This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
FOURS199.91 199.93 199.87 599.56 5799.10 1099.81 24
TSAR-MVS + MP.99.58 599.50 899.81 4199.91 199.66 5999.63 6499.39 21698.91 4399.78 3499.85 3199.36 299.94 5798.84 9099.88 3699.82 38
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS_fast99.51 1599.40 1799.85 2899.91 199.79 3399.76 3099.56 5797.72 16299.76 4099.75 11599.13 1299.92 8399.07 5799.92 1199.85 16
MP-MVS-pluss99.37 5099.20 6399.88 699.90 499.87 1299.30 21599.52 9197.18 21799.60 9099.79 9298.79 5099.95 4698.83 9399.91 1699.83 31
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
zzz-MVS99.49 1699.36 2399.89 499.90 499.86 1399.36 20099.47 16398.79 5499.68 5799.81 6498.43 8499.97 1198.88 7699.90 2399.83 31
MTAPA99.52 1499.39 1899.89 499.90 499.86 1399.66 5299.47 16398.79 5499.68 5799.81 6498.43 8499.97 1198.88 7699.90 2399.83 31
HPM-MVScopyleft99.42 4099.28 5199.83 3699.90 499.72 4799.81 1599.54 7497.59 17499.68 5799.63 17898.91 3999.94 5798.58 13199.91 1699.84 20
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HyFIR lowres test99.11 9398.92 10099.65 7599.90 499.37 10599.02 28399.91 397.67 16999.59 9399.75 11595.90 17499.73 19199.53 699.02 17499.86 13
MSP-MVS99.42 4099.27 5399.88 699.89 999.80 2999.67 4899.50 12498.70 6099.77 3699.49 22998.21 9999.95 4698.46 14899.77 9799.88 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CHOSEN 1792x268899.19 7299.10 7299.45 12099.89 998.52 20399.39 18899.94 198.73 5899.11 19999.89 1295.50 18799.94 5799.50 1099.97 399.89 2
ACMMPcopyleft99.45 2799.32 3299.82 3899.89 999.67 5799.62 7099.69 1898.12 11599.63 7999.84 4098.73 6299.96 1998.55 13999.83 7499.81 44
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
region2R99.48 2099.35 2699.87 1299.88 1299.80 2999.65 5999.66 2798.13 11399.66 6899.68 15298.96 2899.96 1998.62 12299.87 4099.84 20
MP-MVScopyleft99.33 5599.15 6799.87 1299.88 1299.82 2399.66 5299.46 17398.09 12099.48 11599.74 12198.29 9699.96 1997.93 19299.87 4099.82 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS99.44 3199.30 4399.86 2199.88 1299.79 3399.69 4099.48 14598.12 11599.50 11199.75 11598.78 5199.97 1198.57 13399.89 3399.83 31
COLMAP_ROBcopyleft97.56 698.86 12298.75 12499.17 16099.88 1298.53 19999.34 20999.59 4397.55 17998.70 26799.89 1295.83 17699.90 10998.10 17799.90 2399.08 204
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ZNCC-MVS99.47 2399.33 3099.87 1299.87 1699.81 2799.64 6299.67 2298.08 12499.55 10299.64 17298.91 3999.96 1998.72 10899.90 2399.82 38
ACMMP_NAP99.47 2399.34 2899.88 699.87 1699.86 1399.47 15399.48 14598.05 13099.76 4099.86 2598.82 4799.93 7298.82 9799.91 1699.84 20
HFP-MVS99.49 1699.37 2199.86 2199.87 1699.80 2999.66 5299.67 2298.15 11199.68 5799.69 14599.06 1699.96 1998.69 11399.87 4099.84 20
#test#99.43 3599.29 4799.86 2199.87 1699.80 2999.55 11399.67 2297.83 14899.68 5799.69 14599.06 1699.96 1998.39 15299.87 4099.84 20
ACMMPR99.49 1699.36 2399.86 2199.87 1699.79 3399.66 5299.67 2298.15 11199.67 6399.69 14598.95 3199.96 1998.69 11399.87 4099.84 20
PGM-MVS99.45 2799.31 3999.86 2199.87 1699.78 4099.58 9199.65 3297.84 14799.71 5099.80 8099.12 1399.97 1198.33 16099.87 4099.83 31
GST-MVS99.40 4799.24 5999.85 2899.86 2299.79 3399.60 7799.67 2297.97 13699.63 7999.68 15298.52 7799.95 4698.38 15499.86 5199.81 44
AllTest98.87 11998.72 12599.31 13999.86 2298.48 20999.56 10499.61 3597.85 14599.36 14699.85 3195.95 16999.85 13496.66 28699.83 7499.59 140
TestCases99.31 13999.86 2298.48 20999.61 3597.85 14599.36 14699.85 3195.95 16999.85 13496.66 28699.83 7499.59 140
PVSNet_Blended_VisFu99.36 5199.28 5199.61 8599.86 2299.07 14299.47 15399.93 297.66 17099.71 5099.86 2597.73 11699.96 1999.47 1799.82 8099.79 59
DVP-MVScopyleft99.57 899.47 1099.88 699.85 2699.89 499.57 9799.37 23199.10 1099.81 2499.80 8098.94 3499.96 1998.93 7099.86 5199.81 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.85 2699.89 499.62 7099.50 12499.10 1099.86 1299.82 5198.94 34
XVS99.53 1299.42 1499.87 1299.85 2699.83 1799.69 4099.68 1998.98 3199.37 14399.74 12198.81 4899.94 5798.79 9999.86 5199.84 20
X-MVStestdata96.55 29595.45 31099.87 1299.85 2699.83 1799.69 4099.68 1998.98 3199.37 14364.01 37398.81 4899.94 5798.79 9999.86 5199.84 20
abl_699.44 3199.31 3999.83 3699.85 2699.75 4399.66 5299.59 4398.13 11399.82 2299.81 6498.60 7299.96 1998.46 14899.88 3699.79 59
114514_t98.93 11698.67 13199.72 6499.85 2699.53 8599.62 7099.59 4392.65 34699.71 5099.78 9998.06 10899.90 10998.84 9099.91 1699.74 80
CSCG99.32 5699.32 3299.32 13899.85 2698.29 21799.71 3799.66 2798.11 11799.41 13199.80 8098.37 9199.96 1998.99 6399.96 599.72 93
SED-MVS99.61 299.52 699.88 699.84 3399.90 299.60 7799.48 14599.08 1499.91 199.81 6499.20 799.96 1998.91 7399.85 5899.79 59
IU-MVS99.84 3399.88 899.32 25898.30 9499.84 1498.86 8599.85 5899.89 2
test_241102_ONE99.84 3399.90 299.48 14599.07 1699.91 199.74 12199.20 799.76 180
test_0728_SECOND99.91 299.84 3399.89 499.57 9799.51 10499.96 1998.93 7099.86 5199.88 7
CP-MVS99.45 2799.32 3299.85 2899.83 3799.75 4399.69 4099.52 9198.07 12599.53 10599.63 17898.93 3899.97 1198.74 10499.91 1699.83 31
SteuartSystems-ACMMP99.54 1099.42 1499.87 1299.82 3899.81 2799.59 8399.51 10498.62 6499.79 2999.83 4499.28 499.97 1198.48 14499.90 2399.84 20
Skip Steuart: Steuart Systems R&D Blog.
