This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
test_0728_SECOND99.71 199.72 1299.35 198.97 6898.88 4999.94 398.47 1599.81 1099.84 4
DVP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 6898.58 14697.62 1199.45 999.46 997.42 699.94 398.47 1599.81 1099.69 51
test072699.72 1299.25 299.06 5198.88 4997.62 1199.56 599.50 497.42 6
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 5898.87 5597.65 999.73 199.48 697.53 499.94 398.43 1899.81 1099.70 48
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 106
IU-MVS99.71 2099.23 698.64 13695.28 11799.63 498.35 2499.81 1099.83 5
DPE-MVS98.92 498.67 699.65 299.58 3299.20 798.42 16998.91 4397.58 1499.54 799.46 997.10 999.94 397.64 6099.84 899.83 5
test_part299.63 2999.18 899.27 17
HPM-MVS++copyleft98.58 2398.25 3899.55 699.50 4199.08 998.72 12198.66 13197.51 1698.15 8198.83 10795.70 4499.92 2197.53 7199.67 5499.66 65
OPU-MVS99.37 2099.24 9299.05 1099.02 5899.16 6197.81 299.37 15797.24 7999.73 4399.70 48
SMA-MVScopyleft98.58 2398.25 3899.56 599.51 3999.04 1198.95 7298.80 8693.67 19599.37 1399.52 396.52 1799.89 3598.06 3399.81 1099.76 26
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 598.93 3797.38 2499.41 1199.54 196.66 1399.84 5298.86 199.85 399.87 1
ACMMP_NAP98.61 1798.30 3499.55 699.62 3098.95 1398.82 9798.81 7695.80 9099.16 2699.47 895.37 5799.92 2197.89 4199.75 3899.79 10
MP-MVS-pluss98.31 5297.92 5799.49 999.72 1298.88 1498.43 16798.78 9494.10 16597.69 11599.42 1295.25 6699.92 2198.09 3299.80 1799.67 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 17098.68 12097.04 4698.52 6798.80 11096.78 1299.83 5597.93 3799.61 6799.74 33
CNVR-MVS98.78 698.56 999.45 1499.32 6898.87 1598.47 16198.81 7697.72 698.76 5299.16 6197.05 1099.78 9598.06 3399.66 5799.69 51
APD-MVScopyleft98.35 4698.00 5399.42 1599.51 3998.72 1798.80 10498.82 7094.52 15499.23 2099.25 4395.54 4999.80 7996.52 11499.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SF-MVS98.59 2098.32 3399.41 1699.54 3598.71 1899.04 5398.81 7695.12 12699.32 1599.39 1496.22 2099.84 5297.72 5299.73 4399.67 61
ZD-MVS99.46 5198.70 1998.79 9193.21 21298.67 5898.97 8795.70 4499.83 5596.07 12699.58 74
testtj98.33 5097.95 5599.47 1199.49 4598.70 1998.83 9498.86 6195.48 10498.91 4599.17 5695.48 5099.93 1595.80 13999.53 8599.76 26
ETH3D-3000-0.198.35 4698.00 5399.38 1799.47 4898.68 2198.67 13298.84 6594.66 14999.11 2899.25 4395.46 5199.81 7096.80 10599.73 4399.63 73
zzz-MVS98.55 3098.25 3899.46 1299.76 198.64 2298.55 15198.74 10297.27 3398.02 9099.39 1494.81 7799.96 197.91 3899.79 1999.77 20
MTAPA98.58 2398.29 3599.46 1299.76 198.64 2298.90 7898.74 10297.27 3398.02 9099.39 1494.81 7799.96 197.91 3899.79 1999.77 20
NCCC98.61 1798.35 2499.38 1799.28 8298.61 2498.45 16298.76 9897.82 598.45 7198.93 9796.65 1499.83 5597.38 7699.41 9799.71 44
ETH3 D test640097.59 8197.01 9699.34 2399.40 5998.56 2598.20 19898.81 7691.63 26698.44 7298.85 10493.98 9899.82 6394.11 19599.69 5299.64 70
DPM-MVS97.55 8596.99 9899.23 4299.04 10798.55 2697.17 28698.35 19094.85 14097.93 10298.58 13295.07 7299.71 11392.60 23699.34 10299.43 106
ETH3D cwj APD-0.1697.96 5897.52 7299.29 3199.05 10598.52 2798.33 17898.68 12093.18 21398.68 5799.13 6494.62 8199.83 5596.45 11699.55 8399.52 85
3Dnovator+94.38 697.43 9296.78 10799.38 1797.83 19698.52 2799.37 798.71 11397.09 4592.99 27199.13 6489.36 17499.89 3596.97 8899.57 7599.71 44
TEST999.31 7098.50 2997.92 22898.73 10792.63 23297.74 11198.68 12196.20 2399.80 79
train_agg97.97 5797.52 7299.33 2799.31 7098.50 2997.92 22898.73 10792.98 22197.74 11198.68 12196.20 2399.80 7996.59 11199.57 7599.68 57
test_899.29 7898.44 3197.89 23498.72 10992.98 22197.70 11498.66 12496.20 2399.80 79
CDPH-MVS97.94 6297.49 7599.28 3599.47 4898.44 3197.91 23098.67 12892.57 23698.77 5198.85 10495.93 3899.72 10895.56 14999.69 5299.68 57
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9498.43 3399.10 4598.87 5597.38 2499.35 1499.40 1397.78 399.87 4497.77 4999.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
ZNCC-MVS98.49 3698.20 4499.35 2299.73 1198.39 3499.19 3198.86 6195.77 9198.31 8099.10 6995.46 5199.93 1597.57 6899.81 1099.74 33
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 5198.38 3598.21 19598.52 15897.95 399.32 1599.39 1496.22 2099.84 5297.72 5299.73 4399.67 61
save fliter99.46 5198.38 3598.21 19598.71 11397.95 3
GST-MVS98.43 4098.12 4799.34 2399.72 1298.38 3599.09 4698.82 7095.71 9498.73 5599.06 7895.27 6499.93 1597.07 8599.63 6499.72 40
agg_prior197.95 6197.51 7499.28 3599.30 7598.38 3597.81 24198.72 10993.16 21597.57 12598.66 12496.14 2699.81 7096.63 11099.56 8099.66 65
agg_prior99.30 7598.38 3598.72 10997.57 12599.81 70
canonicalmvs97.67 7497.23 8798.98 6598.70 13398.38 3599.34 1198.39 18496.76 5497.67 11697.40 23892.26 11699.49 14598.28 2796.28 20299.08 147
alignmvs97.56 8497.07 9499.01 6298.66 13798.37 4198.83 9498.06 24696.74 5598.00 9697.65 21890.80 15399.48 14998.37 2396.56 19099.19 132
SD-MVS98.64 1498.68 598.53 9199.33 6598.36 4298.90 7898.85 6497.28 2999.72 399.39 1496.63 1597.60 31898.17 2899.85 399.64 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XVS98.70 998.49 1699.34 2399.70 2398.35 4399.29 1498.88 4997.40 2198.46 6899.20 5295.90 4099.89 3597.85 4499.74 4199.78 13
X-MVStestdata94.06 26092.30 28099.34 2399.70 2398.35 4399.29 1498.88 4997.40 2198.46 6843.50 35395.90 4099.89 3597.85 4499.74 4199.78 13
DP-MVS Recon97.86 6597.46 7799.06 6199.53 3698.35 4398.33 17898.89 4692.62 23398.05 8698.94 9695.34 5999.65 12396.04 13099.42 9699.19 132
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4699.23 2198.96 3296.10 8298.94 3999.17 5696.06 3099.92 2197.62 6199.78 2399.75 28
#test#98.54 3298.27 3699.32 2899.72 1298.29 4698.98 6798.96 3295.65 9898.94 3999.17 5696.06 3099.92 2197.21 8199.78 2399.75 28
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4899.14 3698.66 13196.84 5199.56 599.31 3596.34 1999.70 11498.32 2599.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSP-MVS98.74 898.55 1099.29 3199.75 398.23 4999.26 1898.88 4997.52 1599.41 1198.78 11296.00 3499.79 9197.79 4899.59 7199.85 2
test_prior398.22 5597.90 5899.19 4399.31 7098.22 5097.80 24298.84 6596.12 8097.89 10598.69 11995.96 3699.70 11496.89 9599.60 6899.65 67
test_prior99.19 4399.31 7098.22 5098.84 6599.70 11499.65 67
test1299.18 4799.16 9998.19 5298.53 15698.07 8595.13 7099.72 10899.56 8099.63 73
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5399.09 4698.82 7096.58 6199.10 2999.32 3395.39 5599.82 6397.70 5799.63 6499.72 40
MP-MVScopyleft98.33 5098.01 5299.28 3599.75 398.18 5399.22 2598.79 9196.13 7997.92 10399.23 4594.54 8499.94 396.74 10999.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
