PGM-MVS | | | 98.86 32 | 99.35 27 | 98.29 36 | 99.77 1 | 99.63 28 | 99.67 5 | 95.63 47 | 98.66 118 | 95.27 52 | 99.11 28 | 99.82 43 | 99.67 4 | 99.33 24 | 99.19 21 | 99.73 56 | 99.74 72 |
|
SMA-MVS |  | | 99.38 6 | 99.60 3 | 99.12 10 | 99.76 2 | 99.62 32 | 99.39 30 | 98.23 20 | 99.52 16 | 98.03 18 | 99.45 11 | 99.98 2 | 99.64 5 | 99.58 9 | 99.30 11 | 99.68 94 | 99.76 61 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
CSCG | | | 98.90 31 | 98.93 54 | 98.85 26 | 99.75 3 | 99.72 9 | 99.49 22 | 96.58 44 | 99.38 24 | 98.05 17 | 98.97 37 | 97.87 77 | 99.49 20 | 97.78 126 | 98.92 39 | 99.78 32 | 99.90 6 |
|
APDe-MVS | | | 99.49 1 | 99.64 1 | 99.32 2 | 99.74 4 | 99.74 8 | 99.75 1 | 98.34 4 | 99.56 11 | 98.72 7 | 99.57 7 | 99.97 8 | 99.53 17 | 99.65 2 | 99.25 15 | 99.84 10 | 99.77 56 |
|
ACMMP_NAP | | | 99.05 26 | 99.45 14 | 98.58 32 | 99.73 5 | 99.60 43 | 99.64 8 | 98.28 13 | 99.23 46 | 94.57 63 | 99.35 15 | 99.97 8 | 99.55 14 | 99.63 3 | 98.66 56 | 99.70 82 | 99.74 72 |
|
zzz-MVS | | | 99.31 9 | 99.44 17 | 99.16 6 | 99.73 5 | 99.65 20 | 99.63 12 | 98.26 14 | 99.27 40 | 98.01 19 | 99.27 19 | 99.97 8 | 99.60 7 | 99.59 8 | 98.58 61 | 99.71 73 | 99.73 76 |
|
DVP-MVS |  | | 99.45 2 | 99.54 7 | 99.35 1 | 99.72 7 | 99.76 3 | 99.63 12 | 98.37 2 | 99.63 7 | 99.03 3 | 98.95 39 | 99.98 2 | 99.60 7 | 99.60 7 | 99.05 29 | 99.74 48 | 99.79 42 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
DVP-MVS++. | | | 99.41 4 | 99.64 1 | 99.14 8 | 99.69 8 | 99.75 6 | 99.64 8 | 98.33 6 | 99.67 4 | 98.10 14 | 99.66 4 | 99.99 1 | 99.33 32 | 99.62 5 | 98.86 44 | 99.74 48 | 99.90 6 |
|
SED-MVS | | | 99.44 3 | 99.58 4 | 99.28 3 | 99.69 8 | 99.76 3 | 99.62 15 | 98.35 3 | 99.51 17 | 99.05 2 | 99.60 6 | 99.98 2 | 99.28 39 | 99.61 6 | 98.83 49 | 99.70 82 | 99.77 56 |
|
HFP-MVS | | | 99.32 8 | 99.53 9 | 99.07 14 | 99.69 8 | 99.59 45 | 99.63 12 | 98.31 9 | 99.56 11 | 97.37 27 | 99.27 19 | 99.97 8 | 99.70 3 | 99.35 22 | 99.24 17 | 99.71 73 | 99.76 61 |
|
HPM-MVS++ |  | | 99.10 22 | 99.30 30 | 98.86 25 | 99.69 8 | 99.48 62 | 99.59 17 | 98.34 4 | 99.26 43 | 96.55 38 | 99.10 31 | 99.96 13 | 99.36 30 | 99.25 28 | 98.37 74 | 99.64 115 | 99.66 106 |
|
APD-MVS |  | | 99.25 13 | 99.38 22 | 99.09 12 | 99.69 8 | 99.58 48 | 99.56 18 | 98.32 8 | 98.85 95 | 97.87 21 | 98.91 42 | 99.92 29 | 99.30 37 | 99.45 16 | 99.38 8 | 99.79 29 | 99.58 121 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MSP-MVS | | | 99.34 7 | 99.52 10 | 99.14 8 | 99.68 13 | 99.75 6 | 99.64 8 | 98.31 9 | 99.44 21 | 98.10 14 | 99.28 18 | 99.98 2 | 99.30 37 | 99.34 23 | 99.05 29 | 99.81 20 | 99.79 42 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
SR-MVS | | | | | | 99.67 14 | | | 98.25 15 | | | | 99.94 26 | | | | | |
|
X-MVS | | | 98.93 30 | 99.37 23 | 98.42 33 | 99.67 14 | 99.62 32 | 99.60 16 | 98.15 25 | 99.08 71 | 93.81 82 | 98.46 62 | 99.95 18 | 99.59 10 | 99.49 14 | 99.21 20 | 99.68 94 | 99.75 68 |
|
MCST-MVS | | | 99.11 21 | 99.27 32 | 98.93 23 | 99.67 14 | 99.33 88 | 99.51 21 | 98.31 9 | 99.28 38 | 96.57 37 | 99.10 31 | 99.90 33 | 99.71 2 | 99.19 32 | 98.35 75 | 99.82 14 | 99.71 90 |
|
ACMMPR | | | 99.30 10 | 99.54 7 | 99.03 17 | 99.66 17 | 99.64 25 | 99.68 4 | 98.25 15 | 99.56 11 | 97.12 31 | 99.19 22 | 99.95 18 | 99.72 1 | 99.43 17 | 99.25 15 | 99.72 63 | 99.77 56 |
|
SteuartSystems-ACMMP | | | 99.20 16 | 99.51 11 | 98.83 28 | 99.66 17 | 99.66 19 | 99.71 3 | 98.12 29 | 99.14 61 | 96.62 35 | 99.16 24 | 99.98 2 | 99.12 49 | 99.63 3 | 99.19 21 | 99.78 32 | 99.83 27 |
Skip Steuart: Steuart Systems R&D Blog. |
xxxxxxxxxxxxxcwj | | | 98.14 53 | 97.38 108 | 99.03 17 | 99.65 19 | 99.41 73 | 98.87 56 | 98.24 18 | 99.14 61 | 98.73 5 | 99.11 28 | 86.38 168 | 98.92 61 | 99.22 29 | 98.84 47 | 99.76 39 | 99.56 127 |
|
SF-MVS | | | 99.18 17 | 99.32 28 | 99.03 17 | 99.65 19 | 99.41 73 | 98.87 56 | 98.24 18 | 99.14 61 | 98.73 5 | 99.11 28 | 99.92 29 | 98.92 61 | 99.22 29 | 98.84 47 | 99.76 39 | 99.56 127 |
|
CNVR-MVS | | | 99.23 15 | 99.28 31 | 99.17 5 | 99.65 19 | 99.34 85 | 99.46 25 | 98.21 21 | 99.28 38 | 98.47 9 | 98.89 44 | 99.94 26 | 99.50 18 | 99.42 18 | 98.61 59 | 99.73 56 | 99.52 134 |
|
DPE-MVS |  | | 99.39 5 | 99.55 6 | 99.20 4 | 99.63 22 | 99.71 12 | 99.66 6 | 98.33 6 | 99.29 37 | 98.40 12 | 99.64 5 | 99.98 2 | 99.31 35 | 99.56 10 | 98.96 36 | 99.85 8 | 99.70 92 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MP-MVS |  | | 99.07 24 | 99.36 24 | 98.74 29 | 99.63 22 | 99.57 50 | 99.66 6 | 98.25 15 | 99.00 82 | 95.62 46 | 98.97 37 | 99.94 26 | 99.54 16 | 99.51 13 | 98.79 53 | 99.71 73 | 99.73 76 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
NCCC | | | 99.05 26 | 99.08 42 | 99.02 20 | 99.62 24 | 99.38 76 | 99.43 29 | 98.21 21 | 99.36 29 | 97.66 24 | 97.79 80 | 99.90 33 | 99.45 25 | 99.17 33 | 98.43 69 | 99.77 37 | 99.51 138 |
|
CP-MVS | | | 99.27 11 | 99.44 17 | 99.08 13 | 99.62 24 | 99.58 48 | 99.53 19 | 98.16 23 | 99.21 49 | 97.79 22 | 99.15 25 | 99.96 13 | 99.59 10 | 99.54 12 | 98.86 44 | 99.78 32 | 99.74 72 |
|
AdaColmap |  | | 99.06 25 | 98.98 52 | 99.15 7 | 99.60 26 | 99.30 91 | 99.38 31 | 98.16 23 | 99.02 80 | 98.55 8 | 98.71 53 | 99.57 57 | 99.58 13 | 99.09 39 | 97.84 104 | 99.64 115 | 99.36 152 |
|
CPTT-MVS | | | 99.14 20 | 99.20 37 | 99.06 15 | 99.58 27 | 99.53 55 | 99.45 26 | 97.80 38 | 99.19 52 | 98.32 13 | 98.58 56 | 99.95 18 | 99.60 7 | 99.28 26 | 98.20 86 | 99.64 115 | 99.69 96 |
|
QAPM | | | 98.62 41 | 99.04 48 | 98.13 40 | 99.57 28 | 99.48 62 | 99.17 39 | 94.78 57 | 99.57 10 | 96.16 40 | 96.73 104 | 99.80 44 | 99.33 32 | 98.79 61 | 99.29 13 | 99.75 43 | 99.64 113 |
|
