This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
SD-MVS99.41 4699.52 899.05 17099.74 7699.68 5499.46 15999.52 9299.11 1199.88 699.91 899.43 197.70 35998.72 11199.93 1299.77 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.99.58 599.50 1099.81 4199.91 199.66 5999.63 6599.39 21898.91 4699.78 3599.85 3499.36 299.94 5898.84 9399.88 3899.82 40
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PC_three_145298.18 11299.84 1599.70 14099.31 398.52 34498.30 16799.80 8999.81 46
SteuartSystems-ACMMP99.54 1099.42 1799.87 1299.82 3999.81 2799.59 8599.51 10698.62 6799.79 3099.83 4799.28 499.97 1298.48 14799.90 2599.84 22
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVS++99.59 399.50 1099.88 699.51 16199.88 899.87 699.51 10698.99 3199.88 699.81 6799.27 599.96 2098.85 9099.80 8999.81 46
OPU-MVS99.64 8099.56 15399.72 4799.60 7899.70 14099.27 599.42 25698.24 16999.80 8999.79 62
SED-MVS99.61 299.52 899.88 699.84 3399.90 299.60 7899.48 14799.08 1699.91 299.81 6799.20 799.96 2098.91 7699.85 6099.79 62
test_241102_ONE99.84 3399.90 299.48 14799.07 1899.91 299.74 12499.20 799.76 184
MSLP-MVS++99.46 2699.47 1399.44 12699.60 14399.16 12899.41 17999.71 1398.98 3499.45 12299.78 10299.19 999.54 24099.28 3999.84 6799.63 133
SMA-MVScopyleft99.44 3299.30 4699.85 2899.73 8499.83 1799.56 10699.47 16597.45 19499.78 3599.82 5499.18 1099.91 9698.79 10299.89 3599.81 46
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APDe-MVS99.66 199.57 399.92 199.77 5399.89 499.75 3399.56 5899.02 2199.88 699.85 3499.18 1099.96 2099.22 4499.92 1399.90 1
HPM-MVS_fast99.51 1599.40 2099.85 2899.91 199.79 3399.76 3199.56 5897.72 16599.76 4499.75 11899.13 1299.92 8599.07 6099.92 1399.85 18
PGM-MVS99.45 2899.31 4399.86 2199.87 1699.78 4099.58 9399.65 3297.84 15099.71 5599.80 8399.12 1399.97 1298.33 16399.87 4299.83 33
test_one_060199.81 4299.88 899.49 13498.97 3799.65 7999.81 6799.09 14
test_0728_THIRD98.99 3199.81 2599.80 8399.09 1499.96 2098.85 9099.90 2599.88 8
HFP-MVS99.49 1799.37 2599.86 2199.87 1699.80 2999.66 5399.67 2298.15 11499.68 6299.69 14999.06 1699.96 2098.69 11699.87 4299.84 22
#test#99.43 3699.29 5099.86 2199.87 1699.80 2999.55 11599.67 2297.83 15199.68 6299.69 14999.06 1699.96 2098.39 15599.87 4299.84 22
TSAR-MVS + GP.99.36 5399.36 2799.36 13299.67 11098.61 19499.07 27399.33 25099.00 2899.82 2399.81 6799.06 1699.84 14299.09 5899.42 14299.65 122
pcd_1.5k_mvsjas8.27 34711.03 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 38099.01 190.00 3800.00 3780.00 3780.00 376
PS-MVSNAJss98.92 11998.92 10298.90 19598.78 31298.53 19999.78 2699.54 7598.07 12899.00 22699.76 11399.01 1999.37 26399.13 5497.23 26298.81 233
PS-MVSNAJ99.32 5799.32 3699.30 14399.57 14998.94 16298.97 30199.46 17598.92 4599.71 5599.24 29999.01 1999.98 799.35 2999.66 12698.97 223
EI-MVSNet-Vis-set99.58 599.56 599.64 8099.78 4899.15 13299.61 7799.45 18799.01 2499.89 599.82 5499.01 1999.92 8599.56 999.95 899.85 18
Regformer-199.53 1299.47 1399.72 6499.71 9599.44 9899.49 14599.46 17598.95 4099.83 2099.76 11399.01 1999.93 7399.17 5099.87 4299.80 56
Regformer-299.54 1099.47 1399.75 5499.71 9599.52 8899.49 14599.49 13498.94 4199.83 2099.76 11399.01 1999.94 5899.15 5399.87 4299.80 56
patch_mono-299.26 6699.62 198.16 27899.81 4294.59 34199.52 12499.64 3399.33 299.73 5099.90 1099.00 2599.99 199.69 199.98 299.89 2
Regformer-499.59 399.54 699.73 6199.76 5799.41 10199.58 9399.49 13499.02 2199.88 699.80 8399.00 2599.94 5899.45 2299.92 1399.84 22
EI-MVSNet-UG-set99.58 599.57 399.64 8099.78 4899.14 13399.60 7899.45 18799.01 2499.90 499.83 4798.98 2799.93 7399.59 699.95 899.86 15
Regformer-399.57 899.53 799.68 6899.76 5799.29 11499.58 9399.44 19699.01 2499.87 1299.80 8398.97 2899.91 9699.44 2499.92 1399.83 33
region2R99.48 2199.35 3099.87 1299.88 1299.80 2999.65 6099.66 2798.13 11699.66 7399.68 15698.96 2999.96 2098.62 12599.87 4299.84 22
segment_acmp98.96 29
CNVR-MVS99.42 4199.30 4699.78 4899.62 13599.71 4999.26 23999.52 9298.82 5299.39 14199.71 13698.96 2999.85 13698.59 13399.80 8999.77 72
xxxxxxxxxxxxxcwj99.43 3699.32 3699.75 5499.76 5799.59 7399.14 26199.53 8699.00 2899.71 5599.80 8398.95 3299.93 7398.19 17299.84 6799.74 83
SF-MVS99.38 5199.24 6199.79 4699.79 4699.68 5499.57 9999.54 7597.82 15699.71 5599.80 8398.95 3299.93 7398.19 17299.84 6799.74 83
ACMMPR99.49 1799.36 2799.86 2199.87 1699.79 3399.66 5399.67 2298.15 11499.67 6899.69 14998.95 3299.96 2098.69 11699.87 4299.84 22
test_241102_TWO99.48 14799.08 1699.88 699.81 6798.94 3599.96 2098.91 7699.84 6799.88 8
DVP-MVScopyleft99.57 899.47 1399.88 699.85 2699.89 499.57 9999.37 23399.10 1299.81 2599.80 8398.94 3599.96 2098.93 7399.86 5399.81 46
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.85 2699.89 499.62 7199.50 12699.10 1299.86 1399.82 5498.94 35
xiu_mvs_v2_base99.26 6699.25 6099.29 14699.53 15798.91 16699.02 28799.45 18798.80 5699.71 5599.26 29798.94 3599.98 799.34 3399.23 15798.98 222
CP-MVS99.45 2899.32 3699.85 2899.83 3799.75 4399.69 4299.52 9298.07 12899.53 10999.63 18298.93 3999.97 1298.74 10799.91 1899.83 33
ZNCC-MVS99.47 2499.33 3499.87 1299.87 1699.81 2799.64 6399.67 2298.08 12799.55 10699.64 17698.91 4099.96 2098.72 11199.90 2599.82 40
MCST-MVS99.43 3699.30 4699.82 3899.79 4699.74 4699.29 22399.40 21498.79 5799.52 11199.62 18898.91 4099.90 11198.64 12399.75 10599.82 40
HPM-MVScopyleft99.42 4199.28 5499.83 3699.90 499.72 4799.81 1699.54 7597.59 17799.68 6299.63 18298.91 4099.94 5898.58 13499.91 1899.84 22
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testdata99.54 9699.75 6898.95 15999.51 10697.07 23299.43 12799.70 14098.87 4399.94 5897.76 20999.64 12999.72 96
APD-MVS_3200maxsize99.48 2199.35 3099.85 2899.76 5799.83 1799.63 6599.54 7598.36 9199.79 3099.82 5498.86 4499.95 4798.62 12599.81 8599.78 70
DeepC-MVS_fast98.69 199.49 1799.39 2199.77 5099.63 12999.59 7399.36 20399.46 17599.07 1899.79 3099.82 5498.85 4599.92 8598.68 11899.87 4299.82 40
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1499.10 7499.72 8999.40 18799.51 10697.53 18799.64 8399.78 10298.84 4699.91 9697.63 22299.82 82
CDPH-MVS99.13 8498.91 10499.80 4399.75 6899.71 4999.15 25999.41 20896.60 26899.60 9499.55 21198.83 4799.90 11197.48 23899.83 7699.78 70
ACMMP_NAP99.47 2499.34 3299.88 699.87 1699.86 1399.47 15699.48 14798.05 13399.76 4499.86 2898.82 4899.93 7398.82 10099.91 1899.84 22
