This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
SD-MVS99.41 4499.52 699.05 17099.74 7299.68 5499.46 15799.52 9199.11 1099.88 599.91 899.43 197.70 35698.72 10999.93 1099.77 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.99.58 599.50 899.81 4199.91 199.66 5999.63 6499.39 21698.91 4499.78 3499.85 3299.36 299.94 5798.84 9199.88 3699.82 38
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PC_three_145298.18 11099.84 1499.70 13899.31 398.52 34198.30 16599.80 8799.81 44
SteuartSystems-ACMMP99.54 1099.42 1499.87 1299.82 3899.81 2799.59 8499.51 10498.62 6599.79 2999.83 4599.28 499.97 1198.48 14599.90 2399.84 20
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVS++99.59 399.50 899.88 699.51 15799.88 899.87 599.51 10498.99 2999.88 599.81 6599.27 599.96 1998.85 8899.80 8799.81 44
OPU-MVS99.64 8099.56 14999.72 4799.60 7799.70 13899.27 599.42 25498.24 16799.80 8799.79 60
SED-MVS99.61 299.52 699.88 699.84 3399.90 299.60 7799.48 14599.08 1599.91 199.81 6599.20 799.96 1998.91 7499.85 5899.79 60
test_241102_ONE99.84 3399.90 299.48 14599.07 1799.91 199.74 12299.20 799.76 181
MSLP-MVS++99.46 2599.47 1099.44 12599.60 13999.16 12899.41 17799.71 1398.98 3299.45 12099.78 10099.19 999.54 23899.28 3799.84 6599.63 131
SMA-MVScopyleft99.44 3199.30 4399.85 2899.73 8099.83 1799.56 10599.47 16397.45 19299.78 3499.82 5299.18 1099.91 9498.79 10099.89 3399.81 44
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APDe-MVS99.66 199.57 199.92 199.77 5199.89 499.75 3199.56 5799.02 1999.88 599.85 3299.18 1099.96 1999.22 4299.92 1199.90 1
HPM-MVS_fast99.51 1599.40 1799.85 2899.91 199.79 3399.76 3099.56 5797.72 16399.76 4199.75 11699.13 1299.92 8399.07 5899.92 1199.85 16
PGM-MVS99.45 2799.31 3999.86 2199.87 1699.78 4099.58 9299.65 3297.84 14899.71 5199.80 8199.12 1399.97 1198.33 16199.87 4099.83 31
test_one_060199.81 4199.88 899.49 13298.97 3599.65 7599.81 6599.09 14
test_0728_THIRD98.99 2999.81 2499.80 8199.09 1499.96 1998.85 8899.90 2399.88 7
HFP-MVS99.49 1699.37 2199.86 2199.87 1699.80 2999.66 5299.67 2298.15 11299.68 5899.69 14699.06 1699.96 1998.69 11499.87 4099.84 20
#test#99.43 3599.29 4799.86 2199.87 1699.80 2999.55 11499.67 2297.83 14999.68 5899.69 14699.06 1699.96 1998.39 15399.87 4099.84 20
TSAR-MVS + GP.99.36 5199.36 2399.36 13299.67 10698.61 19499.07 27099.33 24899.00 2699.82 2299.81 6599.06 1699.84 14099.09 5699.42 14099.65 120
pcd_1.5k_mvsjas8.27 34411.03 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.27 37799.01 190.00 3770.00 3750.00 3750.00 373
PS-MVSNAJss98.92 11798.92 10098.90 19598.78 31098.53 19999.78 2599.54 7498.07 12699.00 22499.76 11199.01 1999.37 26199.13 5297.23 25998.81 231
PS-MVSNAJ99.32 5699.32 3299.30 14399.57 14598.94 16298.97 29899.46 17398.92 4399.71 5199.24 29699.01 1999.98 699.35 2799.66 12398.97 221
EI-MVSNet-Vis-set99.58 599.56 399.64 8099.78 4699.15 13299.61 7699.45 18599.01 2299.89 499.82 5299.01 1999.92 8399.56 599.95 699.85 16
Regformer-199.53 1299.47 1099.72 6499.71 9199.44 9999.49 14399.46 17398.95 3899.83 1999.76 11199.01 1999.93 7299.17 4899.87 4099.80 54
Regformer-299.54 1099.47 1099.75 5499.71 9199.52 8899.49 14399.49 13298.94 3999.83 1999.76 11199.01 1999.94 5799.15 5199.87 4099.80 54
Regformer-499.59 399.54 499.73 6199.76 5499.41 10299.58 9299.49 13299.02 1999.88 599.80 8199.00 2599.94 5799.45 1999.92 1199.84 20
EI-MVSNet-UG-set99.58 599.57 199.64 8099.78 4699.14 13399.60 7799.45 18599.01 2299.90 399.83 4598.98 2699.93 7299.59 299.95 699.86 13
Regformer-399.57 899.53 599.68 6899.76 5499.29 11399.58 9299.44 19499.01 2299.87 1199.80 8198.97 2799.91 9499.44 2199.92 1199.83 31
region2R99.48 2099.35 2699.87 1299.88 1299.80 2999.65 5999.66 2798.13 11499.66 6999.68 15398.96 2899.96 1998.62 12399.87 4099.84 20
segment_acmp98.96 28
CNVR-MVS99.42 4099.30 4399.78 4899.62 13199.71 4999.26 23699.52 9198.82 5099.39 13999.71 13498.96 2899.85 13498.59 13199.80 8799.77 70
xxxxxxxxxxxxxcwj99.43 3599.32 3299.75 5499.76 5499.59 7399.14 25899.53 8599.00 2699.71 5199.80 8198.95 3199.93 7298.19 17099.84 6599.74 81
SF-MVS99.38 4999.24 5999.79 4699.79 4499.68 5499.57 9899.54 7497.82 15499.71 5199.80 8198.95 3199.93 7298.19 17099.84 6599.74 81
ACMMPR99.49 1699.36 2399.86 2199.87 1699.79 3399.66 5299.67 2298.15 11299.67 6499.69 14698.95 3199.96 1998.69 11499.87 4099.84 20
test_241102_TWO99.48 14599.08 1599.88 599.81 6598.94 3499.96 1998.91 7499.84 6599.88 7
DVP-MVScopyleft99.57 899.47 1099.88 699.85 2699.89 499.57 9899.37 23199.10 1199.81 2499.80 8198.94 3499.96 1998.93 7199.86 5199.81 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.85 2699.89 499.62 7099.50 12499.10 1199.86 1299.82 5298.94 34
xiu_mvs_v2_base99.26 6699.25 5799.29 14699.53 15398.91 16699.02 28499.45 18598.80 5499.71 5199.26 29498.94 3499.98 699.34 3199.23 15598.98 220
CP-MVS99.45 2799.32 3299.85 2899.83 3799.75 4399.69 4099.52 9198.07 12699.53 10699.63 17998.93 3899.97 1198.74 10599.91 1699.83 31
ZNCC-MVS99.47 2399.33 3099.87 1299.87 1699.81 2799.64 6299.67 2298.08 12599.55 10399.64 17398.91 3999.96 1998.72 10999.90 2399.82 38
MCST-MVS99.43 3599.30 4399.82 3899.79 4499.74 4699.29 22099.40 21298.79 5599.52 10999.62 18598.91 3999.90 10998.64 12199.75 10299.82 38
HPM-MVScopyleft99.42 4099.28 5199.83 3699.90 499.72 4799.81 1599.54 7497.59 17599.68 5899.63 17998.91 3999.94 5798.58 13299.91 1699.84 20
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testdata99.54 9699.75 6498.95 15999.51 10497.07 23099.43 12599.70 13898.87 4299.94 5797.76 20799.64 12699.72 94
APD-MVS_3200maxsize99.48 2099.35 2699.85 2899.76 5499.83 1799.63 6499.54 7498.36 8899.79 2999.82 5298.86 4399.95 4698.62 12399.81 8399.78 68
DeepC-MVS_fast98.69 199.49 1699.39 1899.77 5099.63 12599.59 7399.36 20199.46 17399.07 1799.79 2999.82 5298.85 4499.92 8398.68 11699.87 4099.82 38
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1499.10 7299.72 8599.40 18599.51 10497.53 18599.64 7999.78 10098.84 4599.91 9497.63 22099.82 80
CDPH-MVS99.13 8298.91 10299.80 4399.75 6499.71 4999.15 25699.41 20696.60 26699.60 9199.55 20898.83 4699.90 10997.48 23699.83 7499.78 68
ACMMP_NAP99.47 2399.34 2899.88 699.87 1699.86 1399.47 15499.48 14598.05 13199.76 4199.86 2698.82 4799.93 7298.82 9899.91 1699.84 20
XVS99.53 1299.42 1499.87 1299.85 2699.83 1799.69 4099.68 1998.98 3299.37 14499.74 12298.81 4899.94 5798.79 10099.86 5199.84 20
X-MVStestdata96.55 29695.45 31199.87 1299.85 2699.83 1799.69 4099.68 1998.98 3299.37 14464.01 37498.81 4899.94 5798.79 10099.86 5199.84 20
MP-MVS-pluss99.37 5099.20 6399.88 699.90 499.87 1299.30 21699.52 9197.18 21899.60 9199.79 9398.79 5099.95 4698.83 9499.91 1699.83 31
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mPP-MVS99.44 3199.30 4399.86 2199.88 1299.79 3399.69 4099.48 14598.12 11699.50 11299.75 11698.78 5199.97 1198.57 13499.89 3399.83 31
APD-MVScopyleft99.27 6499.08 7599.84 3599.75 6499.79 3399.50 13399.50 12497.16 22099.77 3699.82 5298.78 5199.94 5797.56 22999.86 5199.80 54
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TAPA-MVS97.07 1597.74 24897.34 26898.94 18599.70 9897.53 25199.25 23899.51 10491.90 34999.30 15899.63 17998.78 5199.64 22488.09 36099.87 4099.65 120
