This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
TSAR-MVS + MP.99.58 499.50 899.81 3899.91 199.66 5499.63 5799.39 20998.91 3699.78 3199.85 2999.36 299.94 5398.84 8199.88 3699.82 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS_fast99.51 1499.40 1699.85 2599.91 199.79 3099.76 2499.56 5697.72 15299.76 3799.75 11199.13 1099.92 7999.07 5099.92 1199.85 14
MP-MVS-pluss99.37 4899.20 5999.88 699.90 399.87 999.30 20799.52 8997.18 20699.60 8099.79 8898.79 4799.95 4298.83 8499.91 1699.83 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
zzz-MVS99.49 1599.36 2199.89 499.90 399.86 1099.36 19399.47 15798.79 4799.68 5399.81 6298.43 8199.97 1098.88 7099.90 2399.83 29
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 4699.47 15798.79 4799.68 5399.81 6298.43 8199.97 1098.88 7099.90 2399.83 29
HPM-MVScopyleft99.42 3899.28 4899.83 3399.90 399.72 4299.81 1299.54 7197.59 16399.68 5399.63 17098.91 3699.94 5398.58 12099.91 1699.84 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HyFIR lowres test99.11 9098.92 9799.65 7299.90 399.37 9799.02 27499.91 397.67 15899.59 8399.75 11195.90 16999.73 18399.53 599.02 16599.86 11
MSP-MVS99.42 3899.27 5099.88 699.89 899.80 2699.67 4299.50 12098.70 5399.77 3399.49 22098.21 9699.95 4298.46 13799.77 9299.88 5
CHOSEN 1792x268899.19 6999.10 6999.45 11599.89 898.52 19599.39 18199.94 198.73 5199.11 18799.89 1095.50 18199.94 5399.50 899.97 399.89 2
ACMMPcopyleft99.45 2699.32 3099.82 3599.89 899.67 5299.62 6399.69 1898.12 10599.63 7099.84 3898.73 5999.96 1898.55 12899.83 7299.81 41
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
region2R99.48 1999.35 2499.87 1199.88 1199.80 2699.65 5399.66 2798.13 10399.66 6499.68 14598.96 2599.96 1898.62 11199.87 4099.84 18
MP-MVScopyleft99.33 5299.15 6399.87 1199.88 1199.82 2099.66 4699.46 16798.09 11099.48 10499.74 11798.29 9299.96 1897.93 18199.87 4099.82 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS99.44 3099.30 4099.86 1899.88 1199.79 3099.69 3599.48 13998.12 10599.50 10099.75 11198.78 4899.97 1098.57 12299.89 3399.83 29
COLMAP_ROBcopyleft97.56 698.86 11998.75 12199.17 15399.88 1198.53 19199.34 20199.59 4497.55 16898.70 25599.89 1095.83 17199.90 10598.10 16699.90 2399.08 195
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ZNCC-MVS99.47 2299.33 2899.87 1199.87 1599.81 2499.64 5599.67 2298.08 11499.55 9299.64 16598.91 3699.96 1898.72 9899.90 2399.82 36
ACMMP_NAP99.47 2299.34 2699.88 699.87 1599.86 1099.47 14599.48 13998.05 12099.76 3799.86 2398.82 4499.93 6898.82 8899.91 1699.84 18
HFP-MVS99.49 1599.37 1999.86 1899.87 1599.80 2699.66 4699.67 2298.15 10199.68 5399.69 14099.06 1399.96 1898.69 10399.87 4099.84 18
#test#99.43 3399.29 4499.86 1899.87 1599.80 2699.55 10499.67 2297.83 13899.68 5399.69 14099.06 1399.96 1898.39 14199.87 4099.84 18
ACMMPR99.49 1599.36 2199.86 1899.87 1599.79 3099.66 4699.67 2298.15 10199.67 5999.69 14098.95 2899.96 1898.69 10399.87 4099.84 18
PGM-MVS99.45 2699.31 3799.86 1899.87 1599.78 3799.58 8399.65 3297.84 13799.71 4699.80 7699.12 1199.97 1098.33 15099.87 4099.83 29
GST-MVS99.40 4599.24 5599.85 2599.86 2199.79 3099.60 7099.67 2297.97 12699.63 7099.68 14598.52 7499.95 4298.38 14399.86 5199.81 41
AllTest98.87 11698.72 12299.31 13399.86 2198.48 20199.56 9599.61 3697.85 13599.36 13599.85 2995.95 16499.85 13196.66 27599.83 7299.59 132
TestCases99.31 13399.86 2198.48 20199.61 3697.85 13599.36 13599.85 2995.95 16499.85 13196.66 27599.83 7299.59 132
PVSNet_Blended_VisFu99.36 4999.28 4899.61 8299.86 2199.07 13399.47 14599.93 297.66 15999.71 4699.86 2397.73 11199.96 1899.47 1399.82 7899.79 53
DVP-MVS99.57 799.47 999.88 699.85 2599.89 399.57 8899.37 22399.10 899.81 2299.80 7698.94 3199.96 1898.93 6499.86 5199.81 41
test072699.85 2599.89 399.62 6399.50 12099.10 899.86 1199.82 4998.94 31
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 13299.74 11798.81 4599.94 5398.79 9099.86 5199.84 18
X-MVStestdata96.55 28695.45 30099.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 13264.01 35898.81 4599.94 5398.79 9099.86 5199.84 18
abl_699.44 3099.31 3799.83 3399.85 2599.75 3899.66 4699.59 4498.13 10399.82 2099.81 6298.60 6999.96 1898.46 13799.88 3699.79 53
114514_t98.93 11398.67 12899.72 6199.85 2599.53 7999.62 6399.59 4492.65 33099.71 4699.78 9598.06 10399.90 10598.84 8199.91 1699.74 73
CSCG99.32 5399.32 3099.32 13299.85 2598.29 20999.71 3199.66 2798.11 10799.41 12099.80 7698.37 8899.96 1898.99 5699.96 599.72 86
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 7099.48 13999.08 1199.91 199.81 6299.20 599.96 1898.91 6799.85 5899.79 53
IU-MVS99.84 3299.88 799.32 24898.30 8599.84 1398.86 7799.85 5899.89 2
test_241102_ONE99.84 3299.90 199.48 13999.07 1399.91 199.74 11799.20 599.76 173
test_0728_SECOND99.91 299.84 3299.89 399.57 8899.51 10299.96 1898.93 6499.86 5199.88 5
CP-MVS99.45 2699.32 3099.85 2599.83 3699.75 3899.69 3599.52 8998.07 11599.53 9599.63 17098.93 3599.97 1098.74 9499.91 1699.83 29
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2499.59 7699.51 10298.62 5799.79 2699.83 4299.28 399.97 1098.48 13399.90 2399.84 18
Skip Steuart: Steuart Systems R&D Blog.