region2R98.61 1798.38 2099.29 3199.74 798.16 5599.23 2198.93 3796.15 7798.94 3999.17 5695.91 3999.94 397.55 6999.79 1999.78 13
nrg03096.28 13995.72 14397.96 13196.90 26498.15 5699.39 598.31 19695.47 10594.42 21398.35 15592.09 12398.69 22997.50 7289.05 29897.04 227
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5699.23 2198.95 3496.10 8298.93 4399.19 5595.70 4499.94 397.62 6199.79 1999.78 13
PHI-MVS98.34 4898.06 4999.18 4799.15 10198.12 5899.04 5399.09 2093.32 20898.83 4899.10 6996.54 1699.83 5597.70 5799.76 3299.59 80
PGM-MVS98.49 3698.23 4299.27 3899.72 1298.08 5998.99 6499.49 595.43 10799.03 3399.32 3395.56 4799.94 396.80 10599.77 2699.78 13
mPP-MVS98.51 3598.26 3799.25 3999.75 398.04 6099.28 1698.81 7696.24 7398.35 7799.23 4595.46 5199.94 397.42 7499.81 1099.77 20
DeepC-MVS_fast96.70 198.55 3098.34 2899.18 4799.25 8698.04 6098.50 15898.78 9497.72 698.92 4499.28 4095.27 6499.82 6397.55 6999.77 2699.69 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Regformer-298.69 1198.52 1299.19 4399.35 6098.01 6298.37 17398.81 7697.48 1899.21 2199.21 4896.13 2799.80 7998.40 2299.73 4399.75 28
test_prior498.01 6297.86 237
新几何199.16 5099.34 6298.01 6298.69 11790.06 30198.13 8298.95 9594.60 8299.89 3591.97 25699.47 9099.59 80
112197.37 9796.77 11199.16 5099.34 6297.99 6598.19 20298.68 12090.14 30098.01 9498.97 8794.80 7999.87 4493.36 21699.46 9399.61 75
test117298.56 2898.35 2499.16 5099.53 3697.94 6699.09 4698.83 6896.52 6499.05 3299.34 3195.34 5999.82 6397.86 4399.64 6299.73 36
APD-MVS_3200maxsize98.53 3498.33 3299.15 5399.50 4197.92 6799.15 3598.81 7696.24 7399.20 2299.37 2295.30 6299.80 7997.73 5199.67 5499.72 40
SR-MVS-dyc-post98.54 3298.35 2499.13 5499.49 4597.86 6899.11 4298.80 8696.49 6599.17 2499.35 2895.34 5999.82 6397.72 5299.65 5899.71 44
RE-MVS-def98.34 2899.49 4597.86 6899.11 4298.80 8696.49 6599.17 2499.35 2895.29 6397.72 5299.65 5899.71 44
HPM-MVS_fast98.38 4398.13 4699.12 5799.75 397.86 6899.44 498.82 7094.46 15798.94 3999.20 5295.16 6999.74 10697.58 6599.85 399.77 20
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6899.34 1198.87 5595.96 8598.60 6499.13 6496.05 3299.94 397.77 4999.86 199.77 20
HPM-MVScopyleft98.36 4598.10 4899.13 5499.74 797.82 7299.53 198.80 8694.63 15098.61 6398.97 8795.13 7099.77 10097.65 5999.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
Regformer-198.66 1298.51 1399.12 5799.35 6097.81 7398.37 17398.76 9897.49 1799.20 2299.21 4896.08 2999.79 9198.42 2099.73 4399.75 28
abl_698.30 5398.03 5199.13 5499.56 3497.76 7499.13 3998.82 7096.14 7899.26 1899.37 2293.33 10299.93 1596.96 9099.67 5499.69 51
DELS-MVS98.40 4298.20 4498.99 6399.00 10997.66 7597.75 24698.89 4697.71 898.33 7898.97 8794.97 7499.88 4398.42 2099.76 3299.42 107
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
3Dnovator94.51 597.46 8796.93 10099.07 6097.78 19897.64 7699.35 1099.06 2297.02 4793.75 24599.16 6189.25 17799.92 2197.22 8099.75 3899.64 70
114514_t96.93 11596.27 12898.92 6999.50 4197.63 7798.85 9098.90 4484.80 33397.77 10899.11 6792.84 10799.66 12294.85 16799.77 2699.47 98
ACMMPcopyleft98.23 5497.95 5599.09 5999.74 797.62 7899.03 5699.41 695.98 8497.60 12499.36 2694.45 8999.93 1597.14 8298.85 12299.70 48
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
QAPM96.29 13795.40 15498.96 6797.85 19597.60 7999.23 2198.93 3789.76 30493.11 26899.02 8089.11 18299.93 1591.99 25599.62 6699.34 111
VNet97.79 6997.40 8198.96 6798.88 11897.55 8098.63 13798.93 3796.74 5599.02 3498.84 10690.33 16299.83 5598.53 996.66 18699.50 91
FIs96.51 13096.12 13397.67 15097.13 25097.54 8199.36 899.22 1495.89 8694.03 23398.35 15591.98 12698.44 25596.40 11992.76 25397.01 228
旧先验199.29 7897.48 8298.70 11699.09 7495.56 4799.47 9099.61 75
UA-Net97.96 5897.62 6498.98 6598.86 12097.47 8398.89 8299.08 2196.67 5898.72 5699.54 193.15 10599.81 7094.87 16698.83 12399.65 67
UniMVSNet (Re)95.78 15795.19 16897.58 15696.99 25897.47 8398.79 10899.18 1695.60 9993.92 23697.04 26791.68 13198.48 24995.80 13987.66 31396.79 253
CNLPA97.45 9097.03 9598.73 7699.05 10597.44 8598.07 21698.53 15695.32 11596.80 15398.53 13693.32 10399.72 10894.31 18899.31 10499.02 151
Regformer-498.64 1498.53 1198.99 6399.43 5797.37 8698.40 17198.79 9197.46 1999.09 3099.31 3595.86 4299.80 7998.64 399.76 3299.79 10
RRT_MVS96.04 14595.53 15197.56 15897.07 25497.32 8798.57 14898.09 23895.15 12495.02 19298.44 14488.20 20598.58 24396.17 12593.09 25096.79 253
MVS_111021_HR98.47 3898.34 2898.88 7299.22 9497.32 8797.91 23099.58 397.20 3798.33 7899.00 8595.99 3599.64 12598.05 3599.76 3299.69 51
OpenMVScopyleft93.04 1395.83 15595.00 17698.32 10797.18 24797.32 8799.21 2898.97 3089.96 30291.14 30499.05 7986.64 23799.92 2193.38 21499.47 9097.73 209
ETV-MVS97.96 5897.81 5998.40 10398.42 15297.27 9098.73 11798.55 15196.84 5198.38 7597.44 23595.39 5599.35 15897.62 6198.89 11898.58 184
CANet98.05 5697.76 6198.90 7198.73 12897.27 9098.35 17598.78 9497.37 2697.72 11398.96 9391.53 13899.92 2198.79 299.65 5899.51 89
FC-MVSNet-test96.42 13396.05 13497.53 16096.95 25997.27 9099.36 899.23 1295.83 8993.93 23598.37 15392.00 12598.32 27496.02 13192.72 25497.00 229
VPA-MVSNet95.75 15895.11 17297.69 14897.24 23997.27 9098.94 7499.23 1295.13 12595.51 18597.32 24185.73 25298.91 20897.33 7889.55 29196.89 242
TSAR-MVS + GP.98.38 4398.24 4198.81 7499.22 9497.25 9498.11 21498.29 20497.19 3898.99 3899.02 8096.22 2099.67 12198.52 1398.56 13599.51 89
NR-MVSNet94.98 20294.16 21797.44 16296.53 28297.22 9598.74 11398.95 3494.96 13589.25 31997.69 21489.32 17598.18 28694.59 17787.40 31696.92 234
LS3D97.16 10796.66 11698.68 7998.53 14797.19 9698.93 7598.90 4492.83 22995.99 18199.37 2292.12 12299.87 4493.67 20899.57 7598.97 156
test22299.23 9397.17 9797.40 26598.66 13188.68 31598.05 8698.96 9394.14 9499.53 8599.61 75
CS-MVS97.81 6797.61 6598.41 10298.52 14897.15 9899.09 4698.55 15196.18 7697.61 12297.20 25094.59 8399.39 15597.62 6199.10 11198.70 172
CPTT-MVS97.72 7297.32 8498.92 6999.64 2897.10 9999.12 4198.81 7692.34 24498.09 8499.08 7693.01 10699.92 2196.06 12999.77 2699.75 28
Regformer-398.59 2098.50 1498.86 7399.43 5797.05 10098.40 17198.68 12097.43 2099.06 3199.31 3595.80 4399.77 10098.62 599.76 3299.78 13
HY-MVS93.96 896.82 12096.23 13198.57 8598.46 15197.00 10198.14 20998.21 21293.95 17496.72 15597.99 18791.58 13399.76 10294.51 18096.54 19198.95 159
UniMVSNet_NR-MVSNet95.71 16095.15 16997.40 16696.84 26796.97 10298.74 11399.24 1095.16 12393.88 23897.72 21291.68 13198.31 27695.81 13787.25 31996.92 234
DU-MVS95.42 17394.76 18697.40 16696.53 28296.97 10298.66 13598.99 2995.43 10793.88 23897.69 21488.57 19698.31 27695.81 13787.25 31996.92 234
