This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
zzz-MVS98.55 3098.25 3899.46 1299.76 198.64 2298.55 15198.74 10297.27 3398.02 9099.39 1494.81 7799.96 197.91 3899.79 1999.77 20
MTAPA98.58 2398.29 3599.46 1299.76 198.64 2298.90 7898.74 10297.27 3398.02 9099.39 1494.81 7799.96 197.91 3899.79 1999.77 20
MSP-MVS98.74 898.55 1099.29 3199.75 398.23 4999.26 1898.88 4997.52 1599.41 1198.78 11296.00 3499.79 9197.79 4899.59 7199.85 2
MP-MVScopyleft98.33 5098.01 5299.28 3599.75 398.18 5399.22 2598.79 9196.13 7997.92 10399.23 4594.54 8499.94 396.74 10999.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS98.51 3598.26 3799.25 3999.75 398.04 6099.28 1698.81 7696.24 7398.35 7799.23 4595.46 5199.94 397.42 7499.81 1099.77 20
HPM-MVS_fast98.38 4398.13 4699.12 5799.75 397.86 6899.44 498.82 7094.46 15798.94 3999.20 5295.16 6999.74 10697.58 6599.85 399.77 20
region2R98.61 1798.38 2099.29 3199.74 798.16 5599.23 2198.93 3796.15 7798.94 3999.17 5695.91 3999.94 397.55 6999.79 1999.78 13
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5699.23 2198.95 3496.10 8298.93 4399.19 5595.70 4499.94 397.62 6199.79 1999.78 13
HPM-MVScopyleft98.36 4598.10 4899.13 5499.74 797.82 7299.53 198.80 8694.63 15098.61 6398.97 8795.13 7099.77 10097.65 5999.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft98.23 5497.95 5599.09 5999.74 797.62 7899.03 5699.41 695.98 8497.60 12499.36 2694.45 8999.93 1597.14 8298.85 12299.70 48
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ZNCC-MVS98.49 3698.20 4499.35 2299.73 1198.39 3499.19 3198.86 6195.77 9198.31 8099.10 6995.46 5199.93 1597.57 6899.81 1099.74 33
DVP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 6898.58 14697.62 1199.45 999.46 997.42 699.94 398.47 1599.81 1099.69 51
test_0728_SECOND99.71 199.72 1299.35 198.97 6898.88 4999.94 398.47 1599.81 1099.84 4
test072699.72 1299.25 299.06 5198.88 4997.62 1199.56 599.50 497.42 6
GST-MVS98.43 4098.12 4799.34 2399.72 1298.38 3599.09 4698.82 7095.71 9498.73 5599.06 7895.27 6499.93 1597.07 8599.63 6499.72 40
MP-MVS-pluss98.31 5297.92 5799.49 999.72 1298.88 1498.43 16798.78 9494.10 16597.69 11599.42 1295.25 6699.92 2198.09 3299.80 1799.67 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4699.23 2198.96 3296.10 8298.94 3999.17 5696.06 3099.92 2197.62 6199.78 2399.75 28
#test#98.54 3298.27 3699.32 2899.72 1298.29 4698.98 6798.96 3295.65 9898.94 3999.17 5696.06 3099.92 2197.21 8199.78 2399.75 28
PGM-MVS98.49 3698.23 4299.27 3899.72 1298.08 5998.99 6499.49 595.43 10799.03 3399.32 3395.56 4799.94 396.80 10599.77 2699.78 13
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 5898.87 5597.65 999.73 199.48 697.53 499.94 398.43 1899.81 1099.70 48
IU-MVS99.71 2099.23 698.64 13695.28 11799.63 498.35 2499.81 1099.83 5
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 106
XVS98.70 998.49 1699.34 2399.70 2398.35 4399.29 1498.88 4997.40 2198.46 6899.20 5295.90 4099.89 3597.85 4499.74 4199.78 13
X-MVStestdata94.06 26092.30 28099.34 2399.70 2398.35 4399.29 1498.88 4997.40 2198.46 6843.50 35495.90 4099.89 3597.85 4499.74 4199.78 13
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4899.14 3698.66 13196.84 5199.56 599.31 3596.34 1999.70 11498.32 2599.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG97.85 6697.74 6298.20 11599.67 2695.16 18199.22 2599.32 793.04 21897.02 14198.92 9995.36 5899.91 3097.43 7399.64 6299.52 85
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6899.34 1198.87 5595.96 8598.60 6499.13 6496.05 3299.94 397.77 4999.86 199.77 20
CPTT-MVS97.72 7297.32 8498.92 6999.64 2897.10 9999.12 4198.81 7692.34 24498.09 8499.08 7693.01 10699.92 2196.06 12999.77 2699.75 28
test_part299.63 2999.18 899.27 17
ACMMP_NAP98.61 1798.30 3499.55 699.62 3098.95 1398.82 9798.81 7695.80 9099.16 2699.47 895.37 5799.92 2197.89 4199.75 3899.79 10
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 17098.68 12097.04 4698.52 6798.80 11096.78 1299.83 5597.93 3799.61 6799.74 33
DPE-MVS98.92 498.67 699.65 299.58 3299.20 798.42 16998.91 4397.58 1499.54 799.46 997.10 999.94 397.64 6099.84 899.83 5
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 598.93 3797.38 2499.41 1199.54 196.66 1399.84 5298.86 199.85 399.87 1
abl_698.30 5398.03 5199.13 5499.56 3497.76 7499.13 3998.82 7096.14 7899.26 1899.37 2293.33 10299.93 1596.96 9099.67 5499.69 51
SF-MVS98.59 2098.32 3399.41 1699.54 3598.71 1899.04 5398.81 7695.12 12699.32 1599.39 1496.22 2099.84 5297.72 5299.73 4399.67 61
test117298.56 2898.35 2499.16 5099.53 3697.94 6699.09 4698.83 6896.52 6499.05 3299.34 3195.34 5999.82 6397.86 4399.64 6299.73 36
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5399.09 4698.82 7096.58 6199.10 2999.32 3395.39 5599.82 6397.70 5799.63 6499.72 40
DP-MVS Recon97.86 6597.46 7799.06 6199.53 3698.35 4398.33 17898.89 4692.62 23398.05 8698.94 9695.34 5999.65 12396.04 13099.42 9699.19 132
SMA-MVScopyleft98.58 2398.25 3899.56 599.51 3999.04 1198.95 7298.80 8693.67 19599.37 1399.52 396.52 1799.89 3598.06 3399.81 1099.76 26
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APD-MVScopyleft98.35 4698.00 5399.42 1599.51 3998.72 1798.80 10498.82 7094.52 15499.23 2099.25 4395.54 4999.80 7996.52 11499.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft98.58 2398.25 3899.55 699.50 4199.08 998.72 12198.66 13197.51 1698.15 8198.83 10795.70 4499.92 2197.53 7199.67 5499.66 65
APD-MVS_3200maxsize98.53 3498.33 3299.15 5399.50 4197.92 6799.15 3598.81 7696.24 7399.20 2299.37 2295.30 6299.80 7997.73 5199.67 5499.72 40
114514_t96.93 11596.27 12898.92 6999.50 4197.63 7798.85 9098.90 4484.80 33497.77 10899.11 6792.84 10799.66 12294.85 16799.77 2699.47 98
PAPM_NR97.46 8797.11 9198.50 9399.50 4196.41 12898.63 13798.60 13995.18 12297.06 13998.06 18194.26 9399.57 13493.80 20498.87 12199.52 85
SR-MVS-dyc-post98.54 3298.35 2499.13 5499.49 4597.86 6899.11 4298.80 8696.49 6599.17 2499.35 2895.34 5999.82 6397.72 5299.65 5899.71 44
RE-MVS-def98.34 2899.49 4597.86 6899.11 4298.80 8696.49 6599.17 2499.35 2895.29 6397.72 5299.65 5899.71 44
testtj98.33 5097.95 5599.47 1199.49 4598.70 1998.83 9498.86 6195.48 10498.91 4599.17 5695.48 5099.93 1595.80 13999.53 8599.76 26
9.1498.06 4999.47 4898.71 12298.82 7094.36 15999.16 2699.29 3996.05 3299.81 7097.00 8699.71 50
ETH3D-3000-0.198.35 4698.00 5399.38 1799.47 4898.68 2198.67 13298.84 6594.66 14999.11 2899.25 4395.46 5199.81 7096.80 10599.73 4399.63 73
CDPH-MVS97.94 6297.49 7599.28 3599.47 4898.44 3197.91 23198.67 12892.57 23698.77 5198.85 10495.93 3899.72 10895.56 14999.69 5299.68 57