RPSCF98.22 17098.62 13896.99 31099.82 3791.58 34499.72 2999.44 18796.61 25199.66 6499.89 1095.92 16799.82 15297.46 22799.10 15899.57 137
DeepC-MVS98.35 299.30 5599.19 6099.64 7799.82 3799.23 11399.62 6399.55 6498.94 3399.63 7099.95 295.82 17299.94 5399.37 1899.97 399.73 80
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_part299.81 4099.83 1499.77 33
CPTT-MVS99.11 9098.90 10099.74 5699.80 4199.46 8999.59 7699.49 12897.03 22299.63 7099.69 14097.27 12499.96 1897.82 19099.84 6599.81 41
SF-MVS99.38 4799.24 5599.79 4399.79 4299.68 4999.57 8899.54 7197.82 14399.71 4699.80 7698.95 2899.93 6898.19 15899.84 6599.74 73
MCST-MVS99.43 3399.30 4099.82 3599.79 4299.74 4199.29 21199.40 20598.79 4799.52 9799.62 17598.91 3699.90 10598.64 10999.75 9699.82 36
DPE-MVS99.46 2499.32 3099.91 299.78 4499.88 799.36 19399.51 10298.73 5199.88 599.84 3898.72 6099.96 1898.16 16399.87 4099.88 5
EI-MVSNet-UG-set99.58 499.57 199.64 7799.78 4499.14 12599.60 7099.45 17999.01 1899.90 399.83 4298.98 2399.93 6899.59 199.95 699.86 11
EI-MVSNet-Vis-set99.58 499.56 399.64 7799.78 4499.15 12499.61 6999.45 17999.01 1899.89 499.82 4999.01 1699.92 7999.56 499.95 699.85 14
Vis-MVSNetpermissive99.12 8598.97 9199.56 9099.78 4499.10 13099.68 4099.66 2798.49 6599.86 1199.87 2094.77 20799.84 13699.19 3799.41 13599.74 73
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
F-COLMAP99.19 6999.04 7799.64 7799.78 4499.27 10999.42 16699.54 7197.29 19699.41 12099.59 18598.42 8499.93 6898.19 15899.69 10999.73 80
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2599.56 5699.02 1599.88 599.85 2999.18 899.96 1899.22 3499.92 1199.90 1
MVS_111021_LR99.41 4299.33 2899.65 7299.77 4999.51 8498.94 29599.85 698.82 4299.65 6799.74 11798.51 7599.80 16198.83 8499.89 3399.64 118
DP-MVS99.16 7598.95 9599.78 4599.77 4999.53 7999.41 16999.50 12097.03 22299.04 20299.88 1597.39 11799.92 7998.66 10799.90 2399.87 10
SR-MVS-dyc-post99.45 2699.31 3799.85 2599.76 5299.82 2099.63 5799.52 8998.38 7599.76 3799.82 4998.53 7299.95 4298.61 11499.81 8099.77 63
RE-MVS-def99.34 2699.76 5299.82 2099.63 5799.52 8998.38 7599.76 3799.82 4998.75 5698.61 11499.81 8099.77 63
xxxxxxxxxxxxxcwj99.43 3399.32 3099.75 5199.76 5299.59 6799.14 24899.53 8399.00 2299.71 4699.80 7698.95 2899.93 6898.19 15899.84 6599.74 73
save fliter99.76 5299.59 6799.14 24899.40 20599.00 22
Regformer-399.57 799.53 599.68 6599.76 5299.29 10699.58 8399.44 18799.01 1899.87 1099.80 7698.97 2499.91 9099.44 1799.92 1199.83 29
Regformer-499.59 399.54 499.73 5899.76 5299.41 9499.58 8399.49 12899.02 1599.88 599.80 7699.00 2299.94 5399.45 1599.92 1199.84 18
APD-MVS_3200maxsize99.48 1999.35 2499.85 2599.76 5299.83 1499.63 5799.54 7198.36 7899.79 2699.82 4998.86 4099.95 4298.62 11199.81 8099.78 61
PVSNet_BlendedMVS98.86 11998.80 11599.03 16699.76 5298.79 17299.28 21399.91 397.42 18699.67 5999.37 25497.53 11499.88 11898.98 5797.29 24898.42 310
PVSNet_Blended99.08 9698.97 9199.42 12199.76 5298.79 17298.78 31099.91 396.74 24099.67 5999.49 22097.53 11499.88 11898.98 5799.85 5899.60 128
MSDG98.98 10998.80 11599.53 9899.76 5299.19 11598.75 31399.55 6497.25 20099.47 10599.77 10197.82 10899.87 12296.93 26199.90 2399.54 141
test117299.43 3399.29 4499.85 2599.75 6299.82 2099.60 7099.56 5698.28 8699.74 4199.79 8898.53 7299.95 4298.55 12899.78 8999.79 53
SR-MVS99.43 3399.29 4499.86 1899.75 6299.83 1499.59 7699.62 3498.21 9699.73 4399.79 8898.68 6399.96 1898.44 13999.77 9299.79 53
HPM-MVS++copyleft99.39 4699.23 5799.87 1199.75 6299.84 1399.43 15999.51 10298.68 5599.27 15399.53 20798.64 6899.96 1898.44 13999.80 8499.79 53
新几何199.75 5199.75 6299.59 6799.54 7196.76 23999.29 14899.64 16598.43 8199.94 5396.92 26399.66 11799.72 86
test22299.75 6299.49 8598.91 29899.49 12896.42 26999.34 14199.65 15898.28 9399.69 10999.72 86
testdata99.54 9299.75 6298.95 15199.51 10297.07 21799.43 11399.70 13398.87 3999.94 5397.76 19599.64 12099.72 86
CDPH-MVS99.13 7998.91 9999.80 4099.75 6299.71 4499.15 24699.41 19996.60 25399.60 8099.55 19898.83 4399.90 10597.48 22499.83 7299.78 61
APD-MVScopyleft99.27 6099.08 7299.84 3299.75 6299.79 3099.50 12499.50 12097.16 20899.77 3399.82 4998.78 4899.94 5397.56 21799.86 5199.80 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
旧先验199.74 7099.59 6799.54 7199.69 14098.47 7899.68 11499.73 80
112199.09 9498.87 10499.75 5199.74 7099.60 6499.27 21799.48 13996.82 23899.25 16099.65 15898.38 8699.93 6897.53 22099.67 11699.73 80
SD-MVS99.41 4299.52 699.05 16399.74 7099.68 4999.46 14899.52 8999.11 799.88 599.91 599.43 197.70 34098.72 9899.93 1099.77 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DP-MVS Recon99.12 8598.95 9599.65 7299.74 7099.70 4699.27 21799.57 5196.40 27199.42 11699.68 14598.75 5699.80 16197.98 17799.72 10399.44 167
PAPM_NR99.04 10198.84 11099.66 6899.74 7099.44 9199.39 18199.38 21597.70 15499.28 15099.28 27798.34 8999.85 13196.96 25899.45 13299.69 98
ETH3D-3000-0.199.21 6699.02 8299.77 4799.73 7599.69 4799.38 18699.51 10297.45 18099.61 7699.75 11198.51 7599.91 9097.45 22999.83 7299.71 93
SMA-MVScopyleft99.44 3099.30 4099.85 2599.73 7599.83 1499.56 9599.47 15797.45 18099.78 3199.82 4999.18 899.91 9098.79 9099.89 3399.81 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
原ACMM199.65 7299.73 7599.33 10099.47 15797.46 17799.12 18599.66 15798.67 6699.91 9097.70 20499.69 10999.71 93
IS-MVSNet99.05 10098.87 10499.57 8899.73 7599.32 10199.75 2599.20 27198.02 12499.56 8899.86 2396.54 14799.67 20498.09 16799.13 15499.73 80
PVSNet96.02 1798.85 12798.84 11098.89 19199.73 7597.28 24898.32 33799.60 4197.86 13399.50 10099.57 19296.75 14199.86 12598.56 12599.70 10899.54 141
9.1499.10 6999.72 8099.40 17799.51 10297.53 17399.64 6999.78 9598.84 4299.91 9097.63 20899.82 78
testtj99.12 8598.87 10499.86 1899.72 8099.79 3099.44 15399.51 10297.29 19699.59 8399.74 11798.15 10099.96 1896.74 26999.69 10999.81 41
thres100view90097.76 23497.45 24198.69 21999.72 8097.86 23299.59 7698.74 31697.93 12999.26 15898.62 32491.75 28699.83 14593.22 32598.18 20798.37 316
thres600view797.86 21897.51 23498.92 18299.72 8097.95 22799.59 7698.74 31697.94 12899.27 15398.62 32491.75 28699.86 12593.73 32198.19 20698.96 211
DELS-MVS99.48 1999.42 1399.65 7299.72 8099.40 9699.05 26599.66 2799.14 699.57 8799.80 7698.46 7999.94 5399.57 399.84 6599.60 128
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR99.41 4299.32 3099.66 6899.72 8099.47 8898.95 29399.85 698.82 4299.54 9399.73 12498.51 7599.74 17698.91 6799.88 3699.77 63
ZD-MVS99.71 8699.79 3099.61 3696.84 23599.56 8899.54 20398.58 7099.96 1896.93 26199.75 96
Anonymous2023121197.88 21497.54 23198.90 18899.71 8698.53 19199.48 14099.57 5194.16 31898.81 23899.68 14593.23 24999.42 24398.84 8194.42 30898.76 228
Regformer-199.53 1199.47 999.72 6199.71 8699.44 9199.49 13499.46 16798.95 3299.83 1799.76 10599.01 1699.93 6899.17 4099.87 4099.80 49
Regformer-299.54 999.47 999.75 5199.71 8699.52 8299.49 13499.49 12898.94 3399.83 1799.76 10599.01 1699.94 5399.15 4399.87 4099.80 49