3Dnovator | | 96.92 7 | 98.67 38 | 99.05 45 | 98.23 39 | 99.57 28 | 99.45 66 | 99.11 43 | 94.66 60 | 99.69 3 | 96.80 34 | 96.55 113 | 99.61 54 | 99.40 28 | 98.87 57 | 99.49 3 | 99.85 8 | 99.66 106 |
|
DeepC-MVS_fast | | 98.34 1 | 99.17 18 | 99.45 14 | 98.85 26 | 99.55 30 | 99.37 79 | 99.64 8 | 98.05 33 | 99.53 14 | 96.58 36 | 98.93 40 | 99.92 29 | 99.49 20 | 99.46 15 | 99.32 10 | 99.80 28 | 99.64 113 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
mPP-MVS | | | | | | 99.53 31 | | | | | | | 99.89 35 | | | | | |
|
3Dnovator+ | | 96.92 7 | 98.71 37 | 99.05 45 | 98.32 35 | 99.53 31 | 99.34 85 | 99.06 47 | 94.61 61 | 99.65 5 | 97.49 25 | 96.75 103 | 99.86 38 | 99.44 26 | 98.78 62 | 99.30 11 | 99.81 20 | 99.67 102 |
|
MSLP-MVS++ | | | 99.15 19 | 99.24 35 | 99.04 16 | 99.52 33 | 99.49 61 | 99.09 45 | 98.07 31 | 99.37 26 | 98.47 9 | 97.79 80 | 99.89 35 | 99.50 18 | 98.93 50 | 99.45 4 | 99.61 122 | 99.76 61 |
|
OpenMVS |  | 96.23 11 | 97.95 60 | 98.45 68 | 97.35 55 | 99.52 33 | 99.42 71 | 98.91 55 | 94.61 61 | 98.87 92 | 92.24 108 | 94.61 139 | 99.05 63 | 99.10 51 | 98.64 72 | 99.05 29 | 99.74 48 | 99.51 138 |
|
PLC |  | 97.93 2 | 99.02 29 | 98.94 53 | 99.11 11 | 99.46 35 | 99.24 96 | 99.06 47 | 97.96 35 | 99.31 34 | 99.16 1 | 97.90 78 | 99.79 46 | 99.36 30 | 98.71 68 | 98.12 90 | 99.65 111 | 99.52 134 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MVS_111021_HR | | | 98.59 42 | 99.36 24 | 97.68 49 | 99.42 36 | 99.61 37 | 98.14 89 | 94.81 56 | 99.31 34 | 95.00 57 | 99.51 9 | 99.79 46 | 99.00 58 | 98.94 49 | 98.83 49 | 99.69 85 | 99.57 126 |
|
OMC-MVS | | | 98.84 33 | 99.01 51 | 98.65 31 | 99.39 37 | 99.23 97 | 99.22 36 | 96.70 43 | 99.40 23 | 97.77 23 | 97.89 79 | 99.80 44 | 99.21 40 | 99.02 44 | 98.65 57 | 99.57 144 | 99.07 169 |
|
TSAR-MVS + ACMM | | | 98.77 34 | 99.45 14 | 97.98 45 | 99.37 38 | 99.46 64 | 99.44 28 | 98.13 28 | 99.65 5 | 92.30 106 | 98.91 42 | 99.95 18 | 99.05 54 | 99.42 18 | 98.95 37 | 99.58 140 | 99.82 28 |
|
MVS_111021_LR | | | 98.67 38 | 99.41 21 | 97.81 48 | 99.37 38 | 99.53 55 | 98.51 68 | 95.52 49 | 99.27 40 | 94.85 59 | 99.56 8 | 99.69 51 | 99.04 55 | 99.36 21 | 98.88 42 | 99.60 130 | 99.58 121 |
|
train_agg | | | 98.73 36 | 99.11 40 | 98.28 37 | 99.36 40 | 99.35 83 | 99.48 24 | 97.96 35 | 98.83 100 | 93.86 81 | 98.70 54 | 99.86 38 | 99.44 26 | 99.08 41 | 98.38 72 | 99.61 122 | 99.58 121 |
|
ACMMP |  | | 98.74 35 | 99.03 49 | 98.40 34 | 99.36 40 | 99.64 25 | 99.20 37 | 97.75 39 | 98.82 102 | 95.24 53 | 98.85 45 | 99.87 37 | 99.17 46 | 98.74 67 | 97.50 117 | 99.71 73 | 99.76 61 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
MAR-MVS | | | 97.71 66 | 98.04 85 | 97.32 56 | 99.35 42 | 98.91 113 | 97.65 106 | 91.68 110 | 98.00 148 | 97.01 32 | 97.72 84 | 94.83 112 | 98.85 69 | 98.44 89 | 98.86 44 | 99.41 169 | 99.52 134 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
abl_6 | | | | | 98.09 41 | 99.33 43 | 99.22 98 | 98.79 61 | 94.96 55 | 98.52 127 | 97.00 33 | 97.30 90 | 99.86 38 | 98.76 71 | | | 99.69 85 | 99.41 147 |
|
CDPH-MVS | | | 98.41 44 | 99.10 41 | 97.61 51 | 99.32 44 | 99.36 80 | 99.49 22 | 96.15 46 | 98.82 102 | 91.82 111 | 98.41 63 | 99.66 52 | 99.10 51 | 98.93 50 | 98.97 35 | 99.75 43 | 99.58 121 |
|
CNLPA | | | 99.03 28 | 99.05 45 | 99.01 21 | 99.27 45 | 99.22 98 | 99.03 49 | 97.98 34 | 99.34 31 | 99.00 4 | 98.25 69 | 99.71 50 | 99.31 35 | 98.80 60 | 98.82 51 | 99.48 159 | 99.17 162 |
|
MSDG | | | 98.27 49 | 98.29 72 | 98.24 38 | 99.20 46 | 99.22 98 | 99.20 37 | 97.82 37 | 99.37 26 | 94.43 69 | 95.90 124 | 97.31 83 | 99.12 49 | 98.76 64 | 98.35 75 | 99.67 102 | 99.14 166 |
|
PHI-MVS | | | 99.08 23 | 99.43 20 | 98.67 30 | 99.15 47 | 99.59 45 | 99.11 43 | 97.35 41 | 99.14 61 | 97.30 28 | 99.44 12 | 99.96 13 | 99.32 34 | 98.89 55 | 99.39 7 | 99.79 29 | 99.58 121 |
|
PatchMatch-RL | | | 97.77 64 | 98.25 73 | 97.21 61 | 99.11 48 | 99.25 94 | 97.06 129 | 94.09 71 | 98.72 116 | 95.14 55 | 98.47 61 | 96.29 94 | 98.43 86 | 98.65 71 | 97.44 123 | 99.45 163 | 98.94 172 |
|
TAPA-MVS | | 97.53 5 | 98.41 44 | 98.84 58 | 97.91 46 | 99.08 49 | 99.33 88 | 99.15 40 | 97.13 42 | 99.34 31 | 93.20 91 | 97.75 82 | 99.19 61 | 99.20 41 | 98.66 70 | 98.13 89 | 99.66 107 | 99.48 142 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
EPNet | | | 98.05 56 | 98.86 56 | 97.10 63 | 99.02 50 | 99.43 70 | 98.47 70 | 94.73 58 | 99.05 77 | 95.62 46 | 98.93 40 | 97.62 81 | 95.48 166 | 98.59 80 | 98.55 62 | 99.29 178 | 99.84 23 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
EPNet_dtu | | | 96.30 110 | 98.53 65 | 93.70 133 | 98.97 51 | 98.24 157 | 97.36 113 | 94.23 70 | 98.85 95 | 79.18 184 | 99.19 22 | 98.47 70 | 94.09 188 | 97.89 121 | 98.21 85 | 98.39 194 | 98.85 178 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
COLMAP_ROB |  | 96.15 12 | 97.78 63 | 98.17 79 | 97.32 56 | 98.84 52 | 99.45 66 | 99.28 34 | 95.43 50 | 99.48 19 | 91.80 112 | 94.83 138 | 98.36 72 | 98.90 64 | 98.09 104 | 97.85 103 | 99.68 94 | 99.15 163 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
DeepPCF-MVS | | 97.74 3 | 98.34 46 | 99.46 13 | 97.04 66 | 98.82 53 | 99.33 88 | 96.28 145 | 97.47 40 | 99.58 9 | 94.70 62 | 98.99 36 | 99.85 41 | 97.24 119 | 99.55 11 | 99.34 9 | 97.73 203 | 99.56 127 |
|
SD-MVS | | | 99.25 13 | 99.50 12 | 98.96 22 | 98.79 54 | 99.55 53 | 99.33 33 | 98.29 12 | 99.75 1 | 97.96 20 | 99.15 25 | 99.95 18 | 99.61 6 | 99.17 33 | 99.06 28 | 99.81 20 | 99.84 23 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
