This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
SD-MVS99.41 4299.52 699.05 16399.74 7099.68 4999.46 14799.52 8999.11 799.88 599.91 599.43 197.70 33998.72 9899.93 1099.77 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.99.58 499.50 899.81 3899.91 199.66 5499.63 5799.39 20898.91 3699.78 3199.85 2999.36 299.94 5398.84 8199.88 3699.82 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2499.59 7699.51 10298.62 5799.79 2699.83 4299.28 399.97 1098.48 13399.90 2399.84 18
Skip Steuart: Steuart Systems R&D Blog.
OPU-MVS99.64 7799.56 14199.72 4299.60 7099.70 13399.27 499.42 24298.24 15599.80 8499.79 53
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 7099.48 13999.08 1199.91 199.81 6299.20 599.96 1898.91 6799.85 5899.79 53
test_241102_ONE99.84 3299.90 199.48 13999.07 1399.91 199.74 11799.20 599.76 173
MSLP-MVS++99.46 2499.47 999.44 12099.60 13299.16 12099.41 16899.71 1398.98 2799.45 10899.78 9599.19 799.54 22699.28 2999.84 6599.63 122
SMA-MVScopyleft99.44 3099.30 4099.85 2599.73 7599.83 1499.56 9599.47 15797.45 18099.78 3199.82 4999.18 899.91 9098.79 9099.89 3399.81 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2599.56 5699.02 1599.88 599.85 2999.18 899.96 1899.22 3499.92 1199.90 1
HPM-MVS_fast99.51 1499.40 1699.85 2599.91 199.79 3099.76 2499.56 5697.72 15299.76 3799.75 11199.13 1099.92 7999.07 5099.92 1199.85 14
PGM-MVS99.45 2699.31 3799.86 1899.87 1599.78 3799.58 8399.65 3297.84 13799.71 4699.80 7699.12 1199.97 1098.33 15099.87 4099.83 29
test_0728_THIRD98.99 2599.81 2299.80 7699.09 1299.96 1898.85 7999.90 2399.88 5
HFP-MVS99.49 1599.37 1999.86 1899.87 1599.80 2699.66 4699.67 2298.15 10199.68 5399.69 14099.06 1399.96 1898.69 10399.87 4099.84 18
#test#99.43 3399.29 4499.86 1899.87 1599.80 2699.55 10399.67 2297.83 13899.68 5399.69 14099.06 1399.96 1898.39 14199.87 4099.84 18
TSAR-MVS + GP.99.36 4999.36 2199.36 12699.67 10098.61 18699.07 25899.33 23999.00 2299.82 2099.81 6299.06 1399.84 13699.09 4899.42 13499.65 112
pcd_1.5k_mvsjas8.27 32811.03 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 35899.01 160.00 3580.00 3560.00 3560.00 354
PS-MVSNAJss98.92 11498.92 9798.90 18898.78 29698.53 19199.78 1999.54 7198.07 11599.00 21099.76 10599.01 1699.37 24999.13 4497.23 24998.81 219
PS-MVSNAJ99.32 5399.32 3099.30 13799.57 13798.94 15498.97 28699.46 16798.92 3599.71 4699.24 28299.01 1699.98 599.35 1999.66 11798.97 208
EI-MVSNet-Vis-set99.58 499.56 399.64 7799.78 4499.15 12499.61 6999.45 17999.01 1899.89 499.82 4999.01 1699.92 7999.56 499.95 699.85 14
Regformer-199.53 1199.47 999.72 6199.71 8699.44 9199.49 13399.46 16798.95 3299.83 1799.76 10599.01 1699.93 6899.17 4099.87 4099.80 49
Regformer-299.54 999.47 999.75 5199.71 8699.52 8299.49 13399.49 12898.94 3399.83 1799.76 10599.01 1699.94 5399.15 4399.87 4099.80 49
Regformer-499.59 399.54 499.73 5899.76 5299.41 9499.58 8399.49 12899.02 1599.88 599.80 7699.00 2299.94 5399.45 1599.92 1199.84 18
EI-MVSNet-UG-set99.58 499.57 199.64 7799.78 4499.14 12599.60 7099.45 17999.01 1899.90 399.83 4298.98 2399.93 6899.59 199.95 699.86 11
Regformer-399.57 799.53 599.68 6599.76 5299.29 10699.58 8399.44 18799.01 1899.87 1099.80 7698.97 2499.91 9099.44 1799.92 1199.83 29
region2R99.48 1999.35 2499.87 1199.88 1199.80 2699.65 5399.66 2798.13 10399.66 6499.68 14598.96 2599.96 1898.62 11199.87 4099.84 18
segment_acmp98.96 25
CNVR-MVS99.42 3899.30 4099.78 4599.62 12599.71 4499.26 22499.52 8998.82 4299.39 12799.71 12998.96 2599.85 13198.59 11999.80 8499.77 63
xxxxxxxxxxxxxcwj99.43 3399.32 3099.75 5199.76 5299.59 6799.14 24699.53 8399.00 2299.71 4699.80 7698.95 2899.93 6898.19 15899.84 6599.74 73
SF-MVS99.38 4799.24 5599.79 4399.79 4299.68 4999.57 8899.54 7197.82 14399.71 4699.80 7698.95 2899.93 6898.19 15899.84 6599.74 73
ACMMPR99.49 1599.36 2199.86 1899.87 1599.79 3099.66 4699.67 2298.15 10199.67 5999.69 14098.95 2899.96 1898.69 10399.87 4099.84 18
test_241102_TWO99.48 13999.08 1199.88 599.81 6298.94 3199.96 1898.91 6799.84 6599.88 5
DVP-MVS99.57 799.47 999.88 699.85 2599.89 399.57 8899.37 22299.10 899.81 2299.80 7698.94 3199.96 1898.93 6499.86 5199.81 41
test072699.85 2599.89 399.62 6399.50 12099.10 899.86 1199.82 4998.94 31
xiu_mvs_v2_base99.26 6299.25 5499.29 14099.53 14598.91 15899.02 27299.45 17998.80 4699.71 4699.26 28098.94 3199.98 599.34 2399.23 14698.98 207
CP-MVS99.45 2699.32 3099.85 2599.83 3699.75 3899.69 3599.52 8998.07 11599.53 9599.63 17098.93 3599.97 1098.74 9499.91 1699.83 29
ZNCC-MVS99.47 2299.33 2899.87 1199.87 1599.81 2499.64 5599.67 2298.08 11499.55 9299.64 16598.91 3699.96 1898.72 9899.90 2399.82 36
MCST-MVS99.43 3399.30 4099.82 3599.79 4299.74 4199.29 21099.40 20498.79 4799.52 9799.62 17598.91 3699.90 10598.64 10999.75 9699.82 36
HPM-MVScopyleft99.42 3899.28 4899.83 3399.90 399.72 4299.81 1299.54 7197.59 16399.68 5399.63 17098.91 3699.94 5398.58 12099.91 1699.84 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testdata99.54 9299.75 6298.95 15199.51 10297.07 21699.43 11399.70 13398.87 3999.94 5397.76 19599.64 12099.72 86
APD-MVS_3200maxsize99.48 1999.35 2499.85 2599.76 5299.83 1499.63 5799.54 7198.36 7899.79 2699.82 4998.86 4099.95 4298.62 11199.81 8099.78 61
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4799.63 11999.59 6799.36 19299.46 16799.07 1399.79 2699.82 4998.85 4199.92 7998.68 10599.87 4099.82 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1499.10 6999.72 8099.40 17699.51 10297.53 17399.64 6999.78 9598.84 4299.91 9097.63 20799.82 78
CDPH-MVS99.13 7998.91 9999.80 4099.75 6299.71 4499.15 24499.41 19896.60 25299.60 8099.55 19898.83 4399.90 10597.48 22399.83 7299.78 61
ACMMP_NAP99.47 2299.34 2699.88 699.87 1599.86 1099.47 14499.48 13998.05 12099.76 3799.86 2398.82 4499.93 6898.82 8899.91 1699.84 18
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 13299.74 11798.81 4599.94 5398.79 9099.86 5199.84 18
X-MVStestdata96.55 28595.45 29999.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 13264.01 35698.81 4599.94 5398.79 9099.86 5199.84 18
MP-MVS-pluss99.37 4899.20 5999.88 699.90 399.87 999.30 20699.52 8997.18 20599.60 8099.79 8898.79 4799.95 4298.83 8499.91 1699.83 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mPP-MVS99.44 3099.30 4099.86 1899.88 1199.79 3099.69 3599.48 13998.12 10599.50 10099.75 11198.78 4899.97 1098.57 12299.89 3399.83 29
APD-MVScopyleft99.27 6099.08 7299.84 3299.75 6299.79 3099.50 12399.50 12097.16 20799.77 3399.82 4998.78 4899.94 5397.56 21699.86 5199.80 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TAPA-MVS97.07 1597.74 24097.34 26198.94 17899.70 9397.53 24299.25 22699.51 10291.90 33099.30 14599.63 17098.78 4899.64 21288.09 34199.87 4099.65 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TEST999.67 10099.65 5799.05 26399.41 19896.22 28198.95 21799.49 22098.77 5199.91 90