RPSCF98.22 17498.62 14196.99 32399.82 3891.58 36099.72 3599.44 19496.61 26399.66 6899.89 1295.92 17299.82 15797.46 23899.10 16699.57 145
DeepC-MVS98.35 299.30 5899.19 6499.64 8099.82 3899.23 12099.62 7099.55 6798.94 3899.63 7999.95 295.82 17799.94 5799.37 2599.97 399.73 87
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_one_060199.81 4199.88 899.49 13298.97 3499.65 7499.81 6499.09 14
test_part299.81 4199.83 1799.77 36
CPTT-MVS99.11 9398.90 10399.74 5999.80 4399.46 9799.59 8399.49 13297.03 23499.63 7999.69 14597.27 12999.96 1997.82 20199.84 6599.81 44
SF-MVS99.38 4999.24 5999.79 4699.79 4499.68 5499.57 9799.54 7497.82 15399.71 5099.80 8098.95 3199.93 7298.19 16999.84 6599.74 80
MCST-MVS99.43 3599.30 4399.82 3899.79 4499.74 4699.29 21999.40 21298.79 5499.52 10899.62 18498.91 3999.90 10998.64 12099.75 10299.82 38
DPE-MVScopyleft99.46 2599.32 3299.91 299.78 4699.88 899.36 20099.51 10498.73 5899.88 599.84 4098.72 6399.96 1998.16 17499.87 4099.88 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
EI-MVSNet-UG-set99.58 599.57 199.64 8099.78 4699.14 13399.60 7799.45 18599.01 2199.90 399.83 4498.98 2699.93 7299.59 299.95 699.86 13
EI-MVSNet-Vis-set99.58 599.56 399.64 8099.78 4699.15 13299.61 7699.45 18599.01 2199.89 499.82 5199.01 1999.92 8399.56 599.95 699.85 16
Vis-MVSNetpermissive99.12 8898.97 9499.56 9499.78 4699.10 13899.68 4599.66 2798.49 7299.86 1299.87 2294.77 21699.84 13999.19 4499.41 14199.74 80
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
F-COLMAP99.19 7299.04 8099.64 8099.78 4699.27 11699.42 17499.54 7497.29 20799.41 13199.59 19498.42 8799.93 7298.19 16999.69 11599.73 87
APDe-MVS99.66 199.57 199.92 199.77 5199.89 499.75 3199.56 5799.02 1899.88 599.85 3199.18 1099.96 1999.22 4199.92 1199.90 1
MVS_111021_LR99.41 4499.33 3099.65 7599.77 5199.51 9098.94 30499.85 698.82 4999.65 7499.74 12198.51 7899.80 16698.83 9399.89 3399.64 126
DP-MVS99.16 7898.95 9899.78 4899.77 5199.53 8599.41 17699.50 12497.03 23499.04 21599.88 1797.39 12299.92 8398.66 11899.90 2399.87 12
SR-MVS-dyc-post99.45 2799.31 3999.85 2899.76 5499.82 2399.63 6499.52 9198.38 8399.76 4099.82 5198.53 7599.95 4698.61 12599.81 8399.77 69
RE-MVS-def99.34 2899.76 5499.82 2399.63 6499.52 9198.38 8399.76 4099.82 5198.75 5998.61 12599.81 8399.77 69
xxxxxxxxxxxxxcwj99.43 3599.32 3299.75 5499.76 5499.59 7399.14 25799.53 8599.00 2599.71 5099.80 8098.95 3199.93 7298.19 16999.84 6599.74 80
save fliter99.76 5499.59 7399.14 25799.40 21299.00 25
Regformer-399.57 899.53 599.68 6899.76 5499.29 11399.58 9199.44 19499.01 2199.87 1199.80 8098.97 2799.91 9499.44 2199.92 1199.83 31
Regformer-499.59 399.54 499.73 6199.76 5499.41 10299.58 9199.49 13299.02 1899.88 599.80 8099.00 2599.94 5799.45 1999.92 1199.84 20
APD-MVS_3200maxsize99.48 2099.35 2699.85 2899.76 5499.83 1799.63 6499.54 7498.36 8799.79 2999.82 5198.86 4399.95 4698.62 12299.81 8399.78 67
PVSNet_BlendedMVS98.86 12298.80 11899.03 17399.76 5498.79 18099.28 22199.91 397.42 19799.67 6399.37 26697.53 11999.88 12298.98 6497.29 25798.42 321
PVSNet_Blended99.08 9998.97 9499.42 12799.76 5498.79 18098.78 31999.91 396.74 25299.67 6399.49 22997.53 11999.88 12298.98 6499.85 5899.60 136
MSDG98.98 11298.80 11899.53 10299.76 5499.19 12398.75 32299.55 6797.25 21199.47 11699.77 10697.82 11399.87 12596.93 27299.90 2399.54 149
test117299.43 3599.29 4799.85 2899.75 6499.82 2399.60 7799.56 5798.28 9599.74 4499.79 9298.53 7599.95 4698.55 13999.78 9499.79 59
SR-MVS99.43 3599.29 4799.86 2199.75 6499.83 1799.59 8399.62 3398.21 10599.73 4699.79 9298.68 6699.96 1998.44 15099.77 9799.79 59
HPM-MVS++copyleft99.39 4899.23 6199.87 1299.75 6499.84 1699.43 16799.51 10498.68 6299.27 16599.53 21698.64 7199.96 1998.44 15099.80 8799.79 59
新几何199.75 5499.75 6499.59 7399.54 7496.76 25199.29 16099.64 17298.43 8499.94 5796.92 27499.66 12399.72 93
test22299.75 6499.49 9198.91 30799.49 13296.42 28099.34 15299.65 16598.28 9799.69 11599.72 93
testdata99.54 9699.75 6498.95 15999.51 10497.07 22999.43 12499.70 13798.87 4299.94 5797.76 20699.64 12699.72 93
CDPH-MVS99.13 8298.91 10299.80 4399.75 6499.71 4999.15 25599.41 20696.60 26599.60 9099.55 20798.83 4699.90 10997.48 23599.83 7499.78 67
APD-MVScopyleft99.27 6499.08 7599.84 3599.75 6499.79 3399.50 13299.50 12497.16 21999.77 3699.82 5198.78 5199.94 5797.56 22899.86 5199.80 54
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ECVR-MVS1198.04 19998.11 17497.83 30099.74 7293.82 34699.58 9195.40 36899.12 899.65 7499.93 490.73 31499.84 13999.43 2299.38 14299.82 38
ECVR-MVScopyleft98.04 19998.05 18398.00 28999.74 7294.37 34199.59 8394.98 36999.13 799.66 6899.93 490.67 31599.84 13999.40 2399.38 14299.80 54
旧先验199.74 7299.59 7399.54 7499.69 14598.47 8199.68 12099.73 87
112199.09 9798.87 10799.75 5499.74 7299.60 7099.27 22699.48 14596.82 25099.25 17299.65 16598.38 8999.93 7297.53 23199.67 12299.73 87
SD-MVS99.41 4499.52 699.05 17099.74 7299.68 5499.46 15699.52 9199.11 999.88 599.91 799.43 197.70 35598.72 10899.93 1099.77 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DP-MVS Recon99.12 8898.95 9899.65 7599.74 7299.70 5199.27 22699.57 5196.40 28299.42 12799.68 15298.75 5999.80 16697.98 18899.72 10999.44 176
PAPM_NR99.04 10498.84 11399.66 7199.74 7299.44 9999.39 18899.38 22297.70 16499.28 16299.28 28998.34 9399.85 13496.96 26999.45 13899.69 105
ETH3D-3000-0.199.21 7099.02 8599.77 5099.73 7999.69 5299.38 19399.51 10497.45 19199.61 8699.75 11598.51 7899.91 9497.45 24099.83 7499.71 100
SMA-MVScopyleft99.44 3199.30 4399.85 2899.73 7999.83 1799.56 10499.47 16397.45 19199.78 3499.82 5199.18 1099.91 9498.79 9999.89 3399.81 44
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
原ACMM199.65 7599.73 7999.33 10799.47 16397.46 18899.12 19799.66 16498.67 6999.91 9497.70 21599.69 11599.71 100
IS-MVSNet99.05 10398.87 10799.57 9299.73 7999.32 10899.75 3199.20 28398.02 13499.56 9899.86 2596.54 15299.67 21398.09 17899.13 16299.73 87
PVSNet96.02 1798.85 13098.84 11398.89 19899.73 7997.28 25798.32 34999.60 4097.86 14399.50 11199.57 20196.75 14699.86 12898.56 13699.70 11499.54 149
9.1499.10 7299.72 8499.40 18499.51 10497.53 18499.64 7899.78 9998.84 4599.91 9497.63 21999.82 80
testtj99.12 8898.87 10799.86 2199.72 8499.79 3399.44 16199.51 10497.29 20799.59 9399.74 12198.15 10599.96 1996.74 28099.69 11599.81 44
thres100view90097.76 24197.45 24898.69 22799.72 8497.86 24199.59 8398.74 33097.93 13999.26 17098.62 33791.75 29699.83 15093.22 33798.18 21698.37 327
thres600view797.86 22597.51 24198.92 18999.72 8497.95 23699.59 8398.74 33097.94 13899.27 16598.62 33791.75 29699.86 12893.73 33298.19 21598.96 222
DELS-MVS99.48 2099.42 1499.65 7599.72 8499.40 10499.05 27499.66 2799.14 699.57 9799.80 8098.46 8299.94 5799.57 499.84 6599.60 136
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR99.41 4499.32 3299.66 7199.72 8499.47 9598.95 30299.85 698.82 4999.54 10399.73 12898.51 7899.74 18498.91 7399.88 3699.77 69
ZD-MVS99.71 9099.79 3399.61 3596.84 24799.56 9899.54 21298.58 7399.96 1996.93 27299.75 102
Anonymous2023121197.88 22197.54 23898.90 19599.71 9098.53 19999.48 14899.57 5194.16 33398.81 25099.68 15293.23 25899.42 25398.84 9094.42 31998.76 239
Regformer-199.53 1299.47 1099.72 6499.71 9099.44 9999.49 14299.46 17398.95 3799.83 1999.76 11099.01 1999.93 7299.17 4799.87 4099.80 54
Regformer-299.54 1099.47 1099.75 5499.71 9099.52 8899.49 14299.49 13298.94 3899.83 1999.76 11099.01 1999.94 5799.15 5099.87 4099.80 54
