This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
APDe-MVS99.02 298.84 199.55 599.57 3298.96 1199.39 598.93 3797.38 2399.41 1099.54 196.66 1299.84 5198.86 199.85 399.87 1
test_0728_THIRD97.32 2699.45 899.46 897.88 199.94 398.47 1599.86 199.85 2
DVP-MVS98.74 798.55 999.29 3099.75 398.23 4799.26 1898.88 4997.52 1499.41 1098.78 10796.00 3399.79 8697.79 4699.59 6799.85 2
test_0728_SECOND99.71 199.72 1299.35 198.97 6398.88 4999.94 398.47 1599.81 1099.84 4
IU-MVS99.71 2099.23 598.64 13195.28 11399.63 398.35 2399.81 1099.83 5
test_241102_TWO98.87 5597.65 999.53 799.48 697.34 799.94 398.43 1899.80 1699.83 5
DPE-MVS98.92 398.67 599.65 299.58 3199.20 698.42 16498.91 4397.58 1399.54 699.46 897.10 899.94 397.64 5699.84 899.83 5
CHOSEN 1792x268897.12 10696.80 10098.08 12099.30 7094.56 20898.05 21299.71 193.57 19497.09 13098.91 9588.17 20199.89 3496.87 9799.56 7599.81 8
EI-MVSNet-Vis-set98.47 3598.39 1898.69 7599.46 4796.49 11998.30 18098.69 11297.21 3598.84 4299.36 2595.41 5299.78 9098.62 599.65 5799.80 9
ACMMP_NAP98.61 1698.30 3099.55 599.62 2998.95 1298.82 9298.81 7595.80 8699.16 2399.47 795.37 5599.92 2097.89 4099.75 3799.79 10
Regformer-498.64 1398.53 1098.99 6099.43 5297.37 8198.40 16698.79 8797.46 1899.09 2799.31 3195.86 4199.80 7498.64 399.76 3199.79 10
HPM-MVScopyleft98.36 4298.10 4499.13 5299.74 797.82 6799.53 198.80 8594.63 14698.61 5898.97 8395.13 6599.77 9597.65 5599.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
region2R98.61 1698.38 1999.29 3099.74 798.16 5399.23 2198.93 3796.15 7398.94 3599.17 5295.91 3899.94 397.55 6599.79 1899.78 13
Regformer-398.59 1998.50 1498.86 7099.43 5297.05 9598.40 16698.68 11597.43 1999.06 2899.31 3195.80 4299.77 9598.62 599.76 3199.78 13
XVS98.70 998.49 1599.34 2299.70 2298.35 4199.29 1498.88 4997.40 2098.46 6399.20 4895.90 3999.89 3497.85 4299.74 4099.78 13
X-MVStestdata94.06 25692.30 27599.34 2299.70 2298.35 4199.29 1498.88 4997.40 2098.46 6343.50 34695.90 3999.89 3497.85 4299.74 4099.78 13
ACMMPR98.59 1998.36 2199.29 3099.74 798.15 5499.23 2198.95 3496.10 7898.93 3999.19 5195.70 4399.94 397.62 5799.79 1899.78 13
PGM-MVS98.49 3398.23 3899.27 3799.72 1298.08 5798.99 5999.49 595.43 10399.03 2999.32 2995.56 4599.94 396.80 10199.77 2599.78 13
SteuartSystems-ACMMP98.90 498.75 399.36 2099.22 8998.43 3199.10 4398.87 5597.38 2399.35 1399.40 1297.78 399.87 4397.77 4799.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
zzz-MVS98.55 2898.25 3499.46 1199.76 198.64 2098.55 14698.74 9797.27 3298.02 8599.39 1394.81 7299.96 197.91 3799.79 1899.77 20
MTAPA98.58 2298.29 3199.46 1199.76 198.64 2098.90 7398.74 9797.27 3298.02 8599.39 1394.81 7299.96 197.91 3799.79 1899.77 20
mPP-MVS98.51 3298.26 3399.25 3899.75 398.04 5899.28 1698.81 7596.24 6998.35 7299.23 4195.46 4999.94 397.42 7099.81 1099.77 20
HPM-MVS_fast98.38 4098.13 4299.12 5499.75 397.86 6599.44 498.82 6994.46 15398.94 3599.20 4895.16 6499.74 10197.58 6199.85 399.77 20
CP-MVS98.57 2598.36 2199.19 4299.66 2697.86 6599.34 1198.87 5595.96 8198.60 5999.13 6096.05 3199.94 397.77 4799.86 199.77 20
HyFIR lowres test96.90 11496.49 11898.14 11599.33 6095.56 16197.38 26199.65 292.34 23897.61 11798.20 16789.29 17199.10 18096.97 8497.60 16599.77 20
testtj98.33 4797.95 5199.47 1099.49 4398.70 1898.83 8998.86 6095.48 10098.91 4199.17 5295.48 4899.93 1495.80 13499.53 8099.76 26
SMA-MVS98.58 2298.25 3499.56 499.51 3799.04 1098.95 6798.80 8593.67 19099.37 1299.52 396.52 1699.89 3498.06 3299.81 1099.76 26
HFP-MVS98.63 1598.40 1799.32 2799.72 1298.29 4499.23 2198.96 3296.10 7898.94 3599.17 5296.06 2999.92 2097.62 5799.78 2299.75 28
#test#98.54 3098.27 3299.32 2799.72 1298.29 4498.98 6298.96 3295.65 9498.94 3599.17 5296.06 2999.92 2097.21 7799.78 2299.75 28
Regformer-198.66 1198.51 1399.12 5499.35 5597.81 6898.37 16898.76 9397.49 1699.20 2199.21 4496.08 2899.79 8698.42 1999.73 4299.75 28
Regformer-298.69 1098.52 1199.19 4299.35 5598.01 6098.37 16898.81 7597.48 1799.21 2099.21 4496.13 2699.80 7498.40 2199.73 4299.75 28
CPTT-MVS97.72 6997.32 8098.92 6699.64 2797.10 9499.12 4198.81 7592.34 23898.09 7999.08 7293.01 10199.92 2096.06 12499.77 2599.75 28
ZNCC-MVS98.49 3398.20 4099.35 2199.73 1198.39 3299.19 3198.86 6095.77 8798.31 7599.10 6595.46 4999.93 1497.57 6499.81 1099.74 33
MCST-MVS98.65 1298.37 2099.48 999.60 3098.87 1498.41 16598.68 11597.04 4598.52 6298.80 10596.78 1199.83 5497.93 3699.61 6399.74 33
APD-MVScopyleft98.35 4398.00 4999.42 1499.51 3798.72 1698.80 9998.82 6994.52 15099.23 1999.25 3995.54 4799.80 7496.52 11099.77 2599.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + MP.98.78 598.62 699.24 3999.69 2498.28 4699.14 3698.66 12696.84 5099.56 499.31 3196.34 1899.70 10998.32 2499.73 4299.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EI-MVSNet-UG-set98.41 3898.34 2598.61 8099.45 5096.32 12798.28 18398.68 11597.17 3898.74 4999.37 2195.25 6199.79 8698.57 799.54 7999.73 36
MP-MVScopyleft98.33 4798.01 4899.28 3499.75 398.18 5199.22 2598.79 8796.13 7597.92 9899.23 4194.54 7999.94 396.74 10599.78 2299.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SR-MVS98.57 2598.35 2399.24 3999.53 3598.18 5199.09 4498.82 6996.58 6099.10 2699.32 2995.39 5399.82 6197.70 5399.63 6099.72 39
GST-MVS98.43 3798.12 4399.34 2299.72 1298.38 3399.09 4498.82 6995.71 9098.73 5199.06 7495.27 5999.93 1497.07 8199.63 6099.72 39
APD-MVS_3200maxsize98.53 3198.33 2899.15 5199.50 3997.92 6499.15 3598.81 7596.24 6999.20 2199.37 2195.30 5899.80 7497.73 4999.67 5399.72 39
DeepPCF-MVS96.37 297.93 6098.48 1696.30 23799.00 10489.54 30397.43 25898.87 5598.16 299.26 1799.38 2096.12 2799.64 12098.30 2599.77 2599.72 39
NCCC98.61 1698.35 2399.38 1699.28 7798.61 2298.45 15798.76 9397.82 598.45 6698.93 9296.65 1399.83 5497.38 7299.41 9299.71 43
3Dnovator+94.38 697.43 8996.78 10399.38 1697.83 19098.52 2599.37 798.71 10797.09 4492.99 26599.13 6089.36 16999.89 3496.97 8499.57 7099.71 43
OPU-MVS99.37 1999.24 8799.05 999.02 5499.16 5797.81 299.37 15297.24 7599.73 4299.70 45
ACMMPcopyleft98.23 5197.95 5199.09 5699.74 797.62 7399.03 5299.41 695.98 8097.60 11999.36 2594.45 8499.93 1497.14 7898.85 11799.70 45
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MSP-MVS99.03 198.83 299.63 399.72 1299.25 298.97 6398.58 14197.62 1099.45 899.46 897.42 599.94 398.47 1599.81 1099.69 47
test9_res96.39 11699.57 7099.69 47
abl_698.30 5098.03 4799.13 5299.56 3397.76 6999.13 3998.82 6996.14 7499.26 1799.37 2193.33 9799.93 1496.96 8699.67 5399.69 47
CNVR-MVS98.78 598.56 899.45 1399.32 6398.87 1498.47 15698.81 7597.72 698.76 4899.16 5797.05 999.78 9098.06 3299.66 5699.69 47