agg_prior199.01 10798.76 12099.76 5099.67 10099.62 6098.99 27999.40 20496.26 27798.87 23099.49 22098.77 5199.91 9097.69 20499.72 10399.75 69
train_agg99.02 10498.77 11899.77 4799.67 10099.65 5799.05 26399.41 19896.28 27498.95 21799.49 22098.76 5399.91 9097.63 20799.72 10399.75 69
test_899.67 10099.61 6299.03 26999.41 19896.28 27498.93 22199.48 22698.76 5399.91 90
API-MVS99.04 10199.03 7999.06 16199.40 18199.31 10499.55 10399.56 5698.54 6199.33 14299.39 24998.76 5399.78 16896.98 25599.78 8998.07 324
RE-MVS-def99.34 2699.76 5299.82 2099.63 5799.52 8998.38 7599.76 3799.82 4998.75 5698.61 11499.81 8099.77 63
DP-MVS Recon99.12 8598.95 9599.65 7299.74 7099.70 4699.27 21699.57 5196.40 27099.42 11699.68 14598.75 5699.80 16197.98 17799.72 10399.44 167
Test By Simon98.75 56
ACMMPcopyleft99.45 2699.32 3099.82 3599.89 899.67 5299.62 6399.69 1898.12 10599.63 7099.84 3898.73 5999.96 1898.55 12899.83 7299.81 41
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DPE-MVS99.46 2499.32 3099.91 299.78 4499.88 799.36 19299.51 10298.73 5199.88 599.84 3898.72 6099.96 1898.16 16399.87 4099.88 5
NCCC99.34 5199.19 6099.79 4399.61 12999.65 5799.30 20699.48 13998.86 3899.21 16999.63 17098.72 6099.90 10598.25 15499.63 12299.80 49
DeepPCF-MVS98.18 398.81 13099.37 1997.12 30899.60 13291.75 34198.61 32299.44 18799.35 199.83 1799.85 2998.70 6299.81 15699.02 5499.91 1699.81 41
SR-MVS99.43 3399.29 4499.86 1899.75 6299.83 1499.59 7699.62 3498.21 9699.73 4399.79 8898.68 6399.96 1898.44 13999.77 9299.79 53
test_prior399.21 6699.05 7499.68 6599.67 10099.48 8698.96 28799.56 5698.34 8099.01 20599.52 21098.68 6399.83 14597.96 17899.74 9999.74 73
test_prior298.96 28798.34 8099.01 20599.52 21098.68 6397.96 17899.74 99
DPM-MVS98.95 11298.71 12499.66 6899.63 11999.55 7498.64 32199.10 27897.93 12999.42 11699.55 19898.67 6699.80 16195.80 29099.68 11499.61 126
原ACMM199.65 7299.73 7599.33 10099.47 15797.46 17799.12 18599.66 15798.67 6699.91 9097.70 20399.69 10999.71 93
HPM-MVS++copyleft99.39 4699.23 5799.87 1199.75 6299.84 1399.43 15899.51 10298.68 5599.27 15399.53 20798.64 6899.96 1898.44 13999.80 8499.79 53
abl_699.44 3099.31 3799.83 3399.85 2599.75 3899.66 4699.59 4498.13 10399.82 2099.81 6298.60 6999.96 1898.46 13799.88 3699.79 53
ZD-MVS99.71 8699.79 3099.61 3696.84 23499.56 8899.54 20398.58 7099.96 1896.93 26099.75 96
PHI-MVS99.30 5599.17 6299.70 6499.56 14199.52 8299.58 8399.80 897.12 21199.62 7499.73 12498.58 7099.90 10598.61 11499.91 1699.68 102
test117299.43 3399.29 4499.85 2599.75 6299.82 2099.60 7099.56 5698.28 8699.74 4199.79 8898.53 7299.95 4298.55 12899.78 8999.79 53
SR-MVS-dyc-post99.45 2699.31 3799.85 2599.76 5299.82 2099.63 5799.52 8998.38 7599.76 3799.82 4998.53 7299.95 4298.61 11499.81 8099.77 63
GST-MVS99.40 4599.24 5599.85 2599.86 2199.79 3099.60 7099.67 2297.97 12699.63 7099.68 14598.52 7499.95 4298.38 14399.86 5199.81 41
ETH3D-3000-0.199.21 6699.02 8299.77 4799.73 7599.69 4799.38 18599.51 10297.45 18099.61 7699.75 11198.51 7599.91 9097.45 22899.83 7299.71 93
MVS_111021_LR99.41 4299.33 2899.65 7299.77 4999.51 8498.94 29399.85 698.82 4299.65 6799.74 11798.51 7599.80 16198.83 8499.89 3399.64 118
MVS_111021_HR99.41 4299.32 3099.66 6899.72 8099.47 8898.95 29199.85 698.82 4299.54 9399.73 12498.51 7599.74 17698.91 6799.88 3699.77 63
旧先验199.74 7099.59 6799.54 7199.69 14098.47 7899.68 11499.73 80
DELS-MVS99.48 1999.42 1399.65 7299.72 8099.40 9699.05 26399.66 2799.14 699.57 8799.80 7698.46 7999.94 5399.57 399.84 6599.60 128
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPR98.63 14798.34 15699.51 10599.40 18199.03 13698.80 30699.36 22396.33 27199.00 21099.12 29898.46 7999.84 13695.23 30399.37 14099.66 108
zzz-MVS99.49 1599.36 2199.89 499.90 399.86 1099.36 19299.47 15798.79 4799.68 5399.81 6298.43 8199.97 1098.88 7099.90 2399.83 29
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 4699.47 15798.79 4799.68 5399.81 6298.43 8199.97 1098.88 7099.90 2399.83 29
新几何199.75 5199.75 6299.59 6799.54 7196.76 23899.29 14899.64 16598.43 8199.94 5396.92 26299.66 11799.72 86
F-COLMAP99.19 6999.04 7799.64 7799.78 4499.27 10999.42 16599.54 7197.29 19599.41 12099.59 18598.42 8499.93 6898.19 15899.69 10999.73 80
ETV-MVS99.26 6299.21 5899.40 12299.46 16599.30 10599.56 9599.52 8998.52 6399.44 11299.27 27998.41 8599.86 12599.10 4799.59 12699.04 200
112199.09 9498.87 10499.75 5199.74 7099.60 6499.27 21699.48 13996.82 23799.25 16099.65 15898.38 8699.93 6897.53 21999.67 11699.73 80
test1299.75 5199.64 11699.61 6299.29 25999.21 16998.38 8699.89 11399.74 9999.74 73
CSCG99.32 5399.32 3099.32 13299.85 2598.29 20999.71 3199.66 2798.11 10799.41 12099.80 7698.37 8899.96 1898.99 5699.96 599.72 86
PAPM_NR99.04 10198.84 11099.66 6899.74 7099.44 9199.39 18099.38 21497.70 15499.28 15099.28 27698.34 8999.85 13196.96 25799.45 13299.69 98
TAMVS99.12 8599.08 7299.24 14799.46 16598.55 18999.51 11799.46 16798.09 11099.45 10899.82 4998.34 8999.51 22798.70 10098.93 17099.67 105
ETH3D cwj APD-0.1699.06 9898.84 11099.72 6199.51 14999.60 6499.23 22999.44 18797.04 21999.39 12799.67 15198.30 9199.92 7997.27 23599.69 10999.64 118
MP-MVScopyleft99.33 5299.15 6399.87 1199.88 1199.82 2099.66 4699.46 16798.09 11099.48 10499.74 11798.29 9299.96 1897.93 18199.87 4099.82 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test22299.75 6299.49 8598.91 29699.49 12896.42 26899.34 14199.65 15898.28 9399.69 10999.72 86
CS-MVS99.21 6699.13 6599.45 11599.54 14499.34 9999.71 3199.54 7198.26 8998.99 21299.24 28298.25 9499.88 11898.98 5799.63 12299.12 189
PLCcopyleft97.94 499.02 10498.85 10999.53 9899.66 10999.01 13999.24 22899.52 8996.85 23399.27 15399.48 22698.25 9499.91 9097.76 19599.62 12499.65 112
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MSP-MVS99.42 3899.27 5099.88 699.89 899.80 2699.67 4299.50 12098.70 5399.77 3399.49 22098.21 9699.95 4298.46 13799.77 9299.88 5
xiu_mvs_v1_base_debu99.29 5799.27 5099.34 12799.63 11998.97 14599.12 24899.51 10298.86 3899.84 1399.47 22998.18 9799.99 199.50 899.31 14199.08 195
xiu_mvs_v1_base99.29 5799.27 5099.34 12799.63 11998.97 14599.12 24899.51 10298.86 3899.84 1399.47 22998.18 9799.99 199.50 899.31 14199.08 195
xiu_mvs_v1_base_debi99.29 5799.27 5099.34 12799.63 11998.97 14599.12 24899.51 10298.86 3899.84 1399.47 22998.18 9799.99 199.50 899.31 14199.08 195
testtj99.12 8598.87 10499.86 1899.72 8099.79 3099.44 15299.51 10297.29 19599.59 8399.74 11798.15 10099.96 1896.74 26899.69 10999.81 41
EIA-MVS99.18 7199.09 7199.45 11599.49 15899.18 11799.67 4299.53 8397.66 15999.40 12599.44 23598.10 10199.81 15698.94 6299.62 12499.35 175
