This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
SD-MVS99.41 4299.52 699.05 16499.74 7099.68 4999.46 14999.52 8899.11 799.88 599.91 599.43 197.70 34498.72 10099.93 1099.77 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.99.58 499.50 899.81 3899.91 199.66 5499.63 5999.39 21098.91 3799.78 3199.85 2999.36 299.94 5498.84 8299.88 3699.82 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2499.59 7899.51 10198.62 5899.79 2699.83 4299.28 399.97 1198.48 13699.90 2399.84 18
Skip Steuart: Steuart Systems R&D Blog.
OPU-MVS99.64 7799.56 14399.72 4299.60 7299.70 13299.27 499.42 24498.24 15799.80 8499.79 53
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 7299.48 13999.08 1199.91 199.81 6299.20 599.96 1998.91 6899.85 5899.79 53
test_241102_ONE99.84 3299.90 199.48 13999.07 1399.91 199.74 11699.20 599.76 174
MSLP-MVS++99.46 2499.47 999.44 12099.60 13399.16 12199.41 16999.71 1398.98 2799.45 10999.78 9599.19 799.54 22899.28 3099.84 6599.63 123
SMA-MVScopyleft99.44 3099.30 4099.85 2599.73 7599.83 1499.56 9799.47 15797.45 18299.78 3199.82 4999.18 899.91 9198.79 9199.89 3399.81 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2699.56 5599.02 1599.88 599.85 2999.18 899.96 1999.22 3599.92 1199.90 1
HPM-MVS_fast99.51 1499.40 1699.85 2599.91 199.79 3099.76 2599.56 5597.72 15399.76 3799.75 11099.13 1099.92 8099.07 5199.92 1199.85 14
PGM-MVS99.45 2699.31 3799.86 1899.87 1599.78 3799.58 8599.65 3297.84 13899.71 4699.80 7699.12 1199.97 1198.33 15299.87 4099.83 29
test_0728_THIRD98.99 2599.81 2299.80 7699.09 1299.96 1998.85 8099.90 2399.88 5
HFP-MVS99.49 1599.37 1999.86 1899.87 1599.80 2699.66 4799.67 2298.15 10299.68 5399.69 13999.06 1399.96 1998.69 10599.87 4099.84 18
#test#99.43 3399.29 4499.86 1899.87 1599.80 2699.55 10699.67 2297.83 13999.68 5399.69 13999.06 1399.96 1998.39 14499.87 4099.84 18
TSAR-MVS + GP.99.36 4999.36 2199.36 12699.67 10198.61 18699.07 26199.33 24299.00 2299.82 2099.81 6299.06 1399.84 13799.09 4999.42 13499.65 112
pcd_1.5k_mvsjas8.27 33511.03 3380.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 36599.01 160.00 3650.00 3630.00 3630.00 361
PS-MVSNAJss98.92 11498.92 9798.90 18998.78 29898.53 19199.78 2099.54 7098.07 11699.00 21299.76 10599.01 1699.37 25199.13 4597.23 24998.81 220
PS-MVSNAJ99.32 5399.32 3099.30 13799.57 13998.94 15498.97 28999.46 16798.92 3699.71 4699.24 28599.01 1699.98 699.35 2099.66 11798.97 210
EI-MVSNet-Vis-set99.58 499.56 399.64 7799.78 4499.15 12599.61 7199.45 17999.01 1899.89 499.82 4999.01 1699.92 8099.56 499.95 699.85 14
Regformer-199.53 1199.47 999.72 6199.71 8699.44 9299.49 13599.46 16798.95 3299.83 1799.76 10599.01 1699.93 6999.17 4199.87 4099.80 49
Regformer-299.54 999.47 999.75 5199.71 8699.52 8399.49 13599.49 12798.94 3399.83 1799.76 10599.01 1699.94 5499.15 4499.87 4099.80 49
Regformer-499.59 399.54 499.73 5899.76 5299.41 9599.58 8599.49 12799.02 1599.88 599.80 7699.00 2299.94 5499.45 1699.92 1199.84 18
EI-MVSNet-UG-set99.58 499.57 199.64 7799.78 4499.14 12699.60 7299.45 17999.01 1899.90 399.83 4298.98 2399.93 6999.59 199.95 699.86 11
Regformer-399.57 799.53 599.68 6599.76 5299.29 10799.58 8599.44 18899.01 1899.87 1099.80 7698.97 2499.91 9199.44 1899.92 1199.83 29
region2R99.48 1999.35 2499.87 1199.88 1199.80 2699.65 5499.66 2798.13 10499.66 6499.68 14598.96 2599.96 1998.62 11499.87 4099.84 18
segment_acmp98.96 25
CNVR-MVS99.42 3899.30 4099.78 4599.62 12699.71 4499.26 22799.52 8898.82 4399.39 12899.71 12898.96 2599.85 13298.59 12299.80 8499.77 63
xxxxxxxxxxxxxcwj99.43 3399.32 3099.75 5199.76 5299.59 6899.14 24999.53 8299.00 2299.71 4699.80 7698.95 2899.93 6998.19 15999.84 6599.74 73
SF-MVS99.38 4799.24 5599.79 4399.79 4299.68 4999.57 9099.54 7097.82 14499.71 4699.80 7698.95 2899.93 6998.19 15999.84 6599.74 73
ACMMPR99.49 1599.36 2199.86 1899.87 1599.79 3099.66 4799.67 2298.15 10299.67 5999.69 13998.95 2899.96 1998.69 10599.87 4099.84 18
test_241102_TWO99.48 13999.08 1199.88 599.81 6298.94 3199.96 1998.91 6899.84 6599.88 5
DVP-MVS99.57 799.47 999.88 699.85 2599.89 399.57 9099.37 22599.10 899.81 2299.80 7698.94 3199.96 1998.93 6599.86 5199.81 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.85 2599.89 399.62 6599.50 11999.10 899.86 1199.82 4998.94 31
xiu_mvs_v2_base99.26 6299.25 5499.29 14099.53 14798.91 15899.02 27599.45 17998.80 4799.71 4699.26 28398.94 3199.98 699.34 2499.23 14698.98 209
CP-MVS99.45 2699.32 3099.85 2599.83 3699.75 3899.69 3699.52 8898.07 11699.53 9699.63 17198.93 3599.97 1198.74 9699.91 1699.83 29
ZNCC-MVS99.47 2299.33 2899.87 1199.87 1599.81 2499.64 5799.67 2298.08 11599.55 9399.64 16598.91 3699.96 1998.72 10099.90 2399.82 36
MCST-MVS99.43 3399.30 4099.82 3599.79 4299.74 4199.29 21299.40 20698.79 4899.52 9899.62 17798.91 3699.90 10698.64 11299.75 9699.82 36
HPM-MVScopyleft99.42 3899.28 4899.83 3399.90 399.72 4299.81 1299.54 7097.59 16599.68 5399.63 17198.91 3699.94 5498.58 12399.91 1699.84 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testdata99.54 9299.75 6298.95 15199.51 10197.07 21999.43 11499.70 13298.87 3999.94 5497.76 19699.64 12099.72 86
APD-MVS_3200maxsize99.48 1999.35 2499.85 2599.76 5299.83 1499.63 5999.54 7098.36 7999.79 2699.82 4998.86 4099.95 4398.62 11499.81 8099.78 61
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4799.63 12099.59 6899.36 19399.46 16799.07 1399.79 2699.82 4998.85 4199.92 8098.68 10799.87 4099.82 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1499.10 6999.72 8099.40 17799.51 10197.53 17599.64 7099.78 9598.84 4299.91 9197.63 20999.82 78
CDPH-MVS99.13 7998.91 9999.80 4099.75 6299.71 4499.15 24799.41 20096.60 25599.60 8199.55 20098.83 4399.90 10697.48 22599.83 7299.78 61
ACMMP_NAP99.47 2299.34 2699.88 699.87 1599.86 1099.47 14699.48 13998.05 12199.76 3799.86 2398.82 4499.93 6998.82 8999.91 1699.84 18
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3699.68 1998.98 2799.37 13399.74 11698.81 4599.94 5498.79 9199.86 5199.84 18
X-MVStestdata96.55 28895.45 30399.87 1199.85 2599.83 1499.69 3699.68 1998.98 2799.37 13364.01 36398.81 4599.94 5498.79 9199.86 5199.84 18
MP-MVS-pluss99.37 4899.20 5999.88 699.90 399.87 999.30 20899.52 8897.18 20899.60 8199.79 8898.79 4799.95 4398.83 8599.91 1699.83 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mPP-MVS99.44 3099.30 4099.86 1899.88 1199.79 3099.69 3699.48 13998.12 10699.50 10199.75 11098.78 4899.97 1198.57 12599.89 3399.83 29
APD-MVScopyleft99.27 6099.08 7299.84 3299.75 6299.79 3099.50 12599.50 11997.16 21099.77 3399.82 4998.78 4899.94 5497.56 21899.86 5199.80 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TAPA-MVS97.07 1597.74 24297.34 26298.94 17999.70 9397.53 24399.25 22999.51 10191.90 33899.30 14699.63 17198.78 4899.64 21488.09 34899.87 4099.65 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TEST999.67 10199.65 5799.05 26699.41 20096.22 28398.95 21999.49 22298.77 5199.91 91