XVG-OURS-SEG-HR98.69 14198.62 13898.89 19199.71 8697.74 23699.12 25099.54 7198.44 7299.42 11699.71 12994.20 22999.92 7998.54 13098.90 17499.00 205
Vis-MVSNet (Re-imp)98.87 11698.72 12299.31 13399.71 8698.88 16099.80 1699.44 18797.91 13199.36 13599.78 9595.49 18299.43 24297.91 18299.11 15599.62 124
PatchMatch-RL98.84 12998.62 13899.52 10399.71 8699.28 10799.06 26399.77 997.74 15199.50 10099.53 20795.41 18399.84 13697.17 24799.64 12099.44 167
XVG-OURS98.73 13898.68 12798.88 19499.70 9397.73 23798.92 29699.55 6498.52 6399.45 10899.84 3895.27 18999.91 9098.08 17198.84 17799.00 205
TAPA-MVS97.07 1597.74 24097.34 26198.94 17899.70 9397.53 24299.25 22899.51 10291.90 33299.30 14599.63 17098.78 4899.64 21388.09 34399.87 4099.65 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETH3 D test640098.70 13998.35 15599.73 5899.69 9599.60 6499.16 24299.45 17995.42 30399.27 15399.60 18297.39 11799.91 9095.36 30299.83 7299.70 95
tfpn200view997.72 24397.38 25498.72 21799.69 9597.96 22599.50 12498.73 32197.83 13899.17 17998.45 32991.67 29099.83 14593.22 32598.18 20798.37 316
thres40097.77 23397.38 25498.92 18299.69 9597.96 22599.50 12498.73 32197.83 13899.17 17998.45 32991.67 29099.83 14593.22 32598.18 20798.96 211
Test_1112_low_res98.89 11598.66 13199.57 8899.69 9598.95 15199.03 27199.47 15796.98 22499.15 18199.23 28596.77 14099.89 11398.83 8498.78 18199.86 11
1112_ss98.98 10998.77 11899.59 8499.68 9999.02 13799.25 22899.48 13997.23 20399.13 18399.58 18896.93 13599.90 10598.87 7498.78 18199.84 18
TEST999.67 10099.65 5799.05 26599.41 19996.22 28298.95 21799.49 22098.77 5199.91 90
train_agg99.02 10498.77 11899.77 4799.67 10099.65 5799.05 26599.41 19996.28 27598.95 21799.49 22098.76 5399.91 9097.63 20899.72 10399.75 69
test_899.67 10099.61 6299.03 27199.41 19996.28 27598.93 22199.48 22698.76 5399.91 90
agg_prior199.01 10798.76 12099.76 5099.67 10099.62 6098.99 28199.40 20596.26 27898.87 23099.49 22098.77 5199.91 9097.69 20599.72 10399.75 69
agg_prior99.67 10099.62 6099.40 20598.87 23099.91 90
test_prior399.21 6699.05 7499.68 6599.67 10099.48 8698.96 28999.56 5698.34 8099.01 20599.52 21098.68 6399.83 14597.96 17899.74 9999.74 73
test_prior99.68 6599.67 10099.48 8699.56 5699.83 14599.74 73
TSAR-MVS + GP.99.36 4999.36 2199.36 12699.67 10098.61 18699.07 26099.33 24099.00 2299.82 2099.81 6299.06 1399.84 13699.09 4899.42 13499.65 112
OMC-MVS99.08 9699.04 7799.20 15099.67 10098.22 21299.28 21399.52 8998.07 11599.66 6499.81 6297.79 10999.78 16897.79 19299.81 8099.60 128
Anonymous2024052998.09 18597.68 21799.34 12799.66 10998.44 20399.40 17799.43 19593.67 32299.22 16699.89 1090.23 30999.93 6899.26 3298.33 19799.66 108
tttt051798.42 15598.14 16799.28 14299.66 10998.38 20799.74 2896.85 34697.68 15699.79 2699.74 11791.39 29699.89 11398.83 8499.56 12799.57 137
CHOSEN 280x42099.12 8599.13 6599.08 15999.66 10997.89 22998.43 33499.71 1398.88 3799.62 7499.76 10596.63 14499.70 19999.46 1499.99 199.66 108
baseline99.15 7699.02 8299.53 9899.66 10999.14 12599.72 2999.48 13998.35 7999.42 11699.84 3896.07 16099.79 16499.51 799.14 15399.67 105
PLCcopyleft97.94 499.02 10498.85 10999.53 9899.66 10999.01 13999.24 23099.52 8996.85 23499.27 15399.48 22698.25 9499.91 9097.76 19599.62 12499.65 112
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
casdiffmvs99.13 7998.98 9099.56 9099.65 11499.16 12099.56 9599.50 12098.33 8399.41 12099.86 2395.92 16799.83 14599.45 1599.16 15099.70 95
EPP-MVSNet99.13 7998.99 8799.53 9899.65 11499.06 13499.81 1299.33 24097.43 18499.60 8099.88 1597.14 12699.84 13699.13 4498.94 16999.69 98
thres20097.61 25797.28 26798.62 22299.64 11698.03 21999.26 22698.74 31697.68 15699.09 19498.32 33191.66 29299.81 15692.88 32998.22 20398.03 328
test1299.75 5199.64 11699.61 6299.29 26099.21 16998.38 8699.89 11399.74 9999.74 73
ab-mvs98.86 11998.63 13399.54 9299.64 11699.19 11599.44 15399.54 7197.77 14699.30 14599.81 6294.20 22999.93 6899.17 4098.82 17899.49 156
DPM-MVS98.95 11298.71 12499.66 6899.63 11999.55 7498.64 32399.10 28097.93 12999.42 11699.55 19898.67 6699.80 16195.80 29199.68 11499.61 126
thisisatest053098.35 16298.03 17999.31 13399.63 11998.56 18899.54 10796.75 34897.53 17399.73 4399.65 15891.25 29999.89 11398.62 11199.56 12799.48 157
xiu_mvs_v1_base_debu99.29 5799.27 5099.34 12799.63 11998.97 14599.12 25099.51 10298.86 3899.84 1399.47 22998.18 9799.99 199.50 899.31 14199.08 195
xiu_mvs_v1_base99.29 5799.27 5099.34 12799.63 11998.97 14599.12 25099.51 10298.86 3899.84 1399.47 22998.18 9799.99 199.50 899.31 14199.08 195
xiu_mvs_v1_base_debi99.29 5799.27 5099.34 12799.63 11998.97 14599.12 25099.51 10298.86 3899.84 1399.47 22998.18 9799.99 199.50 899.31 14199.08 195
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4799.63 11999.59 6799.36 19399.46 16799.07 1399.79 2699.82 4998.85 4199.92 7998.68 10599.87 4099.82 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UA-Net99.42 3899.29 4499.80 4099.62 12599.55 7499.50 12499.70 1598.79 4799.77 3399.96 197.45 11699.96 1898.92 6699.90 2399.89 2
CNVR-MVS99.42 3899.30 4099.78 4599.62 12599.71 4499.26 22699.52 8998.82 4299.39 12799.71 12998.96 2599.85 13198.59 11999.80 8499.77 63
WTY-MVS99.06 9898.88 10399.61 8299.62 12599.16 12099.37 18999.56 5698.04 12199.53 9599.62 17596.84 13699.94 5398.85 7998.49 19499.72 86
sss99.17 7399.05 7499.53 9899.62 12598.97 14599.36 19399.62 3497.83 13899.67 5999.65 15897.37 12199.95 4299.19 3799.19 14999.68 102
diffmvs99.14 7799.02 8299.51 10599.61 12998.96 14999.28 21399.49 12898.46 6899.72 4599.71 12996.50 14899.88 11899.31 2699.11 15599.67 105
NCCC99.34 5199.19 6099.79 4399.61 12999.65 5799.30 20799.48 13998.86 3899.21 16999.63 17098.72 6099.90 10598.25 15499.63 12299.80 49
PCF-MVS97.08 1497.66 25497.06 27499.47 11299.61 12999.09 13198.04 34499.25 26591.24 33698.51 27599.70 13394.55 21999.91 9092.76 33099.85 5899.42 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MSLP-MVS++99.46 2499.47 999.44 12099.60 13299.16 12099.41 16999.71 1398.98 2799.45 10899.78 9599.19 799.54 22799.28 2999.84 6599.63 122
DeepPCF-MVS98.18 398.81 13099.37 1997.12 30999.60 13291.75 34398.61 32499.44 18799.35 199.83 1799.85 2998.70 6299.81 15699.02 5499.91 1699.81 41
IterMVS-LS98.46 15298.42 15198.58 22699.59 13498.00 22199.37 18999.43 19596.94 23099.07 19699.59 18597.87 10699.03 30598.32 15295.62 28698.71 237
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS97.83 22497.77 20798.02 27899.58 13596.27 29599.02 27499.48 13997.22 20498.71 24999.70 13392.75 25999.13 29297.46 22796.00 27498.67 258
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CNLPA99.14 7798.99 8799.59 8499.58 13599.41 9499.16 24299.44 18798.45 6999.19 17599.49 22098.08 10299.89 11397.73 19999.75 9699.48 157
Anonymous20240521198.30 16697.98 18499.26 14499.57 13798.16 21499.41 16998.55 32896.03 29799.19 17599.74 11791.87 28399.92 7999.16 4298.29 20299.70 95
IterMVS-SCA-FT97.82 22797.75 21198.06 27599.57 13796.36 29299.02 27499.49 12897.18 20698.71 24999.72 12892.72 26299.14 28997.44 23095.86 28098.67 258