MVS_111021_HR98.47 3598.34 2598.88 6999.22 8997.32 8297.91 22499.58 397.20 3698.33 7399.00 8195.99 3499.64 12098.05 3499.76 3199.69 47
DeepC-MVS_fast96.70 198.55 2898.34 2599.18 4699.25 8198.04 5898.50 15398.78 8997.72 698.92 4099.28 3695.27 5999.82 6197.55 6599.77 2599.69 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
train_agg97.97 5497.52 6899.33 2699.31 6598.50 2797.92 22298.73 10192.98 21597.74 10698.68 11696.20 2299.80 7496.59 10799.57 7099.68 53
agg_prior295.87 13199.57 7099.68 53
CDPH-MVS97.94 5997.49 7199.28 3499.47 4498.44 2997.91 22498.67 12392.57 23098.77 4798.85 9995.93 3799.72 10395.56 14499.69 5199.68 53
DP-MVS96.59 12495.93 13498.57 8299.34 5796.19 13398.70 12198.39 17889.45 30394.52 19999.35 2791.85 12399.85 4892.89 22598.88 11499.68 53
xxxxxxxxxxxxxcwj98.72 898.52 1199.30 2999.46 4798.38 3398.21 18998.71 10797.95 399.32 1499.39 1396.22 1999.84 5197.72 5099.73 4299.67 57
SF-MVS98.59 1998.32 2999.41 1599.54 3498.71 1799.04 5098.81 7595.12 12299.32 1499.39 1396.22 1999.84 5197.72 5099.73 4299.67 57
MP-MVS-pluss98.31 4997.92 5399.49 899.72 1298.88 1398.43 16298.78 8994.10 16197.69 11099.42 1195.25 6199.92 2098.09 3199.80 1699.67 57
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MG-MVS97.81 6497.60 6298.44 9599.12 9895.97 14297.75 24098.78 8996.89 4998.46 6399.22 4393.90 9499.68 11594.81 16599.52 8299.67 57
agg_prior197.95 5897.51 7099.28 3499.30 7098.38 3397.81 23598.72 10393.16 20997.57 12098.66 11996.14 2599.81 6596.63 10699.56 7599.66 61
HPM-MVS++copyleft98.58 2298.25 3499.55 599.50 3999.08 898.72 11698.66 12697.51 1598.15 7698.83 10295.70 4399.92 2097.53 6799.67 5399.66 61
UA-Net97.96 5597.62 6098.98 6298.86 11597.47 7898.89 7799.08 2196.67 5798.72 5299.54 193.15 10099.81 6594.87 16198.83 11899.65 63
test_prior398.22 5297.90 5499.19 4299.31 6598.22 4897.80 23698.84 6496.12 7697.89 10098.69 11495.96 3599.70 10996.89 9199.60 6499.65 63
test_prior99.19 4299.31 6598.22 4898.84 6499.70 10999.65 63
ETH3 D test640097.59 7897.01 9299.34 2299.40 5498.56 2398.20 19298.81 7591.63 26098.44 6798.85 9993.98 9399.82 6194.11 18899.69 5199.64 66
SD-MVS98.64 1398.68 498.53 8899.33 6098.36 4098.90 7398.85 6397.28 2899.72 299.39 1396.63 1497.60 31298.17 2799.85 399.64 66
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
3Dnovator94.51 597.46 8496.93 9699.07 5797.78 19297.64 7199.35 1099.06 2297.02 4693.75 23999.16 5789.25 17299.92 2097.22 7699.75 3799.64 66
ETH3D-3000-0.198.35 4398.00 4999.38 1699.47 4498.68 1998.67 12798.84 6494.66 14599.11 2599.25 3995.46 4999.81 6596.80 10199.73 4299.63 69
test1299.18 4699.16 9498.19 5098.53 15198.07 8095.13 6599.72 10399.56 7599.63 69
旧先验199.29 7397.48 7798.70 11199.09 7095.56 4599.47 8599.61 71
test22299.23 8897.17 9297.40 25998.66 12688.68 30998.05 8198.96 8894.14 8999.53 8099.61 71
112197.37 9496.77 10799.16 4999.34 5797.99 6398.19 19698.68 11590.14 29498.01 8998.97 8394.80 7499.87 4393.36 20999.46 8899.61 71
无先验97.58 25298.72 10391.38 26699.87 4393.36 20999.60 74
CVMVSNet95.43 16996.04 13193.57 30697.93 18483.62 33398.12 20698.59 13695.68 9196.56 15699.02 7687.51 21797.51 31693.56 20597.44 16799.60 74
新几何199.16 4999.34 5798.01 6098.69 11290.06 29598.13 7798.95 9094.60 7799.89 3491.97 24999.47 8599.59 76
PHI-MVS98.34 4598.06 4599.18 4699.15 9698.12 5699.04 5099.09 2093.32 20398.83 4499.10 6596.54 1599.83 5497.70 5399.76 3199.59 76
testdata98.26 10899.20 9295.36 16998.68 11591.89 25298.60 5999.10 6594.44 8599.82 6194.27 18299.44 9099.58 78
Test_1112_low_res96.34 13395.66 14698.36 10298.56 13995.94 14597.71 24298.07 23592.10 24794.79 19497.29 23691.75 12599.56 13194.17 18596.50 18899.58 78
1112_ss96.63 12196.00 13398.50 9098.56 13996.37 12498.18 20098.10 22892.92 21894.84 19098.43 14092.14 11699.58 12894.35 17996.51 18799.56 80
ETH3D cwj APD-0.1697.96 5597.52 6899.29 3099.05 10098.52 2598.33 17298.68 11593.18 20798.68 5399.13 6094.62 7699.83 5496.45 11299.55 7899.52 81
PAPM_NR97.46 8497.11 8798.50 9099.50 3996.41 12398.63 13298.60 13495.18 11897.06 13498.06 17694.26 8899.57 12993.80 19798.87 11699.52 81
CSCG97.85 6397.74 5898.20 11299.67 2595.16 17699.22 2599.32 793.04 21297.02 13698.92 9495.36 5699.91 2997.43 6999.64 5999.52 81
DeepC-MVS95.98 397.88 6197.58 6398.77 7299.25 8196.93 9998.83 8998.75 9696.96 4896.89 14399.50 490.46 15499.87 4397.84 4499.76 3199.52 81
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet98.05 5397.76 5798.90 6898.73 12397.27 8598.35 17098.78 8997.37 2597.72 10898.96 8891.53 13399.92 2098.79 299.65 5799.51 85
TSAR-MVS + GP.98.38 4098.24 3798.81 7199.22 8997.25 8998.11 20898.29 19897.19 3798.99 3499.02 7696.22 1999.67 11698.52 1398.56 13099.51 85
原ACMM198.65 7899.32 6396.62 11098.67 12393.27 20697.81 10298.97 8395.18 6399.83 5493.84 19599.46 8899.50 87
VNet97.79 6697.40 7798.96 6498.88 11397.55 7598.63 13298.93 3796.74 5499.02 3098.84 10190.33 15799.83 5498.53 996.66 18199.50 87
EPNet97.28 9796.87 9998.51 8994.98 31996.14 13498.90 7397.02 29998.28 195.99 17699.11 6391.36 13599.89 3496.98 8399.19 10399.50 87
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended_VisFu97.70 7097.46 7398.44 9599.27 7895.91 15098.63 13299.16 1794.48 15297.67 11198.88 9792.80 10399.91 2997.11 7999.12 10599.50 87
MVS_111021_LR98.34 4598.23 3898.67 7799.27 7896.90 10197.95 22199.58 397.14 4098.44 6799.01 8095.03 6899.62 12597.91 3799.75 3799.50 87
casdiffmvs97.63 7497.41 7698.28 10598.33 15596.14 13498.82 9298.32 18896.38 6697.95 9399.21 4491.23 14099.23 16298.12 2998.37 13999.48 92
WTY-MVS97.37 9496.92 9798.72 7498.86 11596.89 10398.31 17898.71 10795.26 11497.67 11198.56 13092.21 11499.78 9095.89 12996.85 17699.48 92
MSLP-MVS++98.56 2798.57 798.55 8499.26 8096.80 10498.71 11799.05 2497.28 2898.84 4299.28 3696.47 1799.40 14998.52 1399.70 5099.47 94
114514_t96.93 11296.27 12498.92 6699.50 3997.63 7298.85 8598.90 4484.80 32797.77 10399.11 6392.84 10299.66 11794.85 16299.77 2599.47 94
IS-MVSNet97.22 9996.88 9898.25 10998.85 11796.36 12599.19 3197.97 24595.39 10597.23 12698.99 8291.11 14298.93 20094.60 17098.59 12899.47 94
PAPR96.84 11696.24 12698.65 7898.72 12796.92 10097.36 26598.57 14293.33 20296.67 15197.57 21994.30 8799.56 13191.05 26498.59 12899.47 94
LFMVS95.86 15094.98 17498.47 9398.87 11496.32 12798.84 8896.02 31893.40 20098.62 5799.20 4874.99 32699.63 12397.72 5097.20 17199.46 98
Vis-MVSNet (Re-imp)96.87 11596.55 11597.83 13398.73 12395.46 16699.20 2998.30 19694.96 13196.60 15598.87 9890.05 16098.59 23493.67 20198.60 12799.46 98
Vis-MVSNetpermissive97.42 9097.11 8798.34 10398.66 13296.23 13099.22 2599.00 2796.63 5998.04 8399.21 4488.05 20699.35 15396.01 12799.21 10199.45 100