agg_prior199.01 10798.76 12099.76 5099.67 10199.62 6198.99 28299.40 20696.26 27998.87 23299.49 22298.77 5199.91 9197.69 20699.72 10399.75 69
train_agg99.02 10498.77 11899.77 4799.67 10199.65 5799.05 26699.41 20096.28 27698.95 21999.49 22298.76 5399.91 9197.63 20999.72 10399.75 69
test_899.67 10199.61 6399.03 27299.41 20096.28 27698.93 22399.48 22898.76 5399.91 91
API-MVS99.04 10199.03 7999.06 16299.40 18399.31 10599.55 10699.56 5598.54 6299.33 14399.39 25298.76 5399.78 16996.98 25799.78 8998.07 327
RE-MVS-def99.34 2699.76 5299.82 2099.63 5999.52 8898.38 7699.76 3799.82 4998.75 5698.61 11799.81 8099.77 63
DP-MVS Recon99.12 8598.95 9599.65 7299.74 7099.70 4699.27 21899.57 5096.40 27299.42 11799.68 14598.75 5699.80 16297.98 17899.72 10399.44 168
Test By Simon98.75 56
ACMMPcopyleft99.45 2699.32 3099.82 3599.89 899.67 5299.62 6599.69 1898.12 10699.63 7199.84 3898.73 5999.96 1998.55 13199.83 7299.81 41
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DPE-MVScopyleft99.46 2499.32 3099.91 299.78 4499.88 799.36 19399.51 10198.73 5299.88 599.84 3898.72 6099.96 1998.16 16499.87 4099.88 5
NCCC99.34 5199.19 6099.79 4399.61 13099.65 5799.30 20899.48 13998.86 3999.21 17099.63 17198.72 6099.90 10698.25 15699.63 12299.80 49
DeepPCF-MVS98.18 398.81 13099.37 1997.12 31399.60 13391.75 34898.61 32599.44 18899.35 199.83 1799.85 2998.70 6299.81 15799.02 5599.91 1699.81 41
SR-MVS99.43 3399.29 4499.86 1899.75 6299.83 1499.59 7899.62 3398.21 9799.73 4399.79 8898.68 6399.96 1998.44 14299.77 9299.79 53
test_prior399.21 6699.05 7499.68 6599.67 10199.48 8798.96 29099.56 5598.34 8199.01 20799.52 21298.68 6399.83 14697.96 17999.74 9999.74 73
test_prior298.96 29098.34 8199.01 20799.52 21298.68 6397.96 17999.74 99
DPM-MVS98.95 11298.71 12499.66 6899.63 12099.55 7598.64 32499.10 28497.93 13099.42 11799.55 20098.67 6699.80 16295.80 29299.68 11499.61 127
原ACMM199.65 7299.73 7599.33 10199.47 15797.46 17999.12 18699.66 15798.67 6699.91 9197.70 20599.69 10999.71 93
HPM-MVS++copyleft99.39 4699.23 5799.87 1199.75 6299.84 1399.43 16099.51 10198.68 5699.27 15499.53 20998.64 6899.96 1998.44 14299.80 8499.79 53
abl_699.44 3099.31 3799.83 3399.85 2599.75 3899.66 4799.59 4398.13 10499.82 2099.81 6298.60 6999.96 1998.46 14099.88 3699.79 53
ZD-MVS99.71 8699.79 3099.61 3596.84 23799.56 8999.54 20598.58 7099.96 1996.93 26299.75 96
PHI-MVS99.30 5599.17 6299.70 6499.56 14399.52 8399.58 8599.80 897.12 21499.62 7599.73 12398.58 7099.90 10698.61 11799.91 1699.68 102
test117299.43 3399.29 4499.85 2599.75 6299.82 2099.60 7299.56 5598.28 8799.74 4199.79 8898.53 7299.95 4398.55 13199.78 8999.79 53
SR-MVS-dyc-post99.45 2699.31 3799.85 2599.76 5299.82 2099.63 5999.52 8898.38 7699.76 3799.82 4998.53 7299.95 4398.61 11799.81 8099.77 63
GST-MVS99.40 4599.24 5599.85 2599.86 2199.79 3099.60 7299.67 2297.97 12799.63 7199.68 14598.52 7499.95 4398.38 14699.86 5199.81 41
ETH3D-3000-0.199.21 6699.02 8299.77 4799.73 7599.69 4799.38 18699.51 10197.45 18299.61 7799.75 11098.51 7599.91 9197.45 23099.83 7299.71 93
MVS_111021_LR99.41 4299.33 2899.65 7299.77 4999.51 8598.94 29699.85 698.82 4399.65 6899.74 11698.51 7599.80 16298.83 8599.89 3399.64 119
MVS_111021_HR99.41 4299.32 3099.66 6899.72 8099.47 8998.95 29499.85 698.82 4399.54 9499.73 12398.51 7599.74 17798.91 6899.88 3699.77 63
旧先验199.74 7099.59 6899.54 7099.69 13998.47 7899.68 11499.73 80
DELS-MVS99.48 1999.42 1399.65 7299.72 8099.40 9799.05 26699.66 2799.14 699.57 8899.80 7698.46 7999.94 5499.57 399.84 6599.60 129
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPR98.63 14798.34 15699.51 10599.40 18399.03 13798.80 30999.36 22696.33 27399.00 21299.12 30198.46 7999.84 13795.23 30599.37 14099.66 108
zzz-MVS99.49 1599.36 2199.89 499.90 399.86 1099.36 19399.47 15798.79 4899.68 5399.81 6298.43 8199.97 1198.88 7199.90 2399.83 29
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 4799.47 15798.79 4899.68 5399.81 6298.43 8199.97 1198.88 7199.90 2399.83 29
新几何199.75 5199.75 6299.59 6899.54 7096.76 24199.29 14999.64 16598.43 8199.94 5496.92 26499.66 11799.72 86
F-COLMAP99.19 6999.04 7799.64 7799.78 4499.27 11099.42 16799.54 7097.29 19899.41 12199.59 18798.42 8499.93 6998.19 15999.69 10999.73 80
ETV-MVS99.26 6299.21 5899.40 12299.46 16899.30 10699.56 9799.52 8898.52 6499.44 11399.27 28298.41 8599.86 12699.10 4899.59 12699.04 202
112199.09 9498.87 10499.75 5199.74 7099.60 6599.27 21899.48 13996.82 24099.25 16199.65 15898.38 8699.93 6997.53 22199.67 11699.73 80
test1299.75 5199.64 11799.61 6399.29 26299.21 17098.38 8699.89 11499.74 9999.74 73
CSCG99.32 5399.32 3099.32 13299.85 2598.29 20999.71 3299.66 2798.11 10899.41 12199.80 7698.37 8899.96 1998.99 5799.96 599.72 86
PAPM_NR99.04 10198.84 11099.66 6899.74 7099.44 9299.39 18199.38 21697.70 15599.28 15199.28 27998.34 8999.85 13296.96 25999.45 13299.69 98
TAMVS99.12 8599.08 7299.24 14899.46 16898.55 18999.51 11999.46 16798.09 11199.45 10999.82 4998.34 8999.51 22998.70 10298.93 17099.67 105
ETH3D cwj APD-0.1699.06 9898.84 11099.72 6199.51 15199.60 6599.23 23299.44 18897.04 22299.39 12899.67 15198.30 9199.92 8097.27 23799.69 10999.64 119
MP-MVScopyleft99.33 5299.15 6399.87 1199.88 1199.82 2099.66 4799.46 16798.09 11199.48 10599.74 11698.29 9299.96 1997.93 18299.87 4099.82 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test22299.75 6299.49 8698.91 29999.49 12796.42 27099.34 14299.65 15898.28 9399.69 10999.72 86
CS-MVS99.21 6699.13 6599.45 11599.54 14699.34 10099.71 3299.54 7098.26 9098.99 21499.24 28598.25 9499.88 11998.98 5899.63 12299.12 190
PLCcopyleft97.94 499.02 10498.85 10999.53 9899.66 11099.01 14099.24 23199.52 8896.85 23699.27 15499.48 22898.25 9499.91 9197.76 19699.62 12499.65 112
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MSP-MVS99.42 3899.27 5099.88 699.89 899.80 2699.67 4399.50 11998.70 5499.77 3399.49 22298.21 9699.95 4398.46 14099.77 9299.88 5
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
xiu_mvs_v1_base_debu99.29 5799.27 5099.34 12799.63 12098.97 14599.12 25199.51 10198.86 3999.84 1399.47 23198.18 9799.99 199.50 899.31 14199.08 196
xiu_mvs_v1_base99.29 5799.27 5099.34 12799.63 12098.97 14599.12 25199.51 10198.86 3999.84 1399.47 23198.18 9799.99 199.50 899.31 14199.08 196
xiu_mvs_v1_base_debi99.29 5799.27 5099.34 12799.63 12098.97 14599.12 25199.51 10198.86 3999.84 1399.47 23198.18 9799.99 199.50 899.31 14199.08 196
testtj99.12 8598.87 10499.86 1899.72 8099.79 3099.44 15499.51 10197.29 19899.59 8499.74 11698.15 10099.96 1996.74 27099.69 10999.81 41
EIA-MVS99.18 7199.09 7199.45 11599.49 16099.18 11899.67 4399.53 8297.66 16199.40 12699.44 23798.10 10199.81 15798.94 6399.62 12499.35 176
CNLPA99.14 7798.99 8799.59 8499.58 13799.41 9599.16 24399.44 18898.45 7099.19 17699.49 22298.08 10299.89 11497.73 20099.75 9699.48 158
114514_t98.93 11398.67 12899.72 6199.85 2599.53 8099.62 6599.59 4392.65 33699.71 4699.78 9598.06 10399.90 10698.84 8299.91 1699.74 73