XVG-OURS-SEG-HR98.69 14598.62 14198.89 19899.71 9097.74 24599.12 25999.54 7498.44 7999.42 12799.71 13394.20 23899.92 8398.54 14198.90 18399.00 216
Vis-MVSNet (Re-imp)98.87 11998.72 12599.31 13999.71 9098.88 16899.80 1999.44 19497.91 14199.36 14699.78 9995.49 18899.43 25297.91 19399.11 16399.62 132
PatchMatch-RL98.84 13398.62 14199.52 10899.71 9099.28 11499.06 27299.77 997.74 16199.50 11199.53 21695.41 18999.84 13997.17 25899.64 12699.44 176
h-mvs3397.70 25697.28 27498.97 18199.70 9797.27 25899.36 20099.45 18598.94 3899.66 6899.64 17294.93 20499.99 199.48 1584.36 35699.65 119
XVG-OURS98.73 14298.68 13098.88 20199.70 9797.73 24698.92 30599.55 6798.52 7099.45 11999.84 4095.27 19599.91 9498.08 18298.84 18699.00 216
TAPA-MVS97.07 1597.74 24897.34 26898.94 18599.70 9797.53 25199.25 23799.51 10491.90 34899.30 15799.63 17898.78 5199.64 22388.09 35999.87 4099.65 119
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETH3 D test640098.70 14398.35 15999.73 6199.69 10099.60 7099.16 25199.45 18595.42 31599.27 16599.60 19197.39 12299.91 9495.36 31399.83 7499.70 102
tfpn200view997.72 25197.38 26198.72 22599.69 10097.96 23499.50 13298.73 33597.83 14899.17 19198.45 34291.67 30099.83 15093.22 33798.18 21698.37 327
thres40097.77 24097.38 26198.92 18999.69 10097.96 23499.50 13298.73 33597.83 14899.17 19198.45 34291.67 30099.83 15093.22 33798.18 21698.96 222
Test_1112_low_res98.89 11898.66 13499.57 9299.69 10098.95 15999.03 28099.47 16396.98 23699.15 19399.23 29696.77 14599.89 11798.83 9398.78 19099.86 13
1112_ss98.98 11298.77 12199.59 8799.68 10499.02 14699.25 23799.48 14597.23 21499.13 19599.58 19796.93 14099.90 10998.87 8098.78 19099.84 20
TEST999.67 10599.65 6299.05 27499.41 20696.22 29398.95 22999.49 22998.77 5499.91 94
train_agg99.02 10798.77 12199.77 5099.67 10599.65 6299.05 27499.41 20696.28 28698.95 22999.49 22998.76 5699.91 9497.63 21999.72 10999.75 75
test_899.67 10599.61 6899.03 28099.41 20696.28 28698.93 23399.48 23598.76 5699.91 94
agg_prior199.01 11098.76 12399.76 5399.67 10599.62 6698.99 29099.40 21296.26 28998.87 24299.49 22998.77 5499.91 9497.69 21699.72 10999.75 75
agg_prior99.67 10599.62 6699.40 21298.87 24299.91 94
test_prior399.21 7099.05 7799.68 6899.67 10599.48 9398.96 29899.56 5798.34 8999.01 21899.52 21998.68 6699.83 15097.96 18999.74 10599.74 80
test_prior99.68 6899.67 10599.48 9399.56 5799.83 15099.74 80
TSAR-MVS + GP.99.36 5199.36 2399.36 13299.67 10598.61 19499.07 26999.33 24899.00 2599.82 2299.81 6499.06 1699.84 13999.09 5599.42 14099.65 119
OMC-MVS99.08 9999.04 8099.20 15799.67 10598.22 22199.28 22199.52 9198.07 12599.66 6899.81 6497.79 11499.78 17497.79 20399.81 8399.60 136
Anonymous2024052998.09 19097.68 22499.34 13399.66 11498.44 21199.40 18499.43 20293.67 33799.22 17899.89 1290.23 32199.93 7299.26 3998.33 20699.66 115
tttt051798.42 15998.14 17199.28 14999.66 11498.38 21599.74 3496.85 36197.68 16699.79 2999.74 12191.39 30699.89 11798.83 9399.56 13399.57 145
CHOSEN 280x42099.12 8899.13 6999.08 16699.66 11497.89 23898.43 34399.71 1398.88 4499.62 8399.76 11096.63 14999.70 20799.46 1899.99 199.66 115
baseline99.15 7999.02 8599.53 10299.66 11499.14 13399.72 3599.48 14598.35 8899.42 12799.84 4096.07 16599.79 16999.51 999.14 16199.67 112
PLCcopyleft97.94 499.02 10798.85 11299.53 10299.66 11499.01 14899.24 23999.52 9196.85 24699.27 16599.48 23598.25 9899.91 9497.76 20699.62 12999.65 119
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
casdiffmvs99.13 8298.98 9399.56 9499.65 11999.16 12899.56 10499.50 12498.33 9299.41 13199.86 2595.92 17299.83 15099.45 1999.16 15899.70 102
EPP-MVSNet99.13 8298.99 9099.53 10299.65 11999.06 14399.81 1599.33 24897.43 19599.60 9099.88 1797.14 13199.84 13999.13 5198.94 17899.69 105
thres20097.61 26697.28 27498.62 23099.64 12198.03 22899.26 23598.74 33097.68 16699.09 20798.32 34691.66 30299.81 16192.88 34198.22 21298.03 341
test1299.75 5499.64 12199.61 6899.29 27099.21 18198.38 8999.89 11799.74 10599.74 80
ab-mvs98.86 12298.63 13699.54 9699.64 12199.19 12399.44 16199.54 7497.77 15699.30 15799.81 6494.20 23899.93 7299.17 4798.82 18799.49 165
DPM-MVS98.95 11598.71 12799.66 7199.63 12499.55 8098.64 33299.10 29497.93 13999.42 12799.55 20798.67 6999.80 16695.80 30299.68 12099.61 134
thisisatest053098.35 16698.03 18599.31 13999.63 12498.56 19699.54 11696.75 36397.53 18499.73 4699.65 16591.25 30999.89 11798.62 12299.56 13399.48 166
xiu_mvs_v1_base_debu99.29 6199.27 5399.34 13399.63 12498.97 15399.12 25999.51 10498.86 4599.84 1499.47 23898.18 10199.99 199.50 1099.31 14999.08 204
xiu_mvs_v1_base99.29 6199.27 5399.34 13399.63 12498.97 15399.12 25999.51 10498.86 4599.84 1499.47 23898.18 10199.99 199.50 1099.31 14999.08 204
xiu_mvs_v1_base_debi99.29 6199.27 5399.34 13399.63 12498.97 15399.12 25999.51 10498.86 4599.84 1499.47 23898.18 10199.99 199.50 1099.31 14999.08 204
DeepC-MVS_fast98.69 199.49 1699.39 1899.77 5099.63 12499.59 7399.36 20099.46 17399.07 1699.79 2999.82 5198.85 4499.92 8398.68 11599.87 4099.82 38
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UA-Net99.42 4099.29 4799.80 4399.62 13099.55 8099.50 13299.70 1598.79 5499.77 3699.96 197.45 12199.96 1998.92 7299.90 2399.89 2
CNVR-MVS99.42 4099.30 4399.78 4899.62 13099.71 4999.26 23599.52 9198.82 4999.39 13899.71 13398.96 2899.85 13498.59 13099.80 8799.77 69
WTY-MVS99.06 10198.88 10699.61 8599.62 13099.16 12899.37 19699.56 5798.04 13199.53 10599.62 18496.84 14199.94 5798.85 8798.49 20399.72 93
sss99.17 7699.05 7799.53 10299.62 13098.97 15399.36 20099.62 3397.83 14899.67 6399.65 16597.37 12699.95 4699.19 4499.19 15799.68 109
GeoE98.85 13098.62 14199.53 10299.61 13499.08 14099.80 1999.51 10497.10 22799.31 15599.78 9995.23 19999.77 17698.21 16799.03 17299.75 75
diffmvs99.14 8099.02 8599.51 11099.61 13498.96 15799.28 22199.49 13298.46 7599.72 4999.71 13396.50 15399.88 12299.31 3399.11 16399.67 112
NCCC99.34 5399.19 6499.79 4699.61 13499.65 6299.30 21599.48 14598.86 4599.21 18199.63 17898.72 6399.90 10998.25 16599.63 12899.80 54
PCF-MVS97.08 1497.66 26397.06 28499.47 11799.61 13499.09 13998.04 35699.25 27591.24 35198.51 28799.70 13794.55 22899.91 9492.76 34499.85 5899.42 178
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MSLP-MVS++99.46 2599.47 1099.44 12599.60 13899.16 12899.41 17699.71 1398.98 3199.45 11999.78 9999.19 999.54 23799.28 3699.84 6599.63 130
DeepPCF-MVS98.18 398.81 13499.37 2197.12 32299.60 13891.75 35998.61 33399.44 19499.35 199.83 1999.85 3198.70 6599.81 16199.02 6199.91 1699.81 44
test_part197.75 24597.24 27899.29 14699.59 14099.63 6599.65 5999.49 13296.17 29798.44 29299.69 14589.80 32599.47 24098.68 11593.66 32998.78 233
IterMVS-LS98.46 15698.42 15598.58 23599.59 14098.00 23099.37 19699.43 20296.94 24299.07 20999.59 19497.87 11199.03 31598.32 16295.62 29698.71 249
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS97.83 23197.77 21498.02 28699.58 14296.27 30599.02 28399.48 14597.22 21598.71 26199.70 13792.75 26899.13 30297.46 23896.00 28498.67 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CNLPA99.14 8098.99 9099.59 8799.58 14299.41 10299.16 25199.44 19498.45 7699.19 18799.49 22998.08 10799.89 11797.73 21099.75 10299.48 166
Anonymous20240521198.30 17097.98 19099.26 15199.57 14498.16 22399.41 17698.55 34296.03 30999.19 18799.74 12191.87 29399.92 8399.16 4998.29 21199.70 102