DeepC-MVS95.98 397.88 6497.58 6798.77 7599.25 8696.93 10498.83 9498.75 10196.96 4996.89 14899.50 490.46 15999.87 4497.84 4699.76 3299.52 85
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PAPR96.84 11996.24 13098.65 8198.72 13296.92 10597.36 27198.57 14793.33 20796.67 15697.57 22694.30 9299.56 13691.05 27198.59 13399.47 98
MVS_111021_LR98.34 4898.23 4298.67 8099.27 8396.90 10697.95 22799.58 397.14 4198.44 7299.01 8495.03 7399.62 13097.91 3899.75 3899.50 91
MAR-MVS96.91 11696.40 12498.45 9798.69 13596.90 10698.66 13598.68 12092.40 24397.07 13897.96 18991.54 13799.75 10493.68 20698.92 11698.69 174
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
WTY-MVS97.37 9796.92 10198.72 7798.86 12096.89 10898.31 18498.71 11395.26 11897.67 11698.56 13592.21 11999.78 9595.89 13496.85 18199.48 96
MSLP-MVS++98.56 2898.57 898.55 8799.26 8596.80 10998.71 12299.05 2497.28 2998.84 4699.28 4096.47 1899.40 15498.52 1399.70 5199.47 98
API-MVS97.41 9497.25 8697.91 13298.70 13396.80 10998.82 9798.69 11794.53 15298.11 8398.28 16494.50 8899.57 13494.12 19499.49 8897.37 219
PCF-MVS93.45 1194.68 21693.43 26098.42 10198.62 14196.77 11195.48 33198.20 21484.63 33493.34 25998.32 16188.55 19899.81 7084.80 32898.96 11598.68 175
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ab-mvs96.42 13395.71 14698.55 8798.63 14096.75 11297.88 23598.74 10293.84 17996.54 16598.18 17485.34 26099.75 10495.93 13396.35 19699.15 138
Effi-MVS+97.12 10996.69 11398.39 10498.19 17296.72 11397.37 26998.43 17893.71 18897.65 11998.02 18392.20 12099.25 16496.87 10197.79 16299.19 132
AdaColmapbinary97.15 10896.70 11298.48 9599.16 9996.69 11498.01 22298.89 4694.44 15896.83 14998.68 12190.69 15699.76 10294.36 18499.29 10598.98 155
原ACMM198.65 8199.32 6896.62 11598.67 12893.27 21197.81 10798.97 8795.18 6899.83 5593.84 20299.46 9399.50 91
FMVSNet394.97 20394.26 21197.11 17998.18 17496.62 11598.56 14998.26 20993.67 19594.09 22997.10 25484.25 27698.01 30092.08 25092.14 25796.70 266
sss97.39 9596.98 9998.61 8398.60 14396.61 11798.22 19498.93 3793.97 17398.01 9498.48 14191.98 12699.85 4996.45 11698.15 15199.39 108
test_yl97.22 10296.78 10798.54 8998.73 12896.60 11898.45 16298.31 19694.70 14398.02 9098.42 14790.80 15399.70 11496.81 10396.79 18399.34 111
DCV-MVSNet97.22 10296.78 10798.54 8998.73 12896.60 11898.45 16298.31 19694.70 14398.02 9098.42 14790.80 15399.70 11496.81 10396.79 18399.34 111
VPNet94.99 20094.19 21497.40 16697.16 24896.57 12098.71 12298.97 3095.67 9694.84 19698.24 17080.36 30698.67 23396.46 11587.32 31796.96 231
MVS94.67 21993.54 25698.08 12396.88 26596.56 12198.19 20298.50 16678.05 34392.69 27998.02 18391.07 14999.63 12890.09 28298.36 14698.04 200
XXY-MVS95.20 18994.45 20397.46 16196.75 27296.56 12198.86 8998.65 13593.30 21093.27 26198.27 16784.85 26798.87 21594.82 16991.26 27096.96 231
PatchMatch-RL96.59 12796.03 13698.27 10999.31 7096.51 12397.91 23099.06 2293.72 18796.92 14698.06 18188.50 20099.65 12391.77 26099.00 11498.66 178
EI-MVSNet-Vis-set98.47 3898.39 1998.69 7899.46 5196.49 12498.30 18698.69 11797.21 3698.84 4699.36 2695.41 5499.78 9598.62 599.65 5899.80 9
WR-MVS95.15 19194.46 20197.22 17196.67 27796.45 12598.21 19598.81 7694.15 16393.16 26497.69 21487.51 22298.30 27895.29 15888.62 30496.90 241
EIA-MVS97.75 7097.58 6798.27 10998.38 15496.44 12699.01 6098.60 13995.88 8797.26 13097.53 22994.97 7499.33 16097.38 7699.20 10799.05 149
FMVSNet294.47 23493.61 25397.04 18298.21 16996.43 12798.79 10898.27 20592.46 23793.50 25497.09 25881.16 29898.00 30291.09 26791.93 26196.70 266
PAPM_NR97.46 8797.11 9198.50 9399.50 4196.41 12898.63 13798.60 13995.18 12297.06 13998.06 18194.26 9399.57 13493.80 20498.87 12199.52 85
1112_ss96.63 12496.00 13798.50 9398.56 14496.37 12998.18 20698.10 23492.92 22494.84 19698.43 14592.14 12199.58 13394.35 18596.51 19299.56 84
TranMVSNet+NR-MVSNet95.14 19294.48 19997.11 17996.45 28796.36 13099.03 5699.03 2595.04 13193.58 24897.93 19288.27 20398.03 29994.13 19386.90 32496.95 233
IS-MVSNet97.22 10296.88 10298.25 11298.85 12296.36 13099.19 3197.97 25295.39 10997.23 13198.99 8691.11 14798.93 20694.60 17598.59 13399.47 98
EI-MVSNet-UG-set98.41 4198.34 2898.61 8399.45 5596.32 13298.28 18998.68 12097.17 3998.74 5399.37 2295.25 6699.79 9198.57 799.54 8499.73 36
LFMVS95.86 15394.98 17898.47 9698.87 11996.32 13298.84 9396.02 32493.40 20598.62 6299.20 5274.99 33399.63 12897.72 5297.20 17699.46 102
PLCcopyleft95.07 497.20 10596.78 10798.44 9899.29 7896.31 13498.14 20998.76 9892.41 24296.39 17298.31 16294.92 7699.78 9594.06 19798.77 12699.23 127
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Vis-MVSNetpermissive97.42 9397.11 9198.34 10698.66 13796.23 13599.22 2599.00 2796.63 6098.04 8899.21 4888.05 21199.35 15896.01 13299.21 10699.45 104
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ET-MVSNet_ETH3D94.13 25392.98 26897.58 15698.22 16896.20 13697.31 27695.37 33194.53 15279.56 34197.63 22286.51 23897.53 32196.91 9290.74 27699.02 151
baseline97.64 7697.44 7998.25 11298.35 15696.20 13699.00 6298.32 19496.33 7298.03 8999.17 5691.35 14199.16 17398.10 3198.29 14999.39 108
DP-MVS96.59 12795.93 13898.57 8599.34 6296.19 13898.70 12698.39 18489.45 30994.52 20599.35 2891.85 12899.85 4992.89 23298.88 11999.68 57
casdiffmvs97.63 7797.41 8098.28 10898.33 16196.14 13998.82 9798.32 19496.38 7097.95 9899.21 4891.23 14599.23 16798.12 3098.37 14499.48 96
EPNet97.28 10096.87 10398.51 9294.98 32696.14 13998.90 7897.02 30598.28 195.99 18199.11 6791.36 14099.89 3596.98 8799.19 10899.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet_DTU96.96 11496.55 11998.21 11498.17 17696.07 14197.98 22598.21 21297.24 3597.13 13498.93 9786.88 23499.91 3095.00 16599.37 10198.66 178
xiu_mvs_v1_base_debu97.60 7897.56 6997.72 14498.35 15695.98 14297.86 23798.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 219
xiu_mvs_v1_base97.60 7897.56 6997.72 14498.35 15695.98 14297.86 23798.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 219
xiu_mvs_v1_base_debi97.60 7897.56 6997.72 14498.35 15695.98 14297.86 23798.51 16197.13 4299.01 3598.40 14991.56 13499.80 7998.53 998.68 12797.37 219
baseline195.84 15495.12 17198.01 12798.49 15095.98 14298.73 11797.03 30395.37 11296.22 17598.19 17389.96 16799.16 17394.60 17587.48 31498.90 162
CDS-MVSNet96.99 11396.69 11397.90 13398.05 18495.98 14298.20 19898.33 19393.67 19596.95 14298.49 14093.54 10098.42 25895.24 16197.74 16599.31 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+96.28 13995.70 14798.03 12698.29 16595.97 14798.58 14398.25 21091.74 26195.29 18997.23 24791.03 15099.15 17692.90 23097.96 15698.97 156
MVS_Test97.28 10097.00 9798.13 12098.33 16195.97 14798.74 11398.07 24294.27 16198.44 7298.07 18092.48 11199.26 16396.43 11898.19 15099.16 137