PS-MVSNAJ99.32 5399.32 3099.30 13799.57 13798.94 15498.97 28899.46 16798.92 3599.71 4699.24 28399.01 1699.98 599.35 1999.66 11798.97 209
MG-MVS99.13 7999.02 8299.45 11599.57 13798.63 18399.07 26099.34 23398.99 2599.61 7699.82 4997.98 10599.87 12297.00 25499.80 8499.85 14
OPU-MVS99.64 7799.56 14199.72 4299.60 7099.70 13399.27 499.42 24398.24 15599.80 8499.79 53
PHI-MVS99.30 5599.17 6299.70 6499.56 14199.52 8299.58 8399.80 897.12 21299.62 7499.73 12498.58 7099.90 10598.61 11499.91 1699.68 102
AdaColmapbinary99.01 10798.80 11599.66 6899.56 14199.54 7699.18 24099.70 1598.18 10099.35 13899.63 17096.32 15499.90 10597.48 22499.77 9299.55 139
CS-MVS99.21 6699.13 6599.45 11599.54 14499.34 9999.71 3199.54 7198.26 8998.99 21299.24 28398.25 9499.88 11898.98 5799.63 12299.12 189
ET-MVSNet_ETH3D96.49 28895.64 29899.05 16399.53 14598.82 16998.84 30497.51 34397.63 16184.77 34699.21 28992.09 28098.91 32298.98 5792.21 33299.41 171
xiu_mvs_v2_base99.26 6299.25 5499.29 14099.53 14598.91 15899.02 27499.45 17998.80 4699.71 4699.26 28198.94 3199.98 599.34 2399.23 14698.98 208
LFMVS97.90 21397.35 25899.54 9299.52 14799.01 13999.39 18198.24 33297.10 21699.65 6799.79 8884.79 34199.91 9099.28 2998.38 19699.69 98
VNet99.11 9098.90 10099.73 5899.52 14799.56 7299.41 16999.39 20999.01 1899.74 4199.78 9595.56 17999.92 7999.52 698.18 20799.72 86
ETH3D cwj APD-0.1699.06 9898.84 11099.72 6199.51 14999.60 6499.23 23199.44 18797.04 22099.39 12799.67 15198.30 9199.92 7997.27 23699.69 10999.64 118
Fast-Effi-MVS+98.70 13998.43 15099.51 10599.51 14999.28 10799.52 11399.47 15796.11 29299.01 20599.34 26396.20 15899.84 13697.88 18498.82 17899.39 173
MVSFormer99.17 7399.12 6799.29 14099.51 14998.94 15499.88 199.46 16797.55 16899.80 2499.65 15897.39 11799.28 26899.03 5299.85 5899.65 112
lupinMVS99.13 7999.01 8699.46 11499.51 14998.94 15499.05 26599.16 27497.86 13399.80 2499.56 19597.39 11799.86 12598.94 6299.85 5899.58 136
GBi-Net97.68 25097.48 23698.29 26199.51 14997.26 25099.43 15999.48 13996.49 26099.07 19699.32 27090.26 30698.98 31297.10 24996.65 25898.62 280
test197.68 25097.48 23698.29 26199.51 14997.26 25099.43 15999.48 13996.49 26099.07 19699.32 27090.26 30698.98 31297.10 24996.65 25898.62 280
FMVSNet297.72 24397.36 25698.80 21199.51 14998.84 16599.45 14999.42 19796.49 26098.86 23599.29 27590.26 30698.98 31296.44 27996.56 26198.58 294
thisisatest051598.14 18097.79 20299.19 15199.50 15698.50 19898.61 32496.82 34796.95 22899.54 9399.43 23791.66 29299.86 12598.08 17199.51 13199.22 183
baseline198.31 16497.95 18899.38 12599.50 15698.74 17499.59 7698.93 29798.41 7399.14 18299.60 18294.59 21699.79 16498.48 13393.29 32299.61 126
EIA-MVS99.18 7199.09 7199.45 11599.49 15899.18 11799.67 4299.53 8397.66 15999.40 12599.44 23598.10 10199.81 15698.94 6299.62 12499.35 175
test_yl98.86 11998.63 13399.54 9299.49 15899.18 11799.50 12499.07 28598.22 9499.61 7699.51 21495.37 18599.84 13698.60 11798.33 19799.59 132
DCV-MVSNet98.86 11998.63 13399.54 9299.49 15899.18 11799.50 12499.07 28598.22 9499.61 7699.51 21495.37 18599.84 13698.60 11798.33 19799.59 132
VDDNet97.55 25997.02 27599.16 15499.49 15898.12 21899.38 18699.30 25595.35 30499.68 5399.90 782.62 34599.93 6899.31 2698.13 21299.42 169
MVS_Test99.10 9398.97 9199.48 10999.49 15899.14 12599.67 4299.34 23397.31 19499.58 8599.76 10597.65 11399.82 15298.87 7499.07 16199.46 164
BH-untuned98.42 15598.36 15398.59 22499.49 15896.70 28099.27 21799.13 27897.24 20298.80 24099.38 25195.75 17499.74 17697.07 25299.16 15099.33 178
AUN-MVS96.88 28096.31 28698.59 22499.48 16497.04 26399.27 21799.22 26897.44 18398.51 27599.41 24391.97 28199.66 20797.71 20283.83 34599.07 199
VDD-MVS97.73 24197.35 25898.88 19499.47 16597.12 25499.34 20198.85 30898.19 9799.67 5999.85 2982.98 34399.92 7999.49 1298.32 20199.60 128
ETV-MVS99.26 6299.21 5899.40 12299.46 16699.30 10599.56 9599.52 8998.52 6399.44 11299.27 28098.41 8599.86 12599.10 4799.59 12699.04 201
test_part196.83 28296.34 28598.33 25599.46 16696.71 27999.52 11399.63 3391.48 33497.75 31099.76 10587.49 33499.44 23798.37 14593.55 31998.82 219
Effi-MVS+98.81 13098.59 14399.48 10999.46 16699.12 12998.08 34399.50 12097.50 17699.38 13099.41 24396.37 15399.81 15699.11 4698.54 19199.51 152
jason99.13 7999.03 7999.45 11599.46 16698.87 16199.12 25099.26 26398.03 12399.79 2699.65 15897.02 13199.85 13199.02 5499.90 2399.65 112
jason: jason.
TAMVS99.12 8599.08 7299.24 14799.46 16698.55 18999.51 11899.46 16798.09 11099.45 10899.82 4998.34 8999.51 22898.70 10098.93 17099.67 105
ACMH+97.24 1097.92 21197.78 20598.32 25899.46 16696.68 28299.56 9599.54 7198.41 7397.79 30999.87 2090.18 31099.66 20798.05 17597.18 25298.62 280
MIMVSNet97.73 24197.45 24198.57 22799.45 17297.50 24399.02 27498.98 29296.11 29299.41 12099.14 29590.28 30598.74 32695.74 29298.93 17099.47 162
alignmvs98.81 13098.56 14599.58 8799.43 17399.42 9399.51 11898.96 29598.61 5899.35 13898.92 31494.78 20499.77 17099.35 1998.11 21399.54 141
canonicalmvs99.02 10498.86 10899.51 10599.42 17499.32 10199.80 1699.48 13998.63 5699.31 14498.81 31797.09 12899.75 17599.27 3197.90 21799.47 162
HY-MVS97.30 798.85 12798.64 13299.47 11299.42 17499.08 13299.62 6399.36 22497.39 18999.28 15099.68 14596.44 15199.92 7998.37 14598.22 20399.40 172
CDS-MVSNet99.09 9499.03 7999.25 14599.42 17498.73 17599.45 14999.46 16798.11 10799.46 10799.77 10198.01 10499.37 25098.70 10098.92 17299.66 108
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet99.25 6499.14 6499.59 8499.41 17799.16 12099.35 19899.57 5198.82 4299.51 9999.61 17996.46 14999.95 4299.59 199.98 299.65 112
Fast-Effi-MVS+-dtu98.77 13698.83 11498.60 22399.41 17796.99 26799.52 11399.49 12898.11 10799.24 16199.34 26396.96 13499.79 16497.95 18099.45 13299.02 204
BH-RMVSNet98.41 15798.08 17499.40 12299.41 17798.83 16899.30 20798.77 31297.70 15498.94 21999.65 15892.91 25799.74 17696.52 27799.55 12999.64 118
ACMM97.58 598.37 16198.34 15698.48 23799.41 17797.10 25599.56 9599.45 17998.53 6299.04 20299.85 2993.00 25399.71 19398.74 9497.45 24098.64 270
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH97.28 898.10 18497.99 18398.44 24699.41 17796.96 27199.60 7099.56 5698.09 11098.15 29599.91 590.87 30399.70 19998.88 7097.45 24098.67 258
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D97.32 27296.81 27898.87 19899.40 18297.46 24499.51 11899.53 8395.86 29998.54 27499.77 10182.44 34699.66 20798.68 10597.52 23299.50 155
PAPR98.63 14798.34 15699.51 10599.40 18299.03 13698.80 30899.36 22496.33 27299.00 21099.12 29998.46 7999.84 13695.23 30499.37 14099.66 108
API-MVS99.04 10199.03 7999.06 16199.40 18299.31 10499.55 10499.56 5698.54 6199.33 14299.39 25098.76 5399.78 16896.98 25699.78 8998.07 326
FMVSNet398.03 19497.76 21098.84 20599.39 18598.98 14299.40 17799.38 21596.67 24599.07 19699.28 27792.93 25498.98 31297.10 24996.65 25898.56 296
GA-MVS97.85 21997.47 23899.00 17099.38 18697.99 22298.57 32799.15 27597.04 22098.90 22599.30 27389.83 31299.38 24796.70 27298.33 19799.62 124