IterMVS-SCA-FT97.82 23497.75 21898.06 28399.57 14496.36 30299.02 28399.49 13297.18 21798.71 26199.72 13292.72 27199.14 29997.44 24195.86 29098.67 269
PS-MVSNAJ99.32 5699.32 3299.30 14399.57 14498.94 16298.97 29799.46 17398.92 4299.71 5099.24 29599.01 1999.98 699.35 2699.66 12398.97 220
MG-MVS99.13 8299.02 8599.45 12099.57 14498.63 19199.07 26999.34 24198.99 2899.61 8699.82 5197.98 11099.87 12597.00 26599.80 8799.85 16
OPU-MVS99.64 8099.56 14899.72 4799.60 7799.70 13799.27 599.42 25398.24 16699.80 8799.79 59
DROMVSNet99.44 3199.39 1899.58 9099.56 14899.49 9199.88 199.58 4998.38 8399.73 4699.69 14598.20 10099.70 20799.64 199.82 8099.54 149
PHI-MVS99.30 5899.17 6699.70 6799.56 14899.52 8899.58 9199.80 897.12 22399.62 8399.73 12898.58 7399.90 10998.61 12599.91 1699.68 109
AdaColmapbinary99.01 11098.80 11899.66 7199.56 14899.54 8299.18 24999.70 1598.18 10999.35 14999.63 17896.32 15999.90 10997.48 23599.77 9799.55 147
ET-MVSNet_ETH3D96.49 29795.64 30899.05 17099.53 15298.82 17798.84 31397.51 35897.63 17284.77 36299.21 30092.09 29098.91 33398.98 6492.21 34399.41 180
xiu_mvs_v2_base99.26 6699.25 5799.29 14699.53 15298.91 16699.02 28399.45 18598.80 5399.71 5099.26 29398.94 3499.98 699.34 3099.23 15498.98 219
LFMVS97.90 22097.35 26599.54 9699.52 15499.01 14899.39 18898.24 34697.10 22799.65 7499.79 9284.79 35699.91 9499.28 3698.38 20599.69 105
VNet99.11 9398.90 10399.73 6199.52 15499.56 7899.41 17699.39 21699.01 2199.74 4499.78 9995.56 18599.92 8399.52 798.18 21699.72 93
DVP-MVS++.99.59 399.50 899.88 699.51 15699.88 899.87 599.51 10498.99 2899.88 599.81 6499.27 599.96 1998.85 8799.80 8799.81 44
MSC_two_6792asdad99.87 1299.51 15699.76 4199.33 24899.96 1998.87 8099.84 6599.89 2
No_MVS99.87 1299.51 15699.76 4199.33 24899.96 1998.87 8099.84 6599.89 2
ETH3D cwj APD-0.1699.06 10198.84 11399.72 6499.51 15699.60 7099.23 24099.44 19497.04 23299.39 13899.67 15898.30 9599.92 8397.27 24799.69 11599.64 126
Fast-Effi-MVS+98.70 14398.43 15499.51 11099.51 15699.28 11499.52 12299.47 16396.11 30499.01 21899.34 27596.20 16399.84 13997.88 19598.82 18799.39 182
MVSFormer99.17 7699.12 7099.29 14699.51 15698.94 16299.88 199.46 17397.55 17999.80 2799.65 16597.39 12299.28 27899.03 5999.85 5899.65 119
lupinMVS99.13 8299.01 8999.46 11999.51 15698.94 16299.05 27499.16 28897.86 14399.80 2799.56 20497.39 12299.86 12898.94 6899.85 5899.58 144
GBi-Net97.68 25997.48 24398.29 26999.51 15697.26 26099.43 16799.48 14596.49 27199.07 20999.32 28290.26 31898.98 32297.10 26096.65 26798.62 291
test197.68 25997.48 24398.29 26999.51 15697.26 26099.43 16799.48 14596.49 27199.07 20999.32 28290.26 31898.98 32297.10 26096.65 26798.62 291
FMVSNet297.72 25197.36 26398.80 21899.51 15698.84 17399.45 15799.42 20496.49 27198.86 24799.29 28790.26 31898.98 32296.44 29096.56 27098.58 305
thisisatest051598.14 18597.79 20999.19 15899.50 16698.50 20698.61 33396.82 36296.95 24099.54 10399.43 24791.66 30299.86 12898.08 18299.51 13799.22 193
baseline198.31 16897.95 19599.38 13199.50 16698.74 18299.59 8398.93 31198.41 8099.14 19499.60 19194.59 22599.79 16998.48 14493.29 33399.61 134
hse-mvs297.50 27497.14 28198.59 23299.49 16897.05 27199.28 22199.22 27998.94 3899.66 6899.42 25094.93 20499.65 22099.48 1583.80 35899.08 204
EIA-MVS99.18 7499.09 7499.45 12099.49 16899.18 12599.67 4899.53 8597.66 17099.40 13699.44 24498.10 10699.81 16198.94 6899.62 12999.35 184
test_yl98.86 12298.63 13699.54 9699.49 16899.18 12599.50 13299.07 29998.22 10399.61 8699.51 22395.37 19199.84 13998.60 12898.33 20699.59 140
DCV-MVSNet98.86 12298.63 13699.54 9699.49 16899.18 12599.50 13299.07 29998.22 10399.61 8699.51 22395.37 19199.84 13998.60 12898.33 20699.59 140
VDDNet97.55 26897.02 28599.16 16199.49 16898.12 22799.38 19399.30 26595.35 31699.68 5799.90 982.62 36099.93 7299.31 3398.13 22199.42 178
MVS_Test99.10 9698.97 9499.48 11499.49 16899.14 13399.67 4899.34 24197.31 20599.58 9599.76 11097.65 11899.82 15798.87 8099.07 16999.46 173
BH-untuned98.42 15998.36 15798.59 23299.49 16896.70 29099.27 22699.13 29297.24 21398.80 25299.38 26395.75 17999.74 18497.07 26399.16 15899.33 188
AUN-MVS96.88 29096.31 29598.59 23299.48 17597.04 27499.27 22699.22 27997.44 19498.51 28799.41 25491.97 29199.66 21697.71 21383.83 35799.07 209
VDD-MVS97.73 24997.35 26598.88 20199.47 17697.12 26499.34 20998.85 32298.19 10699.67 6399.85 3182.98 35899.92 8399.49 1498.32 21099.60 136
ETV-MVS99.26 6699.21 6299.40 12899.46 17799.30 11299.56 10499.52 9198.52 7099.44 12399.27 29298.41 8899.86 12899.10 5499.59 13299.04 212
CS-MVS-test99.30 5899.25 5799.45 12099.46 17799.23 12099.80 1999.57 5198.28 9599.53 10599.44 24498.16 10499.79 16999.38 2499.61 13199.34 186
Effi-MVS+98.81 13498.59 14799.48 11499.46 17799.12 13798.08 35599.50 12497.50 18799.38 14199.41 25496.37 15899.81 16199.11 5398.54 20099.51 161
jason99.13 8299.03 8299.45 12099.46 17798.87 16999.12 25999.26 27398.03 13399.79 2999.65 16597.02 13699.85 13499.02 6199.90 2399.65 119
jason: jason.
TAMVS99.12 8899.08 7599.24 15499.46 17798.55 19799.51 12699.46 17398.09 12099.45 11999.82 5198.34 9399.51 23898.70 11098.93 17999.67 112
ACMH+97.24 1097.92 21897.78 21298.32 26699.46 17796.68 29299.56 10499.54 7498.41 8097.79 32299.87 2290.18 32299.66 21698.05 18697.18 26198.62 291
MIMVSNet97.73 24997.45 24898.57 23699.45 18397.50 25299.02 28398.98 30696.11 30499.41 13199.14 30690.28 31798.74 33795.74 30398.93 17999.47 171
CS-MVS99.34 5399.31 3999.43 12699.44 18499.47 9599.68 4599.56 5798.41 8099.62 8399.41 25498.35 9299.76 18099.52 799.76 10099.05 211
alignmvs98.81 13498.56 14999.58 9099.43 18599.42 10199.51 12698.96 30998.61 6599.35 14998.92 32794.78 21399.77 17699.35 2698.11 22299.54 149
canonicalmvs99.02 10798.86 11199.51 11099.42 18699.32 10899.80 1999.48 14598.63 6399.31 15598.81 33097.09 13399.75 18399.27 3897.90 22699.47 171
HY-MVS97.30 798.85 13098.64 13599.47 11799.42 18699.08 14099.62 7099.36 23297.39 20099.28 16299.68 15296.44 15699.92 8398.37 15698.22 21299.40 181
CDS-MVSNet99.09 9799.03 8299.25 15299.42 18698.73 18399.45 15799.46 17398.11 11799.46 11899.77 10698.01 10999.37 26098.70 11098.92 18199.66 115
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet99.25 6899.14 6899.59 8799.41 18999.16 12899.35 20699.57 5198.82 4999.51 11099.61 18896.46 15499.95 4699.59 299.98 299.65 119
Fast-Effi-MVS+-dtu98.77 14098.83 11798.60 23199.41 18996.99 27899.52 12299.49 13298.11 11799.24 17399.34 27596.96 13999.79 16997.95 19199.45 13899.02 215
BH-RMVSNet98.41 16198.08 17999.40 12899.41 18998.83 17699.30 21598.77 32697.70 16498.94 23199.65 16592.91 26699.74 18496.52 28899.55 13599.64 126
ACMM97.58 598.37 16598.34 16098.48 24699.41 18997.10 26599.56 10499.45 18598.53 6999.04 21599.85 3193.00 26299.71 20198.74 10497.45 24998.64 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH97.28 898.10 18997.99 18998.44 25599.41 18996.96 28299.60 7799.56 5798.09 12098.15 30899.91 790.87 31399.70 20798.88 7697.45 24998.67 269
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D97.32 28296.81 28898.87 20599.40 19497.46 25399.51 12699.53 8595.86 31198.54 28699.77 10682.44 36199.66 21698.68 11597.52 24199.50 164
PAPR98.63 15198.34 16099.51 11099.40 19499.03 14598.80 31799.36 23296.33 28399.00 22399.12 31098.46 8299.84 13995.23 31599.37 14899.66 115
API-MVS99.04 10499.03 8299.06 16899.40 19499.31 11199.55 11399.56 5798.54 6899.33 15399.39 26298.76 5699.78 17496.98 26799.78 9498.07 338