MG-MVS97.81 6797.60 6698.44 9899.12 10395.97 14797.75 24698.78 9496.89 5098.46 6899.22 4793.90 9999.68 12094.81 17099.52 8799.67 61
tfpnnormal93.66 26592.70 27496.55 22296.94 26095.94 15098.97 6899.19 1591.04 28791.38 30297.34 23984.94 26598.61 23685.45 32589.02 30095.11 326
pmmvs494.69 21493.99 22996.81 19895.74 31195.94 15097.40 26597.67 26690.42 29593.37 25897.59 22489.08 18398.20 28592.97 22891.67 26496.30 308
Test_1112_low_res96.34 13695.66 15098.36 10598.56 14495.94 15097.71 24898.07 24292.10 25394.79 20097.29 24391.75 13099.56 13694.17 19296.50 19399.58 82
MVSTER96.06 14495.72 14397.08 18198.23 16795.93 15398.73 11798.27 20594.86 13995.07 19098.09 17988.21 20498.54 24596.59 11193.46 24196.79 253
OMC-MVS97.55 8597.34 8398.20 11599.33 6595.92 15498.28 18998.59 14195.52 10397.97 9799.10 6993.28 10499.49 14595.09 16398.88 11999.19 132
PVSNet_Blended_VisFu97.70 7397.46 7798.44 9899.27 8395.91 15598.63 13799.16 1794.48 15697.67 11698.88 10292.80 10899.91 3097.11 8399.12 11099.50 91
anonymousdsp95.42 17394.91 18196.94 19095.10 32595.90 15699.14 3698.41 18093.75 18393.16 26497.46 23287.50 22498.41 26595.63 14894.03 22996.50 296
UGNet96.78 12196.30 12798.19 11798.24 16695.89 15798.88 8598.93 3797.39 2396.81 15297.84 20182.60 29299.90 3396.53 11399.49 8898.79 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WR-MVS_H95.05 19794.46 20196.81 19896.86 26695.82 15899.24 2099.24 1093.87 17892.53 28496.84 28690.37 16098.24 28493.24 21987.93 31096.38 303
diffmvs97.58 8297.40 8198.13 12098.32 16395.81 15998.06 21798.37 18796.20 7598.74 5398.89 10191.31 14399.25 16498.16 2998.52 13699.34 111
MVSFormer97.57 8397.49 7597.84 13598.07 18195.76 16099.47 298.40 18294.98 13398.79 4998.83 10792.34 11398.41 26596.91 9299.59 7199.34 111
lupinMVS97.44 9197.22 8898.12 12298.07 18195.76 16097.68 25197.76 26294.50 15598.79 4998.61 12792.34 11399.30 16197.58 6599.59 7199.31 117
PAPM94.95 20494.00 22797.78 13997.04 25595.65 16296.03 32598.25 21091.23 28294.19 22597.80 20791.27 14498.86 21782.61 33297.61 16998.84 165
jason97.32 9997.08 9398.06 12597.45 22895.59 16397.87 23697.91 25794.79 14198.55 6698.83 10791.12 14699.23 16797.58 6599.60 6899.34 111
jason: jason.
PS-MVSNAJ97.73 7197.77 6097.62 15498.68 13695.58 16497.34 27398.51 16197.29 2898.66 6097.88 19694.51 8599.90 3397.87 4299.17 10997.39 217
testing_290.61 30188.50 30796.95 18990.08 34695.57 16597.69 25098.06 24693.02 21976.55 34292.48 33861.18 34998.44 25595.45 15391.98 26096.84 249
CP-MVSNet94.94 20694.30 21096.83 19796.72 27495.56 16699.11 4298.95 3493.89 17692.42 28997.90 19487.19 22898.12 29194.32 18788.21 30796.82 252
HyFIR lowres test96.90 11796.49 12298.14 11899.33 6595.56 16697.38 26799.65 292.34 24497.61 12298.20 17289.29 17699.10 18596.97 8897.60 17099.77 20
131496.25 14195.73 14297.79 13897.13 25095.55 16898.19 20298.59 14193.47 20292.03 29697.82 20591.33 14299.49 14594.62 17498.44 14198.32 194
thisisatest053096.01 14695.36 15997.97 12998.38 15495.52 16998.88 8594.19 34494.04 16797.64 12098.31 16283.82 28899.46 15195.29 15897.70 16798.93 160
test_djsdf96.00 14795.69 14896.93 19195.72 31295.49 17099.47 298.40 18294.98 13394.58 20397.86 19889.16 18098.41 26596.91 9294.12 22796.88 243
xiu_mvs_v2_base97.66 7597.70 6397.56 15898.61 14295.46 17197.44 26298.46 17197.15 4098.65 6198.15 17594.33 9199.80 7997.84 4698.66 13197.41 215
Vis-MVSNet (Re-imp)96.87 11896.55 11997.83 13698.73 12895.46 17199.20 2998.30 20294.96 13596.60 16098.87 10390.05 16598.59 24193.67 20898.60 13299.46 102
EPP-MVSNet97.46 8797.28 8597.99 12898.64 13995.38 17399.33 1398.31 19693.61 19897.19 13299.07 7794.05 9599.23 16796.89 9598.43 14399.37 110
testdata98.26 11199.20 9795.36 17498.68 12091.89 25898.60 6499.10 6994.44 9099.82 6394.27 18999.44 9599.58 82
MSDG95.93 15095.30 16597.83 13698.90 11695.36 17496.83 31098.37 18791.32 27794.43 21298.73 11890.27 16399.60 13190.05 28598.82 12498.52 185
PVSNet_BlendedMVS96.73 12296.60 11797.12 17899.25 8695.35 17698.26 19299.26 894.28 16097.94 10097.46 23292.74 10999.81 7096.88 9893.32 24696.20 310
PVSNet_Blended97.38 9697.12 9098.14 11899.25 8695.35 17697.28 27899.26 893.13 21697.94 10098.21 17192.74 10999.81 7096.88 9899.40 9999.27 124
TAMVS97.02 11296.79 10697.70 14798.06 18395.31 17898.52 15398.31 19693.95 17497.05 14098.61 12793.49 10198.52 24795.33 15597.81 16199.29 122
PS-CasMVS94.67 21993.99 22996.71 20296.68 27695.26 17999.13 3999.03 2593.68 19392.33 29097.95 19085.35 25998.10 29293.59 21088.16 30996.79 253
V4294.78 21294.14 21996.70 20496.33 29295.22 18098.97 6898.09 23892.32 24694.31 21897.06 26488.39 20198.55 24492.90 23088.87 30296.34 304
pm-mvs193.94 26393.06 26796.59 21596.49 28595.16 18198.95 7298.03 24992.32 24691.08 30597.84 20184.54 27298.41 26592.16 24886.13 33096.19 311
CSCG97.85 6697.74 6298.20 11599.67 2695.16 18199.22 2599.32 793.04 21897.02 14198.92 9995.36 5899.91 3097.43 7399.64 6299.52 85
thisisatest051595.61 16794.89 18297.76 14198.15 17795.15 18396.77 31194.41 34092.95 22397.18 13397.43 23684.78 26899.45 15294.63 17297.73 16698.68 175
VDDNet95.36 17994.53 19697.86 13498.10 18095.13 18498.85 9097.75 26390.46 29398.36 7699.39 1473.27 33999.64 12597.98 3696.58 18998.81 166
gg-mvs-nofinetune92.21 28890.58 29597.13 17796.75 27295.09 18595.85 32789.40 35385.43 33294.50 20681.98 34780.80 30498.40 27192.16 24898.33 14797.88 203
PS-MVSNAJss96.43 13296.26 12996.92 19395.84 31095.08 18699.16 3498.50 16695.87 8893.84 24198.34 15994.51 8598.61 23696.88 9893.45 24397.06 226
thres600view795.49 16894.77 18597.67 15098.98 11295.02 18798.85 9096.90 31195.38 11096.63 15896.90 28184.29 27499.59 13288.65 30596.33 19798.40 189
GBi-Net94.49 23293.80 24096.56 21998.21 16995.00 18898.82 9798.18 21892.46 23794.09 22997.07 26181.16 29897.95 30492.08 25092.14 25796.72 262
test194.49 23293.80 24096.56 21998.21 16995.00 18898.82 9798.18 21892.46 23794.09 22997.07 26181.16 29897.95 30492.08 25092.14 25796.72 262
FMVSNet193.19 27792.07 28296.56 21997.54 21895.00 18898.82 9798.18 21890.38 29692.27 29197.07 26173.68 33897.95 30489.36 29991.30 26896.72 262
tfpn200view995.32 18394.62 19297.43 16398.94 11494.98 19198.68 12996.93 30995.33 11396.55 16396.53 29884.23 27799.56 13688.11 30696.29 19997.76 206
GG-mvs-BLEND96.59 21596.34 29194.98 19196.51 32088.58 35493.10 26994.34 33180.34 30798.05 29889.53 29596.99 17996.74 259
thres40095.38 17694.62 19297.65 15398.94 11494.98 19198.68 12996.93 30995.33 11396.55 16396.53 29884.23 27799.56 13688.11 30696.29 19998.40 189
F-COLMAP97.09 11196.80 10497.97 12999.45 5594.95 19498.55 15198.62 13893.02 21996.17 17798.58 13294.01 9699.81 7093.95 19998.90 11799.14 140