CNLPA99.14 7798.99 8799.59 8499.58 13599.41 9499.16 24099.44 18798.45 6999.19 17599.49 22098.08 10299.89 11397.73 19999.75 9699.48 157
114514_t98.93 11398.67 12899.72 6199.85 2599.53 7999.62 6399.59 4492.65 32899.71 4699.78 9598.06 10399.90 10598.84 8199.91 1699.74 73
CDS-MVSNet99.09 9499.03 7999.25 14599.42 17398.73 17599.45 14899.46 16798.11 10799.46 10799.77 10198.01 10499.37 24998.70 10098.92 17299.66 108
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MG-MVS99.13 7999.02 8299.45 11599.57 13798.63 18399.07 25899.34 23298.99 2599.61 7699.82 4997.98 10599.87 12297.00 25399.80 8499.85 14
EI-MVSNet98.67 14398.67 12898.68 22099.35 19097.97 22399.50 12399.38 21496.93 23099.20 17299.83 4297.87 10699.36 25398.38 14397.56 22998.71 236
IterMVS-LS98.46 15298.42 15198.58 22599.59 13498.00 22199.37 18899.43 19496.94 22999.07 19699.59 18597.87 10699.03 30498.32 15295.62 28698.71 236
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG98.98 10998.80 11599.53 9899.76 5299.19 11598.75 31199.55 6497.25 19999.47 10599.77 10197.82 10899.87 12296.93 26099.90 2399.54 141
OMC-MVS99.08 9699.04 7799.20 15099.67 10098.22 21299.28 21299.52 8998.07 11599.66 6499.81 6297.79 10999.78 16897.79 19299.81 8099.60 128
LS3D99.27 6099.12 6799.74 5699.18 23499.75 3899.56 9599.57 5198.45 6999.49 10399.85 2997.77 11099.94 5398.33 15099.84 6599.52 146
PVSNet_Blended_VisFu99.36 4999.28 4899.61 8299.86 2199.07 13399.47 14499.93 297.66 15999.71 4699.86 2397.73 11199.96 1899.47 1399.82 7899.79 53
131498.68 14298.54 14699.11 15898.89 28098.65 18199.27 21699.49 12896.89 23197.99 30199.56 19597.72 11299.83 14597.74 19899.27 14498.84 217
MVS_Test99.10 9398.97 9199.48 10999.49 15899.14 12599.67 4299.34 23297.31 19399.58 8599.76 10597.65 11399.82 15298.87 7499.07 16199.46 164
PVSNet_BlendedMVS98.86 11998.80 11599.03 16699.76 5298.79 17299.28 21299.91 397.42 18599.67 5999.37 25397.53 11499.88 11898.98 5797.29 24898.42 309
PVSNet_Blended99.08 9698.97 9199.42 12199.76 5298.79 17298.78 30899.91 396.74 23999.67 5999.49 22097.53 11499.88 11898.98 5799.85 5899.60 128
UA-Net99.42 3899.29 4499.80 4099.62 12599.55 7499.50 12399.70 1598.79 4799.77 3399.96 197.45 11699.96 1898.92 6699.90 2399.89 2
ETH3 D test640098.70 13998.35 15599.73 5899.69 9599.60 6499.16 24099.45 17995.42 30299.27 15399.60 18297.39 11799.91 9095.36 30199.83 7299.70 95
MVSFormer99.17 7399.12 6799.29 14099.51 14998.94 15499.88 199.46 16797.55 16899.80 2499.65 15897.39 11799.28 26799.03 5299.85 5899.65 112
lupinMVS99.13 7999.01 8699.46 11499.51 14998.94 15499.05 26399.16 27297.86 13399.80 2499.56 19597.39 11799.86 12598.94 6299.85 5899.58 136
DP-MVS99.16 7598.95 9599.78 4599.77 4999.53 7999.41 16899.50 12097.03 22199.04 20299.88 1597.39 11799.92 7998.66 10799.90 2399.87 10
sss99.17 7399.05 7499.53 9899.62 12598.97 14599.36 19299.62 3497.83 13899.67 5999.65 15897.37 12199.95 4299.19 3799.19 14999.68 102
mvs_anonymous99.03 10398.99 8799.16 15499.38 18598.52 19599.51 11799.38 21497.79 14499.38 13099.81 6297.30 12299.45 23199.35 1998.99 16799.51 152
miper_ehance_all_eth98.18 17698.10 17098.41 24799.23 22197.72 23898.72 31499.31 25096.60 25298.88 22899.29 27497.29 12399.13 29197.60 20995.99 27598.38 314
CPTT-MVS99.11 9098.90 10099.74 5699.80 4199.46 8999.59 7699.49 12897.03 22199.63 7099.69 14097.27 12499.96 1897.82 19099.84 6599.81 41
PMMVS98.80 13398.62 13899.34 12799.27 21398.70 17798.76 31099.31 25097.34 19099.21 16999.07 30097.20 12599.82 15298.56 12598.87 17599.52 146
EPP-MVSNet99.13 7998.99 8799.53 9899.65 11499.06 13499.81 1299.33 23997.43 18399.60 8099.88 1597.14 12699.84 13699.13 4498.94 16999.69 98
cl_fuxian98.12 18398.04 17898.38 25199.30 20497.69 24198.81 30599.33 23996.67 24498.83 23699.34 26297.11 12798.99 31097.58 21195.34 29298.48 300
canonicalmvs99.02 10498.86 10899.51 10599.42 17399.32 10199.80 1699.48 13998.63 5699.31 14498.81 31697.09 12899.75 17599.27 3197.90 21799.47 162
MAR-MVS98.86 11998.63 13399.54 9299.37 18799.66 5499.45 14899.54 7196.61 25099.01 20599.40 24597.09 12899.86 12597.68 20699.53 13099.10 190
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
miper_enhance_ethall98.16 17898.08 17498.41 24798.96 27597.72 23898.45 33199.32 24796.95 22798.97 21599.17 29097.06 13099.22 27897.86 18695.99 27598.29 317
jason99.13 7999.03 7999.45 11599.46 16598.87 16199.12 24899.26 26298.03 12399.79 2699.65 15897.02 13199.85 13199.02 5499.90 2399.65 112
jason: jason.
our_test_397.65 25597.68 21797.55 30198.62 31494.97 31998.84 30299.30 25496.83 23698.19 29299.34 26297.01 13299.02 30695.00 30796.01 27398.64 269
MVS97.28 27396.55 28199.48 10998.78 29698.95 15199.27 21699.39 20883.53 34498.08 29699.54 20396.97 13399.87 12294.23 31599.16 15099.63 122
Fast-Effi-MVS+-dtu98.77 13698.83 11498.60 22399.41 17696.99 26699.52 11299.49 12898.11 10799.24 16199.34 26296.96 13499.79 16497.95 18099.45 13299.02 203
1112_ss98.98 10998.77 11899.59 8499.68 9999.02 13799.25 22699.48 13997.23 20299.13 18399.58 18896.93 13599.90 10598.87 7498.78 18199.84 18
WTY-MVS99.06 9898.88 10399.61 8299.62 12599.16 12099.37 18899.56 5698.04 12199.53 9599.62 17596.84 13699.94 5398.85 7998.49 19499.72 86
FC-MVSNet-test98.75 13798.62 13899.15 15699.08 25699.45 9099.86 599.60 4198.23 9398.70 25599.82 4996.80 13799.22 27899.07 5096.38 26698.79 221
Effi-MVS+-dtu98.78 13498.89 10298.47 24099.33 19596.91 27299.57 8899.30 25498.47 6699.41 12098.99 30796.78 13899.74 17698.73 9699.38 13698.74 232
mvs-test198.86 11998.84 11098.89 19199.33 19597.77 23599.44 15299.30 25498.47 6699.10 19099.43 23796.78 13899.95 4298.73 9699.02 16598.96 210
Test_1112_low_res98.89 11598.66 13199.57 8899.69 9598.95 15199.03 26999.47 15796.98 22399.15 18199.23 28496.77 14099.89 11398.83 8498.78 18199.86 11
FIs98.78 13498.63 13399.23 14999.18 23499.54 7699.83 999.59 4498.28 8698.79 24299.81 6296.75 14199.37 24999.08 4996.38 26698.78 222
PVSNet96.02 1798.85 12798.84 11098.89 19199.73 7597.28 24898.32 33599.60 4197.86 13399.50 10099.57 19296.75 14199.86 12598.56 12599.70 10899.54 141
nrg03098.64 14698.42 15199.28 14299.05 26299.69 4799.81 1299.46 16798.04 12199.01 20599.82 4996.69 14399.38 24699.34 2394.59 30598.78 222
CHOSEN 280x42099.12 8599.13 6599.08 15999.66 10997.89 22998.43 33299.71 1398.88 3799.62 7499.76 10596.63 14499.70 19999.46 1499.99 199.66 108
eth_miper_zixun_eth98.05 19397.96 18698.33 25499.26 21597.38 24698.56 32799.31 25096.65 24698.88 22899.52 21096.58 14599.12 29597.39 23295.53 28998.47 302
cdsmvs_eth3d_5k24.64 32632.85 3290.00 3400.00 3610.00 3620.00 35299.51 1020.00 3570.00 35899.56 19596.58 1450.00 3580.00 3560.00 3560.00 354
IS-MVSNet99.05 10098.87 10499.57 8899.73 7599.32 10199.75 2599.20 26998.02 12499.56 8899.86 2396.54 14799.67 20498.09 16799.13 15499.73 80