TSAR-MVS + MP. | | | 99.27 11 | 99.57 5 | 98.92 24 | 98.78 55 | 99.53 55 | 99.72 2 | 98.11 30 | 99.73 2 | 97.43 26 | 99.15 25 | 99.96 13 | 99.59 10 | 99.73 1 | 99.07 27 | 99.88 3 | 99.82 28 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
DPM-MVS | | | 98.31 48 | 98.53 65 | 98.05 42 | 98.76 56 | 98.77 120 | 99.13 41 | 98.07 31 | 99.10 68 | 94.27 74 | 96.70 105 | 99.84 42 | 98.70 73 | 97.90 120 | 98.11 91 | 99.40 171 | 99.28 155 |
|
PCF-MVS | | 97.50 6 | 98.18 52 | 98.35 71 | 97.99 44 | 98.65 57 | 99.36 80 | 98.94 54 | 98.14 27 | 98.59 120 | 93.62 86 | 96.61 109 | 99.76 49 | 99.03 56 | 97.77 127 | 97.45 122 | 99.57 144 | 98.89 177 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
DeepC-MVS | | 97.63 4 | 98.33 47 | 98.57 63 | 98.04 43 | 98.62 58 | 99.65 20 | 99.45 26 | 98.15 25 | 99.51 17 | 92.80 99 | 95.74 128 | 96.44 92 | 99.46 24 | 99.37 20 | 99.50 2 | 99.78 32 | 99.81 33 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CANet | | | 98.46 43 | 99.16 38 | 97.64 50 | 98.48 59 | 99.64 25 | 99.35 32 | 94.71 59 | 99.53 14 | 95.17 54 | 97.63 86 | 99.59 55 | 98.38 87 | 98.88 56 | 98.99 34 | 99.74 48 | 99.86 19 |
|
LS3D | | | 97.79 62 | 98.25 73 | 97.26 60 | 98.40 60 | 99.63 28 | 99.53 19 | 98.63 1 | 99.25 45 | 88.13 128 | 96.93 100 | 94.14 122 | 99.19 42 | 99.14 37 | 99.23 18 | 99.69 85 | 99.42 146 |
|
CHOSEN 280x420 | | | 97.99 58 | 99.24 35 | 96.53 84 | 98.34 61 | 99.61 37 | 98.36 79 | 89.80 145 | 99.27 40 | 95.08 56 | 99.81 1 | 98.58 68 | 98.64 77 | 99.02 44 | 98.92 39 | 98.93 188 | 99.48 142 |
|
DELS-MVS | | | 98.19 51 | 98.77 60 | 97.52 52 | 98.29 62 | 99.71 12 | 99.12 42 | 94.58 64 | 98.80 105 | 95.38 51 | 96.24 118 | 98.24 74 | 97.92 101 | 99.06 42 | 99.52 1 | 99.82 14 | 99.79 42 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
RPSCF | | | 97.61 69 | 98.16 80 | 96.96 74 | 98.10 63 | 99.00 106 | 98.84 59 | 93.76 78 | 99.45 20 | 94.78 61 | 99.39 14 | 99.31 59 | 98.53 84 | 96.61 162 | 95.43 172 | 97.74 201 | 97.93 195 |
|
PVSNet_BlendedMVS | | | 97.51 73 | 97.71 95 | 97.28 58 | 98.06 64 | 99.61 37 | 97.31 115 | 95.02 53 | 99.08 71 | 95.51 48 | 98.05 73 | 90.11 143 | 98.07 95 | 98.91 53 | 98.40 70 | 99.72 63 | 99.78 48 |
|
PVSNet_Blended | | | 97.51 73 | 97.71 95 | 97.28 58 | 98.06 64 | 99.61 37 | 97.31 115 | 95.02 53 | 99.08 71 | 95.51 48 | 98.05 73 | 90.11 143 | 98.07 95 | 98.91 53 | 98.40 70 | 99.72 63 | 99.78 48 |
|
MVS_0304 | | | 98.14 53 | 99.03 49 | 97.10 63 | 98.05 66 | 99.63 28 | 99.27 35 | 94.33 68 | 99.63 7 | 93.06 94 | 97.32 89 | 99.05 63 | 98.09 94 | 98.82 59 | 98.87 43 | 99.81 20 | 99.89 10 |
|
CHOSEN 1792x2688 | | | 96.41 107 | 96.99 124 | 95.74 104 | 98.01 67 | 99.72 9 | 97.70 105 | 90.78 129 | 99.13 66 | 90.03 121 | 87.35 196 | 95.36 106 | 98.33 88 | 98.59 80 | 98.91 41 | 99.59 136 | 99.87 16 |
|
HyFIR lowres test | | | 95.99 117 | 96.56 133 | 95.32 109 | 97.99 68 | 99.65 20 | 96.54 138 | 88.86 154 | 98.44 130 | 89.77 124 | 84.14 206 | 97.05 87 | 99.03 56 | 98.55 82 | 98.19 87 | 99.73 56 | 99.86 19 |
|
OPM-MVS | | | 96.22 112 | 95.85 153 | 96.65 80 | 97.75 69 | 98.54 139 | 99.00 53 | 95.53 48 | 96.88 182 | 89.88 122 | 95.95 123 | 86.46 167 | 98.07 95 | 97.65 135 | 96.63 141 | 99.67 102 | 98.83 179 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
tmp_tt | | | | | 82.25 210 | 97.73 70 | 88.71 218 | 80.18 218 | 68.65 221 | 99.15 58 | 86.98 137 | 99.47 10 | 85.31 177 | 68.35 219 | 87.51 213 | 83.81 215 | 91.64 218 | |
|
TSAR-MVS + COLMAP | | | 96.79 94 | 96.55 134 | 97.06 65 | 97.70 71 | 98.46 144 | 99.07 46 | 96.23 45 | 99.38 24 | 91.32 115 | 98.80 46 | 85.61 174 | 98.69 75 | 97.64 136 | 96.92 134 | 99.37 173 | 99.06 170 |
|
PVSNet_Blended_VisFu | | | 97.41 76 | 98.49 67 | 96.15 93 | 97.49 72 | 99.76 3 | 96.02 149 | 93.75 80 | 99.26 43 | 93.38 90 | 93.73 147 | 99.35 58 | 96.47 141 | 98.96 47 | 98.46 66 | 99.77 37 | 99.90 6 |
|
MS-PatchMatch | | | 95.99 117 | 97.26 116 | 94.51 118 | 97.46 73 | 98.76 123 | 97.27 117 | 86.97 173 | 99.09 69 | 89.83 123 | 93.51 151 | 97.78 78 | 96.18 147 | 97.53 140 | 95.71 169 | 99.35 174 | 98.41 185 |
|
XVS | | | | | | 97.42 74 | 99.62 32 | 98.59 66 | | | 93.81 82 | | 99.95 18 | | | | 99.69 85 | |
|
X-MVStestdata | | | | | | 97.42 74 | 99.62 32 | 98.59 66 | | | 93.81 82 | | 99.95 18 | | | | 99.69 85 | |
|
LGP-MVS_train | | | 96.23 111 | 96.89 126 | 95.46 108 | 97.32 76 | 98.77 120 | 98.81 60 | 93.60 83 | 98.58 121 | 85.52 146 | 99.08 33 | 86.67 164 | 97.83 108 | 97.87 122 | 97.51 116 | 99.69 85 | 99.73 76 |
|
CMPMVS |  | 70.31 18 | 90.74 197 | 91.06 205 | 90.36 189 | 97.32 76 | 97.43 194 | 92.97 193 | 87.82 169 | 93.50 212 | 75.34 200 | 83.27 208 | 84.90 180 | 92.19 203 | 92.64 207 | 91.21 211 | 96.50 214 | 94.46 212 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
HQP-MVS | | | 96.37 108 | 96.58 132 | 96.13 94 | 97.31 78 | 98.44 146 | 98.45 72 | 95.22 51 | 98.86 93 | 88.58 126 | 98.33 67 | 87.00 159 | 97.67 110 | 97.23 150 | 96.56 144 | 99.56 147 | 99.62 117 |
|
ACMM | | 96.26 9 | 96.67 102 | 96.69 131 | 96.66 79 | 97.29 79 | 98.46 144 | 96.48 141 | 95.09 52 | 99.21 49 | 93.19 92 | 98.78 48 | 86.73 163 | 98.17 89 | 97.84 124 | 96.32 150 | 99.74 48 | 99.49 141 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
UA-Net | | | 97.13 84 | 99.14 39 | 94.78 114 | 97.21 80 | 99.38 76 | 97.56 108 | 92.04 103 | 98.48 128 | 88.03 129 | 98.39 65 | 99.91 32 | 94.03 189 | 99.33 24 | 99.23 18 | 99.81 20 | 99.25 158 |
|
UGNet | | | 97.66 68 | 99.07 44 | 96.01 98 | 97.19 81 | 99.65 20 | 97.09 127 | 93.39 86 | 99.35 30 | 94.40 71 | 98.79 47 | 99.59 55 | 94.24 186 | 98.04 112 | 98.29 82 | 99.73 56 | 99.80 35 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