CDS-MVSNet99.09 9499.03 7999.25 14699.42 17598.73 17599.45 15099.46 16798.11 10899.46 10899.77 10198.01 10499.37 25198.70 10298.92 17299.66 108
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MG-MVS99.13 7999.02 8299.45 11599.57 13998.63 18399.07 26199.34 23598.99 2599.61 7799.82 4997.98 10599.87 12397.00 25599.80 8499.85 14
EI-MVSNet98.67 14398.67 12898.68 22299.35 19297.97 22499.50 12599.38 21696.93 23399.20 17399.83 4297.87 10699.36 25598.38 14697.56 22998.71 239
IterMVS-LS98.46 15298.42 15198.58 22899.59 13598.00 22299.37 18999.43 19696.94 23299.07 19899.59 18797.87 10699.03 30698.32 15495.62 28798.71 239
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG98.98 10998.80 11599.53 9899.76 5299.19 11698.75 31499.55 6397.25 20299.47 10699.77 10197.82 10899.87 12396.93 26299.90 2399.54 142
OMC-MVS99.08 9699.04 7799.20 15199.67 10198.22 21399.28 21499.52 8898.07 11699.66 6499.81 6297.79 10999.78 16997.79 19399.81 8099.60 129
LS3D99.27 6099.12 6799.74 5699.18 23699.75 3899.56 9799.57 5098.45 7099.49 10499.85 2997.77 11099.94 5498.33 15299.84 6599.52 147
PVSNet_Blended_VisFu99.36 4999.28 4899.61 8299.86 2199.07 13499.47 14699.93 297.66 16199.71 4699.86 2397.73 11199.96 1999.47 1499.82 7899.79 53
131498.68 14298.54 14699.11 15998.89 28298.65 18199.27 21899.49 12796.89 23497.99 30599.56 19797.72 11299.83 14697.74 19999.27 14498.84 219
MVS_Test99.10 9398.97 9199.48 10999.49 16099.14 12699.67 4399.34 23597.31 19699.58 8699.76 10597.65 11399.82 15398.87 7599.07 16199.46 165
PVSNet_BlendedMVS98.86 11998.80 11599.03 16799.76 5298.79 17299.28 21499.91 397.42 18899.67 5999.37 25697.53 11499.88 11998.98 5897.29 24898.42 311
PVSNet_Blended99.08 9698.97 9199.42 12199.76 5298.79 17298.78 31199.91 396.74 24299.67 5999.49 22297.53 11499.88 11998.98 5899.85 5899.60 129
UA-Net99.42 3899.29 4499.80 4099.62 12699.55 7599.50 12599.70 1598.79 4899.77 3399.96 197.45 11699.96 1998.92 6799.90 2399.89 2
ETH3 D test640098.70 13998.35 15599.73 5899.69 9699.60 6599.16 24399.45 17995.42 30599.27 15499.60 18497.39 11799.91 9195.36 30399.83 7299.70 95
MVSFormer99.17 7399.12 6799.29 14099.51 15198.94 15499.88 199.46 16797.55 17099.80 2499.65 15897.39 11799.28 26999.03 5399.85 5899.65 112
lupinMVS99.13 7999.01 8699.46 11499.51 15198.94 15499.05 26699.16 27897.86 13499.80 2499.56 19797.39 11799.86 12698.94 6399.85 5899.58 137
DP-MVS99.16 7598.95 9599.78 4599.77 4999.53 8099.41 16999.50 11997.03 22499.04 20499.88 1597.39 11799.92 8098.66 11099.90 2399.87 10
sss99.17 7399.05 7499.53 9899.62 12698.97 14599.36 19399.62 3397.83 13999.67 5999.65 15897.37 12199.95 4399.19 3899.19 14999.68 102
mvs_anonymous99.03 10398.99 8799.16 15599.38 18798.52 19599.51 11999.38 21697.79 14599.38 13199.81 6297.30 12299.45 23499.35 2098.99 16799.51 153
miper_ehance_all_eth98.18 17698.10 17098.41 25099.23 22397.72 23998.72 31799.31 25396.60 25598.88 23099.29 27797.29 12399.13 29397.60 21195.99 27698.38 316
CPTT-MVS99.11 9098.90 10099.74 5699.80 4199.46 9099.59 7899.49 12797.03 22499.63 7199.69 13997.27 12499.96 1997.82 19199.84 6599.81 41
PMMVS98.80 13398.62 13899.34 12799.27 21598.70 17798.76 31399.31 25397.34 19399.21 17099.07 30397.20 12599.82 15398.56 12898.87 17599.52 147
EPP-MVSNet99.13 7998.99 8799.53 9899.65 11599.06 13599.81 1299.33 24297.43 18699.60 8199.88 1597.14 12699.84 13799.13 4598.94 16999.69 98
cl_fuxian98.12 18498.04 17898.38 25499.30 20697.69 24298.81 30899.33 24296.67 24798.83 23899.34 26597.11 12798.99 31297.58 21395.34 29398.48 302
canonicalmvs99.02 10498.86 10899.51 10599.42 17599.32 10299.80 1699.48 13998.63 5799.31 14598.81 32097.09 12899.75 17699.27 3297.90 21799.47 163
MAR-MVS98.86 11998.63 13399.54 9299.37 18999.66 5499.45 15099.54 7096.61 25399.01 20799.40 24897.09 12899.86 12697.68 20899.53 13099.10 191
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
miper_enhance_ethall98.16 17898.08 17498.41 25098.96 27797.72 23998.45 33499.32 25096.95 23098.97 21799.17 29397.06 13099.22 27997.86 18795.99 27698.29 319
jason99.13 7999.03 7999.45 11599.46 16898.87 16199.12 25199.26 26598.03 12499.79 2699.65 15897.02 13199.85 13299.02 5599.90 2399.65 112
jason: jason.
our_test_397.65 25897.68 21897.55 30398.62 31694.97 32498.84 30599.30 25796.83 23998.19 29699.34 26597.01 13299.02 30895.00 30996.01 27498.64 271
MVS97.28 27696.55 28499.48 10998.78 29898.95 15199.27 21899.39 21083.53 35198.08 30099.54 20596.97 13399.87 12394.23 31799.16 15099.63 123
Fast-Effi-MVS+-dtu98.77 13698.83 11498.60 22599.41 17896.99 26999.52 11599.49 12798.11 10899.24 16299.34 26596.96 13499.79 16597.95 18199.45 13299.02 205
1112_ss98.98 10998.77 11899.59 8499.68 10099.02 13899.25 22999.48 13997.23 20599.13 18499.58 19096.93 13599.90 10698.87 7598.78 18199.84 18
WTY-MVS99.06 9898.88 10399.61 8299.62 12699.16 12199.37 18999.56 5598.04 12299.53 9699.62 17796.84 13699.94 5498.85 8098.49 19499.72 86
FC-MVSNet-test98.75 13798.62 13899.15 15799.08 25899.45 9199.86 599.60 4098.23 9498.70 25799.82 4996.80 13799.22 27999.07 5196.38 26798.79 222
Effi-MVS+-dtu98.78 13498.89 10298.47 24399.33 19796.91 27599.57 9099.30 25798.47 6799.41 12198.99 31196.78 13899.74 17798.73 9899.38 13698.74 235
mvs-test198.86 11998.84 11098.89 19299.33 19797.77 23699.44 15499.30 25798.47 6799.10 19199.43 23996.78 13899.95 4398.73 9899.02 16598.96 212
Test_1112_low_res98.89 11598.66 13199.57 8899.69 9698.95 15199.03 27299.47 15796.98 22699.15 18299.23 28796.77 14099.89 11498.83 8598.78 18199.86 11
FIs98.78 13498.63 13399.23 15099.18 23699.54 7799.83 999.59 4398.28 8798.79 24499.81 6296.75 14199.37 25199.08 5096.38 26798.78 223
PVSNet96.02 1798.85 12798.84 11098.89 19299.73 7597.28 24998.32 34199.60 4097.86 13499.50 10199.57 19496.75 14199.86 12698.56 12899.70 10899.54 142
nrg03098.64 14698.42 15199.28 14399.05 26499.69 4799.81 1299.46 16798.04 12299.01 20799.82 4996.69 14399.38 24899.34 2494.59 30698.78 223
CHOSEN 280x42099.12 8599.13 6599.08 16099.66 11097.89 23098.43 33599.71 1398.88 3899.62 7599.76 10596.63 14499.70 20099.46 1599.99 199.66 108
eth_miper_zixun_eth98.05 19497.96 18798.33 25799.26 21797.38 24798.56 33099.31 25396.65 24998.88 23099.52 21296.58 14599.12 29797.39 23495.53 29098.47 304
cdsmvs_eth3d_5k24.64 33332.85 3360.00 3470.00 3680.00 3690.00 35999.51 1010.00 3640.00 36599.56 19796.58 1450.00 3650.00 3630.00 3630.00 361
IS-MVSNet99.05 10098.87 10499.57 8899.73 7599.32 10299.75 2699.20 27398.02 12599.56 8999.86 2396.54 14799.67 20598.09 16899.13 15499.73 80
diffmvs99.14 7799.02 8299.51 10599.61 13098.96 14999.28 21499.49 12798.46 6999.72 4599.71 12896.50 14899.88 11999.31 2799.11 15599.67 105
CANet99.25 6499.14 6499.59 8499.41 17899.16 12199.35 19999.57 5098.82 4399.51 10099.61 18196.46 14999.95 4399.59 199.98 299.65 112