mvs_anonymous99.03 10398.99 8799.16 15499.38 18698.52 19599.51 11899.38 21597.79 14499.38 13099.81 6297.30 12299.45 23299.35 1998.99 16799.51 152
ACMP97.20 1198.06 18897.94 19098.45 24399.37 18897.01 26599.44 15399.49 12897.54 17198.45 27999.79 8891.95 28299.72 18797.91 18297.49 23898.62 280
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MAR-MVS98.86 11998.63 13399.54 9299.37 18899.66 5499.45 14999.54 7196.61 25199.01 20599.40 24697.09 12899.86 12597.68 20799.53 13099.10 190
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testgi97.65 25597.50 23598.13 27299.36 19096.45 28999.42 16699.48 13997.76 14797.87 30599.45 23491.09 30098.81 32594.53 31298.52 19299.13 188
EI-MVSNet98.67 14398.67 12898.68 22099.35 19197.97 22399.50 12499.38 21596.93 23199.20 17299.83 4297.87 10699.36 25498.38 14397.56 22998.71 237
CVMVSNet98.57 14998.67 12898.30 26099.35 19195.59 30599.50 12499.55 6498.60 5999.39 12799.83 4294.48 22199.45 23298.75 9398.56 19099.85 14
BH-w/o98.00 20197.89 19798.32 25899.35 19196.20 29799.01 27998.90 30496.42 26998.38 28399.00 30795.26 19199.72 18796.06 28598.61 18499.03 202
MVSTER98.49 15098.32 15899.00 17099.35 19199.02 13799.54 10799.38 21597.41 18799.20 17299.73 12493.86 24199.36 25498.87 7497.56 22998.62 280
miper_lstm_enhance98.00 20197.91 19298.28 26499.34 19597.43 24598.88 30099.36 22496.48 26498.80 24099.55 19895.98 16298.91 32297.27 23695.50 29098.51 299
Effi-MVS+-dtu98.78 13498.89 10298.47 24199.33 19696.91 27399.57 8899.30 25598.47 6699.41 12098.99 30896.78 13899.74 17698.73 9699.38 13698.74 233
CANet_DTU98.97 11198.87 10499.25 14599.33 19698.42 20699.08 25999.30 25599.16 599.43 11399.75 11195.27 18999.97 1098.56 12599.95 699.36 174
mvs-test198.86 11998.84 11098.89 19199.33 19697.77 23599.44 15399.30 25598.47 6699.10 19099.43 23796.78 13899.95 4298.73 9699.02 16598.96 211
ADS-MVSNet298.02 19698.07 17797.87 28899.33 19695.19 31799.23 23199.08 28396.24 28099.10 19099.67 15194.11 23398.93 32196.81 26699.05 16299.48 157
ADS-MVSNet98.20 17398.08 17498.56 22999.33 19696.48 28899.23 23199.15 27596.24 28099.10 19099.67 15194.11 23399.71 19396.81 26699.05 16299.48 157
LPG-MVS_test98.22 17098.13 16898.49 23599.33 19697.05 26199.58 8399.55 6497.46 17799.24 16199.83 4292.58 26899.72 18798.09 16797.51 23398.68 250
LGP-MVS_train98.49 23599.33 19697.05 26199.55 6497.46 17799.24 16199.83 4292.58 26899.72 18798.09 16797.51 23398.68 250
FMVSNet196.84 28196.36 28498.29 26199.32 20397.26 25099.43 15999.48 13995.11 30698.55 27399.32 27083.95 34298.98 31295.81 29096.26 26998.62 280
PVSNet_094.43 1996.09 29695.47 29997.94 28399.31 20494.34 32997.81 34599.70 1597.12 21297.46 31298.75 32189.71 31399.79 16497.69 20581.69 34799.68 102
cl_fuxian98.12 18398.04 17898.38 25299.30 20597.69 24198.81 30799.33 24096.67 24598.83 23699.34 26397.11 12798.99 31197.58 21295.34 29298.48 301
SCA98.19 17498.16 16598.27 26599.30 20595.55 30699.07 26098.97 29397.57 16699.43 11399.57 19292.72 26299.74 17697.58 21299.20 14899.52 146
LCM-MVSNet-Re97.83 22498.15 16696.87 31599.30 20592.25 34299.59 7698.26 33197.43 18496.20 32899.13 29696.27 15698.73 32798.17 16298.99 16799.64 118
MVS-HIRNet95.75 29995.16 30397.51 30399.30 20593.69 33598.88 30095.78 35185.09 34598.78 24392.65 34891.29 29899.37 25094.85 30999.85 5899.46 164
HQP_MVS98.27 16998.22 16498.44 24699.29 20996.97 26999.39 18199.47 15798.97 3099.11 18799.61 17992.71 26499.69 20297.78 19397.63 22298.67 258
plane_prior799.29 20997.03 264
ITE_SJBPF98.08 27399.29 20996.37 29198.92 29998.34 8098.83 23699.75 11191.09 30099.62 21995.82 28997.40 24598.25 321
DeepMVS_CXcopyleft93.34 32699.29 20982.27 35099.22 26885.15 34496.33 32799.05 30490.97 30299.73 18393.57 32297.77 22098.01 329
CLD-MVS98.16 17898.10 17098.33 25599.29 20996.82 27698.75 31399.44 18797.83 13899.13 18399.55 19892.92 25599.67 20498.32 15297.69 22198.48 301
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
plane_prior699.27 21496.98 26892.71 264
PMMVS98.80 13398.62 13899.34 12799.27 21498.70 17798.76 31299.31 25197.34 19199.21 16999.07 30197.20 12599.82 15298.56 12598.87 17599.52 146
eth_miper_zixun_eth98.05 19397.96 18698.33 25599.26 21697.38 24698.56 32999.31 25196.65 24798.88 22899.52 21096.58 14599.12 29697.39 23395.53 28998.47 303
D2MVS98.41 15798.50 14798.15 27199.26 21696.62 28499.40 17799.61 3697.71 15398.98 21399.36 25796.04 16199.67 20498.70 10097.41 24498.15 324
plane_prior199.26 216
XXY-MVS98.38 16098.09 17399.24 14799.26 21699.32 10199.56 9599.55 6497.45 18098.71 24999.83 4293.23 24999.63 21898.88 7096.32 26898.76 228
cl-mvsnet_98.01 19997.84 20098.55 23199.25 22097.97 22398.71 31799.34 23396.47 26698.59 27299.54 20395.65 17899.21 28497.21 24095.77 28198.46 307
cl-mvsnet198.01 19997.85 19998.48 23799.24 22197.95 22798.71 31799.35 22996.50 25998.60 27199.54 20395.72 17699.03 30597.21 24095.77 28198.46 307
miper_ehance_all_eth98.18 17698.10 17098.41 24899.23 22297.72 23898.72 31699.31 25196.60 25398.88 22899.29 27597.29 12399.13 29297.60 21095.99 27598.38 315
RRT_test8_iter0597.72 24397.60 22598.08 27399.23 22296.08 29999.63 5799.49 12897.54 17198.94 21999.81 6287.99 33199.35 25899.21 3696.51 26398.81 220
NP-MVS99.23 22296.92 27299.40 246
LTVRE_ROB97.16 1298.02 19697.90 19398.40 25099.23 22296.80 27799.70 3399.60 4197.12 21298.18 29499.70 13391.73 28899.72 18798.39 14197.45 24098.68 250
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVS_030496.79 28396.52 28297.59 30099.22 22694.92 32299.04 27099.59 4496.49 26098.43 28098.99 30880.48 34899.39 24597.15 24899.27 14498.47 303
UGNet98.87 11698.69 12699.40 12299.22 22698.72 17699.44 15399.68 1999.24 399.18 17899.42 24092.74 26199.96 1899.34 2399.94 999.53 145
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VPNet97.84 22297.44 24699.01 16899.21 22898.94 15499.48 14099.57 5198.38 7599.28 15099.73 12488.89 32099.39 24599.19 3793.27 32398.71 237
IB-MVS95.67 1896.22 29295.44 30198.57 22799.21 22896.70 28098.65 32297.74 34196.71 24297.27 31598.54 32786.03 33799.92 7998.47 13686.30 34399.10 190
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tfpnnormal97.84 22297.47 23898.98 17299.20 23099.22 11499.64 5599.61 3696.32 27398.27 29199.70 13393.35 24899.44 23795.69 29395.40 29198.27 319
QAPM98.67 14398.30 16099.80 4099.20 23099.67 5299.77 2199.72 1194.74 31298.73 24799.90 795.78 17399.98 596.96 25899.88 3699.76 68
HQP-NCC99.19 23298.98 28598.24 9098.66 258
ACMP_Plane99.19 23298.98 28598.24 9098.66 258
HQP-MVS98.02 19697.90 19398.37 25399.19 23296.83 27498.98 28599.39 20998.24 9098.66 25899.40 24692.47 27299.64 21397.19 24497.58 22798.64 270
Patchmatch-test97.93 20897.65 22098.77 21499.18 23597.07 25999.03 27199.14 27796.16 28798.74 24699.57 19294.56 21899.72 18793.36 32499.11 15599.52 146
FIs98.78 13498.63 13399.23 14999.18 23599.54 7699.83 999.59 4498.28 8698.79 24299.81 6296.75 14199.37 25099.08 4996.38 26698.78 223
baseline297.87 21697.55 22898.82 20799.18 23598.02 22099.41 16996.58 35096.97 22596.51 32599.17 29193.43 24699.57 22397.71 20299.03 16498.86 216