ZD-MVS99.46 5198.70 1998.79 9193.21 21298.67 5898.97 8795.70 4499.83 5596.07 12699.58 74
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 5198.38 3598.21 19598.52 15897.95 399.32 1599.39 1496.22 2099.84 5297.72 5299.73 4399.67 61
save fliter99.46 5198.38 3598.21 19598.71 11397.95 3
EI-MVSNet-Vis-set98.47 3898.39 1998.69 7899.46 5196.49 12498.30 18698.69 11797.21 3698.84 4699.36 2695.41 5499.78 9598.62 599.65 5899.80 9
EI-MVSNet-UG-set98.41 4198.34 2898.61 8399.45 5596.32 13298.28 18998.68 12097.17 3998.74 5399.37 2295.25 6699.79 9198.57 799.54 8499.73 36
F-COLMAP97.09 11196.80 10497.97 12999.45 5594.95 19498.55 15198.62 13893.02 21996.17 17798.58 13294.01 9699.81 7093.95 19998.90 11799.14 140
Regformer-398.59 2098.50 1498.86 7399.43 5797.05 10098.40 17198.68 12097.43 2099.06 3199.31 3595.80 4399.77 10098.62 599.76 3299.78 13
Regformer-498.64 1498.53 1198.99 6399.43 5797.37 8698.40 17198.79 9197.46 1999.09 3099.31 3595.86 4299.80 7998.64 399.76 3299.79 10
ETH3 D test640097.59 8197.01 9699.34 2399.40 5998.56 2598.20 19898.81 7691.63 26698.44 7298.85 10493.98 9899.82 6394.11 19599.69 5299.64 70
Regformer-198.66 1298.51 1399.12 5799.35 6097.81 7398.37 17398.76 9897.49 1799.20 2299.21 4896.08 2999.79 9198.42 2099.73 4399.75 28
Regformer-298.69 1198.52 1299.19 4399.35 6098.01 6298.37 17398.81 7697.48 1899.21 2199.21 4896.13 2799.80 7998.40 2299.73 4399.75 28
新几何199.16 5099.34 6298.01 6298.69 11790.06 30298.13 8298.95 9594.60 8299.89 3591.97 25699.47 9099.59 80
112197.37 9796.77 11199.16 5099.34 6297.99 6598.19 20298.68 12090.14 30198.01 9498.97 8794.80 7999.87 4493.36 21699.46 9399.61 75
DP-MVS96.59 12795.93 13898.57 8599.34 6296.19 13898.70 12698.39 18489.45 31094.52 20599.35 2891.85 12899.85 4992.89 23298.88 11999.68 57
SD-MVS98.64 1498.68 598.53 9199.33 6598.36 4298.90 7898.85 6497.28 2999.72 399.39 1496.63 1597.60 31898.17 2899.85 399.64 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HyFIR lowres test96.90 11796.49 12298.14 11899.33 6595.56 16697.38 26899.65 292.34 24497.61 12298.20 17289.29 17699.10 18596.97 8897.60 17099.77 20
OMC-MVS97.55 8597.34 8398.20 11599.33 6595.92 15498.28 18998.59 14195.52 10397.97 9799.10 6993.28 10499.49 14595.09 16398.88 11999.19 132
原ACMM198.65 8199.32 6896.62 11598.67 12893.27 21197.81 10798.97 8795.18 6899.83 5593.84 20299.46 9399.50 91
CNVR-MVS98.78 698.56 999.45 1499.32 6898.87 1598.47 16198.81 7697.72 698.76 5299.16 6197.05 1099.78 9598.06 3399.66 5799.69 51
TEST999.31 7098.50 2997.92 22998.73 10792.63 23297.74 11198.68 12196.20 2399.80 79
train_agg97.97 5797.52 7299.33 2799.31 7098.50 2997.92 22998.73 10792.98 22197.74 11198.68 12196.20 2399.80 7996.59 11199.57 7599.68 57
test_prior398.22 5597.90 5899.19 4399.31 7098.22 5097.80 24398.84 6596.12 8097.89 10598.69 11995.96 3699.70 11496.89 9599.60 6899.65 67
test_prior99.19 4399.31 7098.22 5098.84 6599.70 11499.65 67
PatchMatch-RL96.59 12796.03 13698.27 10999.31 7096.51 12397.91 23199.06 2293.72 18796.92 14698.06 18188.50 20099.65 12391.77 26099.00 11498.66 178
agg_prior197.95 6197.51 7499.28 3599.30 7598.38 3597.81 24298.72 10993.16 21597.57 12598.66 12496.14 2699.81 7096.63 11099.56 8099.66 65
agg_prior99.30 7598.38 3598.72 10997.57 12599.81 70
CHOSEN 1792x268897.12 10996.80 10498.08 12399.30 7594.56 21398.05 21899.71 193.57 19997.09 13598.91 10088.17 20699.89 3596.87 10199.56 8099.81 8
test_899.29 7898.44 3197.89 23598.72 10992.98 22197.70 11498.66 12496.20 2399.80 79
旧先验199.29 7897.48 8298.70 11699.09 7495.56 4799.47 9099.61 75
PLCcopyleft95.07 497.20 10596.78 10798.44 9899.29 7896.31 13498.14 20998.76 9892.41 24296.39 17298.31 16294.92 7699.78 9594.06 19798.77 12699.23 127
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
COLMAP_ROBcopyleft93.27 1295.33 18294.87 18396.71 20299.29 7893.24 25898.58 14398.11 23289.92 30493.57 24999.10 6986.37 24399.79 9190.78 27498.10 15397.09 224
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
NCCC98.61 1798.35 2499.38 1799.28 8298.61 2498.45 16298.76 9897.82 598.45 7198.93 9796.65 1499.83 5597.38 7699.41 9799.71 44
PVSNet_Blended_VisFu97.70 7397.46 7798.44 9899.27 8395.91 15598.63 13799.16 1794.48 15697.67 11698.88 10292.80 10899.91 3097.11 8399.12 11099.50 91
MVS_111021_LR98.34 4898.23 4298.67 8099.27 8396.90 10697.95 22799.58 397.14 4198.44 7299.01 8495.03 7399.62 13097.91 3899.75 3899.50 91
MSLP-MVS++98.56 2898.57 898.55 8799.26 8596.80 10998.71 12299.05 2497.28 2998.84 4699.28 4096.47 1899.40 15498.52 1399.70 5199.47 98
AllTest95.24 18694.65 19196.99 18499.25 8693.21 25998.59 14198.18 21891.36 27393.52 25198.77 11484.67 26999.72 10889.70 29297.87 15998.02 201
TestCases96.99 18499.25 8693.21 25998.18 21891.36 27393.52 25198.77 11484.67 26999.72 10889.70 29297.87 15998.02 201
PVSNet_BlendedMVS96.73 12296.60 11797.12 17899.25 8695.35 17698.26 19299.26 894.28 16097.94 10097.46 23292.74 10999.81 7096.88 9893.32 24696.20 310
PVSNet_Blended97.38 9697.12 9098.14 11899.25 8695.35 17697.28 27999.26 893.13 21697.94 10098.21 17192.74 10999.81 7096.88 9899.40 9999.27 124
DeepC-MVS95.98 397.88 6497.58 6798.77 7599.25 8696.93 10498.83 9498.75 10196.96 4996.89 14899.50 490.46 15999.87 4497.84 4699.76 3299.52 85
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast96.70 198.55 3098.34 2899.18 4799.25 8698.04 6098.50 15898.78 9497.72 698.92 4499.28 4095.27 6499.82 6397.55 6999.77 2699.69 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPU-MVS99.37 2099.24 9299.05 1099.02 5899.16 6197.81 299.37 15797.24 7999.73 4399.70 48
test22299.23 9397.17 9797.40 26698.66 13188.68 31698.05 8698.96 9394.14 9499.53 8599.61 75
TSAR-MVS + GP.98.38 4398.24 4198.81 7499.22 9497.25 9498.11 21498.29 20497.19 3898.99 3899.02 8096.22 2099.67 12198.52 1398.56 13599.51 89
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9498.43 3399.10 4598.87 5597.38 2499.35 1499.40 1397.78 399.87 4497.77 4999.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
MVS_111021_HR98.47 3898.34 2898.88 7299.22 9497.32 8797.91 23199.58 397.20 3798.33 7899.00 8595.99 3599.64 12598.05 3599.76 3299.69 51
testdata98.26 11199.20 9795.36 17498.68 12091.89 25898.60 6499.10 6994.44 9099.82 6394.27 18999.44 9599.58 82
PVSNet91.96 1896.35 13596.15 13296.96 18899.17 9892.05 27396.08 32398.68 12093.69 19197.75 11097.80 20788.86 19199.69 11994.26 19099.01 11399.15 138
test1299.18 4799.16 9998.19 5298.53 15698.07 8595.13 7099.72 10899.56 8099.63 73