XVS99.53 1299.42 1799.87 1299.85 2699.83 1799.69 4299.68 1998.98 3499.37 14699.74 12498.81 4999.94 5898.79 10299.86 5399.84 22
X-MVStestdata96.55 29895.45 31399.87 1299.85 2699.83 1799.69 4299.68 1998.98 3499.37 14664.01 37798.81 4999.94 5898.79 10299.86 5399.84 22
MP-MVS-pluss99.37 5299.20 6599.88 699.90 499.87 1299.30 21999.52 9297.18 22099.60 9499.79 9598.79 5199.95 4798.83 9699.91 1899.83 33
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mPP-MVS99.44 3299.30 4699.86 2199.88 1299.79 3399.69 4299.48 14798.12 11899.50 11499.75 11898.78 5299.97 1298.57 13699.89 3599.83 33
APD-MVScopyleft99.27 6499.08 7799.84 3599.75 6899.79 3399.50 13599.50 12697.16 22299.77 3799.82 5498.78 5299.94 5897.56 23199.86 5399.80 56
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TAPA-MVS97.07 1597.74 25097.34 27098.94 18599.70 10297.53 25199.25 24199.51 10691.90 35199.30 16099.63 18298.78 5299.64 22688.09 36399.87 4299.65 122
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TEST999.67 11099.65 6299.05 27899.41 20896.22 29698.95 23299.49 23398.77 5599.91 96
agg_prior199.01 11298.76 12599.76 5399.67 11099.62 6698.99 29499.40 21496.26 29298.87 24599.49 23398.77 5599.91 9697.69 21999.72 11299.75 78
train_agg99.02 10998.77 12399.77 5099.67 11099.65 6299.05 27899.41 20896.28 28998.95 23299.49 23398.76 5799.91 9697.63 22299.72 11299.75 78
test_899.67 11099.61 6899.03 28499.41 20896.28 28998.93 23699.48 23998.76 5799.91 96
API-MVS99.04 10699.03 8499.06 16899.40 19799.31 11299.55 11599.56 5898.54 7399.33 15699.39 26598.76 5799.78 17696.98 27099.78 9698.07 341
RE-MVS-def99.34 3299.76 5799.82 2399.63 6599.52 9298.38 8799.76 4499.82 5498.75 6098.61 12899.81 8599.77 72
CS-MVS99.50 1699.49 1299.52 10899.76 5799.35 10699.90 199.55 6798.56 7199.77 3799.70 14098.75 6099.77 17899.64 399.78 9699.42 181
DP-MVS Recon99.12 9098.95 10099.65 7599.74 7699.70 5199.27 23099.57 5296.40 28599.42 13099.68 15698.75 6099.80 16997.98 19199.72 11299.44 179
Test By Simon98.75 60
ACMMPcopyleft99.45 2899.32 3699.82 3899.89 999.67 5799.62 7199.69 1898.12 11899.63 8499.84 4398.73 6499.96 2098.55 14299.83 7699.81 46
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DPE-MVScopyleft99.46 2699.32 3699.91 299.78 4899.88 899.36 20399.51 10698.73 6199.88 699.84 4398.72 6599.96 2098.16 17799.87 4299.88 8
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
NCCC99.34 5599.19 6699.79 4699.61 13999.65 6299.30 21999.48 14798.86 4899.21 18499.63 18298.72 6599.90 11198.25 16899.63 13199.80 56
DeepPCF-MVS98.18 398.81 13699.37 2597.12 32699.60 14391.75 36398.61 33799.44 19699.35 199.83 2099.85 3498.70 6799.81 16499.02 6499.91 1899.81 46
SR-MVS99.43 3699.29 5099.86 2199.75 6899.83 1799.59 8599.62 3498.21 10899.73 5099.79 9598.68 6899.96 2098.44 15399.77 10199.79 62
test_prior399.21 7299.05 7999.68 6899.67 11099.48 9398.96 30299.56 5898.34 9399.01 22199.52 22398.68 6899.83 15397.96 19299.74 10899.74 83
test_prior298.96 30298.34 9399.01 22199.52 22398.68 6897.96 19299.74 108
DPM-MVS98.95 11798.71 12999.66 7199.63 12999.55 8098.64 33699.10 29797.93 14299.42 13099.55 21198.67 7199.80 16995.80 30599.68 12399.61 137
原ACMM199.65 7599.73 8499.33 10899.47 16597.46 19199.12 20099.66 16898.67 7199.91 9697.70 21899.69 11899.71 103
HPM-MVS++copyleft99.39 5099.23 6399.87 1299.75 6899.84 1699.43 17099.51 10698.68 6599.27 16899.53 22098.64 7399.96 2098.44 15399.80 8999.79 62
abl_699.44 3299.31 4399.83 3699.85 2699.75 4399.66 5399.59 4498.13 11699.82 2399.81 6798.60 7499.96 2098.46 15199.88 3899.79 62
ZD-MVS99.71 9599.79 3399.61 3696.84 25099.56 10299.54 21698.58 7599.96 2096.93 27599.75 105
PHI-MVS99.30 5999.17 6899.70 6799.56 15399.52 8899.58 9399.80 897.12 22699.62 8899.73 13198.58 7599.90 11198.61 12899.91 1899.68 112
dcpmvs_299.23 7199.58 298.16 27899.83 3794.68 34099.76 3199.52 9299.07 1899.98 199.88 1998.56 7799.93 7399.67 299.98 299.87 13
test117299.43 3699.29 5099.85 2899.75 6899.82 2399.60 7899.56 5898.28 9999.74 4899.79 9598.53 7899.95 4798.55 14299.78 9699.79 62
SR-MVS-dyc-post99.45 2899.31 4399.85 2899.76 5799.82 2399.63 6599.52 9298.38 8799.76 4499.82 5498.53 7899.95 4798.61 12899.81 8599.77 72
GST-MVS99.40 4999.24 6199.85 2899.86 2299.79 3399.60 7899.67 2297.97 13999.63 8499.68 15698.52 8099.95 4798.38 15799.86 5399.81 46
ETH3D-3000-0.199.21 7299.02 8799.77 5099.73 8499.69 5299.38 19699.51 10697.45 19499.61 9099.75 11898.51 8199.91 9697.45 24399.83 7699.71 103
MVS_111021_LR99.41 4699.33 3499.65 7599.77 5399.51 9098.94 30899.85 698.82 5299.65 7999.74 12498.51 8199.80 16998.83 9699.89 3599.64 129
MVS_111021_HR99.41 4699.32 3699.66 7199.72 8999.47 9598.95 30699.85 698.82 5299.54 10799.73 13198.51 8199.74 18798.91 7699.88 3899.77 72
旧先验199.74 7699.59 7399.54 7599.69 14998.47 8499.68 12399.73 90
DELS-MVS99.48 2199.42 1799.65 7599.72 8999.40 10399.05 27899.66 2799.14 799.57 10199.80 8398.46 8599.94 5899.57 899.84 6799.60 139
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPR98.63 15398.34 16299.51 11299.40 19799.03 14598.80 32199.36 23496.33 28699.00 22699.12 31498.46 8599.84 14295.23 31899.37 15199.66 118
zzz-MVS99.49 1799.36 2799.89 499.90 499.86 1399.36 20399.47 16598.79 5799.68 6299.81 6798.43 8799.97 1298.88 7999.90 2599.83 33
MTAPA99.52 1499.39 2199.89 499.90 499.86 1399.66 5399.47 16598.79 5799.68 6299.81 6798.43 8799.97 1298.88 7999.90 2599.83 33
新几何199.75 5499.75 6899.59 7399.54 7596.76 25499.29 16399.64 17698.43 8799.94 5896.92 27799.66 12699.72 96
F-COLMAP99.19 7499.04 8299.64 8099.78 4899.27 11799.42 17799.54 7597.29 21099.41 13499.59 19898.42 9099.93 7398.19 17299.69 11899.73 90
ETV-MVS99.26 6699.21 6499.40 12899.46 18299.30 11399.56 10699.52 9298.52 7599.44 12699.27 29598.41 9199.86 13099.10 5799.59 13499.04 215
112199.09 9998.87 10999.75 5499.74 7699.60 7099.27 23099.48 14796.82 25399.25 17599.65 16998.38 9299.93 7397.53 23499.67 12599.73 90
test1299.75 5499.64 12699.61 6899.29 27299.21 18498.38 9299.89 11999.74 10899.74 83
CSCG99.32 5799.32 3699.32 13899.85 2698.29 21799.71 3999.66 2798.11 12099.41 13499.80 8398.37 9499.96 2098.99 6699.96 799.72 96
PAPM_NR99.04 10698.84 11599.66 7199.74 7699.44 9899.39 19199.38 22497.70 16799.28 16599.28 29298.34 9599.85 13696.96 27299.45 14099.69 108
TAMVS99.12 9099.08 7799.24 15499.46 18298.55 19799.51 12999.46 17598.09 12399.45 12299.82 5498.34 9599.51 24198.70 11398.93 18299.67 115
