21399.10 25898.87 16499.11 26199.33 24594.83 31998.81 24499.38 25794.33 23199.02 31296.10 28995.57 29198.53 302
N_pmnet94.95 31495.83 30292.31 33798.47 32979.33 36299.12 25592.81 36993.87 32997.68 31799.13 30293.87 24699.01 31491.38 34296.19 27498.59 298
CR-MVSNet98.17 18097.93 19598.87 20299.18 24098.49 20299.22 24199.33 24596.96 23299.56 9299.38 25794.33 23199.00 31594.83 31598.58 19099.14 189
cl_fuxian98.12 18798.04 18198.38 25899.30 21097.69 24598.81 31299.33 24596.67 25198.83 24299.34 26997.11 12998.99 31697.58 21795.34 29698.48 306
test0.0.03 197.71 25297.42 25498.56 23598.41 33197.82 23798.78 31598.63 33497.34 19698.05 30898.98 31994.45 22898.98 31795.04 31297.15 25798.89 219
PatchT97.03 28696.44 29098.79 21698.99 27598.34 21199.16 24799.07 29492.13 34199.52 10197.31 35194.54 22698.98 31788.54 35198.73 18699.03 206
GBi-Net97.68 25697.48 24098.29 26699.51 15297.26 25599.43 16399.48 14296.49 26599.07 20399.32 27690.26 31398.98 31797.10 25496.65 26198.62 285
test197.68 25697.48 24098.29 26699.51 15297.26 25599.43 16399.48 14296.49 26599.07 20399.32 27690.26 31398.98 31797.10 25496.65 26198.62 285
FMVSNet398.03 19897.76 21498.84 20999.39 18998.98 14599.40 18099.38 21996.67 25199.07 20399.28 28392.93 26098.98 31797.10 25496.65 26198.56 301
FMVSNet297.72 24897.36 26098.80 21599.51 15298.84 16899.45 15399.42 20196.49 26598.86 24199.29 28190.26 31398.98 31796.44 28496.56 26498.58 299
FMVSNet196.84 28896.36 29198.29 26699.32 20897.26 25599.43 16399.48 14295.11 31398.55 27999.32 27683.95 35298.98 31795.81 29596.26 27398.62 285
ppachtmachnet_test97.49 27497.45 24597.61 30498.62 32095.24 32298.80 31399.46 17096.11 29898.22 29999.62 17996.45 15298.97 32493.77 32595.97 28298.61 294
TranMVSNet+NR-MVSNet97.93 21297.66 22398.76 21998.78 30298.62 18799.65 5799.49 13097.76 15198.49 28399.60 18694.23 23498.97 32498.00 18192.90 33198.70 247
test_method91.10 32491.36 32790.31 34195.85 35373.72 36794.89 35999.25 27068.39 36195.82 34299.02 31480.50 35898.95 32693.64 32794.89 30798.25 326
ADS-MVSNet298.02 20098.07 18097.87 29399.33 20195.19 32499.23 23699.08 29296.24 28599.10 19699.67 15294.11 23998.93 32796.81 27199.05 16499.48 159
ET-MVSNet_ETH3D96.49 29495.64 30599.05 16799.53 14798.82 17298.84 30997.51 35397.63 16684.77 35699.21 29592.09 28798.91 32898.98 6292.21 33799.41 174
miper_lstm_enhance98.00 20597.91 19698.28 26999.34 20097.43 24998.88 30599.36 22996.48 26998.80 24699.55 20295.98 16498.91 32897.27 24195.50 29498.51 304
PEN-MVS97.76 23897.44 25098.72 22298.77 30598.54 19399.78 2299.51 10397.06 22598.29 29799.64 16692.63 27498.89 33098.09 17293.16 32998.72 241
testgi97.65 26197.50 23998.13 27799.36 19596.45 29499.42 17099.48 14297.76 15197.87 31299.45 23891.09 30798.81 33194.53 31798.52 19599.13 191
MIMVSNet97.73 24697.45 24598.57 23399.45 17597.50 24799.02 27998.98 30196.11 29899.41 12599.14 30190.28 31298.74 33295.74 29798.93 17399.47 164
LCM-MVSNet-Re97.83 22898.15 16996.87 32399.30 21092.25 35199.59 8198.26 34097.43 18996.20 33899.13 30296.27 15898.73 33398.17 16798.99 17099.64 120
DTE-MVSNet97.51 27097.19 27798.46 24898.63 31998.13 22199.84 699.48 14296.68 25097.97 31099.67 15292.92 26198.56 33496.88 27092.60 33698.70 247
UnsupCasMVSNet_bld93.53 32292.51 32596.58 32897.38 34393.82 34098.24 34799.48 14291.10 34693.10 35196.66 35274.89 36098.37 33594.03 32487.71 34697.56 349
Anonymous2024052196.20 30095.89 30197.13 31697.72 34094.96 32999.79 2199.29 26593.01 33897.20 32799.03 31289.69 32298.36 33691.16 34396.13 27598.07 332
MDA-MVSNet_test_wron95.45 30894.60 31498.01 28498.16 33597.21 25899.11 26199.24 27293.49 33480.73 36198.98 31993.02 25898.18 33794.22 32294.45 31298.64 275