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Anonymous20240521195.28 18194.49 19497.67 14799.00 10493.75 23298.70 12197.04 29690.66 28496.49 16398.80 10578.13 31199.83 5496.21 12095.36 21099.44 101
DPM-MVS97.55 8296.99 9499.23 4199.04 10298.55 2497.17 28098.35 18494.85 13697.93 9798.58 12795.07 6799.71 10892.60 22999.34 9799.43 102
DELS-MVS98.40 3998.20 4098.99 6099.00 10497.66 7097.75 24098.89 4697.71 898.33 7398.97 8394.97 6999.88 4298.42 1999.76 3199.42 103
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
baseline97.64 7397.44 7598.25 10998.35 15096.20 13199.00 5798.32 18896.33 6898.03 8499.17 5291.35 13699.16 16898.10 3098.29 14499.39 104
sss97.39 9296.98 9598.61 8098.60 13896.61 11298.22 18898.93 3793.97 16998.01 8998.48 13691.98 12199.85 4896.45 11298.15 14699.39 104
EPP-MVSNet97.46 8497.28 8197.99 12598.64 13495.38 16899.33 1398.31 19093.61 19397.19 12799.07 7394.05 9099.23 16296.89 9198.43 13899.37 106
test_yl97.22 9996.78 10398.54 8698.73 12396.60 11398.45 15798.31 19094.70 13998.02 8598.42 14290.80 14899.70 10996.81 9996.79 17899.34 107
DCV-MVSNet97.22 9996.78 10398.54 8698.73 12396.60 11398.45 15798.31 19094.70 13998.02 8598.42 14290.80 14899.70 10996.81 9996.79 17899.34 107
diffmvs97.58 7997.40 7798.13 11798.32 15795.81 15498.06 21198.37 18196.20 7198.74 4998.89 9691.31 13899.25 15998.16 2898.52 13199.34 107
MVSFormer97.57 8097.49 7197.84 13298.07 17595.76 15599.47 298.40 17694.98 12998.79 4598.83 10292.34 10898.41 25896.91 8899.59 6799.34 107
jason97.32 9697.08 8998.06 12297.45 22195.59 15897.87 23097.91 25094.79 13798.55 6198.83 10291.12 14199.23 16297.58 6199.60 6499.34 107
jason: jason.
QAPM96.29 13495.40 15098.96 6497.85 18997.60 7499.23 2198.93 3789.76 29893.11 26299.02 7689.11 17799.93 1491.99 24899.62 6299.34 107
mvs_anonymous96.70 12096.53 11797.18 17098.19 16693.78 22998.31 17898.19 20994.01 16694.47 20198.27 16292.08 11998.46 24597.39 7197.91 15299.31 113
lupinMVS97.44 8897.22 8498.12 11998.07 17595.76 15597.68 24597.76 25594.50 15198.79 4598.61 12292.34 10899.30 15697.58 6199.59 6799.31 113
CDS-MVSNet96.99 11096.69 10997.90 13098.05 17895.98 13798.20 19298.33 18793.67 19096.95 13798.49 13593.54 9598.42 25195.24 15697.74 16099.31 113
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Patchmatch-RL test91.49 28790.85 28793.41 30791.37 33584.40 33192.81 33795.93 32291.87 25387.25 31994.87 32188.99 18096.53 33092.54 23582.00 32999.30 116
BH-RMVSNet95.92 14895.32 15997.69 14598.32 15794.64 20098.19 19697.45 27794.56 14796.03 17498.61 12285.02 25799.12 17490.68 26999.06 10799.30 116
Patchmatch-test94.42 23293.68 24696.63 20597.60 20491.76 27194.83 33197.49 27489.45 30394.14 22197.10 24788.99 18098.83 21485.37 31998.13 14799.29 118
TAMVS97.02 10996.79 10297.70 14498.06 17795.31 17398.52 14898.31 19093.95 17097.05 13598.61 12293.49 9698.52 24095.33 15097.81 15699.29 118
PVSNet_Blended97.38 9397.12 8698.14 11599.25 8195.35 17197.28 27299.26 893.13 21097.94 9598.21 16692.74 10499.81 6596.88 9499.40 9499.27 120
PatchmatchNetpermissive95.71 15795.52 14896.29 23897.58 20690.72 29096.84 30397.52 27094.06 16297.08 13196.96 26989.24 17398.90 20592.03 24798.37 13999.26 121
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CHOSEN 280x42097.18 10397.18 8597.20 16898.81 11993.27 24995.78 32399.15 1895.25 11596.79 14998.11 17392.29 11099.07 18398.56 899.85 399.25 122
PLCcopyleft95.07 497.20 10296.78 10398.44 9599.29 7396.31 12998.14 20398.76 9392.41 23696.39 16798.31 15794.92 7199.78 9094.06 19098.77 12199.23 123
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LCM-MVSNet-Re95.22 18495.32 15994.91 28398.18 16887.85 32498.75 10595.66 32495.11 12388.96 31396.85 27890.26 15997.65 31095.65 14298.44 13699.22 124
GSMVS99.20 125
sam_mvs189.45 16799.20 125
SCA95.46 16695.13 16696.46 22797.67 19991.29 28197.33 26897.60 26294.68 14296.92 14197.10 24783.97 27798.89 20692.59 23198.32 14399.20 125
Effi-MVS+97.12 10696.69 10998.39 10198.19 16696.72 10897.37 26398.43 17293.71 18397.65 11498.02 17892.20 11599.25 15996.87 9797.79 15799.19 128
alignmvs97.56 8197.07 9099.01 5998.66 13298.37 3998.83 8998.06 23996.74 5498.00 9197.65 21190.80 14899.48 14498.37 2296.56 18599.19 128
DP-MVS Recon97.86 6297.46 7399.06 5899.53 3598.35 4198.33 17298.89 4692.62 22798.05 8198.94 9195.34 5799.65 11896.04 12599.42 9199.19 128
OMC-MVS97.55 8297.34 7998.20 11299.33 6095.92 14998.28 18398.59 13695.52 9997.97 9299.10 6593.28 9999.49 14095.09 15898.88 11499.19 128
MDTV_nov1_ep13_2view84.26 33296.89 29990.97 28297.90 9989.89 16393.91 19399.18 132
MVS_Test97.28 9797.00 9398.13 11798.33 15595.97 14298.74 10898.07 23594.27 15798.44 6798.07 17592.48 10699.26 15896.43 11498.19 14599.16 133
ab-mvs96.42 13095.71 14298.55 8498.63 13596.75 10797.88 22998.74 9793.84 17596.54 16098.18 16985.34 25499.75 9995.93 12896.35 19199.15 134
PVSNet91.96 1896.35 13296.15 12896.96 18499.17 9392.05 26696.08 31698.68 11593.69 18697.75 10597.80 20188.86 18699.69 11494.26 18399.01 10899.15 134
tpm94.13 24993.80 23695.12 27796.50 27787.91 32397.44 25695.89 32392.62 22796.37 16896.30 29884.13 27498.30 27193.24 21291.66 26099.14 136
F-COLMAP97.09 10896.80 10097.97 12699.45 5094.95 18998.55 14698.62 13393.02 21396.17 17298.58 12794.01 9199.81 6593.95 19298.90 11299.14 136
Anonymous2024052995.10 19194.22 20897.75 13999.01 10394.26 21898.87 8298.83 6885.79 32496.64 15298.97 8378.73 30899.85 4896.27 11794.89 21199.12 138
PMMVS96.60 12296.33 12297.41 16197.90 18693.93 22597.35 26698.41 17492.84 22297.76 10497.45 22791.10 14399.20 16596.26 11897.91 15299.11 139
GA-MVS94.81 20794.03 21997.14 17297.15 24293.86 22796.76 30697.58 26394.00 16794.76 19597.04 26080.91 29598.48 24291.79 25296.25 19999.09 140
EPNet_dtu95.21 18594.95 17695.99 24796.17 29090.45 29498.16 20297.27 28796.77 5293.14 26198.33 15590.34 15698.42 25185.57 31698.81 12099.09 140
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAPA-MVS93.98 795.35 17794.56 19197.74 14099.13 9794.83 19498.33 17298.64 13186.62 31696.29 16998.61 12294.00 9299.29 15780.00 33099.41 9299.09 140
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
canonicalmvs97.67 7197.23 8398.98 6298.70 12898.38 3399.34 1198.39 17896.76 5397.67 11197.40 23192.26 11199.49 14098.28 2696.28 19799.08 143
VDD-MVS95.82 15395.23 16297.61 15298.84 11893.98 22498.68 12497.40 28195.02 12897.95 9399.34 2874.37 33099.78 9098.64 396.80 17799.08 143
EIA-MVS97.75 6797.58 6398.27 10698.38 14896.44 12199.01 5598.60 13495.88 8397.26 12597.53 22294.97 6999.33 15597.38 7299.20 10299.05 145
tttt051796.07 14095.51 14997.78 13698.41 14794.84 19299.28 1694.33 33694.26 15897.64 11598.64 12184.05 27599.47 14595.34 14997.60 16599.03 146