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TEST999.67 10699.65 6299.05 27599.41 20696.22 29498.95 23099.49 23098.77 5499.91 94
agg_prior199.01 11098.76 12399.76 5399.67 10699.62 6698.99 29199.40 21296.26 29098.87 24399.49 23098.77 5499.91 9497.69 21799.72 10999.75 76
train_agg99.02 10798.77 12199.77 5099.67 10699.65 6299.05 27599.41 20696.28 28798.95 23099.49 23098.76 5699.91 9497.63 22099.72 10999.75 76
test_899.67 10699.61 6899.03 28199.41 20696.28 28798.93 23499.48 23698.76 5699.91 94
API-MVS99.04 10499.03 8299.06 16899.40 19599.31 11199.55 11499.56 5798.54 6999.33 15499.39 26398.76 5699.78 17596.98 26899.78 9498.07 339
RE-MVS-def99.34 2899.76 5499.82 2399.63 6499.52 9198.38 8499.76 4199.82 5298.75 5998.61 12699.81 8399.77 70
DP-MVS Recon99.12 8898.95 9899.65 7599.74 7299.70 5199.27 22799.57 5196.40 28399.42 12899.68 15398.75 5999.80 16797.98 18999.72 10999.44 177
Test By Simon98.75 59
ACMMPcopyleft99.45 2799.32 3299.82 3899.89 999.67 5799.62 7099.69 1898.12 11699.63 8099.84 4198.73 6299.96 1998.55 14099.83 7499.81 44
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DPE-MVScopyleft99.46 2599.32 3299.91 299.78 4699.88 899.36 20199.51 10498.73 5999.88 599.84 4198.72 6399.96 1998.16 17599.87 4099.88 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
NCCC99.34 5399.19 6499.79 4699.61 13599.65 6299.30 21699.48 14598.86 4699.21 18299.63 17998.72 6399.90 10998.25 16699.63 12899.80 54
DeepPCF-MVS98.18 398.81 13499.37 2197.12 32399.60 13991.75 36098.61 33499.44 19499.35 199.83 1999.85 3298.70 6599.81 16299.02 6299.91 1699.81 44
SR-MVS99.43 3599.29 4799.86 2199.75 6499.83 1799.59 8499.62 3398.21 10699.73 4799.79 9398.68 6699.96 1998.44 15199.77 9799.79 60
test_prior399.21 7099.05 7799.68 6899.67 10699.48 9398.96 29999.56 5798.34 9099.01 21999.52 22098.68 6699.83 15197.96 19099.74 10599.74 81
test_prior298.96 29998.34 9099.01 21999.52 22098.68 6697.96 19099.74 105
DPM-MVS98.95 11598.71 12799.66 7199.63 12599.55 8098.64 33399.10 29497.93 14099.42 12899.55 20898.67 6999.80 16795.80 30399.68 12099.61 135
原ACMM199.65 7599.73 8099.33 10799.47 16397.46 18999.12 19899.66 16598.67 6999.91 9497.70 21699.69 11599.71 101
HPM-MVS++copyleft99.39 4899.23 6199.87 1299.75 6499.84 1699.43 16899.51 10498.68 6399.27 16699.53 21798.64 7199.96 1998.44 15199.80 8799.79 60
abl_699.44 3199.31 3999.83 3699.85 2699.75 4399.66 5299.59 4398.13 11499.82 2299.81 6598.60 7299.96 1998.46 14999.88 3699.79 60
ZD-MVS99.71 9199.79 3399.61 3596.84 24899.56 9999.54 21398.58 7399.96 1996.93 27399.75 102
PHI-MVS99.30 5899.17 6699.70 6799.56 14999.52 8899.58 9299.80 897.12 22499.62 8499.73 12998.58 7399.90 10998.61 12699.91 1699.68 110
test117299.43 3599.29 4799.85 2899.75 6499.82 2399.60 7799.56 5798.28 9699.74 4599.79 9398.53 7599.95 4698.55 14099.78 9499.79 60
SR-MVS-dyc-post99.45 2799.31 3999.85 2899.76 5499.82 2399.63 6499.52 9198.38 8499.76 4199.82 5298.53 7599.95 4698.61 12699.81 8399.77 70
GST-MVS99.40 4799.24 5999.85 2899.86 2299.79 3399.60 7799.67 2297.97 13799.63 8099.68 15398.52 7799.95 4698.38 15599.86 5199.81 44
ETH3D-3000-0.199.21 7099.02 8599.77 5099.73 8099.69 5299.38 19499.51 10497.45 19299.61 8799.75 11698.51 7899.91 9497.45 24199.83 7499.71 101
MVS_111021_LR99.41 4499.33 3099.65 7599.77 5199.51 9098.94 30599.85 698.82 5099.65 7599.74 12298.51 7899.80 16798.83 9499.89 3399.64 127
MVS_111021_HR99.41 4499.32 3299.66 7199.72 8599.47 9598.95 30399.85 698.82 5099.54 10499.73 12998.51 7899.74 18598.91 7499.88 3699.77 70
旧先验199.74 7299.59 7399.54 7499.69 14698.47 8199.68 12099.73 88
DELS-MVS99.48 2099.42 1499.65 7599.72 8599.40 10499.05 27599.66 2799.14 699.57 9899.80 8198.46 8299.94 5799.57 499.84 6599.60 137
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPR98.63 15198.34 16099.51 11099.40 19599.03 14598.80 31899.36 23296.33 28499.00 22499.12 31198.46 8299.84 14095.23 31699.37 14999.66 116
zzz-MVS99.49 1699.36 2399.89 499.90 499.86 1399.36 20199.47 16398.79 5599.68 5899.81 6598.43 8499.97 1198.88 7799.90 2399.83 31
MTAPA99.52 1499.39 1899.89 499.90 499.86 1399.66 5299.47 16398.79 5599.68 5899.81 6598.43 8499.97 1198.88 7799.90 2399.83 31
新几何199.75 5499.75 6499.59 7399.54 7496.76 25299.29 16199.64 17398.43 8499.94 5796.92 27599.66 12399.72 94
F-COLMAP99.19 7299.04 8099.64 8099.78 4699.27 11699.42 17599.54 7497.29 20899.41 13299.59 19598.42 8799.93 7298.19 17099.69 11599.73 88
ETV-MVS99.26 6699.21 6299.40 12899.46 17899.30 11299.56 10599.52 9198.52 7199.44 12499.27 29398.41 8899.86 12899.10 5599.59 13299.04 213
112199.09 9798.87 10799.75 5499.74 7299.60 7099.27 22799.48 14596.82 25199.25 17399.65 16698.38 8999.93 7297.53 23299.67 12299.73 88
test1299.75 5499.64 12299.61 6899.29 27099.21 18298.38 8999.89 11799.74 10599.74 81
CSCG99.32 5699.32 3299.32 13899.85 2698.29 21799.71 3799.66 2798.11 11899.41 13299.80 8198.37 9199.96 1998.99 6499.96 599.72 94
CS-MVS99.34 5399.31 3999.43 12699.44 18599.47 9599.68 4599.56 5798.41 8199.62 8499.41 25598.35 9299.76 18199.52 799.76 10099.05 212
PAPM_NR99.04 10498.84 11399.66 7199.74 7299.44 9999.39 18999.38 22297.70 16599.28 16399.28 29098.34 9399.85 13496.96 27099.45 13899.69 106
TAMVS99.12 8899.08 7599.24 15499.46 17898.55 19799.51 12799.46 17398.09 12199.45 12099.82 5298.34 9399.51 23998.70 11198.93 18099.67 113
ETH3D cwj APD-0.1699.06 10198.84 11399.72 6499.51 15799.60 7099.23 24199.44 19497.04 23399.39 13999.67 15998.30 9599.92 8397.27 24899.69 11599.64 127
MP-MVScopyleft99.33 5599.15 6799.87 1299.88 1299.82 2399.66 5299.46 17398.09 12199.48 11699.74 12298.29 9699.96 1997.93 19399.87 4099.82 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test22299.75 6499.49 9198.91 30899.49 13296.42 28199.34 15399.65 16698.28 9799.69 11599.72 94
PLCcopyleft97.94 499.02 10798.85 11299.53 10299.66 11599.01 14899.24 24099.52 9196.85 24799.27 16699.48 23698.25 9899.91 9497.76 20799.62 12999.65 120
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MSP-MVS99.42 4099.27 5399.88 699.89 999.80 2999.67 4899.50 12498.70 6199.77 3699.49 23098.21 9999.95 4698.46 14999.77 9799.88 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DROMVSNet99.44 3199.39 1899.58 9099.56 14999.49 9199.88 199.58 4998.38 8499.73 4799.69 14698.20 10099.70 20899.64 199.82 8099.54 150
xiu_mvs_v1_base_debu99.29 6199.27 5399.34 13399.63 12598.97 15399.12 26099.51 10498.86 4699.84 1499.47 23998.18 10199.99 199.50 1099.31 15099.08 205
xiu_mvs_v1_base99.29 6199.27 5399.34 13399.63 12598.97 15399.12 26099.51 10498.86 4699.84 1499.47 23998.18 10199.99 199.50 1099.31 15099.08 205
xiu_mvs_v1_base_debi99.29 6199.27 5399.34 13399.63 12598.97 15399.12 26099.51 10498.86 4699.84 1499.47 23998.18 10199.99 199.50 1099.31 15099.08 205
CS-MVS-test99.30 5899.25 5799.45 12099.46 17899.23 12099.80 1999.57 5198.28 9699.53 10699.44 24598.16 10499.79 17099.38 2499.61 13199.34 187
testtj99.12 8898.87 10799.86 2199.72 8599.79 3399.44 16299.51 10497.29 20899.59 9499.74 12298.15 10599.96 1996.74 28199.69 11599.81 44
EIA-MVS99.18 7499.09 7499.45 12099.49 16999.18 12599.67 4899.53 8597.66 17199.40 13799.44 24598.10 10699.81 16298.94 6999.62 12999.35 185
