This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2599.56 5599.02 1599.88 599.85 2999.18 899.96 1899.22 3499.92 1199.90 1
IU-MVS99.84 3299.88 799.32 24998.30 8599.84 1398.86 7799.85 5899.89 2
UA-Net99.42 3899.29 4499.80 4099.62 12599.55 7599.50 12499.70 1598.79 4799.77 3399.96 197.45 11699.96 1898.92 6699.90 2399.89 2
CHOSEN 1792x268899.19 6999.10 6999.45 11599.89 898.52 19599.39 18099.94 198.73 5199.11 18799.89 1095.50 18299.94 5399.50 899.97 399.89 2
test_241102_TWO99.48 13999.08 1199.88 599.81 6298.94 3199.96 1898.91 6799.84 6599.88 5
test_0728_THIRD98.99 2599.81 2299.80 7699.09 1299.96 1898.85 7999.90 2399.88 5
test_0728_SECOND99.91 299.84 3299.89 399.57 8999.51 10199.96 1898.93 6499.86 5199.88 5
DPE-MVS99.46 2499.32 3099.91 299.78 4499.88 799.36 19299.51 10198.73 5199.88 599.84 3898.72 6099.96 1898.16 16399.87 4099.88 5
MSP-MVS99.42 3899.27 5099.88 699.89 899.80 2699.67 4299.50 11998.70 5399.77 3399.49 22198.21 9699.95 4298.46 13999.77 9299.88 5
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DP-MVS99.16 7598.95 9599.78 4599.77 4999.53 8099.41 16899.50 11997.03 22399.04 20399.88 1597.39 11799.92 7998.66 10999.90 2399.87 10
EI-MVSNet-UG-set99.58 499.57 199.64 7799.78 4499.14 12699.60 7199.45 17999.01 1899.90 399.83 4298.98 2399.93 6899.59 199.95 699.86 11
Test_1112_low_res98.89 11598.66 13199.57 8899.69 9598.95 15199.03 27099.47 15796.98 22599.15 18199.23 28696.77 14099.89 11398.83 8498.78 18199.86 11
HyFIR lowres test99.11 9098.92 9799.65 7299.90 399.37 9899.02 27399.91 397.67 15999.59 8399.75 11095.90 16999.73 18399.53 599.02 16599.86 11
EI-MVSNet-Vis-set99.58 499.56 399.64 7799.78 4499.15 12599.61 7099.45 17999.01 1899.89 499.82 4999.01 1699.92 7999.56 499.95 699.85 14
CVMVSNet98.57 14998.67 12898.30 26099.35 19195.59 30799.50 12499.55 6398.60 5999.39 12799.83 4294.48 22299.45 23398.75 9498.56 19099.85 14
HPM-MVS_fast99.51 1499.40 1699.85 2599.91 199.79 3099.76 2499.56 5597.72 15299.76 3799.75 11099.13 1099.92 7999.07 5099.92 1199.85 14
MG-MVS99.13 7999.02 8299.45 11599.57 13898.63 18399.07 25999.34 23498.99 2599.61 7699.82 4997.98 10599.87 12297.00 25499.80 8499.85 14
ACMMP_NAP99.47 2299.34 2699.88 699.87 1599.86 1099.47 14599.48 13998.05 12099.76 3799.86 2398.82 4499.93 6898.82 8899.91 1699.84 18
HFP-MVS99.49 1599.37 1999.86 1899.87 1599.80 2699.66 4699.67 2298.15 10199.68 5399.69 13999.06 1399.96 1898.69 10499.87 4099.84 18
region2R99.48 1999.35 2499.87 1199.88 1199.80 2699.65 5399.66 2798.13 10399.66 6499.68 14598.96 2599.96 1898.62 11399.87 4099.84 18
#test#99.43 3399.29 4499.86 1899.87 1599.80 2699.55 10599.67 2297.83 13899.68 5399.69 13999.06 1399.96 1898.39 14399.87 4099.84 18
Regformer-499.59 399.54 499.73 5899.76 5299.41 9599.58 8499.49 12799.02 1599.88 599.80 7699.00 2299.94 5399.45 1599.92 1199.84 18
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 13299.74 11698.81 4599.94 5398.79 9099.86 5199.84 18
X-MVStestdata96.55 28795.45 30199.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 13264.01 36198.81 4599.94 5398.79 9099.86 5199.84 18
ACMMPR99.49 1599.36 2199.86 1899.87 1599.79 3099.66 4699.67 2298.15 10199.67 5999.69 13998.95 2899.96 1898.69 10499.87 4099.84 18
HPM-MVScopyleft99.42 3899.28 4899.83 3399.90 399.72 4299.81 1299.54 7097.59 16499.68 5399.63 17098.91 3699.94 5398.58 12299.91 1699.84 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2499.59 7799.51 10198.62 5799.79 2699.83 4299.28 399.97 1098.48 13599.90 2399.84 18
Skip Steuart: Steuart Systems R&D Blog.
1112_ss98.98 10998.77 11899.59 8499.68 9999.02 13899.25 22799.48 13997.23 20499.13 18399.58 18996.93 13599.90 10598.87 7498.78 18199.84 18
MP-MVS-pluss99.37 4899.20 5999.88 699.90 399.87 999.30 20699.52 8897.18 20799.60 8099.79 8898.79 4799.95 4298.83 8499.91 1699.83 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
zzz-MVS99.49 1599.36 2199.89 499.90 399.86 1099.36 19299.47 15798.79 4799.68 5399.81 6298.43 8199.97 1098.88 7099.90 2399.83 29
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 4699.47 15798.79 4799.68 5399.81 6298.43 8199.97 1098.88 7099.90 2399.83 29
Regformer-399.57 799.53 599.68 6599.76 5299.29 10799.58 8499.44 18799.01 1899.87 1099.80 7698.97 2499.91 9099.44 1799.92 1199.83 29
PGM-MVS99.45 2699.31 3799.86 1899.87 1599.78 3799.58 8499.65 3297.84 13799.71 4699.80 7699.12 1199.97 1098.33 15199.87 4099.83 29
mPP-MVS99.44 3099.30 4099.86 1899.88 1199.79 3099.69 3599.48 13998.12 10599.50 10099.75 11098.78 4899.97 1098.57 12499.89 3399.83 29
CP-MVS99.45 2699.32 3099.85 2599.83 3699.75 3899.69 3599.52 8898.07 11599.53 9599.63 17098.93 3599.97 1098.74 9599.91 1699.83 29
ZNCC-MVS99.47 2299.33 2899.87 1199.87 1599.81 2499.64 5699.67 2298.08 11499.55 9299.64 16598.91 3699.96 1898.72 9999.90 2399.82 36
TSAR-MVS + MP.99.58 499.50 899.81 3899.91 199.66 5499.63 5899.39 20998.91 3699.78 3199.85 2999.36 299.94 5398.84 8199.88 3699.82 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MP-MVScopyleft99.33 5299.15 6399.87 1199.88 1199.82 2099.66 4699.46 16798.09 11099.48 10499.74 11698.29 9299.96 1897.93 18199.87 4099.82 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS99.43 3399.30 4099.82 3599.79 4299.74 4199.29 21099.40 20598.79 4799.52 9799.62 17698.91 3699.90 10598.64 11199.75 9699.82 36
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4799.63 11999.59 6899.36 19299.46 16799.07 1399.79 2699.82 4998.85 4199.92 7998.68 10699.87 4099.82 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testtj99.12 8598.87 10499.86 1899.72 8099.79 3099.44 15399.51 10197.29 19799.59 8399.74 11698.15 10099.96 1896.74 26999.69 10999.81 41
DVP-MVS99.57 799.47 999.88 699.85 2599.89 399.57 8999.37 22499.10 899.81 2299.80 7698.94 3199.96 1898.93 6499.86 5199.81 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
GST-MVS99.40 4599.24 5599.85 2599.86 2199.79 3099.60 7199.67 2297.97 12699.63 7099.68 14598.52 7499.95 4298.38 14599.86 5199.81 41
SMA-MVScopyleft99.44 3099.30 4099.85 2599.73 7599.83 1499.56 9699.47 15797.45 18199.78 3199.82 4999.18 899.91 9098.79 9099.89 3399.81 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CPTT-MVS99.11 9098.90 10099.74 5699.80 4199.46 9099.59 7799.49 12797.03 22399.63 7099.69 13997.27 12499.96 1897.82 19099.84 6599.81 41
ACMMPcopyleft99.45 2699.32 3099.82 3599.89 899.67 5299.62 6499.69 1898.12 10599.63 7099.84 3898.73 5999.96 1898.55 13099.83 7299.81 41
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepPCF-MVS98.18 398.81 13099.37 1997.12 31199.60 13291.75 34698.61 32399.44 18799.35 199.83 1799.85 2998.70 6299.81 15699.02 5499.91 1699.81 41
3Dnovator+97.12 1399.18 7198.97 9199.82 3599.17 24199.68 4999.81 1299.51 10199.20 498.72 24999.89 1095.68 17799.97 1098.86 7799.86 5199.81 41
Regformer-199.53 1199.47 999.72 6199.71 8699.44 9299.49 13499.46 16798.95 3299.83 1799.76 10599.01 1699.93 6899.17 4099.87 4099.80 49