AdaColmapbinary97.15 10896.70 11298.48 9599.16 9996.69 11498.01 22298.89 4694.44 15896.83 14998.68 12190.69 15699.76 10294.36 18499.29 10598.98 155
PHI-MVS98.34 4898.06 4999.18 4799.15 10198.12 5899.04 5399.09 2093.32 20898.83 4899.10 6996.54 1699.83 5597.70 5799.76 3299.59 80
TAPA-MVS93.98 795.35 18094.56 19597.74 14399.13 10294.83 19998.33 17898.64 13686.62 32396.29 17498.61 12794.00 9799.29 16280.00 33899.41 9799.09 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MG-MVS97.81 6797.60 6698.44 9899.12 10395.97 14797.75 24798.78 9496.89 5098.46 6899.22 4793.90 9999.68 12094.81 17099.52 8799.67 61
Anonymous2023121194.10 25693.26 26596.61 21299.11 10494.28 22199.01 6098.88 4986.43 32592.81 27497.57 22681.66 29798.68 23294.83 16889.02 30096.88 243
ETH3D cwj APD-0.1697.96 5897.52 7299.29 3199.05 10598.52 2798.33 17898.68 12093.18 21398.68 5799.13 6494.62 8199.83 5596.45 11699.55 8399.52 85
CNLPA97.45 9097.03 9598.73 7699.05 10597.44 8598.07 21698.53 15695.32 11596.80 15398.53 13693.32 10399.72 10894.31 18899.31 10499.02 151
DPM-MVS97.55 8596.99 9899.23 4299.04 10798.55 2697.17 28798.35 19094.85 14097.93 10298.58 13295.07 7299.71 11392.60 23699.34 10299.43 106
Anonymous2024052995.10 19494.22 21297.75 14299.01 10894.26 22398.87 8798.83 6885.79 33196.64 15798.97 8778.73 31599.85 4996.27 12194.89 21699.12 142
Anonymous20240521195.28 18494.49 19897.67 15099.00 10993.75 23798.70 12697.04 30390.66 29096.49 16898.80 11078.13 31899.83 5596.21 12495.36 21599.44 105
DELS-MVS98.40 4298.20 4498.99 6399.00 10997.66 7597.75 24798.89 4697.71 898.33 7898.97 8794.97 7499.88 4398.42 2099.76 3299.42 107
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepPCF-MVS96.37 297.93 6398.48 1796.30 24299.00 10989.54 31097.43 26598.87 5598.16 299.26 1899.38 2196.12 2899.64 12598.30 2699.77 2699.72 40
thres100view90095.38 17694.70 18997.41 16498.98 11294.92 19598.87 8796.90 31295.38 11096.61 15996.88 28284.29 27499.56 13688.11 30696.29 19997.76 206
thres600view795.49 16894.77 18597.67 15098.98 11295.02 18798.85 9096.90 31295.38 11096.63 15896.90 28184.29 27499.59 13288.65 30596.33 19798.40 189
tfpn200view995.32 18394.62 19297.43 16398.94 11494.98 19198.68 12996.93 31095.33 11396.55 16396.53 29884.23 27799.56 13688.11 30696.29 19997.76 206
thres40095.38 17694.62 19297.65 15398.94 11494.98 19198.68 12996.93 31095.33 11396.55 16396.53 29884.23 27799.56 13688.11 30696.29 19998.40 189
MSDG95.93 15095.30 16597.83 13698.90 11695.36 17496.83 31198.37 18791.32 27794.43 21298.73 11890.27 16399.60 13190.05 28598.82 12498.52 185
RPSCF94.87 20895.40 15493.26 31698.89 11782.06 34698.33 17898.06 24690.30 29896.56 16199.26 4287.09 22999.49 14593.82 20396.32 19898.24 195
VNet97.79 6997.40 8198.96 6798.88 11897.55 8098.63 13798.93 3796.74 5599.02 3498.84 10690.33 16299.83 5598.53 996.66 18699.50 91
LFMVS95.86 15394.98 17898.47 9698.87 11996.32 13298.84 9396.02 32593.40 20598.62 6299.20 5274.99 33499.63 12897.72 5297.20 17699.46 102
UA-Net97.96 5897.62 6498.98 6598.86 12097.47 8398.89 8299.08 2196.67 5898.72 5699.54 193.15 10599.81 7094.87 16698.83 12399.65 67
WTY-MVS97.37 9796.92 10198.72 7798.86 12096.89 10898.31 18498.71 11395.26 11897.67 11698.56 13592.21 11999.78 9595.89 13496.85 18199.48 96
IS-MVSNet97.22 10296.88 10298.25 11298.85 12296.36 13099.19 3197.97 25295.39 10997.23 13198.99 8691.11 14798.93 20694.60 17598.59 13399.47 98
VDD-MVS95.82 15695.23 16697.61 15598.84 12393.98 22998.68 12997.40 28995.02 13297.95 9899.34 3174.37 33899.78 9598.64 396.80 18299.08 147
CHOSEN 280x42097.18 10697.18 8997.20 17298.81 12493.27 25695.78 33099.15 1895.25 11996.79 15498.11 17892.29 11599.07 18898.56 899.85 399.25 126
thres20095.25 18594.57 19497.28 16998.81 12494.92 19598.20 19897.11 29995.24 12196.54 16596.22 31084.58 27199.53 14287.93 31096.50 19397.39 217
XVG-OURS-SEG-HR96.51 13096.34 12597.02 18398.77 12693.76 23597.79 24598.50 16695.45 10696.94 14399.09 7487.87 21699.55 14196.76 10895.83 21297.74 208
XVG-OURS96.55 12996.41 12396.99 18498.75 12793.76 23597.50 26298.52 15895.67 9696.83 14999.30 3888.95 19099.53 14295.88 13596.26 20397.69 211
test_yl97.22 10296.78 10798.54 8998.73 12896.60 11898.45 16298.31 19694.70 14398.02 9098.42 14790.80 15399.70 11496.81 10396.79 18399.34 111
DCV-MVSNet97.22 10296.78 10798.54 8998.73 12896.60 11898.45 16298.31 19694.70 14398.02 9098.42 14790.80 15399.70 11496.81 10396.79 18399.34 111
CANet98.05 5697.76 6198.90 7198.73 12897.27 9098.35 17598.78 9497.37 2697.72 11398.96 9391.53 13899.92 2198.79 299.65 5899.51 89
Vis-MVSNet (Re-imp)96.87 11896.55 11997.83 13698.73 12895.46 17199.20 2998.30 20294.96 13596.60 16098.87 10390.05 16598.59 24193.67 20898.60 13299.46 102
PAPR96.84 11996.24 13098.65 8198.72 13296.92 10597.36 27298.57 14793.33 20796.67 15697.57 22694.30 9299.56 13691.05 27198.59 13399.47 98
canonicalmvs97.67 7497.23 8798.98 6598.70 13398.38 3599.34 1198.39 18496.76 5497.67 11697.40 23892.26 11699.49 14598.28 2796.28 20299.08 147
API-MVS97.41 9497.25 8697.91 13298.70 13396.80 10998.82 9798.69 11794.53 15298.11 8398.28 16494.50 8899.57 13494.12 19499.49 8897.37 219
MAR-MVS96.91 11696.40 12498.45 9798.69 13596.90 10698.66 13598.68 12092.40 24397.07 13897.96 18991.54 13799.75 10493.68 20698.92 11698.69 174
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-MVSNAJ97.73 7197.77 6097.62 15498.68 13695.58 16497.34 27498.51 16197.29 2898.66 6097.88 19694.51 8599.90 3397.87 4299.17 10997.39 217
alignmvs97.56 8497.07 9499.01 6298.66 13798.37 4198.83 9498.06 24696.74 5598.00 9697.65 21890.80 15399.48 14998.37 2396.56 19099.19 132
Vis-MVSNetpermissive97.42 9397.11 9198.34 10698.66 13796.23 13599.22 2599.00 2796.63 6098.04 8899.21 4888.05 21199.35 15896.01 13299.21 10699.45 104
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPP-MVSNet97.46 8797.28 8597.99 12898.64 13995.38 17399.33 1398.31 19693.61 19897.19 13299.07 7794.05 9599.23 16796.89 9598.43 14399.37 110
ab-mvs96.42 13395.71 14698.55 8798.63 14096.75 11297.88 23698.74 10293.84 17996.54 16598.18 17485.34 26099.75 10495.93 13396.35 19699.15 138
PCF-MVS93.45 1194.68 21693.43 26098.42 10198.62 14196.77 11195.48 33298.20 21484.63 33593.34 25998.32 16188.55 19899.81 7084.80 32898.96 11598.68 175
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
xiu_mvs_v2_base97.66 7597.70 6397.56 15898.61 14295.46 17197.44 26398.46 17197.15 4098.65 6198.15 17594.33 9199.80 7997.84 4698.66 13197.41 215