CNLPA99.14 8098.99 9099.59 8799.58 14399.41 10299.16 25299.44 19498.45 7799.19 18899.49 23098.08 10799.89 11797.73 21199.75 10299.48 167
114514_t98.93 11698.67 13199.72 6499.85 2699.53 8599.62 7099.59 4392.65 34799.71 5199.78 10098.06 10899.90 10998.84 9199.91 1699.74 81
CDS-MVSNet99.09 9799.03 8299.25 15299.42 18798.73 18399.45 15899.46 17398.11 11899.46 11999.77 10798.01 10999.37 26198.70 11198.92 18299.66 116
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MG-MVS99.13 8299.02 8599.45 12099.57 14598.63 19199.07 27099.34 24198.99 2999.61 8799.82 5297.98 11099.87 12597.00 26699.80 8799.85 16
EI-MVSNet98.67 14798.67 13198.68 22899.35 20497.97 23299.50 13399.38 22296.93 24499.20 18599.83 4597.87 11199.36 26598.38 15597.56 23998.71 250
IterMVS-LS98.46 15698.42 15598.58 23599.59 14198.00 23099.37 19799.43 20296.94 24399.07 21099.59 19597.87 11199.03 31698.32 16395.62 29798.71 250
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG98.98 11298.80 11899.53 10299.76 5499.19 12398.75 32399.55 6797.25 21299.47 11799.77 10797.82 11399.87 12596.93 27399.90 2399.54 150
OMC-MVS99.08 9999.04 8099.20 15799.67 10698.22 22199.28 22299.52 9198.07 12699.66 6999.81 6597.79 11499.78 17597.79 20499.81 8399.60 137
LS3D99.27 6499.12 7099.74 5999.18 24899.75 4399.56 10599.57 5198.45 7799.49 11599.85 3297.77 11599.94 5798.33 16199.84 6599.52 156
PVSNet_Blended_VisFu99.36 5199.28 5199.61 8599.86 2299.07 14299.47 15499.93 297.66 17199.71 5199.86 2697.73 11699.96 1999.47 1799.82 8099.79 60
131498.68 14698.54 15099.11 16598.89 29498.65 18999.27 22799.49 13296.89 24597.99 31699.56 20597.72 11799.83 15197.74 21099.27 15398.84 230
MVS_Test99.10 9698.97 9499.48 11499.49 16999.14 13399.67 4899.34 24197.31 20699.58 9699.76 11197.65 11899.82 15898.87 8199.07 17099.46 174
PVSNet_BlendedMVS98.86 12298.80 11899.03 17399.76 5498.79 18099.28 22299.91 397.42 19899.67 6499.37 26797.53 11999.88 12298.98 6597.29 25898.42 322
PVSNet_Blended99.08 9998.97 9499.42 12799.76 5498.79 18098.78 32099.91 396.74 25399.67 6499.49 23097.53 11999.88 12298.98 6599.85 5899.60 137
UA-Net99.42 4099.29 4799.80 4399.62 13199.55 8099.50 13399.70 1598.79 5599.77 3699.96 197.45 12199.96 1998.92 7399.90 2399.89 2
ETH3 D test640098.70 14398.35 15999.73 6199.69 10199.60 7099.16 25299.45 18595.42 31699.27 16699.60 19297.39 12299.91 9495.36 31499.83 7499.70 103
MVSFormer99.17 7699.12 7099.29 14699.51 15798.94 16299.88 199.46 17397.55 18099.80 2799.65 16697.39 12299.28 27999.03 6099.85 5899.65 120
lupinMVS99.13 8299.01 8999.46 11999.51 15798.94 16299.05 27599.16 28897.86 14499.80 2799.56 20597.39 12299.86 12898.94 6999.85 5899.58 145
DP-MVS99.16 7898.95 9899.78 4899.77 5199.53 8599.41 17799.50 12497.03 23599.04 21699.88 1897.39 12299.92 8398.66 11999.90 2399.87 12
sss99.17 7699.05 7799.53 10299.62 13198.97 15399.36 20199.62 3397.83 14999.67 6499.65 16697.37 12699.95 4699.19 4599.19 15899.68 110
mvs_anonymous99.03 10698.99 9099.16 16199.38 19998.52 20399.51 12799.38 22297.79 15599.38 14299.81 6597.30 12799.45 24499.35 2798.99 17799.51 162
miper_ehance_all_eth98.18 18098.10 17598.41 25799.23 23597.72 24798.72 32699.31 26196.60 26698.88 24199.29 28897.29 12899.13 30397.60 22295.99 28698.38 327
CPTT-MVS99.11 9398.90 10399.74 5999.80 4399.46 9799.59 8499.49 13297.03 23599.63 8099.69 14697.27 12999.96 1997.82 20299.84 6599.81 44
PMMVS98.80 13798.62 14199.34 13399.27 22798.70 18598.76 32299.31 26197.34 20399.21 18299.07 31397.20 13099.82 15898.56 13798.87 18599.52 156
EPP-MVSNet99.13 8298.99 9099.53 10299.65 12099.06 14399.81 1599.33 24897.43 19699.60 9199.88 1897.14 13199.84 14099.13 5298.94 17999.69 106
c3_l98.12 18898.04 18498.38 26199.30 21897.69 25098.81 31799.33 24896.67 25898.83 24999.34 27697.11 13298.99 32297.58 22495.34 30398.48 313
canonicalmvs99.02 10798.86 11199.51 11099.42 18799.32 10899.80 1999.48 14598.63 6499.31 15698.81 33197.09 13399.75 18499.27 3997.90 22799.47 172
MAR-MVS98.86 12298.63 13699.54 9699.37 20199.66 5999.45 15899.54 7496.61 26499.01 21999.40 25997.09 13399.86 12897.68 21999.53 13699.10 200
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
miper_enhance_ethall98.16 18298.08 17998.41 25798.96 28997.72 24798.45 34399.32 25896.95 24198.97 22899.17 30397.06 13599.22 28997.86 19895.99 28698.29 330
jason99.13 8299.03 8299.45 12099.46 17898.87 16999.12 26099.26 27398.03 13499.79 2999.65 16697.02 13699.85 13499.02 6299.90 2399.65 120
jason: jason.
our_test_397.65 26497.68 22497.55 31298.62 32894.97 33398.84 31499.30 26596.83 25098.19 30799.34 27697.01 13799.02 31895.00 32096.01 28498.64 282
MVS97.28 28396.55 29299.48 11498.78 31098.95 15999.27 22799.39 21683.53 36298.08 31199.54 21396.97 13899.87 12594.23 32899.16 15999.63 131
Fast-Effi-MVS+-dtu98.77 14098.83 11798.60 23199.41 19096.99 27899.52 12399.49 13298.11 11899.24 17499.34 27696.96 13999.79 17097.95 19299.45 13899.02 216
1112_ss98.98 11298.77 12199.59 8799.68 10599.02 14699.25 23899.48 14597.23 21599.13 19699.58 19896.93 14099.90 10998.87 8198.78 19199.84 20
WTY-MVS99.06 10198.88 10699.61 8599.62 13199.16 12899.37 19799.56 5798.04 13299.53 10699.62 18596.84 14199.94 5798.85 8898.49 20499.72 94
FC-MVSNet-test98.75 14198.62 14199.15 16399.08 27099.45 9899.86 899.60 4098.23 10398.70 26899.82 5296.80 14299.22 28999.07 5896.38 27798.79 233
Effi-MVS+-dtu98.78 13898.89 10598.47 25099.33 20996.91 28499.57 9899.30 26598.47 7499.41 13298.99 32296.78 14399.74 18598.73 10799.38 14298.74 246
mvs-test198.86 12298.84 11398.89 19899.33 20997.77 24499.44 16299.30 26598.47 7499.10 20399.43 24896.78 14399.95 4698.73 10799.02 17598.96 223
Test_1112_low_res98.89 11898.66 13499.57 9299.69 10198.95 15999.03 28199.47 16396.98 23799.15 19499.23 29796.77 14599.89 11798.83 9498.78 19199.86 13
FIs98.78 13898.63 13699.23 15699.18 24899.54 8299.83 1299.59 4398.28 9698.79 25599.81 6596.75 14699.37 26199.08 5796.38 27798.78 234
PVSNet96.02 1798.85 13098.84 11398.89 19899.73 8097.28 25798.32 35099.60 4097.86 14499.50 11299.57 20296.75 14699.86 12898.56 13799.70 11499.54 150
nrg03098.64 15098.42 15599.28 14999.05 27699.69 5299.81 1599.46 17398.04 13299.01 21999.82 5296.69 14899.38 25899.34 3194.59 31798.78 234
CHOSEN 280x42099.12 8899.13 6999.08 16699.66 11597.89 23898.43 34499.71 1398.88 4599.62 8499.76 11196.63 14999.70 20899.46 1899.99 199.66 116
eth_miper_zixun_eth98.05 19897.96 19398.33 26499.26 22997.38 25598.56 33999.31 26196.65 26098.88 24199.52 22096.58 15099.12 30797.39 24595.53 30098.47 315
cdsmvs_eth3d_5k24.64 34232.85 3450.00 3580.00 3810.00 3820.00 36999.51 1040.00 3760.00 37799.56 20596.58 1500.00 3770.00 3750.00 3750.00 373
IS-MVSNet99.05 10398.87 10799.57 9299.73 8099.32 10899.75 3199.20 28398.02 13599.56 9999.86 2696.54 15299.67 21498.09 17999.13 16399.73 88
diffmvs99.14 8099.02 8599.51 11099.61 13598.96 15799.28 22299.49 13298.46 7699.72 5099.71 13496.50 15399.88 12299.31 3499.11 16499.67 113
CANet99.25 6899.14 6899.59 8799.41 19099.16 12899.35 20799.57 5198.82 5099.51 11199.61 18996.46 15499.95 4699.59 299.98 299.65 120
ppachtmachnet_test97.49 27797.45 24897.61 30998.62 32895.24 32798.80 31899.46 17396.11 30598.22 30699.62 18596.45 15598.97 33093.77 33295.97 28998.61 301