thres100view90095.38 17694.70 18997.41 16498.98 11294.92 19598.87 8796.90 31195.38 11096.61 15996.88 28284.29 27499.56 13688.11 30696.29 19997.76 206
thres20095.25 18594.57 19497.28 16998.81 12494.92 19598.20 19897.11 29895.24 12196.54 16596.22 31084.58 27199.53 14287.93 31096.50 19397.39 217
tttt051796.07 14395.51 15397.78 13998.41 15394.84 19799.28 1694.33 34294.26 16297.64 12098.64 12684.05 28199.47 15095.34 15497.60 17099.03 150
PEN-MVS94.42 23693.73 24796.49 22696.28 29394.84 19799.17 3399.00 2793.51 20092.23 29297.83 20486.10 24797.90 30892.55 24186.92 32396.74 259
v894.47 23493.77 24396.57 21896.36 29094.83 19999.05 5298.19 21591.92 25793.16 26496.97 27488.82 19398.48 24991.69 26287.79 31196.39 302
TAPA-MVS93.98 795.35 18094.56 19597.74 14399.13 10294.83 19998.33 17898.64 13686.62 32296.29 17498.61 12794.00 9799.29 16280.00 33799.41 9799.09 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v1094.29 24393.55 25596.51 22596.39 28994.80 20198.99 6498.19 21591.35 27593.02 27096.99 27288.09 20998.41 26590.50 27888.41 30696.33 306
v2v48294.69 21494.03 22396.65 20796.17 29794.79 20298.67 13298.08 24092.72 23094.00 23497.16 25287.69 22198.45 25392.91 22988.87 30296.72 262
v114494.59 22493.92 23296.60 21496.21 29494.78 20398.59 14198.14 22891.86 26094.21 22497.02 26987.97 21298.41 26591.72 26189.57 28996.61 276
TransMVSNet (Re)92.67 28491.51 28996.15 24796.58 28094.65 20498.90 7896.73 31790.86 28989.46 31897.86 19885.62 25498.09 29486.45 31781.12 33895.71 320
BH-RMVSNet95.92 15195.32 16397.69 14898.32 16394.64 20598.19 20297.45 28494.56 15196.03 17998.61 12785.02 26399.12 17990.68 27699.06 11299.30 120
OPM-MVS95.69 16295.33 16296.76 20096.16 29994.63 20698.43 16798.39 18496.64 5995.02 19298.78 11285.15 26299.05 18995.21 16294.20 22296.60 277
jajsoiax95.45 17195.03 17596.73 20195.42 32394.63 20699.14 3698.52 15895.74 9293.22 26298.36 15483.87 28698.65 23496.95 9194.04 22896.91 239
plane_prior797.42 22994.63 206
plane_prior697.35 23494.61 20987.09 229
plane_prior394.61 20997.02 4795.34 186
HQP_MVS96.14 14295.90 13996.85 19697.42 22994.60 21198.80 10498.56 14997.28 2995.34 18698.28 16487.09 22999.03 19396.07 12694.27 21996.92 234
plane_prior94.60 21198.44 16596.74 5594.22 221
CHOSEN 1792x268897.12 10996.80 10498.08 12399.30 7594.56 21398.05 21899.71 193.57 19997.09 13598.91 10088.17 20699.89 3596.87 10199.56 8099.81 8
NP-MVS97.28 23794.51 21497.73 210
v119294.32 24193.58 25496.53 22396.10 30094.45 21598.50 15898.17 22391.54 26894.19 22597.06 26486.95 23398.43 25790.14 28189.57 28996.70 266
mvs_tets95.41 17595.00 17696.65 20795.58 31694.42 21699.00 6298.55 15195.73 9393.21 26398.38 15283.45 29098.63 23597.09 8494.00 23096.91 239
LTVRE_ROB92.95 1594.60 22293.90 23496.68 20697.41 23294.42 21698.52 15398.59 14191.69 26491.21 30398.35 15584.87 26699.04 19291.06 26993.44 24496.60 277
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DTE-MVSNet93.98 26293.26 26596.14 24896.06 30294.39 21899.20 2998.86 6193.06 21791.78 29897.81 20685.87 25197.58 31990.53 27786.17 32896.46 300
v7n94.19 24993.43 26096.47 22895.90 30794.38 21999.26 1898.34 19291.99 25592.76 27697.13 25388.31 20298.52 24789.48 29787.70 31296.52 291
v14419294.39 23893.70 24996.48 22796.06 30294.35 22098.58 14398.16 22591.45 27094.33 21797.02 26987.50 22498.45 25391.08 26889.11 29796.63 274
Anonymous2023121194.10 25693.26 26596.61 21299.11 10494.28 22199.01 6098.88 4986.43 32492.81 27497.57 22681.66 29798.68 23294.83 16889.02 30096.88 243
cascas94.63 22193.86 23796.93 19196.91 26394.27 22296.00 32698.51 16185.55 33194.54 20496.23 30884.20 27998.87 21595.80 13996.98 18097.66 212
Anonymous2024052995.10 19494.22 21297.75 14299.01 10894.26 22398.87 8798.83 6885.79 33096.64 15798.97 8778.73 31499.85 4996.27 12194.89 21699.12 142
HQP5-MVS94.25 224
HQP-MVS95.72 15995.40 15496.69 20597.20 24394.25 22498.05 21898.46 17196.43 6794.45 20897.73 21086.75 23598.96 20195.30 15694.18 22396.86 247
TR-MVS94.94 20694.20 21397.17 17597.75 19994.14 22697.59 25797.02 30592.28 24895.75 18497.64 22083.88 28598.96 20189.77 28996.15 20798.40 189
v192192094.20 24893.47 25996.40 23595.98 30594.08 22798.52 15398.15 22691.33 27694.25 22197.20 25086.41 24298.42 25890.04 28689.39 29496.69 271
Baseline_NR-MVSNet94.35 23993.81 23995.96 25596.20 29594.05 22898.61 14096.67 32191.44 27193.85 24097.60 22388.57 19698.14 28994.39 18386.93 32295.68 321
VDD-MVS95.82 15695.23 16697.61 15598.84 12393.98 22998.68 12997.40 28895.02 13297.95 9899.34 3174.37 33799.78 9598.64 396.80 18299.08 147
PMMVS96.60 12596.33 12697.41 16497.90 19293.93 23097.35 27298.41 18092.84 22897.76 10997.45 23491.10 14899.20 17096.26 12297.91 15799.11 143
v124094.06 26093.29 26496.34 23996.03 30493.90 23198.44 16598.17 22391.18 28594.13 22897.01 27186.05 24898.42 25889.13 30289.50 29296.70 266
GA-MVS94.81 21094.03 22397.14 17697.15 24993.86 23296.76 31297.58 27094.00 17194.76 20197.04 26780.91 30198.48 24991.79 25996.25 20499.09 144
ACMM93.85 995.69 16295.38 15896.61 21297.61 20993.84 23398.91 7798.44 17595.25 11994.28 21998.47 14286.04 25099.12 17995.50 15193.95 23296.87 245
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvs_anonymous96.70 12396.53 12197.18 17498.19 17293.78 23498.31 18498.19 21594.01 17094.47 20798.27 16792.08 12498.46 25297.39 7597.91 15799.31 117
XVG-OURS-SEG-HR96.51 13096.34 12597.02 18398.77 12693.76 23597.79 24498.50 16695.45 10696.94 14399.09 7487.87 21699.55 14196.76 10895.83 21297.74 208
XVG-OURS96.55 12996.41 12396.99 18498.75 12793.76 23597.50 26198.52 15895.67 9696.83 14999.30 3888.95 19099.53 14295.88 13596.26 20397.69 211
Anonymous20240521195.28 18494.49 19897.67 15099.00 10993.75 23798.70 12697.04 30290.66 29096.49 16898.80 11078.13 31799.83 5596.21 12495.36 21599.44 105
CLD-MVS95.62 16595.34 16096.46 23197.52 22193.75 23797.27 27998.46 17195.53 10294.42 21398.00 18686.21 24598.97 19896.25 12394.37 21796.66 272
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
miper_enhance_ethall95.10 19494.75 18796.12 25097.53 22093.73 23996.61 31798.08 24092.20 25293.89 23796.65 29492.44 11298.30 27894.21 19191.16 27196.34 304
IterMVS-LS95.46 16995.21 16796.22 24598.12 17893.72 24098.32 18398.13 22993.71 18894.26 22097.31 24292.24 11798.10 29294.63 17290.12 28296.84 249
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet95.96 14895.83 14196.36 23797.93 19093.70 24198.12 21298.27 20593.70 19095.07 19099.02 8092.23 11898.54 24594.68 17193.46 24196.84 249
cl-mvsnet294.68 21694.19 21496.13 24998.11 17993.60 24296.94 29798.31 19692.43 24193.32 26096.87 28486.51 23898.28 28294.10 19691.16 27196.51 294