CR-MVSNet98.17 17797.93 19198.87 19899.18 23598.49 19999.22 23699.33 24096.96 22699.56 8899.38 25194.33 22599.00 31094.83 31098.58 18799.14 186
RPMNet96.72 28495.90 29499.19 15199.18 23598.49 19999.22 23699.52 8988.72 34299.56 8897.38 33794.08 23599.95 4286.87 34798.58 18799.14 186
LS3D99.27 6099.12 6799.74 5699.18 23599.75 3899.56 9599.57 5198.45 6999.49 10399.85 2997.77 11099.94 5398.33 15099.84 6599.52 146
tpm cat197.39 27097.36 25697.50 30499.17 24193.73 33399.43 15999.31 25191.27 33598.71 24999.08 30094.31 22799.77 17096.41 28198.50 19399.00 205
3Dnovator+97.12 1399.18 7198.97 9199.82 3599.17 24199.68 4999.81 1299.51 10299.20 498.72 24899.89 1095.68 17799.97 1098.86 7799.86 5199.81 41
VPA-MVSNet98.29 16797.95 18899.30 13799.16 24399.54 7699.50 12499.58 5098.27 8899.35 13899.37 25492.53 27099.65 21199.35 1994.46 30698.72 235
tpmrst98.33 16398.48 14897.90 28799.16 24394.78 32499.31 20599.11 27997.27 19899.45 10899.59 18595.33 18799.84 13698.48 13398.61 18499.09 194
PatchmatchNetpermissive98.31 16498.36 15398.19 26899.16 24395.32 31499.27 21798.92 29997.37 19099.37 13299.58 18894.90 19899.70 19997.43 23199.21 14799.54 141
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm297.44 26997.34 26197.74 29699.15 24694.36 32899.45 14998.94 29693.45 32798.90 22599.44 23591.35 29799.59 22297.31 23498.07 21499.29 180
CostFormer97.72 24397.73 21397.71 29799.15 24694.02 33199.54 10799.02 28994.67 31399.04 20299.35 26092.35 27899.77 17098.50 13297.94 21699.34 177
TransMVSNet (Re)97.15 27696.58 28098.86 20199.12 24898.85 16499.49 13498.91 30295.48 30297.16 31899.80 7693.38 24799.11 29794.16 31891.73 33398.62 280
3Dnovator97.25 999.24 6599.05 7499.81 3899.12 24899.66 5499.84 699.74 1099.09 1098.92 22299.90 795.94 16699.98 598.95 6199.92 1199.79 53
XVG-ACMP-BASELINE97.83 22497.71 21598.20 26799.11 25096.33 29399.41 16999.52 8998.06 11999.05 20199.50 21789.64 31499.73 18397.73 19997.38 24698.53 297
FMVSNet596.43 29096.19 28897.15 30799.11 25095.89 30299.32 20399.52 8994.47 31798.34 28799.07 30187.54 33397.07 34492.61 33195.72 28498.47 303
MDTV_nov1_ep1398.32 15899.11 25094.44 32799.27 21798.74 31697.51 17599.40 12599.62 17594.78 20499.76 17397.59 21198.81 180
Patchmtry97.75 23897.40 25298.81 20999.10 25398.87 16199.11 25699.33 24094.83 31098.81 23899.38 25194.33 22599.02 30796.10 28495.57 28798.53 297
dp97.75 23897.80 20197.59 30099.10 25393.71 33499.32 20398.88 30696.48 26499.08 19599.55 19892.67 26699.82 15296.52 27798.58 18799.24 182
cl-mvsnet297.85 21997.64 22298.48 23799.09 25597.87 23098.60 32699.33 24097.11 21598.87 23099.22 28692.38 27799.17 28898.21 15795.99 27598.42 310
Baseline_NR-MVSNet97.76 23497.45 24198.68 22099.09 25598.29 20999.41 16998.85 30895.65 30198.63 26699.67 15194.82 20199.10 29998.07 17492.89 32798.64 270
FC-MVSNet-test98.75 13798.62 13899.15 15699.08 25799.45 9099.86 599.60 4198.23 9398.70 25599.82 4996.80 13799.22 27999.07 5096.38 26698.79 222
USDC97.34 27197.20 27097.75 29599.07 25895.20 31698.51 33199.04 28897.99 12598.31 28899.86 2389.02 31899.55 22695.67 29597.36 24798.49 300
TinyColmap97.12 27796.89 27797.83 29199.07 25895.52 30998.57 32798.74 31697.58 16597.81 30899.79 8888.16 32999.56 22495.10 30597.21 25098.39 314
pm-mvs197.68 25097.28 26798.88 19499.06 26098.62 18499.50 12499.45 17996.32 27397.87 30599.79 8892.47 27299.35 25897.54 21993.54 32098.67 258
TR-MVS97.76 23497.41 25198.82 20799.06 26097.87 23098.87 30298.56 32796.63 25098.68 25799.22 28692.49 27199.65 21195.40 30097.79 21998.95 214
PAPM97.59 25897.09 27399.07 16099.06 26098.26 21198.30 33899.10 28094.88 30998.08 29799.34 26396.27 15699.64 21389.87 33898.92 17299.31 179
nrg03098.64 14698.42 15199.28 14299.05 26399.69 4799.81 1299.46 16798.04 12199.01 20599.82 4996.69 14399.38 24799.34 2394.59 30598.78 223
tpmvs97.98 20398.02 18197.84 29099.04 26494.73 32599.31 20599.20 27196.10 29698.76 24599.42 24094.94 19699.81 15696.97 25798.45 19598.97 209
OpenMVScopyleft96.50 1698.47 15198.12 16999.52 10399.04 26499.53 7999.82 1099.72 1194.56 31598.08 29799.88 1594.73 21099.98 597.47 22699.76 9599.06 200
DWT-MVSNet_test97.53 26197.40 25297.93 28499.03 26694.86 32399.57 8898.63 32596.59 25698.36 28598.79 31889.32 31699.74 17698.14 16598.16 21199.20 185
WR-MVS_H98.13 18197.87 19898.90 18899.02 26798.84 16599.70 3399.59 4497.27 19898.40 28299.19 29095.53 18099.23 27698.34 14993.78 31798.61 289
tpm97.67 25397.55 22898.03 27699.02 26795.01 32099.43 15998.54 32996.44 26799.12 18599.34 26391.83 28599.60 22197.75 19796.46 26499.48 157
UniMVSNet (Re)98.29 16798.00 18299.13 15799.00 26999.36 9899.49 13499.51 10297.95 12798.97 21599.13 29696.30 15599.38 24798.36 14893.34 32198.66 266
v1097.85 21997.52 23298.86 20198.99 27098.67 17999.75 2599.41 19995.70 30098.98 21399.41 24394.75 20999.23 27696.01 28794.63 30498.67 258
PS-CasMVS97.93 20897.59 22798.95 17798.99 27099.06 13499.68 4099.52 8997.13 21098.31 28899.68 14592.44 27699.05 30298.51 13194.08 31498.75 230
PatchT97.03 27996.44 28398.79 21298.99 27098.34 20899.16 24299.07 28592.13 33199.52 9797.31 34094.54 22098.98 31288.54 34198.73 18399.03 202
V4298.06 18897.79 20298.86 20198.98 27398.84 16599.69 3599.34 23396.53 25899.30 14599.37 25494.67 21399.32 26397.57 21694.66 30398.42 310
LF4IMVS97.52 26297.46 24097.70 29898.98 27395.55 30699.29 21198.82 31198.07 11598.66 25899.64 16589.97 31199.61 22097.01 25396.68 25797.94 332
CP-MVSNet98.09 18597.78 20599.01 16898.97 27599.24 11299.67 4299.46 16797.25 20098.48 27899.64 16593.79 24299.06 30198.63 11094.10 31398.74 233
miper_enhance_ethall98.16 17898.08 17498.41 24898.96 27697.72 23898.45 33399.32 24896.95 22898.97 21599.17 29197.06 13099.22 27997.86 18695.99 27598.29 318
v897.95 20797.63 22398.93 18098.95 27798.81 17199.80 1699.41 19996.03 29799.10 19099.42 24094.92 19799.30 26696.94 26094.08 31498.66 266
TESTMET0.1,197.55 25997.27 26998.40 25098.93 27896.53 28698.67 31997.61 34296.96 22698.64 26599.28 27788.63 32499.45 23297.30 23599.38 13699.21 184
UniMVSNet_NR-MVSNet98.22 17097.97 18598.96 17598.92 27998.98 14299.48 14099.53 8397.76 14798.71 24999.46 23396.43 15299.22 27998.57 12292.87 32898.69 245
v2v48298.06 18897.77 20798.92 18298.90 28098.82 16999.57 8899.36 22496.65 24799.19 17599.35 26094.20 22999.25 27497.72 20194.97 30098.69 245
131498.68 14298.54 14699.11 15898.89 28198.65 18199.27 21799.49 12896.89 23297.99 30299.56 19597.72 11299.83 14597.74 19899.27 14498.84 218
OPM-MVS98.19 17498.10 17098.45 24398.88 28297.07 25999.28 21399.38 21598.57 6099.22 16699.81 6292.12 27999.66 20798.08 17197.54 23198.61 289
v119297.81 22997.44 24698.91 18698.88 28298.68 17899.51 11899.34 23396.18 28599.20 17299.34 26394.03 23699.36 25495.32 30395.18 29598.69 245
RRT_MVS98.60 14898.44 14999.05 16398.88 28299.14 12599.49 13499.38 21597.76 14799.29 14899.86 2395.38 18499.36 25498.81 8997.16 25398.64 270
EPMVS97.82 22797.65 22098.35 25498.88 28295.98 30099.49 13494.71 35497.57 16699.26 15899.48 22692.46 27599.71 19397.87 18599.08 16099.35 175