HY-MVS97.30 798.85 13098.64 13599.47 11799.42 18799.08 14099.62 7099.36 23297.39 20199.28 16399.68 15396.44 15699.92 8398.37 15798.22 21399.40 182
UniMVSNet_NR-MVSNet98.22 17497.97 19198.96 18298.92 29298.98 15099.48 14999.53 8597.76 15898.71 26299.46 24396.43 15799.22 28998.57 13492.87 34098.69 258
Effi-MVS+98.81 13498.59 14799.48 11499.46 17899.12 13798.08 35699.50 12497.50 18899.38 14299.41 25596.37 15899.81 16299.11 5498.54 20199.51 162
AdaColmapbinary99.01 11098.80 11899.66 7199.56 14999.54 8299.18 25099.70 1598.18 11099.35 15099.63 17996.32 15999.90 10997.48 23699.77 9799.55 148
UniMVSNet (Re)98.29 17198.00 18899.13 16499.00 28299.36 10699.49 14399.51 10497.95 13898.97 22899.13 30896.30 16099.38 25898.36 15993.34 33398.66 278
LCM-MVSNet-Re97.83 23198.15 17096.87 32999.30 21892.25 35899.59 8498.26 34597.43 19696.20 34599.13 30896.27 16198.73 33998.17 17498.99 17799.64 127
PAPM97.59 26797.09 28399.07 16799.06 27398.26 22098.30 35199.10 29494.88 32598.08 31199.34 27696.27 16199.64 22489.87 35498.92 18299.31 190
Fast-Effi-MVS+98.70 14398.43 15499.51 11099.51 15799.28 11499.52 12399.47 16396.11 30599.01 21999.34 27696.20 16399.84 14097.88 19698.82 18899.39 183
EPNet_dtu98.03 20197.96 19398.23 27498.27 34095.54 32099.23 24198.75 32799.02 1997.82 32199.71 13496.11 16499.48 24093.04 34199.65 12599.69 106
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline99.15 7999.02 8599.53 10299.66 11599.14 13399.72 3599.48 14598.35 8999.42 12899.84 4196.07 16599.79 17099.51 999.14 16299.67 113
D2MVS98.41 16198.50 15198.15 27999.26 22996.62 29499.40 18599.61 3597.71 16498.98 22699.36 27096.04 16699.67 21498.70 11197.41 25498.15 337
miper_lstm_enhance98.00 20897.91 19998.28 27299.34 20897.43 25498.88 31099.36 23296.48 27698.80 25399.55 20895.98 16798.91 33497.27 24895.50 30198.51 311
EPNet98.86 12298.71 12799.30 14397.20 35698.18 22299.62 7098.91 31699.28 298.63 27999.81 6595.96 16899.99 199.24 4199.72 10999.73 88
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
AllTest98.87 11998.72 12599.31 13999.86 2298.48 20999.56 10599.61 3597.85 14699.36 14799.85 3295.95 16999.85 13496.66 28799.83 7499.59 141
TestCases99.31 13999.86 2298.48 20999.61 3597.85 14699.36 14799.85 3295.95 16999.85 13496.66 28799.83 7499.59 141
3Dnovator97.25 999.24 6999.05 7799.81 4199.12 26199.66 5999.84 999.74 1099.09 1498.92 23599.90 1095.94 17199.98 698.95 6899.92 1199.79 60
casdiffmvs99.13 8298.98 9399.56 9499.65 12099.16 12899.56 10599.50 12498.33 9399.41 13299.86 2695.92 17299.83 15199.45 1999.16 15999.70 103
RPSCF98.22 17498.62 14196.99 32499.82 3891.58 36199.72 3599.44 19496.61 26499.66 6999.89 1395.92 17299.82 15897.46 23999.10 16799.57 146
pmmvs498.13 18697.90 20098.81 21698.61 33098.87 16998.99 29199.21 28296.44 27999.06 21499.58 19895.90 17499.11 30897.18 25896.11 28398.46 319
HyFIR lowres test99.11 9398.92 10099.65 7599.90 499.37 10599.02 28499.91 397.67 17099.59 9499.75 11695.90 17499.73 19299.53 699.02 17599.86 13
COLMAP_ROBcopyleft97.56 698.86 12298.75 12499.17 16099.88 1298.53 19999.34 21099.59 4397.55 18098.70 26899.89 1395.83 17699.90 10998.10 17899.90 2399.08 205
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS98.35 299.30 5899.19 6499.64 8099.82 3899.23 12099.62 7099.55 6798.94 3999.63 8099.95 295.82 17799.94 5799.37 2699.97 399.73 88
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
QAPM98.67 14798.30 16499.80 4399.20 24399.67 5799.77 2799.72 1194.74 32898.73 26099.90 1095.78 17899.98 696.96 27099.88 3699.76 75
BH-untuned98.42 15998.36 15798.59 23299.49 16996.70 29099.27 22799.13 29297.24 21498.80 25399.38 26495.75 17999.74 18597.07 26499.16 15999.33 189
test_djsdf98.67 14798.57 14898.98 17998.70 32198.91 16699.88 199.46 17397.55 18099.22 17999.88 1895.73 18099.28 27999.03 6097.62 23498.75 242
DIV-MVS_self_test98.01 20697.85 20698.48 24699.24 23497.95 23698.71 32799.35 23796.50 27198.60 28499.54 21395.72 18199.03 31697.21 25295.77 29298.46 319
bset_n11_16_dypcd98.16 18297.97 19198.73 22398.26 34198.28 21997.99 35898.01 35197.68 16799.10 20399.63 17995.68 18299.15 29998.78 10396.55 27298.75 242
3Dnovator+97.12 1399.18 7498.97 9499.82 3899.17 25499.68 5499.81 1599.51 10499.20 498.72 26199.89 1395.68 18299.97 1198.86 8699.86 5199.81 44
cl____98.01 20697.84 20798.55 24099.25 23397.97 23298.71 32799.34 24196.47 27898.59 28599.54 21395.65 18499.21 29497.21 25295.77 29298.46 319
VNet99.11 9398.90 10399.73 6199.52 15599.56 7899.41 17799.39 21699.01 2299.74 4599.78 10095.56 18599.92 8399.52 798.18 21799.72 94
WR-MVS_H98.13 18697.87 20598.90 19599.02 28098.84 17399.70 3899.59 4397.27 21098.40 29699.19 30295.53 18699.23 28698.34 16093.78 32998.61 301
CHOSEN 1792x268899.19 7299.10 7299.45 12099.89 998.52 20399.39 18999.94 198.73 5999.11 20099.89 1395.50 18799.94 5799.50 1099.97 399.89 2
Vis-MVSNet (Re-imp)98.87 11998.72 12599.31 13999.71 9198.88 16899.80 1999.44 19497.91 14299.36 14799.78 10095.49 18899.43 25397.91 19499.11 16499.62 133
PatchMatch-RL98.84 13398.62 14199.52 10899.71 9199.28 11499.06 27399.77 997.74 16299.50 11299.53 21795.41 18999.84 14097.17 25999.64 12699.44 177
RRT_MVS98.60 15298.44 15399.05 17098.88 29599.14 13399.49 14399.38 22297.76 15899.29 16199.86 2695.38 19099.36 26598.81 9997.16 26398.64 282
test_yl98.86 12298.63 13699.54 9699.49 16999.18 12599.50 13399.07 29998.22 10499.61 8799.51 22495.37 19199.84 14098.60 12998.33 20799.59 141
DCV-MVSNet98.86 12298.63 13699.54 9699.49 16999.18 12599.50 13399.07 29998.22 10499.61 8799.51 22495.37 19199.84 14098.60 12998.33 20799.59 141
tpmrst98.33 16798.48 15297.90 29699.16 25694.78 33799.31 21499.11 29397.27 21099.45 12099.59 19595.33 19399.84 14098.48 14598.61 19499.09 204
MVP-Stereo97.81 23697.75 21897.99 29097.53 34996.60 29598.96 29998.85 32297.22 21697.23 33299.36 27095.28 19499.46 24395.51 30999.78 9497.92 351
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CANet_DTU98.97 11498.87 10799.25 15299.33 20998.42 21499.08 26999.30 26599.16 599.43 12599.75 11695.27 19599.97 1198.56 13799.95 699.36 184
XVG-OURS98.73 14298.68 13098.88 20199.70 9897.73 24698.92 30699.55 6798.52 7199.45 12099.84 4195.27 19599.91 9498.08 18398.84 18799.00 217
BH-w/o98.00 20897.89 20498.32 26699.35 20496.20 30799.01 28998.90 31896.42 28198.38 29799.00 32195.26 19799.72 19696.06 29798.61 19499.03 214
EU-MVSNet97.98 21098.03 18597.81 30398.72 31896.65 29399.66 5299.66 2798.09 12198.35 30099.82 5295.25 19898.01 34997.41 24495.30 30498.78 234
GeoE98.85 13098.62 14199.53 10299.61 13599.08 14099.80 1999.51 10497.10 22899.31 15699.78 10095.23 19999.77 17798.21 16899.03 17399.75 76
MDTV_nov1_ep13_2view95.18 33099.35 20796.84 24899.58 9695.19 20097.82 20299.46 174
JIA-IIPM97.50 27497.02 28598.93 18798.73 31697.80 24399.30 21698.97 30791.73 35098.91 23694.86 36295.10 20199.71 20297.58 22497.98 22599.28 192
NR-MVSNet97.97 21397.61 23199.02 17498.87 29999.26 11799.47 15499.42 20497.63 17397.08 33799.50 22795.07 20299.13 30397.86 19893.59 33198.68 263
tpmvs97.98 21098.02 18797.84 29999.04 27794.73 33899.31 21499.20 28396.10 30998.76 25899.42 25194.94 20399.81 16296.97 26998.45 20598.97 221