baseline295.11 19394.52 19796.87 19596.65 27893.56 24398.27 19194.10 34693.45 20392.02 29797.43 23687.45 22699.19 17193.88 20197.41 17497.87 204
LPG-MVS_test95.62 16595.34 16096.47 22897.46 22493.54 24498.99 6498.54 15494.67 14794.36 21598.77 11485.39 25799.11 18295.71 14494.15 22596.76 257
LGP-MVS_train96.47 22897.46 22493.54 24498.54 15494.67 14794.36 21598.77 11485.39 25799.11 18295.71 14494.15 22596.76 257
AUN-MVS94.53 22993.73 24796.92 19398.50 14993.52 24698.34 17698.10 23493.83 18195.94 18397.98 18885.59 25599.03 19394.35 18580.94 34098.22 196
test_part192.87 28191.72 28796.32 24197.55 21793.50 24799.04 5398.74 10283.31 33690.81 30897.70 21376.61 32698.60 24094.43 18287.30 31896.85 248
ACMP93.49 1095.34 18194.98 17896.43 23397.67 20593.48 24898.73 11798.44 17594.94 13892.53 28498.53 13684.50 27399.14 17795.48 15294.00 23096.66 272
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CR-MVSNet94.76 21394.15 21896.59 21597.00 25693.43 24994.96 33397.56 27192.46 23796.93 14496.24 30688.15 20797.88 31287.38 31296.65 18798.46 187
RPMNet92.81 28291.34 29097.24 17097.00 25693.43 24994.96 33398.80 8682.27 33896.93 14492.12 34086.98 23299.82 6376.32 34596.65 18798.46 187
IB-MVS91.98 1793.27 27391.97 28497.19 17397.47 22393.41 25197.09 29095.99 32593.32 20892.47 28795.73 31878.06 31899.53 14294.59 17782.98 33398.62 181
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cl-mvsnet_94.51 23194.01 22696.02 25197.58 21293.40 25297.05 29197.96 25491.73 26392.76 27697.08 26089.06 18498.13 29092.61 23590.29 28196.52 291
cl-mvsnet194.52 23094.03 22395.99 25297.57 21693.38 25397.05 29197.94 25591.74 26192.81 27497.10 25489.12 18198.07 29692.60 23690.30 28096.53 288
UniMVSNet_ETH3D94.24 24693.33 26296.97 18797.19 24693.38 25398.74 11398.57 14791.21 28493.81 24298.58 13272.85 34098.77 22695.05 16493.93 23398.77 169
miper_ehance_all_eth95.01 19894.69 19095.97 25497.70 20493.31 25597.02 29398.07 24292.23 24993.51 25396.96 27691.85 12898.15 28893.68 20691.16 27196.44 301
CHOSEN 280x42097.18 10697.18 8997.20 17298.81 12493.27 25695.78 32999.15 1895.25 11996.79 15498.11 17892.29 11599.07 18898.56 899.85 399.25 126
ACMH92.88 1694.55 22793.95 23196.34 23997.63 20893.26 25798.81 10398.49 17093.43 20489.74 31598.53 13681.91 29599.08 18793.69 20593.30 24796.70 266
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft93.27 1295.33 18294.87 18396.71 20299.29 7893.24 25898.58 14398.11 23289.92 30393.57 24999.10 6986.37 24399.79 9190.78 27498.10 15397.09 224
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AllTest95.24 18694.65 19196.99 18499.25 8693.21 25998.59 14198.18 21891.36 27393.52 25198.77 11484.67 26999.72 10889.70 29297.87 15998.02 201
TestCases96.99 18499.25 8693.21 25998.18 21891.36 27393.52 25198.77 11484.67 26999.72 10889.70 29297.87 15998.02 201
MIMVSNet93.26 27492.21 28196.41 23497.73 20393.13 26195.65 33097.03 30391.27 28194.04 23296.06 31375.33 33197.19 32686.56 31696.23 20598.92 161
cl_fuxian94.79 21194.43 20595.89 25997.75 19993.12 26297.16 28798.03 24992.23 24993.46 25697.05 26691.39 13998.01 30093.58 21189.21 29696.53 288
Patchmtry93.22 27592.35 27995.84 26196.77 26993.09 26394.66 33897.56 27187.37 32092.90 27296.24 30688.15 20797.90 30887.37 31390.10 28396.53 288
v14894.29 24393.76 24595.91 25796.10 30092.93 26498.58 14397.97 25292.59 23593.47 25596.95 27888.53 19998.32 27492.56 24087.06 32196.49 297
test0.0.03 194.08 25893.51 25795.80 26295.53 31892.89 26597.38 26795.97 32695.11 12792.51 28696.66 29287.71 21896.94 32987.03 31493.67 23697.57 213
PatchT93.06 27991.97 28496.35 23896.69 27592.67 26694.48 33997.08 29986.62 32297.08 13692.23 33987.94 21397.90 30878.89 34196.69 18598.49 186
MVP-Stereo94.28 24593.92 23295.35 27694.95 32792.60 26797.97 22697.65 26791.61 26790.68 31097.09 25886.32 24498.42 25889.70 29299.34 10295.02 329
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs593.65 26792.97 26995.68 26695.49 31992.37 26898.20 19897.28 29389.66 30692.58 28297.26 24482.14 29398.09 29493.18 22290.95 27596.58 279
BH-untuned95.95 14995.72 14396.65 20798.55 14692.26 26998.23 19397.79 26193.73 18694.62 20298.01 18588.97 18999.00 19793.04 22698.51 13798.68 175
pmmvs-eth3d90.36 30289.05 30594.32 30591.10 34392.12 27097.63 25696.95 30888.86 31484.91 33693.13 33478.32 31696.74 33088.70 30481.81 33794.09 336
FMVSNet591.81 28990.92 29294.49 30097.21 24292.09 27198.00 22497.55 27589.31 31190.86 30795.61 32474.48 33595.32 34185.57 32389.70 28796.07 314
D2MVS95.18 19095.08 17395.48 27197.10 25292.07 27298.30 18699.13 1994.02 16992.90 27296.73 28989.48 17198.73 22894.48 18193.60 24095.65 322
PVSNet91.96 1896.35 13596.15 13296.96 18899.17 9892.05 27396.08 32298.68 12093.69 19197.75 11097.80 20788.86 19199.69 11994.26 19099.01 11399.15 138
ACMH+92.99 1494.30 24293.77 24395.88 26097.81 19792.04 27498.71 12298.37 18793.99 17290.60 31198.47 14280.86 30399.05 18992.75 23492.40 25696.55 285
ADS-MVSNet95.00 19994.45 20396.63 21098.00 18591.91 27596.04 32397.74 26490.15 29896.47 16996.64 29587.89 21498.96 20190.08 28397.06 17799.02 151
mvs-test196.60 12596.68 11596.37 23697.89 19391.81 27698.56 14998.10 23496.57 6296.52 16797.94 19190.81 15199.45 15295.72 14298.01 15497.86 205
BH-w/o95.38 17695.08 17396.26 24498.34 16091.79 27797.70 24997.43 28692.87 22794.24 22297.22 24888.66 19498.84 21891.55 26497.70 16798.16 198
Patchmatch-test94.42 23693.68 25196.63 21097.60 21091.76 27894.83 33797.49 28189.45 30994.14 22797.10 25488.99 18598.83 22085.37 32698.13 15299.29 122
EPMVS94.99 20094.48 19996.52 22497.22 24191.75 27997.23 28091.66 35094.11 16497.28 12996.81 28785.70 25398.84 21893.04 22697.28 17598.97 156
Fast-Effi-MVS+-dtu95.87 15295.85 14095.91 25797.74 20291.74 28098.69 12898.15 22695.56 10194.92 19497.68 21788.98 18898.79 22493.19 22197.78 16397.20 223
eth_miper_zixun_eth94.68 21694.41 20695.47 27297.64 20791.71 28196.73 31498.07 24292.71 23193.64 24697.21 24990.54 15898.17 28793.38 21489.76 28696.54 286
XVG-ACMP-BASELINE94.54 22894.14 21995.75 26596.55 28191.65 28298.11 21498.44 17594.96 13594.22 22397.90 19479.18 31299.11 18294.05 19893.85 23496.48 298
TDRefinement91.06 29689.68 30195.21 27985.35 34991.49 28398.51 15797.07 30091.47 26988.83 32197.84 20177.31 32499.09 18692.79 23377.98 34295.04 328
MDA-MVSNet-bldmvs89.97 30488.35 30994.83 29395.21 32491.34 28497.64 25497.51 27888.36 31671.17 34896.13 31279.22 31196.63 33583.65 32986.27 32796.52 291
RRT_test8_iter0594.56 22694.19 21495.67 26797.60 21091.34 28498.93 7598.42 17994.75 14293.39 25797.87 19779.00 31398.61 23696.78 10790.99 27497.07 225
MVS_030492.81 28292.01 28395.23 27897.46 22491.33 28698.17 20798.81 7691.13 28693.80 24395.68 32366.08 34698.06 29790.79 27396.13 20896.32 307