Regformer-299.54 999.47 999.75 5199.71 8699.52 8399.49 13499.49 12798.94 3399.83 1799.76 10599.01 1699.94 5399.15 4399.87 4099.80 49
APD-MVScopyleft99.27 6099.08 7299.84 3299.75 6299.79 3099.50 12499.50 11997.16 20999.77 3399.82 4998.78 4899.94 5397.56 21799.86 5199.80 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC99.34 5199.19 6099.79 4399.61 12999.65 5799.30 20699.48 13998.86 3899.21 16999.63 17098.72 6099.90 10598.25 15599.63 12299.80 49
test117299.43 3399.29 4499.85 2599.75 6299.82 2099.60 7199.56 5598.28 8699.74 4199.79 8898.53 7299.95 4298.55 13099.78 8999.79 53
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 7199.48 13999.08 1199.91 199.81 6299.20 599.96 1898.91 6799.85 5899.79 53
OPU-MVS99.64 7799.56 14299.72 4299.60 7199.70 13299.27 499.42 24398.24 15699.80 8499.79 53
SR-MVS99.43 3399.29 4499.86 1899.75 6299.83 1499.59 7799.62 3398.21 9699.73 4399.79 8898.68 6399.96 1898.44 14199.77 9299.79 53
HPM-MVS++copyleft99.39 4699.23 5799.87 1199.75 6299.84 1399.43 15999.51 10198.68 5599.27 15399.53 20898.64 6899.96 1898.44 14199.80 8499.79 53
abl_699.44 3099.31 3799.83 3399.85 2599.75 3899.66 4699.59 4398.13 10399.82 2099.81 6298.60 6999.96 1898.46 13999.88 3699.79 53
PVSNet_Blended_VisFu99.36 4999.28 4899.61 8299.86 2199.07 13499.47 14599.93 297.66 16099.71 4699.86 2397.73 11199.96 1899.47 1399.82 7899.79 53
3Dnovator97.25 999.24 6599.05 7499.81 3899.12 24899.66 5499.84 699.74 1099.09 1098.92 22399.90 795.94 16699.98 598.95 6199.92 1199.79 53
APD-MVS_3200maxsize99.48 1999.35 2499.85 2599.76 5299.83 1499.63 5899.54 7098.36 7899.79 2699.82 4998.86 4099.95 4298.62 11399.81 8099.78 61
CDPH-MVS99.13 7998.91 9999.80 4099.75 6299.71 4499.15 24599.41 19996.60 25499.60 8099.55 19998.83 4399.90 10597.48 22499.83 7299.78 61
SR-MVS-dyc-post99.45 2699.31 3799.85 2599.76 5299.82 2099.63 5899.52 8898.38 7599.76 3799.82 4998.53 7299.95 4298.61 11699.81 8099.77 63
RE-MVS-def99.34 2699.76 5299.82 2099.63 5899.52 8898.38 7599.76 3799.82 4998.75 5698.61 11699.81 8099.77 63
SD-MVS99.41 4299.52 699.05 16499.74 7099.68 4999.46 14899.52 8899.11 799.88 599.91 599.43 197.70 34298.72 9999.93 1099.77 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS99.42 3899.30 4099.78 4599.62 12599.71 4499.26 22599.52 8898.82 4299.39 12799.71 12898.96 2599.85 13198.59 12199.80 8499.77 63
MVS_111021_HR99.41 4299.32 3099.66 6899.72 8099.47 8998.95 29299.85 698.82 4299.54 9399.73 12398.51 7599.74 17698.91 6799.88 3699.77 63
QAPM98.67 14398.30 16099.80 4099.20 23099.67 5299.77 2199.72 1194.74 31698.73 24899.90 795.78 17399.98 596.96 25899.88 3699.76 68
test9_res97.49 22399.72 10399.75 69
train_agg99.02 10498.77 11899.77 4799.67 10099.65 5799.05 26499.41 19996.28 27598.95 21899.49 22198.76 5399.91 9097.63 20899.72 10399.75 69
agg_prior199.01 10798.76 12099.76 5099.67 10099.62 6198.99 28099.40 20596.26 27898.87 23199.49 22198.77 5199.91 9097.69 20599.72 10399.75 69
agg_prior297.21 24099.73 10299.75 69
xxxxxxxxxxxxxcwj99.43 3399.32 3099.75 5199.76 5299.59 6899.14 24799.53 8299.00 2299.71 4699.80 7698.95 2899.93 6898.19 15899.84 6599.74 73
SF-MVS99.38 4799.24 5599.79 4399.79 4299.68 4999.57 8999.54 7097.82 14399.71 4699.80 7698.95 2899.93 6898.19 15899.84 6599.74 73
test_prior399.21 6699.05 7499.68 6599.67 10099.48 8798.96 28899.56 5598.34 8099.01 20699.52 21198.68 6399.83 14597.96 17899.74 9999.74 73
test_prior99.68 6599.67 10099.48 8799.56 5599.83 14599.74 73
test1299.75 5199.64 11699.61 6399.29 26199.21 16998.38 8699.89 11399.74 9999.74 73
114514_t98.93 11398.67 12899.72 6199.85 2599.53 8099.62 6499.59 4392.65 33499.71 4699.78 9598.06 10399.90 10598.84 8199.91 1699.74 73
Vis-MVSNetpermissive99.12 8598.97 9199.56 9099.78 4499.10 13199.68 4099.66 2798.49 6599.86 1199.87 2094.77 20899.84 13699.19 3799.41 13599.74 73
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
旧先验199.74 7099.59 6899.54 7099.69 13998.47 7899.68 11499.73 80
112199.09 9498.87 10499.75 5199.74 7099.60 6599.27 21699.48 13996.82 23999.25 16099.65 15898.38 8699.93 6897.53 22099.67 11699.73 80
EPNet98.86 11998.71 12499.30 13797.20 34298.18 21499.62 6498.91 30499.28 298.63 26799.81 6295.96 16399.99 199.24 3399.72 10399.73 80
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS-MVSNet99.05 10098.87 10499.57 8899.73 7599.32 10299.75 2599.20 27198.02 12499.56 8899.86 2396.54 14799.67 20498.09 16799.13 15499.73 80
F-COLMAP99.19 6999.04 7799.64 7799.78 4499.27 11099.42 16699.54 7097.29 19799.41 12099.59 18698.42 8499.93 6898.19 15899.69 10999.73 80
DeepC-MVS98.35 299.30 5599.19 6099.64 7799.82 3799.23 11499.62 6499.55 6398.94 3399.63 7099.95 295.82 17299.94 5399.37 1899.97 399.73 80
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
新几何199.75 5199.75 6299.59 6899.54 7096.76 24099.29 14899.64 16598.43 8199.94 5396.92 26399.66 11799.72 86
无先验98.99 28099.51 10196.89 23399.93 6897.53 22099.72 86
test22299.75 6299.49 8698.91 29799.49 12796.42 26999.34 14199.65 15898.28 9399.69 10999.72 86
testdata99.54 9299.75 6298.95 15199.51 10197.07 21899.43 11399.70 13298.87 3999.94 5397.76 19599.64 12099.72 86
VNet99.11 9098.90 10099.73 5899.52 14899.56 7399.41 16899.39 20999.01 1899.74 4199.78 9595.56 18099.92 7999.52 698.18 20799.72 86
WTY-MVS99.06 9898.88 10399.61 8299.62 12599.16 12199.37 18899.56 5598.04 12199.53 9599.62 17696.84 13699.94 5398.85 7998.49 19499.72 86
CSCG99.32 5399.32 3099.32 13299.85 2598.29 20999.71 3199.66 2798.11 10799.41 12099.80 7698.37 8899.96 1898.99 5699.96 599.72 86
ETH3D-3000-0.199.21 6699.02 8299.77 4799.73 7599.69 4799.38 18599.51 10197.45 18199.61 7699.75 11098.51 7599.91 9097.45 22999.83 7299.71 93
原ACMM199.65 7299.73 7599.33 10199.47 15797.46 17899.12 18599.66 15798.67 6699.91 9097.70 20499.69 10999.71 93
ETH3 D test640098.70 13998.35 15599.73 5899.69 9599.60 6599.16 24199.45 17995.42 30499.27 15399.60 18397.39 11799.91 9095.36 30299.83 7299.70 95
Anonymous20240521198.30 16697.98 18499.26 14599.57 13898.16 21599.41 16898.55 33096.03 29899.19 17599.74 11691.87 28599.92 7999.16 4298.29 20299.70 95
casdiffmvs99.13 7998.98 9099.56 9099.65 11499.16 12199.56 9699.50 11998.33 8399.41 12099.86 2395.92 16799.83 14599.45 1599.16 15099.70 95
LFMVS97.90 21497.35 25999.54 9299.52 14899.01 14099.39 18098.24 33497.10 21799.65 6799.79 8884.79 34599.91 9099.28 2998.38 19699.69 98
EPNet_dtu98.03 19597.96 18798.23 26698.27 32795.54 31099.23 23098.75 31599.02 1597.82 30999.71 12896.11 15999.48 22993.04 32899.65 11999.69 98
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PAPM_NR99.04 10198.84 11099.66 6899.74 7099.44 9299.39 18099.38 21597.70 15499.28 15099.28 27898.34 8999.85 13196.96 25899.45 13299.69 98
EPP-MVSNet99.13 7998.99 8799.53 9899.65 11499.06 13599.81 1299.33 24197.43 18599.60 8099.88 1597.14 12699.84 13699.13 4498.94 16999.69 98