ppachtmachnet_test97.49 27097.45 24297.61 30098.62 31695.24 31898.80 30999.46 16796.11 29498.22 29599.62 17796.45 15098.97 32093.77 32195.97 27998.61 290
HY-MVS97.30 798.85 12798.64 13299.47 11299.42 17599.08 13399.62 6599.36 22697.39 19199.28 15199.68 14596.44 15199.92 8098.37 14898.22 20399.40 173
UniMVSNet_NR-MVSNet98.22 17097.97 18598.96 17698.92 28098.98 14299.48 14199.53 8297.76 14898.71 25199.46 23596.43 15299.22 27998.57 12592.87 32998.69 247
Effi-MVS+98.81 13098.59 14399.48 10999.46 16899.12 13098.08 34799.50 11997.50 17899.38 13199.41 24596.37 15399.81 15799.11 4798.54 19199.51 153
AdaColmapbinary99.01 10798.80 11599.66 6899.56 14399.54 7799.18 24199.70 1598.18 10199.35 13999.63 17196.32 15499.90 10697.48 22599.77 9299.55 140
UniMVSNet (Re)98.29 16798.00 18299.13 15899.00 27099.36 9999.49 13599.51 10197.95 12898.97 21799.13 29896.30 15599.38 24898.36 15093.34 32298.66 267
LCM-MVSNet-Re97.83 22598.15 16696.87 31999.30 20692.25 34799.59 7898.26 33597.43 18696.20 33499.13 29896.27 15698.73 32898.17 16398.99 16799.64 119
PAPM97.59 26197.09 27699.07 16199.06 26198.26 21298.30 34299.10 28494.88 31498.08 30099.34 26596.27 15699.64 21489.87 34298.92 17299.31 180
Fast-Effi-MVS+98.70 13998.43 15099.51 10599.51 15199.28 10899.52 11599.47 15796.11 29499.01 20799.34 26596.20 15899.84 13797.88 18598.82 17899.39 174
EPNet_dtu98.03 19597.96 18798.23 26798.27 32895.54 31199.23 23298.75 31799.02 1597.82 31099.71 12896.11 15999.48 23093.04 32999.65 11999.69 98
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline99.15 7699.02 8299.53 9899.66 11099.14 12699.72 3099.48 13998.35 8099.42 11799.84 3896.07 16099.79 16599.51 799.14 15399.67 105
D2MVS98.41 15798.50 14798.15 27299.26 21796.62 28599.40 17799.61 3597.71 15498.98 21599.36 25996.04 16199.67 20598.70 10297.41 24498.15 325
miper_lstm_enhance98.00 20297.91 19398.28 26599.34 19697.43 24698.88 30199.36 22696.48 26598.80 24299.55 20095.98 16298.91 32397.27 23795.50 29198.51 300
EPNet98.86 11998.71 12499.30 13797.20 34498.18 21499.62 6598.91 30699.28 298.63 26899.81 6295.96 16399.99 199.24 3499.72 10399.73 80
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
AllTest98.87 11698.72 12299.31 13399.86 2198.48 20199.56 9799.61 3597.85 13699.36 13699.85 2995.95 16499.85 13296.66 27699.83 7299.59 133
TestCases99.31 13399.86 2198.48 20199.61 3597.85 13699.36 13699.85 2995.95 16499.85 13296.66 27699.83 7299.59 133
3Dnovator97.25 999.24 6599.05 7499.81 3899.12 24999.66 5499.84 699.74 1099.09 1098.92 22499.90 795.94 16699.98 698.95 6299.92 1199.79 53
casdiffmvs99.13 7998.98 9099.56 9099.65 11599.16 12199.56 9799.50 11998.33 8499.41 12199.86 2395.92 16799.83 14699.45 1699.16 15099.70 95
RPSCF98.22 17098.62 13896.99 31499.82 3791.58 34999.72 3099.44 18896.61 25399.66 6499.89 1095.92 16799.82 15397.46 22899.10 15899.57 138
pmmvs498.13 18297.90 19498.81 21098.61 31898.87 16198.99 28299.21 27296.44 26899.06 20299.58 19095.90 16999.11 29897.18 24796.11 27398.46 308
HyFIR lowres test99.11 9098.92 9799.65 7299.90 399.37 9899.02 27599.91 397.67 16099.59 8499.75 11095.90 16999.73 18499.53 599.02 16599.86 11
COLMAP_ROBcopyleft97.56 698.86 11998.75 12199.17 15499.88 1198.53 19199.34 20299.59 4397.55 17098.70 25799.89 1095.83 17199.90 10698.10 16799.90 2399.08 196
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS98.35 299.30 5599.19 6099.64 7799.82 3799.23 11499.62 6599.55 6398.94 3399.63 7199.95 295.82 17299.94 5499.37 1999.97 399.73 80
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
QAPM98.67 14398.30 16099.80 4099.20 23199.67 5299.77 2299.72 1194.74 31798.73 24999.90 795.78 17399.98 696.96 25999.88 3699.76 68
BH-untuned98.42 15598.36 15398.59 22699.49 16096.70 28199.27 21899.13 28297.24 20498.80 24299.38 25395.75 17499.74 17797.07 25399.16 15099.33 179
test_djsdf98.67 14398.57 14498.98 17398.70 30998.91 15899.88 199.46 16797.55 17099.22 16799.88 1595.73 17599.28 26999.03 5397.62 22498.75 231
cl-mvsnet198.01 20097.85 20098.48 23999.24 22297.95 22898.71 31899.35 23196.50 26098.60 27399.54 20595.72 17699.03 30697.21 24195.77 28298.46 308
bset_n11_16_dypcd98.16 17897.97 18598.73 21798.26 32998.28 21197.99 34998.01 34197.68 15799.10 19199.63 17195.68 17799.15 28998.78 9496.55 26298.75 231
3Dnovator+97.12 1399.18 7198.97 9199.82 3599.17 24299.68 4999.81 1299.51 10199.20 498.72 25099.89 1095.68 17799.97 1198.86 7899.86 5199.81 41
cl-mvsnet_98.01 20097.84 20198.55 23399.25 22197.97 22498.71 31899.34 23596.47 26798.59 27499.54 20595.65 17999.21 28497.21 24195.77 28298.46 308
VNet99.11 9098.90 10099.73 5899.52 14999.56 7399.41 16999.39 21099.01 1899.74 4199.78 9595.56 18099.92 8099.52 698.18 20799.72 86
WR-MVS_H98.13 18297.87 19998.90 18999.02 26898.84 16599.70 3499.59 4397.27 20098.40 28599.19 29295.53 18199.23 27698.34 15193.78 31898.61 290
CHOSEN 1792x268899.19 6999.10 6999.45 11599.89 898.52 19599.39 18199.94 198.73 5299.11 18899.89 1095.50 18299.94 5499.50 899.97 399.89 2
Vis-MVSNet (Re-imp)98.87 11698.72 12299.31 13399.71 8698.88 16099.80 1699.44 18897.91 13299.36 13699.78 9595.49 18399.43 24397.91 18399.11 15599.62 125
PatchMatch-RL98.84 12998.62 13899.52 10399.71 8699.28 10899.06 26499.77 997.74 15299.50 10199.53 20995.41 18499.84 13797.17 24899.64 12099.44 168
RRT_MVS98.60 14898.44 14999.05 16498.88 28399.14 12699.49 13599.38 21697.76 14899.29 14999.86 2395.38 18599.36 25598.81 9097.16 25398.64 271
test_yl98.86 11998.63 13399.54 9299.49 16099.18 11899.50 12599.07 28998.22 9599.61 7799.51 21695.37 18699.84 13798.60 12098.33 19799.59 133
DCV-MVSNet98.86 11998.63 13399.54 9299.49 16099.18 11899.50 12599.07 28998.22 9599.61 7799.51 21695.37 18699.84 13798.60 12098.33 19799.59 133
tpmrst98.33 16398.48 14897.90 28899.16 24494.78 32899.31 20699.11 28397.27 20099.45 10999.59 18795.33 18899.84 13798.48 13698.61 18499.09 195
MVP-Stereo97.81 23097.75 21297.99 28297.53 33796.60 28698.96 29098.85 31297.22 20697.23 32199.36 25995.28 18999.46 23395.51 29899.78 8997.92 339
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CANet_DTU98.97 11198.87 10499.25 14699.33 19798.42 20699.08 26099.30 25799.16 599.43 11499.75 11095.27 19099.97 1198.56 12899.95 699.36 175
XVG-OURS98.73 13898.68 12798.88 19599.70 9397.73 23898.92 29799.55 6398.52 6499.45 10999.84 3895.27 19099.91 9198.08 17298.84 17799.00 206
BH-w/o98.00 20297.89 19898.32 25999.35 19296.20 29899.01 28098.90 30896.42 27098.38 28699.00 31095.26 19299.72 18896.06 28698.61 18499.03 203
EU-MVSNet97.98 20498.03 17997.81 29498.72 30696.65 28499.66 4799.66 2798.09 11198.35 28999.82 4995.25 19398.01 33797.41 23395.30 29498.78 223
MDTV_nov1_ep13_2view95.18 32199.35 19996.84 23799.58 8695.19 19497.82 19199.46 165
JIA-IIPM97.50 26897.02 27898.93 18198.73 30497.80 23599.30 20898.97 29791.73 33998.91 22594.86 35195.10 19599.71 19497.58 21397.98 21599.28 182
NR-MVSNet97.97 20797.61 22599.02 16898.87 28799.26 11199.47 14699.42 19897.63 16397.08 32699.50 21995.07 19699.13 29397.86 18793.59 32098.68 252