diffmvs99.14 7799.02 8299.51 10599.61 12998.96 14999.28 21299.49 12898.46 6899.72 4599.71 12996.50 14899.88 11899.31 2699.11 15599.67 105
CANet99.25 6499.14 6499.59 8499.41 17699.16 12099.35 19799.57 5198.82 4299.51 9999.61 17996.46 14999.95 4299.59 199.98 299.65 112
ppachtmachnet_test97.49 26797.45 24197.61 29898.62 31495.24 31398.80 30699.46 16796.11 29198.22 29199.62 17596.45 15098.97 31893.77 31995.97 27898.61 288
HY-MVS97.30 798.85 12798.64 13299.47 11299.42 17399.08 13299.62 6399.36 22397.39 18899.28 15099.68 14596.44 15199.92 7998.37 14598.22 20399.40 172
UniMVSNet_NR-MVSNet98.22 17097.97 18598.96 17598.92 27898.98 14299.48 13999.53 8397.76 14798.71 24999.46 23396.43 15299.22 27898.57 12292.87 32898.69 244
Effi-MVS+98.81 13098.59 14399.48 10999.46 16599.12 12998.08 34199.50 12097.50 17699.38 13099.41 24396.37 15399.81 15699.11 4698.54 19199.51 152
AdaColmapbinary99.01 10798.80 11599.66 6899.56 14199.54 7699.18 23899.70 1598.18 10099.35 13899.63 17096.32 15499.90 10597.48 22399.77 9299.55 139
UniMVSNet (Re)98.29 16798.00 18299.13 15799.00 26899.36 9899.49 13399.51 10297.95 12798.97 21599.13 29596.30 15599.38 24698.36 14893.34 32198.66 265
LCM-MVSNet-Re97.83 22498.15 16696.87 31399.30 20492.25 34099.59 7698.26 32997.43 18396.20 32699.13 29596.27 15698.73 32698.17 16298.99 16799.64 118
PAPM97.59 25897.09 27399.07 16099.06 25998.26 21198.30 33699.10 27894.88 30798.08 29699.34 26296.27 15699.64 21289.87 33698.92 17299.31 179
Fast-Effi-MVS+98.70 13998.43 15099.51 10599.51 14999.28 10799.52 11299.47 15796.11 29199.01 20599.34 26296.20 15899.84 13697.88 18498.82 17899.39 173
EPNet_dtu98.03 19497.96 18698.23 26598.27 32695.54 30799.23 22998.75 31199.02 1597.82 30699.71 12996.11 15999.48 22893.04 32799.65 11999.69 98
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline99.15 7699.02 8299.53 9899.66 10999.14 12599.72 2999.48 13998.35 7999.42 11699.84 3896.07 16099.79 16499.51 799.14 15399.67 105
D2MVS98.41 15798.50 14798.15 27099.26 21596.62 28399.40 17699.61 3697.71 15398.98 21399.36 25696.04 16199.67 20498.70 10097.41 24498.15 322
miper_lstm_enhance98.00 20197.91 19298.28 26399.34 19497.43 24598.88 29899.36 22396.48 26398.80 24099.55 19895.98 16298.91 32197.27 23595.50 29098.51 298
EPNet98.86 11998.71 12499.30 13797.20 34098.18 21399.62 6398.91 30099.28 298.63 26699.81 6295.96 16399.99 199.24 3399.72 10399.73 80
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
AllTest98.87 11698.72 12299.31 13399.86 2198.48 20199.56 9599.61 3697.85 13599.36 13599.85 2995.95 16499.85 13196.66 27499.83 7299.59 132
TestCases99.31 13399.86 2198.48 20199.61 3697.85 13599.36 13599.85 2995.95 16499.85 13196.66 27499.83 7299.59 132
3Dnovator97.25 999.24 6599.05 7499.81 3899.12 24799.66 5499.84 699.74 1099.09 1098.92 22299.90 795.94 16699.98 598.95 6199.92 1199.79 53
casdiffmvs99.13 7998.98 9099.56 9099.65 11499.16 12099.56 9599.50 12098.33 8399.41 12099.86 2395.92 16799.83 14599.45 1599.16 15099.70 95
RPSCF98.22 17098.62 13896.99 30999.82 3791.58 34299.72 2999.44 18796.61 25099.66 6499.89 1095.92 16799.82 15297.46 22699.10 15899.57 137
pmmvs498.13 18197.90 19398.81 20998.61 31698.87 16198.99 27999.21 26896.44 26699.06 20099.58 18895.90 16999.11 29697.18 24596.11 27198.46 306
HyFIR lowres test99.11 9098.92 9799.65 7299.90 399.37 9799.02 27299.91 397.67 15899.59 8399.75 11195.90 16999.73 18399.53 599.02 16599.86 11
COLMAP_ROBcopyleft97.56 698.86 11998.75 12199.17 15399.88 1198.53 19199.34 20099.59 4497.55 16898.70 25599.89 1095.83 17199.90 10598.10 16699.90 2399.08 195
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS98.35 299.30 5599.19 6099.64 7799.82 3799.23 11399.62 6399.55 6498.94 3399.63 7099.95 295.82 17299.94 5399.37 1899.97 399.73 80
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
QAPM98.67 14398.30 16099.80 4099.20 22999.67 5299.77 2199.72 1194.74 31098.73 24799.90 795.78 17399.98 596.96 25799.88 3699.76 68
BH-untuned98.42 15598.36 15398.59 22499.49 15896.70 27999.27 21699.13 27697.24 20198.80 24099.38 25095.75 17499.74 17697.07 25199.16 15099.33 178
test_djsdf98.67 14398.57 14498.98 17298.70 30798.91 15899.88 199.46 16797.55 16899.22 16699.88 1595.73 17599.28 26799.03 5297.62 22498.75 229
cl-mvsnet198.01 19997.85 19998.48 23699.24 22097.95 22798.71 31599.35 22896.50 25898.60 27199.54 20395.72 17699.03 30497.21 23995.77 28198.46 306
3Dnovator+97.12 1399.18 7198.97 9199.82 3599.17 24099.68 4999.81 1299.51 10299.20 498.72 24899.89 1095.68 17799.97 1098.86 7799.86 5199.81 41
cl-mvsnet_98.01 19997.84 20098.55 23099.25 21997.97 22398.71 31599.34 23296.47 26598.59 27299.54 20395.65 17899.21 28397.21 23995.77 28198.46 306
VNet99.11 9098.90 10099.73 5899.52 14799.56 7299.41 16899.39 20899.01 1899.74 4199.78 9595.56 17999.92 7999.52 698.18 20799.72 86
WR-MVS_H98.13 18197.87 19898.90 18899.02 26698.84 16599.70 3399.59 4497.27 19798.40 28199.19 28995.53 18099.23 27598.34 14993.78 31798.61 288
CHOSEN 1792x268899.19 6999.10 6999.45 11599.89 898.52 19599.39 18099.94 198.73 5199.11 18799.89 1095.50 18199.94 5399.50 899.97 399.89 2
Vis-MVSNet (Re-imp)98.87 11698.72 12299.31 13399.71 8698.88 16099.80 1699.44 18797.91 13199.36 13599.78 9595.49 18299.43 24197.91 18299.11 15599.62 124
PatchMatch-RL98.84 12998.62 13899.52 10399.71 8699.28 10799.06 26199.77 997.74 15199.50 10099.53 20795.41 18399.84 13697.17 24699.64 12099.44 167
RRT_MVS98.60 14898.44 14999.05 16398.88 28199.14 12599.49 13399.38 21497.76 14799.29 14899.86 2395.38 18499.36 25398.81 8997.16 25398.64 269
test_yl98.86 11998.63 13399.54 9299.49 15899.18 11799.50 12399.07 28398.22 9499.61 7699.51 21495.37 18599.84 13698.60 11798.33 19799.59 132
DCV-MVSNet98.86 11998.63 13399.54 9299.49 15899.18 11799.50 12399.07 28398.22 9499.61 7699.51 21495.37 18599.84 13698.60 11798.33 19799.59 132
tpmrst98.33 16398.48 14897.90 28699.16 24294.78 32299.31 20499.11 27797.27 19799.45 10899.59 18595.33 18799.84 13698.48 13398.61 18499.09 194
MVP-Stereo97.81 22997.75 21197.99 28097.53 33396.60 28498.96 28798.85 30697.22 20397.23 31599.36 25695.28 18899.46 23095.51 29699.78 8997.92 332
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CANet_DTU98.97 11198.87 10499.25 14599.33 19598.42 20699.08 25799.30 25499.16 599.43 11399.75 11195.27 18999.97 1098.56 12599.95 699.36 174
XVG-OURS98.73 13898.68 12798.88 19499.70 9397.73 23798.92 29499.55 6498.52 6399.45 10899.84 3895.27 18999.91 9098.08 17198.84 17799.00 204
BH-w/o98.00 20197.89 19798.32 25799.35 19096.20 29699.01 27798.90 30296.42 26898.38 28299.00 30695.26 19199.72 18796.06 28498.61 18499.03 201
EU-MVSNet97.98 20398.03 17997.81 29298.72 30496.65 28299.66 4699.66 2798.09 11098.35 28599.82 4995.25 19298.01 33297.41 23195.30 29398.78 222