TSAR-MVS + GP. | | | 98.66 40 | 99.36 24 | 97.85 47 | 97.16 82 | 99.46 64 | 99.03 49 | 94.59 63 | 99.09 69 | 97.19 30 | 99.73 3 | 99.95 18 | 99.39 29 | 98.95 48 | 98.69 55 | 99.75 43 | 99.65 109 |
|
CANet_DTU | | | 96.64 103 | 99.08 42 | 93.81 129 | 97.10 83 | 99.42 71 | 98.85 58 | 90.01 139 | 99.31 34 | 79.98 180 | 99.78 2 | 99.10 62 | 97.42 116 | 98.35 91 | 98.05 94 | 99.47 161 | 99.53 131 |
|
IB-MVS | | 93.96 15 | 95.02 136 | 96.44 143 | 93.36 143 | 97.05 84 | 99.28 92 | 90.43 203 | 93.39 86 | 98.02 147 | 96.02 41 | 94.92 137 | 92.07 136 | 83.52 212 | 95.38 189 | 95.82 166 | 99.72 63 | 99.59 120 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
ACMP | | 96.25 10 | 96.62 105 | 96.72 130 | 96.50 87 | 96.96 85 | 98.75 124 | 97.80 100 | 94.30 69 | 98.85 95 | 93.12 93 | 98.78 48 | 86.61 165 | 97.23 120 | 97.73 130 | 96.61 142 | 99.62 120 | 99.71 90 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
ECVR-MVS |  | | 97.27 80 | 97.09 119 | 97.48 53 | 96.95 86 | 99.79 2 | 98.48 69 | 94.42 66 | 99.17 54 | 96.28 39 | 93.54 149 | 89.39 150 | 98.89 67 | 99.03 43 | 99.09 26 | 99.88 3 | 99.61 119 |
|
ECVR-MVS11 | | | 97.09 86 | 96.83 129 | 97.39 54 | 96.92 87 | 99.81 1 | 98.44 73 | 94.45 65 | 99.17 54 | 95.85 44 | 92.10 162 | 88.97 151 | 98.78 70 | 99.02 44 | 99.11 25 | 99.88 3 | 99.63 115 |
|
ACMH | | 95.42 14 | 95.27 133 | 95.96 149 | 94.45 120 | 96.83 88 | 98.78 119 | 94.72 176 | 91.67 111 | 98.95 85 | 86.82 139 | 96.42 115 | 83.67 185 | 97.00 123 | 97.48 142 | 96.68 139 | 99.69 85 | 99.76 61 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CLD-MVS | | | 96.74 97 | 96.51 137 | 97.01 71 | 96.71 89 | 98.62 133 | 98.73 62 | 94.38 67 | 98.94 87 | 94.46 68 | 97.33 88 | 87.03 158 | 98.07 95 | 97.20 152 | 96.87 135 | 99.72 63 | 99.54 130 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
TDRefinement | | | 93.04 172 | 93.57 189 | 92.41 152 | 96.58 90 | 98.77 120 | 97.78 102 | 91.96 106 | 98.12 144 | 80.84 173 | 89.13 182 | 79.87 208 | 87.78 208 | 96.44 167 | 94.50 194 | 99.54 153 | 98.15 190 |
|
Anonymous202405211 | | | | 97.40 107 | | 96.45 91 | 99.54 54 | 98.08 94 | 93.79 77 | 98.24 140 | | 93.55 148 | 94.41 118 | 98.88 68 | 98.04 112 | 98.24 84 | 99.75 43 | 99.76 61 |
|
DCV-MVSNet | | | 97.56 71 | 98.36 70 | 96.62 83 | 96.44 92 | 98.36 153 | 98.37 77 | 91.73 109 | 99.11 67 | 94.80 60 | 98.36 66 | 96.28 95 | 98.60 80 | 98.12 101 | 98.44 67 | 99.76 39 | 99.87 16 |
|
ACMH+ | | 95.51 13 | 95.40 129 | 96.00 147 | 94.70 115 | 96.33 93 | 98.79 117 | 96.79 133 | 91.32 119 | 98.77 111 | 87.18 136 | 95.60 132 | 85.46 175 | 96.97 124 | 97.15 153 | 96.59 143 | 99.59 136 | 99.65 109 |
|
Anonymous20231211 | | | 97.10 85 | 97.06 122 | 97.14 62 | 96.32 94 | 99.52 58 | 98.16 88 | 93.76 78 | 98.84 99 | 95.98 42 | 90.92 168 | 94.58 117 | 98.90 64 | 97.72 131 | 98.10 92 | 99.71 73 | 99.75 68 |
|
thres100view900 | | | 96.72 98 | 96.47 140 | 97.00 72 | 96.31 95 | 99.52 58 | 98.28 83 | 94.01 72 | 97.35 169 | 94.52 64 | 95.90 124 | 86.93 160 | 99.09 53 | 98.07 107 | 97.87 102 | 99.81 20 | 99.63 115 |
|
tfpn200view9 | | | 96.75 96 | 96.51 137 | 97.03 67 | 96.31 95 | 99.67 15 | 98.41 74 | 93.99 74 | 97.35 169 | 94.52 64 | 95.90 124 | 86.93 160 | 99.14 48 | 98.26 94 | 97.80 106 | 99.82 14 | 99.70 92 |
|
thres200 | | | 96.76 95 | 96.53 135 | 97.03 67 | 96.31 95 | 99.67 15 | 98.37 77 | 93.99 74 | 97.68 164 | 94.49 67 | 95.83 127 | 86.77 162 | 99.18 44 | 98.26 94 | 97.82 105 | 99.82 14 | 99.66 106 |
|
thres600view7 | | | 96.69 100 | 96.43 144 | 97.00 72 | 96.28 98 | 99.67 15 | 98.41 74 | 93.99 74 | 97.85 158 | 94.29 73 | 95.96 122 | 85.91 172 | 99.19 42 | 98.26 94 | 97.63 111 | 99.82 14 | 99.73 76 |
|
thres400 | | | 96.71 99 | 96.45 142 | 97.02 69 | 96.28 98 | 99.63 28 | 98.41 74 | 94.00 73 | 97.82 159 | 94.42 70 | 95.74 128 | 86.26 169 | 99.18 44 | 98.20 98 | 97.79 107 | 99.81 20 | 99.70 92 |
|
baseline1 | | | 97.58 70 | 98.05 84 | 97.02 69 | 96.21 100 | 99.45 66 | 97.71 104 | 93.71 82 | 98.47 129 | 95.75 45 | 98.78 48 | 93.20 132 | 98.91 63 | 98.52 84 | 98.44 67 | 99.81 20 | 99.53 131 |
|
canonicalmvs | | | 97.31 78 | 97.81 94 | 96.72 76 | 96.20 101 | 99.45 66 | 98.21 86 | 91.60 112 | 99.22 47 | 95.39 50 | 98.48 60 | 90.95 140 | 99.16 47 | 97.66 133 | 99.05 29 | 99.76 39 | 99.90 6 |
|
test_part1 | | | 95.56 125 | 95.38 157 | 95.78 101 | 96.07 102 | 98.16 160 | 97.57 107 | 90.78 129 | 97.43 168 | 93.04 95 | 89.12 183 | 89.41 149 | 97.93 100 | 96.38 170 | 97.38 126 | 99.29 178 | 99.78 48 |
|
IS_MVSNet | | | 97.86 61 | 98.86 56 | 96.68 77 | 96.02 103 | 99.72 9 | 98.35 80 | 93.37 88 | 98.75 115 | 94.01 75 | 96.88 102 | 98.40 71 | 98.48 85 | 99.09 39 | 99.42 5 | 99.83 13 | 99.80 35 |
|
USDC | | | 94.26 152 | 94.83 164 | 93.59 135 | 96.02 103 | 98.44 146 | 97.84 98 | 88.65 158 | 98.86 93 | 82.73 165 | 94.02 144 | 80.56 201 | 96.76 130 | 97.28 149 | 96.15 157 | 99.55 149 | 98.50 183 |
|
FC-MVSNet-train | | | 97.04 87 | 97.91 91 | 96.03 97 | 96.00 105 | 98.41 149 | 96.53 140 | 93.42 85 | 99.04 79 | 93.02 96 | 98.03 75 | 94.32 120 | 97.47 115 | 97.93 118 | 97.77 108 | 99.75 43 | 99.88 14 |
|
Vis-MVSNet (Re-imp) | | | 97.40 77 | 98.89 55 | 95.66 106 | 95.99 106 | 99.62 32 | 97.82 99 | 93.22 91 | 98.82 102 | 91.40 114 | 96.94 99 | 98.56 69 | 95.70 158 | 99.14 37 | 99.41 6 | 99.79 29 | 99.75 68 |
|
MVSTER | | | 97.16 83 | 97.71 95 | 96.52 85 | 95.97 107 | 98.48 142 | 98.63 65 | 92.10 102 | 98.68 117 | 95.96 43 | 99.23 21 | 91.79 137 | 96.87 127 | 98.76 64 | 97.37 127 | 99.57 144 | 99.68 101 |
|