ITE_SJBPF95.44 27497.42 22991.32 28797.50 27995.09 13093.59 24798.35 15581.70 29698.88 21489.71 29193.39 24596.12 312
SCA95.46 16995.13 17096.46 23197.67 20591.29 28897.33 27497.60 26994.68 14696.92 14697.10 25483.97 28398.89 21292.59 23898.32 14899.20 129
pmmvs691.77 29090.63 29495.17 28194.69 33291.24 28998.67 13297.92 25686.14 32689.62 31697.56 22875.79 33098.34 27290.75 27584.56 33295.94 317
test_040291.32 29390.27 29794.48 30196.60 27991.12 29098.50 15897.22 29686.10 32788.30 32396.98 27377.65 32297.99 30378.13 34392.94 25294.34 332
MIMVSNet189.67 30688.28 31093.82 30992.81 34091.08 29198.01 22297.45 28487.95 31787.90 32595.87 31667.63 34494.56 34478.73 34288.18 30895.83 319
miper_lstm_enhance94.33 24094.07 22295.11 28397.75 19990.97 29297.22 28198.03 24991.67 26592.76 27696.97 27490.03 16697.78 31492.51 24389.64 28896.56 283
ppachtmachnet_test93.22 27592.63 27594.97 28795.45 32190.84 29396.88 30697.88 25890.60 29192.08 29597.26 24488.08 21097.86 31385.12 32790.33 27996.22 309
USDC93.33 27292.71 27395.21 27996.83 26890.83 29496.91 30097.50 27993.84 17990.72 30998.14 17677.69 32098.82 22189.51 29693.21 24995.97 316
DWT-MVSNet_test94.82 20994.36 20896.20 24697.35 23490.79 29598.34 17696.57 32392.91 22595.33 18896.44 30282.00 29499.12 17994.52 17995.78 21398.70 172
MDA-MVSNet_test_wron90.71 29989.38 30494.68 29794.83 32990.78 29697.19 28397.46 28287.60 31872.41 34795.72 32086.51 23896.71 33385.92 32186.80 32596.56 283
PatchmatchNetpermissive95.71 16095.52 15296.29 24397.58 21290.72 29796.84 30997.52 27794.06 16697.08 13696.96 27689.24 17898.90 21192.03 25498.37 14499.26 125
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
YYNet190.70 30089.39 30394.62 29994.79 33090.65 29897.20 28297.46 28287.54 31972.54 34695.74 31786.51 23896.66 33486.00 32086.76 32696.54 286
JIA-IIPM93.35 27092.49 27795.92 25696.48 28690.65 29895.01 33296.96 30785.93 32896.08 17887.33 34487.70 22098.78 22591.35 26695.58 21498.34 192
IterMVS-SCA-FT94.11 25593.87 23694.85 29197.98 18990.56 30097.18 28498.11 23293.75 18392.58 28297.48 23183.97 28397.41 32392.48 24591.30 26896.58 279
EPNet_dtu95.21 18894.95 18095.99 25296.17 29790.45 30198.16 20897.27 29496.77 5393.14 26798.33 16090.34 16198.42 25885.57 32398.81 12599.09 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS94.09 25793.85 23894.80 29497.99 18790.35 30297.18 28498.12 23093.68 19392.46 28897.34 23984.05 28197.41 32392.51 24391.33 26796.62 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu96.29 13796.56 11895.51 27097.89 19390.22 30398.80 10498.10 23496.57 6296.45 17196.66 29290.81 15198.91 20895.72 14297.99 15597.40 216
testgi93.06 27992.45 27894.88 29096.43 28889.90 30498.75 11097.54 27695.60 9991.63 30197.91 19374.46 33697.02 32886.10 31993.67 23697.72 210
UnsupCasMVSNet_eth90.99 29789.92 30094.19 30794.08 33589.83 30597.13 28998.67 12893.69 19185.83 33396.19 31175.15 33296.74 33089.14 30179.41 34196.00 315
TinyColmap92.31 28791.53 28894.65 29896.92 26189.75 30696.92 29896.68 32090.45 29489.62 31697.85 20076.06 32998.81 22286.74 31592.51 25595.41 323
test-LLR95.10 19494.87 18395.80 26296.77 26989.70 30796.91 30095.21 33295.11 12794.83 19895.72 32087.71 21898.97 19893.06 22498.50 13898.72 170
test-mter94.08 25893.51 25795.80 26296.77 26989.70 30796.91 30095.21 33292.89 22694.83 19895.72 32077.69 32098.97 19893.06 22498.50 13898.72 170
our_test_393.65 26793.30 26394.69 29695.45 32189.68 30996.91 30097.65 26791.97 25691.66 30096.88 28289.67 16997.93 30788.02 30991.49 26696.48 298
DeepPCF-MVS96.37 297.93 6398.48 1796.30 24299.00 10989.54 31097.43 26498.87 5598.16 299.26 1899.38 2196.12 2899.64 12598.30 2699.77 2699.72 40
MS-PatchMatch93.84 26493.63 25294.46 30396.18 29689.45 31197.76 24598.27 20592.23 24992.13 29497.49 23079.50 30998.69 22989.75 29099.38 10095.25 324
OpenMVS_ROBcopyleft86.42 2089.00 30887.43 31393.69 31093.08 33989.42 31297.91 23096.89 31378.58 34285.86 33294.69 32969.48 34298.29 28177.13 34493.29 24893.36 341
SixPastTwentyTwo93.34 27192.86 27094.75 29595.67 31389.41 31398.75 11096.67 32193.89 17690.15 31398.25 16980.87 30298.27 28390.90 27290.64 27796.57 281
K. test v392.55 28591.91 28694.48 30195.64 31489.24 31499.07 5094.88 33694.04 16786.78 32897.59 22477.64 32397.64 31792.08 25089.43 29396.57 281
OurMVSNet-221017-094.21 24794.00 22794.85 29195.60 31589.22 31598.89 8297.43 28695.29 11692.18 29398.52 13982.86 29198.59 24193.46 21391.76 26396.74 259
TESTMET0.1,194.18 25193.69 25095.63 26896.92 26189.12 31696.91 30094.78 33793.17 21494.88 19596.45 30178.52 31598.92 20793.09 22398.50 13898.85 163
CostFormer94.95 20494.73 18895.60 26997.28 23789.06 31797.53 26096.89 31389.66 30696.82 15196.72 29086.05 24898.95 20595.53 15096.13 20898.79 167
tpm294.19 24993.76 24595.46 27397.23 24089.04 31897.31 27696.85 31687.08 32196.21 17696.79 28883.75 28998.74 22792.43 24696.23 20598.59 182
EG-PatchMatch MVS91.13 29590.12 29894.17 30894.73 33189.00 31998.13 21197.81 26089.22 31285.32 33596.46 30067.71 34398.42 25887.89 31193.82 23595.08 327
UnsupCasMVSNet_bld87.17 31185.12 31593.31 31491.94 34188.77 32094.92 33598.30 20284.30 33582.30 33990.04 34163.96 34897.25 32585.85 32274.47 34693.93 339
ADS-MVSNet294.58 22594.40 20795.11 28398.00 18588.74 32196.04 32397.30 29190.15 29896.47 16996.64 29587.89 21497.56 32090.08 28397.06 17799.02 151
LF4IMVS93.14 27892.79 27294.20 30695.88 30888.67 32297.66 25397.07 30093.81 18291.71 29997.65 21877.96 31998.81 22291.47 26591.92 26295.12 325
tpmvs94.60 22294.36 20895.33 27797.46 22488.60 32396.88 30697.68 26591.29 27993.80 24396.42 30388.58 19599.24 16691.06 26996.04 21098.17 197
tpmrst95.63 16495.69 14895.44 27497.54 21888.54 32496.97 29597.56 27193.50 20197.52 12796.93 28089.49 17099.16 17395.25 16096.42 19598.64 180
lessismore_v094.45 30494.93 32888.44 32591.03 35186.77 32997.64 22076.23 32898.42 25890.31 28085.64 33196.51 294
MDTV_nov1_ep1395.40 15497.48 22288.34 32696.85 30897.29 29293.74 18597.48 12897.26 24489.18 17999.05 18991.92 25797.43 173
new_pmnet90.06 30389.00 30693.22 31694.18 33388.32 32796.42 32196.89 31386.19 32585.67 33493.62 33277.18 32597.10 32781.61 33489.29 29594.23 333
test20.0390.89 29890.38 29692.43 31893.48 33788.14 32898.33 17897.56 27193.40 20587.96 32496.71 29180.69 30594.13 34579.15 34086.17 32895.01 330
tpm cat193.36 26992.80 27195.07 28597.58 21287.97 32996.76 31297.86 25982.17 33993.53 25096.04 31486.13 24699.13 17889.24 30095.87 21198.10 199
tpm94.13 25393.80 24095.12 28296.50 28487.91 33097.44 26295.89 32992.62 23396.37 17396.30 30584.13 28098.30 27893.24 21991.66 26599.14 140
LCM-MVSNet-Re95.22 18795.32 16394.91 28898.18 17487.85 33198.75 11095.66 33095.11 12788.96 32096.85 28590.26 16497.65 31695.65 14798.44 14199.22 128