ET-MVSNet_ETH3D94.13 24992.98 26397.58 15398.22 16296.20 13197.31 27095.37 32594.53 14879.56 33497.63 21586.51 23397.53 31596.91 8890.74 27199.02 147
ADS-MVSNet294.58 22294.40 20395.11 27898.00 17988.74 31496.04 31797.30 28490.15 29296.47 16496.64 28887.89 20997.56 31490.08 27697.06 17299.02 147
ADS-MVSNet95.00 19694.45 19996.63 20598.00 17991.91 26896.04 31797.74 25790.15 29296.47 16496.64 28887.89 20998.96 19590.08 27697.06 17299.02 147
CNLPA97.45 8797.03 9198.73 7399.05 10097.44 8098.07 21098.53 15195.32 11196.80 14898.53 13193.32 9899.72 10394.31 18199.31 9999.02 147
AdaColmapbinary97.15 10596.70 10898.48 9299.16 9496.69 10998.01 21698.89 4694.44 15496.83 14498.68 11690.69 15199.76 9794.36 17899.29 10098.98 151
Fast-Effi-MVS+96.28 13695.70 14398.03 12398.29 15995.97 14298.58 13898.25 20491.74 25595.29 18397.23 24091.03 14599.15 17192.90 22397.96 15198.97 152
EPMVS94.99 19794.48 19596.52 22097.22 23491.75 27297.23 27491.66 34494.11 16097.28 12496.81 28085.70 24898.84 21293.04 21997.28 17098.97 152
LS3D97.16 10496.66 11298.68 7698.53 14297.19 9198.93 7098.90 4492.83 22395.99 17699.37 2192.12 11799.87 4393.67 20199.57 7098.97 152
HY-MVS93.96 896.82 11796.23 12798.57 8298.46 14597.00 9698.14 20398.21 20693.95 17096.72 15097.99 18291.58 12899.76 9794.51 17596.54 18698.95 155
thisisatest053096.01 14395.36 15597.97 12698.38 14895.52 16498.88 8094.19 33894.04 16397.64 11598.31 15783.82 28299.46 14695.29 15397.70 16298.93 156
MIMVSNet93.26 27092.21 27696.41 23097.73 19793.13 25495.65 32497.03 29791.27 27594.04 22696.06 30675.33 32497.19 32086.56 30996.23 20098.92 157
baseline195.84 15195.12 16798.01 12498.49 14495.98 13798.73 11297.03 29795.37 10896.22 17098.19 16889.96 16299.16 16894.60 17087.48 30998.90 158
TESTMET0.1,194.18 24793.69 24595.63 26396.92 25489.12 30996.91 29494.78 33193.17 20894.88 18996.45 29478.52 30998.92 20193.09 21698.50 13398.85 159
dp94.15 24893.90 23094.90 28497.31 22986.82 32996.97 28997.19 29191.22 27796.02 17596.61 29085.51 25099.02 19090.00 28094.30 21398.85 159
PAPM94.95 20194.00 22397.78 13697.04 24895.65 15796.03 31998.25 20491.23 27694.19 21997.80 20191.27 13998.86 21182.61 32597.61 16498.84 161
VDDNet95.36 17694.53 19297.86 13198.10 17495.13 17998.85 8597.75 25690.46 28798.36 7199.39 1373.27 33299.64 12097.98 3596.58 18498.81 162
CostFormer94.95 20194.73 18495.60 26497.28 23089.06 31097.53 25496.89 30789.66 30096.82 14696.72 28386.05 24398.95 19995.53 14596.13 20398.79 163
UGNet96.78 11896.30 12398.19 11498.24 16095.89 15298.88 8098.93 3797.39 2296.81 14797.84 19582.60 28699.90 3296.53 10999.49 8398.79 163
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_ETH3D94.24 24293.33 25796.97 18397.19 23993.38 24698.74 10898.57 14291.21 27893.81 23698.58 12772.85 33398.77 22095.05 15993.93 22898.77 165
test-LLR95.10 19194.87 17995.80 25796.77 26289.70 30096.91 29495.21 32695.11 12394.83 19295.72 31387.71 21398.97 19293.06 21798.50 13398.72 166
test-mter94.08 25493.51 25295.80 25796.77 26289.70 30096.91 29495.21 32692.89 22094.83 19295.72 31377.69 31498.97 19293.06 21798.50 13398.72 166
CS-MVS97.81 6497.61 6198.41 9998.52 14397.15 9399.09 4498.55 14696.18 7297.61 11797.20 24394.59 7899.39 15097.62 5799.10 10698.70 168
DWT-MVSNet_test94.82 20694.36 20496.20 24197.35 22790.79 28898.34 17196.57 31792.91 21995.33 18296.44 29582.00 28899.12 17494.52 17495.78 20898.70 168
MAR-MVS96.91 11396.40 12098.45 9498.69 13096.90 10198.66 13098.68 11592.40 23797.07 13397.96 18391.54 13299.75 9993.68 19998.92 11198.69 170
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
thisisatest051595.61 16494.89 17897.76 13898.15 17195.15 17896.77 30594.41 33492.95 21797.18 12897.43 22984.78 26299.45 14794.63 16797.73 16198.68 171
BH-untuned95.95 14695.72 13996.65 20298.55 14192.26 26298.23 18797.79 25493.73 18194.62 19698.01 18088.97 18499.00 19193.04 21998.51 13298.68 171
PCF-MVS93.45 1194.68 21393.43 25598.42 9898.62 13696.77 10695.48 32598.20 20884.63 32893.34 25398.32 15688.55 19399.81 6584.80 32198.96 11098.68 171
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CANet_DTU96.96 11196.55 11598.21 11198.17 17096.07 13697.98 21998.21 20697.24 3497.13 12998.93 9286.88 22999.91 2995.00 16099.37 9698.66 174
PatchMatch-RL96.59 12496.03 13298.27 10699.31 6596.51 11897.91 22499.06 2293.72 18296.92 14198.06 17688.50 19599.65 11891.77 25399.00 10998.66 174
tpmrst95.63 16195.69 14495.44 26997.54 21188.54 31796.97 28997.56 26493.50 19697.52 12296.93 27389.49 16599.16 16895.25 15596.42 19098.64 176
IB-MVS91.98 1793.27 26991.97 27997.19 16997.47 21693.41 24497.09 28495.99 31993.32 20392.47 28195.73 31178.06 31299.53 13794.59 17282.98 32798.62 177
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DSMNet-mixed92.52 28092.58 27192.33 31494.15 32782.65 33698.30 18094.26 33789.08 30792.65 27495.73 31185.01 25895.76 33386.24 31197.76 15998.59 178
tpm294.19 24593.76 24195.46 26897.23 23389.04 31197.31 27096.85 31087.08 31596.21 17196.79 28183.75 28398.74 22192.43 23996.23 20098.59 178
ETV-MVS97.96 5597.81 5598.40 10098.42 14697.27 8598.73 11298.55 14696.84 5098.38 7097.44 22895.39 5399.35 15397.62 5798.89 11398.58 180
MSDG95.93 14795.30 16197.83 13398.90 11195.36 16996.83 30498.37 18191.32 27194.43 20698.73 11390.27 15899.60 12690.05 27898.82 11998.52 181
PatchT93.06 27591.97 27996.35 23496.69 26892.67 25994.48 33397.08 29386.62 31697.08 13192.23 33287.94 20897.90 30178.89 33496.69 18098.49 182
CR-MVSNet94.76 21094.15 21496.59 21097.00 24993.43 24294.96 32797.56 26492.46 23196.93 13996.24 29988.15 20297.88 30587.38 30596.65 18298.46 183
RPMNet92.52 28091.17 28496.59 21097.00 24993.43 24294.96 32797.26 28882.27 33196.93 13992.12 33386.98 22797.88 30576.32 33896.65 18298.46 183
thres600view795.49 16594.77 18197.67 14798.98 10795.02 18298.85 8596.90 30595.38 10696.63 15396.90 27484.29 26899.59 12788.65 29896.33 19298.40 185
thres40095.38 17394.62 18897.65 15098.94 10994.98 18698.68 12496.93 30395.33 10996.55 15896.53 29184.23 27199.56 13188.11 29996.29 19498.40 185
TR-MVS94.94 20394.20 20997.17 17197.75 19394.14 22197.59 25197.02 29992.28 24295.75 17897.64 21383.88 27998.96 19589.77 28296.15 20298.40 185
JIA-IIPM93.35 26692.49 27295.92 25196.48 27990.65 29195.01 32696.96 30185.93 32296.08 17387.33 33787.70 21598.78 21991.35 25995.58 20998.34 188
PVSNet_088.72 1991.28 28990.03 29395.00 28197.99 18187.29 32794.84 33098.50 16092.06 24889.86 30795.19 31879.81 30299.39 15092.27 24069.79 34098.33 189
131496.25 13895.73 13897.79 13597.13 24395.55 16398.19 19698.59 13693.47 19792.03 29097.82 19991.33 13799.49 14094.62 16998.44 13698.32 190