UnsupCasMVSNet_eth96.44 29596.12 29597.40 31198.65 31795.65 31099.36 19699.51 10397.13 21596.04 34198.99 31688.40 33598.17 33896.71 27690.27 34198.40 318
KD-MVS_2432*160094.62 31593.72 32197.31 31297.19 34995.82 30898.34 34299.20 27895.00 31697.57 31898.35 33987.95 34198.10 33992.87 33677.00 35898.01 336
miper_refine_blended94.62 31593.72 32197.31 31297.19 34995.82 30898.34 34299.20 27895.00 31697.57 31898.35 33987.95 34198.10 33992.87 33677.00 35898.01 336
YYNet195.36 31094.51 31697.92 29097.89 33797.10 26099.10 26399.23 27393.26 33780.77 36099.04 31192.81 26498.02 34194.30 31994.18 31798.64 275
EU-MVSNet97.98 20798.03 18297.81 29898.72 31096.65 28899.66 5099.66 2798.09 11498.35 29399.82 4995.25 19598.01 34297.41 23795.30 29798.78 227
Gipumacopyleft90.99 32590.15 32893.51 33498.73 30890.12 35593.98 36099.45 18279.32 35792.28 35294.91 35569.61 36197.98 34387.42 35495.67 28992.45 357
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmmvs-eth3d95.34 31194.73 31397.15 31495.53 35695.94 30699.35 20299.10 28995.13 31193.55 34997.54 34688.15 33997.91 34494.58 31689.69 34497.61 347
PM-MVS92.96 32392.23 32695.14 33395.61 35489.98 35699.37 19298.21 34294.80 32095.04 34697.69 34565.06 36297.90 34594.30 31989.98 34397.54 350
MDA-MVSNet-bldmvs94.96 31393.98 31997.92 29098.24 33497.27 25399.15 25199.33 24593.80 33080.09 36299.03 31288.31 33697.86 34693.49 32994.36 31498.62 285
Patchmatch-RL test95.84 30595.81 30395.95 33195.61 35490.57 35498.24 34798.39 33995.10 31595.20 34498.67 33194.78 21097.77 34796.28 28890.02 34299.51 154
Anonymous2023120696.22 29896.03 29796.79 32597.31 34694.14 33899.63 6299.08 29296.17 29197.04 33199.06 30993.94 24497.76 34886.96 35695.06 30298.47 308
SD-MVS99.41 4299.52 699.05 16799.74 7099.68 4999.46 15299.52 9099.11 799.88 599.91 599.43 197.70 34998.72 10399.93 1099.77 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DSMNet-mixed97.25 28197.35 26296.95 32197.84 33893.61 34599.57 9396.63 35996.13 29798.87 23698.61 33494.59 22297.70 34995.08 31198.86 17999.55 141
pmmvs394.09 32193.25 32496.60 32794.76 35894.49 33498.92 30198.18 34489.66 34896.48 33698.06 34486.28 34697.33 35189.68 34887.20 34797.97 341
DIV-MVS_2432*160095.00 31294.34 31796.96 32097.07 35195.39 32099.56 10099.44 19195.11 31397.13 32997.32 35091.86 29197.27 35290.35 34681.23 35598.23 328
FMVSNet596.43 29696.19 29497.15 31499.11 25595.89 30799.32 20799.52 9094.47 32698.34 29499.07 30787.54 34497.07 35392.61 33995.72 28898.47 308
new-patchmatchnet94.48 31894.08 31895.67 33295.08 35792.41 35099.18 24599.28 26794.55 32593.49 35097.37 34987.86 34397.01 35491.57 34188.36 34597.61 347
LCM-MVSNet86.80 32785.22 33191.53 33987.81 36480.96 36098.23 34998.99 30071.05 35990.13 35596.51 35348.45 36896.88 35590.51 34485.30 34996.76 351
CL-MVSNet_2432*160094.49 31793.97 32096.08 33096.16 35293.67 34498.33 34499.38 21995.13 31197.33 32398.15 34392.69 27296.57 35688.67 35079.87 35697.99 339
MIMVSNet195.51 30795.04 31196.92 32297.38 34395.60 31199.52 11899.50 12293.65 33296.97 33399.17 29785.28 35096.56 35788.36 35295.55 29298.60 297
test20.0396.12 30295.96 29996.63 32697.44 34295.45 31899.51 12299.38 21996.55 26296.16 33999.25 28893.76 25096.17 35887.35 35594.22 31698.27 324
tmp_tt82.80 32981.52 33286.66 34266.61 37068.44 36892.79 36297.92 34768.96 36080.04 36399.85 2985.77 34896.15 35997.86 19143.89 36495.39 355
PMMVS286.87 32685.37 33091.35 34090.21 36283.80 35798.89 30497.45 35483.13 35691.67 35495.03 35448.49 36794.70 36085.86 35877.62 35795.54 354
PMVScopyleft70.75 2275.98 33474.97 33579.01 34870.98 36955.18 37093.37 36198.21 34265.08 36561.78 36693.83 35721.74 37392.53 36178.59 36091.12 34089.34 360