sss97.39 9596.98 9998.61 8398.60 14396.61 11798.22 19498.93 3793.97 17398.01 9498.48 14191.98 12699.85 4996.45 11698.15 15199.39 108
Test_1112_low_res96.34 13695.66 15098.36 10598.56 14495.94 15097.71 24998.07 24292.10 25394.79 20097.29 24391.75 13099.56 13694.17 19296.50 19399.58 82
1112_ss96.63 12496.00 13798.50 9398.56 14496.37 12998.18 20698.10 23492.92 22494.84 19698.43 14592.14 12199.58 13394.35 18596.51 19299.56 84
BH-untuned95.95 14995.72 14396.65 20798.55 14692.26 26998.23 19397.79 26293.73 18694.62 20298.01 18588.97 18999.00 19793.04 22698.51 13798.68 175
LS3D97.16 10796.66 11698.68 7998.53 14797.19 9698.93 7598.90 4492.83 22995.99 18199.37 2292.12 12299.87 4493.67 20899.57 7598.97 156
CS-MVS97.81 6797.61 6598.41 10298.52 14897.15 9899.09 4698.55 15196.18 7697.61 12297.20 25094.59 8399.39 15597.62 6199.10 11198.70 172
AUN-MVS94.53 22993.73 24796.92 19398.50 14993.52 24698.34 17698.10 23493.83 18195.94 18397.98 18885.59 25599.03 19394.35 18580.94 34098.22 196
baseline195.84 15495.12 17198.01 12798.49 15095.98 14298.73 11797.03 30495.37 11296.22 17598.19 17389.96 16799.16 17394.60 17587.48 31498.90 162
HY-MVS93.96 896.82 12096.23 13198.57 8598.46 15197.00 10198.14 20998.21 21293.95 17496.72 15597.99 18791.58 13399.76 10294.51 18096.54 19198.95 159
ETV-MVS97.96 5897.81 5998.40 10398.42 15297.27 9098.73 11798.55 15196.84 5198.38 7597.44 23595.39 5599.35 15897.62 6198.89 11898.58 184
tttt051796.07 14395.51 15397.78 13998.41 15394.84 19799.28 1694.33 34394.26 16297.64 12098.64 12684.05 28199.47 15095.34 15497.60 17099.03 150
EIA-MVS97.75 7097.58 6798.27 10998.38 15496.44 12699.01 6098.60 13995.88 8797.26 13097.53 22994.97 7499.33 16097.38 7699.20 10799.05 149
thisisatest053096.01 14695.36 15997.97 12998.38 15495.52 16998.88 8594.19 34594.04 16797.64 12098.31 16283.82 28899.46 15195.29 15897.70 16798.93 160
xiu_mvs_v1_base_debu97.60 7897.56 6997.72 14498.35 15695.98 14297.86 23898.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 219
xiu_mvs_v1_base97.60 7897.56 6997.72 14498.35 15695.98 14297.86 23898.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 219
xiu_mvs_v1_base_debi97.60 7897.56 6997.72 14498.35 15695.98 14297.86 23898.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 219
baseline97.64 7697.44 7998.25 11298.35 15696.20 13699.00 6298.32 19496.33 7298.03 8999.17 5691.35 14199.16 17398.10 3198.29 14999.39 108
BH-w/o95.38 17695.08 17396.26 24498.34 16091.79 27797.70 25097.43 28792.87 22794.24 22297.22 24888.66 19498.84 21891.55 26497.70 16798.16 198
MVS_Test97.28 10097.00 9798.13 12098.33 16195.97 14798.74 11398.07 24294.27 16198.44 7298.07 18092.48 11199.26 16396.43 11898.19 15099.16 137
casdiffmvs97.63 7797.41 8098.28 10898.33 16196.14 13998.82 9798.32 19496.38 7097.95 9899.21 4891.23 14599.23 16798.12 3098.37 14499.48 96
diffmvs97.58 8297.40 8198.13 12098.32 16395.81 15998.06 21798.37 18796.20 7598.74 5398.89 10191.31 14399.25 16498.16 2998.52 13699.34 111
BH-RMVSNet95.92 15195.32 16397.69 14898.32 16394.64 20598.19 20297.45 28594.56 15196.03 17998.61 12785.02 26399.12 17990.68 27699.06 11299.30 120
Fast-Effi-MVS+96.28 13995.70 14798.03 12698.29 16595.97 14798.58 14398.25 21091.74 26195.29 18997.23 24791.03 15099.15 17692.90 23097.96 15698.97 156
UGNet96.78 12196.30 12798.19 11798.24 16695.89 15798.88 8598.93 3797.39 2396.81 15297.84 20182.60 29299.90 3396.53 11399.49 8898.79 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVSTER96.06 14495.72 14397.08 18198.23 16795.93 15398.73 11798.27 20594.86 13995.07 19098.09 17988.21 20498.54 24596.59 11193.46 24196.79 253
ET-MVSNet_ETH3D94.13 25392.98 26897.58 15698.22 16896.20 13697.31 27795.37 33294.53 15279.56 34297.63 22286.51 23897.53 32196.91 9290.74 27699.02 151
GBi-Net94.49 23293.80 24096.56 21998.21 16995.00 18898.82 9798.18 21892.46 23794.09 22997.07 26181.16 29897.95 30492.08 25092.14 25796.72 262
test194.49 23293.80 24096.56 21998.21 16995.00 18898.82 9798.18 21892.46 23794.09 22997.07 26181.16 29897.95 30492.08 25092.14 25796.72 262
FMVSNet294.47 23493.61 25397.04 18298.21 16996.43 12798.79 10898.27 20592.46 23793.50 25497.09 25881.16 29898.00 30291.09 26791.93 26196.70 266
Effi-MVS+97.12 10996.69 11398.39 10498.19 17296.72 11397.37 27098.43 17893.71 18897.65 11998.02 18392.20 12099.25 16496.87 10197.79 16299.19 132
mvs_anonymous96.70 12396.53 12197.18 17498.19 17293.78 23498.31 18498.19 21594.01 17094.47 20798.27 16792.08 12498.46 25297.39 7597.91 15799.31 117
LCM-MVSNet-Re95.22 18795.32 16394.91 28898.18 17487.85 33298.75 11095.66 33195.11 12788.96 32196.85 28590.26 16497.65 31695.65 14798.44 14199.22 128
FMVSNet394.97 20394.26 21197.11 17998.18 17496.62 11598.56 14998.26 20993.67 19594.09 22997.10 25484.25 27698.01 30092.08 25092.14 25796.70 266
CANet_DTU96.96 11496.55 11998.21 11498.17 17696.07 14197.98 22598.21 21297.24 3597.13 13498.93 9786.88 23499.91 3095.00 16599.37 10198.66 178
thisisatest051595.61 16794.89 18297.76 14198.15 17795.15 18396.77 31294.41 34192.95 22397.18 13397.43 23684.78 26899.45 15294.63 17297.73 16698.68 175
IterMVS-LS95.46 16995.21 16796.22 24598.12 17893.72 24098.32 18398.13 22993.71 18894.26 22097.31 24292.24 11798.10 29294.63 17290.12 28296.84 249
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl-mvsnet294.68 21694.19 21496.13 24998.11 17993.60 24296.94 29898.31 19692.43 24193.32 26096.87 28486.51 23898.28 28294.10 19691.16 27196.51 294
VDDNet95.36 17994.53 19697.86 13498.10 18095.13 18498.85 9097.75 26490.46 29398.36 7699.39 1473.27 34099.64 12597.98 3696.58 18998.81 166
MVSFormer97.57 8397.49 7597.84 13598.07 18195.76 16099.47 298.40 18294.98 13398.79 4998.83 10792.34 11398.41 26596.91 9299.59 7199.34 111
lupinMVS97.44 9197.22 8898.12 12298.07 18195.76 16097.68 25297.76 26394.50 15598.79 4998.61 12792.34 11399.30 16197.58 6599.59 7199.31 117
TAMVS97.02 11296.79 10697.70 14798.06 18395.31 17898.52 15398.31 19693.95 17497.05 14098.61 12793.49 10198.52 24795.33 15597.81 16199.29 122
CDS-MVSNet96.99 11396.69 11397.90 13398.05 18495.98 14298.20 19898.33 19393.67 19596.95 14298.49 14093.54 10098.42 25895.24 16197.74 16599.31 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ADS-MVSNet294.58 22594.40 20795.11 28398.00 18588.74 32296.04 32497.30 29290.15 29996.47 16996.64 29587.89 21497.56 32090.08 28397.06 17799.02 151
ADS-MVSNet95.00 19994.45 20396.63 21098.00 18591.91 27596.04 32497.74 26590.15 29996.47 16996.64 29587.89 21498.96 20190.08 28397.06 17799.02 151