FMVSNet398.03 20197.76 21798.84 21299.39 19798.98 15099.40 18499.38 22296.67 25799.07 20999.28 28992.93 26398.98 32297.10 26096.65 26798.56 307
GA-MVS97.85 22697.47 24599.00 17799.38 19897.99 23198.57 33699.15 28997.04 23298.90 23799.30 28589.83 32499.38 25796.70 28398.33 20699.62 132
mvs_anonymous99.03 10698.99 9099.16 16199.38 19898.52 20399.51 12699.38 22297.79 15499.38 14199.81 6497.30 12799.45 24399.35 2698.99 17699.51 161
ACMP97.20 1198.06 19397.94 19798.45 25299.37 20097.01 27699.44 16199.49 13297.54 18298.45 29199.79 9291.95 29299.72 19597.91 19397.49 24798.62 291
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MAR-MVS98.86 12298.63 13699.54 9699.37 20099.66 5999.45 15799.54 7496.61 26399.01 21899.40 25897.09 13399.86 12897.68 21899.53 13699.10 199
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testgi97.65 26497.50 24298.13 28099.36 20296.45 29999.42 17499.48 14597.76 15797.87 31899.45 24391.09 31098.81 33694.53 32398.52 20199.13 198
EI-MVSNet98.67 14798.67 13198.68 22899.35 20397.97 23299.50 13299.38 22296.93 24399.20 18499.83 4497.87 11199.36 26498.38 15497.56 23898.71 249
CVMVSNet98.57 15398.67 13198.30 26899.35 20395.59 31799.50 13299.55 6798.60 6699.39 13899.83 4494.48 23099.45 24398.75 10398.56 19999.85 16
BH-w/o98.00 20897.89 20498.32 26699.35 20396.20 30799.01 28898.90 31896.42 28098.38 29699.00 32095.26 19799.72 19596.06 29698.61 19399.03 213
MVSTER98.49 15498.32 16299.00 17799.35 20399.02 14699.54 11699.38 22297.41 19899.20 18499.73 12893.86 25099.36 26498.87 8097.56 23898.62 291
miper_lstm_enhance98.00 20897.91 19998.28 27299.34 20797.43 25498.88 30999.36 23296.48 27598.80 25299.55 20795.98 16798.91 33397.27 24795.50 30098.51 310
Effi-MVS+-dtu98.78 13898.89 10598.47 25099.33 20896.91 28499.57 9799.30 26598.47 7399.41 13198.99 32196.78 14399.74 18498.73 10699.38 14298.74 245
CANet_DTU98.97 11498.87 10799.25 15299.33 20898.42 21499.08 26899.30 26599.16 599.43 12499.75 11595.27 19599.97 1198.56 13699.95 699.36 183
mvs-test198.86 12298.84 11398.89 19899.33 20897.77 24499.44 16199.30 26598.47 7399.10 20299.43 24796.78 14399.95 4698.73 10699.02 17498.96 222
ADS-MVSNet298.02 20398.07 18297.87 29799.33 20895.19 32999.23 24099.08 29796.24 29199.10 20299.67 15894.11 24298.93 33296.81 27799.05 17099.48 166
ADS-MVSNet98.20 17798.08 17998.56 23899.33 20896.48 29899.23 24099.15 28996.24 29199.10 20299.67 15894.11 24299.71 20196.81 27799.05 17099.48 166
LPG-MVS_test98.22 17498.13 17298.49 24499.33 20897.05 27199.58 9199.55 6797.46 18899.24 17399.83 4492.58 27899.72 19598.09 17897.51 24298.68 262
LGP-MVS_train98.49 24499.33 20897.05 27199.55 6797.46 18899.24 17399.83 4492.58 27899.72 19598.09 17897.51 24298.68 262
FMVSNet196.84 29196.36 29498.29 26999.32 21597.26 26099.43 16799.48 14595.11 31998.55 28599.32 28283.95 35798.98 32295.81 30196.26 27998.62 291
PVSNet_094.43 1996.09 30695.47 30997.94 29299.31 21694.34 34397.81 35899.70 1597.12 22397.46 32698.75 33489.71 32699.79 16997.69 21681.69 36099.68 109
c3_l98.12 18898.04 18498.38 26199.30 21797.69 25098.81 31699.33 24896.67 25798.83 24899.34 27597.11 13298.99 32197.58 22395.34 30298.48 312
SCA98.19 17898.16 16998.27 27399.30 21795.55 31899.07 26998.97 30797.57 17799.43 12499.57 20192.72 27199.74 18497.58 22399.20 15699.52 155
LCM-MVSNet-Re97.83 23198.15 17096.87 32899.30 21792.25 35899.59 8398.26 34597.43 19596.20 34499.13 30796.27 16198.73 33898.17 17398.99 17699.64 126
MVS-HIRNet95.75 30995.16 31397.51 31399.30 21793.69 35098.88 30995.78 36685.09 36098.78 25592.65 36391.29 30899.37 26094.85 32099.85 5899.46 173
HQP_MVS98.27 17398.22 16898.44 25599.29 22196.97 28099.39 18899.47 16398.97 3499.11 19999.61 18892.71 27399.69 21197.78 20497.63 23198.67 269
plane_prior799.29 22197.03 275
ITE_SJBPF98.08 28199.29 22196.37 30198.92 31398.34 8998.83 24899.75 11591.09 31099.62 22995.82 30097.40 25498.25 332
DeepMVS_CXcopyleft93.34 34099.29 22182.27 36699.22 27985.15 35996.33 34399.05 31590.97 31299.73 19193.57 33497.77 22998.01 342
CLD-MVS98.16 18298.10 17598.33 26499.29 22196.82 28798.75 32299.44 19497.83 14899.13 19599.55 20792.92 26499.67 21398.32 16297.69 23098.48 312
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
plane_prior699.27 22696.98 27992.71 273
PMMVS98.80 13798.62 14199.34 13399.27 22698.70 18598.76 32199.31 26197.34 20299.21 18199.07 31297.20 13099.82 15798.56 13698.87 18499.52 155
eth_miper_zixun_eth98.05 19897.96 19398.33 26499.26 22897.38 25598.56 33899.31 26196.65 25998.88 24099.52 21996.58 15099.12 30697.39 24495.53 29998.47 314
D2MVS98.41 16198.50 15198.15 27999.26 22896.62 29499.40 18499.61 3597.71 16398.98 22599.36 26996.04 16699.67 21398.70 11097.41 25398.15 336
plane_prior199.26 228
XXY-MVS98.38 16498.09 17899.24 15499.26 22899.32 10899.56 10499.55 6797.45 19198.71 26199.83 4493.23 25899.63 22898.88 7696.32 27898.76 239
cl____98.01 20697.84 20798.55 24099.25 23297.97 23298.71 32699.34 24196.47 27798.59 28499.54 21295.65 18499.21 29397.21 25195.77 29198.46 318
DIV-MVS_self_test98.01 20697.85 20698.48 24699.24 23397.95 23698.71 32699.35 23796.50 27098.60 28399.54 21295.72 18199.03 31597.21 25195.77 29198.46 318
miper_ehance_all_eth98.18 18098.10 17598.41 25799.23 23497.72 24798.72 32599.31 26196.60 26598.88 24099.29 28797.29 12899.13 30297.60 22195.99 28598.38 326
RRT_test8_iter0597.72 25197.60 23298.08 28199.23 23496.08 30999.63 6499.49 13297.54 18298.94 23199.81 6487.99 34599.35 26899.21 4396.51 27398.81 230
NP-MVS99.23 23496.92 28399.40 258
LTVRE_ROB97.16 1298.02 20397.90 20098.40 25999.23 23496.80 28899.70 3899.60 4097.12 22398.18 30799.70 13791.73 29899.72 19598.39 15297.45 24998.68 262
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVS_030496.79 29296.52 29297.59 31099.22 23894.92 33599.04 27999.59 4396.49 27198.43 29398.99 32180.48 36499.39 25597.15 25999.27 15298.47 314
UGNet98.87 11998.69 12999.40 12899.22 23898.72 18499.44 16199.68 1999.24 399.18 19099.42 25092.74 27099.96 1999.34 3099.94 999.53 154
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VPNet97.84 22997.44 25399.01 17599.21 24098.94 16299.48 14899.57 5198.38 8399.28 16299.73 12888.89 33499.39 25599.19 4493.27 33498.71 249
IB-MVS95.67 1896.22 30195.44 31198.57 23699.21 24096.70 29098.65 33197.74 35696.71 25497.27 33098.54 34086.03 35299.92 8398.47 14786.30 35499.10 199
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tfpnnormal97.84 22997.47 24598.98 17999.20 24299.22 12299.64 6299.61 3596.32 28498.27 30499.70 13793.35 25799.44 24895.69 30495.40 30198.27 330
QAPM98.67 14798.30 16499.80 4399.20 24299.67 5799.77 2799.72 1194.74 32798.73 25999.90 995.78 17899.98 696.96 26999.88 3699.76 74
HQP-NCC99.19 24498.98 29498.24 9998.66 270
ACMP_Plane99.19 24498.98 29498.24 9998.66 270
HQP-MVS98.02 20397.90 20098.37 26299.19 24496.83 28598.98 29499.39 21698.24 9998.66 27099.40 25892.47 28299.64 22397.19 25597.58 23698.64 281
Patchmatch-test97.93 21597.65 22798.77 22199.18 24797.07 26999.03 28099.14 29196.16 29998.74 25899.57 20194.56 22799.72 19593.36 33699.11 16399.52 155
FIs98.78 13898.63 13699.23 15699.18 24799.54 8299.83 1299.59 4398.28 9598.79 25499.81 6496.75 14699.37 26099.08 5696.38 27698.78 233
baseline297.87 22397.55 23598.82 21499.18 24798.02 22999.41 17696.58 36596.97 23796.51 34199.17 30293.43 25599.57 23397.71 21399.03 17298.86 227