tpmvs97.98 20498.02 18197.84 29199.04 26594.73 32999.31 20699.20 27396.10 29898.76 24799.42 24294.94 19799.81 15796.97 25898.45 19598.97 210
hse-mvs397.70 25097.28 26898.97 17599.70 9397.27 25099.36 19399.45 17998.94 3399.66 6499.64 16594.93 19899.99 199.48 1384.36 34699.65 112
v897.95 20897.63 22498.93 18198.95 27898.81 17199.80 1699.41 20096.03 29999.10 19199.42 24294.92 19999.30 26796.94 26194.08 31598.66 267
PatchmatchNetpermissive98.31 16498.36 15398.19 26999.16 24495.32 31799.27 21898.92 30397.37 19299.37 13399.58 19094.90 20099.70 20097.43 23299.21 14799.54 142
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v7n97.87 21797.52 23398.92 18398.76 30298.58 18799.84 699.46 16796.20 28498.91 22599.70 13294.89 20199.44 23996.03 28793.89 31798.75 231
sam_mvs194.86 20299.52 147
DU-MVS98.08 18897.79 20398.96 17698.87 28798.98 14299.41 16999.45 17997.87 13398.71 25199.50 21994.82 20399.22 27998.57 12592.87 32998.68 252
Baseline_NR-MVSNet97.76 23597.45 24298.68 22299.09 25698.29 20999.41 16998.85 31295.65 30398.63 26899.67 15194.82 20399.10 30098.07 17592.89 32898.64 271
patchmatchnet-post98.70 32594.79 20599.74 177
Patchmatch-RL test95.84 30195.81 29995.95 32795.61 34990.57 35098.24 34398.39 33495.10 31195.20 33998.67 32694.78 20697.77 34296.28 28490.02 33899.51 153
alignmvs98.81 13098.56 14599.58 8799.43 17499.42 9499.51 11998.96 29998.61 5999.35 13998.92 31794.78 20699.77 17199.35 2098.11 21399.54 142
MDTV_nov1_ep1398.32 15899.11 25194.44 33199.27 21898.74 32097.51 17799.40 12699.62 17794.78 20699.76 17497.59 21298.81 180
Vis-MVSNetpermissive99.12 8598.97 9199.56 9099.78 4499.10 13199.68 4199.66 2798.49 6699.86 1199.87 2094.77 20999.84 13799.19 3899.41 13599.74 73
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
anonymousdsp98.44 15398.28 16198.94 17998.50 32498.96 14999.77 2299.50 11997.07 21998.87 23299.77 10194.76 21099.28 26998.66 11097.60 22598.57 296
v1097.85 22097.52 23398.86 20298.99 27198.67 17999.75 2699.41 20095.70 30298.98 21599.41 24594.75 21199.23 27696.01 28894.63 30598.67 259
OpenMVScopyleft96.50 1698.47 15198.12 16999.52 10399.04 26599.53 8099.82 1099.72 1194.56 32098.08 30099.88 1594.73 21299.98 697.47 22799.76 9599.06 201
sam_mvs94.72 213
v14897.79 23397.55 22998.50 23698.74 30397.72 23999.54 10999.33 24296.26 27998.90 22799.51 21694.68 21499.14 29097.83 19093.15 32698.63 279
v114497.98 20497.69 21798.85 20598.87 28798.66 18099.54 10999.35 23196.27 27899.23 16699.35 26294.67 21599.23 27696.73 27195.16 29798.68 252
V4298.06 18997.79 20398.86 20298.98 27498.84 16599.69 3699.34 23596.53 25999.30 14699.37 25694.67 21599.32 26497.57 21794.66 30498.42 311
test_post65.99 36194.65 21799.73 184
baseline198.31 16497.95 18999.38 12599.50 15898.74 17499.59 7898.93 30198.41 7499.14 18399.60 18494.59 21899.79 16598.48 13693.29 32399.61 127
DSMNet-mixed97.25 27797.35 25996.95 31797.84 33493.61 34199.57 9096.63 35496.13 29398.87 23298.61 32994.59 21897.70 34495.08 30798.86 17699.55 140
Patchmatch-test97.93 20997.65 22198.77 21599.18 23697.07 26199.03 27299.14 28196.16 28998.74 24899.57 19494.56 22099.72 18893.36 32599.11 15599.52 147
PCF-MVS97.08 1497.66 25797.06 27799.47 11299.61 13099.09 13298.04 34899.25 26791.24 34198.51 27799.70 13294.55 22199.91 9192.76 33399.85 5899.42 170
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PatchT97.03 28296.44 28698.79 21398.99 27198.34 20899.16 24399.07 28992.13 33799.52 9897.31 34694.54 22298.98 31388.54 34698.73 18399.03 203
CVMVSNet98.57 14998.67 12898.30 26199.35 19295.59 30899.50 12599.55 6398.60 6099.39 12899.83 4294.48 22399.45 23498.75 9598.56 19099.85 14
test-LLR98.06 18997.90 19498.55 23398.79 29597.10 25798.67 32097.75 34497.34 19398.61 27198.85 31894.45 22499.45 23497.25 23999.38 13699.10 191
test0.0.03 197.71 24997.42 25198.56 23198.41 32797.82 23498.78 31198.63 32997.34 19398.05 30498.98 31494.45 22498.98 31395.04 30897.15 25498.89 216
v14419297.92 21297.60 22698.87 19998.83 29398.65 18199.55 10699.34 23596.20 28499.32 14499.40 24894.36 22699.26 27396.37 28395.03 30098.70 243
CR-MVSNet98.17 17797.93 19298.87 19999.18 23698.49 19999.22 23799.33 24296.96 22899.56 8999.38 25394.33 22799.00 31194.83 31198.58 18799.14 187
Patchmtry97.75 23997.40 25398.81 21099.10 25498.87 16199.11 25799.33 24294.83 31598.81 24099.38 25394.33 22799.02 30896.10 28595.57 28898.53 298
tpm cat197.39 27397.36 25797.50 30599.17 24293.73 33799.43 16099.31 25391.27 34098.71 25199.08 30294.31 22999.77 17196.41 28298.50 19399.00 206
TranMVSNet+NR-MVSNet97.93 20997.66 22098.76 21698.78 29898.62 18499.65 5499.49 12797.76 14898.49 27999.60 18494.23 23098.97 32098.00 17792.90 32798.70 243
v2v48298.06 18997.77 20898.92 18398.90 28198.82 16999.57 9099.36 22696.65 24999.19 17699.35 26294.20 23199.25 27497.72 20294.97 30198.69 247
XVG-OURS-SEG-HR98.69 14198.62 13898.89 19299.71 8697.74 23799.12 25199.54 7098.44 7399.42 11799.71 12894.20 23199.92 8098.54 13398.90 17499.00 206
ab-mvs98.86 11998.63 13399.54 9299.64 11799.19 11699.44 15499.54 7097.77 14799.30 14699.81 6294.20 23199.93 6999.17 4198.82 17899.49 157
test_post199.23 23265.14 36294.18 23499.71 19497.58 213
ADS-MVSNet298.02 19798.07 17797.87 28999.33 19795.19 32099.23 23299.08 28796.24 28199.10 19199.67 15194.11 23598.93 32296.81 26799.05 16299.48 158
ADS-MVSNet98.20 17398.08 17498.56 23199.33 19796.48 28999.23 23299.15 27996.24 28199.10 19199.67 15194.11 23599.71 19496.81 26799.05 16299.48 158
RPMNet96.72 28695.90 29699.19 15299.18 23698.49 19999.22 23799.52 8888.72 34799.56 8997.38 34394.08 23799.95 4386.87 35298.58 18799.14 187
v119297.81 23097.44 24798.91 18798.88 28398.68 17899.51 11999.34 23596.18 28699.20 17399.34 26594.03 23899.36 25595.32 30495.18 29698.69 247
v192192097.80 23297.45 24298.84 20698.80 29498.53 19199.52 11599.34 23596.15 29199.24 16299.47 23193.98 23999.29 26895.40 30195.13 29898.69 247
Anonymous2023120696.22 29496.03 29396.79 32197.31 34294.14 33499.63 5999.08 28796.17 28797.04 32799.06 30593.94 24097.76 34386.96 35195.06 29998.47 304
WR-MVS98.06 18997.73 21499.06 16298.86 29099.25 11299.19 24099.35 23197.30 19798.66 26099.43 23993.94 24099.21 28498.58 12394.28 31198.71 239
N_pmnet94.95 31095.83 29892.31 33398.47 32579.33 35899.12 25192.81 36493.87 32597.68 31399.13 29893.87 24299.01 31091.38 33796.19 27198.59 294
MVSTER98.49 15098.32 15899.00 17199.35 19299.02 13899.54 10999.38 21697.41 18999.20 17399.73 12393.86 24399.36 25598.87 7597.56 22998.62 281
CP-MVSNet98.09 18697.78 20699.01 16998.97 27699.24 11399.67 4399.46 16797.25 20298.48 28099.64 16593.79 24499.06 30298.63 11394.10 31498.74 235
cascas97.69 25197.43 25098.48 23998.60 31997.30 24898.18 34699.39 21092.96 33598.41 28498.78 32393.77 24599.27 27298.16 16498.61 18498.86 217
v124097.69 25197.32 26598.79 21398.85 29198.43 20499.48 14199.36 22696.11 29499.27 15499.36 25993.76 24699.24 27594.46 31495.23 29598.70 243