sss99.17 7399.05 7499.53 9899.62 12598.97 14599.36 19299.62 3397.83 13899.67 5999.65 15897.37 12199.95 4299.19 3799.19 14999.68 102
PHI-MVS99.30 5599.17 6299.70 6499.56 14299.52 8399.58 8499.80 897.12 21399.62 7499.73 12398.58 7099.90 10598.61 11699.91 1699.68 102
PVSNet_094.43 1996.09 29795.47 30097.94 28399.31 20494.34 33197.81 34899.70 1597.12 21397.46 31598.75 32289.71 31699.79 16497.69 20581.69 34799.68 102
diffmvs99.14 7799.02 8299.51 10599.61 12998.96 14999.28 21299.49 12798.46 6899.72 4599.71 12896.50 14899.88 11899.31 2699.11 15599.67 105
baseline99.15 7699.02 8299.53 9899.66 10999.14 12699.72 2999.48 13998.35 7999.42 11699.84 3896.07 16099.79 16499.51 799.14 15399.67 105
TAMVS99.12 8599.08 7299.24 14899.46 16798.55 18999.51 11899.46 16798.09 11099.45 10899.82 4998.34 8999.51 22898.70 10198.93 17099.67 105
Anonymous2024052998.09 18697.68 21899.34 12799.66 10998.44 20399.40 17699.43 19593.67 32699.22 16699.89 1090.23 31199.93 6899.26 3298.33 19799.66 108
CHOSEN 280x42099.12 8599.13 6599.08 16099.66 10997.89 23098.43 33399.71 1398.88 3799.62 7499.76 10596.63 14499.70 19999.46 1499.99 199.66 108
CDS-MVSNet99.09 9499.03 7999.25 14699.42 17498.73 17599.45 14999.46 16798.11 10799.46 10799.77 10198.01 10499.37 25098.70 10198.92 17299.66 108
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPR98.63 14798.34 15699.51 10599.40 18299.03 13798.80 30799.36 22596.33 27299.00 21199.12 30098.46 7999.84 13695.23 30499.37 14099.66 108
CANet99.25 6499.14 6499.59 8499.41 17799.16 12199.35 19799.57 5098.82 4299.51 9999.61 18096.46 14999.95 4299.59 199.98 299.65 112
TSAR-MVS + GP.99.36 4999.36 2199.36 12699.67 10098.61 18699.07 25999.33 24199.00 2299.82 2099.81 6299.06 1399.84 13699.09 4899.42 13499.65 112
MVSFormer99.17 7399.12 6799.29 14099.51 15098.94 15499.88 199.46 16797.55 16999.80 2499.65 15897.39 11799.28 26899.03 5299.85 5899.65 112
jason99.13 7999.03 7999.45 11599.46 16798.87 16199.12 24999.26 26398.03 12399.79 2699.65 15897.02 13199.85 13199.02 5499.90 2399.65 112
jason: jason.
PLCcopyleft97.94 499.02 10498.85 10999.53 9899.66 10999.01 14099.24 22999.52 8896.85 23599.27 15399.48 22798.25 9499.91 9097.76 19599.62 12499.65 112
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAPA-MVS97.07 1597.74 24297.34 26298.94 17899.70 9397.53 24399.25 22799.51 10191.90 33699.30 14599.63 17098.78 4899.64 21388.09 34699.87 4099.65 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETH3D cwj APD-0.1699.06 9898.84 11099.72 6199.51 15099.60 6599.23 23099.44 18797.04 22199.39 12799.67 15198.30 9199.92 7997.27 23699.69 10999.64 118
LCM-MVSNet-Re97.83 22598.15 16696.87 31799.30 20592.25 34599.59 7798.26 33397.43 18596.20 33299.13 29796.27 15698.73 32798.17 16298.99 16799.64 118
BH-RMVSNet98.41 15798.08 17499.40 12299.41 17798.83 16899.30 20698.77 31497.70 15498.94 22099.65 15892.91 25899.74 17696.52 27799.55 12999.64 118
MVS_111021_LR99.41 4299.33 2899.65 7299.77 4999.51 8598.94 29499.85 698.82 4299.65 6799.74 11698.51 7599.80 16198.83 8499.89 3399.64 118
MVS97.28 27596.55 28399.48 10998.78 29798.95 15199.27 21699.39 20983.53 34998.08 29999.54 20496.97 13399.87 12294.23 31699.16 15099.63 122
MSLP-MVS++99.46 2499.47 999.44 12099.60 13299.16 12199.41 16899.71 1398.98 2799.45 10899.78 9599.19 799.54 22799.28 2999.84 6599.63 122
GA-MVS97.85 22097.47 23999.00 17199.38 18697.99 22398.57 32699.15 27797.04 22198.90 22699.30 27489.83 31499.38 24796.70 27298.33 19799.62 124
Vis-MVSNet (Re-imp)98.87 11698.72 12299.31 13399.71 8698.88 16099.80 1699.44 18797.91 13199.36 13599.78 9595.49 18399.43 24297.91 18299.11 15599.62 124
DPM-MVS98.95 11298.71 12499.66 6899.63 11999.55 7598.64 32299.10 28297.93 12999.42 11699.55 19998.67 6699.80 16195.80 29199.68 11499.61 126
baseline198.31 16497.95 18999.38 12599.50 15798.74 17499.59 7798.93 29998.41 7399.14 18299.60 18394.59 21799.79 16498.48 13593.29 32299.61 126
VDD-MVS97.73 24397.35 25998.88 19499.47 16697.12 25599.34 20098.85 31098.19 9799.67 5999.85 2982.98 34799.92 7999.49 1298.32 20199.60 128
DELS-MVS99.48 1999.42 1399.65 7299.72 8099.40 9799.05 26499.66 2799.14 699.57 8799.80 7698.46 7999.94 5399.57 399.84 6599.60 128
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet_Blended99.08 9698.97 9199.42 12199.76 5298.79 17298.78 30999.91 396.74 24199.67 5999.49 22197.53 11499.88 11898.98 5799.85 5899.60 128
OMC-MVS99.08 9699.04 7799.20 15199.67 10098.22 21399.28 21299.52 8898.07 11599.66 6499.81 6297.79 10999.78 16897.79 19299.81 8099.60 128
test_yl98.86 11998.63 13399.54 9299.49 15999.18 11899.50 12499.07 28798.22 9499.61 7699.51 21595.37 18699.84 13698.60 11998.33 19799.59 132
DCV-MVSNet98.86 11998.63 13399.54 9299.49 15999.18 11899.50 12499.07 28798.22 9499.61 7699.51 21595.37 18699.84 13698.60 11998.33 19799.59 132
AllTest98.87 11698.72 12299.31 13399.86 2198.48 20199.56 9699.61 3597.85 13599.36 13599.85 2995.95 16499.85 13196.66 27599.83 7299.59 132
TestCases99.31 13399.86 2198.48 20199.61 3597.85 13599.36 13599.85 2995.95 16499.85 13196.66 27599.83 7299.59 132
lupinMVS99.13 7999.01 8699.46 11499.51 15098.94 15499.05 26499.16 27697.86 13399.80 2499.56 19697.39 11799.86 12598.94 6299.85 5899.58 136
tttt051798.42 15598.14 16799.28 14399.66 10998.38 20799.74 2896.85 34997.68 15699.79 2699.74 11691.39 29899.89 11398.83 8499.56 12799.57 137
RPSCF98.22 17098.62 13896.99 31299.82 3791.58 34799.72 2999.44 18796.61 25299.66 6499.89 1095.92 16799.82 15297.46 22799.10 15899.57 137
DSMNet-mixed97.25 27697.35 25996.95 31597.84 33393.61 33999.57 8996.63 35296.13 29298.87 23198.61 32794.59 21797.70 34295.08 30698.86 17699.55 139
AdaColmapbinary99.01 10798.80 11599.66 6899.56 14299.54 7799.18 23999.70 1598.18 10099.35 13899.63 17096.32 15499.90 10597.48 22499.77 9299.55 139
alignmvs98.81 13098.56 14599.58 8799.43 17399.42 9499.51 11898.96 29798.61 5899.35 13898.92 31594.78 20599.77 17099.35 1998.11 21399.54 141
PatchmatchNetpermissive98.31 16498.36 15398.19 26899.16 24395.32 31699.27 21698.92 30197.37 19199.37 13299.58 18994.90 19999.70 19997.43 23199.21 14799.54 141
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PVSNet96.02 1798.85 12798.84 11098.89 19199.73 7597.28 24998.32 33999.60 4097.86 13399.50 10099.57 19396.75 14199.86 12598.56 12799.70 10899.54 141
MSDG98.98 10998.80 11599.53 9899.76 5299.19 11698.75 31299.55 6397.25 20199.47 10599.77 10197.82 10899.87 12296.93 26199.90 2399.54 141
UGNet98.87 11698.69 12699.40 12299.22 22698.72 17699.44 15399.68 1999.24 399.18 17899.42 24192.74 26299.96 1899.34 2399.94 999.53 145
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
GSMVS99.52 146
sam_mvs194.86 20199.52 146
SCA98.19 17498.16 16598.27 26599.30 20595.55 30899.07 25998.97 29597.57 16799.43 11399.57 19392.72 26399.74 17697.58 21299.20 14899.52 146
Patchmatch-test97.93 20997.65 22198.77 21499.18 23597.07 26099.03 27099.14 27996.16 28898.74 24799.57 19394.56 21999.72 18793.36 32499.11 15599.52 146