CR-MVSNet98.17 18197.93 19898.87 20599.18 24798.49 20799.22 24599.33 24896.96 23899.56 9899.38 26394.33 23499.00 32094.83 32198.58 19699.14 196
RPMNet96.72 29395.90 30399.19 15899.18 24798.49 20799.22 24599.52 9188.72 35799.56 9897.38 35394.08 24499.95 4686.87 36398.58 19699.14 196
LS3D99.27 6499.12 7099.74 5999.18 24799.75 4399.56 10499.57 5198.45 7699.49 11499.85 3197.77 11599.94 5798.33 16099.84 6599.52 155
tpm cat197.39 28097.36 26397.50 31499.17 25393.73 34899.43 16799.31 26191.27 35098.71 26199.08 31194.31 23699.77 17696.41 29298.50 20299.00 216
3Dnovator+97.12 1399.18 7498.97 9499.82 3899.17 25399.68 5499.81 1599.51 10499.20 498.72 26099.89 1295.68 18299.97 1198.86 8599.86 5199.81 44
VPA-MVSNet98.29 17197.95 19599.30 14399.16 25599.54 8299.50 13299.58 4998.27 9899.35 14999.37 26692.53 28099.65 22099.35 2694.46 31798.72 247
tpmrst98.33 16798.48 15297.90 29699.16 25594.78 33799.31 21399.11 29397.27 20999.45 11999.59 19495.33 19399.84 13998.48 14498.61 19399.09 203
PatchmatchNetpermissive98.31 16898.36 15798.19 27699.16 25595.32 32699.27 22698.92 31397.37 20199.37 14399.58 19794.90 20799.70 20797.43 24299.21 15599.54 149
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm297.44 27997.34 26897.74 30699.15 25894.36 34299.45 15798.94 31093.45 34298.90 23799.44 24491.35 30799.59 23297.31 24598.07 22399.29 190
CostFormer97.72 25197.73 22097.71 30799.15 25894.02 34599.54 11699.02 30394.67 32899.04 21599.35 27292.35 28899.77 17698.50 14397.94 22599.34 186
TransMVSNet (Re)97.15 28696.58 29098.86 20899.12 26098.85 17299.49 14298.91 31695.48 31497.16 33499.80 8093.38 25699.11 30794.16 32991.73 34498.62 291
3Dnovator97.25 999.24 6999.05 7799.81 4199.12 26099.66 5999.84 999.74 1099.09 1398.92 23499.90 995.94 17199.98 698.95 6799.92 1199.79 59
XVG-ACMP-BASELINE97.83 23197.71 22298.20 27599.11 26296.33 30399.41 17699.52 9198.06 12999.05 21499.50 22689.64 32899.73 19197.73 21097.38 25598.53 308
FMVSNet596.43 29996.19 29797.15 31999.11 26295.89 31299.32 21199.52 9194.47 33298.34 30099.07 31287.54 34997.07 35992.61 34595.72 29498.47 314
MDTV_nov1_ep1398.32 16299.11 26294.44 34099.27 22698.74 33097.51 18699.40 13699.62 18494.78 21399.76 18097.59 22298.81 189
Patchmtry97.75 24597.40 25998.81 21699.10 26598.87 16999.11 26599.33 24894.83 32598.81 25099.38 26394.33 23499.02 31796.10 29595.57 29798.53 308
dp97.75 24597.80 20897.59 31099.10 26593.71 34999.32 21198.88 32096.48 27599.08 20899.55 20792.67 27699.82 15796.52 28898.58 19699.24 192
cl2297.85 22697.64 22998.48 24699.09 26797.87 23998.60 33599.33 24897.11 22698.87 24299.22 29792.38 28799.17 29798.21 16795.99 28598.42 321
Baseline_NR-MVSNet97.76 24197.45 24898.68 22899.09 26798.29 21799.41 17698.85 32295.65 31398.63 27899.67 15894.82 21099.10 30998.07 18592.89 33898.64 281
FC-MVSNet-test98.75 14198.62 14199.15 16399.08 26999.45 9899.86 899.60 4098.23 10298.70 26799.82 5196.80 14299.22 28899.07 5796.38 27698.79 232
USDC97.34 28197.20 27997.75 30599.07 27095.20 32898.51 34099.04 30297.99 13598.31 30199.86 2589.02 33299.55 23695.67 30697.36 25698.49 311
TinyColmap97.12 28796.89 28797.83 30099.07 27095.52 32198.57 33698.74 33097.58 17697.81 32199.79 9288.16 34399.56 23495.10 31697.21 25998.39 325
pm-mvs197.68 25997.28 27498.88 20199.06 27298.62 19299.50 13299.45 18596.32 28497.87 31899.79 9292.47 28299.35 26897.54 23093.54 33198.67 269
TR-MVS97.76 24197.41 25898.82 21499.06 27297.87 23998.87 31198.56 34196.63 26298.68 26999.22 29792.49 28199.65 22095.40 31197.79 22898.95 225
PAPM97.59 26797.09 28399.07 16799.06 27298.26 22098.30 35099.10 29494.88 32498.08 31099.34 27596.27 16199.64 22389.87 35398.92 18199.31 189
nrg03098.64 15098.42 15599.28 14999.05 27599.69 5299.81 1599.46 17398.04 13199.01 21899.82 5196.69 14899.38 25799.34 3094.59 31698.78 233
tpmvs97.98 21098.02 18797.84 29999.04 27694.73 33899.31 21399.20 28396.10 30898.76 25799.42 25094.94 20399.81 16196.97 26898.45 20498.97 220
OpenMVScopyleft96.50 1698.47 15598.12 17399.52 10899.04 27699.53 8599.82 1399.72 1194.56 33098.08 31099.88 1794.73 21999.98 697.47 23799.76 10099.06 210
DWT-MVSNet_test97.53 27097.40 25997.93 29399.03 27894.86 33699.57 9798.63 33996.59 26798.36 29898.79 33189.32 33099.74 18498.14 17698.16 22099.20 195
WR-MVS_H98.13 18697.87 20598.90 19599.02 27998.84 17399.70 3899.59 4397.27 20998.40 29599.19 30195.53 18699.23 28598.34 15993.78 32898.61 300
tpm97.67 26297.55 23598.03 28499.02 27995.01 33299.43 16798.54 34396.44 27899.12 19799.34 27591.83 29599.60 23197.75 20896.46 27499.48 166
UniMVSNet (Re)98.29 17198.00 18899.13 16499.00 28199.36 10699.49 14299.51 10497.95 13798.97 22799.13 30796.30 16099.38 25798.36 15893.34 33298.66 277
v1097.85 22697.52 23998.86 20898.99 28298.67 18799.75 3199.41 20695.70 31298.98 22599.41 25494.75 21899.23 28596.01 29894.63 31598.67 269
PS-CasMVS97.93 21597.59 23498.95 18498.99 28299.06 14399.68 4599.52 9197.13 22198.31 30199.68 15292.44 28699.05 31298.51 14294.08 32598.75 241
PatchT97.03 28996.44 29398.79 21998.99 28298.34 21699.16 25199.07 29992.13 34799.52 10897.31 35694.54 22998.98 32288.54 35798.73 19299.03 213
V4298.06 19397.79 20998.86 20898.98 28598.84 17399.69 4099.34 24196.53 26999.30 15799.37 26694.67 22299.32 27397.57 22794.66 31498.42 321
LF4IMVS97.52 27197.46 24797.70 30898.98 28595.55 31899.29 21998.82 32598.07 12598.66 27099.64 17289.97 32399.61 23097.01 26496.68 26697.94 348
CP-MVSNet98.09 19097.78 21299.01 17598.97 28799.24 11999.67 4899.46 17397.25 21198.48 29099.64 17293.79 25199.06 31198.63 12194.10 32498.74 245
miper_enhance_ethall98.16 18298.08 17998.41 25798.96 28897.72 24798.45 34299.32 25896.95 24098.97 22799.17 30297.06 13599.22 28897.86 19795.99 28598.29 329
v897.95 21497.63 23098.93 18798.95 28998.81 17999.80 1999.41 20696.03 30999.10 20299.42 25094.92 20699.30 27696.94 27194.08 32598.66 277
TESTMET0.1,197.55 26897.27 27798.40 25998.93 29096.53 29698.67 32897.61 35796.96 23898.64 27799.28 28988.63 33899.45 24397.30 24699.38 14299.21 194
UniMVSNet_NR-MVSNet98.22 17497.97 19198.96 18298.92 29198.98 15099.48 14899.53 8597.76 15798.71 26199.46 24296.43 15799.22 28898.57 13392.87 33998.69 257
v2v48298.06 19397.77 21498.92 18998.90 29298.82 17799.57 9799.36 23296.65 25999.19 18799.35 27294.20 23899.25 28397.72 21294.97 31098.69 257
131498.68 14698.54 15099.11 16598.89 29398.65 18999.27 22699.49 13296.89 24497.99 31599.56 20497.72 11799.83 15097.74 20999.27 15298.84 229
OPM-MVS98.19 17898.10 17598.45 25298.88 29497.07 26999.28 22199.38 22298.57 6799.22 17899.81 6492.12 28999.66 21698.08 18297.54 24098.61 300
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v119297.81 23697.44 25398.91 19398.88 29498.68 18699.51 12699.34 24196.18 29699.20 18499.34 27594.03 24599.36 26495.32 31495.18 30598.69 257
RRT_MVS98.60 15298.44 15399.05 17098.88 29499.14 13399.49 14299.38 22297.76 15799.29 16099.86 2595.38 19099.36 26498.81 9897.16 26298.64 281
EPMVS97.82 23497.65 22798.35 26398.88 29495.98 31099.49 14294.71 37197.57 17799.26 17099.48 23592.46 28599.71 20197.87 19699.08 16899.35 184
v114497.98 21097.69 22398.85 21198.87 29898.66 18899.54 11699.35 23796.27 28899.23 17799.35 27294.67 22299.23 28596.73 28195.16 30698.68 262
DU-MVS98.08 19297.79 20998.96 18298.87 29898.98 15099.41 17699.45 18597.87 14298.71 26199.50 22694.82 21099.22 28898.57 13392.87 33998.68 262
NR-MVSNet97.97 21397.61 23199.02 17498.87 29899.26 11799.47 15399.42 20497.63 17297.08 33699.50 22695.07 20299.13 30297.86 19793.59 33098.68 262