ETH3D cwj APD-0.1699.06 10398.84 11599.72 6499.51 16199.60 7099.23 24499.44 19697.04 23599.39 14199.67 16298.30 9799.92 8597.27 25099.69 11899.64 129
MP-MVScopyleft99.33 5699.15 6999.87 1299.88 1299.82 2399.66 5399.46 17598.09 12399.48 11899.74 12498.29 9899.96 2097.93 19599.87 4299.82 40
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test22299.75 6899.49 9198.91 31199.49 13496.42 28399.34 15599.65 16998.28 9999.69 11899.72 96
PLCcopyleft97.94 499.02 10998.85 11499.53 10299.66 11999.01 14899.24 24399.52 9296.85 24999.27 16899.48 23998.25 10099.91 9697.76 20999.62 13299.65 122
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MSP-MVS99.42 4199.27 5699.88 699.89 999.80 2999.67 4999.50 12698.70 6399.77 3799.49 23398.21 10199.95 4798.46 15199.77 10199.88 8
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DROMVSNet99.44 3299.39 2199.58 9099.56 15399.49 9199.88 299.58 5098.38 8799.73 5099.69 14998.20 10299.70 21099.64 399.82 8299.54 152
xiu_mvs_v1_base_debu99.29 6199.27 5699.34 13399.63 12998.97 15399.12 26399.51 10698.86 4899.84 1599.47 24298.18 10399.99 199.50 1399.31 15299.08 208
xiu_mvs_v1_base99.29 6199.27 5699.34 13399.63 12998.97 15399.12 26399.51 10698.86 4899.84 1599.47 24298.18 10399.99 199.50 1399.31 15299.08 208
xiu_mvs_v1_base_debi99.29 6199.27 5699.34 13399.63 12998.97 15399.12 26399.51 10698.86 4899.84 1599.47 24298.18 10399.99 199.50 1399.31 15299.08 208
CS-MVS-test99.42 4199.39 2199.52 10899.77 5399.35 10699.80 2099.57 5298.56 7199.77 3799.44 24898.16 10699.77 17899.64 399.78 9699.42 181
testtj99.12 9098.87 10999.86 2199.72 8999.79 3399.44 16499.51 10697.29 21099.59 9799.74 12498.15 10799.96 2096.74 28399.69 11899.81 46
EIA-MVS99.18 7699.09 7699.45 12299.49 17399.18 12599.67 4999.53 8697.66 17399.40 13999.44 24898.10 10899.81 16498.94 7199.62 13299.35 189
CNLPA99.14 8298.99 9299.59 8799.58 14799.41 10199.16 25599.44 19698.45 8199.19 19099.49 23398.08 10999.89 11997.73 21399.75 10599.48 169
114514_t98.93 11898.67 13399.72 6499.85 2699.53 8599.62 7199.59 4492.65 34999.71 5599.78 10298.06 11099.90 11198.84 9399.91 1899.74 83
CDS-MVSNet99.09 9999.03 8499.25 15299.42 18998.73 18399.45 16099.46 17598.11 12099.46 12199.77 10998.01 11199.37 26398.70 11398.92 18499.66 118
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MG-MVS99.13 8499.02 8799.45 12299.57 14998.63 19199.07 27399.34 24398.99 3199.61 9099.82 5497.98 11299.87 12797.00 26899.80 8999.85 18
EI-MVSNet98.67 14998.67 13398.68 22899.35 20697.97 23299.50 13599.38 22496.93 24699.20 18799.83 4797.87 11399.36 26798.38 15797.56 24298.71 252
IterMVS-LS98.46 15898.42 15798.58 23599.59 14598.00 23099.37 19999.43 20496.94 24599.07 21299.59 19897.87 11399.03 31998.32 16595.62 30098.71 252
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG98.98 11498.80 12099.53 10299.76 5799.19 12398.75 32699.55 6797.25 21499.47 11999.77 10997.82 11599.87 12796.93 27599.90 2599.54 152
OMC-MVS99.08 10199.04 8299.20 15799.67 11098.22 22199.28 22599.52 9298.07 12899.66 7399.81 6797.79 11699.78 17697.79 20699.81 8599.60 139
LS3D99.27 6499.12 7299.74 5999.18 25099.75 4399.56 10699.57 5298.45 8199.49 11799.85 3497.77 11799.94 5898.33 16399.84 6799.52 158
PVSNet_Blended_VisFu99.36 5399.28 5499.61 8599.86 2299.07 14299.47 15699.93 297.66 17399.71 5599.86 2897.73 11899.96 2099.47 2099.82 8299.79 62
131498.68 14898.54 15299.11 16598.89 29698.65 18999.27 23099.49 13496.89 24797.99 31899.56 20897.72 11999.83 15397.74 21299.27 15598.84 232
MVS_Test99.10 9898.97 9699.48 11699.49 17399.14 13399.67 4999.34 24397.31 20899.58 9999.76 11397.65 12099.82 16098.87 8399.07 17299.46 176
PVSNet_BlendedMVS98.86 12498.80 12099.03 17399.76 5798.79 18099.28 22599.91 397.42 20099.67 6899.37 26997.53 12199.88 12498.98 6797.29 26198.42 324
PVSNet_Blended99.08 10198.97 9699.42 12799.76 5798.79 18098.78 32399.91 396.74 25599.67 6899.49 23397.53 12199.88 12498.98 6799.85 6099.60 139
UA-Net99.42 4199.29 5099.80 4399.62 13599.55 8099.50 13599.70 1598.79 5799.77 3799.96 197.45 12399.96 2098.92 7599.90 2599.89 2
ETH3 D test640098.70 14598.35 16199.73 6199.69 10599.60 7099.16 25599.45 18795.42 31899.27 16899.60 19597.39 12499.91 9695.36 31699.83 7699.70 105
MVSFormer99.17 7899.12 7299.29 14699.51 16198.94 16299.88 299.46 17597.55 18299.80 2899.65 16997.39 12499.28 28299.03 6299.85 6099.65 122
lupinMVS99.13 8499.01 9199.46 12199.51 16198.94 16299.05 27899.16 29197.86 14699.80 2899.56 20897.39 12499.86 13098.94 7199.85 6099.58 147
DP-MVS99.16 8098.95 10099.78 4899.77 5399.53 8599.41 17999.50 12697.03 23799.04 21899.88 1997.39 12499.92 8598.66 12199.90 2599.87 13
sss99.17 7899.05 7999.53 10299.62 13598.97 15399.36 20399.62 3497.83 15199.67 6899.65 16997.37 12899.95 4799.19 4799.19 16099.68 112
mvs_anonymous99.03 10898.99 9299.16 16199.38 20198.52 20399.51 12999.38 22497.79 15799.38 14499.81 6797.30 12999.45 24699.35 2998.99 17999.51 164
miper_ehance_all_eth98.18 18298.10 17798.41 25799.23 23797.72 24798.72 32999.31 26396.60 26898.88 24399.29 29097.29 13099.13 30697.60 22495.99 28998.38 329
CPTT-MVS99.11 9598.90 10599.74 5999.80 4599.46 9699.59 8599.49 13497.03 23799.63 8499.69 14997.27 13199.96 2097.82 20499.84 6799.81 46
PMMVS98.80 13998.62 14399.34 13399.27 22998.70 18598.76 32599.31 26397.34 20599.21 18499.07 31697.20 13299.82 16098.56 13998.87 18799.52 158
EPP-MVSNet99.13 8498.99 9299.53 10299.65 12499.06 14399.81 1699.33 25097.43 19899.60 9499.88 1997.14 13399.84 14299.13 5498.94 18199.69 108
c3_l98.12 19098.04 18698.38 26199.30 22097.69 25098.81 32099.33 25096.67 26098.83 25199.34 27897.11 13498.99 32597.58 22695.34 30698.48 315
canonicalmvs99.02 10998.86 11399.51 11299.42 18999.32 10999.80 2099.48 14798.63 6699.31 15898.81 33497.09 13599.75 18699.27 4197.90 23099.47 174
MAR-MVS98.86 12498.63 13899.54 9699.37 20399.66 5999.45 16099.54 7596.61 26699.01 22199.40 26197.09 13599.86 13097.68 22199.53 13899.10 203
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
miper_enhance_ethall98.16 18498.08 18198.41 25798.96 29197.72 24798.45 34699.32 26096.95 24398.97 23099.17 30697.06 13799.22 29297.86 20095.99 28998.29 332
jason99.13 8499.03 8499.45 12299.46 18298.87 16999.12 26399.26 27698.03 13699.79 3099.65 16997.02 13899.85 13699.02 6499.90 2599.65 122
jason: jason.