RPSCF94.87 20595.40 15093.26 31098.89 11282.06 33898.33 17298.06 23990.30 29196.56 15699.26 3887.09 22499.49 14093.82 19696.32 19398.24 191
tpmvs94.60 21994.36 20495.33 27297.46 21788.60 31696.88 30097.68 25891.29 27393.80 23796.42 29688.58 19099.24 16191.06 26296.04 20598.17 192
BH-w/o95.38 17395.08 16996.26 23998.34 15491.79 27097.70 24397.43 27992.87 22194.24 21697.22 24188.66 18998.84 21291.55 25797.70 16298.16 193
tpm cat193.36 26592.80 26695.07 28097.58 20687.97 32296.76 30697.86 25282.17 33293.53 24496.04 30786.13 24199.13 17389.24 29395.87 20698.10 194
MVS94.67 21693.54 25198.08 12096.88 25896.56 11698.19 19698.50 16078.05 33692.69 27398.02 17891.07 14499.63 12390.09 27598.36 14198.04 195
AllTest95.24 18394.65 18796.99 18099.25 8193.21 25298.59 13698.18 21291.36 26793.52 24598.77 10984.67 26399.72 10389.70 28597.87 15498.02 196
TestCases96.99 18099.25 8193.21 25298.18 21291.36 26793.52 24598.77 10984.67 26399.72 10389.70 28597.87 15498.02 196
gg-mvs-nofinetune92.21 28390.58 28997.13 17396.75 26595.09 18095.85 32189.40 34785.43 32694.50 20081.98 34080.80 29898.40 26492.16 24198.33 14297.88 198
baseline295.11 19094.52 19396.87 19096.65 27193.56 23898.27 18594.10 34093.45 19892.02 29197.43 22987.45 22199.19 16693.88 19497.41 16997.87 199
mvs-test196.60 12296.68 11196.37 23297.89 18791.81 26998.56 14498.10 22896.57 6196.52 16297.94 18590.81 14699.45 14795.72 13798.01 14997.86 200
thres100view90095.38 17394.70 18597.41 16198.98 10794.92 19098.87 8296.90 30595.38 10696.61 15496.88 27584.29 26899.56 13188.11 29996.29 19497.76 201
tfpn200view995.32 18094.62 18897.43 16098.94 10994.98 18698.68 12496.93 30395.33 10996.55 15896.53 29184.23 27199.56 13188.11 29996.29 19497.76 201
XVG-OURS-SEG-HR96.51 12796.34 12197.02 17998.77 12193.76 23097.79 23898.50 16095.45 10296.94 13899.09 7087.87 21199.55 13696.76 10495.83 20797.74 203
OpenMVScopyleft93.04 1395.83 15295.00 17298.32 10497.18 24097.32 8299.21 2898.97 3089.96 29691.14 29899.05 7586.64 23299.92 2093.38 20799.47 8597.73 204
testgi93.06 27592.45 27394.88 28596.43 28189.90 29798.75 10597.54 26995.60 9591.63 29597.91 18774.46 32997.02 32286.10 31293.67 23197.72 205
XVG-OURS96.55 12696.41 11996.99 18098.75 12293.76 23097.50 25598.52 15395.67 9296.83 14499.30 3488.95 18599.53 13795.88 13096.26 19897.69 206
cascas94.63 21893.86 23396.93 18796.91 25694.27 21796.00 32098.51 15585.55 32594.54 19896.23 30184.20 27398.87 20995.80 13496.98 17597.66 207
test0.0.03 194.08 25493.51 25295.80 25795.53 31192.89 25897.38 26195.97 32095.11 12392.51 28096.66 28587.71 21396.94 32387.03 30793.67 23197.57 208
MVS-HIRNet89.46 30288.40 30292.64 31297.58 20682.15 33794.16 33693.05 34375.73 33890.90 30082.52 33979.42 30498.33 26683.53 32398.68 12297.43 209
xiu_mvs_v2_base97.66 7297.70 5997.56 15598.61 13795.46 16697.44 25698.46 16597.15 3998.65 5698.15 17094.33 8699.80 7497.84 4498.66 12697.41 210
Effi-MVS+-dtu96.29 13496.56 11495.51 26597.89 18790.22 29698.80 9998.10 22896.57 6196.45 16696.66 28590.81 14698.91 20295.72 13797.99 15097.40 211
PS-MVSNAJ97.73 6897.77 5697.62 15198.68 13195.58 15997.34 26798.51 15597.29 2798.66 5597.88 19094.51 8099.90 3297.87 4199.17 10497.39 212
thres20095.25 18294.57 19097.28 16698.81 11994.92 19098.20 19297.11 29295.24 11796.54 16096.22 30384.58 26599.53 13787.93 30396.50 18897.39 212
xiu_mvs_v1_base_debu97.60 7597.56 6597.72 14198.35 15095.98 13797.86 23198.51 15597.13 4199.01 3198.40 14491.56 12999.80 7498.53 998.68 12297.37 214
xiu_mvs_v1_base97.60 7597.56 6597.72 14198.35 15095.98 13797.86 23198.51 15597.13 4199.01 3198.40 14491.56 12999.80 7498.53 998.68 12297.37 214
xiu_mvs_v1_base_debi97.60 7597.56 6597.72 14198.35 15095.98 13797.86 23198.51 15597.13 4199.01 3198.40 14491.56 12999.80 7498.53 998.68 12297.37 214
API-MVS97.41 9197.25 8297.91 12998.70 12896.80 10498.82 9298.69 11294.53 14898.11 7898.28 15994.50 8399.57 12994.12 18799.49 8397.37 214
Fast-Effi-MVS+-dtu95.87 14995.85 13695.91 25297.74 19691.74 27398.69 12398.15 22095.56 9794.92 18897.68 21088.98 18398.79 21893.19 21497.78 15897.20 218
COLMAP_ROBcopyleft93.27 1295.33 17994.87 17996.71 19799.29 7393.24 25198.58 13898.11 22689.92 29793.57 24399.10 6586.37 23899.79 8690.78 26798.10 14897.09 219
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RRT_test8_iter0594.56 22394.19 21095.67 26297.60 20491.34 27798.93 7098.42 17394.75 13893.39 25197.87 19179.00 30798.61 23096.78 10390.99 26997.07 220
PS-MVSNAJss96.43 12996.26 12596.92 18995.84 30395.08 18199.16 3498.50 16095.87 8493.84 23598.34 15494.51 8098.61 23096.88 9493.45 23897.06 221
nrg03096.28 13695.72 13997.96 12896.90 25798.15 5499.39 598.31 19095.47 10194.42 20798.35 15092.09 11898.69 22397.50 6889.05 29397.04 222
FIs96.51 12796.12 12997.67 14797.13 24397.54 7699.36 899.22 1495.89 8294.03 22798.35 15091.98 12198.44 24896.40 11592.76 24897.01 223
FC-MVSNet-test96.42 13096.05 13097.53 15796.95 25297.27 8599.36 899.23 1295.83 8593.93 22998.37 14892.00 12098.32 26796.02 12692.72 24997.00 224
EU-MVSNet93.66 26194.14 21592.25 31595.96 29983.38 33498.52 14898.12 22494.69 14192.61 27598.13 17287.36 22296.39 33291.82 25190.00 27996.98 225
VPNet94.99 19794.19 21097.40 16397.16 24196.57 11598.71 11798.97 3095.67 9294.84 19098.24 16580.36 30098.67 22796.46 11187.32 31296.96 226
XXY-MVS95.20 18694.45 19997.46 15896.75 26596.56 11698.86 8498.65 13093.30 20593.27 25598.27 16284.85 26198.87 20994.82 16491.26 26596.96 226
TranMVSNet+NR-MVSNet95.14 18994.48 19597.11 17596.45 28096.36 12599.03 5299.03 2595.04 12793.58 24297.93 18688.27 19898.03 29294.13 18686.90 31896.95 228
HQP_MVS96.14 13995.90 13596.85 19197.42 22294.60 20698.80 9998.56 14497.28 2895.34 18098.28 15987.09 22499.03 18896.07 12294.27 21496.92 229
plane_prior598.56 14499.03 18896.07 12294.27 21496.92 229
UniMVSNet_NR-MVSNet95.71 15795.15 16597.40 16396.84 26096.97 9798.74 10899.24 1095.16 11993.88 23297.72 20691.68 12698.31 26995.81 13287.25 31396.92 229
DU-MVS95.42 17094.76 18297.40 16396.53 27596.97 9798.66 13098.99 2995.43 10393.88 23297.69 20788.57 19198.31 26995.81 13287.25 31396.92 229
NR-MVSNet94.98 19994.16 21397.44 15996.53 27597.22 9098.74 10898.95 3494.96 13189.25 31297.69 20789.32 17098.18 27994.59 17287.40 31196.92 229
jajsoiax95.45 16895.03 17196.73 19695.42 31694.63 20199.14 3698.52 15395.74 8893.22 25698.36 14983.87 28098.65 22896.95 8794.04 22396.91 234
mvs_tets95.41 17295.00 17296.65 20295.58 30994.42 21199.00 5798.55 14695.73 8993.21 25798.38 14783.45 28498.63 22997.09 8094.00 22596.91 234
WR-MVS95.15 18894.46 19797.22 16796.67 27096.45 12098.21 18998.81 7594.15 15993.16 25897.69 20787.51 21798.30 27195.29 15388.62 29996.90 236