baseline | | | 97.45 75 | 98.70 62 | 95.99 99 | 95.89 108 | 99.36 80 | 98.29 82 | 91.37 118 | 99.21 49 | 92.99 97 | 98.40 64 | 96.87 89 | 97.96 99 | 98.60 78 | 98.60 60 | 99.42 168 | 99.86 19 |
|
TinyColmap | | | 94.00 156 | 94.35 173 | 93.60 134 | 95.89 108 | 98.26 155 | 97.49 110 | 88.82 155 | 98.56 123 | 83.21 159 | 91.28 167 | 80.48 203 | 96.68 133 | 97.34 146 | 96.26 153 | 99.53 155 | 98.24 189 |
|
EPMVS | | | 95.05 135 | 96.86 128 | 92.94 149 | 95.84 110 | 98.96 111 | 96.68 134 | 79.87 201 | 99.05 77 | 90.15 119 | 97.12 96 | 95.99 101 | 97.49 114 | 95.17 193 | 94.75 191 | 97.59 205 | 96.96 205 |
|
PMMVS | | | 97.52 72 | 98.39 69 | 96.51 86 | 95.82 111 | 98.73 127 | 97.80 100 | 93.05 96 | 98.76 112 | 94.39 72 | 99.07 34 | 97.03 88 | 98.55 82 | 98.31 93 | 97.61 112 | 99.43 166 | 99.21 161 |
|
diffmvs | | | 96.83 93 | 97.33 111 | 96.25 91 | 95.76 112 | 99.34 85 | 98.06 95 | 93.22 91 | 99.43 22 | 92.30 106 | 96.90 101 | 89.83 148 | 98.55 82 | 98.00 115 | 98.14 88 | 99.64 115 | 99.70 92 |
|
MVS_Test | | | 97.30 79 | 98.54 64 | 95.87 100 | 95.74 113 | 99.28 92 | 98.19 87 | 91.40 117 | 99.18 53 | 91.59 113 | 98.17 71 | 96.18 97 | 98.63 78 | 98.61 75 | 98.55 62 | 99.66 107 | 99.78 48 |
|
EIA-MVS | | | 97.70 67 | 98.78 59 | 96.44 89 | 95.72 114 | 99.65 20 | 98.14 89 | 93.72 81 | 98.30 136 | 92.31 105 | 98.63 55 | 97.90 76 | 98.97 59 | 98.92 52 | 98.30 81 | 99.78 32 | 99.80 35 |
|
casdiffmvs | | | 96.93 91 | 97.43 106 | 96.34 90 | 95.70 115 | 99.50 60 | 97.75 103 | 93.22 91 | 98.98 84 | 92.64 100 | 94.97 135 | 91.71 138 | 98.93 60 | 98.62 74 | 98.52 65 | 99.82 14 | 99.72 87 |
|
tpmrst | | | 93.86 161 | 95.88 151 | 91.50 171 | 95.69 116 | 98.62 133 | 95.64 155 | 79.41 204 | 98.80 105 | 83.76 155 | 95.63 131 | 96.13 98 | 97.25 118 | 92.92 205 | 92.31 204 | 97.27 208 | 96.74 206 |
|
ADS-MVSNet | | | 94.65 144 | 97.04 123 | 91.88 167 | 95.68 117 | 98.99 108 | 95.89 150 | 79.03 208 | 99.15 58 | 85.81 144 | 96.96 98 | 98.21 75 | 97.10 121 | 94.48 201 | 94.24 195 | 97.74 201 | 97.21 201 |
|
EPP-MVSNet | | | 97.75 65 | 98.71 61 | 96.63 82 | 95.68 117 | 99.56 51 | 97.51 109 | 93.10 95 | 99.22 47 | 94.99 58 | 97.18 95 | 97.30 84 | 98.65 76 | 98.83 58 | 98.93 38 | 99.84 10 | 99.92 2 |
|
DROMVSNet | | | 98.22 50 | 99.44 17 | 96.79 75 | 95.62 119 | 99.56 51 | 99.01 51 | 92.22 99 | 99.17 54 | 94.51 66 | 99.41 13 | 99.62 53 | 99.49 20 | 99.16 35 | 99.26 14 | 99.91 2 | 99.94 1 |
|
ETV-MVS | | | 98.05 56 | 99.25 34 | 96.65 80 | 95.61 120 | 99.61 37 | 98.26 85 | 93.52 84 | 98.90 91 | 93.74 85 | 99.32 16 | 99.20 60 | 98.90 64 | 99.21 31 | 98.72 54 | 99.87 7 | 99.79 42 |
|
DI_MVS_plusplus_trai | | | 96.90 92 | 97.49 101 | 96.21 92 | 95.61 120 | 99.40 75 | 98.72 63 | 92.11 101 | 99.14 61 | 92.98 98 | 93.08 159 | 95.14 108 | 98.13 93 | 98.05 111 | 97.91 100 | 99.74 48 | 99.73 76 |
|
CS-MVS | | | 97.98 59 | 99.26 33 | 96.48 88 | 95.60 122 | 99.67 15 | 98.46 71 | 93.16 94 | 99.37 26 | 92.22 109 | 98.49 59 | 98.95 65 | 99.55 14 | 99.27 27 | 99.17 23 | 99.88 3 | 99.92 2 |
|
thisisatest0530 | | | 97.23 81 | 98.25 73 | 96.05 95 | 95.60 122 | 99.59 45 | 96.96 131 | 93.23 89 | 99.17 54 | 92.60 102 | 98.75 51 | 96.19 96 | 98.17 89 | 98.19 99 | 96.10 158 | 99.72 63 | 99.77 56 |
|
tttt0517 | | | 97.23 81 | 98.24 76 | 96.04 96 | 95.60 122 | 99.60 43 | 96.94 132 | 93.23 89 | 99.15 58 | 92.56 103 | 98.74 52 | 96.12 99 | 98.17 89 | 98.21 97 | 96.10 158 | 99.73 56 | 99.78 48 |
|
SCA | | | 94.95 137 | 97.44 105 | 92.04 159 | 95.55 125 | 99.16 101 | 96.26 146 | 79.30 205 | 99.02 80 | 85.73 145 | 98.18 70 | 97.13 86 | 97.69 109 | 96.03 182 | 94.91 186 | 97.69 204 | 97.65 197 |
|
dps | | | 94.63 145 | 95.31 160 | 93.84 128 | 95.53 126 | 98.71 128 | 96.54 138 | 80.12 200 | 97.81 161 | 97.21 29 | 96.98 97 | 92.37 133 | 96.34 144 | 92.46 208 | 91.77 208 | 97.26 209 | 97.08 203 |
|
PatchmatchNet |  | | 94.70 142 | 97.08 121 | 91.92 164 | 95.53 126 | 98.85 115 | 95.77 152 | 79.54 203 | 98.95 85 | 85.98 142 | 98.52 57 | 96.45 90 | 97.39 117 | 95.32 190 | 94.09 196 | 97.32 207 | 97.38 200 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
test-LLR | | | 95.50 127 | 97.32 112 | 93.37 142 | 95.49 128 | 98.74 125 | 96.44 143 | 90.82 127 | 98.18 141 | 82.75 163 | 96.60 110 | 94.67 115 | 95.54 164 | 98.09 104 | 96.00 160 | 99.20 182 | 98.93 173 |
|
test0.0.03 1 | | | 96.69 100 | 98.12 82 | 95.01 112 | 95.49 128 | 98.99 108 | 95.86 151 | 90.82 127 | 98.38 132 | 92.54 104 | 96.66 107 | 97.33 82 | 95.75 156 | 97.75 129 | 98.34 77 | 99.60 130 | 99.40 150 |
|
CS-MVS-test | | | 98.09 55 | 99.32 28 | 96.67 78 | 95.48 130 | 99.61 37 | 99.01 51 | 92.22 99 | 99.32 33 | 93.89 80 | 99.30 17 | 98.77 66 | 99.49 20 | 99.16 35 | 99.16 24 | 99.92 1 | 99.91 5 |
|
CostFormer | | | 94.25 153 | 94.88 163 | 93.51 139 | 95.43 131 | 98.34 154 | 96.21 147 | 80.64 198 | 97.94 153 | 94.01 75 | 98.30 68 | 86.20 171 | 97.52 112 | 92.71 206 | 92.69 202 | 97.23 210 | 98.02 193 |
|
MDTV_nov1_ep13 | | | 95.57 124 | 97.48 102 | 93.35 144 | 95.43 131 | 98.97 110 | 97.19 122 | 83.72 194 | 98.92 90 | 87.91 131 | 97.75 82 | 96.12 99 | 97.88 105 | 96.84 161 | 95.64 170 | 97.96 199 | 98.10 191 |
|
tpm cat1 | | | 94.06 154 | 94.90 162 | 93.06 147 | 95.42 133 | 98.52 141 | 96.64 136 | 80.67 197 | 97.82 159 | 92.63 101 | 93.39 153 | 95.00 110 | 96.06 151 | 91.36 211 | 91.58 210 | 96.98 211 | 96.66 208 |
|
Vis-MVSNet |  | | 96.16 114 | 98.22 77 | 93.75 130 | 95.33 134 | 99.70 14 | 97.27 117 | 90.85 126 | 98.30 136 | 85.51 147 | 95.72 130 | 96.45 90 | 93.69 195 | 98.70 69 | 99.00 33 | 99.84 10 | 99.69 96 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