MDTV_nov1_ep13_2view95.18 31699.35 19796.84 23499.58 8595.19 19397.82 19099.46 164
JIA-IIPM97.50 26597.02 27598.93 18098.73 30297.80 23499.30 20698.97 29191.73 33198.91 22394.86 34495.10 19499.71 19397.58 21197.98 21599.28 181
NR-MVSNet97.97 20697.61 22499.02 16798.87 28599.26 11099.47 14499.42 19697.63 16197.08 31899.50 21795.07 19599.13 29197.86 18693.59 31898.68 249
tpmvs97.98 20398.02 18197.84 28999.04 26394.73 32399.31 20499.20 26996.10 29598.76 24599.42 24094.94 19699.81 15696.97 25698.45 19598.97 208
v897.95 20797.63 22398.93 18098.95 27698.81 17199.80 1699.41 19896.03 29699.10 19099.42 24094.92 19799.30 26596.94 25994.08 31498.66 265
PatchmatchNetpermissive98.31 16498.36 15398.19 26799.16 24295.32 31299.27 21698.92 29797.37 18999.37 13299.58 18894.90 19899.70 19997.43 23099.21 14799.54 141
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v7n97.87 21697.52 23298.92 18298.76 30098.58 18799.84 699.46 16796.20 28298.91 22399.70 13394.89 19999.44 23696.03 28593.89 31698.75 229
sam_mvs194.86 20099.52 146
DU-MVS98.08 18797.79 20298.96 17598.87 28598.98 14299.41 16899.45 17997.87 13298.71 24999.50 21794.82 20199.22 27898.57 12292.87 32898.68 249
Baseline_NR-MVSNet97.76 23497.45 24198.68 22099.09 25498.29 20999.41 16898.85 30695.65 30098.63 26699.67 15194.82 20199.10 29898.07 17492.89 32798.64 269
patchmatchnet-post98.70 32194.79 20399.74 176
Patchmatch-RL test95.84 29795.81 29595.95 32095.61 34190.57 34398.24 33798.39 32895.10 30695.20 33198.67 32294.78 20497.77 33796.28 28290.02 33799.51 152
alignmvs98.81 13098.56 14599.58 8799.43 17299.42 9399.51 11798.96 29398.61 5899.35 13898.92 31394.78 20499.77 17099.35 1998.11 21399.54 141
MDTV_nov1_ep1398.32 15899.11 24994.44 32599.27 21698.74 31497.51 17599.40 12599.62 17594.78 20499.76 17397.59 21098.81 180
Vis-MVSNetpermissive99.12 8598.97 9199.56 9099.78 4499.10 13099.68 4099.66 2798.49 6599.86 1199.87 2094.77 20799.84 13699.19 3799.41 13599.74 73
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
anonymousdsp98.44 15398.28 16198.94 17898.50 32298.96 14999.77 2199.50 12097.07 21698.87 23099.77 10194.76 20899.28 26798.66 10797.60 22598.57 294
v1097.85 21997.52 23298.86 20198.99 26998.67 17999.75 2599.41 19895.70 29998.98 21399.41 24394.75 20999.23 27596.01 28694.63 30498.67 257
OpenMVScopyleft96.50 1698.47 15198.12 16999.52 10399.04 26399.53 7999.82 1099.72 1194.56 31398.08 29699.88 1594.73 21099.98 597.47 22599.76 9599.06 199
sam_mvs94.72 211
v14897.79 23297.55 22898.50 23398.74 30197.72 23899.54 10699.33 23996.26 27798.90 22599.51 21494.68 21299.14 28897.83 18993.15 32598.63 277
v114497.98 20397.69 21698.85 20498.87 28598.66 18099.54 10699.35 22896.27 27699.23 16599.35 25994.67 21399.23 27596.73 26995.16 29698.68 249
V4298.06 18897.79 20298.86 20198.98 27298.84 16599.69 3599.34 23296.53 25799.30 14599.37 25394.67 21399.32 26297.57 21594.66 30398.42 309
test_post65.99 35494.65 21599.73 183
baseline198.31 16497.95 18899.38 12599.50 15698.74 17499.59 7698.93 29598.41 7399.14 18299.60 18294.59 21699.79 16498.48 13393.29 32299.61 126
DSMNet-mixed97.25 27497.35 25896.95 31197.84 33193.61 33499.57 8896.63 34796.13 29098.87 23098.61 32594.59 21697.70 33995.08 30598.86 17699.55 139
Patchmatch-test97.93 20897.65 22098.77 21499.18 23497.07 25999.03 26999.14 27596.16 28698.74 24699.57 19294.56 21899.72 18793.36 32399.11 15599.52 146
PCF-MVS97.08 1497.66 25497.06 27499.47 11299.61 12999.09 13198.04 34299.25 26491.24 33498.51 27599.70 13394.55 21999.91 9092.76 32999.85 5899.42 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PatchT97.03 27996.44 28398.79 21298.99 26998.34 20899.16 24099.07 28392.13 32999.52 9797.31 33894.54 22098.98 31188.54 33998.73 18399.03 201
CVMVSNet98.57 14998.67 12898.30 25999.35 19095.59 30499.50 12399.55 6498.60 5999.39 12799.83 4294.48 22199.45 23198.75 9398.56 19099.85 14
test-LLR98.06 18897.90 19398.55 23098.79 29397.10 25598.67 31797.75 33797.34 19098.61 26998.85 31494.45 22299.45 23197.25 23799.38 13699.10 190
test0.0.03 197.71 24797.42 25098.56 22898.41 32597.82 23398.78 30898.63 32397.34 19098.05 30098.98 31094.45 22298.98 31195.04 30697.15 25498.89 214
v14419297.92 21197.60 22598.87 19898.83 29198.65 18199.55 10399.34 23296.20 28299.32 14399.40 24594.36 22499.26 27296.37 28195.03 29998.70 240
CR-MVSNet98.17 17797.93 19198.87 19899.18 23498.49 19999.22 23499.33 23996.96 22599.56 8899.38 25094.33 22599.00 30994.83 30998.58 18799.14 186
Patchmtry97.75 23897.40 25298.81 20999.10 25298.87 16199.11 25499.33 23994.83 30898.81 23899.38 25094.33 22599.02 30696.10 28395.57 28798.53 296
tpm cat197.39 27097.36 25697.50 30399.17 24093.73 33199.43 15899.31 25091.27 33398.71 24999.08 29994.31 22799.77 17096.41 28098.50 19399.00 204
TranMVSNet+NR-MVSNet97.93 20897.66 21998.76 21598.78 29698.62 18499.65 5399.49 12897.76 14798.49 27699.60 18294.23 22898.97 31898.00 17692.90 32698.70 240
v2v48298.06 18897.77 20798.92 18298.90 27998.82 16999.57 8899.36 22396.65 24699.19 17599.35 25994.20 22999.25 27397.72 20194.97 30098.69 244
XVG-OURS-SEG-HR98.69 14198.62 13898.89 19199.71 8697.74 23699.12 24899.54 7198.44 7299.42 11699.71 12994.20 22999.92 7998.54 13098.90 17499.00 204
ab-mvs98.86 11998.63 13399.54 9299.64 11699.19 11599.44 15299.54 7197.77 14699.30 14599.81 6294.20 22999.93 6899.17 4098.82 17899.49 156
test_post199.23 22965.14 35594.18 23299.71 19397.58 211
ADS-MVSNet298.02 19698.07 17797.87 28799.33 19595.19 31599.23 22999.08 28196.24 27999.10 19099.67 15194.11 23398.93 32096.81 26599.05 16299.48 157
ADS-MVSNet98.20 17398.08 17498.56 22899.33 19596.48 28799.23 22999.15 27396.24 27999.10 19099.67 15194.11 23399.71 19396.81 26599.05 16299.48 157
RPMNet96.72 28395.90 29399.19 15199.18 23498.49 19999.22 23499.52 8988.72 34099.56 8897.38 33694.08 23599.95 4286.87 34598.58 18799.14 186
v119297.81 22997.44 24698.91 18698.88 28198.68 17899.51 11799.34 23296.18 28499.20 17299.34 26294.03 23699.36 25395.32 30295.18 29598.69 244
v192192097.80 23197.45 24198.84 20598.80 29298.53 19199.52 11299.34 23296.15 28899.24 16199.47 22993.98 23799.29 26695.40 29995.13 29798.69 244
Anonymous2023120696.22 29196.03 29096.79 31597.31 33894.14 32899.63 5799.08 28196.17 28597.04 31999.06 30293.94 23897.76 33886.96 34495.06 29898.47 302
WR-MVS98.06 18897.73 21399.06 16198.86 28899.25 11199.19 23799.35 22897.30 19498.66 25899.43 23793.94 23899.21 28398.58 12094.28 31098.71 236
N_pmnet94.95 30595.83 29492.31 32698.47 32379.33 35199.12 24892.81 35793.87 31897.68 31099.13 29593.87 24099.01 30891.38 33396.19 27098.59 292
MVSTER98.49 15098.32 15899.00 17099.35 19099.02 13799.54 10699.38 21497.41 18699.20 17299.73 12493.86 24199.36 25398.87 7497.56 22998.62 279