h-mvs3397.70 25697.28 27498.97 18199.70 9897.27 25899.36 20199.45 18598.94 3999.66 6999.64 17394.93 20499.99 199.48 1584.36 35799.65 120
hse-mvs297.50 27497.14 28198.59 23299.49 16997.05 27199.28 22299.22 27998.94 3999.66 6999.42 25194.93 20499.65 22199.48 1583.80 35999.08 205
v897.95 21497.63 23098.93 18798.95 29098.81 17999.80 1999.41 20696.03 31099.10 20399.42 25194.92 20699.30 27796.94 27294.08 32698.66 278
PatchmatchNetpermissive98.31 16898.36 15798.19 27699.16 25695.32 32699.27 22798.92 31397.37 20299.37 14499.58 19894.90 20799.70 20897.43 24399.21 15699.54 150
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v7n97.87 22397.52 23998.92 18998.76 31498.58 19599.84 999.46 17396.20 29598.91 23699.70 13894.89 20899.44 24996.03 29893.89 32898.75 242
sam_mvs194.86 20999.52 156
DU-MVS98.08 19297.79 20998.96 18298.87 29998.98 15099.41 17799.45 18597.87 14398.71 26299.50 22794.82 21099.22 28998.57 13492.87 34098.68 263
Baseline_NR-MVSNet97.76 24197.45 24898.68 22899.09 26898.29 21799.41 17798.85 32295.65 31498.63 27999.67 15994.82 21099.10 31098.07 18692.89 33998.64 282
patchmatchnet-post98.70 33694.79 21299.74 185
Patchmatch-RL test95.84 30995.81 30795.95 33795.61 36290.57 36298.24 35298.39 34495.10 32295.20 35198.67 33794.78 21397.77 35496.28 29590.02 34999.51 162
alignmvs98.81 13498.56 14999.58 9099.43 18699.42 10199.51 12798.96 30998.61 6699.35 15098.92 32894.78 21399.77 17799.35 2798.11 22399.54 150
MDTV_nov1_ep1398.32 16299.11 26394.44 34099.27 22798.74 33097.51 18799.40 13799.62 18594.78 21399.76 18197.59 22398.81 190
Vis-MVSNetpermissive99.12 8898.97 9499.56 9499.78 4699.10 13899.68 4599.66 2798.49 7399.86 1299.87 2394.77 21699.84 14099.19 4599.41 14199.74 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
anonymousdsp98.44 15798.28 16598.94 18598.50 33698.96 15799.77 2799.50 12497.07 23098.87 24399.77 10794.76 21799.28 27998.66 11997.60 23598.57 307
v1097.85 22697.52 23998.86 20898.99 28398.67 18799.75 3199.41 20695.70 31398.98 22699.41 25594.75 21899.23 28696.01 29994.63 31698.67 270
OpenMVScopyleft96.50 1698.47 15598.12 17399.52 10899.04 27799.53 8599.82 1399.72 1194.56 33198.08 31199.88 1894.73 21999.98 697.47 23899.76 10099.06 211
sam_mvs94.72 220
v14897.79 23997.55 23598.50 24398.74 31597.72 24799.54 11799.33 24896.26 29098.90 23899.51 22494.68 22199.14 30097.83 20193.15 33798.63 290
v114497.98 21097.69 22398.85 21198.87 29998.66 18899.54 11799.35 23796.27 28999.23 17899.35 27394.67 22299.23 28696.73 28295.16 30798.68 263
V4298.06 19397.79 20998.86 20898.98 28698.84 17399.69 4099.34 24196.53 27099.30 15899.37 26794.67 22299.32 27497.57 22894.66 31598.42 322
test_post65.99 37294.65 22499.73 192
baseline198.31 16897.95 19599.38 13199.50 16798.74 18299.59 8498.93 31198.41 8199.14 19599.60 19294.59 22599.79 17098.48 14593.29 33499.61 135
DSMNet-mixed97.25 28497.35 26596.95 32797.84 34693.61 35299.57 9896.63 36496.13 30498.87 24398.61 34094.59 22597.70 35695.08 31898.86 18699.55 148
Patchmatch-test97.93 21597.65 22798.77 22199.18 24897.07 26999.03 28199.14 29196.16 30098.74 25999.57 20294.56 22799.72 19693.36 33799.11 16499.52 156
PCF-MVS97.08 1497.66 26397.06 28499.47 11799.61 13599.09 13998.04 35799.25 27591.24 35298.51 28899.70 13894.55 22899.91 9492.76 34599.85 5899.42 179
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PatchT97.03 28996.44 29498.79 21998.99 28398.34 21699.16 25299.07 29992.13 34899.52 10997.31 35794.54 22998.98 32388.54 35898.73 19399.03 214
CVMVSNet98.57 15398.67 13198.30 26899.35 20495.59 31799.50 13399.55 6798.60 6799.39 13999.83 4594.48 23099.45 24498.75 10498.56 20099.85 16
test-LLR98.06 19397.90 20098.55 24098.79 30797.10 26598.67 32997.75 35497.34 20398.61 28298.85 32994.45 23199.45 24497.25 25099.38 14299.10 200
test0.0.03 197.71 25597.42 25798.56 23898.41 33997.82 24298.78 32098.63 33997.34 20398.05 31598.98 32594.45 23198.98 32395.04 31997.15 26498.89 227
v14419297.92 21897.60 23298.87 20598.83 30598.65 18999.55 11499.34 24196.20 29599.32 15599.40 25994.36 23399.26 28396.37 29495.03 31098.70 254
CR-MVSNet98.17 18197.93 19898.87 20599.18 24898.49 20799.22 24699.33 24896.96 23999.56 9999.38 26494.33 23499.00 32194.83 32298.58 19799.14 197
Patchmtry97.75 24597.40 25998.81 21699.10 26698.87 16999.11 26699.33 24894.83 32698.81 25199.38 26494.33 23499.02 31896.10 29695.57 29898.53 309
tpm cat197.39 28097.36 26397.50 31499.17 25493.73 34899.43 16899.31 26191.27 35198.71 26299.08 31294.31 23699.77 17796.41 29398.50 20399.00 217
TranMVSNet+NR-MVSNet97.93 21597.66 22698.76 22298.78 31098.62 19299.65 5999.49 13297.76 15898.49 29099.60 19294.23 23798.97 33098.00 18892.90 33898.70 254
v2v48298.06 19397.77 21498.92 18998.90 29398.82 17799.57 9899.36 23296.65 26099.19 18899.35 27394.20 23899.25 28497.72 21394.97 31198.69 258
XVG-OURS-SEG-HR98.69 14598.62 14198.89 19899.71 9197.74 24599.12 26099.54 7498.44 8099.42 12899.71 13494.20 23899.92 8398.54 14298.90 18499.00 217
ab-mvs98.86 12298.63 13699.54 9699.64 12299.19 12399.44 16299.54 7497.77 15799.30 15899.81 6594.20 23899.93 7299.17 4898.82 18899.49 166
test_post199.23 24165.14 37394.18 24199.71 20297.58 224
ADS-MVSNet298.02 20398.07 18297.87 29799.33 20995.19 32999.23 24199.08 29796.24 29299.10 20399.67 15994.11 24298.93 33396.81 27899.05 17199.48 167
ADS-MVSNet98.20 17798.08 17998.56 23899.33 20996.48 29899.23 24199.15 28996.24 29299.10 20399.67 15994.11 24299.71 20296.81 27899.05 17199.48 167
RPMNet96.72 29495.90 30499.19 15899.18 24898.49 20799.22 24699.52 9188.72 35899.56 9997.38 35494.08 24499.95 4686.87 36498.58 19799.14 197
v119297.81 23697.44 25398.91 19398.88 29598.68 18699.51 12799.34 24196.18 29799.20 18599.34 27694.03 24599.36 26595.32 31595.18 30698.69 258
v192192097.80 23897.45 24898.84 21298.80 30698.53 19999.52 12399.34 24196.15 30299.24 17499.47 23993.98 24699.29 27895.40 31295.13 30898.69 258
Anonymous2023120696.22 30296.03 30196.79 33197.31 35494.14 34499.63 6499.08 29796.17 29897.04 33899.06 31593.94 24797.76 35586.96 36395.06 30998.47 315
WR-MVS98.06 19397.73 22099.06 16898.86 30299.25 11899.19 24999.35 23797.30 20798.66 27199.43 24893.94 24799.21 29498.58 13294.28 32298.71 250
N_pmnet94.95 31895.83 30692.31 34398.47 33779.33 37099.12 26092.81 37693.87 33697.68 32499.13 30893.87 24999.01 32091.38 34996.19 28198.59 305
MVSTER98.49 15498.32 16299.00 17799.35 20499.02 14699.54 11799.38 22297.41 19999.20 18599.73 12993.86 25099.36 26598.87 8197.56 23998.62 292
CP-MVSNet98.09 19097.78 21299.01 17598.97 28899.24 11999.67 4899.46 17397.25 21298.48 29199.64 17393.79 25199.06 31298.63 12294.10 32598.74 246
cascas97.69 25797.43 25698.48 24698.60 33197.30 25698.18 35599.39 21692.96 34698.41 29598.78 33493.77 25299.27 28298.16 17598.61 19498.86 228
v124097.69 25797.32 27198.79 21998.85 30398.43 21299.48 14999.36 23296.11 30599.27 16699.36 27093.76 25399.24 28594.46 32595.23 30598.70 254
test20.0396.12 30695.96 30396.63 33297.44 35095.45 32399.51 12799.38 22296.55 26996.16 34699.25 29593.76 25396.17 36587.35 36294.22 32398.27 331