our_test_397.65 26697.68 22697.55 31598.62 33094.97 33498.84 31799.30 26796.83 25298.19 30999.34 27897.01 13999.02 32195.00 32296.01 28798.64 284
MVS97.28 28596.55 29499.48 11698.78 31298.95 15999.27 23099.39 21883.53 36498.08 31399.54 21696.97 14099.87 12794.23 33099.16 16199.63 133
Fast-Effi-MVS+-dtu98.77 14298.83 11998.60 23199.41 19296.99 27899.52 12499.49 13498.11 12099.24 17699.34 27896.96 14199.79 17297.95 19499.45 14099.02 218
1112_ss98.98 11498.77 12399.59 8799.68 10999.02 14699.25 24199.48 14797.23 21799.13 19899.58 20196.93 14299.90 11198.87 8398.78 19399.84 22
WTY-MVS99.06 10398.88 10899.61 8599.62 13599.16 12899.37 19999.56 5898.04 13499.53 10999.62 18896.84 14399.94 5898.85 9098.49 20699.72 96
FC-MVSNet-test98.75 14398.62 14399.15 16399.08 27299.45 9799.86 999.60 4198.23 10598.70 27099.82 5496.80 14499.22 29299.07 6096.38 28098.79 235
Effi-MVS+-dtu98.78 14098.89 10798.47 25099.33 21196.91 28499.57 9999.30 26798.47 7899.41 13498.99 32596.78 14599.74 18798.73 10999.38 14498.74 248
mvs-test198.86 12498.84 11598.89 19899.33 21197.77 24499.44 16499.30 26798.47 7899.10 20599.43 25196.78 14599.95 4798.73 10999.02 17798.96 225
Test_1112_low_res98.89 12098.66 13699.57 9299.69 10598.95 15999.03 28499.47 16596.98 23999.15 19699.23 30096.77 14799.89 11998.83 9698.78 19399.86 15
FIs98.78 14098.63 13899.23 15699.18 25099.54 8299.83 1399.59 4498.28 9998.79 25799.81 6796.75 14899.37 26399.08 5996.38 28098.78 236
PVSNet96.02 1798.85 13298.84 11598.89 19899.73 8497.28 25798.32 35399.60 4197.86 14699.50 11499.57 20596.75 14899.86 13098.56 13999.70 11799.54 152
nrg03098.64 15298.42 15799.28 14999.05 27899.69 5299.81 1699.46 17598.04 13499.01 22199.82 5496.69 15099.38 26099.34 3394.59 32098.78 236
CHOSEN 280x42099.12 9099.13 7199.08 16699.66 11997.89 23898.43 34799.71 1398.88 4799.62 8899.76 11396.63 15199.70 21099.46 2199.99 199.66 118
eth_miper_zixun_eth98.05 20097.96 19598.33 26499.26 23197.38 25598.56 34299.31 26396.65 26298.88 24399.52 22396.58 15299.12 31097.39 24795.53 30398.47 317
cdsmvs_eth3d_5k24.64 34532.85 3480.00 3610.00 3840.00 3850.00 37299.51 1060.00 3790.00 38099.56 20896.58 1520.00 3800.00 3780.00 3780.00 376
IS-MVSNet99.05 10598.87 10999.57 9299.73 8499.32 10999.75 3399.20 28698.02 13799.56 10299.86 2896.54 15499.67 21698.09 18199.13 16599.73 90
diffmvs99.14 8299.02 8799.51 11299.61 13998.96 15799.28 22599.49 13498.46 8099.72 5499.71 13696.50 15599.88 12499.31 3699.11 16699.67 115
CANet99.25 6999.14 7099.59 8799.41 19299.16 12899.35 20999.57 5298.82 5299.51 11399.61 19296.46 15699.95 4799.59 699.98 299.65 122
ppachtmachnet_test97.49 27997.45 25097.61 31298.62 33095.24 32898.80 32199.46 17596.11 30798.22 30899.62 18896.45 15798.97 33393.77 33495.97 29298.61 303
HY-MVS97.30 798.85 13298.64 13799.47 11999.42 18999.08 14099.62 7199.36 23497.39 20399.28 16599.68 15696.44 15899.92 8598.37 15998.22 21599.40 186
UniMVSNet_NR-MVSNet98.22 17697.97 19398.96 18298.92 29498.98 15099.48 15199.53 8697.76 16098.71 26499.46 24696.43 15999.22 29298.57 13692.87 34398.69 260
Effi-MVS+98.81 13698.59 14999.48 11699.46 18299.12 13798.08 35999.50 12697.50 19099.38 14499.41 25896.37 16099.81 16499.11 5698.54 20399.51 164
AdaColmapbinary99.01 11298.80 12099.66 7199.56 15399.54 8299.18 25399.70 1598.18 11299.35 15299.63 18296.32 16199.90 11197.48 23899.77 10199.55 150
UniMVSNet (Re)98.29 17398.00 19099.13 16499.00 28499.36 10599.49 14599.51 10697.95 14098.97 23099.13 31196.30 16299.38 26098.36 16193.34 33698.66 280
LCM-MVSNet-Re97.83 23398.15 17296.87 33299.30 22092.25 36199.59 8598.26 34897.43 19896.20 34799.13 31196.27 16398.73 34298.17 17698.99 17999.64 129
PAPM97.59 26997.09 28599.07 16799.06 27598.26 22098.30 35499.10 29794.88 32798.08 31399.34 27896.27 16399.64 22689.87 35698.92 18499.31 193
Fast-Effi-MVS+98.70 14598.43 15699.51 11299.51 16199.28 11599.52 12499.47 16596.11 30799.01 22199.34 27896.20 16599.84 14297.88 19898.82 19099.39 187
EPNet_dtu98.03 20397.96 19598.23 27498.27 34295.54 32199.23 24498.75 33099.02 2197.82 32399.71 13696.11 16699.48 24293.04 34399.65 12899.69 108
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline99.15 8199.02 8799.53 10299.66 11999.14 13399.72 3799.48 14798.35 9299.42 13099.84 4396.07 16799.79 17299.51 1299.14 16499.67 115
D2MVS98.41 16398.50 15398.15 28199.26 23196.62 29499.40 18799.61 3697.71 16698.98 22899.36 27296.04 16899.67 21698.70 11397.41 25798.15 339
miper_lstm_enhance98.00 21097.91 20198.28 27299.34 21097.43 25498.88 31399.36 23496.48 27898.80 25599.55 21195.98 16998.91 33797.27 25095.50 30498.51 313
EPNet98.86 12498.71 12999.30 14397.20 35998.18 22299.62 7198.91 31999.28 398.63 28199.81 6795.96 17099.99 199.24 4399.72 11299.73 90
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
AllTest98.87 12198.72 12799.31 13999.86 2298.48 20999.56 10699.61 3697.85 14899.36 14999.85 3495.95 17199.85 13696.66 28999.83 7699.59 143
TestCases99.31 13999.86 2298.48 20999.61 3697.85 14899.36 14999.85 3495.95 17199.85 13696.66 28999.83 7699.59 143
3Dnovator97.25 999.24 7099.05 7999.81 4199.12 26399.66 5999.84 1099.74 1099.09 1598.92 23799.90 1095.94 17399.98 798.95 7099.92 1399.79 62
casdiffmvs99.13 8498.98 9599.56 9499.65 12499.16 12899.56 10699.50 12698.33 9699.41 13499.86 2895.92 17499.83 15399.45 2299.16 16199.70 105
RPSCF98.22 17698.62 14396.99 32799.82 3991.58 36499.72 3799.44 19696.61 26699.66 7399.89 1495.92 17499.82 16097.46 24199.10 16999.57 148
pmmvs498.13 18897.90 20298.81 21698.61 33298.87 16998.99 29499.21 28596.44 28199.06 21699.58 20195.90 17699.11 31197.18 26096.11 28698.46 321
HyFIR lowres test99.11 9598.92 10299.65 7599.90 499.37 10499.02 28799.91 397.67 17299.59 9799.75 11895.90 17699.73 19499.53 1099.02 17799.86 15
COLMAP_ROBcopyleft97.56 698.86 12498.75 12699.17 16099.88 1298.53 19999.34 21299.59 4497.55 18298.70 27099.89 1495.83 17899.90 11198.10 18099.90 2599.08 208
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS98.35 299.30 5999.19 6699.64 8099.82 3999.23 12199.62 7199.55 6798.94 4199.63 8499.95 295.82 17999.94 5899.37 2899.97 599.73 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
QAPM98.67 14998.30 16699.80 4399.20 24599.67 5799.77 2899.72 1194.74 33098.73 26299.90 1095.78 18099.98 796.96 27299.88 3899.76 77
BH-untuned98.42 16198.36 15998.59 23299.49 17396.70 29099.27 23099.13 29597.24 21698.80 25599.38 26695.75 18199.74 18797.07 26699.16 16199.33 192
test_djsdf98.67 14998.57 15098.98 17998.70 32398.91 16699.88 299.46 17597.55 18299.22 18199.88 1995.73 18299.28 28299.03 6297.62 23798.75 244
DIV-MVS_self_test98.01 20897.85 20898.48 24699.24 23697.95 23698.71 33099.35 23996.50 27398.60 28699.54 21695.72 18399.03 31997.21 25495.77 29598.46 321
bset_n11_16_dypcd98.16 18497.97 19398.73 22398.26 34398.28 21997.99 36198.01 35497.68 16999.10 20599.63 18295.68 18499.15 30298.78 10596.55 27598.75 244
3Dnovator+97.12 1399.18 7698.97 9699.82 3899.17 25699.68 5499.81 1699.51 10699.20 598.72 26399.89 1495.68 18499.97 1298.86 8899.86 5399.81 46
cl____98.01 20897.84 20998.55 24099.25 23597.97 23298.71 33099.34 24396.47 28098.59 28799.54 21695.65 18699.21 29797.21 25495.77 29598.46 321
VNet99.11 9598.90 10599.73 6199.52 15999.56 7899.41 17999.39 21899.01 2499.74 4899.78 10295.56 18799.92 8599.52 1198.18 22099.72 96
WR-MVS_H98.13 18897.87 20798.90 19599.02 28298.84 17399.70 4099.59 4497.27 21298.40 29899.19 30595.53 18899.23 28998.34 16293.78 33298.61 303
CHOSEN 1792x268899.19 7499.10 7499.45 12299.89 998.52 20399.39 19199.94 198.73 6199.11 20299.89 1495.50 18999.94 5899.50 1399.97 599.89 2