CP-MVSNet98.09 18597.78 20599.01 16898.97 27499.24 11299.67 4299.46 16797.25 19998.48 27799.64 16593.79 24299.06 30098.63 11094.10 31398.74 232
cascas97.69 24897.43 24998.48 23698.60 31797.30 24798.18 34099.39 20892.96 32798.41 28098.78 31993.77 24399.27 27098.16 16398.61 18498.86 215
v124097.69 24897.32 26498.79 21298.85 28998.43 20499.48 13999.36 22396.11 29199.27 15399.36 25693.76 24499.24 27494.46 31295.23 29498.70 240
test20.0396.12 29495.96 29296.63 31697.44 33495.45 31099.51 11799.38 21496.55 25696.16 32799.25 28193.76 24496.17 34687.35 34394.22 31198.27 318
baseline297.87 21697.55 22898.82 20799.18 23498.02 22099.41 16896.58 34896.97 22496.51 32399.17 29093.43 24699.57 22297.71 20299.03 16498.86 215
TransMVSNet (Re)97.15 27696.58 28098.86 20199.12 24798.85 16499.49 13398.91 30095.48 30197.16 31799.80 7693.38 24799.11 29694.16 31791.73 33398.62 279
tfpnnormal97.84 22297.47 23898.98 17299.20 22999.22 11499.64 5599.61 3696.32 27298.27 29099.70 13393.35 24899.44 23695.69 29295.40 29198.27 318
Anonymous2023121197.88 21497.54 23198.90 18899.71 8698.53 19199.48 13999.57 5194.16 31698.81 23899.68 14593.23 24999.42 24298.84 8194.42 30898.76 227
XXY-MVS98.38 16098.09 17399.24 14799.26 21599.32 10199.56 9599.55 6497.45 18098.71 24999.83 4293.23 24999.63 21798.88 7096.32 26898.76 227
jajsoiax98.43 15498.28 16198.88 19498.60 31798.43 20499.82 1099.53 8398.19 9798.63 26699.80 7693.22 25199.44 23699.22 3497.50 23598.77 225
MDA-MVSNet_test_wron95.45 30094.60 30698.01 27898.16 32897.21 25399.11 25499.24 26593.49 32380.73 34998.98 31093.02 25298.18 32994.22 31694.45 30798.64 269
ACMM97.58 598.37 16198.34 15698.48 23699.41 17697.10 25599.56 9599.45 17998.53 6299.04 20299.85 2993.00 25399.71 19398.74 9497.45 24098.64 269
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet398.03 19497.76 21098.84 20599.39 18498.98 14299.40 17699.38 21496.67 24499.07 19699.28 27692.93 25498.98 31197.10 24896.65 25898.56 295
DTE-MVSNet97.51 26497.19 27198.46 24198.63 31398.13 21799.84 699.48 13996.68 24397.97 30299.67 15192.92 25598.56 32796.88 26492.60 33198.70 240
CLD-MVS98.16 17898.10 17098.33 25499.29 20896.82 27598.75 31199.44 18797.83 13899.13 18399.55 19892.92 25599.67 20498.32 15297.69 22198.48 300
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BH-RMVSNet98.41 15798.08 17499.40 12299.41 17698.83 16899.30 20698.77 31097.70 15498.94 21999.65 15892.91 25799.74 17696.52 27699.55 12999.64 118
YYNet195.36 30294.51 30897.92 28497.89 33097.10 25599.10 25699.23 26693.26 32680.77 34899.04 30492.81 25898.02 33194.30 31394.18 31298.64 269
mvs_tets98.40 15998.23 16398.91 18698.67 31098.51 19799.66 4699.53 8398.19 9798.65 26499.81 6292.75 25999.44 23699.31 2697.48 23998.77 225
IterMVS97.83 22497.77 20798.02 27799.58 13596.27 29499.02 27299.48 13997.22 20398.71 24999.70 13392.75 25999.13 29197.46 22696.00 27498.67 257
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UGNet98.87 11698.69 12699.40 12299.22 22598.72 17699.44 15299.68 1999.24 399.18 17899.42 24092.74 26199.96 1899.34 2399.94 999.53 145
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS-SCA-FT97.82 22797.75 21198.06 27499.57 13796.36 29199.02 27299.49 12897.18 20598.71 24999.72 12892.72 26299.14 28897.44 22995.86 28098.67 257
SCA98.19 17498.16 16598.27 26499.30 20495.55 30599.07 25898.97 29197.57 16699.43 11399.57 19292.72 26299.74 17697.58 21199.20 14899.52 146
HQP_MVS98.27 16998.22 16498.44 24599.29 20896.97 26899.39 18099.47 15798.97 3099.11 18799.61 17992.71 26499.69 20297.78 19397.63 22298.67 257
plane_prior699.27 21396.98 26792.71 264
dp97.75 23897.80 20197.59 29999.10 25293.71 33299.32 20298.88 30496.48 26399.08 19599.55 19892.67 26699.82 15296.52 27698.58 18799.24 182
PEN-MVS97.76 23497.44 24698.72 21798.77 29998.54 19099.78 1999.51 10297.06 21898.29 28999.64 16592.63 26798.89 32398.09 16793.16 32498.72 234
LPG-MVS_test98.22 17098.13 16898.49 23499.33 19597.05 26199.58 8399.55 6497.46 17799.24 16199.83 4292.58 26899.72 18798.09 16797.51 23398.68 249
LGP-MVS_train98.49 23499.33 19597.05 26199.55 6497.46 17799.24 16199.83 4292.58 26899.72 18798.09 16797.51 23398.68 249
VPA-MVSNet98.29 16797.95 18899.30 13799.16 24299.54 7699.50 12399.58 5098.27 8899.35 13899.37 25392.53 27099.65 21099.35 1994.46 30698.72 234
TR-MVS97.76 23497.41 25198.82 20799.06 25997.87 23098.87 30098.56 32596.63 24998.68 25799.22 28592.49 27199.65 21095.40 29997.79 21998.95 213
pm-mvs197.68 25097.28 26798.88 19499.06 25998.62 18499.50 12399.45 17996.32 27297.87 30499.79 8892.47 27299.35 25797.54 21893.54 32098.67 257
HQP2-MVS92.47 272
HQP-MVS98.02 19697.90 19398.37 25299.19 23196.83 27398.98 28399.39 20898.24 9098.66 25899.40 24592.47 27299.64 21297.19 24397.58 22798.64 269
EPMVS97.82 22797.65 22098.35 25398.88 28195.98 29999.49 13394.71 35297.57 16699.26 15899.48 22692.46 27599.71 19397.87 18599.08 16099.35 175
PS-CasMVS97.93 20897.59 22798.95 17798.99 26999.06 13499.68 4099.52 8997.13 20998.31 28799.68 14592.44 27699.05 30198.51 13194.08 31498.75 229
cl-mvsnet297.85 21997.64 22298.48 23699.09 25497.87 23098.60 32499.33 23997.11 21498.87 23099.22 28592.38 27799.17 28798.21 15795.99 27598.42 309
CostFormer97.72 24397.73 21397.71 29699.15 24594.02 32999.54 10699.02 28794.67 31199.04 20299.35 25992.35 27899.77 17098.50 13297.94 21699.34 177
OPM-MVS98.19 17498.10 17098.45 24298.88 28197.07 25999.28 21299.38 21498.57 6099.22 16699.81 6292.12 27999.66 20798.08 17197.54 23198.61 288
ET-MVSNet_ETH3D96.49 28795.64 29799.05 16399.53 14598.82 16998.84 30297.51 34197.63 16184.77 34499.21 28892.09 28098.91 32198.98 5792.21 33299.41 171
ACMP97.20 1198.06 18897.94 19098.45 24299.37 18797.01 26499.44 15299.49 12897.54 17198.45 27899.79 8891.95 28199.72 18797.91 18297.49 23898.62 279
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous20240521198.30 16697.98 18499.26 14499.57 13798.16 21499.41 16898.55 32696.03 29699.19 17599.74 11791.87 28299.92 7999.16 4298.29 20299.70 95
tpm97.67 25397.55 22898.03 27599.02 26695.01 31899.43 15898.54 32796.44 26699.12 18599.34 26291.83 28399.60 22097.75 19796.46 26499.48 157
thres100view90097.76 23497.45 24198.69 21999.72 8097.86 23299.59 7698.74 31497.93 12999.26 15898.62 32391.75 28499.83 14593.22 32498.18 20798.37 315
thres600view797.86 21897.51 23498.92 18299.72 8097.95 22799.59 7698.74 31497.94 12899.27 15398.62 32391.75 28499.86 12593.73 32098.19 20698.96 210
LTVRE_ROB97.16 1298.02 19697.90 19398.40 24999.23 22196.80 27699.70 3399.60 4197.12 21198.18 29399.70 13391.73 28699.72 18798.39 14197.45 24098.68 249
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-097.88 21497.77 20798.19 26798.71 30696.53 28599.88 199.00 28897.79 14498.78 24399.94 391.68 28799.35 25797.21 23996.99 25698.69 244