baseline297.87 22397.55 23598.82 21499.18 24898.02 22999.41 17796.58 36596.97 23896.51 34299.17 30393.43 25599.57 23497.71 21499.03 17398.86 228
TransMVSNet (Re)97.15 28696.58 29198.86 20899.12 26198.85 17299.49 14398.91 31695.48 31597.16 33599.80 8193.38 25699.11 30894.16 33091.73 34598.62 292
tfpnnormal97.84 22997.47 24598.98 17999.20 24399.22 12299.64 6299.61 3596.32 28598.27 30599.70 13893.35 25799.44 24995.69 30595.40 30298.27 331
Anonymous2023121197.88 22197.54 23898.90 19599.71 9198.53 19999.48 14999.57 5194.16 33498.81 25199.68 15393.23 25899.42 25498.84 9194.42 32098.76 240
XXY-MVS98.38 16498.09 17899.24 15499.26 22999.32 10899.56 10599.55 6797.45 19298.71 26299.83 4593.23 25899.63 22998.88 7796.32 27998.76 240
jajsoiax98.43 15898.28 16598.88 20198.60 33198.43 21299.82 1399.53 8598.19 10798.63 27999.80 8193.22 26099.44 24999.22 4297.50 24598.77 238
MDA-MVSNet_test_wron95.45 31294.60 31898.01 28798.16 34397.21 26399.11 26699.24 27793.49 34180.73 36898.98 32593.02 26198.18 34494.22 32994.45 31998.64 282
ACMM97.58 598.37 16598.34 16098.48 24699.41 19097.10 26599.56 10599.45 18598.53 7099.04 21699.85 3293.00 26299.71 20298.74 10597.45 25098.64 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet398.03 20197.76 21798.84 21299.39 19898.98 15099.40 18599.38 22296.67 25899.07 21099.28 29092.93 26398.98 32397.10 26196.65 26898.56 308
DTE-MVSNet97.51 27397.19 28098.46 25198.63 32798.13 22699.84 999.48 14596.68 25797.97 31799.67 15992.92 26498.56 34096.88 27792.60 34398.70 254
CLD-MVS98.16 18298.10 17598.33 26499.29 22296.82 28798.75 32399.44 19497.83 14999.13 19699.55 20892.92 26499.67 21498.32 16397.69 23198.48 313
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BH-RMVSNet98.41 16198.08 17999.40 12899.41 19098.83 17699.30 21698.77 32697.70 16598.94 23299.65 16692.91 26699.74 18596.52 28999.55 13599.64 127
YYNet195.36 31494.51 32097.92 29497.89 34597.10 26599.10 26899.23 27893.26 34480.77 36799.04 31792.81 26798.02 34894.30 32694.18 32498.64 282
mvs_tets98.40 16398.23 16798.91 19398.67 32498.51 20599.66 5299.53 8598.19 10798.65 27799.81 6592.75 26899.44 24999.31 3497.48 24998.77 238
IterMVS97.83 23197.77 21498.02 28699.58 14396.27 30599.02 28499.48 14597.22 21698.71 26299.70 13892.75 26899.13 30397.46 23996.00 28598.67 270
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UGNet98.87 11998.69 12999.40 12899.22 23998.72 18499.44 16299.68 1999.24 399.18 19199.42 25192.74 27099.96 1999.34 3199.94 999.53 155
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS-SCA-FT97.82 23497.75 21898.06 28399.57 14596.36 30299.02 28499.49 13297.18 21898.71 26299.72 13392.72 27199.14 30097.44 24295.86 29198.67 270
SCA98.19 17898.16 16998.27 27399.30 21895.55 31899.07 27098.97 30797.57 17899.43 12599.57 20292.72 27199.74 18597.58 22499.20 15799.52 156
HQP_MVS98.27 17398.22 16898.44 25599.29 22296.97 28099.39 18999.47 16398.97 3599.11 20099.61 18992.71 27399.69 21297.78 20597.63 23298.67 270
plane_prior699.27 22796.98 27992.71 273
CL-MVSNet_self_test94.49 32193.97 32496.08 33696.16 36093.67 35198.33 34999.38 22295.13 31897.33 33098.15 34992.69 27596.57 36388.67 35779.87 36397.99 346
dp97.75 24597.80 20897.59 31099.10 26693.71 34999.32 21298.88 32096.48 27699.08 20999.55 20892.67 27699.82 15896.52 28998.58 19799.24 193
PEN-MVS97.76 24197.44 25398.72 22598.77 31398.54 19899.78 2599.51 10497.06 23298.29 30499.64 17392.63 27798.89 33698.09 17993.16 33698.72 248
LPG-MVS_test98.22 17498.13 17298.49 24499.33 20997.05 27199.58 9299.55 6797.46 18999.24 17499.83 4592.58 27899.72 19698.09 17997.51 24398.68 263
LGP-MVS_train98.49 24499.33 20997.05 27199.55 6797.46 18999.24 17499.83 4592.58 27899.72 19698.09 17997.51 24398.68 263
VPA-MVSNet98.29 17197.95 19599.30 14399.16 25699.54 8299.50 13399.58 4998.27 9999.35 15099.37 26792.53 28099.65 22199.35 2794.46 31898.72 248
TR-MVS97.76 24197.41 25898.82 21499.06 27397.87 23998.87 31298.56 34196.63 26398.68 27099.22 29892.49 28199.65 22195.40 31297.79 22998.95 226
pm-mvs197.68 25997.28 27498.88 20199.06 27398.62 19299.50 13399.45 18596.32 28597.87 31999.79 9392.47 28299.35 26997.54 23193.54 33298.67 270
HQP2-MVS92.47 282
HQP-MVS98.02 20397.90 20098.37 26299.19 24596.83 28598.98 29599.39 21698.24 10098.66 27199.40 25992.47 28299.64 22497.19 25697.58 23798.64 282
EPMVS97.82 23497.65 22798.35 26398.88 29595.98 31099.49 14394.71 37197.57 17899.26 17199.48 23692.46 28599.71 20297.87 19799.08 16999.35 185
PS-CasMVS97.93 21597.59 23498.95 18498.99 28399.06 14399.68 4599.52 9197.13 22298.31 30299.68 15392.44 28699.05 31398.51 14394.08 32698.75 242
cl2297.85 22697.64 22998.48 24699.09 26897.87 23998.60 33699.33 24897.11 22798.87 24399.22 29892.38 28799.17 29898.21 16895.99 28698.42 322
CostFormer97.72 25197.73 22097.71 30799.15 25994.02 34599.54 11799.02 30394.67 32999.04 21699.35 27392.35 28899.77 17798.50 14497.94 22699.34 187
OPM-MVS98.19 17898.10 17598.45 25298.88 29597.07 26999.28 22299.38 22298.57 6899.22 17999.81 6592.12 28999.66 21798.08 18397.54 24198.61 301
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ET-MVSNet_ETH3D96.49 29895.64 30999.05 17099.53 15398.82 17798.84 31497.51 35897.63 17384.77 36399.21 30192.09 29098.91 33498.98 6592.21 34499.41 181
AUN-MVS96.88 29096.31 29698.59 23299.48 17697.04 27499.27 22799.22 27997.44 19598.51 28899.41 25591.97 29199.66 21797.71 21483.83 35899.07 210
ACMP97.20 1198.06 19397.94 19798.45 25299.37 20197.01 27699.44 16299.49 13297.54 18398.45 29299.79 9391.95 29299.72 19697.91 19497.49 24898.62 292
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous20240521198.30 17097.98 19099.26 15199.57 14598.16 22399.41 17798.55 34296.03 31099.19 18899.74 12291.87 29399.92 8399.16 5098.29 21299.70 103
KD-MVS_self_test95.00 31694.34 32196.96 32697.07 35995.39 32599.56 10599.44 19495.11 32097.13 33697.32 35691.86 29497.27 35990.35 35381.23 36298.23 335
tpm97.67 26297.55 23598.03 28499.02 28095.01 33299.43 16898.54 34396.44 27999.12 19899.34 27691.83 29599.60 23297.75 20996.46 27599.48 167
thres100view90097.76 24197.45 24898.69 22799.72 8597.86 24199.59 8498.74 33097.93 14099.26 17198.62 33891.75 29699.83 15193.22 33898.18 21798.37 328
thres600view797.86 22597.51 24198.92 18999.72 8597.95 23699.59 8498.74 33097.94 13999.27 16698.62 33891.75 29699.86 12893.73 33398.19 21698.96 223
LTVRE_ROB97.16 1298.02 20397.90 20098.40 25999.23 23596.80 28899.70 3899.60 4097.12 22498.18 30899.70 13891.73 29899.72 19698.39 15397.45 25098.68 263
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-097.88 22197.77 21498.19 27698.71 32096.53 29699.88 199.00 30497.79 15598.78 25699.94 391.68 29999.35 26997.21 25296.99 26698.69 258
tfpn200view997.72 25197.38 26198.72 22599.69 10197.96 23499.50 13398.73 33597.83 14999.17 19298.45 34391.67 30099.83 15193.22 33898.18 21798.37 328
thres40097.77 24097.38 26198.92 18999.69 10197.96 23499.50 13398.73 33597.83 14999.17 19298.45 34391.67 30099.83 15193.22 33898.18 21798.96 223
thisisatest051598.14 18597.79 20999.19 15899.50 16798.50 20698.61 33496.82 36296.95 24199.54 10499.43 24891.66 30299.86 12898.08 18399.51 13799.22 194