CVMVSNet | | | 95.33 132 | 97.09 119 | 93.27 145 | 95.23 135 | 98.39 151 | 95.49 158 | 92.58 98 | 97.71 163 | 83.00 162 | 94.44 142 | 93.28 130 | 93.92 192 | 97.79 125 | 98.54 64 | 99.41 169 | 99.45 144 |
|
IterMVS-LS | | | 96.12 115 | 97.48 102 | 94.53 117 | 95.19 136 | 97.56 188 | 97.15 123 | 89.19 152 | 99.08 71 | 88.23 127 | 94.97 135 | 94.73 114 | 97.84 107 | 97.86 123 | 98.26 83 | 99.60 130 | 99.88 14 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Effi-MVS+ | | | 95.81 120 | 97.31 115 | 94.06 125 | 95.09 137 | 99.35 83 | 97.24 119 | 88.22 163 | 98.54 124 | 85.38 148 | 98.52 57 | 88.68 152 | 98.70 73 | 98.32 92 | 97.93 97 | 99.74 48 | 99.84 23 |
|
testgi | | | 95.67 123 | 97.48 102 | 93.56 136 | 95.07 138 | 99.00 106 | 95.33 162 | 88.47 160 | 98.80 105 | 86.90 138 | 97.30 90 | 92.33 134 | 95.97 153 | 97.66 133 | 97.91 100 | 99.60 130 | 99.38 151 |
|
GeoE | | | 95.98 119 | 97.24 117 | 94.51 118 | 95.02 139 | 99.38 76 | 98.02 96 | 87.86 168 | 98.37 133 | 87.86 132 | 92.99 161 | 93.54 127 | 98.56 81 | 98.61 75 | 97.92 98 | 99.73 56 | 99.85 22 |
|
RPMNet | | | 94.66 143 | 97.16 118 | 91.75 168 | 94.98 140 | 98.59 136 | 97.00 130 | 78.37 212 | 97.98 149 | 83.78 153 | 96.27 117 | 94.09 125 | 96.91 126 | 97.36 145 | 96.73 137 | 99.48 159 | 99.09 168 |
|
CR-MVSNet | | | 94.57 149 | 97.34 110 | 91.33 175 | 94.90 141 | 98.59 136 | 97.15 123 | 79.14 206 | 97.98 149 | 80.42 176 | 96.59 112 | 93.50 129 | 96.85 128 | 98.10 102 | 97.49 118 | 99.50 158 | 99.15 163 |
|
gg-mvs-nofinetune | | | 90.85 196 | 94.14 175 | 87.02 202 | 94.89 142 | 99.25 94 | 98.64 64 | 76.29 216 | 88.24 217 | 57.50 221 | 79.93 212 | 95.45 105 | 95.18 175 | 98.77 63 | 98.07 93 | 99.62 120 | 99.24 159 |
|
IterMVS-SCA-FT | | | 94.89 139 | 97.87 92 | 91.42 172 | 94.86 143 | 97.70 174 | 97.24 119 | 84.88 188 | 98.93 88 | 75.74 196 | 94.26 143 | 98.25 73 | 96.69 132 | 98.52 84 | 97.68 110 | 99.10 186 | 99.73 76 |
|
IterMVS | | | 94.81 141 | 97.71 95 | 91.42 172 | 94.83 144 | 97.63 181 | 97.38 112 | 85.08 185 | 98.93 88 | 75.67 197 | 94.02 144 | 97.64 79 | 96.66 135 | 98.45 87 | 97.60 113 | 98.90 189 | 99.72 87 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PatchT | | | 93.96 158 | 97.36 109 | 90.00 191 | 94.76 145 | 98.65 131 | 90.11 206 | 78.57 211 | 97.96 152 | 80.42 176 | 96.07 120 | 94.10 124 | 96.85 128 | 98.10 102 | 97.49 118 | 99.26 180 | 99.15 163 |
|
baseline2 | | | 96.36 109 | 97.82 93 | 94.65 116 | 94.60 146 | 99.09 104 | 96.45 142 | 89.63 147 | 98.36 134 | 91.29 116 | 97.60 87 | 94.13 123 | 96.37 142 | 98.45 87 | 97.70 109 | 99.54 153 | 99.41 147 |
|
CDS-MVSNet | | | 96.59 106 | 98.02 87 | 94.92 113 | 94.45 147 | 98.96 111 | 97.46 111 | 91.75 108 | 97.86 157 | 90.07 120 | 96.02 121 | 97.25 85 | 96.21 145 | 98.04 112 | 98.38 72 | 99.60 130 | 99.65 109 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
tpm | | | 92.38 188 | 94.79 165 | 89.56 195 | 94.30 148 | 97.50 191 | 94.24 188 | 78.97 209 | 97.72 162 | 74.93 201 | 97.97 77 | 82.91 190 | 96.60 137 | 93.65 204 | 94.81 190 | 98.33 195 | 98.98 171 |
|
Fast-Effi-MVS+ | | | 95.38 130 | 96.52 136 | 94.05 126 | 94.15 149 | 99.14 103 | 97.24 119 | 86.79 174 | 98.53 125 | 87.62 134 | 94.51 140 | 87.06 157 | 98.76 71 | 98.60 78 | 98.04 95 | 99.72 63 | 99.77 56 |
|
Effi-MVS+-dtu | | | 95.74 122 | 98.04 85 | 93.06 147 | 93.92 150 | 99.16 101 | 97.90 97 | 88.16 165 | 99.07 76 | 82.02 168 | 98.02 76 | 94.32 120 | 96.74 131 | 98.53 83 | 97.56 114 | 99.61 122 | 99.62 117 |
|
UniMVSNet_ETH3D | | | 93.15 169 | 92.33 202 | 94.11 124 | 93.91 151 | 98.61 135 | 94.81 173 | 90.98 124 | 97.06 178 | 87.51 135 | 82.27 210 | 76.33 216 | 97.87 106 | 94.79 199 | 97.47 121 | 99.56 147 | 99.81 33 |
|
Fast-Effi-MVS+-dtu | | | 95.38 130 | 98.20 78 | 92.09 158 | 93.91 151 | 98.87 114 | 97.35 114 | 85.01 187 | 99.08 71 | 81.09 172 | 98.10 72 | 96.36 93 | 95.62 161 | 98.43 90 | 97.03 131 | 99.55 149 | 99.50 140 |
|
TAMVS | | | 95.53 126 | 96.50 139 | 94.39 121 | 93.86 153 | 99.03 105 | 96.67 135 | 89.55 149 | 97.33 171 | 90.64 118 | 93.02 160 | 91.58 139 | 96.21 145 | 97.72 131 | 97.43 124 | 99.43 166 | 99.36 152 |
|
GBi-Net | | | 96.98 89 | 98.00 88 | 95.78 101 | 93.81 154 | 97.98 163 | 98.09 91 | 91.32 119 | 98.80 105 | 93.92 77 | 97.21 92 | 95.94 102 | 97.89 102 | 98.07 107 | 98.34 77 | 99.68 94 | 99.67 102 |
|
test1 | | | 96.98 89 | 98.00 88 | 95.78 101 | 93.81 154 | 97.98 163 | 98.09 91 | 91.32 119 | 98.80 105 | 93.92 77 | 97.21 92 | 95.94 102 | 97.89 102 | 98.07 107 | 98.34 77 | 99.68 94 | 99.67 102 |
|
FMVSNet2 | | | 96.64 103 | 97.50 100 | 95.63 107 | 93.81 154 | 97.98 163 | 98.09 91 | 90.87 125 | 98.99 83 | 93.48 88 | 93.17 156 | 95.25 107 | 97.89 102 | 98.63 73 | 98.80 52 | 99.68 94 | 99.67 102 |
|
MVS-HIRNet | | | 92.51 182 | 95.97 148 | 88.48 199 | 93.73 157 | 98.37 152 | 90.33 204 | 75.36 218 | 98.32 135 | 77.78 190 | 89.15 181 | 94.87 111 | 95.14 176 | 97.62 137 | 96.39 148 | 98.51 191 | 97.11 202 |
|
GA-MVS | | | 93.93 159 | 96.31 146 | 91.16 179 | 93.61 158 | 98.79 117 | 95.39 161 | 90.69 133 | 98.25 139 | 73.28 205 | 96.15 119 | 88.42 153 | 94.39 184 | 97.76 128 | 95.35 174 | 99.58 140 | 99.45 144 |
|
FC-MVSNet-test | | | 96.07 116 | 97.94 90 | 93.89 127 | 93.60 159 | 98.67 130 | 96.62 137 | 90.30 138 | 98.76 112 | 88.62 125 | 95.57 133 | 97.63 80 | 94.48 182 | 97.97 116 | 97.48 120 | 99.71 73 | 99.52 134 |
|
FMVSNet3 | | | 97.02 88 | 98.12 82 | 95.73 105 | 93.59 160 | 97.98 163 | 98.34 81 | 91.32 119 | 98.80 105 | 93.92 77 | 97.21 92 | 95.94 102 | 97.63 111 | 98.61 75 | 98.62 58 | 99.61 122 | 99.65 109 |
|