VPA-MVSNet95.75 15595.11 16897.69 14597.24 23297.27 8598.94 6999.23 1295.13 12195.51 17997.32 23485.73 24798.91 20297.33 7489.55 28696.89 237
Anonymous2023121194.10 25293.26 26096.61 20799.11 9994.28 21699.01 5598.88 4986.43 31892.81 26897.57 21981.66 29198.68 22694.83 16389.02 29596.88 238
test_djsdf96.00 14495.69 14496.93 18795.72 30595.49 16599.47 298.40 17694.98 12994.58 19797.86 19289.16 17598.41 25896.91 8894.12 22296.88 238
HQP4-MVS94.45 20298.96 19596.87 240
ACMM93.85 995.69 15995.38 15496.61 20797.61 20393.84 22898.91 7298.44 16995.25 11594.28 21398.47 13786.04 24599.12 17495.50 14693.95 22796.87 240
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP-MVS95.72 15695.40 15096.69 20097.20 23694.25 21998.05 21298.46 16596.43 6394.45 20297.73 20486.75 23098.96 19595.30 15194.18 21896.86 242
testing_290.61 29688.50 30196.95 18590.08 33995.57 16097.69 24498.06 23993.02 21376.55 33592.48 33161.18 34298.44 24895.45 14891.98 25596.84 243
EI-MVSNet95.96 14595.83 13796.36 23397.93 18493.70 23698.12 20698.27 19993.70 18595.07 18499.02 7692.23 11398.54 23894.68 16693.46 23696.84 243
IterMVS-LS95.46 16695.21 16396.22 24098.12 17293.72 23598.32 17798.13 22393.71 18394.26 21497.31 23592.24 11298.10 28594.63 16790.12 27796.84 243
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CP-MVSNet94.94 20394.30 20696.83 19296.72 26795.56 16199.11 4298.95 3493.89 17292.42 28397.90 18887.19 22398.12 28494.32 18088.21 30296.82 246
RRT_MVS96.04 14295.53 14797.56 15597.07 24797.32 8298.57 14398.09 23195.15 12095.02 18698.44 13988.20 20098.58 23696.17 12193.09 24596.79 247
PS-CasMVS94.67 21693.99 22596.71 19796.68 26995.26 17499.13 3999.03 2593.68 18892.33 28497.95 18485.35 25398.10 28593.59 20388.16 30496.79 247
UniMVSNet (Re)95.78 15495.19 16497.58 15396.99 25197.47 7898.79 10399.18 1695.60 9593.92 23097.04 26091.68 12698.48 24295.80 13487.66 30896.79 247
MVSTER96.06 14195.72 13997.08 17798.23 16195.93 14898.73 11298.27 19994.86 13595.07 18498.09 17488.21 19998.54 23896.59 10793.46 23696.79 247
LPG-MVS_test95.62 16295.34 15696.47 22497.46 21793.54 23998.99 5998.54 14994.67 14394.36 20998.77 10985.39 25199.11 17795.71 13994.15 22096.76 251
LGP-MVS_train96.47 22497.46 21793.54 23998.54 14994.67 14394.36 20998.77 10985.39 25199.11 17795.71 13994.15 22096.76 251
GG-mvs-BLEND96.59 21096.34 28494.98 18696.51 31488.58 34893.10 26394.34 32480.34 30198.05 29189.53 28896.99 17496.74 253
PEN-MVS94.42 23293.73 24396.49 22296.28 28694.84 19299.17 3399.00 2793.51 19592.23 28697.83 19886.10 24297.90 30192.55 23486.92 31796.74 253
OurMVSNet-221017-094.21 24394.00 22394.85 28695.60 30889.22 30898.89 7797.43 27995.29 11292.18 28798.52 13482.86 28598.59 23493.46 20691.76 25896.74 253
v2v48294.69 21194.03 21996.65 20296.17 29094.79 19798.67 12798.08 23392.72 22494.00 22897.16 24587.69 21698.45 24692.91 22288.87 29796.72 256
GBi-Net94.49 22893.80 23696.56 21598.21 16395.00 18398.82 9298.18 21292.46 23194.09 22397.07 25481.16 29297.95 29792.08 24392.14 25296.72 256
test194.49 22893.80 23696.56 21598.21 16395.00 18398.82 9298.18 21292.46 23194.09 22397.07 25481.16 29297.95 29792.08 24392.14 25296.72 256
FMVSNet193.19 27392.07 27796.56 21597.54 21195.00 18398.82 9298.18 21290.38 29092.27 28597.07 25473.68 33197.95 29789.36 29291.30 26396.72 256
v119294.32 23793.58 24996.53 21996.10 29394.45 21098.50 15398.17 21791.54 26294.19 21997.06 25786.95 22898.43 25090.14 27489.57 28496.70 260
v124094.06 25693.29 25996.34 23596.03 29793.90 22698.44 16098.17 21791.18 27994.13 22297.01 26486.05 24398.42 25189.13 29589.50 28796.70 260
FMVSNet394.97 20094.26 20797.11 17598.18 16896.62 11098.56 14498.26 20393.67 19094.09 22397.10 24784.25 27098.01 29392.08 24392.14 25296.70 260
FMVSNet294.47 23093.61 24897.04 17898.21 16396.43 12298.79 10398.27 19992.46 23193.50 24897.09 25181.16 29298.00 29591.09 26091.93 25696.70 260
ACMH92.88 1694.55 22493.95 22796.34 23597.63 20293.26 25098.81 9898.49 16493.43 19989.74 30898.53 13181.91 28999.08 18293.69 19893.30 24296.70 260
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v192192094.20 24493.47 25496.40 23195.98 29894.08 22298.52 14898.15 22091.33 27094.25 21597.20 24386.41 23798.42 25190.04 27989.39 28996.69 265
ACMP93.49 1095.34 17894.98 17496.43 22997.67 19993.48 24198.73 11298.44 16994.94 13492.53 27898.53 13184.50 26799.14 17295.48 14794.00 22596.66 266
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CLD-MVS95.62 16295.34 15696.46 22797.52 21493.75 23297.27 27398.46 16595.53 9894.42 20798.00 18186.21 24098.97 19296.25 11994.37 21296.66 266
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v14419294.39 23493.70 24496.48 22396.06 29594.35 21598.58 13898.16 21991.45 26494.33 21197.02 26287.50 21998.45 24691.08 26189.11 29296.63 268
IterMVS94.09 25393.85 23494.80 28997.99 18190.35 29597.18 27898.12 22493.68 18892.46 28297.34 23284.05 27597.41 31792.51 23691.33 26296.62 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114494.59 22193.92 22896.60 20996.21 28794.78 19898.59 13698.14 22291.86 25494.21 21897.02 26287.97 20798.41 25891.72 25489.57 28496.61 270
OPM-MVS95.69 15995.33 15896.76 19596.16 29294.63 20198.43 16298.39 17896.64 5895.02 18698.78 10785.15 25699.05 18495.21 15794.20 21796.60 271
LTVRE_ROB92.95 1594.60 21993.90 23096.68 20197.41 22594.42 21198.52 14898.59 13691.69 25891.21 29798.35 15084.87 26099.04 18791.06 26293.44 23996.60 271
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IterMVS-SCA-FT94.11 25193.87 23294.85 28697.98 18390.56 29397.18 27898.11 22693.75 17892.58 27697.48 22483.97 27797.41 31792.48 23891.30 26396.58 273
pmmvs593.65 26392.97 26495.68 26195.49 31292.37 26198.20 19297.28 28689.66 30092.58 27697.26 23782.14 28798.09 28793.18 21590.95 27096.58 273
K. test v392.55 27991.91 28194.48 29695.64 30789.24 30799.07 4794.88 33094.04 16386.78 32197.59 21777.64 31797.64 31192.08 24389.43 28896.57 275
SixPastTwentyTwo93.34 26792.86 26594.75 29095.67 30689.41 30698.75 10596.67 31593.89 17290.15 30698.25 16480.87 29698.27 27690.90 26590.64 27296.57 275
miper_lstm_enhance94.33 23694.07 21895.11 27897.75 19390.97 28597.22 27598.03 24291.67 25992.76 27096.97 26790.03 16197.78 30892.51 23689.64 28396.56 277
MDA-MVSNet_test_wron90.71 29489.38 29894.68 29294.83 32290.78 28997.19 27797.46 27587.60 31272.41 34095.72 31386.51 23396.71 32785.92 31486.80 31996.56 277
ACMH+92.99 1494.30 23893.77 23995.88 25597.81 19192.04 26798.71 11798.37 18193.99 16890.60 30498.47 13780.86 29799.05 18492.75 22792.40 25196.55 279
eth_miper_zixun_eth94.68 21394.41 20295.47 26797.64 20191.71 27496.73 30898.07 23592.71 22593.64 24097.21 24290.54 15398.17 28093.38 20789.76 28196.54 280