Vis-MVSNet (Re-imp)98.87 12198.72 12799.31 13999.71 9598.88 16899.80 2099.44 19697.91 14499.36 14999.78 10295.49 19099.43 25597.91 19699.11 16699.62 135
PatchMatch-RL98.84 13598.62 14399.52 10899.71 9599.28 11599.06 27699.77 997.74 16499.50 11499.53 22095.41 19199.84 14297.17 26199.64 12999.44 179
RRT_MVS98.60 15498.44 15599.05 17098.88 29799.14 13399.49 14599.38 22497.76 16099.29 16399.86 2895.38 19299.36 26798.81 10197.16 26698.64 284
test_yl98.86 12498.63 13899.54 9699.49 17399.18 12599.50 13599.07 30298.22 10699.61 9099.51 22795.37 19399.84 14298.60 13198.33 20999.59 143
DCV-MVSNet98.86 12498.63 13899.54 9699.49 17399.18 12599.50 13599.07 30298.22 10699.61 9099.51 22795.37 19399.84 14298.60 13198.33 20999.59 143
tpmrst98.33 16998.48 15497.90 29899.16 25894.78 33899.31 21799.11 29697.27 21299.45 12299.59 19895.33 19599.84 14298.48 14798.61 19699.09 207
MVP-Stereo97.81 23897.75 22097.99 29297.53 35296.60 29598.96 30298.85 32597.22 21897.23 33499.36 27295.28 19699.46 24595.51 31199.78 9697.92 353
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CANet_DTU98.97 11698.87 10999.25 15299.33 21198.42 21499.08 27299.30 26799.16 699.43 12799.75 11895.27 19799.97 1298.56 13999.95 899.36 188
XVG-OURS98.73 14498.68 13298.88 20199.70 10297.73 24698.92 30999.55 6798.52 7599.45 12299.84 4395.27 19799.91 9698.08 18598.84 18999.00 219
BH-w/o98.00 21097.89 20698.32 26699.35 20696.20 30799.01 29298.90 32196.42 28398.38 29999.00 32495.26 19999.72 19896.06 29998.61 19699.03 216
EU-MVSNet97.98 21298.03 18797.81 30598.72 32096.65 29399.66 5399.66 2798.09 12398.35 30299.82 5495.25 20098.01 35297.41 24695.30 30798.78 236
GeoE98.85 13298.62 14399.53 10299.61 13999.08 14099.80 2099.51 10697.10 23099.31 15899.78 10295.23 20199.77 17898.21 17099.03 17599.75 78
MDTV_nov1_ep13_2view95.18 33199.35 20996.84 25099.58 9995.19 20297.82 20499.46 176
JIA-IIPM97.50 27697.02 28798.93 18798.73 31897.80 24399.30 21998.97 31091.73 35298.91 23894.86 36595.10 20399.71 20497.58 22697.98 22899.28 195
NR-MVSNet97.97 21597.61 23399.02 17498.87 30199.26 11899.47 15699.42 20697.63 17597.08 33999.50 23095.07 20499.13 30697.86 20093.59 33498.68 265
tpmvs97.98 21298.02 18997.84 30199.04 27994.73 33999.31 21799.20 28696.10 31198.76 26099.42 25494.94 20599.81 16496.97 27198.45 20798.97 223
h-mvs3397.70 25897.28 27698.97 18199.70 10297.27 25899.36 20399.45 18798.94 4199.66 7399.64 17694.93 20699.99 199.48 1884.36 36099.65 122
hse-mvs297.50 27697.14 28398.59 23299.49 17397.05 27199.28 22599.22 28298.94 4199.66 7399.42 25494.93 20699.65 22399.48 1883.80 36299.08 208
v897.95 21697.63 23298.93 18798.95 29298.81 17999.80 2099.41 20896.03 31299.10 20599.42 25494.92 20899.30 28096.94 27494.08 32998.66 280
PatchmatchNetpermissive98.31 17098.36 15998.19 27699.16 25895.32 32799.27 23098.92 31697.37 20499.37 14699.58 20194.90 20999.70 21097.43 24599.21 15899.54 152
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v7n97.87 22597.52 24198.92 18998.76 31698.58 19599.84 1099.46 17596.20 29798.91 23899.70 14094.89 21099.44 25196.03 30093.89 33198.75 244
sam_mvs194.86 21199.52 158
DU-MVS98.08 19497.79 21198.96 18298.87 30198.98 15099.41 17999.45 18797.87 14598.71 26499.50 23094.82 21299.22 29298.57 13692.87 34398.68 265
Baseline_NR-MVSNet97.76 24397.45 25098.68 22899.09 27098.29 21799.41 17998.85 32595.65 31698.63 28199.67 16294.82 21299.10 31398.07 18892.89 34298.64 284
patchmatchnet-post98.70 33994.79 21499.74 187
Patchmatch-RL test95.84 31195.81 30995.95 34095.61 36590.57 36598.24 35598.39 34795.10 32495.20 35398.67 34094.78 21597.77 35796.28 29790.02 35299.51 164
alignmvs98.81 13698.56 15199.58 9099.43 18899.42 10099.51 12998.96 31298.61 6899.35 15298.92 33194.78 21599.77 17899.35 2998.11 22699.54 152
MDTV_nov1_ep1398.32 16499.11 26594.44 34399.27 23098.74 33397.51 18999.40 13999.62 18894.78 21599.76 18497.59 22598.81 192
Vis-MVSNetpermissive99.12 9098.97 9699.56 9499.78 4899.10 13899.68 4799.66 2798.49 7799.86 1399.87 2594.77 21899.84 14299.19 4799.41 14399.74 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
anonymousdsp98.44 15998.28 16798.94 18598.50 33898.96 15799.77 2899.50 12697.07 23298.87 24599.77 10994.76 21999.28 28298.66 12197.60 23898.57 309
v1097.85 22897.52 24198.86 20898.99 28598.67 18799.75 3399.41 20895.70 31598.98 22899.41 25894.75 22099.23 28996.01 30194.63 31998.67 272
OpenMVScopyleft96.50 1698.47 15798.12 17599.52 10899.04 27999.53 8599.82 1499.72 1194.56 33398.08 31399.88 1994.73 22199.98 797.47 24099.76 10499.06 214
sam_mvs94.72 222
v14897.79 24197.55 23798.50 24398.74 31797.72 24799.54 11899.33 25096.26 29298.90 24099.51 22794.68 22399.14 30397.83 20393.15 34098.63 292
v114497.98 21297.69 22598.85 21198.87 30198.66 18899.54 11899.35 23996.27 29199.23 18099.35 27594.67 22499.23 28996.73 28495.16 31098.68 265
V4298.06 19597.79 21198.86 20898.98 28898.84 17399.69 4299.34 24396.53 27299.30 16099.37 26994.67 22499.32 27797.57 23094.66 31898.42 324
test_post65.99 37594.65 22699.73 194
baseline198.31 17097.95 19799.38 13199.50 17198.74 18299.59 8598.93 31498.41 8599.14 19799.60 19594.59 22799.79 17298.48 14793.29 33799.61 137
DSMNet-mixed97.25 28697.35 26796.95 33097.84 34993.61 35599.57 9996.63 36796.13 30698.87 24598.61 34394.59 22797.70 35995.08 32098.86 18899.55 150
Patchmatch-test97.93 21797.65 22998.77 22199.18 25097.07 26999.03 28499.14 29496.16 30298.74 26199.57 20594.56 22999.72 19893.36 33999.11 16699.52 158
PCF-MVS97.08 1497.66 26597.06 28699.47 11999.61 13999.09 13998.04 36099.25 27891.24 35498.51 29099.70 14094.55 23099.91 9692.76 34799.85 6099.42 181
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PatchT97.03 29196.44 29698.79 21998.99 28598.34 21699.16 25599.07 30292.13 35099.52 11197.31 36094.54 23198.98 32688.54 36198.73 19599.03 216
CVMVSNet98.57 15598.67 13398.30 26899.35 20695.59 31899.50 13599.55 6798.60 6999.39 14199.83 4794.48 23299.45 24698.75 10698.56 20299.85 18
test-LLR98.06 19597.90 20298.55 24098.79 30997.10 26598.67 33297.75 35797.34 20598.61 28498.85 33294.45 23399.45 24697.25 25299.38 14499.10 203
test0.0.03 197.71 25797.42 25998.56 23898.41 34197.82 24298.78 32398.63 34297.34 20598.05 31798.98 32894.45 23398.98 32695.04 32197.15 26798.89 229
v14419297.92 22097.60 23498.87 20598.83 30798.65 18999.55 11599.34 24396.20 29799.32 15799.40 26194.36 23599.26 28696.37 29695.03 31398.70 256
CR-MVSNet98.17 18397.93 20098.87 20599.18 25098.49 20799.22 24999.33 25096.96 24199.56 10299.38 26694.33 23699.00 32494.83 32498.58 19999.14 200
Patchmtry97.75 24797.40 26198.81 21699.10 26898.87 16999.11 26999.33 25094.83 32898.81 25399.38 26694.33 23699.02 32196.10 29895.57 30198.53 311
tpm cat197.39 28297.36 26597.50 31799.17 25693.73 35199.43 17099.31 26391.27 35398.71 26499.08 31594.31 23899.77 17896.41 29598.50 20599.00 219
TranMVSNet+NR-MVSNet97.93 21797.66 22898.76 22298.78 31298.62 19299.65 6099.49 13497.76 16098.49 29299.60 19594.23 23998.97 33398.00 19092.90 34198.70 256
v2v48298.06 19597.77 21698.92 18998.90 29598.82 17799.57 9999.36 23496.65 26299.19 19099.35 27594.20 24099.25 28797.72 21594.97 31498.69 260
XVG-OURS-SEG-HR98.69 14798.62 14398.89 19899.71 9597.74 24599.12 26399.54 7598.44 8499.42 13099.71 13694.20 24099.92 8598.54 14498.90 18699.00 219
ab-mvs98.86 12498.63 13899.54 9699.64 12699.19 12399.44 16499.54 7597.77 15999.30 16099.81 6794.20 24099.93 7399.17 5098.82 19099.49 168
test_post199.23 24465.14 37694.18 24399.71 20497.58 226
ADS-MVSNet298.02 20598.07 18497.87 29999.33 21195.19 33099.23 24499.08 30096.24 29499.10 20599.67 16294.11 24498.93 33696.81 28099.05 17399.48 169