PMMVS98.80 13398.62 13899.34 12799.27 21498.70 17798.76 31199.31 25297.34 19299.21 16999.07 30297.20 12599.82 15298.56 12798.87 17599.52 146
LS3D99.27 6099.12 6799.74 5699.18 23599.75 3899.56 9699.57 5098.45 6999.49 10399.85 2997.77 11099.94 5398.33 15199.84 6599.52 146
Effi-MVS+98.81 13098.59 14399.48 10999.46 16799.12 13098.08 34599.50 11997.50 17799.38 13099.41 24496.37 15399.81 15699.11 4698.54 19199.51 152
Patchmatch-RL test95.84 29995.81 29795.95 32595.61 34790.57 34898.24 34198.39 33295.10 31095.20 33798.67 32494.78 20597.77 34096.28 28390.02 33799.51 152
mvs_anonymous99.03 10398.99 8799.16 15599.38 18698.52 19599.51 11899.38 21597.79 14499.38 13099.81 6297.30 12299.45 23399.35 1998.99 16799.51 152
UniMVSNet_ETH3D97.32 27496.81 28098.87 19899.40 18297.46 24599.51 11899.53 8295.86 30098.54 27599.77 10182.44 35099.66 20798.68 10697.52 23299.50 155
ab-mvs98.86 11998.63 13399.54 9299.64 11699.19 11699.44 15399.54 7097.77 14699.30 14599.81 6294.20 23099.93 6899.17 4098.82 17899.49 156
thisisatest053098.35 16298.03 17999.31 13399.63 11998.56 18899.54 10896.75 35197.53 17499.73 4399.65 15891.25 30199.89 11398.62 11399.56 12799.48 157
ADS-MVSNet298.02 19798.07 17797.87 28899.33 19695.19 31999.23 23099.08 28596.24 28099.10 19099.67 15194.11 23498.93 32196.81 26699.05 16299.48 157
ADS-MVSNet98.20 17398.08 17498.56 23099.33 19696.48 28899.23 23099.15 27796.24 28099.10 19099.67 15194.11 23499.71 19396.81 26699.05 16299.48 157
tpm97.67 25597.55 22998.03 27699.02 26795.01 32299.43 15998.54 33196.44 26799.12 18599.34 26491.83 28799.60 22197.75 19796.46 26599.48 157
CNLPA99.14 7798.99 8799.59 8499.58 13699.41 9599.16 24199.44 18798.45 6999.19 17599.49 22198.08 10299.89 11397.73 19999.75 9699.48 157
canonicalmvs99.02 10498.86 10899.51 10599.42 17499.32 10299.80 1699.48 13998.63 5699.31 14498.81 31897.09 12899.75 17599.27 3197.90 21799.47 162
MIMVSNet97.73 24397.45 24298.57 22899.45 17297.50 24499.02 27398.98 29496.11 29399.41 12099.14 29690.28 30798.74 32695.74 29298.93 17099.47 162
MVS_Test99.10 9398.97 9199.48 10999.49 15999.14 12699.67 4299.34 23497.31 19599.58 8599.76 10597.65 11399.82 15298.87 7499.07 16199.46 164
MDTV_nov1_ep13_2view95.18 32099.35 19796.84 23699.58 8595.19 19497.82 19099.46 164
MVS-HIRNet95.75 30095.16 30497.51 30399.30 20593.69 33798.88 29995.78 35485.09 34898.78 24492.65 35191.29 30099.37 25094.85 30999.85 5899.46 164
DP-MVS Recon99.12 8598.95 9599.65 7299.74 7099.70 4699.27 21699.57 5096.40 27199.42 11699.68 14598.75 5699.80 16197.98 17799.72 10399.44 167
PatchMatch-RL98.84 12998.62 13899.52 10399.71 8699.28 10899.06 26299.77 997.74 15199.50 10099.53 20895.41 18499.84 13697.17 24799.64 12099.44 167
VDDNet97.55 26197.02 27799.16 15599.49 15998.12 21999.38 18599.30 25695.35 30599.68 5399.90 782.62 34999.93 6899.31 2698.13 21299.42 169
PCF-MVS97.08 1497.66 25697.06 27699.47 11299.61 12999.09 13298.04 34699.25 26591.24 33998.51 27699.70 13294.55 22099.91 9092.76 33299.85 5899.42 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ET-MVSNet_ETH3D96.49 28995.64 29999.05 16499.53 14698.82 16998.84 30397.51 34697.63 16284.77 34999.21 29092.09 28298.91 32298.98 5792.21 33299.41 171
HY-MVS97.30 798.85 12798.64 13299.47 11299.42 17499.08 13399.62 6499.36 22597.39 19099.28 15099.68 14596.44 15199.92 7998.37 14798.22 20399.40 172
Fast-Effi-MVS+98.70 13998.43 15099.51 10599.51 15099.28 10899.52 11499.47 15796.11 29399.01 20699.34 26496.20 15899.84 13697.88 18498.82 17899.39 173
CANet_DTU98.97 11198.87 10499.25 14699.33 19698.42 20699.08 25899.30 25699.16 599.43 11399.75 11095.27 19099.97 1098.56 12799.95 699.36 174
EIA-MVS99.18 7199.09 7199.45 11599.49 15999.18 11899.67 4299.53 8297.66 16099.40 12599.44 23698.10 10199.81 15698.94 6299.62 12499.35 175
EPMVS97.82 22897.65 22198.35 25598.88 28295.98 30099.49 13494.71 35797.57 16799.26 15899.48 22792.46 27799.71 19397.87 18599.08 16099.35 175
CostFormer97.72 24597.73 21497.71 29799.15 24694.02 33399.54 10899.02 29194.67 31799.04 20399.35 26192.35 28099.77 17098.50 13497.94 21699.34 177
BH-untuned98.42 15598.36 15398.59 22599.49 15996.70 28099.27 21699.13 28097.24 20398.80 24199.38 25295.75 17499.74 17697.07 25299.16 15099.33 178
PAPM97.59 26097.09 27599.07 16199.06 26098.26 21298.30 34099.10 28294.88 31398.08 29999.34 26496.27 15699.64 21389.87 34098.92 17299.31 179
tpm297.44 27197.34 26297.74 29699.15 24694.36 33099.45 14998.94 29893.45 33198.90 22699.44 23691.35 29999.59 22297.31 23498.07 21499.29 180
JIA-IIPM97.50 26797.02 27798.93 18098.73 30397.80 23599.30 20698.97 29591.73 33798.91 22494.86 34995.10 19599.71 19397.58 21297.98 21599.28 181
dp97.75 23997.80 20297.59 30099.10 25393.71 33699.32 20298.88 30896.48 26499.08 19699.55 19992.67 26899.82 15296.52 27798.58 18799.24 182
thisisatest051598.14 18197.79 20399.19 15299.50 15798.50 19898.61 32396.82 35096.95 22999.54 9399.43 23891.66 29499.86 12598.08 17199.51 13199.22 183
TESTMET0.1,197.55 26197.27 27098.40 25198.93 27896.53 28698.67 31897.61 34596.96 22798.64 26699.28 27888.63 32799.45 23397.30 23599.38 13699.21 184
DWT-MVSNet_test97.53 26397.40 25397.93 28499.03 26694.86 32599.57 8998.63 32796.59 25698.36 28798.79 31989.32 31999.74 17698.14 16598.16 21199.20 185
CR-MVSNet98.17 17797.93 19298.87 19899.18 23598.49 19999.22 23599.33 24196.96 22799.56 8899.38 25294.33 22699.00 31094.83 31098.58 18799.14 186
RPMNet96.72 28595.90 29599.19 15299.18 23598.49 19999.22 23599.52 8888.72 34599.56 8897.38 34194.08 23699.95 4286.87 35098.58 18799.14 186
testgi97.65 25797.50 23698.13 27299.36 19096.45 28999.42 16699.48 13997.76 14797.87 30799.45 23591.09 30298.81 32594.53 31298.52 19299.13 188
CS-MVS99.21 6699.13 6599.45 11599.54 14599.34 10099.71 3199.54 7098.26 8998.99 21399.24 28498.25 9499.88 11898.98 5799.63 12299.12 189
test-LLR98.06 18997.90 19498.55 23298.79 29497.10 25698.67 31897.75 34297.34 19298.61 27098.85 31694.45 22399.45 23397.25 23899.38 13699.10 190
test-mter97.49 26997.13 27498.55 23298.79 29497.10 25698.67 31897.75 34296.65 24898.61 27098.85 31688.23 33199.45 23397.25 23899.38 13699.10 190
IB-MVS95.67 1896.22 29395.44 30298.57 22899.21 22896.70 28098.65 32197.74 34496.71 24397.27 31998.54 32886.03 34199.92 7998.47 13886.30 34399.10 190
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MAR-MVS98.86 11998.63 13399.54 9299.37 18899.66 5499.45 14999.54 7096.61 25299.01 20699.40 24797.09 12899.86 12597.68 20799.53 13099.10 190
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
tpmrst98.33 16398.48 14897.90 28799.16 24394.78 32699.31 20499.11 28197.27 19999.45 10899.59 18695.33 18899.84 13698.48 13598.61 18499.09 194
xiu_mvs_v1_base_debu99.29 5799.27 5099.34 12799.63 11998.97 14599.12 24999.51 10198.86 3899.84 1399.47 23098.18 9799.99 199.50 899.31 14199.08 195