IterMVS94.09 25793.85 23894.80 29497.99 18790.35 30297.18 28598.12 23093.68 19392.46 28897.34 23984.05 28197.41 32392.51 24391.33 26796.62 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PVSNet_088.72 1991.28 29490.03 29995.00 28697.99 18787.29 33594.84 33798.50 16692.06 25489.86 31595.19 32579.81 30999.39 15592.27 24769.79 34898.33 193
IterMVS-SCA-FT94.11 25593.87 23694.85 29197.98 18990.56 30097.18 28598.11 23293.75 18392.58 28297.48 23183.97 28397.41 32392.48 24591.30 26896.58 279
EI-MVSNet95.96 14895.83 14196.36 23797.93 19093.70 24198.12 21298.27 20593.70 19095.07 19099.02 8092.23 11898.54 24594.68 17193.46 24196.84 249
CVMVSNet95.43 17296.04 13593.57 31197.93 19083.62 34198.12 21298.59 14195.68 9596.56 16199.02 8087.51 22297.51 32293.56 21297.44 17299.60 78
PMMVS96.60 12596.33 12697.41 16497.90 19293.93 23097.35 27398.41 18092.84 22897.76 10997.45 23491.10 14899.20 17096.26 12297.91 15799.11 143
Effi-MVS+-dtu96.29 13796.56 11895.51 27097.89 19390.22 30398.80 10498.10 23496.57 6296.45 17196.66 29290.81 15198.91 20895.72 14297.99 15597.40 216
mvs-test196.60 12596.68 11596.37 23697.89 19391.81 27698.56 14998.10 23496.57 6296.52 16797.94 19190.81 15199.45 15295.72 14298.01 15497.86 205
QAPM96.29 13795.40 15498.96 6797.85 19597.60 7999.23 2198.93 3789.76 30593.11 26899.02 8089.11 18299.93 1591.99 25599.62 6699.34 111
3Dnovator+94.38 697.43 9296.78 10799.38 1797.83 19698.52 2799.37 798.71 11397.09 4592.99 27199.13 6489.36 17499.89 3596.97 8899.57 7599.71 44
ACMH+92.99 1494.30 24293.77 24395.88 26097.81 19792.04 27498.71 12298.37 18793.99 17290.60 31198.47 14280.86 30399.05 18992.75 23492.40 25696.55 285
3Dnovator94.51 597.46 8796.93 10099.07 6097.78 19897.64 7699.35 1099.06 2297.02 4793.75 24599.16 6189.25 17799.92 2197.22 8099.75 3899.64 70
miper_lstm_enhance94.33 24094.07 22295.11 28397.75 19990.97 29297.22 28298.03 24991.67 26592.76 27696.97 27490.03 16697.78 31492.51 24389.64 28896.56 283
cl_fuxian94.79 21194.43 20595.89 25997.75 19993.12 26297.16 28898.03 24992.23 24993.46 25697.05 26691.39 13998.01 30093.58 21189.21 29696.53 288
TR-MVS94.94 20694.20 21397.17 17597.75 19994.14 22697.59 25897.02 30692.28 24895.75 18497.64 22083.88 28598.96 20189.77 28996.15 20798.40 189
Fast-Effi-MVS+-dtu95.87 15295.85 14095.91 25797.74 20291.74 28098.69 12898.15 22695.56 10194.92 19497.68 21788.98 18898.79 22493.19 22197.78 16397.20 223
MIMVSNet93.26 27492.21 28196.41 23497.73 20393.13 26195.65 33197.03 30491.27 28194.04 23296.06 31375.33 33297.19 32686.56 31696.23 20598.92 161
miper_ehance_all_eth95.01 19894.69 19095.97 25497.70 20493.31 25597.02 29498.07 24292.23 24993.51 25396.96 27691.85 12898.15 28893.68 20691.16 27196.44 301
SCA95.46 16995.13 17096.46 23197.67 20591.29 28897.33 27597.60 27094.68 14696.92 14697.10 25483.97 28398.89 21292.59 23898.32 14899.20 129
ACMP93.49 1095.34 18194.98 17896.43 23397.67 20593.48 24898.73 11798.44 17594.94 13892.53 28498.53 13684.50 27399.14 17795.48 15294.00 23096.66 272
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
eth_miper_zixun_eth94.68 21694.41 20695.47 27297.64 20791.71 28196.73 31598.07 24292.71 23193.64 24697.21 24990.54 15898.17 28793.38 21489.76 28696.54 286
ACMH92.88 1694.55 22793.95 23196.34 23997.63 20893.26 25798.81 10398.49 17093.43 20489.74 31698.53 13681.91 29599.08 18793.69 20593.30 24796.70 266
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMM93.85 995.69 16295.38 15896.61 21297.61 20993.84 23398.91 7798.44 17595.25 11994.28 21998.47 14286.04 25099.12 17995.50 15193.95 23296.87 245
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Patchmatch-test94.42 23693.68 25196.63 21097.60 21091.76 27894.83 33897.49 28289.45 31094.14 22797.10 25488.99 18598.83 22085.37 32698.13 15299.29 122
RRT_test8_iter0594.56 22694.19 21495.67 26797.60 21091.34 28498.93 7598.42 17994.75 14293.39 25797.87 19779.00 31498.61 23696.78 10790.99 27497.07 225
cl-mvsnet_94.51 23194.01 22696.02 25197.58 21293.40 25297.05 29297.96 25491.73 26392.76 27697.08 26089.06 18498.13 29092.61 23590.29 28196.52 291
tpm cat193.36 26992.80 27195.07 28597.58 21287.97 33096.76 31397.86 26082.17 34093.53 25096.04 31486.13 24699.13 17889.24 30095.87 21198.10 199
MVS-HIRNet89.46 30888.40 30992.64 31897.58 21282.15 34594.16 34393.05 35075.73 34690.90 30682.52 34779.42 31198.33 27383.53 33198.68 12797.43 214
PatchmatchNetpermissive95.71 16095.52 15296.29 24397.58 21290.72 29796.84 31097.52 27894.06 16697.08 13696.96 27689.24 17898.90 21192.03 25498.37 14499.26 125
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cl-mvsnet194.52 23094.03 22395.99 25297.57 21693.38 25397.05 29297.94 25591.74 26192.81 27497.10 25489.12 18198.07 29692.60 23690.30 28096.53 288
test_part192.87 28191.72 28796.32 24197.55 21793.50 24799.04 5398.74 10283.31 33790.81 30897.70 21376.61 32798.60 24094.43 18287.30 31896.85 248
tpmrst95.63 16495.69 14895.44 27497.54 21888.54 32596.97 29697.56 27293.50 20197.52 12796.93 28089.49 17099.16 17395.25 16096.42 19598.64 180
FMVSNet193.19 27792.07 28296.56 21997.54 21895.00 18898.82 9798.18 21890.38 29692.27 29197.07 26173.68 33997.95 30489.36 29991.30 26896.72 262
miper_enhance_ethall95.10 19494.75 18796.12 25097.53 22093.73 23996.61 31898.08 24092.20 25293.89 23796.65 29492.44 11298.30 27894.21 19191.16 27196.34 304
CLD-MVS95.62 16595.34 16096.46 23197.52 22193.75 23797.27 28098.46 17195.53 10294.42 21398.00 18686.21 24598.97 19896.25 12394.37 21796.66 272
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MDTV_nov1_ep1395.40 15497.48 22288.34 32796.85 30997.29 29393.74 18597.48 12897.26 24489.18 17999.05 18991.92 25797.43 173
IB-MVS91.98 1793.27 27391.97 28497.19 17397.47 22393.41 25197.09 29195.99 32693.32 20892.47 28795.73 31878.06 31999.53 14294.59 17782.98 33398.62 181
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS_030492.81 28292.01 28395.23 27897.46 22491.33 28698.17 20798.81 7691.13 28693.80 24395.68 32366.08 34798.06 29790.79 27396.13 20896.32 307
tpmvs94.60 22294.36 20895.33 27797.46 22488.60 32496.88 30797.68 26691.29 27993.80 24396.42 30388.58 19599.24 16691.06 26996.04 21098.17 197
LPG-MVS_test95.62 16595.34 16096.47 22897.46 22493.54 24498.99 6498.54 15494.67 14794.36 21598.77 11485.39 25799.11 18295.71 14494.15 22596.76 257
LGP-MVS_train96.47 22897.46 22493.54 24498.54 15494.67 14794.36 21598.77 11485.39 25799.11 18295.71 14494.15 22596.76 257
jason97.32 9997.08 9398.06 12597.45 22895.59 16397.87 23797.91 25894.79 14198.55 6698.83 10791.12 14699.23 16797.58 6599.60 6899.34 111
jason: jason.