WR-MVS98.06 19397.73 22099.06 16898.86 30199.25 11899.19 24899.35 23797.30 20698.66 27099.43 24793.94 24799.21 29398.58 13194.28 32198.71 249
v124097.69 25797.32 27198.79 21998.85 30298.43 21299.48 14899.36 23296.11 30499.27 16599.36 26993.76 25399.24 28494.46 32495.23 30498.70 253
test_040296.64 29496.24 29697.85 29898.85 30296.43 30099.44 16199.26 27393.52 33996.98 33899.52 21988.52 33999.20 29592.58 34697.50 24497.93 349
v14419297.92 21897.60 23298.87 20598.83 30498.65 18999.55 11399.34 24196.20 29499.32 15499.40 25894.36 23399.26 28296.37 29395.03 30998.70 253
v192192097.80 23897.45 24898.84 21298.80 30598.53 19999.52 12299.34 24196.15 30199.24 17399.47 23893.98 24699.29 27795.40 31195.13 30798.69 257
gg-mvs-nofinetune96.17 30495.32 31298.73 22398.79 30698.14 22599.38 19394.09 37291.07 35398.07 31391.04 36689.62 32999.35 26896.75 27999.09 16798.68 262
test-LLR98.06 19397.90 20098.55 24098.79 30697.10 26598.67 32897.75 35497.34 20298.61 28198.85 32894.45 23199.45 24397.25 24999.38 14299.10 199
test-mter97.49 27797.13 28298.55 24098.79 30697.10 26598.67 32897.75 35496.65 25998.61 28198.85 32888.23 34299.45 24397.25 24999.38 14299.10 199
PS-MVSNAJss98.92 11798.92 10098.90 19598.78 30998.53 19999.78 2599.54 7498.07 12599.00 22399.76 11099.01 1999.37 26099.13 5197.23 25898.81 230
MVS97.28 28396.55 29199.48 11498.78 30998.95 15999.27 22699.39 21683.53 36198.08 31099.54 21296.97 13899.87 12594.23 32799.16 15899.63 130
TranMVSNet+NR-MVSNet97.93 21597.66 22698.76 22298.78 30998.62 19299.65 5999.49 13297.76 15798.49 28999.60 19194.23 23798.97 32998.00 18792.90 33798.70 253
PEN-MVS97.76 24197.44 25398.72 22598.77 31298.54 19899.78 2599.51 10497.06 23198.29 30399.64 17292.63 27798.89 33598.09 17893.16 33598.72 247
v7n97.87 22397.52 23998.92 18998.76 31398.58 19599.84 999.46 17396.20 29498.91 23599.70 13794.89 20899.44 24896.03 29793.89 32798.75 241
v14897.79 23997.55 23598.50 24398.74 31497.72 24799.54 11699.33 24896.26 28998.90 23799.51 22394.68 22199.14 29997.83 20093.15 33698.63 289
JIA-IIPM97.50 27497.02 28598.93 18798.73 31597.80 24399.30 21598.97 30791.73 34998.91 23594.86 36195.10 20199.71 20197.58 22397.98 22499.28 191
Gipumacopyleft90.99 32890.15 33193.51 33998.73 31590.12 36293.98 36499.45 18579.32 36392.28 35894.91 36069.61 36697.98 34987.42 36095.67 29592.45 363
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EU-MVSNet97.98 21098.03 18597.81 30398.72 31796.65 29399.66 5299.66 2798.09 12098.35 29999.82 5195.25 19898.01 34897.41 24395.30 30398.78 233
K. test v397.10 28896.79 28998.01 28798.72 31796.33 30399.87 597.05 36097.59 17496.16 34599.80 8088.71 33599.04 31396.69 28496.55 27198.65 279
OurMVSNet-221017-097.88 22197.77 21498.19 27698.71 31996.53 29699.88 199.00 30497.79 15498.78 25599.94 391.68 29999.35 26897.21 25196.99 26598.69 257
test_djsdf98.67 14798.57 14898.98 17998.70 32098.91 16699.88 199.46 17397.55 17999.22 17899.88 1795.73 18099.28 27899.03 5997.62 23398.75 241
pmmvs696.53 29696.09 29997.82 30298.69 32195.47 32299.37 19699.47 16393.46 34197.41 32799.78 9987.06 35099.33 27296.92 27492.70 34198.65 279
lessismore_v097.79 30498.69 32195.44 32494.75 37095.71 34999.87 2288.69 33699.32 27395.89 29994.93 31298.62 291
mvs_tets98.40 16398.23 16798.91 19398.67 32398.51 20599.66 5299.53 8598.19 10698.65 27699.81 6492.75 26899.44 24899.31 3397.48 24898.77 237
SixPastTwentyTwo97.50 27497.33 27098.03 28498.65 32496.23 30699.77 2798.68 33897.14 22097.90 31799.93 490.45 31699.18 29697.00 26596.43 27598.67 269
UnsupCasMVSNet_eth96.44 29896.12 29897.40 31698.65 32495.65 31599.36 20099.51 10497.13 22196.04 34798.99 32188.40 34098.17 34496.71 28290.27 34798.40 324
DTE-MVSNet97.51 27397.19 28098.46 25198.63 32698.13 22699.84 999.48 14596.68 25697.97 31699.67 15892.92 26498.56 33996.88 27692.60 34298.70 253
our_test_397.65 26497.68 22497.55 31298.62 32794.97 33398.84 31399.30 26596.83 24998.19 30699.34 27597.01 13799.02 31795.00 31996.01 28398.64 281
ppachtmachnet_test97.49 27797.45 24897.61 30998.62 32795.24 32798.80 31799.46 17396.11 30498.22 30599.62 18496.45 15598.97 32993.77 33195.97 28898.61 300
pmmvs498.13 18697.90 20098.81 21698.61 32998.87 16998.99 29099.21 28296.44 27899.06 21399.58 19795.90 17499.11 30797.18 25796.11 28298.46 318
jajsoiax98.43 15898.28 16598.88 20198.60 33098.43 21299.82 1399.53 8598.19 10698.63 27899.80 8093.22 26099.44 24899.22 4197.50 24498.77 237
cascas97.69 25797.43 25698.48 24698.60 33097.30 25698.18 35499.39 21692.96 34598.41 29498.78 33393.77 25299.27 28198.16 17498.61 19398.86 227
pmmvs597.52 27197.30 27398.16 27898.57 33296.73 28999.27 22698.90 31896.14 30298.37 29799.53 21691.54 30599.14 29997.51 23395.87 28998.63 289
GG-mvs-BLEND98.45 25298.55 33398.16 22399.43 16793.68 37397.23 33198.46 34189.30 33199.22 28895.43 31098.22 21297.98 346
gm-plane-assit98.54 33492.96 35594.65 32999.15 30599.64 22397.56 228
anonymousdsp98.44 15798.28 16598.94 18598.50 33598.96 15799.77 2799.50 12497.07 22998.87 24299.77 10694.76 21799.28 27898.66 11897.60 23498.57 306
N_pmnet94.95 31795.83 30592.31 34298.47 33679.33 36999.12 25992.81 37693.87 33597.68 32399.13 30793.87 24999.01 31991.38 34896.19 28098.59 304
MS-PatchMatch97.24 28597.32 27196.99 32398.45 33793.51 35398.82 31599.32 25897.41 19898.13 30999.30 28588.99 33399.56 23495.68 30599.80 8797.90 351
test0.0.03 197.71 25597.42 25798.56 23898.41 33897.82 24298.78 31998.63 33997.34 20298.05 31498.98 32494.45 23198.98 32295.04 31897.15 26398.89 226
EPNet_dtu98.03 20197.96 19398.23 27498.27 33995.54 32099.23 24098.75 32799.02 1897.82 32099.71 13396.11 16499.48 23993.04 34099.65 12599.69 105
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
bset_n11_16_dypcd98.16 18297.97 19198.73 22398.26 34098.28 21997.99 35798.01 35197.68 16699.10 20299.63 17895.68 18299.15 29898.78 10296.55 27198.75 241
MDA-MVSNet-bldmvs94.96 31693.98 32297.92 29498.24 34197.27 25899.15 25599.33 24893.80 33680.09 36899.03 31788.31 34197.86 35293.49 33594.36 32098.62 291
MDA-MVSNet_test_wron95.45 31194.60 31798.01 28798.16 34297.21 26399.11 26599.24 27793.49 34080.73 36798.98 32493.02 26198.18 34394.22 32894.45 31898.64 281
new_pmnet96.38 30096.03 30097.41 31598.13 34395.16 33199.05 27499.20 28393.94 33497.39 32898.79 33191.61 30499.04 31390.43 35195.77 29198.05 340
YYNet195.36 31394.51 31997.92 29497.89 34497.10 26599.10 26799.23 27893.26 34380.77 36699.04 31692.81 26798.02 34794.30 32594.18 32398.64 281
DSMNet-mixed97.25 28497.35 26596.95 32697.84 34593.61 35299.57 9796.63 36496.13 30398.87 24298.61 33994.59 22597.70 35595.08 31798.86 18599.55 147
EG-PatchMatch MVS95.97 30795.69 30796.81 32997.78 34692.79 35699.16 25198.93 31196.16 29994.08 35499.22 29782.72 35999.47 24095.67 30697.50 24498.17 335
Anonymous2024052196.20 30395.89 30497.13 32197.72 34794.96 33499.79 2499.29 27093.01 34497.20 33399.03 31789.69 32798.36 34291.16 34996.13 28198.07 338
MVP-Stereo97.81 23697.75 21897.99 29097.53 34896.60 29598.96 29898.85 32297.22 21597.23 33199.36 26995.28 19499.46 24295.51 30899.78 9497.92 350
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test20.0396.12 30595.96 30296.63 33197.44 34995.45 32399.51 12699.38 22296.55 26896.16 34599.25 29493.76 25396.17 36487.35 36194.22 32298.27 330