xiu_mvs_v1_base99.29 5799.27 5099.34 12799.63 11998.97 14599.12 24999.51 10198.86 3899.84 1399.47 23098.18 9799.99 199.50 899.31 14199.08 195
xiu_mvs_v1_base_debi99.29 5799.27 5099.34 12799.63 11998.97 14599.12 24999.51 10198.86 3899.84 1399.47 23098.18 9799.99 199.50 899.31 14199.08 195
COLMAP_ROBcopyleft97.56 698.86 11998.75 12199.17 15499.88 1198.53 19199.34 20099.59 4397.55 16998.70 25699.89 1095.83 17199.90 10598.10 16699.90 2399.08 195
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AUN-MVS96.88 28296.31 28798.59 22599.48 16597.04 26499.27 21699.22 26897.44 18498.51 27699.41 24491.97 28399.66 20797.71 20283.83 34599.07 199
OpenMVScopyleft96.50 1698.47 15198.12 16999.52 10399.04 26499.53 8099.82 1099.72 1194.56 31998.08 29999.88 1594.73 21199.98 597.47 22699.76 9599.06 200
ETV-MVS99.26 6299.21 5899.40 12299.46 16799.30 10699.56 9699.52 8898.52 6399.44 11299.27 28198.41 8599.86 12599.10 4799.59 12699.04 201
PatchT97.03 28196.44 28598.79 21298.99 27098.34 20899.16 24199.07 28792.13 33599.52 9797.31 34494.54 22198.98 31288.54 34498.73 18399.03 202
BH-w/o98.00 20297.89 19898.32 25899.35 19196.20 29799.01 27898.90 30696.42 26998.38 28599.00 30895.26 19299.72 18796.06 28598.61 18499.03 202
Fast-Effi-MVS+-dtu98.77 13698.83 11498.60 22499.41 17796.99 26899.52 11499.49 12798.11 10799.24 16199.34 26496.96 13499.79 16497.95 18099.45 13299.02 204
XVG-OURS-SEG-HR98.69 14198.62 13898.89 19199.71 8697.74 23799.12 24999.54 7098.44 7299.42 11699.71 12894.20 23099.92 7998.54 13298.90 17499.00 205
XVG-OURS98.73 13898.68 12798.88 19499.70 9397.73 23898.92 29599.55 6398.52 6399.45 10899.84 3895.27 19099.91 9098.08 17198.84 17799.00 205
tpm cat197.39 27297.36 25797.50 30499.17 24193.73 33599.43 15999.31 25291.27 33898.71 25099.08 30194.31 22899.77 17096.41 28198.50 19399.00 205
xiu_mvs_v2_base99.26 6299.25 5499.29 14099.53 14698.91 15899.02 27399.45 17998.80 4699.71 4699.26 28298.94 3199.98 599.34 2399.23 14698.98 208
PS-MVSNAJ99.32 5399.32 3099.30 13799.57 13898.94 15498.97 28799.46 16798.92 3599.71 4699.24 28499.01 1699.98 599.35 1999.66 11798.97 209
tpmvs97.98 20498.02 18197.84 29099.04 26494.73 32799.31 20499.20 27196.10 29798.76 24699.42 24194.94 19799.81 15696.97 25798.45 19598.97 209
mvs-test198.86 11998.84 11098.89 19199.33 19697.77 23699.44 15399.30 25698.47 6699.10 19099.43 23896.78 13899.95 4298.73 9799.02 16598.96 211
thres600view797.86 21997.51 23598.92 18299.72 8097.95 22899.59 7798.74 31897.94 12899.27 15398.62 32591.75 28899.86 12593.73 32198.19 20698.96 211
thres40097.77 23497.38 25598.92 18299.69 9597.96 22699.50 12498.73 32397.83 13899.17 17998.45 33091.67 29299.83 14593.22 32598.18 20798.96 211
TR-MVS97.76 23597.41 25298.82 20799.06 26097.87 23198.87 30198.56 32996.63 25198.68 25899.22 28792.49 27399.65 21195.40 30097.79 21998.95 214
test0.0.03 197.71 24997.42 25198.56 23098.41 32697.82 23498.78 30998.63 32797.34 19298.05 30398.98 31294.45 22398.98 31295.04 30797.15 25498.89 215
baseline297.87 21797.55 22998.82 20799.18 23598.02 22199.41 16896.58 35396.97 22696.51 32999.17 29293.43 24799.57 22397.71 20299.03 16498.86 216
cascas97.69 25097.43 25098.48 23898.60 31897.30 24898.18 34499.39 20992.96 33398.41 28398.78 32193.77 24499.27 27198.16 16398.61 18498.86 216
131498.68 14298.54 14699.11 15998.89 28198.65 18199.27 21699.49 12796.89 23397.99 30499.56 19697.72 11299.83 14597.74 19899.27 14498.84 218
PS-MVSNAJss98.92 11498.92 9798.90 18898.78 29798.53 19199.78 1999.54 7098.07 11599.00 21199.76 10599.01 1699.37 25099.13 4497.23 24998.81 219
RRT_test8_iter0597.72 24597.60 22698.08 27399.23 22296.08 29999.63 5899.49 12797.54 17298.94 22099.81 6287.99 33499.35 25899.21 3696.51 26498.81 219
FC-MVSNet-test98.75 13798.62 13899.15 15799.08 25799.45 9199.86 599.60 4098.23 9398.70 25699.82 4996.80 13799.22 27899.07 5096.38 26798.79 221
test_part197.75 23997.24 27199.29 14099.59 13499.63 6099.65 5399.49 12796.17 28698.44 28199.69 13989.80 31599.47 23098.68 10693.66 31898.78 222
nrg03098.64 14698.42 15199.28 14399.05 26399.69 4799.81 1299.46 16798.04 12199.01 20699.82 4996.69 14399.38 24799.34 2394.59 30598.78 222
FIs98.78 13498.63 13399.23 15099.18 23599.54 7799.83 999.59 4398.28 8698.79 24399.81 6296.75 14199.37 25099.08 4996.38 26798.78 222
EU-MVSNet97.98 20498.03 17997.81 29398.72 30596.65 28399.66 4699.66 2798.09 11098.35 28899.82 4995.25 19398.01 33597.41 23295.30 29398.78 222
jajsoiax98.43 15498.28 16198.88 19498.60 31898.43 20499.82 1099.53 8298.19 9798.63 26799.80 7693.22 25299.44 23899.22 3497.50 23598.77 226
mvs_tets98.40 15998.23 16398.91 18698.67 31198.51 19799.66 4699.53 8298.19 9798.65 26599.81 6292.75 26099.44 23899.31 2697.48 23998.77 226
Anonymous2023121197.88 21597.54 23298.90 18899.71 8698.53 19199.48 14099.57 5094.16 32298.81 23999.68 14593.23 25099.42 24398.84 8194.42 30898.76 228
XXY-MVS98.38 16098.09 17399.24 14899.26 21699.32 10299.56 9699.55 6397.45 18198.71 25099.83 4293.23 25099.63 21898.88 7096.32 26998.76 228
v7n97.87 21797.52 23398.92 18298.76 30198.58 18799.84 699.46 16796.20 28398.91 22499.70 13294.89 20099.44 23896.03 28693.89 31698.75 230
bset_n11_16_dypcd98.16 17897.97 18598.73 21698.26 32898.28 21197.99 34798.01 33997.68 15699.10 19099.63 17095.68 17799.15 28898.78 9396.55 26298.75 230
PS-CasMVS97.93 20997.59 22898.95 17798.99 27099.06 13599.68 4099.52 8897.13 21198.31 29099.68 14592.44 27899.05 30298.51 13394.08 31498.75 230
test_djsdf98.67 14398.57 14498.98 17398.70 30898.91 15899.88 199.46 16797.55 16999.22 16699.88 1595.73 17599.28 26899.03 5297.62 22498.75 230
Effi-MVS+-dtu98.78 13498.89 10298.47 24299.33 19696.91 27499.57 8999.30 25698.47 6699.41 12098.99 30996.78 13899.74 17698.73 9799.38 13698.74 234
CP-MVSNet98.09 18697.78 20699.01 16998.97 27599.24 11399.67 4299.46 16797.25 20198.48 27999.64 16593.79 24399.06 30198.63 11294.10 31398.74 234
VPA-MVSNet98.29 16797.95 18999.30 13799.16 24399.54 7799.50 12499.58 4998.27 8899.35 13899.37 25592.53 27299.65 21199.35 1994.46 30698.72 236
PEN-MVS97.76 23597.44 24798.72 21898.77 30098.54 19099.78 1999.51 10197.06 22098.29 29299.64 16592.63 26998.89 32498.09 16793.16 32498.72 236
VPNet97.84 22397.44 24799.01 16999.21 22898.94 15499.48 14099.57 5098.38 7599.28 15099.73 12388.89 32399.39 24599.19 3793.27 32398.71 238
EI-MVSNet98.67 14398.67 12898.68 22199.35 19197.97 22499.50 12499.38 21596.93 23299.20 17299.83 4297.87 10699.36 25498.38 14597.56 22998.71 238
WR-MVS98.06 18997.73 21499.06 16298.86 28999.25 11299.19 23899.35 23097.30 19698.66 25999.43 23893.94 23999.21 28398.58 12294.28 31098.71 238
IterMVS-LS98.46 15298.42 15198.58 22799.59 13498.00 22299.37 18899.43 19596.94 23199.07 19799.59 18697.87 10699.03 30598.32 15395.62 28698.71 238
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14419297.92 21297.60 22698.87 19898.83 29298.65 18199.55 10599.34 23496.20 28399.32 14399.40 24794.36 22599.26 27296.37 28295.03 29998.70 242