HQP_MVS96.14 14295.90 13996.85 19697.42 22994.60 21198.80 10498.56 14997.28 2995.34 18698.28 16487.09 22999.03 19396.07 12694.27 21996.92 234
plane_prior797.42 22994.63 206
ITE_SJBPF95.44 27497.42 22991.32 28797.50 28095.09 13093.59 24798.35 15581.70 29698.88 21489.71 29193.39 24596.12 312
LTVRE_ROB92.95 1594.60 22293.90 23496.68 20697.41 23294.42 21698.52 15398.59 14191.69 26491.21 30398.35 15584.87 26699.04 19291.06 26993.44 24496.60 277
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
plane_prior197.37 233
plane_prior697.35 23494.61 20987.09 229
DWT-MVSNet_test94.82 20994.36 20896.20 24697.35 23490.79 29598.34 17696.57 32492.91 22595.33 18896.44 30282.00 29499.12 17994.52 17995.78 21398.70 172
dp94.15 25293.90 23494.90 28997.31 23686.82 33796.97 29697.19 29891.22 28396.02 18096.61 29785.51 25699.02 19690.00 28794.30 21898.85 163
NP-MVS97.28 23794.51 21497.73 210
CostFormer94.95 20494.73 18895.60 26997.28 23789.06 31797.53 26196.89 31489.66 30796.82 15196.72 29086.05 24898.95 20595.53 15096.13 20898.79 167
VPA-MVSNet95.75 15895.11 17297.69 14897.24 23997.27 9098.94 7499.23 1295.13 12595.51 18597.32 24185.73 25298.91 20897.33 7889.55 29196.89 242
tpm294.19 24993.76 24595.46 27397.23 24089.04 31897.31 27796.85 31787.08 32296.21 17696.79 28883.75 28998.74 22792.43 24696.23 20598.59 182
EPMVS94.99 20094.48 19996.52 22497.22 24191.75 27997.23 28191.66 35194.11 16497.28 12996.81 28785.70 25398.84 21893.04 22697.28 17598.97 156
FMVSNet591.81 28990.92 29294.49 30097.21 24292.09 27198.00 22497.55 27689.31 31290.86 30795.61 32474.48 33695.32 34285.57 32389.70 28796.07 314
HQP-NCC97.20 24398.05 21896.43 6794.45 208
ACMP_Plane97.20 24398.05 21896.43 6794.45 208
HQP-MVS95.72 15995.40 15496.69 20597.20 24394.25 22498.05 21898.46 17196.43 6794.45 20897.73 21086.75 23598.96 20195.30 15694.18 22396.86 247
UniMVSNet_ETH3D94.24 24693.33 26296.97 18797.19 24693.38 25398.74 11398.57 14791.21 28493.81 24298.58 13272.85 34198.77 22695.05 16493.93 23398.77 169
OpenMVScopyleft93.04 1395.83 15595.00 17698.32 10797.18 24797.32 8799.21 2898.97 3089.96 30391.14 30499.05 7986.64 23799.92 2193.38 21499.47 9097.73 209
VPNet94.99 20094.19 21497.40 16697.16 24896.57 12098.71 12298.97 3095.67 9694.84 19698.24 17080.36 30698.67 23396.46 11587.32 31796.96 231
GA-MVS94.81 21094.03 22397.14 17697.15 24993.86 23296.76 31397.58 27194.00 17194.76 20197.04 26780.91 30198.48 24991.79 25996.25 20499.09 144
FIs96.51 13096.12 13397.67 15097.13 25097.54 8199.36 899.22 1495.89 8694.03 23398.35 15591.98 12698.44 25596.40 11992.76 25397.01 228
131496.25 14195.73 14297.79 13897.13 25095.55 16898.19 20298.59 14193.47 20292.03 29697.82 20591.33 14299.49 14594.62 17498.44 14198.32 194
D2MVS95.18 19095.08 17395.48 27197.10 25292.07 27298.30 18699.13 1994.02 16992.90 27296.73 28989.48 17198.73 22894.48 18193.60 24095.65 322
DeepMVS_CXcopyleft86.78 32797.09 25372.30 35195.17 33675.92 34584.34 33895.19 32570.58 34295.35 34179.98 33989.04 29992.68 343
RRT_MVS96.04 14595.53 15197.56 15897.07 25497.32 8798.57 14898.09 23895.15 12495.02 19298.44 14488.20 20598.58 24396.17 12593.09 25096.79 253
PAPM94.95 20494.00 22797.78 13997.04 25595.65 16296.03 32698.25 21091.23 28294.19 22597.80 20791.27 14498.86 21782.61 33397.61 16998.84 165
CR-MVSNet94.76 21394.15 21896.59 21597.00 25693.43 24994.96 33497.56 27292.46 23796.93 14496.24 30688.15 20797.88 31287.38 31296.65 18798.46 187
RPMNet92.81 28291.34 29097.24 17097.00 25693.43 24994.96 33498.80 8682.27 33996.93 14492.12 34186.98 23299.82 6376.32 34696.65 18798.46 187
UniMVSNet (Re)95.78 15795.19 16897.58 15696.99 25897.47 8398.79 10899.18 1695.60 9993.92 23697.04 26791.68 13198.48 24995.80 13987.66 31396.79 253
FC-MVSNet-test96.42 13396.05 13497.53 16096.95 25997.27 9099.36 899.23 1295.83 8993.93 23598.37 15392.00 12598.32 27496.02 13192.72 25497.00 229
tfpnnormal93.66 26592.70 27496.55 22296.94 26095.94 15098.97 6899.19 1591.04 28791.38 30297.34 23984.94 26598.61 23685.45 32589.02 30095.11 327
TESTMET0.1,194.18 25193.69 25095.63 26896.92 26189.12 31696.91 30194.78 33893.17 21494.88 19596.45 30178.52 31698.92 20793.09 22398.50 13898.85 163
TinyColmap92.31 28791.53 28894.65 29896.92 26189.75 30696.92 29996.68 32190.45 29489.62 31797.85 20076.06 33098.81 22286.74 31592.51 25595.41 323
cascas94.63 22193.86 23796.93 19196.91 26394.27 22296.00 32798.51 16185.55 33294.54 20496.23 30884.20 27998.87 21595.80 13996.98 18097.66 212
nrg03096.28 13995.72 14397.96 13196.90 26498.15 5699.39 598.31 19695.47 10594.42 21398.35 15592.09 12398.69 22997.50 7289.05 29897.04 227
MVS94.67 21993.54 25698.08 12396.88 26596.56 12198.19 20298.50 16678.05 34492.69 27998.02 18391.07 14999.63 12890.09 28298.36 14698.04 200
WR-MVS_H95.05 19794.46 20196.81 19896.86 26695.82 15899.24 2099.24 1093.87 17892.53 28496.84 28690.37 16098.24 28493.24 21987.93 31096.38 303
UniMVSNet_NR-MVSNet95.71 16095.15 16997.40 16696.84 26796.97 10298.74 11399.24 1095.16 12393.88 23897.72 21291.68 13198.31 27695.81 13787.25 31996.92 234
USDC93.33 27292.71 27395.21 27996.83 26890.83 29496.91 30197.50 28093.84 17990.72 30998.14 17677.69 32198.82 22189.51 29693.21 24995.97 316
test-LLR95.10 19494.87 18395.80 26296.77 26989.70 30796.91 30195.21 33395.11 12794.83 19895.72 32087.71 21898.97 19893.06 22498.50 13898.72 170
test-mter94.08 25893.51 25795.80 26296.77 26989.70 30796.91 30195.21 33392.89 22694.83 19895.72 32077.69 32198.97 19893.06 22498.50 13898.72 170
Patchmtry93.22 27592.35 27995.84 26196.77 26993.09 26394.66 33997.56 27287.37 32192.90 27296.24 30688.15 20797.90 30887.37 31390.10 28396.53 288
gg-mvs-nofinetune92.21 28890.58 29597.13 17796.75 27295.09 18595.85 32889.40 35485.43 33394.50 20681.98 34880.80 30498.40 27192.16 24898.33 14797.88 203
XXY-MVS95.20 18994.45 20397.46 16196.75 27296.56 12198.86 8998.65 13593.30 21093.27 26198.27 16784.85 26798.87 21594.82 16991.26 27096.96 231
CP-MVSNet94.94 20694.30 21096.83 19796.72 27495.56 16699.11 4298.95 3493.89 17692.42 28997.90 19487.19 22898.12 29194.32 18788.21 30796.82 252
PatchT93.06 27991.97 28496.35 23896.69 27592.67 26694.48 34097.08 30086.62 32397.08 13692.23 34087.94 21397.90 30878.89 34296.69 18598.49 186
PS-CasMVS94.67 21993.99 22996.71 20296.68 27695.26 17999.13 3999.03 2593.68 19392.33 29097.95 19085.35 25998.10 29293.59 21088.16 30996.79 253
WR-MVS95.15 19194.46 20197.22 17196.67 27796.45 12598.21 19598.81 7694.15 16393.16 26497.69 21487.51 22298.30 27895.29 15888.62 30496.90 241
baseline295.11 19394.52 19796.87 19596.65 27893.56 24398.27 19194.10 34793.45 20392.02 29797.43 23687.45 22699.19 17193.88 20197.41 17497.87 204
test_040291.32 29390.27 29794.48 30196.60 27991.12 29098.50 15897.22 29786.10 32888.30 32496.98 27377.65 32397.99 30378.13 34492.94 25294.34 333
TransMVSNet (Re)92.67 28491.51 28996.15 24796.58 28094.65 20498.90 7896.73 31890.86 28989.46 31997.86 19885.62 25498.09 29486.45 31781.12 33895.71 320
XVG-ACMP-BASELINE94.54 22894.14 21995.75 26596.55 28191.65 28298.11 21498.44 17594.96 13594.22 22397.90 19479.18 31399.11 18294.05 19893.85 23496.48 298
DU-MVS95.42 17394.76 18697.40 16696.53 28296.97 10298.66 13598.99 2995.43 10793.88 23897.69 21488.57 19698.31 27695.81 13787.25 31996.92 234