ADS-MVSNet98.20 17998.08 18198.56 23899.33 21196.48 29899.23 24499.15 29296.24 29499.10 20599.67 16294.11 24499.71 20496.81 28099.05 17399.48 169
RPMNet96.72 29695.90 30699.19 15899.18 25098.49 20799.22 24999.52 9288.72 36099.56 10297.38 35794.08 24699.95 4786.87 36798.58 19999.14 200
v119297.81 23897.44 25598.91 19398.88 29798.68 18699.51 12999.34 24396.18 29999.20 18799.34 27894.03 24799.36 26795.32 31795.18 30998.69 260
v192192097.80 24097.45 25098.84 21298.80 30898.53 19999.52 12499.34 24396.15 30499.24 17699.47 24293.98 24899.29 28195.40 31495.13 31198.69 260
Anonymous2023120696.22 30496.03 30396.79 33497.31 35794.14 34799.63 6599.08 30096.17 30097.04 34099.06 31893.94 24997.76 35886.96 36695.06 31298.47 317
WR-MVS98.06 19597.73 22299.06 16898.86 30499.25 11999.19 25299.35 23997.30 20998.66 27399.43 25193.94 24999.21 29798.58 13494.28 32598.71 252
N_pmnet94.95 32095.83 30892.31 34698.47 33979.33 37399.12 26392.81 37993.87 33897.68 32699.13 31193.87 25199.01 32391.38 35196.19 28498.59 307
MVSTER98.49 15698.32 16499.00 17799.35 20699.02 14699.54 11899.38 22497.41 20199.20 18799.73 13193.86 25299.36 26798.87 8397.56 24298.62 294
CP-MVSNet98.09 19297.78 21499.01 17598.97 29099.24 12099.67 4999.46 17597.25 21498.48 29399.64 17693.79 25399.06 31598.63 12494.10 32898.74 248
cascas97.69 25997.43 25898.48 24698.60 33397.30 25698.18 35899.39 21892.96 34898.41 29798.78 33793.77 25499.27 28598.16 17798.61 19698.86 230
v124097.69 25997.32 27398.79 21998.85 30598.43 21299.48 15199.36 23496.11 30799.27 16899.36 27293.76 25599.24 28894.46 32795.23 30898.70 256
test20.0396.12 30895.96 30596.63 33597.44 35395.45 32499.51 12999.38 22496.55 27196.16 34899.25 29893.76 25596.17 36887.35 36594.22 32698.27 333
baseline297.87 22597.55 23798.82 21499.18 25098.02 22999.41 17996.58 36896.97 24096.51 34499.17 30693.43 25799.57 23697.71 21699.03 17598.86 230
TransMVSNet (Re)97.15 28896.58 29398.86 20899.12 26398.85 17299.49 14598.91 31995.48 31797.16 33799.80 8393.38 25899.11 31194.16 33291.73 34898.62 294
tfpnnormal97.84 23197.47 24798.98 17999.20 24599.22 12299.64 6399.61 3696.32 28798.27 30799.70 14093.35 25999.44 25195.69 30795.40 30598.27 333
Anonymous2023121197.88 22397.54 24098.90 19599.71 9598.53 19999.48 15199.57 5294.16 33698.81 25399.68 15693.23 26099.42 25698.84 9394.42 32398.76 242
XXY-MVS98.38 16698.09 18099.24 15499.26 23199.32 10999.56 10699.55 6797.45 19498.71 26499.83 4793.23 26099.63 23198.88 7996.32 28298.76 242
jajsoiax98.43 16098.28 16798.88 20198.60 33398.43 21299.82 1499.53 8698.19 10998.63 28199.80 8393.22 26299.44 25199.22 4497.50 24898.77 240
MDA-MVSNet_test_wron95.45 31494.60 32098.01 28998.16 34597.21 26399.11 26999.24 28093.49 34380.73 37098.98 32893.02 26398.18 34794.22 33194.45 32298.64 284
ACMM97.58 598.37 16798.34 16298.48 24699.41 19297.10 26599.56 10699.45 18798.53 7499.04 21899.85 3493.00 26499.71 20498.74 10797.45 25398.64 284
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet398.03 20397.76 21998.84 21299.39 20098.98 15099.40 18799.38 22496.67 26099.07 21299.28 29292.93 26598.98 32697.10 26396.65 27198.56 310
DTE-MVSNet97.51 27597.19 28298.46 25198.63 32998.13 22699.84 1099.48 14796.68 25997.97 31999.67 16292.92 26698.56 34396.88 27992.60 34698.70 256
CLD-MVS98.16 18498.10 17798.33 26499.29 22496.82 28798.75 32699.44 19697.83 15199.13 19899.55 21192.92 26699.67 21698.32 16597.69 23498.48 315
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BH-RMVSNet98.41 16398.08 18199.40 12899.41 19298.83 17699.30 21998.77 32997.70 16798.94 23499.65 16992.91 26899.74 18796.52 29199.55 13799.64 129
YYNet195.36 31694.51 32297.92 29697.89 34897.10 26599.10 27199.23 28193.26 34680.77 36999.04 32092.81 26998.02 35194.30 32894.18 32798.64 284
mvs_tets98.40 16598.23 16998.91 19398.67 32698.51 20599.66 5399.53 8698.19 10998.65 27999.81 6792.75 27099.44 25199.31 3697.48 25298.77 240
IterMVS97.83 23397.77 21698.02 28899.58 14796.27 30599.02 28799.48 14797.22 21898.71 26499.70 14092.75 27099.13 30697.46 24196.00 28898.67 272
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UGNet98.87 12198.69 13199.40 12899.22 24198.72 18499.44 16499.68 1999.24 499.18 19399.42 25492.74 27299.96 2099.34 3399.94 1199.53 157
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS-SCA-FT97.82 23697.75 22098.06 28599.57 14996.36 30299.02 28799.49 13497.18 22098.71 26499.72 13592.72 27399.14 30397.44 24495.86 29498.67 272
SCA98.19 18098.16 17198.27 27399.30 22095.55 31999.07 27398.97 31097.57 18099.43 12799.57 20592.72 27399.74 18797.58 22699.20 15999.52 158
HQP_MVS98.27 17598.22 17098.44 25599.29 22496.97 28099.39 19199.47 16598.97 3799.11 20299.61 19292.71 27599.69 21497.78 20797.63 23598.67 272
plane_prior699.27 22996.98 27992.71 275
CL-MVSNet_self_test94.49 32393.97 32696.08 33996.16 36393.67 35498.33 35299.38 22495.13 32097.33 33298.15 35292.69 27796.57 36688.67 36079.87 36697.99 348
dp97.75 24797.80 21097.59 31399.10 26893.71 35299.32 21598.88 32396.48 27899.08 21199.55 21192.67 27899.82 16096.52 29198.58 19999.24 196
PEN-MVS97.76 24397.44 25598.72 22598.77 31598.54 19899.78 2699.51 10697.06 23498.29 30699.64 17692.63 27998.89 33998.09 18193.16 33998.72 250
LPG-MVS_test98.22 17698.13 17498.49 24499.33 21197.05 27199.58 9399.55 6797.46 19199.24 17699.83 4792.58 28099.72 19898.09 18197.51 24698.68 265
LGP-MVS_train98.49 24499.33 21197.05 27199.55 6797.46 19199.24 17699.83 4792.58 28099.72 19898.09 18197.51 24698.68 265
VPA-MVSNet98.29 17397.95 19799.30 14399.16 25899.54 8299.50 13599.58 5098.27 10199.35 15299.37 26992.53 28299.65 22399.35 2994.46 32198.72 250
TR-MVS97.76 24397.41 26098.82 21499.06 27597.87 23998.87 31598.56 34496.63 26598.68 27299.22 30192.49 28399.65 22395.40 31497.79 23298.95 228
pm-mvs197.68 26197.28 27698.88 20199.06 27598.62 19299.50 13599.45 18796.32 28797.87 32199.79 9592.47 28499.35 27197.54 23393.54 33598.67 272
HQP2-MVS92.47 284
HQP-MVS98.02 20597.90 20298.37 26299.19 24796.83 28598.98 29899.39 21898.24 10298.66 27399.40 26192.47 28499.64 22697.19 25897.58 24098.64 284
EPMVS97.82 23697.65 22998.35 26398.88 29795.98 31199.49 14594.71 37497.57 18099.26 17399.48 23992.46 28799.71 20497.87 19999.08 17199.35 189
PS-CasMVS97.93 21797.59 23698.95 18498.99 28599.06 14399.68 4799.52 9297.13 22498.31 30499.68 15692.44 28899.05 31698.51 14594.08 32998.75 244
cl2297.85 22897.64 23198.48 24699.09 27097.87 23998.60 33999.33 25097.11 22998.87 24599.22 30192.38 28999.17 30198.21 17095.99 28998.42 324
CostFormer97.72 25397.73 22297.71 30999.15 26194.02 34899.54 11899.02 30694.67 33199.04 21899.35 27592.35 29099.77 17898.50 14697.94 22999.34 191
OPM-MVS98.19 18098.10 17798.45 25298.88 29797.07 26999.28 22599.38 22498.57 7099.22 18199.81 6792.12 29199.66 21998.08 18597.54 24498.61 303
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ET-MVSNet_ETH3D96.49 30095.64 31199.05 17099.53 15798.82 17798.84 31797.51 36197.63 17584.77 36599.21 30492.09 29298.91 33798.98 6792.21 34799.41 185
AUN-MVS96.88 29296.31 29898.59 23299.48 18097.04 27499.27 23099.22 28297.44 19798.51 29099.41 25891.97 29399.66 21997.71 21683.83 36199.07 213
ACMP97.20 1198.06 19597.94 19998.45 25299.37 20397.01 27699.44 16499.49 13497.54 18598.45 29499.79 9591.95 29499.72 19897.91 19697.49 25198.62 294
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous20240521198.30 17297.98 19299.26 15199.57 14998.16 22399.41 17998.55 34596.03 31299.19 19099.74 12491.87 29599.92 8599.16 5298.29 21499.70 105
KD-MVS_self_test95.00 31894.34 32396.96 32997.07 36295.39 32699.56 10699.44 19695.11 32297.13 33897.32 35991.86 29697.27 36290.35 35581.23 36598.23 337