FMVSNet1 | | | 95.77 121 | 96.41 145 | 95.03 111 | 93.42 161 | 97.86 170 | 97.11 126 | 89.89 142 | 98.53 125 | 92.00 110 | 89.17 180 | 93.23 131 | 98.15 92 | 98.07 107 | 98.34 77 | 99.61 122 | 99.69 96 |
|
tfpnnormal | | | 93.85 162 | 94.12 177 | 93.54 138 | 93.22 162 | 98.24 157 | 95.45 159 | 91.96 106 | 94.61 208 | 83.91 151 | 90.74 170 | 81.75 198 | 97.04 122 | 97.49 141 | 96.16 156 | 99.68 94 | 99.84 23 |
|
TransMVSNet (Re) | | | 93.45 165 | 94.08 178 | 92.72 151 | 92.83 163 | 97.62 184 | 94.94 167 | 91.54 115 | 95.65 205 | 83.06 161 | 88.93 184 | 83.53 186 | 94.25 185 | 97.41 143 | 97.03 131 | 99.67 102 | 98.40 188 |
|
LTVRE_ROB | | 93.20 16 | 92.84 174 | 94.92 161 | 90.43 188 | 92.83 163 | 98.63 132 | 97.08 128 | 87.87 167 | 97.91 154 | 68.42 214 | 93.54 149 | 79.46 210 | 96.62 136 | 97.55 139 | 97.40 125 | 99.74 48 | 99.92 2 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
TESTMET0.1,1 | | | 94.95 137 | 97.32 112 | 92.20 156 | 92.62 165 | 98.74 125 | 96.44 143 | 86.67 176 | 98.18 141 | 82.75 163 | 96.60 110 | 94.67 115 | 95.54 164 | 98.09 104 | 96.00 160 | 99.20 182 | 98.93 173 |
|
pm-mvs1 | | | 94.27 151 | 95.57 155 | 92.75 150 | 92.58 166 | 98.13 161 | 94.87 171 | 90.71 132 | 96.70 188 | 83.78 153 | 89.94 176 | 89.85 147 | 94.96 179 | 97.58 138 | 97.07 130 | 99.61 122 | 99.72 87 |
|
NR-MVSNet | | | 94.01 155 | 94.51 170 | 93.44 140 | 92.56 167 | 97.77 171 | 95.67 153 | 91.57 113 | 97.17 175 | 85.84 143 | 93.13 157 | 80.53 202 | 95.29 172 | 97.01 157 | 96.17 155 | 99.69 85 | 99.75 68 |
|
EG-PatchMatch MVS | | | 92.45 183 | 93.92 184 | 90.72 185 | 92.56 167 | 98.43 148 | 94.88 170 | 84.54 190 | 97.18 174 | 79.55 182 | 86.12 203 | 83.23 189 | 93.15 199 | 97.22 151 | 96.00 160 | 99.67 102 | 99.27 157 |
|
pmnet_mix02 | | | 92.44 184 | 94.68 167 | 89.83 194 | 92.46 169 | 97.65 180 | 89.92 208 | 90.49 135 | 98.76 112 | 73.05 207 | 91.78 163 | 90.08 145 | 94.86 180 | 94.53 200 | 91.94 207 | 98.21 197 | 98.01 194 |
|
test-mter | | | 94.86 140 | 97.32 112 | 92.00 161 | 92.41 170 | 98.82 116 | 96.18 148 | 86.35 180 | 98.05 146 | 82.28 166 | 96.48 114 | 94.39 119 | 95.46 168 | 98.17 100 | 96.20 154 | 99.32 176 | 99.13 167 |
|
our_test_3 | | | | | | 92.30 171 | 97.58 186 | 90.09 207 | | | | | | | | | | |
|
pmmvs4 | | | 95.09 134 | 95.90 150 | 94.14 123 | 92.29 172 | 97.70 174 | 95.45 159 | 90.31 136 | 98.60 119 | 90.70 117 | 93.25 154 | 89.90 146 | 96.67 134 | 97.13 154 | 95.42 173 | 99.44 165 | 99.28 155 |
|
FMVSNet5 | | | 95.42 128 | 96.47 140 | 94.20 122 | 92.26 173 | 95.99 209 | 95.66 154 | 87.15 172 | 97.87 156 | 93.46 89 | 96.68 106 | 93.79 126 | 97.52 112 | 97.10 156 | 97.21 129 | 99.11 185 | 96.62 209 |
|
UniMVSNet (Re) | | | 94.58 148 | 95.34 158 | 93.71 132 | 92.25 174 | 98.08 162 | 94.97 166 | 91.29 123 | 97.03 180 | 87.94 130 | 93.97 146 | 86.25 170 | 96.07 150 | 96.27 176 | 95.97 163 | 99.72 63 | 99.79 42 |
|
SixPastTwentyTwo | | | 93.44 166 | 95.32 159 | 91.24 177 | 92.11 175 | 98.40 150 | 92.77 194 | 88.64 159 | 98.09 145 | 77.83 189 | 93.51 151 | 85.74 173 | 96.52 140 | 96.91 159 | 94.89 189 | 99.59 136 | 99.73 76 |
|
v8 | | | 92.87 173 | 93.87 186 | 91.72 170 | 92.05 176 | 97.50 191 | 94.79 174 | 88.20 164 | 96.85 184 | 80.11 179 | 90.01 175 | 82.86 192 | 95.48 166 | 95.15 194 | 94.90 187 | 99.66 107 | 99.80 35 |
|
thisisatest0515 | | | 94.61 146 | 96.89 126 | 91.95 163 | 92.00 177 | 98.47 143 | 92.01 198 | 90.73 131 | 98.18 141 | 83.96 150 | 94.51 140 | 95.13 109 | 93.38 196 | 97.38 144 | 94.74 192 | 99.61 122 | 99.79 42 |
|
WR-MVS_H | | | 93.54 164 | 94.67 168 | 92.22 154 | 91.95 178 | 97.91 168 | 94.58 182 | 88.75 156 | 96.64 189 | 83.88 152 | 90.66 172 | 85.13 178 | 94.40 183 | 96.54 166 | 95.91 165 | 99.73 56 | 99.89 10 |
|
V42 | | | 93.05 171 | 93.90 185 | 92.04 159 | 91.91 179 | 97.66 178 | 94.91 168 | 89.91 141 | 96.85 184 | 80.58 175 | 89.66 177 | 83.43 188 | 95.37 170 | 95.03 197 | 94.90 187 | 99.59 136 | 99.78 48 |
|
EU-MVSNet | | | 92.80 176 | 94.76 166 | 90.51 186 | 91.88 180 | 96.74 206 | 92.48 196 | 88.69 157 | 96.21 194 | 79.00 185 | 91.51 164 | 87.82 154 | 91.83 204 | 95.87 186 | 96.27 151 | 99.21 181 | 98.92 176 |
|
N_pmnet | | | 92.21 192 | 94.60 169 | 89.42 196 | 91.88 180 | 97.38 197 | 89.15 210 | 89.74 146 | 97.89 155 | 73.75 203 | 87.94 193 | 92.23 135 | 93.85 193 | 96.10 180 | 93.20 201 | 98.15 198 | 97.43 199 |
|
UniMVSNet_NR-MVSNet | | | 94.59 147 | 95.47 156 | 93.55 137 | 91.85 182 | 97.89 169 | 95.03 164 | 92.00 104 | 97.33 171 | 86.12 140 | 93.19 155 | 87.29 156 | 96.60 137 | 96.12 179 | 96.70 138 | 99.72 63 | 99.80 35 |
|
pmmvs6 | | | 91.90 194 | 92.53 201 | 91.17 178 | 91.81 183 | 97.63 181 | 93.23 191 | 88.37 162 | 93.43 213 | 80.61 174 | 77.32 214 | 87.47 155 | 94.12 187 | 96.58 164 | 95.72 168 | 98.88 190 | 99.53 131 |
|
v10 | | | 92.79 177 | 94.06 179 | 91.31 176 | 91.78 184 | 97.29 200 | 94.87 171 | 86.10 181 | 96.97 181 | 79.82 181 | 88.16 190 | 84.56 182 | 95.63 160 | 96.33 174 | 95.31 175 | 99.65 111 | 99.80 35 |
|
MIMVSNet | | | 94.49 150 | 97.59 99 | 90.87 184 | 91.74 185 | 98.70 129 | 94.68 178 | 78.73 210 | 97.98 149 | 83.71 156 | 97.71 85 | 94.81 113 | 96.96 125 | 97.97 116 | 97.92 98 | 99.40 171 | 98.04 192 |
|
v1144 | | | 92.81 175 | 94.03 180 | 91.40 174 | 91.68 186 | 97.60 185 | 94.73 175 | 88.40 161 | 96.71 187 | 78.48 187 | 88.14 191 | 84.46 183 | 95.45 169 | 96.31 175 | 95.22 178 | 99.65 111 | 99.76 61 |
|
DU-MVS | | | 93.98 157 | 94.44 172 | 93.44 140 | 91.66 187 | 97.77 171 | 95.03 164 | 91.57 113 | 97.17 175 | 86.12 140 | 93.13 157 | 81.13 200 | 96.60 137 | 95.10 195 | 97.01 133 | 99.67 102 | 99.80 35 |
|