v124097.69 25097.32 26598.79 21298.85 29098.43 20499.48 14099.36 22596.11 29399.27 15399.36 25893.76 24599.24 27494.46 31395.23 29498.70 242
DTE-MVSNet97.51 26697.19 27398.46 24398.63 31498.13 21899.84 699.48 13996.68 24597.97 30599.67 15192.92 25698.56 32896.88 26592.60 33198.70 242
TranMVSNet+NR-MVSNet97.93 20997.66 22098.76 21598.78 29798.62 18499.65 5399.49 12797.76 14798.49 27899.60 18394.23 22998.97 31998.00 17692.90 32698.70 242
v192192097.80 23297.45 24298.84 20598.80 29398.53 19199.52 11499.34 23496.15 29099.24 16199.47 23093.98 23899.29 26795.40 30095.13 29798.69 246
v119297.81 23097.44 24798.91 18698.88 28298.68 17899.51 11899.34 23496.18 28599.20 17299.34 26494.03 23799.36 25495.32 30395.18 29598.69 246
v2v48298.06 18997.77 20898.92 18298.90 28098.82 16999.57 8999.36 22596.65 24899.19 17599.35 26194.20 23099.25 27397.72 20194.97 30098.69 246
UniMVSNet_NR-MVSNet98.22 17097.97 18598.96 17598.92 27998.98 14299.48 14099.53 8297.76 14798.71 25099.46 23496.43 15299.22 27898.57 12492.87 32898.69 246
OurMVSNet-221017-097.88 21597.77 20898.19 26898.71 30796.53 28699.88 199.00 29297.79 14498.78 24499.94 391.68 29199.35 25897.21 24096.99 25698.69 246
gg-mvs-nofinetune96.17 29595.32 30398.73 21698.79 29498.14 21799.38 18594.09 35891.07 34198.07 30291.04 35489.62 31899.35 25896.75 26899.09 15998.68 251
v114497.98 20497.69 21798.85 20498.87 28698.66 18099.54 10899.35 23096.27 27799.23 16599.35 26194.67 21499.23 27596.73 27095.16 29698.68 251
DU-MVS98.08 18897.79 20398.96 17598.87 28698.98 14299.41 16899.45 17997.87 13298.71 25099.50 21894.82 20299.22 27898.57 12492.87 32898.68 251
NR-MVSNet97.97 20797.61 22599.02 16898.87 28699.26 11199.47 14599.42 19797.63 16297.08 32499.50 21895.07 19699.13 29297.86 18693.59 31998.68 251
LPG-MVS_test98.22 17098.13 16898.49 23699.33 19697.05 26299.58 8499.55 6397.46 17899.24 16199.83 4292.58 27099.72 18798.09 16797.51 23398.68 251
LGP-MVS_train98.49 23699.33 19697.05 26299.55 6397.46 17899.24 16199.83 4292.58 27099.72 18798.09 16797.51 23398.68 251
LTVRE_ROB97.16 1298.02 19797.90 19498.40 25199.23 22296.80 27899.70 3399.60 4097.12 21398.18 29699.70 13291.73 29099.72 18798.39 14397.45 24098.68 251
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IterMVS-SCA-FT97.82 22897.75 21298.06 27599.57 13896.36 29299.02 27399.49 12797.18 20798.71 25099.72 12792.72 26399.14 28997.44 23095.86 28098.67 258
pm-mvs197.68 25297.28 26898.88 19499.06 26098.62 18499.50 12499.45 17996.32 27397.87 30799.79 8892.47 27499.35 25897.54 21993.54 32098.67 258
v1097.85 22097.52 23398.86 20198.99 27098.67 17999.75 2599.41 19995.70 30198.98 21499.41 24494.75 21099.23 27596.01 28794.63 30498.67 258
HQP_MVS98.27 16998.22 16498.44 24799.29 20996.97 27099.39 18099.47 15798.97 3099.11 18799.61 18092.71 26599.69 20297.78 19397.63 22298.67 258
plane_prior599.47 15799.69 20297.78 19397.63 22298.67 258
SixPastTwentyTwo97.50 26797.33 26498.03 27698.65 31296.23 29699.77 2198.68 32697.14 21097.90 30699.93 490.45 30699.18 28697.00 25496.43 26698.67 258
IterMVS97.83 22597.77 20898.02 27899.58 13696.27 29599.02 27399.48 13997.22 20598.71 25099.70 13292.75 26099.13 29297.46 22796.00 27498.67 258
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH97.28 898.10 18597.99 18398.44 24799.41 17796.96 27299.60 7199.56 5598.09 11098.15 29799.91 590.87 30599.70 19998.88 7097.45 24098.67 258
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v897.95 20897.63 22498.93 18098.95 27798.81 17199.80 1699.41 19996.03 29899.10 19099.42 24194.92 19899.30 26696.94 26094.08 31498.66 266
UniMVSNet (Re)98.29 16798.00 18299.13 15899.00 26999.36 9999.49 13499.51 10197.95 12798.97 21699.13 29796.30 15599.38 24798.36 14993.34 32198.66 266
pmmvs696.53 28896.09 29197.82 29298.69 30995.47 31299.37 18899.47 15793.46 33097.41 31699.78 9587.06 33999.33 26296.92 26392.70 33098.65 268
K. test v397.10 28096.79 28198.01 27998.72 30596.33 29399.87 497.05 34897.59 16496.16 33399.80 7688.71 32499.04 30396.69 27396.55 26298.65 268
our_test_397.65 25797.68 21897.55 30298.62 31594.97 32398.84 30399.30 25696.83 23898.19 29599.34 26497.01 13299.02 30795.00 30896.01 27398.64 270
RRT_MVS98.60 14898.44 14999.05 16498.88 28299.14 12699.49 13499.38 21597.76 14799.29 14899.86 2395.38 18599.36 25498.81 8997.16 25398.64 270
YYNet195.36 30494.51 31097.92 28597.89 33297.10 25699.10 25799.23 26793.26 33280.77 35399.04 30692.81 25998.02 33494.30 31494.18 31298.64 270
MDA-MVSNet_test_wron95.45 30294.60 30898.01 27998.16 33097.21 25499.11 25599.24 26693.49 32980.73 35498.98 31293.02 25398.18 33094.22 31794.45 30798.64 270
Baseline_NR-MVSNet97.76 23597.45 24298.68 22199.09 25598.29 20999.41 16898.85 31095.65 30298.63 26799.67 15194.82 20299.10 29998.07 17492.89 32798.64 270
HQP4-MVS98.66 25999.64 21398.64 270
HQP-MVS98.02 19797.90 19498.37 25499.19 23296.83 27598.98 28499.39 20998.24 9098.66 25999.40 24792.47 27499.64 21397.19 24497.58 22798.64 270
ACMM97.58 598.37 16198.34 15698.48 23899.41 17797.10 25699.56 9699.45 17998.53 6299.04 20399.85 2993.00 25499.71 19398.74 9597.45 24098.64 270
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs597.52 26497.30 26798.16 27098.57 32096.73 27999.27 21698.90 30696.14 29198.37 28699.53 20891.54 29799.14 28997.51 22295.87 27998.63 278
v14897.79 23397.55 22998.50 23598.74 30297.72 23999.54 10899.33 24196.26 27898.90 22699.51 21594.68 21399.14 28997.83 18993.15 32598.63 278
MDA-MVSNet-bldmvs94.96 30793.98 31397.92 28598.24 32997.27 25099.15 24599.33 24193.80 32580.09 35599.03 30788.31 33097.86 33993.49 32394.36 30998.62 280
TransMVSNet (Re)97.15 27896.58 28298.86 20199.12 24898.85 16499.49 13498.91 30495.48 30397.16 32299.80 7693.38 24899.11 29794.16 31891.73 33398.62 280
lessismore_v097.79 29498.69 30995.44 31494.75 35695.71 33699.87 2088.69 32599.32 26395.89 28894.93 30298.62 280
MVSTER98.49 15098.32 15899.00 17199.35 19199.02 13899.54 10899.38 21597.41 18899.20 17299.73 12393.86 24299.36 25498.87 7497.56 22998.62 280
GBi-Net97.68 25297.48 23798.29 26199.51 15097.26 25199.43 15999.48 13996.49 26099.07 19799.32 27190.26 30898.98 31297.10 24996.65 25898.62 280
test197.68 25297.48 23798.29 26199.51 15097.26 25199.43 15999.48 13996.49 26099.07 19799.32 27190.26 30898.98 31297.10 24996.65 25898.62 280
FMVSNet196.84 28396.36 28698.29 26199.32 20397.26 25199.43 15999.48 13995.11 30898.55 27499.32 27183.95 34698.98 31295.81 29096.26 27098.62 280
ACMP97.20 1198.06 18997.94 19198.45 24499.37 18897.01 26699.44 15399.49 12797.54 17298.45 28099.79 8891.95 28499.72 18797.91 18297.49 23898.62 280
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+97.24 1097.92 21297.78 20698.32 25899.46 16796.68 28299.56 9699.54 7098.41 7397.79 31199.87 2090.18 31299.66 20798.05 17597.18 25298.62 280