test20.0396.12 29895.96 29596.63 32297.44 33895.45 31499.51 11999.38 21696.55 25896.16 33599.25 28493.76 24696.17 35387.35 35094.22 31298.27 320
baseline297.87 21797.55 22998.82 20899.18 23698.02 22199.41 16996.58 35596.97 22796.51 33199.17 29393.43 24899.57 22497.71 20399.03 16498.86 217
TransMVSNet (Re)97.15 27996.58 28398.86 20299.12 24998.85 16499.49 13598.91 30695.48 30497.16 32499.80 7693.38 24999.11 29894.16 31991.73 33498.62 281
tfpnnormal97.84 22397.47 23998.98 17399.20 23199.22 11599.64 5799.61 3596.32 27498.27 29499.70 13293.35 25099.44 23995.69 29495.40 29298.27 320
Anonymous2023121197.88 21597.54 23298.90 18999.71 8698.53 19199.48 14199.57 5094.16 32398.81 24099.68 14593.23 25199.42 24498.84 8294.42 30998.76 229
XXY-MVS98.38 16098.09 17399.24 14899.26 21799.32 10299.56 9799.55 6397.45 18298.71 25199.83 4293.23 25199.63 21998.88 7196.32 26998.76 229
jajsoiax98.43 15498.28 16198.88 19598.60 31998.43 20499.82 1099.53 8298.19 9898.63 26899.80 7693.22 25399.44 23999.22 3597.50 23598.77 227
MDA-MVSNet_test_wron95.45 30494.60 31098.01 28098.16 33197.21 25599.11 25799.24 26893.49 33080.73 35698.98 31493.02 25498.18 33294.22 31894.45 30898.64 271
ACMM97.58 598.37 16198.34 15698.48 23999.41 17897.10 25799.56 9799.45 17998.53 6399.04 20499.85 2993.00 25599.71 19498.74 9697.45 24098.64 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet398.03 19597.76 21198.84 20699.39 18698.98 14299.40 17799.38 21696.67 24799.07 19899.28 27992.93 25698.98 31397.10 25096.65 25898.56 297
DTE-MVSNet97.51 26797.19 27498.46 24498.63 31598.13 21899.84 699.48 13996.68 24697.97 30699.67 15192.92 25798.56 32996.88 26692.60 33298.70 243
CLD-MVS98.16 17898.10 17098.33 25799.29 21096.82 27898.75 31499.44 18897.83 13999.13 18499.55 20092.92 25799.67 20598.32 15497.69 22198.48 302
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BH-RMVSNet98.41 15798.08 17499.40 12299.41 17898.83 16899.30 20898.77 31697.70 15598.94 22199.65 15892.91 25999.74 17796.52 27899.55 12999.64 119
YYNet195.36 30694.51 31297.92 28697.89 33397.10 25799.10 25999.23 26993.26 33380.77 35599.04 30792.81 26098.02 33694.30 31594.18 31398.64 271
mvs_tets98.40 15998.23 16398.91 18798.67 31298.51 19799.66 4799.53 8298.19 9898.65 26699.81 6292.75 26199.44 23999.31 2797.48 23998.77 227
IterMVS97.83 22597.77 20898.02 27999.58 13796.27 29699.02 27599.48 13997.22 20698.71 25199.70 13292.75 26199.13 29397.46 22896.00 27598.67 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UGNet98.87 11698.69 12699.40 12299.22 22798.72 17699.44 15499.68 1999.24 399.18 17999.42 24292.74 26399.96 1999.34 2499.94 999.53 146
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS-SCA-FT97.82 22897.75 21298.06 27699.57 13996.36 29399.02 27599.49 12797.18 20898.71 25199.72 12792.72 26499.14 29097.44 23195.86 28198.67 259
SCA98.19 17498.16 16598.27 26699.30 20695.55 30999.07 26198.97 29797.57 16899.43 11499.57 19492.72 26499.74 17797.58 21399.20 14899.52 147
HQP_MVS98.27 16998.22 16498.44 24899.29 21096.97 27199.39 18199.47 15798.97 3099.11 18899.61 18192.71 26699.69 20397.78 19497.63 22298.67 259
plane_prior699.27 21596.98 27092.71 266
CL-MVSNet_2432*160094.49 31393.97 31696.08 32696.16 34893.67 34098.33 34099.38 21695.13 30797.33 31998.15 33892.69 26896.57 35188.67 34579.87 35197.99 334
dp97.75 23997.80 20297.59 30199.10 25493.71 33899.32 20498.88 31096.48 26599.08 19799.55 20092.67 26999.82 15396.52 27898.58 18799.24 183
PEN-MVS97.76 23597.44 24798.72 21998.77 30198.54 19099.78 2099.51 10197.06 22198.29 29399.64 16592.63 27098.89 32598.09 16893.16 32598.72 237
LPG-MVS_test98.22 17098.13 16898.49 23799.33 19797.05 26399.58 8599.55 6397.46 17999.24 16299.83 4292.58 27199.72 18898.09 16897.51 23398.68 252
LGP-MVS_train98.49 23799.33 19797.05 26399.55 6397.46 17999.24 16299.83 4292.58 27199.72 18898.09 16897.51 23398.68 252
VPA-MVSNet98.29 16797.95 18999.30 13799.16 24499.54 7799.50 12599.58 4998.27 8999.35 13999.37 25692.53 27399.65 21299.35 2094.46 30798.72 237
TR-MVS97.76 23597.41 25298.82 20899.06 26197.87 23198.87 30398.56 33196.63 25298.68 25999.22 28892.49 27499.65 21295.40 30197.79 21998.95 215
pm-mvs197.68 25397.28 26898.88 19599.06 26198.62 18499.50 12599.45 17996.32 27497.87 30899.79 8892.47 27599.35 25997.54 22093.54 32198.67 259
HQP2-MVS92.47 275
HQP-MVS98.02 19797.90 19498.37 25599.19 23396.83 27698.98 28699.39 21098.24 9198.66 26099.40 24892.47 27599.64 21497.19 24597.58 22798.64 271
EPMVS97.82 22897.65 22198.35 25698.88 28395.98 30199.49 13594.71 35997.57 16899.26 15999.48 22892.46 27899.71 19497.87 18699.08 16099.35 176
PS-CasMVS97.93 20997.59 22898.95 17898.99 27199.06 13599.68 4199.52 8897.13 21298.31 29199.68 14592.44 27999.05 30398.51 13494.08 31598.75 231
cl-mvsnet297.85 22097.64 22398.48 23999.09 25697.87 23198.60 32799.33 24297.11 21798.87 23299.22 28892.38 28099.17 28898.21 15895.99 27698.42 311
CostFormer97.72 24597.73 21497.71 29899.15 24794.02 33599.54 10999.02 29394.67 31899.04 20499.35 26292.35 28199.77 17198.50 13597.94 21699.34 178
OPM-MVS98.19 17498.10 17098.45 24598.88 28397.07 26199.28 21499.38 21698.57 6199.22 16799.81 6292.12 28299.66 20898.08 17297.54 23198.61 290
ET-MVSNet_ETH3D96.49 29095.64 30199.05 16499.53 14798.82 16998.84 30597.51 34897.63 16384.77 35199.21 29192.09 28398.91 32398.98 5892.21 33399.41 172
AUN-MVS96.88 28396.31 28898.59 22699.48 16697.04 26599.27 21899.22 27097.44 18598.51 27799.41 24591.97 28499.66 20897.71 20383.83 34799.07 200
ACMP97.20 1198.06 18997.94 19198.45 24599.37 18997.01 26799.44 15499.49 12797.54 17398.45 28199.79 8891.95 28599.72 18897.91 18397.49 23898.62 281
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous20240521198.30 16697.98 18499.26 14599.57 13998.16 21599.41 16998.55 33296.03 29999.19 17699.74 11691.87 28699.92 8099.16 4398.29 20299.70 95
DIV-MVS_2432*160095.00 30894.34 31396.96 31697.07 34795.39 31699.56 9799.44 18895.11 30997.13 32597.32 34591.86 28797.27 34790.35 34181.23 35098.23 323
tpm97.67 25697.55 22998.03 27799.02 26895.01 32399.43 16098.54 33396.44 26899.12 18699.34 26591.83 28899.60 22297.75 19896.46 26599.48 158
thres100view90097.76 23597.45 24298.69 22199.72 8097.86 23399.59 7898.74 32097.93 13099.26 15998.62 32791.75 28999.83 14693.22 32698.18 20798.37 317
thres600view797.86 21997.51 23598.92 18399.72 8097.95 22899.59 7898.74 32097.94 12999.27 15498.62 32791.75 28999.86 12693.73 32298.19 20698.96 212
LTVRE_ROB97.16 1298.02 19797.90 19498.40 25299.23 22396.80 27999.70 3499.60 4097.12 21498.18 29799.70 13291.73 29199.72 18898.39 14497.45 24098.68 252
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-097.88 21597.77 20898.19 26998.71 30896.53 28799.88 199.00 29497.79 14598.78 24599.94 391.68 29299.35 25997.21 24196.99 25698.69 247