gm-plane-assit95.88 30887.47 33289.74 30596.94 27999.19 17193.32 218
Anonymous2023120691.66 29191.10 29193.33 31394.02 33687.35 33398.58 14397.26 29590.48 29290.16 31296.31 30483.83 28796.53 33679.36 33989.90 28596.12 312
PVSNet_088.72 1991.28 29490.03 29995.00 28697.99 18787.29 33494.84 33698.50 16692.06 25489.86 31495.19 32579.81 30899.39 15592.27 24769.79 34798.33 193
pmmvs386.67 31384.86 31692.11 32188.16 34787.19 33596.63 31694.75 33879.88 34187.22 32792.75 33666.56 34595.20 34281.24 33576.56 34493.96 338
dp94.15 25293.90 23494.90 28997.31 23686.82 33696.97 29597.19 29791.22 28396.02 18096.61 29785.51 25699.02 19690.00 28794.30 21898.85 163
new-patchmatchnet88.50 30987.45 31291.67 32290.31 34585.89 33797.16 28797.33 29089.47 30883.63 33892.77 33576.38 32795.06 34382.70 33177.29 34394.06 337
Patchmatch-RL test91.49 29290.85 29393.41 31291.37 34284.40 33892.81 34395.93 32891.87 25987.25 32694.87 32888.99 18596.53 33692.54 24282.00 33599.30 120
MDTV_nov1_ep13_2view84.26 33996.89 30590.97 28897.90 10489.89 16893.91 20099.18 136
CVMVSNet95.43 17296.04 13593.57 31197.93 19083.62 34098.12 21298.59 14195.68 9596.56 16199.02 8087.51 22297.51 32293.56 21297.44 17299.60 78
EU-MVSNet93.66 26594.14 21992.25 32095.96 30683.38 34198.52 15398.12 23094.69 14592.61 28198.13 17787.36 22796.39 33891.82 25890.00 28496.98 230
PM-MVS87.77 31086.55 31491.40 32391.03 34483.36 34296.92 29895.18 33491.28 28086.48 33193.42 33353.27 35096.74 33089.43 29881.97 33694.11 335
DSMNet-mixed92.52 28692.58 27692.33 31994.15 33482.65 34398.30 18694.26 34389.08 31392.65 28095.73 31885.01 26495.76 33986.24 31897.76 16498.59 182
MVS-HIRNet89.46 30788.40 30892.64 31797.58 21282.15 34494.16 34293.05 34975.73 34590.90 30682.52 34679.42 31098.33 27383.53 33098.68 12797.43 214
RPSCF94.87 20895.40 15493.26 31598.89 11782.06 34598.33 17898.06 24690.30 29796.56 16199.26 4287.09 22999.49 14593.82 20396.32 19898.24 195
Gipumacopyleft78.40 31576.75 31883.38 33095.54 31780.43 34679.42 35197.40 28864.67 34873.46 34580.82 34845.65 35293.14 34666.32 34887.43 31576.56 349
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
CMPMVSbinary66.06 2189.70 30589.67 30289.78 32493.19 33876.56 34797.00 29498.35 19080.97 34081.57 34097.75 20974.75 33498.61 23689.85 28893.63 23894.17 334
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ambc89.49 32586.66 34875.78 34892.66 34496.72 31886.55 33092.50 33746.01 35197.90 30890.32 27982.09 33494.80 331
PMMVS277.95 31675.44 32085.46 32882.54 35074.95 34994.23 34193.08 34872.80 34674.68 34487.38 34336.36 35691.56 34873.95 34663.94 34889.87 343
DeepMVS_CXcopyleft86.78 32697.09 25372.30 35095.17 33575.92 34484.34 33795.19 32570.58 34195.35 34079.98 33889.04 29992.68 342
LCM-MVSNet78.70 31476.24 31986.08 32777.26 35571.99 35194.34 34096.72 31861.62 34976.53 34389.33 34233.91 35792.78 34781.85 33374.60 34593.46 340
ANet_high69.08 31865.37 32280.22 33165.99 35771.96 35290.91 34790.09 35282.62 33749.93 35478.39 34929.36 35881.75 35162.49 34938.52 35286.95 346
MVEpermissive62.14 2263.28 32359.38 32674.99 33374.33 35665.47 35385.55 34980.50 35852.02 35251.10 35375.00 35210.91 36280.50 35251.60 35153.40 34978.99 347
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
N_pmnet87.12 31287.77 31185.17 32995.46 32061.92 35497.37 26970.66 35985.83 32988.73 32296.04 31485.33 26197.76 31580.02 33690.48 27895.84 318
FPMVS77.62 31777.14 31779.05 33279.25 35360.97 35595.79 32895.94 32765.96 34767.93 34994.40 33037.73 35588.88 35068.83 34788.46 30587.29 344
tmp_tt68.90 31966.97 32174.68 33450.78 35959.95 35687.13 34883.47 35738.80 35462.21 35096.23 30864.70 34776.91 35588.91 30330.49 35387.19 345
E-PMN64.94 32164.25 32367.02 33682.28 35159.36 35791.83 34685.63 35552.69 35160.22 35177.28 35041.06 35480.12 35346.15 35241.14 35061.57 351
EMVS64.07 32263.26 32566.53 33781.73 35258.81 35891.85 34584.75 35651.93 35359.09 35275.13 35143.32 35379.09 35442.03 35339.47 35161.69 350
PMVScopyleft61.03 2365.95 32063.57 32473.09 33557.90 35851.22 35985.05 35093.93 34754.45 35044.32 35583.57 34513.22 35989.15 34958.68 35081.00 33978.91 348
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d30.17 32430.18 32830.16 33878.61 35443.29 36066.79 35214.21 36017.31 35514.82 35811.93 35811.55 36141.43 35637.08 35419.30 3545.76 354
test12320.95 32723.72 33012.64 33913.54 3618.19 36196.55 3196.13 3627.48 35716.74 35737.98 35512.97 3606.05 35716.69 3555.43 35623.68 352
testmvs21.48 32624.95 32911.09 34014.89 3606.47 36296.56 3189.87 3617.55 35617.93 35639.02 3549.43 3635.90 35816.56 35612.72 35520.91 353
uanet_test0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
cdsmvs_eth3d_5k23.98 32531.98 3270.00 3410.00 3620.00 3630.00 35398.59 1410.00 3580.00 35998.61 12790.60 1570.00 3590.00 3570.00 3570.00 355
pcd_1.5k_mvsjas7.88 32910.50 3320.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 35994.51 850.00 3590.00 3570.00 3570.00 355
sosnet-low-res0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
sosnet0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
uncertanet0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
Regformer0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
ab-mvs-re8.20 32810.94 3310.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 35998.43 1450.00 3640.00 3590.00 3570.00 3570.00 355
uanet0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 1899.80 1799.83 5
9.1498.06 4999.47 4898.71 12298.82 7094.36 15999.16 2699.29 3996.05 3299.81 7097.00 8699.71 50
test_0728_THIRD97.32 2799.45 999.46 997.88 199.94 398.47 1599.86 199.85 2
GSMVS99.20 129
sam_mvs189.45 17299.20 129
sam_mvs88.99 185
MTGPAbinary98.74 102
test_post196.68 31530.43 35787.85 21798.69 22992.59 238
test_post31.83 35688.83 19298.91 208
patchmatchnet-post95.10 32789.42 17398.89 212
MTMP98.89 8294.14 345
test9_res96.39 12099.57 7599.69 51
agg_prior295.87 13699.57 7599.68 57
test_prior297.80 24296.12 8097.89 10598.69 11995.96 3696.89 9599.60 68
旧先验297.57 25991.30 27898.67 5899.80 7995.70 146
新几何297.64 254
无先验97.58 25898.72 10991.38 27299.87 4493.36 21699.60 78
原ACMM297.67 252
testdata299.89 3591.65 263
segment_acmp96.85 11
testdata197.32 27596.34 71
plane_prior598.56 14999.03 19396.07 12694.27 21996.92 234
plane_prior498.28 164
plane_prior298.80 10497.28 29
plane_prior197.37 233
n20.00 363
nn0.00 363
door-mid94.37 341
test1198.66 131
door94.64 339
HQP-NCC97.20 24398.05 21896.43 6794.45 208
ACMP_Plane97.20 24398.05 21896.43 6794.45 208
BP-MVS95.30 156
HQP4-MVS94.45 20898.96 20196.87 245
HQP3-MVS98.46 17194.18 223
HQP2-MVS86.75 235
ACMMP++_ref92.97 251
ACMMP++93.61 239
Test By Simon94.64 80