tfpn200view997.72 24397.38 25498.72 21799.69 9597.96 22599.50 12398.73 31997.83 13899.17 17998.45 32891.67 28899.83 14593.22 32498.18 20798.37 315
thres40097.77 23397.38 25498.92 18299.69 9597.96 22599.50 12398.73 31997.83 13899.17 17998.45 32891.67 28899.83 14593.22 32498.18 20798.96 210
thisisatest051598.14 18097.79 20299.19 15199.50 15698.50 19898.61 32296.82 34596.95 22799.54 9399.43 23791.66 29099.86 12598.08 17199.51 13199.22 183
thres20097.61 25797.28 26798.62 22299.64 11698.03 21999.26 22498.74 31497.68 15699.09 19498.32 33091.66 29099.81 15692.88 32898.22 20398.03 326
new_pmnet96.38 29096.03 29097.41 30498.13 32995.16 31799.05 26399.20 26993.94 31797.39 31398.79 31791.61 29299.04 30290.43 33595.77 28198.05 325
pmmvs597.52 26297.30 26698.16 26998.57 31996.73 27799.27 21698.90 30296.14 28998.37 28399.53 20791.54 29399.14 28897.51 22195.87 27998.63 277
tttt051798.42 15598.14 16799.28 14299.66 10998.38 20799.74 2896.85 34497.68 15699.79 2699.74 11791.39 29499.89 11398.83 8499.56 12799.57 137
tpm297.44 26997.34 26197.74 29599.15 24594.36 32699.45 14898.94 29493.45 32598.90 22599.44 23591.35 29599.59 22197.31 23398.07 21499.29 180
MVS-HIRNet95.75 29895.16 30297.51 30299.30 20493.69 33398.88 29895.78 34985.09 34398.78 24392.65 34691.29 29699.37 24994.85 30899.85 5899.46 164
thisisatest053098.35 16298.03 17999.31 13399.63 11998.56 18899.54 10696.75 34697.53 17399.73 4399.65 15891.25 29799.89 11398.62 11199.56 12799.48 157
testgi97.65 25597.50 23598.13 27199.36 18996.45 28899.42 16599.48 13997.76 14797.87 30499.45 23491.09 29898.81 32494.53 31198.52 19299.13 188
ITE_SJBPF98.08 27299.29 20896.37 29098.92 29798.34 8098.83 23699.75 11191.09 29899.62 21895.82 28897.40 24598.25 320
DeepMVS_CXcopyleft93.34 32499.29 20882.27 34899.22 26785.15 34296.33 32599.05 30390.97 30099.73 18393.57 32197.77 22098.01 327
ACMH97.28 898.10 18497.99 18398.44 24599.41 17696.96 27099.60 7099.56 5698.09 11098.15 29499.91 590.87 30199.70 19998.88 7097.45 24098.67 257
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SixPastTwentyTwo97.50 26597.33 26398.03 27598.65 31196.23 29599.77 2198.68 32297.14 20897.90 30399.93 490.45 30299.18 28697.00 25396.43 26598.67 257
MIMVSNet97.73 24197.45 24198.57 22699.45 17197.50 24399.02 27298.98 29096.11 29199.41 12099.14 29490.28 30398.74 32595.74 29198.93 17099.47 162
GBi-Net97.68 25097.48 23698.29 26099.51 14997.26 25099.43 15899.48 13996.49 25999.07 19699.32 26990.26 30498.98 31197.10 24896.65 25898.62 279
test197.68 25097.48 23698.29 26099.51 14997.26 25099.43 15899.48 13996.49 25999.07 19699.32 26990.26 30498.98 31197.10 24896.65 25898.62 279
FMVSNet297.72 24397.36 25698.80 21199.51 14998.84 16599.45 14899.42 19696.49 25998.86 23599.29 27490.26 30498.98 31196.44 27896.56 26198.58 293
Anonymous2024052998.09 18597.68 21799.34 12799.66 10998.44 20399.40 17699.43 19493.67 32099.22 16699.89 1090.23 30799.93 6899.26 3298.33 19799.66 108
ACMH+97.24 1097.92 21197.78 20598.32 25799.46 16596.68 28199.56 9599.54 7198.41 7397.79 30899.87 2090.18 30899.66 20798.05 17597.18 25298.62 279
LF4IMVS97.52 26297.46 24097.70 29798.98 27295.55 30599.29 21098.82 30998.07 11598.66 25899.64 16589.97 30999.61 21997.01 25296.68 25797.94 330
GA-MVS97.85 21997.47 23899.00 17099.38 18597.99 22298.57 32599.15 27397.04 21998.90 22599.30 27289.83 31099.38 24696.70 27198.33 19799.62 124
PVSNet_094.43 1996.09 29595.47 29897.94 28299.31 20394.34 32797.81 34399.70 1597.12 21197.46 31198.75 32089.71 31199.79 16497.69 20481.69 34699.68 102
XVG-ACMP-BASELINE97.83 22497.71 21598.20 26699.11 24996.33 29299.41 16899.52 8998.06 11999.05 20199.50 21789.64 31299.73 18397.73 19997.38 24698.53 296
gg-mvs-nofinetune96.17 29395.32 30198.73 21698.79 29398.14 21699.38 18594.09 35391.07 33698.07 29991.04 34989.62 31399.35 25796.75 26799.09 15998.68 249
DWT-MVSNet_test97.53 26197.40 25297.93 28399.03 26594.86 32199.57 8898.63 32396.59 25598.36 28498.79 31789.32 31499.74 17698.14 16598.16 21199.20 185
GG-mvs-BLEND98.45 24298.55 32098.16 21499.43 15893.68 35497.23 31598.46 32789.30 31599.22 27895.43 29898.22 20397.98 328
USDC97.34 27197.20 27097.75 29499.07 25795.20 31498.51 32999.04 28697.99 12598.31 28799.86 2389.02 31699.55 22595.67 29497.36 24798.49 299
MS-PatchMatch97.24 27597.32 26496.99 30998.45 32493.51 33598.82 30499.32 24797.41 18698.13 29599.30 27288.99 31799.56 22395.68 29399.80 8497.90 333
VPNet97.84 22297.44 24699.01 16899.21 22798.94 15499.48 13999.57 5198.38 7599.28 15099.73 12488.89 31899.39 24499.19 3793.27 32398.71 236
K. test v397.10 27896.79 27998.01 27898.72 30496.33 29299.87 497.05 34397.59 16396.16 32799.80 7688.71 31999.04 30296.69 27296.55 26298.65 267
lessismore_v097.79 29398.69 30895.44 31194.75 35195.71 33099.87 2088.69 32099.32 26295.89 28794.93 30298.62 279
TDRefinement95.42 30194.57 30797.97 28189.83 35196.11 29799.48 13998.75 31196.74 23996.68 32299.88 1588.65 32199.71 19398.37 14582.74 34598.09 323
TESTMET0.1,197.55 25997.27 26998.40 24998.93 27796.53 28598.67 31797.61 34096.96 22598.64 26599.28 27688.63 32299.45 23197.30 23499.38 13699.21 184
test_040296.64 28496.24 28697.85 28898.85 28996.43 28999.44 15299.26 26293.52 32296.98 32099.52 21088.52 32399.20 28592.58 33197.50 23597.93 331
UnsupCasMVSNet_eth96.44 28896.12 28897.40 30598.65 31195.65 30299.36 19299.51 10297.13 20996.04 32998.99 30788.40 32498.17 33096.71 27090.27 33698.40 312
MDA-MVSNet-bldmvs94.96 30493.98 31097.92 28498.24 32797.27 24999.15 24499.33 23993.80 31980.09 35099.03 30588.31 32597.86 33693.49 32294.36 30998.62 279
test-mter97.49 26797.13 27298.55 23098.79 29397.10 25598.67 31797.75 33796.65 24698.61 26998.85 31488.23 32699.45 23197.25 23799.38 13699.10 190
TinyColmap97.12 27796.89 27797.83 29099.07 25795.52 30898.57 32598.74 31497.58 16597.81 30799.79 8888.16 32799.56 22395.10 30497.21 25098.39 313
pmmvs-eth3d95.34 30394.73 30597.15 30695.53 34395.94 30099.35 19799.10 27895.13 30493.55 33697.54 33488.15 32897.91 33494.58 31089.69 33997.61 335
RRT_test8_iter0597.72 24397.60 22598.08 27299.23 22196.08 29899.63 5799.49 12897.54 17198.94 21999.81 6287.99 32999.35 25799.21 3696.51 26398.81 219
new-patchmatchnet94.48 30694.08 30995.67 32195.08 34492.41 33999.18 23899.28 26094.55 31493.49 33797.37 33787.86 33097.01 34391.57 33288.36 34097.61 335
FMVSNet596.43 28996.19 28797.15 30699.11 24995.89 30199.32 20299.52 8994.47 31598.34 28699.07 30087.54 33197.07 34292.61 33095.72 28498.47 302
test_part196.83 28196.34 28598.33 25499.46 16596.71 27899.52 11299.63 3391.48 33297.75 30999.76 10587.49 33299.44 23698.37 14593.55 31998.82 218
pmmvs696.53 28696.09 28997.82 29198.69 30895.47 30999.37 18899.47 15793.46 32497.41 31299.78 9587.06 33399.33 26196.92 26292.70 33098.65 267