tfpn200view997.72 24597.38 25598.72 21999.69 9697.96 22699.50 12598.73 32597.83 13999.17 18098.45 33291.67 29399.83 14693.22 32698.18 20798.37 317
thres40097.77 23497.38 25598.92 18399.69 9697.96 22699.50 12598.73 32597.83 13999.17 18098.45 33291.67 29399.83 14693.22 32698.18 20798.96 212
thisisatest051598.14 18197.79 20399.19 15299.50 15898.50 19898.61 32596.82 35296.95 23099.54 9499.43 23991.66 29599.86 12698.08 17299.51 13199.22 184
thres20097.61 26097.28 26898.62 22499.64 11798.03 22099.26 22798.74 32097.68 15799.09 19698.32 33691.66 29599.81 15792.88 33098.22 20398.03 330
new_pmnet96.38 29396.03 29397.41 30698.13 33295.16 32299.05 26699.20 27393.94 32497.39 31898.79 32191.61 29799.04 30490.43 34095.77 28298.05 329
pmmvs597.52 26597.30 26798.16 27198.57 32196.73 28099.27 21898.90 30896.14 29298.37 28799.53 20991.54 29899.14 29097.51 22395.87 28098.63 279
tttt051798.42 15598.14 16799.28 14399.66 11098.38 20799.74 2996.85 35197.68 15799.79 2699.74 11691.39 29999.89 11498.83 8599.56 12799.57 138
tpm297.44 27297.34 26297.74 29799.15 24794.36 33299.45 15098.94 30093.45 33298.90 22799.44 23791.35 30099.59 22397.31 23598.07 21499.29 181
MVS-HIRNet95.75 30295.16 30697.51 30499.30 20693.69 33998.88 30195.78 35685.09 35098.78 24592.65 35391.29 30199.37 25194.85 31099.85 5899.46 165
thisisatest053098.35 16298.03 17999.31 13399.63 12098.56 18899.54 10996.75 35397.53 17599.73 4399.65 15891.25 30299.89 11498.62 11499.56 12799.48 158
testgi97.65 25897.50 23698.13 27399.36 19196.45 29099.42 16799.48 13997.76 14897.87 30899.45 23691.09 30398.81 32694.53 31398.52 19299.13 189
ITE_SJBPF98.08 27499.29 21096.37 29298.92 30398.34 8198.83 23899.75 11091.09 30399.62 22095.82 29097.40 24598.25 322
DeepMVS_CXcopyleft93.34 33199.29 21082.27 35599.22 27085.15 34996.33 33399.05 30690.97 30599.73 18493.57 32397.77 22098.01 331
ACMH97.28 898.10 18597.99 18398.44 24899.41 17896.96 27399.60 7299.56 5598.09 11198.15 29899.91 590.87 30699.70 20098.88 7197.45 24098.67 259
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SixPastTwentyTwo97.50 26897.33 26498.03 27798.65 31396.23 29799.77 2298.68 32897.14 21197.90 30799.93 490.45 30799.18 28797.00 25596.43 26698.67 259
MIMVSNet97.73 24397.45 24298.57 22999.45 17397.50 24499.02 27598.98 29696.11 29499.41 12199.14 29790.28 30898.74 32795.74 29398.93 17099.47 163
GBi-Net97.68 25397.48 23798.29 26299.51 15197.26 25299.43 16099.48 13996.49 26199.07 19899.32 27290.26 30998.98 31397.10 25096.65 25898.62 281
test197.68 25397.48 23798.29 26299.51 15197.26 25299.43 16099.48 13996.49 26199.07 19899.32 27290.26 30998.98 31397.10 25096.65 25898.62 281
FMVSNet297.72 24597.36 25798.80 21299.51 15198.84 16599.45 15099.42 19896.49 26198.86 23799.29 27790.26 30998.98 31396.44 28096.56 26198.58 295
Anonymous2024052998.09 18697.68 21899.34 12799.66 11098.44 20399.40 17799.43 19693.67 32799.22 16799.89 1090.23 31299.93 6999.26 3398.33 19799.66 108
ACMH+97.24 1097.92 21297.78 20698.32 25999.46 16896.68 28399.56 9799.54 7098.41 7497.79 31299.87 2090.18 31399.66 20898.05 17697.18 25298.62 281
LF4IMVS97.52 26597.46 24197.70 29998.98 27495.55 30999.29 21298.82 31598.07 11698.66 26099.64 16589.97 31499.61 22197.01 25496.68 25797.94 337
GA-MVS97.85 22097.47 23999.00 17199.38 18797.99 22398.57 32899.15 27997.04 22298.90 22799.30 27589.83 31599.38 24896.70 27398.33 19799.62 125
test_part197.75 23997.24 27299.29 14099.59 13599.63 6099.65 5499.49 12796.17 28798.44 28299.69 13989.80 31699.47 23198.68 10793.66 31998.78 223
PVSNet_094.43 1996.09 29995.47 30297.94 28499.31 20594.34 33397.81 35099.70 1597.12 21497.46 31698.75 32489.71 31799.79 16597.69 20681.69 34999.68 102
Anonymous2024052196.20 29695.89 29797.13 31297.72 33694.96 32599.79 1999.29 26293.01 33497.20 32399.03 30889.69 31898.36 33191.16 33896.13 27298.07 327
XVG-ACMP-BASELINE97.83 22597.71 21698.20 26899.11 25196.33 29499.41 16999.52 8898.06 12099.05 20399.50 21989.64 31999.73 18497.73 20097.38 24698.53 298
gg-mvs-nofinetune96.17 29795.32 30598.73 21798.79 29598.14 21799.38 18694.09 36091.07 34398.07 30391.04 35689.62 32099.35 25996.75 26999.09 15998.68 252
DWT-MVSNet_test97.53 26497.40 25397.93 28599.03 26794.86 32799.57 9098.63 32996.59 25798.36 28898.79 32189.32 32199.74 17798.14 16698.16 21199.20 186
GG-mvs-BLEND98.45 24598.55 32298.16 21599.43 16093.68 36197.23 32198.46 33189.30 32299.22 27995.43 30098.22 20397.98 335
USDC97.34 27497.20 27397.75 29699.07 25995.20 31998.51 33299.04 29297.99 12698.31 29199.86 2389.02 32399.55 22795.67 29697.36 24798.49 301
MS-PatchMatch97.24 27897.32 26596.99 31498.45 32693.51 34298.82 30799.32 25097.41 18998.13 29999.30 27588.99 32499.56 22595.68 29599.80 8497.90 340
VPNet97.84 22397.44 24799.01 16999.21 22998.94 15499.48 14199.57 5098.38 7699.28 15199.73 12388.89 32599.39 24699.19 3893.27 32498.71 239
K. test v397.10 28196.79 28298.01 28098.72 30696.33 29499.87 497.05 35097.59 16596.16 33599.80 7688.71 32699.04 30496.69 27496.55 26298.65 269
lessismore_v097.79 29598.69 31095.44 31594.75 35895.71 33899.87 2088.69 32799.32 26495.89 28994.93 30398.62 281
TDRefinement95.42 30594.57 31197.97 28389.83 35896.11 29999.48 14198.75 31796.74 24296.68 33099.88 1588.65 32899.71 19498.37 14882.74 34898.09 326
TESTMET0.1,197.55 26297.27 27198.40 25298.93 27996.53 28798.67 32097.61 34796.96 22898.64 26799.28 27988.63 32999.45 23497.30 23699.38 13699.21 185
test_040296.64 28796.24 28997.85 29098.85 29196.43 29199.44 15499.26 26593.52 32996.98 32899.52 21288.52 33099.20 28692.58 33597.50 23597.93 338
UnsupCasMVSNet_eth96.44 29196.12 29197.40 30798.65 31395.65 30699.36 19399.51 10197.13 21296.04 33798.99 31188.40 33198.17 33396.71 27290.27 33798.40 314
MDA-MVSNet-bldmvs94.96 30993.98 31597.92 28698.24 33097.27 25099.15 24799.33 24293.80 32680.09 35799.03 30888.31 33297.86 34193.49 32494.36 31098.62 281
test-mter97.49 27097.13 27598.55 23398.79 29597.10 25798.67 32097.75 34496.65 24998.61 27198.85 31888.23 33399.45 23497.25 23999.38 13699.10 191
TinyColmap97.12 28096.89 28097.83 29299.07 25995.52 31298.57 32898.74 32097.58 16797.81 31199.79 8888.16 33499.56 22595.10 30697.21 25098.39 315
pmmvs-eth3d95.34 30794.73 30997.15 31095.53 35195.94 30299.35 19999.10 28495.13 30793.55 34497.54 34188.15 33597.91 33994.58 31289.69 34097.61 342
RRT_test8_iter0597.72 24597.60 22698.08 27499.23 22396.08 30099.63 5999.49 12797.54 17398.94 22199.81 6287.99 33699.35 25999.21 3796.51 26498.81 220
KD-MVS_2432*160094.62 31193.72 31797.31 30897.19 34595.82 30498.34 33899.20 27395.00 31297.57 31498.35 33487.95 33798.10 33492.87 33177.00 35398.01 331
miper_refine_blended94.62 31193.72 31797.31 30897.19 34595.82 30498.34 33899.20 27395.00 31297.57 31498.35 33487.95 33798.10 33492.87 33177.00 35398.01 331
new-patchmatchnet94.48 31494.08 31495.67 32895.08 35292.41 34699.18 24199.28 26494.55 32193.49 34597.37 34487.86 33997.01 34991.57 33688.36 34197.61 342