v114497.98 20397.69 21698.85 20498.87 28698.66 18099.54 10799.35 22996.27 27799.23 16599.35 26094.67 21399.23 27696.73 27095.16 29698.68 250
DU-MVS98.08 18797.79 20298.96 17598.87 28698.98 14299.41 16999.45 17997.87 13298.71 24999.50 21794.82 20199.22 27998.57 12292.87 32898.68 250
NR-MVSNet97.97 20697.61 22499.02 16798.87 28699.26 11099.47 14599.42 19797.63 16197.08 32099.50 21795.07 19599.13 29297.86 18693.59 31898.68 250
WR-MVS98.06 18897.73 21399.06 16198.86 28999.25 11199.19 23999.35 22997.30 19598.66 25899.43 23793.94 23899.21 28498.58 12094.28 31098.71 237
v124097.69 24897.32 26498.79 21298.85 29098.43 20499.48 14099.36 22496.11 29299.27 15399.36 25793.76 24499.24 27594.46 31395.23 29498.70 241
test_040296.64 28596.24 28797.85 28998.85 29096.43 29099.44 15399.26 26393.52 32496.98 32299.52 21088.52 32599.20 28692.58 33297.50 23597.93 333
v14419297.92 21197.60 22598.87 19898.83 29298.65 18199.55 10499.34 23396.20 28399.32 14399.40 24694.36 22499.26 27396.37 28295.03 29998.70 241
v192192097.80 23197.45 24198.84 20598.80 29398.53 19199.52 11399.34 23396.15 28999.24 16199.47 22993.98 23799.29 26795.40 30095.13 29798.69 245
gg-mvs-nofinetune96.17 29495.32 30298.73 21698.79 29498.14 21699.38 18694.09 35591.07 33898.07 30091.04 35189.62 31599.35 25896.75 26899.09 15998.68 250
test-LLR98.06 18897.90 19398.55 23198.79 29497.10 25598.67 31997.75 33997.34 19198.61 26998.85 31594.45 22299.45 23297.25 23899.38 13699.10 190
test-mter97.49 26797.13 27298.55 23198.79 29497.10 25598.67 31997.75 33996.65 24798.61 26998.85 31588.23 32899.45 23297.25 23899.38 13699.10 190
PS-MVSNAJss98.92 11498.92 9798.90 18898.78 29798.53 19199.78 1999.54 7198.07 11599.00 21099.76 10599.01 1699.37 25099.13 4497.23 24998.81 220
MVS97.28 27396.55 28199.48 10998.78 29798.95 15199.27 21799.39 20983.53 34698.08 29799.54 20396.97 13399.87 12294.23 31699.16 15099.63 122
TranMVSNet+NR-MVSNet97.93 20897.66 21998.76 21598.78 29798.62 18499.65 5399.49 12897.76 14798.49 27799.60 18294.23 22898.97 31998.00 17692.90 32698.70 241
PEN-MVS97.76 23497.44 24698.72 21798.77 30098.54 19099.78 1999.51 10297.06 21998.29 29099.64 16592.63 26798.89 32498.09 16793.16 32498.72 235
v7n97.87 21697.52 23298.92 18298.76 30198.58 18799.84 699.46 16796.20 28398.91 22399.70 13394.89 19999.44 23796.03 28693.89 31698.75 230
v14897.79 23297.55 22898.50 23498.74 30297.72 23899.54 10799.33 24096.26 27898.90 22599.51 21494.68 21299.14 28997.83 18993.15 32598.63 278
JIA-IIPM97.50 26597.02 27598.93 18098.73 30397.80 23499.30 20798.97 29391.73 33398.91 22394.86 34695.10 19499.71 19397.58 21297.98 21599.28 181
Gipumacopyleft90.99 31590.15 31893.51 32598.73 30390.12 34693.98 35099.45 17979.32 34892.28 34194.91 34569.61 35197.98 33487.42 34495.67 28592.45 347
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EU-MVSNet97.98 20398.03 17997.81 29398.72 30596.65 28399.66 4699.66 2798.09 11098.35 28699.82 4995.25 19298.01 33397.41 23295.30 29398.78 223
K. test v397.10 27896.79 27998.01 27998.72 30596.33 29399.87 497.05 34597.59 16396.16 32999.80 7688.71 32199.04 30396.69 27396.55 26298.65 268
OurMVSNet-221017-097.88 21497.77 20798.19 26898.71 30796.53 28699.88 199.00 29097.79 14498.78 24399.94 391.68 28999.35 25897.21 24096.99 25698.69 245
test_djsdf98.67 14398.57 14498.98 17298.70 30898.91 15899.88 199.46 16797.55 16899.22 16699.88 1595.73 17599.28 26899.03 5297.62 22498.75 230
pmmvs696.53 28796.09 29097.82 29298.69 30995.47 31099.37 18999.47 15793.46 32697.41 31399.78 9587.06 33599.33 26296.92 26392.70 33098.65 268
lessismore_v097.79 29498.69 30995.44 31294.75 35395.71 33299.87 2088.69 32299.32 26395.89 28894.93 30298.62 280
mvs_tets98.40 15998.23 16398.91 18698.67 31198.51 19799.66 4699.53 8398.19 9798.65 26499.81 6292.75 25999.44 23799.31 2697.48 23998.77 226
SixPastTwentyTwo97.50 26597.33 26398.03 27698.65 31296.23 29699.77 2198.68 32497.14 20997.90 30499.93 490.45 30499.18 28797.00 25496.43 26598.67 258
UnsupCasMVSNet_eth96.44 28996.12 28997.40 30698.65 31295.65 30399.36 19399.51 10297.13 21096.04 33198.99 30888.40 32698.17 33196.71 27190.27 33698.40 313
DTE-MVSNet97.51 26497.19 27198.46 24298.63 31498.13 21799.84 699.48 13996.68 24497.97 30399.67 15192.92 25598.56 32896.88 26592.60 33198.70 241
our_test_397.65 25597.68 21797.55 30298.62 31594.97 32198.84 30499.30 25596.83 23798.19 29399.34 26397.01 13299.02 30795.00 30896.01 27398.64 270
ppachtmachnet_test97.49 26797.45 24197.61 29998.62 31595.24 31598.80 30899.46 16796.11 29298.22 29299.62 17596.45 15098.97 31993.77 32095.97 27898.61 289
pmmvs498.13 18197.90 19398.81 20998.61 31798.87 16198.99 28199.21 27096.44 26799.06 20099.58 18895.90 16999.11 29797.18 24696.11 27198.46 307
jajsoiax98.43 15498.28 16198.88 19498.60 31898.43 20499.82 1099.53 8398.19 9798.63 26699.80 7693.22 25199.44 23799.22 3497.50 23598.77 226
cascas97.69 24897.43 24998.48 23798.60 31897.30 24798.18 34299.39 20992.96 32998.41 28198.78 32093.77 24399.27 27198.16 16398.61 18498.86 216
pmmvs597.52 26297.30 26698.16 27098.57 32096.73 27899.27 21798.90 30496.14 29098.37 28499.53 20791.54 29599.14 28997.51 22295.87 27998.63 278
GG-mvs-BLEND98.45 24398.55 32198.16 21499.43 15993.68 35697.23 31698.46 32889.30 31799.22 27995.43 29998.22 20397.98 330
gm-plane-assit98.54 32292.96 33994.65 31499.15 29499.64 21397.56 217
anonymousdsp98.44 15398.28 16198.94 17898.50 32398.96 14999.77 2199.50 12097.07 21798.87 23099.77 10194.76 20899.28 26898.66 10797.60 22598.57 295
N_pmnet94.95 30795.83 29592.31 32898.47 32479.33 35399.12 25092.81 35993.87 32097.68 31199.13 29693.87 24099.01 30991.38 33496.19 27098.59 293
MS-PatchMatch97.24 27597.32 26496.99 31098.45 32593.51 33798.82 30699.32 24897.41 18798.13 29699.30 27388.99 31999.56 22495.68 29499.80 8497.90 335
test0.0.03 197.71 24797.42 25098.56 22998.41 32697.82 23398.78 31098.63 32597.34 19198.05 30198.98 31194.45 22298.98 31295.04 30797.15 25498.89 215
EPNet_dtu98.03 19497.96 18698.23 26698.27 32795.54 30899.23 23198.75 31399.02 1597.82 30799.71 12996.11 15999.48 22993.04 32899.65 11999.69 98
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDA-MVSNet-bldmvs94.96 30693.98 31297.92 28598.24 32897.27 24999.15 24699.33 24093.80 32180.09 35299.03 30688.31 32797.86 33793.49 32394.36 30998.62 280
MDA-MVSNet_test_wron95.45 30194.60 30798.01 27998.16 32997.21 25399.11 25699.24 26693.49 32580.73 35198.98 31193.02 25298.18 33094.22 31794.45 30798.64 270
new_pmnet96.38 29196.03 29197.41 30598.13 33095.16 31999.05 26599.20 27193.94 31997.39 31498.79 31891.61 29499.04 30390.43 33695.77 28198.05 327
YYNet195.36 30394.51 30997.92 28597.89 33197.10 25599.10 25899.23 26793.26 32880.77 35099.04 30592.81 25898.02 33294.30 31494.18 31298.64 270
DSMNet-mixed97.25 27497.35 25896.95 31397.84 33293.61 33699.57 8896.63 34996.13 29198.87 23098.61 32694.59 21697.70 34095.08 30698.86 17699.55 139
EG-PatchMatch MVS95.97 29795.69 29796.81 31697.78 33392.79 34099.16 24298.93 29796.16 28794.08 33799.22 28682.72 34499.47 23095.67 29597.50 23598.17 323