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS84.93 32885.65 32982.75 34686.77 36563.39 36998.35 34198.92 30874.11 35883.39 35898.98 31950.85 36692.40 36284.54 35994.97 30492.46 356
MVEpermissive76.82 2176.91 33374.31 33784.70 34385.38 36776.05 36696.88 35893.17 36767.39 36271.28 36489.01 36321.66 37487.69 36371.74 36272.29 36090.35 359
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 33079.88 33382.81 34590.75 36176.38 36597.69 35595.76 36266.44 36383.52 35792.25 35962.54 36487.16 36468.53 36361.40 36184.89 362
EMVS80.02 33179.22 33482.43 34791.19 36076.40 36497.55 35792.49 37066.36 36483.01 35991.27 36064.63 36385.79 36565.82 36460.65 36285.08 361
ANet_high77.30 33274.86 33684.62 34475.88 36877.61 36397.63 35693.15 36888.81 35064.27 36589.29 36236.51 36983.93 36675.89 36152.31 36392.33 358
wuyk23d40.18 33541.29 34036.84 34986.18 36649.12 37179.73 36322.81 37227.64 36625.46 36928.45 36921.98 37248.89 36755.80 36523.56 36712.51 365
test12339.01 33742.50 33928.53 35039.17 37120.91 37298.75 31819.17 37319.83 36838.57 36766.67 36533.16 37015.42 36837.50 36729.66 36649.26 363
testmvs39.17 33643.78 33825.37 35136.04 37216.84 37398.36 34026.56 37120.06 36738.51 36867.32 36429.64 37115.30 36937.59 36639.90 36543.98 364
uanet_test0.02 3410.03 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 3700.00 3750.00 3700.00 3680.00 3680.00 366
cdsmvs_eth3d_5k24.64 33832.85 3410.00 3520.00 3730.00 3740.00 36499.51 1030.00 3690.00 37099.56 19996.58 1470.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas8.27 34011.03 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 37099.01 160.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.02 3410.03 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.02 3410.03 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.02 3410.03 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.02 3410.03 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 3700.00 3750.00 3700.00 3680.00 3680.00 366
ab-mvs-re8.30 33911.06 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37099.58 1920.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.02 3410.03 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.27 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
RE-MVS-def99.34 2799.76 5299.82 2099.63 6299.52 9098.38 7899.76 3799.82 4998.75 5698.61 12099.81 8099.77 63
IU-MVS99.84 3299.88 799.32 25398.30 8999.84 1398.86 8199.85 5899.89 2
save fliter99.76 5299.59 6999.14 25399.40 20999.00 22
test072699.85 2599.89 399.62 6899.50 12299.10 899.86 1199.82 4998.94 31
GSMVS99.52 148
test_part299.81 4099.83 1499.77 33
sam_mvs194.86 20699.52 148
sam_mvs94.72 217
MTGPAbinary99.47 160
MTMP99.54 11298.88 315
test9_res97.49 22899.72 10599.75 69
agg_prior297.21 24599.73 10499.75 69
test_prior499.56 7498.99 286
test_prior298.96 29498.34 8499.01 21299.52 21498.68 6397.96 18399.74 101
新几何299.01 284
旧先验199.74 7099.59 6999.54 7399.69 14098.47 7899.68 11699.73 81
原ACMM298.95 298
test22299.75 6299.49 8898.91 30399.49 13096.42 27499.34 14699.65 15998.28 9499.69 11199.72 87
segment_acmp98.96 25
testdata198.85 30898.32 88
plane_prior799.29 21497.03 270
plane_prior699.27 21996.98 27492.71 270
plane_prior499.61 183
plane_prior397.00 27298.69 5699.11 193
plane_prior299.39 18498.97 30
plane_prior199.26 221
plane_prior96.97 27599.21 24398.45 7197.60 228
n20.00 374
nn0.00 374
door-mid98.05 345
test1199.35 234
door97.92 347
HQP5-MVS96.83 280
HQP-NCC99.19 23798.98 29098.24 9498.66 264
ACMP_Plane99.19 23798.98 29098.24 9498.66 264
BP-MVS97.19 249
HQP3-MVS99.39 21397.58 230
HQP2-MVS92.47 279
NP-MVS99.23 22796.92 27899.40 252
MDTV_nov1_ep13_2view95.18 32599.35 20296.84 24199.58 8995.19 19797.82 19599.46 166
ACMMP++_ref97.19 254
ACMMP++97.43 246
Test By Simon98.75 56