FMVSNet596.43 29296.19 29097.15 31099.11 25195.89 30399.32 20499.52 8894.47 32298.34 29099.07 30387.54 34097.07 34892.61 33495.72 28598.47 304
pmmvs696.53 28996.09 29297.82 29398.69 31095.47 31399.37 18999.47 15793.46 33197.41 31799.78 9587.06 34199.33 26396.92 26492.70 33198.65 269
pmmvs394.09 31793.25 32096.60 32394.76 35394.49 33098.92 29798.18 33989.66 34496.48 33298.06 33986.28 34297.33 34689.68 34387.20 34397.97 336
IB-MVS95.67 1896.22 29495.44 30498.57 22999.21 22996.70 28198.65 32397.74 34696.71 24497.27 32098.54 33086.03 34399.92 8098.47 13986.30 34499.10 191
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tmp_tt82.80 32481.52 32786.66 33766.61 36568.44 36392.79 35797.92 34268.96 35680.04 35899.85 2985.77 34496.15 35497.86 18743.89 35995.39 350
CMPMVSbinary69.68 2394.13 31694.90 30891.84 33497.24 34380.01 35798.52 33199.48 13989.01 34591.99 34899.67 15185.67 34599.13 29395.44 29997.03 25596.39 348
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet195.51 30395.04 30796.92 31897.38 33995.60 30799.52 11599.50 11993.65 32896.97 32999.17 29385.28 34696.56 35288.36 34795.55 28998.60 293
LFMVS97.90 21497.35 25999.54 9299.52 14999.01 14099.39 18198.24 33697.10 21899.65 6899.79 8884.79 34799.91 9199.28 3098.38 19699.69 98
FMVSNet196.84 28496.36 28798.29 26299.32 20497.26 25299.43 16099.48 13995.11 30998.55 27599.32 27283.95 34898.98 31395.81 29196.26 27098.62 281
VDD-MVS97.73 24397.35 25998.88 19599.47 16797.12 25699.34 20298.85 31298.19 9899.67 5999.85 2982.98 34999.92 8099.49 1298.32 20199.60 129
EG-PatchMatch MVS95.97 30095.69 30096.81 32097.78 33592.79 34599.16 24398.93 30196.16 28994.08 34399.22 28882.72 35099.47 23195.67 29697.50 23598.17 324
VDDNet97.55 26297.02 27899.16 15599.49 16098.12 21999.38 18699.30 25795.35 30699.68 5399.90 782.62 35199.93 6999.31 2798.13 21299.42 170
UniMVSNet_ETH3D97.32 27596.81 28198.87 19999.40 18397.46 24599.51 11999.53 8295.86 30198.54 27699.77 10182.44 35299.66 20898.68 10797.52 23299.50 156
OpenMVS_ROBcopyleft92.34 2094.38 31593.70 31996.41 32597.38 33993.17 34399.06 26498.75 31786.58 34894.84 34298.26 33781.53 35399.32 26489.01 34497.87 21896.76 346
MVS_030496.79 28596.52 28597.59 30199.22 22794.92 32699.04 27199.59 4396.49 26198.43 28398.99 31180.48 35499.39 24697.15 24999.27 14498.47 304
UnsupCasMVSNet_bld93.53 31892.51 32196.58 32497.38 33993.82 33698.24 34399.48 13991.10 34293.10 34696.66 34774.89 35598.37 33094.03 32087.71 34297.56 344
Gipumacopyleft90.99 32090.15 32393.51 33098.73 30490.12 35193.98 35599.45 17979.32 35392.28 34794.91 35069.61 35697.98 33887.42 34995.67 28692.45 352
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PM-MVS92.96 31992.23 32295.14 32995.61 34989.98 35299.37 18998.21 33794.80 31695.04 34197.69 34065.06 35797.90 34094.30 31589.98 33997.54 345
EMVS80.02 32679.22 32982.43 34291.19 35576.40 36097.55 35392.49 36566.36 35983.01 35491.27 35564.63 35885.79 36065.82 35960.65 35785.08 356
E-PMN80.61 32579.88 32882.81 34090.75 35676.38 36197.69 35195.76 35766.44 35883.52 35292.25 35462.54 35987.16 35968.53 35861.40 35684.89 357
ambc93.06 33292.68 35482.36 35498.47 33398.73 32595.09 34097.41 34255.55 36099.10 30096.42 28191.32 33597.71 341
FPMVS84.93 32385.65 32482.75 34186.77 36063.39 36498.35 33798.92 30374.11 35483.39 35398.98 31450.85 36192.40 35784.54 35494.97 30192.46 351
PMMVS286.87 32185.37 32591.35 33690.21 35783.80 35398.89 30097.45 34983.13 35291.67 34995.03 34948.49 36294.70 35585.86 35377.62 35295.54 349
LCM-MVSNet86.80 32285.22 32691.53 33587.81 35980.96 35698.23 34598.99 29571.05 35590.13 35096.51 34848.45 36396.88 35090.51 33985.30 34596.76 346
ANet_high77.30 32774.86 33184.62 33975.88 36377.61 35997.63 35293.15 36388.81 34664.27 36089.29 35736.51 36483.93 36175.89 35652.31 35892.33 353
test12339.01 33242.50 33428.53 34539.17 36620.91 36798.75 31419.17 36819.83 36338.57 36266.67 36033.16 36515.42 36337.50 36229.66 36149.26 358
testmvs39.17 33143.78 33325.37 34636.04 36716.84 36898.36 33626.56 36620.06 36238.51 36367.32 35929.64 36615.30 36437.59 36139.90 36043.98 359
wuyk23d40.18 33041.29 33536.84 34486.18 36149.12 36679.73 35822.81 36727.64 36125.46 36428.45 36421.98 36748.89 36255.80 36023.56 36212.51 360
PMVScopyleft70.75 2275.98 32974.97 33079.01 34370.98 36455.18 36593.37 35698.21 33765.08 36061.78 36193.83 35221.74 36892.53 35678.59 35591.12 33689.34 355
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive76.82 2176.91 32874.31 33284.70 33885.38 36276.05 36296.88 35493.17 36267.39 35771.28 35989.01 35821.66 36987.69 35871.74 35772.29 35590.35 354
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
uanet_test0.02 3360.03 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 3650.00 3700.00 3650.00 3630.00 3630.00 361
sosnet-low-res0.02 3360.03 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 3650.00 3700.00 3650.00 3630.00 3630.00 361
sosnet0.02 3360.03 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 3650.00 3700.00 3650.00 3630.00 3630.00 361
uncertanet0.02 3360.03 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 3650.00 3700.00 3650.00 3630.00 3630.00 361
Regformer0.02 3360.03 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 3650.00 3700.00 3650.00 3630.00 3630.00 361
ab-mvs-re8.30 33411.06 3370.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 36599.58 1900.00 3700.00 3650.00 3630.00 3630.00 361
uanet0.02 3360.03 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 3650.00 3700.00 3650.00 3630.00 3630.00 361
IU-MVS99.84 3299.88 799.32 25098.30 8699.84 1398.86 7899.85 5899.89 2
save fliter99.76 5299.59 6899.14 24999.40 20699.00 22
test_0728_SECOND99.91 299.84 3299.89 399.57 9099.51 10199.96 1998.93 6599.86 5199.88 5
GSMVS99.52 147
test_part299.81 4099.83 1499.77 33
MTGPAbinary99.47 157
MTMP99.54 10998.88 310
gm-plane-assit98.54 32392.96 34494.65 31999.15 29699.64 21497.56 218
test9_res97.49 22499.72 10399.75 69
agg_prior297.21 24199.73 10299.75 69
agg_prior99.67 10199.62 6199.40 20698.87 23299.91 91
test_prior499.56 7398.99 282
test_prior99.68 6599.67 10199.48 8799.56 5599.83 14699.74 73
旧先验298.96 29096.70 24599.47 10699.94 5498.19 159
新几何299.01 280
无先验98.99 28299.51 10196.89 23499.93 6997.53 22199.72 86
原ACMM298.95 294
testdata299.95 4396.67 275
testdata198.85 30498.32 85
plane_prior799.29 21097.03 266
plane_prior599.47 15799.69 20397.78 19497.63 22298.67 259
plane_prior499.61 181
plane_prior397.00 26898.69 5599.11 188
plane_prior299.39 18198.97 30
plane_prior199.26 217
plane_prior96.97 27199.21 23998.45 7097.60 225
n20.00 369
nn0.00 369
door-mid98.05 340
test1199.35 231
door97.92 342
HQP5-MVS96.83 276
HQP-NCC99.19 23398.98 28698.24 9198.66 260
ACMP_Plane99.19 23398.98 28698.24 9198.66 260
BP-MVS97.19 245
HQP4-MVS98.66 26099.64 21498.64 271
HQP3-MVS99.39 21097.58 227
NP-MVS99.23 22396.92 27499.40 248
ACMMP++_ref97.19 251
ACMMP++97.43 243