MVP-Stereo97.81 22997.75 21197.99 28197.53 33496.60 28598.96 28998.85 30897.22 20497.23 31699.36 25795.28 18899.46 23195.51 29799.78 8997.92 334
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test20.0396.12 29595.96 29396.63 31897.44 33595.45 31199.51 11899.38 21596.55 25796.16 32999.25 28293.76 24496.17 34887.35 34594.22 31198.27 319
UnsupCasMVSNet_bld93.53 31392.51 31696.58 32097.38 33693.82 33298.24 33999.48 13991.10 33793.10 34096.66 34274.89 34998.37 32994.03 31987.71 34197.56 339
MIMVSNet195.51 30095.04 30496.92 31497.38 33695.60 30499.52 11399.50 12093.65 32396.97 32399.17 29185.28 34096.56 34788.36 34295.55 28898.60 292
OpenMVS_ROBcopyleft92.34 2094.38 31093.70 31396.41 32197.38 33693.17 33899.06 26398.75 31386.58 34394.84 33698.26 33281.53 34799.32 26389.01 34097.87 21896.76 341
Anonymous2023120696.22 29296.03 29196.79 31797.31 33994.14 33099.63 5799.08 28396.17 28697.04 32199.06 30393.94 23897.76 33986.96 34695.06 29898.47 303
CMPMVSbinary69.68 2394.13 31194.90 30591.84 32997.24 34080.01 35298.52 33099.48 13989.01 34091.99 34299.67 15185.67 33999.13 29295.44 29897.03 25596.39 343
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EPNet98.86 11998.71 12499.30 13797.20 34198.18 21399.62 6398.91 30299.28 298.63 26699.81 6295.96 16399.99 199.24 3399.72 10399.73 80
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CL-MVSNet_2432*160095.00 30594.34 31096.96 31297.07 34295.39 31399.56 9599.44 18795.11 30697.13 31997.32 33991.86 28497.27 34390.35 33781.23 34898.23 322
Patchmatch-RL test95.84 29895.81 29695.95 32295.61 34390.57 34598.24 33998.39 33095.10 30895.20 33398.67 32394.78 20497.77 33896.28 28390.02 33799.51 152
PM-MVS92.96 31492.23 31795.14 32495.61 34389.98 34799.37 18998.21 33394.80 31195.04 33597.69 33465.06 35297.90 33694.30 31489.98 33897.54 340
pmmvs-eth3d95.34 30494.73 30697.15 30795.53 34595.94 30199.35 19899.10 28095.13 30593.55 33897.54 33588.15 33097.91 33594.58 31189.69 33997.61 337
new-patchmatchnet94.48 30894.08 31195.67 32395.08 34692.41 34199.18 24099.28 26194.55 31693.49 33997.37 33887.86 33297.01 34591.57 33388.36 34097.61 337
pmmvs394.09 31293.25 31496.60 31994.76 34794.49 32698.92 29698.18 33589.66 33996.48 32698.06 33386.28 33697.33 34289.68 33987.20 34297.97 331
testing_294.44 30992.93 31598.98 17294.16 34899.00 14199.42 16699.28 26196.60 25384.86 34596.84 34170.91 35099.27 27198.23 15696.08 27298.68 250
ambc93.06 32792.68 34982.36 34998.47 33298.73 32195.09 33497.41 33655.55 35599.10 29996.42 28091.32 33497.71 336
EMVS80.02 32179.22 32482.43 33791.19 35076.40 35597.55 34892.49 36066.36 35483.01 34991.27 35064.63 35385.79 35565.82 35460.65 35285.08 351
E-PMN80.61 32079.88 32382.81 33590.75 35176.38 35697.69 34695.76 35266.44 35383.52 34792.25 34962.54 35487.16 35468.53 35361.40 35184.89 352
PMMVS286.87 31685.37 32091.35 33190.21 35283.80 34898.89 29997.45 34483.13 34791.67 34395.03 34448.49 35794.70 35085.86 34877.62 34995.54 344
TDRefinement95.42 30294.57 30897.97 28289.83 35396.11 29899.48 14098.75 31396.74 24096.68 32499.88 1588.65 32399.71 19398.37 14582.74 34698.09 325
LCM-MVSNet86.80 31785.22 32191.53 33087.81 35480.96 35198.23 34198.99 29171.05 35090.13 34496.51 34348.45 35896.88 34690.51 33585.30 34496.76 341
FPMVS84.93 31885.65 31982.75 33686.77 35563.39 35998.35 33698.92 29974.11 34983.39 34898.98 31150.85 35692.40 35284.54 34994.97 30092.46 346
wuyk23d40.18 32541.29 33036.84 33986.18 35649.12 36179.73 35322.81 36227.64 35625.46 35928.45 35921.98 36248.89 35755.80 35523.56 35712.51 355
MVEpermissive76.82 2176.91 32374.31 32784.70 33385.38 35776.05 35796.88 34993.17 35767.39 35271.28 35489.01 35321.66 36487.69 35371.74 35272.29 35090.35 349
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high77.30 32274.86 32684.62 33475.88 35877.61 35497.63 34793.15 35888.81 34164.27 35589.29 35236.51 35983.93 35675.89 35152.31 35392.33 348
PMVScopyleft70.75 2275.98 32474.97 32579.01 33870.98 35955.18 36093.37 35198.21 33365.08 35561.78 35693.83 34721.74 36392.53 35178.59 35091.12 33589.34 350
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt82.80 31981.52 32286.66 33266.61 36068.44 35892.79 35297.92 33768.96 35180.04 35399.85 2985.77 33896.15 34997.86 18643.89 35495.39 345
test12339.01 32742.50 32928.53 34039.17 36120.91 36298.75 31319.17 36319.83 35838.57 35766.67 35533.16 36015.42 35837.50 35729.66 35649.26 353
testmvs39.17 32643.78 32825.37 34136.04 36216.84 36398.36 33526.56 36120.06 35738.51 35867.32 35429.64 36115.30 35937.59 35639.90 35543.98 354
uanet_test0.02 3310.03 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.27 3600.00 3650.00 3600.00 3580.00 3580.00 356
cdsmvs_eth3d_5k24.64 32832.85 3310.00 3420.00 3630.00 3640.00 35499.51 1020.00 3590.00 36099.56 19596.58 1450.00 3600.00 3580.00 3580.00 356
pcd_1.5k_mvsjas8.27 33011.03 3330.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.27 36099.01 160.00 3600.00 3580.00 3580.00 356
sosnet-low-res0.02 3310.03 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.27 3600.00 3650.00 3600.00 3580.00 3580.00 356
sosnet0.02 3310.03 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.27 3600.00 3650.00 3600.00 3580.00 3580.00 356
uncertanet0.02 3310.03 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.27 3600.00 3650.00 3600.00 3580.00 3580.00 356
Regformer0.02 3310.03 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.27 3600.00 3650.00 3600.00 3580.00 3580.00 356
ab-mvs-re8.30 32911.06 3320.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 36099.58 1880.00 3650.00 3600.00 3580.00 3580.00 356
uanet0.02 3310.03 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.27 3600.00 3650.00 3600.00 3580.00 3580.00 356
test_241102_TWO99.48 13999.08 1199.88 599.81 6298.94 3199.96 1898.91 6799.84 6599.88 5
test_0728_THIRD98.99 2599.81 2299.80 7699.09 1299.96 1898.85 7999.90 2399.88 5
GSMVS99.52 146
sam_mvs194.86 20099.52 146
sam_mvs94.72 211
MTGPAbinary99.47 157
test_post199.23 23165.14 35794.18 23299.71 19397.58 212
test_post65.99 35694.65 21599.73 183
patchmatchnet-post98.70 32294.79 20399.74 176
MTMP99.54 10798.88 306
test9_res97.49 22399.72 10399.75 69
agg_prior297.21 24099.73 10299.75 69
test_prior499.56 7298.99 281
test_prior298.96 28998.34 8099.01 20599.52 21098.68 6397.96 17899.74 99
旧先验298.96 28996.70 24399.47 10599.94 5398.19 158
新几何299.01 279
无先验98.99 28199.51 10296.89 23299.93 6897.53 22099.72 86
原ACMM298.95 293
testdata299.95 4296.67 274
segment_acmp98.96 25
testdata198.85 30398.32 84
plane_prior599.47 15799.69 20297.78 19397.63 22298.67 258
plane_prior499.61 179
plane_prior397.00 26698.69 5499.11 187
plane_prior299.39 18198.97 30
plane_prior96.97 26999.21 23898.45 6997.60 225
n20.00 364
nn0.00 364
door-mid98.05 336
test1199.35 229
door97.92 337
HQP5-MVS96.83 274
BP-MVS97.19 244
HQP4-MVS98.66 25899.64 21398.64 270
HQP3-MVS99.39 20997.58 227
HQP2-MVS92.47 272
MDTV_nov1_ep13_2view95.18 31899.35 19896.84 23599.58 8595.19 19397.82 19099.46 164
ACMMP++_ref97.19 251
ACMMP++97.43 243
Test By Simon98.75 56