thres20097.61 26697.28 27498.62 23099.64 12298.03 22899.26 23698.74 33097.68 16799.09 20898.32 34791.66 30299.81 16292.88 34298.22 21398.03 342
new_pmnet96.38 30196.03 30197.41 31598.13 34495.16 33199.05 27599.20 28393.94 33597.39 32998.79 33291.61 30499.04 31490.43 35295.77 29298.05 341
pmmvs597.52 27197.30 27398.16 27898.57 33396.73 28999.27 22798.90 31896.14 30398.37 29899.53 21791.54 30599.14 30097.51 23495.87 29098.63 290
tttt051798.42 15998.14 17199.28 14999.66 11598.38 21599.74 3496.85 36197.68 16799.79 2999.74 12291.39 30699.89 11798.83 9499.56 13399.57 146
tpm297.44 27997.34 26897.74 30699.15 25994.36 34299.45 15898.94 31093.45 34398.90 23899.44 24591.35 30799.59 23397.31 24698.07 22499.29 191
MVS-HIRNet95.75 31095.16 31497.51 31399.30 21893.69 35098.88 31095.78 36685.09 36198.78 25692.65 36491.29 30899.37 26194.85 32199.85 5899.46 174
thisisatest053098.35 16698.03 18599.31 13999.63 12598.56 19699.54 11796.75 36397.53 18599.73 4799.65 16691.25 30999.89 11798.62 12399.56 13399.48 167
testgi97.65 26497.50 24298.13 28099.36 20396.45 29999.42 17599.48 14597.76 15897.87 31999.45 24491.09 31098.81 33794.53 32498.52 20299.13 199
ITE_SJBPF98.08 28199.29 22296.37 30198.92 31398.34 9098.83 24999.75 11691.09 31099.62 23095.82 30197.40 25598.25 333
DeepMVS_CXcopyleft93.34 34199.29 22282.27 36799.22 27985.15 36096.33 34499.05 31690.97 31299.73 19293.57 33597.77 23098.01 343
ACMH97.28 898.10 18997.99 18998.44 25599.41 19096.96 28299.60 7799.56 5798.09 12198.15 30999.91 890.87 31399.70 20898.88 7797.45 25098.67 270
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test111198.04 19998.11 17497.83 30099.74 7293.82 34699.58 9295.40 36899.12 999.65 7599.93 490.73 31499.84 14099.43 2299.38 14299.82 38
ECVR-MVScopyleft98.04 19998.05 18398.00 28999.74 7294.37 34199.59 8494.98 36999.13 799.66 6999.93 490.67 31599.84 14099.40 2399.38 14299.80 54
SixPastTwentyTwo97.50 27497.33 27098.03 28498.65 32596.23 30699.77 2798.68 33897.14 22197.90 31899.93 490.45 31699.18 29797.00 26696.43 27698.67 270
MIMVSNet97.73 24997.45 24898.57 23699.45 18497.50 25299.02 28498.98 30696.11 30599.41 13299.14 30790.28 31798.74 33895.74 30498.93 18099.47 172
GBi-Net97.68 25997.48 24398.29 26999.51 15797.26 26099.43 16899.48 14596.49 27299.07 21099.32 28390.26 31898.98 32397.10 26196.65 26898.62 292
test197.68 25997.48 24398.29 26999.51 15797.26 26099.43 16899.48 14596.49 27299.07 21099.32 28390.26 31898.98 32397.10 26196.65 26898.62 292
FMVSNet297.72 25197.36 26398.80 21899.51 15798.84 17399.45 15899.42 20496.49 27298.86 24899.29 28890.26 31898.98 32396.44 29196.56 27198.58 306
Anonymous2024052998.09 19097.68 22499.34 13399.66 11598.44 21199.40 18599.43 20293.67 33899.22 17999.89 1390.23 32199.93 7299.26 4098.33 20799.66 116
ACMH+97.24 1097.92 21897.78 21298.32 26699.46 17896.68 29299.56 10599.54 7498.41 8197.79 32399.87 2390.18 32299.66 21798.05 18797.18 26298.62 292
LF4IMVS97.52 27197.46 24797.70 30898.98 28695.55 31899.29 22098.82 32598.07 12698.66 27199.64 17389.97 32399.61 23197.01 26596.68 26797.94 349
GA-MVS97.85 22697.47 24599.00 17799.38 19997.99 23198.57 33799.15 28997.04 23398.90 23899.30 28689.83 32499.38 25896.70 28498.33 20799.62 133
test_part197.75 24597.24 27899.29 14699.59 14199.63 6599.65 5999.49 13296.17 29898.44 29399.69 14689.80 32599.47 24198.68 11693.66 33098.78 234
PVSNet_094.43 1996.09 30795.47 31097.94 29299.31 21794.34 34397.81 35999.70 1597.12 22497.46 32798.75 33589.71 32699.79 17097.69 21781.69 36199.68 110
Anonymous2024052196.20 30495.89 30597.13 32297.72 34894.96 33499.79 2499.29 27093.01 34597.20 33499.03 31889.69 32798.36 34391.16 35096.13 28298.07 339
XVG-ACMP-BASELINE97.83 23197.71 22298.20 27599.11 26396.33 30399.41 17799.52 9198.06 13099.05 21599.50 22789.64 32899.73 19297.73 21197.38 25698.53 309
gg-mvs-nofinetune96.17 30595.32 31398.73 22398.79 30798.14 22599.38 19494.09 37291.07 35498.07 31491.04 36789.62 32999.35 26996.75 28099.09 16898.68 263
DWT-MVSNet_test97.53 27097.40 25997.93 29399.03 27994.86 33699.57 9898.63 33996.59 26898.36 29998.79 33289.32 33099.74 18598.14 17798.16 22199.20 196
GG-mvs-BLEND98.45 25298.55 33498.16 22399.43 16893.68 37397.23 33298.46 34289.30 33199.22 28995.43 31198.22 21397.98 347
USDC97.34 28197.20 27997.75 30599.07 27195.20 32898.51 34199.04 30297.99 13698.31 30299.86 2689.02 33299.55 23795.67 30797.36 25798.49 312
MS-PatchMatch97.24 28597.32 27196.99 32498.45 33893.51 35398.82 31699.32 25897.41 19998.13 31099.30 28688.99 33399.56 23595.68 30699.80 8797.90 352
VPNet97.84 22997.44 25399.01 17599.21 24198.94 16299.48 14999.57 5198.38 8499.28 16399.73 12988.89 33499.39 25699.19 4593.27 33598.71 250
K. test v397.10 28896.79 28998.01 28798.72 31896.33 30399.87 597.05 36097.59 17596.16 34699.80 8188.71 33599.04 31496.69 28596.55 27298.65 280
lessismore_v097.79 30498.69 32295.44 32494.75 37095.71 35099.87 2388.69 33699.32 27495.89 30094.93 31398.62 292
TDRefinement95.42 31394.57 31997.97 29189.83 37196.11 30899.48 14998.75 32796.74 25396.68 34199.88 1888.65 33799.71 20298.37 15782.74 36098.09 338
TESTMET0.1,197.55 26897.27 27798.40 25998.93 29196.53 29698.67 32997.61 35796.96 23998.64 27899.28 29088.63 33899.45 24497.30 24799.38 14299.21 195
test_040296.64 29596.24 29797.85 29898.85 30396.43 30099.44 16299.26 27393.52 34096.98 33999.52 22088.52 33999.20 29692.58 34797.50 24597.93 350
UnsupCasMVSNet_eth96.44 29996.12 29997.40 31698.65 32595.65 31599.36 20199.51 10497.13 22296.04 34898.99 32288.40 34098.17 34596.71 28390.27 34898.40 325
MDA-MVSNet-bldmvs94.96 31793.98 32397.92 29498.24 34297.27 25899.15 25699.33 24893.80 33780.09 36999.03 31888.31 34197.86 35393.49 33694.36 32198.62 292
test-mter97.49 27797.13 28298.55 24098.79 30797.10 26598.67 32997.75 35496.65 26098.61 28298.85 32988.23 34299.45 24497.25 25099.38 14299.10 200
TinyColmap97.12 28796.89 28797.83 30099.07 27195.52 32198.57 33798.74 33097.58 17797.81 32299.79 9388.16 34399.56 23595.10 31797.21 26098.39 326
pmmvs-eth3d95.34 31594.73 31797.15 32095.53 36495.94 31199.35 20799.10 29495.13 31893.55 35697.54 35288.15 34497.91 35194.58 32389.69 35197.61 354
RRT_test8_iter0597.72 25197.60 23298.08 28199.23 23596.08 30999.63 6499.49 13297.54 18398.94 23299.81 6587.99 34599.35 26999.21 4496.51 27498.81 231
KD-MVS_2432*160094.62 31993.72 32597.31 31797.19 35795.82 31398.34 34799.20 28395.00 32397.57 32598.35 34587.95 34698.10 34692.87 34377.00 36598.01 343
miper_refine_blended94.62 31993.72 32597.31 31797.19 35795.82 31398.34 34799.20 28395.00 32397.57 32598.35 34587.95 34698.10 34692.87 34377.00 36598.01 343
new-patchmatchnet94.48 32294.08 32295.67 33895.08 36592.41 35799.18 25099.28 27294.55 33293.49 35797.37 35587.86 34897.01 36191.57 34888.36 35297.61 354
test250696.81 29296.65 29097.29 31999.74 7292.21 35999.60 7785.06 37899.13 799.77 3699.93 487.82 34999.85 13499.38 2499.38 14299.80 54
FMVSNet596.43 30096.19 29897.15 32099.11 26395.89 31299.32 21299.52 9194.47 33398.34 30199.07 31387.54 35097.07 36092.61 34695.72 29598.47 315
pmmvs696.53 29796.09 30097.82 30298.69 32295.47 32299.37 19799.47 16393.46 34297.41 32899.78 10087.06 35199.33 27396.92 27592.70 34298.65 280