UnsupCasMVSNet_bld93.53 32592.51 32896.58 33397.38 35093.82 34698.24 35199.48 14591.10 35293.10 35796.66 35774.89 36598.37 34194.03 33087.71 35297.56 355
MIMVSNet195.51 31095.04 31496.92 32797.38 35095.60 31699.52 12299.50 12493.65 33896.97 33999.17 30285.28 35596.56 36388.36 35895.55 29898.60 303
OpenMVS_ROBcopyleft92.34 2094.38 32293.70 32696.41 33497.38 35093.17 35499.06 27298.75 32786.58 35894.84 35398.26 34781.53 36299.32 27389.01 35597.87 22796.76 357
Anonymous2023120696.22 30196.03 30096.79 33097.31 35394.14 34499.63 6499.08 29796.17 29797.04 33799.06 31493.94 24797.76 35486.96 36295.06 30898.47 314
CMPMVSbinary69.68 2394.13 32394.90 31591.84 34397.24 35480.01 36898.52 33999.48 14589.01 35591.99 35999.67 15885.67 35499.13 30295.44 30997.03 26496.39 359
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EPNet98.86 12298.71 12799.30 14397.20 35598.18 22299.62 7098.91 31699.28 298.63 27899.81 6495.96 16899.99 199.24 4099.72 10999.73 87
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
KD-MVS_2432*160094.62 31893.72 32497.31 31797.19 35695.82 31398.34 34699.20 28395.00 32297.57 32498.35 34487.95 34698.10 34592.87 34277.00 36498.01 342
miper_refine_blended94.62 31893.72 32497.31 31797.19 35695.82 31398.34 34699.20 28395.00 32297.57 32498.35 34487.95 34698.10 34592.87 34277.00 36498.01 342
KD-MVS_self_test95.00 31594.34 32096.96 32597.07 35895.39 32599.56 10499.44 19495.11 31997.13 33597.32 35591.86 29497.27 35890.35 35281.23 36198.23 334
CL-MVSNet_self_test94.49 32093.97 32396.08 33596.16 35993.67 35198.33 34899.38 22295.13 31797.33 32998.15 34892.69 27596.57 36288.67 35679.87 36297.99 345
test_method91.10 32791.36 33090.31 34695.85 36073.72 37494.89 36399.25 27568.39 36795.82 34899.02 31980.50 36398.95 33193.64 33394.89 31398.25 332
Patchmatch-RL test95.84 30895.81 30695.95 33695.61 36190.57 36198.24 35198.39 34495.10 32195.20 35098.67 33694.78 21397.77 35396.28 29490.02 34899.51 161
PM-MVS92.96 32692.23 32995.14 33895.61 36189.98 36399.37 19698.21 34794.80 32695.04 35297.69 35065.06 36797.90 35194.30 32589.98 34997.54 356
pmmvs-eth3d95.34 31494.73 31697.15 31995.53 36395.94 31199.35 20699.10 29495.13 31793.55 35597.54 35188.15 34497.91 35094.58 32289.69 35097.61 353
new-patchmatchnet94.48 32194.08 32195.67 33795.08 36492.41 35799.18 24999.28 27294.55 33193.49 35697.37 35487.86 34897.01 36091.57 34788.36 35197.61 353
pmmvs394.09 32493.25 32796.60 33294.76 36594.49 33998.92 30598.18 34989.66 35496.48 34298.06 34986.28 35197.33 35789.68 35487.20 35397.97 347
ambc93.06 34192.68 36682.36 36598.47 34198.73 33595.09 35197.41 35255.55 37099.10 30996.42 29191.32 34597.71 352
EMVS80.02 33479.22 33782.43 35291.19 36776.40 37197.55 36192.49 37766.36 37083.01 36591.27 36564.63 36885.79 37165.82 37060.65 36885.08 367
E-PMN80.61 33379.88 33682.81 35090.75 36876.38 37297.69 35995.76 36766.44 36983.52 36392.25 36462.54 36987.16 37068.53 36961.40 36784.89 368
PMMVS286.87 32985.37 33391.35 34590.21 36983.80 36498.89 30897.45 35983.13 36291.67 36095.03 35948.49 37294.70 36685.86 36477.62 36395.54 360
TDRefinement95.42 31294.57 31897.97 29189.83 37096.11 30899.48 14898.75 32796.74 25296.68 34099.88 1788.65 33799.71 20198.37 15682.74 35998.09 337
LCM-MVSNet86.80 33085.22 33491.53 34487.81 37180.96 36798.23 35398.99 30571.05 36590.13 36196.51 35848.45 37396.88 36190.51 35085.30 35596.76 357
FPMVS84.93 33185.65 33282.75 35186.77 37263.39 37698.35 34598.92 31374.11 36483.39 36498.98 32450.85 37192.40 36884.54 36594.97 31092.46 362
wuyk23d40.18 33841.29 34336.84 35486.18 37349.12 37879.73 36722.81 37927.64 37225.46 37528.45 37421.98 37748.89 37355.80 37123.56 37312.51 371
MVEpermissive76.82 2176.91 33674.31 34084.70 34885.38 37476.05 37396.88 36293.17 37467.39 36871.28 37089.01 36821.66 37987.69 36971.74 36872.29 36690.35 365
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high77.30 33574.86 33984.62 34975.88 37577.61 37097.63 36093.15 37588.81 35664.27 37189.29 36736.51 37483.93 37275.89 36752.31 36992.33 364
PMVScopyleft70.75 2275.98 33774.97 33879.01 35370.98 37655.18 37793.37 36598.21 34765.08 37161.78 37293.83 36221.74 37892.53 36778.59 36691.12 34689.34 366
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt82.80 33281.52 33586.66 34766.61 37768.44 37592.79 36697.92 35268.96 36680.04 36999.85 3185.77 35396.15 36597.86 19743.89 37095.39 361
test12339.01 34042.50 34228.53 35539.17 37820.91 37998.75 32219.17 38019.83 37438.57 37366.67 37033.16 37515.42 37437.50 37329.66 37249.26 369
testmvs39.17 33943.78 34125.37 35636.04 37916.84 38098.36 34426.56 37820.06 37338.51 37467.32 36929.64 37615.30 37537.59 37239.90 37143.98 370
test_blank0.13 3440.17 3470.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3761.57 3750.00 3800.00 3760.00 3740.00 3740.00 372
eth-test20.00 380
eth-test0.00 380
uanet_test0.02 3450.03 3480.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.27 3760.00 3800.00 3760.00 3740.00 3740.00 372
cdsmvs_eth3d_5k24.64 34132.85 3440.00 3570.00 3800.00 3810.00 36899.51 1040.00 3750.00 37699.56 20496.58 1500.00 3760.00 3740.00 3740.00 372
pcd_1.5k_mvsjas8.27 34311.03 3460.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.27 37699.01 190.00 3760.00 3740.00 3740.00 372
sosnet-low-res0.02 3450.03 3480.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.27 3760.00 3800.00 3760.00 3740.00 3740.00 372
sosnet0.02 3450.03 3480.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.27 3760.00 3800.00 3760.00 3740.00 3740.00 372
uncertanet0.02 3450.03 3480.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.27 3760.00 3800.00 3760.00 3740.00 3740.00 372
Regformer0.02 3450.03 3480.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.27 3760.00 3800.00 3760.00 3740.00 3740.00 372
ab-mvs-re8.30 34211.06 3450.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 37699.58 1970.00 3800.00 3760.00 3740.00 3740.00 372
uanet0.02 3450.03 3480.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.27 3760.00 3800.00 3760.00 3740.00 3740.00 372
PC_three_145298.18 10999.84 1499.70 13799.31 398.52 34098.30 16499.80 8799.81 44
test_241102_TWO99.48 14599.08 1499.88 599.81 6498.94 3499.96 1998.91 7399.84 6599.88 7
test_0728_THIRD98.99 2899.81 2499.80 8099.09 1499.96 1998.85 8799.90 2399.88 7
GSMVS99.52 155
sam_mvs194.86 20999.52 155
sam_mvs94.72 220
MTGPAbinary99.47 163
test_post199.23 24065.14 37294.18 24199.71 20197.58 223
test_post65.99 37194.65 22499.73 191
patchmatchnet-post98.70 33594.79 21299.74 184
MTMP99.54 11698.88 320
test9_res97.49 23499.72 10999.75 75
agg_prior297.21 25199.73 10899.75 75
test_prior499.56 7898.99 290
test_prior298.96 29898.34 8999.01 21899.52 21998.68 6697.96 18999.74 105
旧先验298.96 29896.70 25599.47 11699.94 5798.19 169
新几何299.01 288
无先验98.99 29099.51 10496.89 24499.93 7297.53 23199.72 93
原ACMM298.95 302
testdata299.95 4696.67 285
segment_acmp98.96 28
testdata198.85 31298.32 93
plane_prior599.47 16399.69 21197.78 20497.63 23198.67 269
plane_prior499.61 188
plane_prior397.00 27798.69 6199.11 199
plane_prior299.39 18898.97 34
plane_prior96.97 28099.21 24798.45 7697.60 234
n20.00 381
nn0.00 381
door-mid98.05 350
test1199.35 237
door97.92 352
HQP5-MVS96.83 285
BP-MVS97.19 255
HQP4-MVS98.66 27099.64 22398.64 281
HQP3-MVS99.39 21697.58 236
HQP2-MVS92.47 282
MDTV_nov1_ep13_2view95.18 33099.35 20696.84 24799.58 9595.19 20097.82 20199.46 173
ACMMP++_ref97.19 260
ACMMP++97.43 252
Test By Simon98.75 59