ppachtmachnet_test97.49 26997.45 24297.61 29998.62 31595.24 31798.80 30799.46 16796.11 29398.22 29499.62 17696.45 15098.97 31993.77 32095.97 27898.61 289
OPM-MVS98.19 17498.10 17098.45 24498.88 28297.07 26099.28 21299.38 21598.57 6099.22 16699.81 6292.12 28199.66 20798.08 17197.54 23198.61 289
WR-MVS_H98.13 18297.87 19998.90 18899.02 26798.84 16599.70 3399.59 4397.27 19998.40 28499.19 29195.53 18199.23 27598.34 15093.78 31798.61 289
MIMVSNet195.51 30195.04 30596.92 31697.38 33795.60 30699.52 11499.50 11993.65 32796.97 32799.17 29285.28 34496.56 35088.36 34595.55 28898.60 292
N_pmnet94.95 30895.83 29692.31 33198.47 32479.33 35699.12 24992.81 36293.87 32497.68 31299.13 29793.87 24199.01 30991.38 33696.19 27198.59 293
FMVSNet297.72 24597.36 25798.80 21199.51 15098.84 16599.45 14999.42 19796.49 26098.86 23699.29 27690.26 30898.98 31296.44 27996.56 26198.58 294
anonymousdsp98.44 15398.28 16198.94 17898.50 32398.96 14999.77 2199.50 11997.07 21898.87 23199.77 10194.76 20999.28 26898.66 10997.60 22598.57 295
FMVSNet398.03 19597.76 21198.84 20599.39 18598.98 14299.40 17699.38 21596.67 24699.07 19799.28 27892.93 25598.98 31297.10 24996.65 25898.56 296
XVG-ACMP-BASELINE97.83 22597.71 21698.20 26799.11 25096.33 29399.41 16899.52 8898.06 11999.05 20299.50 21889.64 31799.73 18397.73 19997.38 24698.53 297
Patchmtry97.75 23997.40 25398.81 20999.10 25398.87 16199.11 25599.33 24194.83 31498.81 23999.38 25294.33 22699.02 30796.10 28495.57 28798.53 297
miper_lstm_enhance98.00 20297.91 19398.28 26499.34 19597.43 24698.88 29999.36 22596.48 26498.80 24199.55 19995.98 16298.91 32297.27 23695.50 29098.51 299
USDC97.34 27397.20 27297.75 29599.07 25895.20 31898.51 33099.04 29097.99 12598.31 29099.86 2389.02 32199.55 22695.67 29597.36 24798.49 300
cl_fuxian98.12 18498.04 17898.38 25399.30 20597.69 24298.81 30699.33 24196.67 24698.83 23799.34 26497.11 12798.99 31197.58 21295.34 29298.48 301
CLD-MVS98.16 17898.10 17098.33 25699.29 20996.82 27798.75 31299.44 18797.83 13899.13 18399.55 19992.92 25699.67 20498.32 15397.69 22198.48 301
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
eth_miper_zixun_eth98.05 19497.96 18798.33 25699.26 21697.38 24798.56 32899.31 25296.65 24898.88 22999.52 21196.58 14599.12 29697.39 23395.53 28998.47 303
MVS_030496.79 28496.52 28497.59 30099.22 22694.92 32499.04 26999.59 4396.49 26098.43 28298.99 30980.48 35299.39 24597.15 24899.27 14498.47 303
Anonymous2023120696.22 29396.03 29296.79 31997.31 34094.14 33299.63 5899.08 28596.17 28697.04 32599.06 30493.94 23997.76 34186.96 34995.06 29898.47 303
FMVSNet596.43 29196.19 28997.15 30999.11 25095.89 30299.32 20299.52 8894.47 32198.34 28999.07 30287.54 33897.07 34692.61 33395.72 28498.47 303
cl-mvsnet_98.01 20097.84 20198.55 23299.25 22097.97 22498.71 31699.34 23496.47 26698.59 27399.54 20495.65 17999.21 28397.21 24095.77 28198.46 307
cl-mvsnet198.01 20097.85 20098.48 23899.24 22197.95 22898.71 31699.35 23096.50 25998.60 27299.54 20495.72 17699.03 30597.21 24095.77 28198.46 307
pmmvs498.13 18297.90 19498.81 20998.61 31798.87 16198.99 28099.21 27096.44 26799.06 20199.58 18995.90 16999.11 29797.18 24696.11 27298.46 307
cl-mvsnet297.85 22097.64 22398.48 23899.09 25597.87 23198.60 32599.33 24197.11 21698.87 23199.22 28792.38 27999.17 28798.21 15795.99 27598.42 310
V4298.06 18997.79 20398.86 20198.98 27398.84 16599.69 3599.34 23496.53 25899.30 14599.37 25594.67 21499.32 26397.57 21694.66 30398.42 310
PVSNet_BlendedMVS98.86 11998.80 11599.03 16799.76 5298.79 17299.28 21299.91 397.42 18799.67 5999.37 25597.53 11499.88 11898.98 5797.29 24898.42 310
UnsupCasMVSNet_eth96.44 29096.12 29097.40 30698.65 31295.65 30599.36 19299.51 10197.13 21196.04 33598.99 30988.40 32998.17 33196.71 27190.27 33698.40 313
TinyColmap97.12 27996.89 27997.83 29199.07 25895.52 31198.57 32698.74 31897.58 16697.81 31099.79 8888.16 33299.56 22495.10 30597.21 25098.39 314
miper_ehance_all_eth98.18 17698.10 17098.41 24999.23 22297.72 23998.72 31599.31 25296.60 25498.88 22999.29 27697.29 12399.13 29297.60 21095.99 27598.38 315
thres100view90097.76 23597.45 24298.69 22099.72 8097.86 23399.59 7798.74 31897.93 12999.26 15898.62 32591.75 28899.83 14593.22 32598.18 20798.37 316
tfpn200view997.72 24597.38 25598.72 21899.69 9597.96 22699.50 12498.73 32397.83 13899.17 17998.45 33091.67 29299.83 14593.22 32598.18 20798.37 316
miper_enhance_ethall98.16 17898.08 17498.41 24998.96 27697.72 23998.45 33299.32 24996.95 22998.97 21699.17 29297.06 13099.22 27897.86 18695.99 27598.29 318
tfpnnormal97.84 22397.47 23998.98 17399.20 23099.22 11599.64 5699.61 3596.32 27398.27 29399.70 13293.35 24999.44 23895.69 29395.40 29198.27 319
test20.0396.12 29695.96 29496.63 32097.44 33695.45 31399.51 11899.38 21596.55 25796.16 33399.25 28393.76 24596.17 35187.35 34894.22 31198.27 319
ITE_SJBPF98.08 27399.29 20996.37 29198.92 30198.34 8098.83 23799.75 11091.09 30299.62 21995.82 28997.40 24598.25 321
DIV-MVS_2432*160095.00 30694.34 31196.96 31497.07 34595.39 31599.56 9699.44 18795.11 30897.13 32397.32 34391.86 28697.27 34590.35 33981.23 34898.23 322
EG-PatchMatch MVS95.97 29895.69 29896.81 31897.78 33492.79 34399.16 24198.93 29996.16 28894.08 34199.22 28782.72 34899.47 23095.67 29597.50 23598.17 323
D2MVS98.41 15798.50 14798.15 27199.26 21696.62 28499.40 17699.61 3597.71 15398.98 21499.36 25896.04 16199.67 20498.70 10197.41 24498.15 324
TDRefinement95.42 30394.57 30997.97 28289.83 35696.11 29899.48 14098.75 31596.74 24196.68 32899.88 1588.65 32699.71 19398.37 14782.74 34698.09 325
API-MVS99.04 10199.03 7999.06 16299.40 18299.31 10599.55 10599.56 5598.54 6199.33 14299.39 25198.76 5399.78 16896.98 25699.78 8998.07 326
new_pmnet96.38 29296.03 29297.41 30598.13 33195.16 32199.05 26499.20 27193.94 32397.39 31798.79 31991.61 29699.04 30390.43 33895.77 28198.05 327
thres20097.61 25997.28 26898.62 22399.64 11698.03 22099.26 22598.74 31897.68 15699.09 19598.32 33491.66 29499.81 15692.88 32998.22 20398.03 328
KD-MVS_2432*160094.62 30993.72 31597.31 30797.19 34395.82 30398.34 33699.20 27195.00 31197.57 31398.35 33287.95 33598.10 33292.87 33077.00 35198.01 329
miper_refine_blended94.62 30993.72 31597.31 30797.19 34395.82 30398.34 33699.20 27195.00 31197.57 31398.35 33287.95 33598.10 33292.87 33077.00 35198.01 329
DeepMVS_CXcopyleft93.34 32999.29 20982.27 35399.22 26885.15 34796.33 33199.05 30590.97 30499.73 18393.57 32297.77 22098.01 329
CL-MVSNet_2432*160094.49 31193.97 31496.08 32496.16 34693.67 33898.33 33899.38 21595.13 30697.33 31898.15 33692.69 26796.57 34988.67 34379.87 34997.99 332
GG-mvs-BLEND98.45 24498.55 32198.16 21599.43 15993.68 35997.23 32098.46 32989.30 32099.22 27895.43 29998.22 20397.98 333
pmmvs394.09 31593.25 31896.60 32194.76 35194.49 32898.92 29598.18 33789.66 34296.48 33098.06 33786.28 34097.33 34489.68 34187.20 34297.97 334