pmmvs394.09 31093.25 31296.60 31794.76 34594.49 32498.92 29498.18 33389.66 33796.48 32498.06 33286.28 33497.33 34189.68 33787.20 34297.97 329
IB-MVS95.67 1896.22 29195.44 30098.57 22699.21 22796.70 27998.65 32097.74 33996.71 24197.27 31498.54 32686.03 33599.92 7998.47 13686.30 34399.10 190
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tmp_tt82.80 31781.52 32086.66 33066.61 35868.44 35692.79 35097.92 33568.96 34980.04 35199.85 2985.77 33696.15 34797.86 18643.89 35295.39 343
CMPMVSbinary69.68 2394.13 30994.90 30491.84 32797.24 33980.01 35098.52 32899.48 13989.01 33891.99 34099.67 15185.67 33799.13 29195.44 29797.03 25596.39 341
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet195.51 29995.04 30396.92 31297.38 33595.60 30399.52 11299.50 12093.65 32196.97 32199.17 29085.28 33896.56 34588.36 34095.55 28898.60 291
LFMVS97.90 21397.35 25899.54 9299.52 14799.01 13999.39 18098.24 33097.10 21599.65 6799.79 8884.79 33999.91 9099.28 2998.38 19699.69 98
FMVSNet196.84 28096.36 28498.29 26099.32 20297.26 25099.43 15899.48 13995.11 30598.55 27399.32 26983.95 34098.98 31195.81 28996.26 26998.62 279
VDD-MVS97.73 24197.35 25898.88 19499.47 16497.12 25499.34 20098.85 30698.19 9799.67 5999.85 2982.98 34199.92 7999.49 1298.32 20199.60 128
EG-PatchMatch MVS95.97 29695.69 29696.81 31497.78 33292.79 33899.16 24098.93 29596.16 28694.08 33599.22 28582.72 34299.47 22995.67 29497.50 23598.17 321
VDDNet97.55 25997.02 27599.16 15499.49 15898.12 21899.38 18599.30 25495.35 30399.68 5399.90 782.62 34399.93 6899.31 2698.13 21299.42 169
UniMVSNet_ETH3D97.32 27296.81 27898.87 19899.40 18197.46 24499.51 11799.53 8395.86 29898.54 27499.77 10182.44 34499.66 20798.68 10597.52 23299.50 155
OpenMVS_ROBcopyleft92.34 2094.38 30893.70 31196.41 31997.38 33593.17 33699.06 26198.75 31186.58 34194.84 33498.26 33181.53 34599.32 26289.01 33897.87 21896.76 339
MVS_030496.79 28296.52 28297.59 29999.22 22594.92 32099.04 26899.59 4496.49 25998.43 27998.99 30780.48 34699.39 24497.15 24799.27 14498.47 302
UnsupCasMVSNet_bld93.53 31192.51 31496.58 31897.38 33593.82 33098.24 33799.48 13991.10 33593.10 33896.66 34074.89 34798.37 32894.03 31887.71 34197.56 337
testing_294.44 30792.93 31398.98 17294.16 34699.00 14199.42 16599.28 26096.60 25284.86 34396.84 33970.91 34899.27 27098.23 15696.08 27298.68 249
Gipumacopyleft90.99 31390.15 31693.51 32398.73 30290.12 34493.98 34899.45 17979.32 34692.28 33994.91 34369.61 34997.98 33387.42 34295.67 28592.45 345
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PM-MVS92.96 31292.23 31595.14 32295.61 34189.98 34599.37 18898.21 33194.80 30995.04 33397.69 33365.06 35097.90 33594.30 31389.98 33897.54 338
EMVS80.02 31979.22 32282.43 33591.19 34876.40 35397.55 34692.49 35866.36 35283.01 34791.27 34864.63 35185.79 35365.82 35260.65 35085.08 349
E-PMN80.61 31879.88 32182.81 33390.75 34976.38 35497.69 34495.76 35066.44 35183.52 34592.25 34762.54 35287.16 35268.53 35161.40 34984.89 350
ambc93.06 32592.68 34782.36 34798.47 33098.73 31995.09 33297.41 33555.55 35399.10 29896.42 27991.32 33497.71 334
FPMVS84.93 31685.65 31782.75 33486.77 35363.39 35798.35 33498.92 29774.11 34783.39 34698.98 31050.85 35492.40 35084.54 34794.97 30092.46 344
PMMVS286.87 31485.37 31891.35 32990.21 35083.80 34698.89 29797.45 34283.13 34591.67 34195.03 34248.49 35594.70 34885.86 34677.62 34795.54 342
LCM-MVSNet86.80 31585.22 31991.53 32887.81 35280.96 34998.23 33998.99 28971.05 34890.13 34296.51 34148.45 35696.88 34490.51 33485.30 34496.76 339
ANet_high77.30 32074.86 32484.62 33275.88 35677.61 35297.63 34593.15 35688.81 33964.27 35389.29 35036.51 35783.93 35475.89 34952.31 35192.33 346
test12339.01 32542.50 32728.53 33839.17 35920.91 36098.75 31119.17 36119.83 35638.57 35566.67 35333.16 35815.42 35637.50 35529.66 35449.26 351
testmvs39.17 32443.78 32625.37 33936.04 36016.84 36198.36 33326.56 35920.06 35538.51 35667.32 35229.64 35915.30 35737.59 35439.90 35343.98 352
wuyk23d40.18 32341.29 32836.84 33786.18 35449.12 35979.73 35122.81 36027.64 35425.46 35728.45 35721.98 36048.89 35555.80 35323.56 35512.51 353
PMVScopyleft70.75 2275.98 32274.97 32379.01 33670.98 35755.18 35893.37 34998.21 33165.08 35361.78 35493.83 34521.74 36192.53 34978.59 34891.12 33589.34 348
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive76.82 2176.91 32174.31 32584.70 33185.38 35576.05 35596.88 34793.17 35567.39 35071.28 35289.01 35121.66 36287.69 35171.74 35072.29 34890.35 347
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
uanet_test0.02 3290.03 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet-low-res0.02 3290.03 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet0.02 3290.03 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 3580.00 3630.00 3580.00 3560.00 3560.00 354
uncertanet0.02 3290.03 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 3580.00 3630.00 3580.00 3560.00 3560.00 354
Regformer0.02 3290.03 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 3580.00 3630.00 3580.00 3560.00 3560.00 354
ab-mvs-re8.30 32711.06 3300.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 35899.58 1880.00 3630.00 3580.00 3560.00 3560.00 354
uanet0.02 3290.03 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 3580.00 3630.00 3580.00 3560.00 3560.00 354
IU-MVS99.84 3299.88 799.32 24798.30 8599.84 1398.86 7799.85 5899.89 2
save fliter99.76 5299.59 6799.14 24699.40 20499.00 22
test_0728_SECOND99.91 299.84 3299.89 399.57 8899.51 10299.96 1898.93 6499.86 5199.88 5
GSMVS99.52 146
test_part299.81 4099.83 1499.77 33
MTGPAbinary99.47 157
MTMP99.54 10698.88 304
gm-plane-assit98.54 32192.96 33794.65 31299.15 29399.64 21297.56 216
test9_res97.49 22299.72 10399.75 69
agg_prior297.21 23999.73 10299.75 69
agg_prior99.67 10099.62 6099.40 20498.87 23099.91 90
test_prior499.56 7298.99 279
test_prior99.68 6599.67 10099.48 8699.56 5699.83 14599.74 73
旧先验298.96 28796.70 24299.47 10599.94 5398.19 158
新几何299.01 277
无先验98.99 27999.51 10296.89 23199.93 6897.53 21999.72 86
原ACMM298.95 291
testdata299.95 4296.67 273
testdata198.85 30198.32 84
plane_prior799.29 20897.03 263
plane_prior599.47 15799.69 20297.78 19397.63 22298.67 257
plane_prior499.61 179
plane_prior397.00 26598.69 5499.11 187
plane_prior299.39 18098.97 30
plane_prior199.26 215
plane_prior96.97 26899.21 23698.45 6997.60 225
n20.00 362
nn0.00 362
door-mid98.05 334
test1199.35 228
door97.92 335
HQP5-MVS96.83 273
HQP-NCC99.19 23198.98 28398.24 9098.66 258
ACMP_Plane99.19 23198.98 28398.24 9098.66 258
BP-MVS97.19 243
HQP4-MVS98.66 25899.64 21298.64 269
HQP3-MVS99.39 20897.58 227
NP-MVS99.23 22196.92 27199.40 245
ACMMP++_ref97.19 251
ACMMP++97.43 243