NR-MVSNet94.98 20294.16 21797.44 16296.53 28297.22 9598.74 11398.95 3494.96 13589.25 32097.69 21489.32 17598.18 28694.59 17787.40 31696.92 234
tpm94.13 25393.80 24095.12 28296.50 28487.91 33197.44 26395.89 33092.62 23396.37 17396.30 30584.13 28098.30 27893.24 21991.66 26599.14 140
pm-mvs193.94 26393.06 26796.59 21596.49 28595.16 18198.95 7298.03 24992.32 24691.08 30597.84 20184.54 27298.41 26592.16 24886.13 33096.19 311
JIA-IIPM93.35 27092.49 27795.92 25696.48 28690.65 29895.01 33396.96 30885.93 32996.08 17887.33 34587.70 22098.78 22591.35 26695.58 21498.34 192
TranMVSNet+NR-MVSNet95.14 19294.48 19997.11 17996.45 28796.36 13099.03 5699.03 2595.04 13193.58 24897.93 19288.27 20398.03 29994.13 19386.90 32496.95 233
testgi93.06 27992.45 27894.88 29096.43 28889.90 30498.75 11097.54 27795.60 9991.63 30197.91 19374.46 33797.02 32886.10 31993.67 23697.72 210
v1094.29 24393.55 25596.51 22596.39 28994.80 20198.99 6498.19 21591.35 27593.02 27096.99 27288.09 20998.41 26590.50 27888.41 30696.33 306
v894.47 23493.77 24396.57 21896.36 29094.83 19999.05 5298.19 21591.92 25793.16 26496.97 27488.82 19398.48 24991.69 26287.79 31196.39 302
GG-mvs-BLEND96.59 21596.34 29194.98 19196.51 32188.58 35593.10 26994.34 33180.34 30798.05 29889.53 29596.99 17996.74 259
V4294.78 21294.14 21996.70 20496.33 29295.22 18098.97 6898.09 23892.32 24694.31 21897.06 26488.39 20198.55 24492.90 23088.87 30296.34 304
PEN-MVS94.42 23693.73 24796.49 22696.28 29394.84 19799.17 3399.00 2793.51 20092.23 29297.83 20486.10 24797.90 30892.55 24186.92 32396.74 259
v114494.59 22493.92 23296.60 21496.21 29494.78 20398.59 14198.14 22891.86 26094.21 22497.02 26987.97 21298.41 26591.72 26189.57 28996.61 276
Baseline_NR-MVSNet94.35 23993.81 23995.96 25596.20 29594.05 22898.61 14096.67 32291.44 27193.85 24097.60 22388.57 19698.14 28994.39 18386.93 32295.68 321
MS-PatchMatch93.84 26493.63 25294.46 30396.18 29689.45 31197.76 24698.27 20592.23 24992.13 29497.49 23079.50 31098.69 22989.75 29099.38 10095.25 325
v2v48294.69 21494.03 22396.65 20796.17 29794.79 20298.67 13298.08 24092.72 23094.00 23497.16 25287.69 22198.45 25392.91 22988.87 30296.72 262
EPNet_dtu95.21 18894.95 18095.99 25296.17 29790.45 30198.16 20897.27 29596.77 5393.14 26798.33 16090.34 16198.42 25885.57 32398.81 12599.09 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS95.69 16295.33 16296.76 20096.16 29994.63 20698.43 16798.39 18496.64 5995.02 19298.78 11285.15 26299.05 18995.21 16294.20 22296.60 277
v119294.32 24193.58 25496.53 22396.10 30094.45 21598.50 15898.17 22391.54 26894.19 22597.06 26486.95 23398.43 25790.14 28189.57 28996.70 266
v14894.29 24393.76 24595.91 25796.10 30092.93 26498.58 14397.97 25292.59 23593.47 25596.95 27888.53 19998.32 27492.56 24087.06 32196.49 297
v14419294.39 23893.70 24996.48 22796.06 30294.35 22098.58 14398.16 22591.45 27094.33 21797.02 26987.50 22498.45 25391.08 26889.11 29796.63 274
DTE-MVSNet93.98 26293.26 26596.14 24896.06 30294.39 21899.20 2998.86 6193.06 21791.78 29897.81 20685.87 25197.58 31990.53 27786.17 32896.46 300
v124094.06 26093.29 26496.34 23996.03 30493.90 23198.44 16598.17 22391.18 28594.13 22897.01 27186.05 24898.42 25889.13 30289.50 29296.70 266
v192192094.20 24893.47 25996.40 23595.98 30594.08 22798.52 15398.15 22691.33 27694.25 22197.20 25086.41 24298.42 25890.04 28689.39 29496.69 271
EU-MVSNet93.66 26594.14 21992.25 32195.96 30683.38 34298.52 15398.12 23094.69 14592.61 28198.13 17787.36 22796.39 33891.82 25890.00 28496.98 230
v7n94.19 24993.43 26096.47 22895.90 30794.38 21999.26 1898.34 19291.99 25592.76 27697.13 25388.31 20298.52 24789.48 29787.70 31296.52 291
gm-plane-assit95.88 30887.47 33389.74 30696.94 27999.19 17193.32 218
LF4IMVS93.14 27892.79 27294.20 30695.88 30888.67 32397.66 25497.07 30193.81 18291.71 29997.65 21877.96 32098.81 22291.47 26591.92 26295.12 326
PS-MVSNAJss96.43 13296.26 12996.92 19395.84 31095.08 18699.16 3498.50 16695.87 8893.84 24198.34 15994.51 8598.61 23696.88 9893.45 24397.06 226
pmmvs494.69 21493.99 22996.81 19895.74 31195.94 15097.40 26697.67 26790.42 29593.37 25897.59 22489.08 18398.20 28592.97 22891.67 26496.30 308
test_djsdf96.00 14795.69 14896.93 19195.72 31295.49 17099.47 298.40 18294.98 13394.58 20397.86 19889.16 18098.41 26596.91 9294.12 22796.88 243
SixPastTwentyTwo93.34 27192.86 27094.75 29595.67 31389.41 31398.75 11096.67 32293.89 17690.15 31498.25 16980.87 30298.27 28390.90 27290.64 27796.57 281
K. test v392.55 28591.91 28694.48 30195.64 31489.24 31499.07 5094.88 33794.04 16786.78 32997.59 22477.64 32497.64 31792.08 25089.43 29396.57 281
OurMVSNet-221017-094.21 24794.00 22794.85 29195.60 31589.22 31598.89 8297.43 28795.29 11692.18 29398.52 13982.86 29198.59 24193.46 21391.76 26396.74 259
mvs_tets95.41 17595.00 17696.65 20795.58 31694.42 21699.00 6298.55 15195.73 9393.21 26398.38 15283.45 29098.63 23597.09 8494.00 23096.91 239
Gipumacopyleft78.40 31676.75 31983.38 33195.54 31780.43 34779.42 35297.40 28964.67 34973.46 34680.82 34945.65 35393.14 34766.32 34987.43 31576.56 350
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test0.0.03 194.08 25893.51 25795.80 26295.53 31892.89 26597.38 26895.97 32795.11 12792.51 28696.66 29287.71 21896.94 32987.03 31493.67 23697.57 213
pmmvs593.65 26792.97 26995.68 26695.49 31992.37 26898.20 19897.28 29489.66 30792.58 28297.26 24482.14 29398.09 29493.18 22290.95 27596.58 279
N_pmnet87.12 31387.77 31285.17 33095.46 32061.92 35597.37 27070.66 36085.83 33088.73 32396.04 31485.33 26197.76 31580.02 33790.48 27895.84 318
our_test_393.65 26793.30 26394.69 29695.45 32189.68 30996.91 30197.65 26891.97 25691.66 30096.88 28289.67 16997.93 30788.02 30991.49 26696.48 298
ppachtmachnet_test93.22 27592.63 27594.97 28795.45 32190.84 29396.88 30797.88 25990.60 29192.08 29597.26 24488.08 21097.86 31385.12 32790.33 27996.22 309
jajsoiax95.45 17195.03 17596.73 20195.42 32394.63 20699.14 3698.52 15895.74 9293.22 26298.36 15483.87 28698.65 23496.95 9194.04 22896.91 239
MDA-MVSNet-bldmvs89.97 30588.35 31094.83 29395.21 32491.34 28497.64 25597.51 27988.36 31771.17 34996.13 31279.22 31296.63 33583.65 33086.27 32796.52 291
anonymousdsp95.42 17394.91 18196.94 19095.10 32595.90 15699.14 3698.41 18093.75 18393.16 26497.46 23287.50 22498.41 26595.63 14894.03 22996.50 296
EPNet97.28 10096.87 10398.51 9294.98 32696.14 13998.90 7897.02 30698.28 195.99 18199.11 6791.36 14099.89 3596.98 8799.19 10899.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVP-Stereo94.28 24593.92 23295.35 27694.95 32792.60 26797.97 22697.65 26891.61 26790.68 31097.09 25886.32 24498.42 25889.70 29299.34 10295.02 330
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
lessismore_v094.45 30494.93 32888.44 32691.03 35286.77 33097.64 22076.23 32998.42 25890.31 28085.64 33196.51 294
MDA-MVSNet_test_wron90.71 29989.38 30494.68 29794.83 32990.78 29697.19 28497.46 28387.60 31972.41 34895.72 32086.51 23896.71 33385.92 32186.80 32596.56 283
YYNet190.70 30089.39 30394.62 29994.79 33090.65 29897.20 28397.46 28387.54 32072.54 34795.74 31786.51 23896.66 33486.00 32086.76 32696.54 286
EG-PatchMatch MVS91.13 29590.12 29894.17 30894.73 33189.00 31998.13 21197.81 26189.22 31385.32 33696.46 30067.71 34498.42 25887.89 31193.82 23595.08 328