YYNet190.70 29589.39 29794.62 29494.79 32390.65 29197.20 27697.46 27587.54 31372.54 33995.74 31086.51 23396.66 32886.00 31386.76 32096.54 280
cl-mvsnet194.52 22694.03 21995.99 24797.57 21093.38 24697.05 28597.94 24891.74 25592.81 26897.10 24789.12 17698.07 28992.60 22990.30 27596.53 282
cl_fuxian94.79 20894.43 20195.89 25497.75 19393.12 25597.16 28198.03 24292.23 24393.46 25097.05 25991.39 13498.01 29393.58 20489.21 29196.53 282
Patchmtry93.22 27192.35 27495.84 25696.77 26293.09 25694.66 33297.56 26487.37 31492.90 26696.24 29988.15 20297.90 30187.37 30690.10 27896.53 282
cl-mvsnet_94.51 22794.01 22296.02 24697.58 20693.40 24597.05 28597.96 24791.73 25792.76 27097.08 25389.06 17998.13 28392.61 22890.29 27696.52 285
v7n94.19 24593.43 25596.47 22495.90 30094.38 21499.26 1898.34 18691.99 24992.76 27097.13 24688.31 19798.52 24089.48 29087.70 30796.52 285
MDA-MVSNet-bldmvs89.97 29988.35 30394.83 28895.21 31791.34 27797.64 24897.51 27188.36 31071.17 34196.13 30579.22 30596.63 32983.65 32286.27 32196.52 285
cl-mvsnet294.68 21394.19 21096.13 24498.11 17393.60 23796.94 29198.31 19092.43 23593.32 25496.87 27786.51 23398.28 27594.10 18991.16 26696.51 288
lessismore_v094.45 29994.93 32188.44 31891.03 34586.77 32297.64 21376.23 32198.42 25190.31 27385.64 32596.51 288
anonymousdsp95.42 17094.91 17796.94 18695.10 31895.90 15199.14 3698.41 17493.75 17893.16 25897.46 22587.50 21998.41 25895.63 14394.03 22496.50 290
v14894.29 23993.76 24195.91 25296.10 29392.93 25798.58 13897.97 24592.59 22993.47 24996.95 27188.53 19498.32 26792.56 23387.06 31596.49 291
our_test_393.65 26393.30 25894.69 29195.45 31489.68 30296.91 29497.65 26091.97 25091.66 29496.88 27589.67 16497.93 30088.02 30291.49 26196.48 292
XVG-ACMP-BASELINE94.54 22594.14 21595.75 26096.55 27491.65 27598.11 20898.44 16994.96 13194.22 21797.90 18879.18 30699.11 17794.05 19193.85 22996.48 292
DTE-MVSNet93.98 25893.26 26096.14 24396.06 29594.39 21399.20 2998.86 6093.06 21191.78 29297.81 20085.87 24697.58 31390.53 27086.17 32296.46 294
miper_ehance_all_eth95.01 19594.69 18695.97 24997.70 19893.31 24897.02 28798.07 23592.23 24393.51 24796.96 26991.85 12398.15 28193.68 19991.16 26696.44 295
v894.47 23093.77 23996.57 21496.36 28394.83 19499.05 4998.19 20991.92 25193.16 25896.97 26788.82 18898.48 24291.69 25587.79 30696.39 296
WR-MVS_H95.05 19494.46 19796.81 19396.86 25995.82 15399.24 2099.24 1093.87 17492.53 27896.84 27990.37 15598.24 27793.24 21287.93 30596.38 297
miper_enhance_ethall95.10 19194.75 18396.12 24597.53 21393.73 23496.61 31198.08 23392.20 24693.89 23196.65 28792.44 10798.30 27194.21 18491.16 26696.34 298
V4294.78 20994.14 21596.70 19996.33 28595.22 17598.97 6398.09 23192.32 24094.31 21297.06 25788.39 19698.55 23792.90 22388.87 29796.34 298
v1094.29 23993.55 25096.51 22196.39 28294.80 19698.99 5998.19 20991.35 26993.02 26496.99 26588.09 20498.41 25890.50 27188.41 30196.33 300
MVS_030492.81 27792.01 27895.23 27397.46 21791.33 27998.17 20198.81 7591.13 28093.80 23795.68 31666.08 33998.06 29090.79 26696.13 20396.32 301
pmmvs494.69 21193.99 22596.81 19395.74 30495.94 14597.40 25997.67 25990.42 28993.37 25297.59 21789.08 17898.20 27892.97 22191.67 25996.30 302
ppachtmachnet_test93.22 27192.63 27094.97 28295.45 31490.84 28696.88 30097.88 25190.60 28592.08 28997.26 23788.08 20597.86 30785.12 32090.33 27496.22 303
PVSNet_BlendedMVS96.73 11996.60 11397.12 17499.25 8195.35 17198.26 18699.26 894.28 15697.94 9597.46 22592.74 10499.81 6596.88 9493.32 24196.20 304
pm-mvs193.94 25993.06 26296.59 21096.49 27895.16 17698.95 6798.03 24292.32 24091.08 29997.84 19584.54 26698.41 25892.16 24186.13 32496.19 305
Anonymous2023120691.66 28691.10 28593.33 30894.02 32987.35 32698.58 13897.26 28890.48 28690.16 30596.31 29783.83 28196.53 33079.36 33289.90 28096.12 306
ITE_SJBPF95.44 26997.42 22291.32 28097.50 27295.09 12693.59 24198.35 15081.70 29098.88 20889.71 28493.39 24096.12 306
FMVSNet591.81 28490.92 28694.49 29597.21 23592.09 26498.00 21897.55 26889.31 30590.86 30195.61 31774.48 32895.32 33585.57 31689.70 28296.07 308
UnsupCasMVSNet_eth90.99 29289.92 29494.19 30294.08 32889.83 29897.13 28398.67 12393.69 18685.83 32696.19 30475.15 32596.74 32489.14 29479.41 33496.00 309
USDC93.33 26892.71 26895.21 27496.83 26190.83 28796.91 29497.50 27293.84 17590.72 30298.14 17177.69 31498.82 21589.51 28993.21 24495.97 310
pmmvs691.77 28590.63 28895.17 27694.69 32591.24 28298.67 12797.92 24986.14 32089.62 30997.56 22175.79 32398.34 26590.75 26884.56 32695.94 311
N_pmnet87.12 30787.77 30585.17 32495.46 31361.92 34797.37 26370.66 35385.83 32388.73 31596.04 30785.33 25597.76 30980.02 32990.48 27395.84 312
MIMVSNet189.67 30188.28 30493.82 30492.81 33391.08 28498.01 21697.45 27787.95 31187.90 31895.87 30967.63 33794.56 33878.73 33588.18 30395.83 313
TransMVSNet (Re)92.67 27891.51 28396.15 24296.58 27394.65 19998.90 7396.73 31190.86 28389.46 31197.86 19285.62 24998.09 28786.45 31081.12 33295.71 314
Baseline_NR-MVSNet94.35 23593.81 23595.96 25096.20 28894.05 22398.61 13596.67 31591.44 26593.85 23497.60 21688.57 19198.14 28294.39 17786.93 31695.68 315
D2MVS95.18 18795.08 16995.48 26697.10 24592.07 26598.30 18099.13 1994.02 16592.90 26696.73 28289.48 16698.73 22294.48 17693.60 23595.65 316
TinyColmap92.31 28291.53 28294.65 29396.92 25489.75 29996.92 29296.68 31490.45 28889.62 30997.85 19476.06 32298.81 21686.74 30892.51 25095.41 317
MS-PatchMatch93.84 26093.63 24794.46 29896.18 28989.45 30497.76 23998.27 19992.23 24392.13 28897.49 22379.50 30398.69 22389.75 28399.38 9595.25 318
LF4IMVS93.14 27492.79 26794.20 30195.88 30188.67 31597.66 24797.07 29493.81 17791.71 29397.65 21177.96 31398.81 21691.47 25891.92 25795.12 319
tfpnnormal93.66 26192.70 26996.55 21896.94 25395.94 14598.97 6399.19 1591.04 28191.38 29697.34 23284.94 25998.61 23085.45 31889.02 29595.11 320
EG-PatchMatch MVS91.13 29090.12 29294.17 30394.73 32489.00 31298.13 20597.81 25389.22 30685.32 32896.46 29367.71 33698.42 25187.89 30493.82 23095.08 321
TDRefinement91.06 29189.68 29595.21 27485.35 34291.49 27698.51 15297.07 29491.47 26388.83 31497.84 19577.31 31899.09 18192.79 22677.98 33595.04 322
MVP-Stereo94.28 24193.92 22895.35 27194.95 32092.60 26097.97 22097.65 26091.61 26190.68 30397.09 25186.32 23998.42 25189.70 28599.34 9795.02 323
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test20.0390.89 29390.38 29092.43 31393.48 33088.14 32198.33 17297.56 26493.40 20087.96 31796.71 28480.69 29994.13 33979.15 33386.17 32295.01 324
ambc89.49 32086.66 34175.78 34192.66 33896.72 31286.55 32392.50 33046.01 34497.90 30190.32 27282.09 32894.80 325