tpm97.67 26497.55 23798.03 28699.02 28295.01 33399.43 17098.54 34696.44 28199.12 20099.34 27891.83 29799.60 23497.75 21196.46 27899.48 169
thres100view90097.76 24397.45 25098.69 22799.72 8997.86 24199.59 8598.74 33397.93 14299.26 17398.62 34191.75 29899.83 15393.22 34098.18 22098.37 330
thres600view797.86 22797.51 24398.92 18999.72 8997.95 23699.59 8598.74 33397.94 14199.27 16898.62 34191.75 29899.86 13093.73 33598.19 21998.96 225
LTVRE_ROB97.16 1298.02 20597.90 20298.40 25999.23 23796.80 28899.70 4099.60 4197.12 22698.18 31099.70 14091.73 30099.72 19898.39 15597.45 25398.68 265
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-097.88 22397.77 21698.19 27698.71 32296.53 29699.88 299.00 30797.79 15798.78 25899.94 391.68 30199.35 27197.21 25496.99 26998.69 260
tfpn200view997.72 25397.38 26398.72 22599.69 10597.96 23499.50 13598.73 33897.83 15199.17 19498.45 34691.67 30299.83 15393.22 34098.18 22098.37 330
thres40097.77 24297.38 26398.92 18999.69 10597.96 23499.50 13598.73 33897.83 15199.17 19498.45 34691.67 30299.83 15393.22 34098.18 22098.96 225
thisisatest051598.14 18797.79 21199.19 15899.50 17198.50 20698.61 33796.82 36596.95 24399.54 10799.43 25191.66 30499.86 13098.08 18599.51 13999.22 197
thres20097.61 26897.28 27698.62 23099.64 12698.03 22899.26 23998.74 33397.68 16999.09 21098.32 35091.66 30499.81 16492.88 34498.22 21598.03 344
new_pmnet96.38 30396.03 30397.41 31898.13 34695.16 33299.05 27899.20 28693.94 33797.39 33198.79 33591.61 30699.04 31790.43 35495.77 29598.05 343
pmmvs597.52 27397.30 27598.16 27898.57 33596.73 28999.27 23098.90 32196.14 30598.37 30099.53 22091.54 30799.14 30397.51 23695.87 29398.63 292
tttt051798.42 16198.14 17399.28 14999.66 11998.38 21599.74 3696.85 36497.68 16999.79 3099.74 12491.39 30899.89 11998.83 9699.56 13599.57 148
tpm297.44 28197.34 27097.74 30899.15 26194.36 34599.45 16098.94 31393.45 34598.90 24099.44 24891.35 30999.59 23597.31 24898.07 22799.29 194
MVS-HIRNet95.75 31295.16 31697.51 31699.30 22093.69 35398.88 31395.78 36985.09 36398.78 25892.65 36791.29 31099.37 26394.85 32399.85 6099.46 176
thisisatest053098.35 16898.03 18799.31 13999.63 12998.56 19699.54 11896.75 36697.53 18799.73 5099.65 16991.25 31199.89 11998.62 12599.56 13599.48 169
testgi97.65 26697.50 24498.13 28299.36 20596.45 29999.42 17799.48 14797.76 16097.87 32199.45 24791.09 31298.81 34094.53 32698.52 20499.13 202
ITE_SJBPF98.08 28399.29 22496.37 30198.92 31698.34 9398.83 25199.75 11891.09 31299.62 23295.82 30397.40 25898.25 335
DeepMVS_CXcopyleft93.34 34499.29 22482.27 37099.22 28285.15 36296.33 34699.05 31990.97 31499.73 19493.57 33797.77 23398.01 345
ACMH97.28 898.10 19197.99 19198.44 25599.41 19296.96 28299.60 7899.56 5898.09 12398.15 31199.91 890.87 31599.70 21098.88 7997.45 25398.67 272
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test111198.04 20198.11 17697.83 30299.74 7693.82 34999.58 9395.40 37199.12 1099.65 7999.93 490.73 31699.84 14299.43 2599.38 14499.82 40
ECVR-MVScopyleft98.04 20198.05 18598.00 29199.74 7694.37 34499.59 8594.98 37299.13 899.66 7399.93 490.67 31799.84 14299.40 2699.38 14499.80 56
SixPastTwentyTwo97.50 27697.33 27298.03 28698.65 32796.23 30699.77 2898.68 34197.14 22397.90 32099.93 490.45 31899.18 30097.00 26896.43 27998.67 272
MIMVSNet97.73 25197.45 25098.57 23699.45 18797.50 25299.02 28798.98 30996.11 30799.41 13499.14 31090.28 31998.74 34195.74 30698.93 18299.47 174
GBi-Net97.68 26197.48 24598.29 26999.51 16197.26 26099.43 17099.48 14796.49 27499.07 21299.32 28590.26 32098.98 32697.10 26396.65 27198.62 294
test197.68 26197.48 24598.29 26999.51 16197.26 26099.43 17099.48 14796.49 27499.07 21299.32 28590.26 32098.98 32697.10 26396.65 27198.62 294
FMVSNet297.72 25397.36 26598.80 21899.51 16198.84 17399.45 16099.42 20696.49 27498.86 25099.29 29090.26 32098.98 32696.44 29396.56 27498.58 308
Anonymous2024052998.09 19297.68 22699.34 13399.66 11998.44 21199.40 18799.43 20493.67 34099.22 18199.89 1490.23 32399.93 7399.26 4298.33 20999.66 118
ACMH+97.24 1097.92 22097.78 21498.32 26699.46 18296.68 29299.56 10699.54 7598.41 8597.79 32599.87 2590.18 32499.66 21998.05 18997.18 26598.62 294
LF4IMVS97.52 27397.46 24997.70 31098.98 28895.55 31999.29 22398.82 32898.07 12898.66 27399.64 17689.97 32599.61 23397.01 26796.68 27097.94 351
GA-MVS97.85 22897.47 24799.00 17799.38 20197.99 23198.57 34099.15 29297.04 23598.90 24099.30 28889.83 32699.38 26096.70 28698.33 20999.62 135
test_part197.75 24797.24 28099.29 14699.59 14599.63 6599.65 6099.49 13496.17 30098.44 29599.69 14989.80 32799.47 24398.68 11893.66 33398.78 236
PVSNet_094.43 1996.09 30995.47 31297.94 29499.31 21994.34 34697.81 36299.70 1597.12 22697.46 32998.75 33889.71 32899.79 17297.69 21981.69 36499.68 112
Anonymous2024052196.20 30695.89 30797.13 32597.72 35194.96 33599.79 2599.29 27293.01 34797.20 33699.03 32189.69 32998.36 34691.16 35296.13 28598.07 341
XVG-ACMP-BASELINE97.83 23397.71 22498.20 27599.11 26596.33 30399.41 17999.52 9298.06 13299.05 21799.50 23089.64 33099.73 19497.73 21397.38 25998.53 311
gg-mvs-nofinetune96.17 30795.32 31598.73 22398.79 30998.14 22599.38 19694.09 37591.07 35698.07 31691.04 37089.62 33199.35 27196.75 28299.09 17098.68 265
DWT-MVSNet_test97.53 27297.40 26197.93 29599.03 28194.86 33799.57 9998.63 34296.59 27098.36 30198.79 33589.32 33299.74 18798.14 17998.16 22499.20 199
GG-mvs-BLEND98.45 25298.55 33698.16 22399.43 17093.68 37697.23 33498.46 34589.30 33399.22 29295.43 31398.22 21597.98 349
USDC97.34 28397.20 28197.75 30799.07 27395.20 32998.51 34499.04 30597.99 13898.31 30499.86 2889.02 33499.55 23995.67 30997.36 26098.49 314
MS-PatchMatch97.24 28797.32 27396.99 32798.45 34093.51 35698.82 31999.32 26097.41 20198.13 31299.30 28888.99 33599.56 23795.68 30899.80 8997.90 354
VPNet97.84 23197.44 25599.01 17599.21 24398.94 16299.48 15199.57 5298.38 8799.28 16599.73 13188.89 33699.39 25899.19 4793.27 33898.71 252
K. test v397.10 29096.79 29198.01 28998.72 32096.33 30399.87 697.05 36397.59 17796.16 34899.80 8388.71 33799.04 31796.69 28796.55 27598.65 282
lessismore_v097.79 30698.69 32495.44 32594.75 37395.71 35299.87 2588.69 33899.32 27795.89 30294.93 31698.62 294
TDRefinement95.42 31594.57 32197.97 29389.83 37496.11 30999.48 15198.75 33096.74 25596.68 34399.88 1988.65 33999.71 20498.37 15982.74 36398.09 340
TESTMET0.1,197.55 27097.27 27998.40 25998.93 29396.53 29698.67 33297.61 36096.96 24198.64 28099.28 29288.63 34099.45 24697.30 24999.38 14499.21 198
test_040296.64 29796.24 29997.85 30098.85 30596.43 30099.44 16499.26 27693.52 34296.98 34199.52 22388.52 34199.20 29992.58 34997.50 24897.93 352
UnsupCasMVSNet_eth96.44 30196.12 30197.40 31998.65 32795.65 31699.36 20399.51 10697.13 22496.04 35098.99 32588.40 34298.17 34896.71 28590.27 35198.40 327
MDA-MVSNet-bldmvs94.96 31993.98 32597.92 29698.24 34497.27 25899.15 25999.33 25093.80 33980.09 37199.03 32188.31 34397.86 35693.49 33894.36 32498.62 294
test-mter97.49 27997.13 28498.55 24098.79 30997.10 26598.67 33297.75 35796.65 26298.61 28498.85 33288.23 34499.45 24697.25 25299.38 14499.10 203
TinyColmap97.12 28996.89 28997.83 30299.07 27395.52 32298.57 34098.74 33397.58 17997.81 32499.79 9588.16 34599.56 23795.10 31997.21 26398.39 328
pmmvs-eth3d95.34 31794.73 31997.15 32395.53 36795.94 31299.35 20999.10 29795.13 32093.55 35897.54 35588.15 34697.91 35494.58 32589.69 35497.61 356
RRT_test8_iter0597.72 25397.60 23498.08 28399.23 23796.08 31099.63 6599.49 13497.54 18598.94 23499.81 6787.99 34799.35 27199.21 4696.51 27798.81 233
KD-MVS_2432*160094.62 32193.72 32797.31 32097.19 36095.82 31498.34 35099.20 28695.00 32597.57 32798.35 34887.95 34898.10 34992.87 34577.00 36898.01 345