pmmvs394.09 32593.25 32896.60 33394.76 36694.49 33998.92 30698.18 34989.66 35596.48 34398.06 35086.28 35297.33 35889.68 35587.20 35497.97 348
IB-MVS95.67 1896.22 30295.44 31298.57 23699.21 24196.70 29098.65 33297.74 35696.71 25597.27 33198.54 34186.03 35399.92 8398.47 14886.30 35599.10 200
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tmp_tt82.80 33381.52 33686.66 34866.61 37868.44 37692.79 36797.92 35268.96 36780.04 37099.85 3285.77 35496.15 36697.86 19843.89 37195.39 362
CMPMVSbinary69.68 2394.13 32494.90 31691.84 34497.24 35580.01 36998.52 34099.48 14589.01 35691.99 36099.67 15985.67 35599.13 30395.44 31097.03 26596.39 360
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet195.51 31195.04 31596.92 32897.38 35195.60 31699.52 12399.50 12493.65 33996.97 34099.17 30385.28 35696.56 36488.36 35995.55 29998.60 304
LFMVS97.90 22097.35 26599.54 9699.52 15599.01 14899.39 18998.24 34697.10 22899.65 7599.79 9384.79 35799.91 9499.28 3798.38 20699.69 106
FMVSNet196.84 29196.36 29598.29 26999.32 21697.26 26099.43 16899.48 14595.11 32098.55 28699.32 28383.95 35898.98 32395.81 30296.26 28098.62 292
VDD-MVS97.73 24997.35 26598.88 20199.47 17797.12 26499.34 21098.85 32298.19 10799.67 6499.85 3282.98 35999.92 8399.49 1498.32 21199.60 137
EG-PatchMatch MVS95.97 30895.69 30896.81 33097.78 34792.79 35699.16 25298.93 31196.16 30094.08 35599.22 29882.72 36099.47 24195.67 30797.50 24598.17 336
VDDNet97.55 26897.02 28599.16 16199.49 16998.12 22799.38 19499.30 26595.35 31799.68 5899.90 1082.62 36199.93 7299.31 3498.13 22299.42 179
UniMVSNet_ETH3D97.32 28296.81 28898.87 20599.40 19597.46 25399.51 12799.53 8595.86 31298.54 28799.77 10782.44 36299.66 21798.68 11697.52 24299.50 165
OpenMVS_ROBcopyleft92.34 2094.38 32393.70 32796.41 33597.38 35193.17 35499.06 27398.75 32786.58 35994.84 35498.26 34881.53 36399.32 27489.01 35697.87 22896.76 358
test_method91.10 32891.36 33190.31 34795.85 36173.72 37594.89 36499.25 27568.39 36895.82 34999.02 32080.50 36498.95 33293.64 33494.89 31498.25 333
MVS_030496.79 29396.52 29397.59 31099.22 23994.92 33599.04 28099.59 4396.49 27298.43 29498.99 32280.48 36599.39 25697.15 26099.27 15398.47 315
UnsupCasMVSNet_bld93.53 32692.51 32996.58 33497.38 35193.82 34698.24 35299.48 14591.10 35393.10 35896.66 35874.89 36698.37 34294.03 33187.71 35397.56 356
Gipumacopyleft90.99 32990.15 33293.51 34098.73 31690.12 36393.98 36599.45 18579.32 36492.28 35994.91 36169.61 36797.98 35087.42 36195.67 29692.45 364
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PM-MVS92.96 32792.23 33095.14 33995.61 36289.98 36499.37 19798.21 34794.80 32795.04 35397.69 35165.06 36897.90 35294.30 32689.98 35097.54 357
EMVS80.02 33579.22 33882.43 35391.19 36876.40 37297.55 36292.49 37766.36 37183.01 36691.27 36664.63 36985.79 37265.82 37160.65 36985.08 368
E-PMN80.61 33479.88 33782.81 35190.75 36976.38 37397.69 36095.76 36766.44 37083.52 36492.25 36562.54 37087.16 37168.53 37061.40 36884.89 369
ambc93.06 34292.68 36782.36 36698.47 34298.73 33595.09 35297.41 35355.55 37199.10 31096.42 29291.32 34697.71 353
FPMVS84.93 33285.65 33382.75 35286.77 37363.39 37798.35 34698.92 31374.11 36583.39 36598.98 32550.85 37292.40 36984.54 36694.97 31192.46 363
PMMVS286.87 33085.37 33491.35 34690.21 37083.80 36598.89 30997.45 35983.13 36391.67 36195.03 36048.49 37394.70 36785.86 36577.62 36495.54 361
LCM-MVSNet86.80 33185.22 33591.53 34587.81 37280.96 36898.23 35498.99 30571.05 36690.13 36296.51 35948.45 37496.88 36290.51 35185.30 35696.76 358
ANet_high77.30 33674.86 34084.62 35075.88 37677.61 37197.63 36193.15 37588.81 35764.27 37289.29 36836.51 37583.93 37375.89 36852.31 37092.33 365
test12339.01 34142.50 34328.53 35639.17 37920.91 38098.75 32319.17 38119.83 37538.57 37466.67 37133.16 37615.42 37537.50 37429.66 37349.26 370
testmvs39.17 34043.78 34225.37 35736.04 38016.84 38198.36 34526.56 37920.06 37438.51 37567.32 37029.64 37715.30 37637.59 37339.90 37243.98 371
wuyk23d40.18 33941.29 34436.84 35586.18 37449.12 37979.73 36822.81 38027.64 37325.46 37628.45 37521.98 37848.89 37455.80 37223.56 37412.51 372
PMVScopyleft70.75 2275.98 33874.97 33979.01 35470.98 37755.18 37893.37 36698.21 34765.08 37261.78 37393.83 36321.74 37992.53 36878.59 36791.12 34789.34 367
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive76.82 2176.91 33774.31 34184.70 34985.38 37576.05 37496.88 36393.17 37467.39 36971.28 37189.01 36921.66 38087.69 37071.74 36972.29 36790.35 366
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_blank0.13 3450.17 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3771.57 3760.00 3810.00 3770.00 3750.00 3750.00 373
uanet_test0.02 3460.03 3490.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.27 3770.00 3810.00 3770.00 3750.00 3750.00 373
sosnet-low-res0.02 3460.03 3490.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.27 3770.00 3810.00 3770.00 3750.00 3750.00 373
sosnet0.02 3460.03 3490.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.27 3770.00 3810.00 3770.00 3750.00 3750.00 373
uncertanet0.02 3460.03 3490.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.27 3770.00 3810.00 3770.00 3750.00 3750.00 373
Regformer0.02 3460.03 3490.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.27 3770.00 3810.00 3770.00 3750.00 3750.00 373
ab-mvs-re8.30 34311.06 3460.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 37799.58 1980.00 3810.00 3770.00 3750.00 3750.00 373
uanet0.02 3460.03 3490.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.27 3770.00 3810.00 3770.00 3750.00 3750.00 373
FOURS199.91 199.93 199.87 599.56 5799.10 1199.81 24
MSC_two_6792asdad99.87 1299.51 15799.76 4199.33 24899.96 1998.87 8199.84 6599.89 2
No_MVS99.87 1299.51 15799.76 4199.33 24899.96 1998.87 8199.84 6599.89 2
eth-test20.00 381
eth-test0.00 381
IU-MVS99.84 3399.88 899.32 25898.30 9599.84 1498.86 8699.85 5899.89 2
save fliter99.76 5499.59 7399.14 25899.40 21299.00 26
test_0728_SECOND99.91 299.84 3399.89 499.57 9899.51 10499.96 1998.93 7199.86 5199.88 7
GSMVS99.52 156
test_part299.81 4199.83 1799.77 36
MTGPAbinary99.47 163
MTMP99.54 11798.88 320
gm-plane-assit98.54 33592.96 35594.65 33099.15 30699.64 22497.56 229
test9_res97.49 23599.72 10999.75 76
agg_prior297.21 25299.73 10899.75 76
agg_prior99.67 10699.62 6699.40 21298.87 24399.91 94
test_prior499.56 7898.99 291
test_prior99.68 6899.67 10699.48 9399.56 5799.83 15199.74 81
旧先验298.96 29996.70 25699.47 11799.94 5798.19 170
新几何299.01 289
无先验98.99 29199.51 10496.89 24599.93 7297.53 23299.72 94
原ACMM298.95 303
testdata299.95 4696.67 286
testdata198.85 31398.32 94
plane_prior799.29 22297.03 275
plane_prior599.47 16399.69 21297.78 20597.63 23298.67 270
plane_prior499.61 189
plane_prior397.00 27798.69 6299.11 200
plane_prior299.39 18998.97 35
plane_prior199.26 229
plane_prior96.97 28099.21 24898.45 7797.60 235
n20.00 382
nn0.00 382
door-mid98.05 350
test1199.35 237
door97.92 352
HQP5-MVS96.83 285
HQP-NCC99.19 24598.98 29598.24 10098.66 271
ACMP_Plane99.19 24598.98 29598.24 10098.66 271
BP-MVS97.19 256
HQP4-MVS98.66 27199.64 22498.64 282
HQP3-MVS99.39 21697.58 237
NP-MVS99.23 23596.92 28399.40 259
ACMMP++_ref97.19 261
ACMMP++97.43 253