test_040291.32 28890.27 29194.48 29696.60 27291.12 28398.50 15397.22 29086.10 32188.30 31696.98 26677.65 31697.99 29678.13 33692.94 24794.34 326
new_pmnet90.06 29889.00 30093.22 31194.18 32688.32 32096.42 31596.89 30786.19 31985.67 32793.62 32577.18 31997.10 32181.61 32789.29 29094.23 327
CMPMVSbinary66.06 2189.70 30089.67 29689.78 31993.19 33176.56 34097.00 28898.35 18480.97 33381.57 33397.75 20374.75 32798.61 23089.85 28193.63 23394.17 328
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PM-MVS87.77 30586.55 30891.40 31891.03 33783.36 33596.92 29295.18 32891.28 27486.48 32493.42 32653.27 34396.74 32489.43 29181.97 33094.11 329
pmmvs-eth3d90.36 29789.05 29994.32 30091.10 33692.12 26397.63 25096.95 30288.86 30884.91 32993.13 32778.32 31096.74 32488.70 29781.81 33194.09 330
new-patchmatchnet88.50 30487.45 30691.67 31790.31 33885.89 33097.16 28197.33 28389.47 30283.63 33192.77 32876.38 32095.06 33782.70 32477.29 33694.06 331
pmmvs386.67 30884.86 31092.11 31688.16 34087.19 32896.63 31094.75 33279.88 33487.22 32092.75 32966.56 33895.20 33681.24 32876.56 33793.96 332
UnsupCasMVSNet_bld87.17 30685.12 30993.31 30991.94 33488.77 31394.92 32998.30 19684.30 32982.30 33290.04 33463.96 34197.25 31985.85 31574.47 33993.93 333
LCM-MVSNet78.70 30976.24 31386.08 32277.26 34871.99 34494.34 33496.72 31261.62 34276.53 33689.33 33533.91 35092.78 34181.85 32674.60 33893.46 334
OpenMVS_ROBcopyleft86.42 2089.00 30387.43 30793.69 30593.08 33289.42 30597.91 22496.89 30778.58 33585.86 32594.69 32269.48 33598.29 27477.13 33793.29 24393.36 335
DeepMVS_CXcopyleft86.78 32197.09 24672.30 34395.17 32975.92 33784.34 33095.19 31870.58 33495.35 33479.98 33189.04 29492.68 336
PMMVS277.95 31175.44 31485.46 32382.54 34374.95 34294.23 33593.08 34272.80 33974.68 33787.38 33636.36 34991.56 34273.95 33963.94 34189.87 337
FPMVS77.62 31277.14 31179.05 32779.25 34660.97 34895.79 32295.94 32165.96 34067.93 34294.40 32337.73 34888.88 34468.83 34088.46 30087.29 338
tmp_tt68.90 31466.97 31574.68 32950.78 35259.95 34987.13 34283.47 35138.80 34762.21 34396.23 30164.70 34076.91 34988.91 29630.49 34687.19 339
ANet_high69.08 31365.37 31680.22 32665.99 35071.96 34590.91 34190.09 34682.62 33049.93 34778.39 34229.36 35181.75 34562.49 34238.52 34586.95 340
MVEpermissive62.14 2263.28 31859.38 32074.99 32874.33 34965.47 34685.55 34380.50 35252.02 34551.10 34675.00 34510.91 35580.50 34651.60 34453.40 34278.99 341
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft61.03 2365.95 31563.57 31873.09 33057.90 35151.22 35285.05 34493.93 34154.45 34344.32 34883.57 33813.22 35289.15 34358.68 34381.00 33378.91 342
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft78.40 31076.75 31283.38 32595.54 31080.43 33979.42 34597.40 28164.67 34173.46 33880.82 34145.65 34593.14 34066.32 34187.43 31076.56 343
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS64.07 31763.26 31966.53 33281.73 34558.81 35191.85 33984.75 35051.93 34659.09 34575.13 34443.32 34679.09 34842.03 34639.47 34461.69 344
E-PMN64.94 31664.25 31767.02 33182.28 34459.36 35091.83 34085.63 34952.69 34460.22 34477.28 34341.06 34780.12 34746.15 34541.14 34361.57 345
test12320.95 32223.72 32412.64 33413.54 3548.19 35496.55 3136.13 3567.48 35016.74 35037.98 34812.97 3536.05 35116.69 3485.43 34923.68 346
testmvs21.48 32124.95 32311.09 33514.89 3536.47 35596.56 3129.87 3557.55 34917.93 34939.02 3479.43 3565.90 35216.56 34912.72 34820.91 347
wuyk23d30.17 31930.18 32230.16 33378.61 34743.29 35366.79 34614.21 35417.31 34814.82 35111.93 35111.55 35441.43 35037.08 34719.30 3475.76 348
uanet_test0.00 3250.00 3270.00 3360.00 3550.00 3560.00 3470.00 3570.00 3510.00 3520.00 3520.00 3570.00 3530.00 3500.00 3500.00 349
test_part10.00 3360.00 3560.00 34798.84 640.00 3570.00 3530.00 3500.00 3500.00 349
cdsmvs_eth3d_5k23.98 32031.98 3210.00 3360.00 3550.00 3560.00 34798.59 1360.00 3510.00 35298.61 12290.60 1520.00 3530.00 3500.00 3500.00 349
pcd_1.5k_mvsjas7.88 32410.50 3260.00 3360.00 3550.00 3560.00 3470.00 3570.00 3510.00 3520.00 35294.51 800.00 3530.00 3500.00 3500.00 349
sosnet-low-res0.00 3250.00 3270.00 3360.00 3550.00 3560.00 3470.00 3570.00 3510.00 3520.00 3520.00 3570.00 3530.00 3500.00 3500.00 349
sosnet0.00 3250.00 3270.00 3360.00 3550.00 3560.00 3470.00 3570.00 3510.00 3520.00 3520.00 3570.00 3530.00 3500.00 3500.00 349
uncertanet0.00 3250.00 3270.00 3360.00 3550.00 3560.00 3470.00 3570.00 3510.00 3520.00 3520.00 3570.00 3530.00 3500.00 3500.00 349
Regformer0.00 3250.00 3270.00 3360.00 3550.00 3560.00 3470.00 3570.00 3510.00 3520.00 3520.00 3570.00 3530.00 3500.00 3500.00 349
ab-mvs-re8.20 32310.94 3250.00 3360.00 3550.00 3560.00 3470.00 3570.00 3510.00 35298.43 1400.00 3570.00 3530.00 3500.00 3500.00 349
uanet0.00 3250.00 3270.00 3360.00 3550.00 3560.00 3470.00 3570.00 3510.00 3520.00 3520.00 3570.00 3530.00 3500.00 3500.00 349
test_241102_ONE99.71 2099.24 498.87 5597.62 1099.73 199.39 1397.53 499.74 101
9.1498.06 4599.47 4498.71 11798.82 6994.36 15599.16 2399.29 3596.05 3199.81 6597.00 8299.71 49
save fliter99.46 4798.38 3398.21 18998.71 10797.95 3
test072699.72 1299.25 299.06 4898.88 4997.62 1099.56 499.50 497.42 5
test_part299.63 2899.18 799.27 16
sam_mvs88.99 180
MTGPAbinary98.74 97
test_post196.68 30930.43 35087.85 21298.69 22392.59 231
test_post31.83 34988.83 18798.91 202
patchmatchnet-post95.10 32089.42 16898.89 206
MTMP98.89 7794.14 339
gm-plane-assit95.88 30187.47 32589.74 29996.94 27299.19 16693.32 211
TEST999.31 6598.50 2797.92 22298.73 10192.63 22697.74 10698.68 11696.20 2299.80 74
test_899.29 7398.44 2997.89 22898.72 10392.98 21597.70 10998.66 11996.20 2299.80 74
agg_prior99.30 7098.38 3398.72 10397.57 12099.81 65
test_prior498.01 6097.86 231
test_prior297.80 23696.12 7697.89 10098.69 11495.96 3596.89 9199.60 64
旧先验297.57 25391.30 27298.67 5499.80 7495.70 141
新几何297.64 248
原ACMM297.67 246
testdata299.89 3491.65 256
segment_acmp96.85 10
testdata197.32 26996.34 67
plane_prior797.42 22294.63 201
plane_prior697.35 22794.61 20487.09 224
plane_prior498.28 159
plane_prior394.61 20497.02 4695.34 180
plane_prior298.80 9997.28 28
plane_prior197.37 226
plane_prior94.60 20698.44 16096.74 5494.22 216
n20.00 357
nn0.00 357
door-mid94.37 335
test1198.66 126
door94.64 333
HQP5-MVS94.25 219
HQP-NCC97.20 23698.05 21296.43 6394.45 202
ACMP_Plane97.20 23698.05 21296.43 6394.45 202
BP-MVS95.30 151
HQP3-MVS98.46 16594.18 218
HQP2-MVS86.75 230
NP-MVS97.28 23094.51 20997.73 204
MDTV_nov1_ep1395.40 15097.48 21588.34 31996.85 30297.29 28593.74 18097.48 12397.26 23789.18 17499.05 18491.92 25097.43 168
ACMMP++_ref92.97 246
ACMMP++93.61 234
Test By Simon94.64 75