miper_refine_blended94.62 32193.72 32797.31 32097.19 36095.82 31498.34 35099.20 28695.00 32597.57 32798.35 34887.95 34898.10 34992.87 34577.00 36898.01 345
new-patchmatchnet94.48 32494.08 32495.67 34195.08 36892.41 36099.18 25399.28 27494.55 33493.49 35997.37 35887.86 35097.01 36491.57 35088.36 35597.61 356
test250696.81 29496.65 29297.29 32299.74 7692.21 36299.60 7885.06 38199.13 899.77 3799.93 487.82 35199.85 13699.38 2799.38 14499.80 56
FMVSNet596.43 30296.19 30097.15 32399.11 26595.89 31399.32 21599.52 9294.47 33598.34 30399.07 31687.54 35297.07 36392.61 34895.72 29898.47 317
pmmvs696.53 29996.09 30297.82 30498.69 32495.47 32399.37 19999.47 16593.46 34497.41 33099.78 10287.06 35399.33 27596.92 27792.70 34598.65 282
pmmvs394.09 32793.25 33096.60 33694.76 36994.49 34298.92 30998.18 35289.66 35796.48 34598.06 35386.28 35497.33 36189.68 35787.20 35797.97 350
IB-MVS95.67 1896.22 30495.44 31498.57 23699.21 24396.70 29098.65 33597.74 35996.71 25797.27 33398.54 34486.03 35599.92 8598.47 15086.30 35899.10 203
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tmp_tt82.80 33581.52 33886.66 35166.61 38168.44 37992.79 37097.92 35568.96 36980.04 37299.85 3485.77 35696.15 36997.86 20043.89 37495.39 365
CMPMVSbinary69.68 2394.13 32694.90 31891.84 34797.24 35880.01 37298.52 34399.48 14789.01 35891.99 36299.67 16285.67 35799.13 30695.44 31297.03 26896.39 363
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet195.51 31395.04 31796.92 33197.38 35495.60 31799.52 12499.50 12693.65 34196.97 34299.17 30685.28 35896.56 36788.36 36295.55 30298.60 306
LFMVS97.90 22297.35 26799.54 9699.52 15999.01 14899.39 19198.24 34997.10 23099.65 7999.79 9584.79 35999.91 9699.28 3998.38 20899.69 108
EGC-MVSNET82.80 33577.86 34197.62 31197.91 34796.12 30899.33 21499.28 2748.40 37825.05 37999.27 29584.11 36099.33 27589.20 35898.22 21597.42 360
FMVSNet196.84 29396.36 29798.29 26999.32 21897.26 26099.43 17099.48 14795.11 32298.55 28899.32 28583.95 36198.98 32695.81 30496.26 28398.62 294
VDD-MVS97.73 25197.35 26798.88 20199.47 18197.12 26499.34 21298.85 32598.19 10999.67 6899.85 3482.98 36299.92 8599.49 1798.32 21399.60 139
EG-PatchMatch MVS95.97 31095.69 31096.81 33397.78 35092.79 35999.16 25598.93 31496.16 30294.08 35799.22 30182.72 36399.47 24395.67 30997.50 24898.17 338
VDDNet97.55 27097.02 28799.16 16199.49 17398.12 22799.38 19699.30 26795.35 31999.68 6299.90 1082.62 36499.93 7399.31 3698.13 22599.42 181
UniMVSNet_ETH3D97.32 28496.81 29098.87 20599.40 19797.46 25399.51 12999.53 8695.86 31498.54 28999.77 10982.44 36599.66 21998.68 11897.52 24599.50 167
OpenMVS_ROBcopyleft92.34 2094.38 32593.70 32996.41 33897.38 35493.17 35799.06 27698.75 33086.58 36194.84 35698.26 35181.53 36699.32 27789.01 35997.87 23196.76 361
test_method91.10 33091.36 33390.31 35095.85 36473.72 37894.89 36799.25 27868.39 37095.82 35199.02 32380.50 36798.95 33593.64 33694.89 31798.25 335
MVS_030496.79 29596.52 29597.59 31399.22 24194.92 33699.04 28399.59 4496.49 27498.43 29698.99 32580.48 36899.39 25897.15 26299.27 15598.47 317
UnsupCasMVSNet_bld93.53 32892.51 33196.58 33797.38 35493.82 34998.24 35599.48 14791.10 35593.10 36096.66 36174.89 36998.37 34594.03 33387.71 35697.56 358
Gipumacopyleft90.99 33190.15 33493.51 34398.73 31890.12 36693.98 36899.45 18779.32 36692.28 36194.91 36469.61 37097.98 35387.42 36495.67 29992.45 367
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PM-MVS92.96 32992.23 33295.14 34295.61 36589.98 36799.37 19998.21 35094.80 32995.04 35597.69 35465.06 37197.90 35594.30 32889.98 35397.54 359
EMVS80.02 33879.22 34082.43 35691.19 37176.40 37597.55 36592.49 38066.36 37383.01 36891.27 36964.63 37285.79 37565.82 37460.65 37285.08 371
E-PMN80.61 33779.88 33982.81 35490.75 37276.38 37697.69 36395.76 37066.44 37283.52 36692.25 36862.54 37387.16 37468.53 37361.40 37184.89 372
ambc93.06 34592.68 37082.36 36998.47 34598.73 33895.09 35497.41 35655.55 37499.10 31396.42 29491.32 34997.71 355
FPMVS84.93 33485.65 33582.75 35586.77 37663.39 38098.35 34998.92 31674.11 36783.39 36798.98 32850.85 37592.40 37284.54 36994.97 31492.46 366
PMMVS286.87 33285.37 33691.35 34990.21 37383.80 36898.89 31297.45 36283.13 36591.67 36395.03 36348.49 37694.70 37085.86 36877.62 36795.54 364
LCM-MVSNet86.80 33385.22 33791.53 34887.81 37580.96 37198.23 35798.99 30871.05 36890.13 36496.51 36248.45 37796.88 36590.51 35385.30 35996.76 361
ANet_high77.30 33974.86 34384.62 35375.88 37977.61 37497.63 36493.15 37888.81 35964.27 37489.29 37136.51 37883.93 37675.89 37152.31 37392.33 368
test12339.01 34442.50 34628.53 35939.17 38220.91 38398.75 32619.17 38419.83 37738.57 37666.67 37433.16 37915.42 37837.50 37729.66 37649.26 373
testmvs39.17 34343.78 34525.37 36036.04 38316.84 38498.36 34826.56 38220.06 37638.51 37767.32 37329.64 38015.30 37937.59 37639.90 37543.98 374
wuyk23d40.18 34241.29 34736.84 35886.18 37749.12 38279.73 37122.81 38327.64 37525.46 37828.45 37821.98 38148.89 37755.80 37523.56 37712.51 375
PMVScopyleft70.75 2275.98 34174.97 34279.01 35770.98 38055.18 38193.37 36998.21 35065.08 37461.78 37593.83 36621.74 38292.53 37178.59 37091.12 35089.34 370
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive76.82 2176.91 34074.31 34484.70 35285.38 37876.05 37796.88 36693.17 37767.39 37171.28 37389.01 37221.66 38387.69 37371.74 37272.29 37090.35 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_blank0.13 3480.17 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3801.57 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
sosnet-low-res0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
sosnet0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
Regformer0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
ab-mvs-re8.30 34611.06 3490.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38099.58 2010.00 3840.00 3800.00 3780.00 3780.00 376
uanet0.02 3490.03 3520.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.27 3800.00 3840.00 3800.00 3780.00 3780.00 376
FOURS199.91 199.93 199.87 699.56 5899.10 1299.81 25
MSC_two_6792asdad99.87 1299.51 16199.76 4199.33 25099.96 2098.87 8399.84 6799.89 2
No_MVS99.87 1299.51 16199.76 4199.33 25099.96 2098.87 8399.84 6799.89 2
eth-test20.00 384
eth-test0.00 384
IU-MVS99.84 3399.88 899.32 26098.30 9899.84 1598.86 8899.85 6099.89 2
save fliter99.76 5799.59 7399.14 26199.40 21499.00 28
test_0728_SECOND99.91 299.84 3399.89 499.57 9999.51 10699.96 2098.93 7399.86 5399.88 8
GSMVS99.52 158
test_part299.81 4299.83 1799.77 37
MTGPAbinary99.47 165
MTMP99.54 11898.88 323
gm-plane-assit98.54 33792.96 35894.65 33299.15 30999.64 22697.56 231
test9_res97.49 23799.72 11299.75 78
agg_prior297.21 25499.73 11199.75 78
agg_prior99.67 11099.62 6699.40 21498.87 24599.91 96
test_prior499.56 7898.99 294
test_prior99.68 6899.67 11099.48 9399.56 5899.83 15399.74 83
旧先验298.96 30296.70 25899.47 11999.94 5898.19 172
新几何299.01 292
无先验98.99 29499.51 10696.89 24799.93 7397.53 23499.72 96
原ACMM298.95 306
testdata299.95 4796.67 288
testdata198.85 31698.32 97
plane_prior799.29 22497.03 275
plane_prior599.47 16599.69 21497.78 20797.63 23598.67 272
plane_prior499.61 192
plane_prior397.00 27798.69 6499.11 202
plane_prior299.39 19198.97 37
plane_prior199.26 231
plane_prior96.97 28099.21 25198.45 8197.60 238
n20.00 385
nn0.00 385
door-mid98.05 353
test1199.35 239
door97.92 355
HQP5-MVS96.83 285
HQP-NCC99.19 24798.98 29898.24 10298.66 273
ACMP_Plane99.19 24798.98 29898.24 10298.66 273
BP-MVS97.19 258
HQP4-MVS98.66 27399.64 22698.64 284
HQP3-MVS99.39 21897.58 240
NP-MVS99.23 23796.92 28399.40 261
ACMMP++_ref97.19 264
ACMMP++97.43 256