pmmvs691.77 29090.63 29495.17 28194.69 33291.24 28998.67 13297.92 25786.14 32789.62 31797.56 22875.79 33198.34 27290.75 27584.56 33295.94 317
new_pmnet90.06 30489.00 30793.22 31794.18 33388.32 32896.42 32296.89 31486.19 32685.67 33593.62 33377.18 32697.10 32781.61 33589.29 29594.23 334
DSMNet-mixed92.52 28692.58 27692.33 32094.15 33482.65 34498.30 18694.26 34489.08 31492.65 28095.73 31885.01 26495.76 34086.24 31897.76 16498.59 182
UnsupCasMVSNet_eth90.99 29789.92 30094.19 30794.08 33589.83 30597.13 29098.67 12893.69 19185.83 33496.19 31175.15 33396.74 33089.14 30179.41 34196.00 315
Anonymous2023120691.66 29191.10 29193.33 31494.02 33687.35 33498.58 14397.26 29690.48 29290.16 31396.31 30483.83 28796.53 33679.36 34089.90 28596.12 312
test20.0390.89 29890.38 29692.43 31993.48 33788.14 32998.33 17897.56 27293.40 20587.96 32596.71 29180.69 30594.13 34679.15 34186.17 32895.01 331
CMPMVSbinary66.06 2189.70 30689.67 30289.78 32593.19 33876.56 34897.00 29598.35 19080.97 34181.57 34197.75 20974.75 33598.61 23689.85 28893.63 23894.17 335
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OpenMVS_ROBcopyleft86.42 2089.00 30987.43 31493.69 31093.08 33989.42 31297.91 23196.89 31478.58 34385.86 33394.69 32969.48 34398.29 28177.13 34593.29 24893.36 342
CL-MVSNet_2432*160090.38 30289.38 30493.40 31392.85 34088.94 32097.95 22797.94 25590.35 29790.25 31293.96 33279.82 30895.94 33984.62 32976.69 34495.33 324
MIMVSNet189.67 30788.28 31193.82 30992.81 34191.08 29198.01 22297.45 28587.95 31887.90 32695.87 31667.63 34594.56 34578.73 34388.18 30895.83 319
UnsupCasMVSNet_bld87.17 31285.12 31693.31 31591.94 34288.77 32194.92 33698.30 20284.30 33682.30 34090.04 34263.96 34997.25 32585.85 32274.47 34793.93 340
Patchmatch-RL test91.49 29290.85 29393.41 31291.37 34384.40 33992.81 34495.93 32991.87 25987.25 32794.87 32888.99 18596.53 33692.54 24282.00 33599.30 120
pmmvs-eth3d90.36 30389.05 30694.32 30591.10 34492.12 27097.63 25796.95 30988.86 31584.91 33793.13 33578.32 31796.74 33088.70 30481.81 33794.09 337
PM-MVS87.77 31186.55 31591.40 32491.03 34583.36 34396.92 29995.18 33591.28 28086.48 33293.42 33453.27 35196.74 33089.43 29881.97 33694.11 336
new-patchmatchnet88.50 31087.45 31391.67 32390.31 34685.89 33897.16 28897.33 29189.47 30983.63 33992.77 33676.38 32895.06 34482.70 33277.29 34394.06 338
testing_290.61 30188.50 30896.95 18990.08 34795.57 16597.69 25198.06 24693.02 21976.55 34392.48 33961.18 35098.44 25595.45 15391.98 26096.84 249
pmmvs386.67 31484.86 31792.11 32288.16 34887.19 33696.63 31794.75 33979.88 34287.22 32892.75 33766.56 34695.20 34381.24 33676.56 34593.96 339
ambc89.49 32686.66 34975.78 34992.66 34596.72 31986.55 33192.50 33846.01 35297.90 30890.32 27982.09 33494.80 332
TDRefinement91.06 29689.68 30195.21 27985.35 35091.49 28398.51 15797.07 30191.47 26988.83 32297.84 20177.31 32599.09 18692.79 23377.98 34295.04 329
PMMVS277.95 31775.44 32185.46 32982.54 35174.95 35094.23 34293.08 34972.80 34774.68 34587.38 34436.36 35791.56 34973.95 34763.94 34989.87 344
E-PMN64.94 32264.25 32467.02 33782.28 35259.36 35891.83 34785.63 35652.69 35260.22 35277.28 35141.06 35580.12 35446.15 35341.14 35161.57 352
EMVS64.07 32363.26 32666.53 33881.73 35358.81 35991.85 34684.75 35751.93 35459.09 35375.13 35243.32 35479.09 35542.03 35439.47 35261.69 351
FPMVS77.62 31877.14 31879.05 33379.25 35460.97 35695.79 32995.94 32865.96 34867.93 35094.40 33037.73 35688.88 35168.83 34888.46 30587.29 345
wuyk23d30.17 32530.18 32930.16 33978.61 35543.29 36166.79 35314.21 36117.31 35614.82 35911.93 35911.55 36241.43 35737.08 35519.30 3555.76 355
LCM-MVSNet78.70 31576.24 32086.08 32877.26 35671.99 35294.34 34196.72 31961.62 35076.53 34489.33 34333.91 35892.78 34881.85 33474.60 34693.46 341
MVEpermissive62.14 2263.28 32459.38 32774.99 33474.33 35765.47 35485.55 35080.50 35952.02 35351.10 35475.00 35310.91 36380.50 35351.60 35253.40 35078.99 348
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high69.08 31965.37 32380.22 33265.99 35871.96 35390.91 34890.09 35382.62 33849.93 35578.39 35029.36 35981.75 35262.49 35038.52 35386.95 347
PMVScopyleft61.03 2365.95 32163.57 32573.09 33657.90 35951.22 36085.05 35193.93 34854.45 35144.32 35683.57 34613.22 36089.15 35058.68 35181.00 33978.91 349
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt68.90 32066.97 32274.68 33550.78 36059.95 35787.13 34983.47 35838.80 35562.21 35196.23 30864.70 34876.91 35688.91 30330.49 35487.19 346
testmvs21.48 32724.95 33011.09 34114.89 3616.47 36396.56 3199.87 3627.55 35717.93 35739.02 3559.43 3645.90 35916.56 35712.72 35620.91 354
test12320.95 32823.72 33112.64 34013.54 3628.19 36296.55 3206.13 3637.48 35816.74 35837.98 35612.97 3616.05 35816.69 3565.43 35723.68 353
uanet_test0.00 3310.00 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 3600.00 3650.00 3600.00 3580.00 3580.00 356
cdsmvs_eth3d_5k23.98 32631.98 3280.00 3420.00 3630.00 3640.00 35498.59 1410.00 3590.00 36098.61 12790.60 1570.00 3600.00 3580.00 3580.00 356
pcd_1.5k_mvsjas7.88 33010.50 3330.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 36094.51 850.00 3600.00 3580.00 3580.00 356
sosnet-low-res0.00 3310.00 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 3600.00 3650.00 3600.00 3580.00 3580.00 356
sosnet0.00 3310.00 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 3600.00 3650.00 3600.00 3580.00 3580.00 356
uncertanet0.00 3310.00 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 3600.00 3650.00 3600.00 3580.00 3580.00 356
Regformer0.00 3310.00 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 3600.00 3650.00 3600.00 3580.00 3580.00 356
ab-mvs-re8.20 32910.94 3320.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 36098.43 1450.00 3650.00 3600.00 3580.00 3580.00 356
uanet0.00 3310.00 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.00 3600.00 3650.00 3600.00 3580.00 3580.00 356
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 1899.80 1799.83 5
test_0728_THIRD97.32 2799.45 999.46 997.88 199.94 398.47 1599.86 199.85 2
GSMVS99.20 129
sam_mvs189.45 17299.20 129
sam_mvs88.99 185
MTGPAbinary98.74 102
test_post196.68 31630.43 35887.85 21798.69 22992.59 238
test_post31.83 35788.83 19298.91 208
patchmatchnet-post95.10 32789.42 17398.89 212
MTMP98.89 8294.14 346
test9_res96.39 12099.57 7599.69 51
agg_prior295.87 13699.57 7599.68 57
test_prior498.01 6297.86 238
test_prior297.80 24396.12 8097.89 10598.69 11995.96 3696.89 9599.60 68
旧先验297.57 26091.30 27898.67 5899.80 7995.70 146
新几何297.64 255
无先验97.58 25998.72 10991.38 27299.87 4493.36 21699.60 78
原ACMM297.67 253
testdata299.89 3591.65 263
segment_acmp96.85 11
testdata197.32 27696.34 71
plane_prior598.56 14999.03 19396.07 12694.27 21996.92 234
plane_prior498.28 164
plane_prior394.61 20997.02 4795.34 186
plane_prior298.80 10497.28 29
plane_prior94.60 21198.44 16596.74 5594.22 221
n20.00 364
nn0.00 364
door-mid94.37 342
test1198.66 131
door94.64 340
HQP5-MVS94.25 224
BP-MVS95.30 156
HQP4-MVS94.45 20898.96 20196.87 245
HQP3-MVS98.46 17194.18 223
HQP2-MVS86.75 235
MDTV_nov1_ep13_2view84.26 34096.89 30690.97 28897.90 10489.89 16893.91 20099.18 136
ACMMP++_ref92.97 251
ACMMP++93.61 239
Test By Simon94.64 80