LF4IMVS97.52 26497.46 24197.70 29898.98 27395.55 30899.29 21098.82 31398.07 11598.66 25999.64 16589.97 31399.61 22097.01 25396.68 25797.94 335
test_040296.64 28696.24 28897.85 28998.85 29096.43 29099.44 15399.26 26393.52 32896.98 32699.52 21188.52 32899.20 28592.58 33497.50 23597.93 336
MVP-Stereo97.81 23097.75 21297.99 28197.53 33596.60 28598.96 28898.85 31097.22 20597.23 32099.36 25895.28 18999.46 23295.51 29799.78 8997.92 337
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MS-PatchMatch97.24 27797.32 26596.99 31298.45 32593.51 34098.82 30599.32 24997.41 18898.13 29899.30 27488.99 32299.56 22495.68 29499.80 8497.90 338
ambc93.06 33092.68 35282.36 35298.47 33198.73 32395.09 33897.41 34055.55 35899.10 29996.42 28091.32 33497.71 339
new-patchmatchnet94.48 31294.08 31295.67 32695.08 35092.41 34499.18 23999.28 26294.55 32093.49 34397.37 34287.86 33797.01 34791.57 33588.36 34097.61 340
pmmvs-eth3d95.34 30594.73 30797.15 30995.53 34995.94 30199.35 19799.10 28295.13 30693.55 34297.54 33988.15 33397.91 33794.58 31189.69 33997.61 340
UnsupCasMVSNet_bld93.53 31692.51 31996.58 32297.38 33793.82 33498.24 34199.48 13991.10 34093.10 34496.66 34574.89 35398.37 32994.03 31987.71 34197.56 342
PM-MVS92.96 31792.23 32095.14 32795.61 34789.98 35099.37 18898.21 33594.80 31595.04 33997.69 33865.06 35597.90 33894.30 31489.98 33897.54 343
LCM-MVSNet86.80 32085.22 32491.53 33387.81 35780.96 35498.23 34398.99 29371.05 35390.13 34896.51 34648.45 36196.88 34890.51 33785.30 34496.76 344
OpenMVS_ROBcopyleft92.34 2094.38 31393.70 31796.41 32397.38 33793.17 34199.06 26298.75 31586.58 34694.84 34098.26 33581.53 35199.32 26389.01 34297.87 21896.76 344
CMPMVSbinary69.68 2394.13 31494.90 30691.84 33297.24 34180.01 35598.52 32999.48 13989.01 34391.99 34699.67 15185.67 34399.13 29295.44 29897.03 25596.39 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMMVS286.87 31985.37 32391.35 33490.21 35583.80 35198.89 29897.45 34783.13 35091.67 34795.03 34748.49 36094.70 35385.86 35177.62 35095.54 347
tmp_tt82.80 32281.52 32586.66 33566.61 36368.44 36192.79 35597.92 34068.96 35480.04 35699.85 2985.77 34296.15 35297.86 18643.89 35795.39 348
FPMVS84.93 32185.65 32282.75 33986.77 35863.39 36298.35 33598.92 30174.11 35283.39 35198.98 31250.85 35992.40 35584.54 35294.97 30092.46 349
Gipumacopyleft90.99 31890.15 32193.51 32898.73 30390.12 34993.98 35399.45 17979.32 35192.28 34594.91 34869.61 35497.98 33687.42 34795.67 28592.45 350
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high77.30 32574.86 32984.62 33775.88 36177.61 35797.63 35093.15 36188.81 34464.27 35889.29 35536.51 36283.93 35975.89 35452.31 35692.33 351
MVEpermissive76.82 2176.91 32674.31 33084.70 33685.38 36076.05 36096.88 35293.17 36067.39 35571.28 35789.01 35621.66 36787.69 35671.74 35572.29 35390.35 352
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft70.75 2275.98 32774.97 32879.01 34170.98 36255.18 36393.37 35498.21 33565.08 35861.78 35993.83 35021.74 36692.53 35478.59 35391.12 33589.34 353
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS80.02 32479.22 32782.43 34091.19 35376.40 35897.55 35192.49 36366.36 35783.01 35291.27 35364.63 35685.79 35865.82 35760.65 35585.08 354
E-PMN80.61 32379.88 32682.81 33890.75 35476.38 35997.69 34995.76 35566.44 35683.52 35092.25 35262.54 35787.16 35768.53 35661.40 35484.89 355
test12339.01 33042.50 33228.53 34339.17 36420.91 36598.75 31219.17 36619.83 36138.57 36066.67 35833.16 36315.42 36137.50 36029.66 35949.26 356
testmvs39.17 32943.78 33125.37 34436.04 36516.84 36698.36 33426.56 36420.06 36038.51 36167.32 35729.64 36415.30 36237.59 35939.90 35843.98 357
wuyk23d40.18 32841.29 33336.84 34286.18 35949.12 36479.73 35622.81 36527.64 35925.46 36228.45 36221.98 36548.89 36055.80 35823.56 36012.51 358
uanet_test0.02 3340.03 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.27 3630.00 3680.00 3630.00 3610.00 3610.00 359
cdsmvs_eth3d_5k24.64 33132.85 3340.00 3450.00 3660.00 3670.00 35799.51 1010.00 3620.00 36399.56 19696.58 1450.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas8.27 33311.03 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.27 36399.01 160.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.02 3340.03 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.27 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.02 3340.03 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.27 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.02 3340.03 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.27 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.02 3340.03 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.27 3630.00 3680.00 3630.00 3610.00 3610.00 359
ab-mvs-re8.30 33211.06 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36399.58 1890.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.02 3340.03 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.27 3630.00 3680.00 3630.00 3610.00 3610.00 359
ZD-MVS99.71 8699.79 3099.61 3596.84 23699.56 8899.54 20498.58 7099.96 1896.93 26199.75 96
test_241102_ONE99.84 3299.90 199.48 13999.07 1399.91 199.74 11699.20 599.76 173
9.1499.10 6999.72 8099.40 17699.51 10197.53 17499.64 6999.78 9598.84 4299.91 9097.63 20899.82 78
save fliter99.76 5299.59 6899.14 24799.40 20599.00 22
test072699.85 2599.89 399.62 6499.50 11999.10 899.86 1199.82 4998.94 31
test_part299.81 4099.83 1499.77 33
sam_mvs94.72 212
MTGPAbinary99.47 157
test_post199.23 23065.14 36094.18 23399.71 19397.58 212
test_post65.99 35994.65 21699.73 183
patchmatchnet-post98.70 32394.79 20499.74 176
MTMP99.54 10898.88 308
gm-plane-assit98.54 32292.96 34294.65 31899.15 29599.64 21397.56 217
TEST999.67 10099.65 5799.05 26499.41 19996.22 28298.95 21899.49 22198.77 5199.91 90
test_899.67 10099.61 6399.03 27099.41 19996.28 27598.93 22299.48 22798.76 5399.91 90
agg_prior99.67 10099.62 6199.40 20598.87 23199.91 90
test_prior499.56 7398.99 280
test_prior298.96 28898.34 8099.01 20699.52 21198.68 6397.96 17899.74 99
旧先验298.96 28896.70 24499.47 10599.94 5398.19 158
新几何299.01 278
原ACMM298.95 292
testdata299.95 4296.67 274
segment_acmp98.96 25
testdata198.85 30298.32 84
plane_prior799.29 20997.03 265
plane_prior699.27 21496.98 26992.71 265
plane_prior499.61 180
plane_prior397.00 26798.69 5499.11 187
plane_prior299.39 18098.97 30
plane_prior199.26 216
plane_prior96.97 27099.21 23798.45 6997.60 225
n20.00 367
nn0.00 367
door-mid98.05 338
test1199.35 230
door97.92 340
HQP5-MVS96.83 275
HQP-NCC99.19 23298.98 28498.24 9098.66 259
ACMP_Plane99.19 23298.98 28498.24 9098.66 259
BP-MVS97.19 244
HQP3-MVS99.39 20997.58 227
HQP2-MVS92.47 274
NP-MVS99.23 22296.92 27399.40 247
MDTV_nov1_ep1398.32 15899.11 25094.44 32999.27 21698.74 31897.51 17699.40 12599.62 17694.78 20599.76 17397.59 21198.81 180
ACMMP++_ref97.19 251
ACMMP++97.43 243
Test By Simon98.75 56