Baseline_NR-MVSNet | | | 93.87 160 | 93.98 182 | 93.75 130 | 91.66 187 | 97.02 201 | 95.53 157 | 91.52 116 | 97.16 177 | 87.77 133 | 87.93 194 | 83.69 184 | 96.35 143 | 95.10 195 | 97.23 128 | 99.68 94 | 99.73 76 |
|
CP-MVSNet | | | 93.25 168 | 94.00 181 | 92.38 153 | 91.65 189 | 97.56 188 | 94.38 185 | 89.20 151 | 96.05 199 | 83.16 160 | 89.51 178 | 81.97 196 | 96.16 149 | 96.43 168 | 96.56 144 | 99.71 73 | 99.89 10 |
|
v148 | | | 92.36 190 | 92.88 197 | 91.75 168 | 91.63 190 | 97.66 178 | 92.64 195 | 90.55 134 | 96.09 197 | 83.34 158 | 88.19 189 | 80.00 205 | 92.74 200 | 93.98 203 | 94.58 193 | 99.58 140 | 99.69 96 |
|
PS-CasMVS | | | 92.72 179 | 93.36 193 | 91.98 162 | 91.62 191 | 97.52 190 | 94.13 189 | 88.98 153 | 95.94 202 | 81.51 171 | 87.35 196 | 79.95 207 | 95.91 154 | 96.37 171 | 96.49 146 | 99.70 82 | 99.89 10 |
|
v2v482 | | | 92.77 178 | 93.52 192 | 91.90 166 | 91.59 192 | 97.63 181 | 94.57 183 | 90.31 136 | 96.80 186 | 79.22 183 | 88.74 186 | 81.55 199 | 96.04 152 | 95.26 191 | 94.97 185 | 99.66 107 | 99.69 96 |
|
v1192 | | | 92.43 186 | 93.61 188 | 91.05 180 | 91.53 193 | 97.43 194 | 94.61 181 | 87.99 166 | 96.60 190 | 76.72 192 | 87.11 198 | 82.74 193 | 95.85 155 | 96.35 173 | 95.30 176 | 99.60 130 | 99.74 72 |
|
WR-MVS | | | 93.43 167 | 94.48 171 | 92.21 155 | 91.52 194 | 97.69 176 | 94.66 180 | 89.98 140 | 96.86 183 | 83.43 157 | 90.12 174 | 85.03 179 | 93.94 191 | 96.02 183 | 95.82 166 | 99.71 73 | 99.82 28 |
|
v144192 | | | 92.38 188 | 93.55 191 | 91.00 181 | 91.44 195 | 97.47 193 | 94.27 186 | 87.41 171 | 96.52 192 | 78.03 188 | 87.50 195 | 82.65 194 | 95.32 171 | 95.82 187 | 95.15 180 | 99.55 149 | 99.78 48 |
|
pmmvs5 | | | 92.71 181 | 94.27 174 | 90.90 183 | 91.42 196 | 97.74 173 | 93.23 191 | 86.66 177 | 95.99 201 | 78.96 186 | 91.45 165 | 83.44 187 | 95.55 163 | 97.30 148 | 95.05 183 | 99.58 140 | 98.93 173 |
|
v1921920 | | | 92.36 190 | 93.57 189 | 90.94 182 | 91.39 197 | 97.39 196 | 94.70 177 | 87.63 170 | 96.60 190 | 76.63 193 | 86.98 199 | 82.89 191 | 95.75 156 | 96.26 177 | 95.14 181 | 99.55 149 | 99.73 76 |
|
gm-plane-assit | | | 89.44 203 | 92.82 200 | 85.49 206 | 91.37 198 | 95.34 212 | 79.55 220 | 82.12 195 | 91.68 216 | 64.79 218 | 87.98 192 | 80.26 204 | 95.66 159 | 98.51 86 | 97.56 114 | 99.45 163 | 98.41 185 |
|
v1240 | | | 91.99 193 | 93.33 194 | 90.44 187 | 91.29 199 | 97.30 199 | 94.25 187 | 86.79 174 | 96.43 193 | 75.49 199 | 86.34 202 | 81.85 197 | 95.29 172 | 96.42 169 | 95.22 178 | 99.52 156 | 99.73 76 |
|
PEN-MVS | | | 92.72 179 | 93.20 195 | 92.15 157 | 91.29 199 | 97.31 198 | 94.67 179 | 89.81 143 | 96.19 195 | 81.83 169 | 88.58 187 | 79.06 211 | 95.61 162 | 95.21 192 | 96.27 151 | 99.72 63 | 99.82 28 |
|
TranMVSNet+NR-MVSNet | | | 93.67 163 | 94.14 175 | 93.13 146 | 91.28 201 | 97.58 186 | 95.60 156 | 91.97 105 | 97.06 178 | 84.05 149 | 90.64 173 | 82.22 195 | 96.17 148 | 94.94 198 | 96.78 136 | 99.69 85 | 99.78 48 |
|
anonymousdsp | | | 93.12 170 | 95.86 152 | 89.93 193 | 91.09 202 | 98.25 156 | 95.12 163 | 85.08 185 | 97.44 167 | 73.30 204 | 90.89 169 | 90.78 141 | 95.25 174 | 97.91 119 | 95.96 164 | 99.71 73 | 99.82 28 |
|
MDTV_nov1_ep13_2view | | | 92.44 184 | 95.66 154 | 88.68 197 | 91.05 203 | 97.92 167 | 92.17 197 | 79.64 202 | 98.83 100 | 76.20 194 | 91.45 165 | 93.51 128 | 95.04 177 | 95.68 188 | 93.70 199 | 97.96 199 | 98.53 182 |
|
DTE-MVSNet | | | 92.42 187 | 92.85 198 | 91.91 165 | 90.87 204 | 96.97 202 | 94.53 184 | 89.81 143 | 95.86 204 | 81.59 170 | 88.83 185 | 77.88 214 | 95.01 178 | 94.34 202 | 96.35 149 | 99.64 115 | 99.73 76 |
|
v7n | | | 91.61 195 | 92.95 196 | 90.04 190 | 90.56 205 | 97.69 176 | 93.74 190 | 85.59 183 | 95.89 203 | 76.95 191 | 86.60 201 | 78.60 213 | 93.76 194 | 97.01 157 | 94.99 184 | 99.65 111 | 99.87 16 |
|
test20.03 | | | 90.65 199 | 93.71 187 | 87.09 201 | 90.44 206 | 96.24 207 | 89.74 209 | 85.46 184 | 95.59 206 | 72.99 208 | 90.68 171 | 85.33 176 | 84.41 211 | 95.94 185 | 95.10 182 | 99.52 156 | 97.06 204 |
|
FPMVS | | | 83.82 209 | 84.61 211 | 82.90 209 | 90.39 207 | 90.71 217 | 90.85 202 | 84.10 193 | 95.47 207 | 65.15 216 | 83.44 207 | 74.46 217 | 75.48 214 | 81.63 215 | 79.42 217 | 91.42 219 | 87.14 217 |
|
Anonymous20231206 | | | 90.70 198 | 93.93 183 | 86.92 203 | 90.21 208 | 96.79 204 | 90.30 205 | 86.61 178 | 96.05 199 | 69.25 212 | 88.46 188 | 84.86 181 | 85.86 210 | 97.11 155 | 96.47 147 | 99.30 177 | 97.80 196 |
|
new_pmnet | | | 90.45 200 | 92.84 199 | 87.66 200 | 88.96 209 | 96.16 208 | 88.71 211 | 84.66 189 | 97.56 165 | 71.91 211 | 85.60 204 | 86.58 166 | 93.28 197 | 96.07 181 | 93.54 200 | 98.46 192 | 94.39 213 |
|
ET-MVSNet_ETH3D | | | 96.17 113 | 96.99 124 | 95.21 110 | 88.53 210 | 98.54 139 | 98.28 83 | 92.61 97 | 98.85 95 | 93.60 87 | 99.06 35 | 90.39 142 | 98.63 78 | 95.98 184 | 96.68 139 | 99.61 122 | 99.41 147 |
|
PM-MVS | | | 89.55 202 | 90.30 207 | 88.67 198 | 87.06 211 | 95.60 210 | 90.88 201 | 84.51 191 | 96.14 196 | 75.75 195 | 86.89 200 | 63.47 222 | 94.64 181 | 96.85 160 | 93.89 197 | 99.17 184 | 99.29 154 |
|
pmmvs-eth3d | | | 89.81 201 | 89.65 208 | 90.00 191 | 86.94 212 | 95.38 211 | 91.08 199 | 86.39 179 | 94.57 209 | 82.27 167 | 83.03 209 | 64.94 219 | 93.96 190 | 96.57 165 | 93.82 198 | 99.35 174 | 99.24 159 |
|
new-patchmatchnet | | | 86.12 208 | 87.30 210 | 84.74 207 | 86.92 213 | 95.19 214 | 83.57 217 | 84.42 192 | 92.67 214 | 65.66 215 | 80.32 211 | 64.72 220 | 89.41 206 | 92.33 210 | 89.21 212 | 98.43 193 | 96.69 207 |
|
pmmvs3 | | | 88.19 205 | 91.27 204 | 84.60 208 | 85.60 214 | 93.66 215 | 85.68 215 | 81.13 196 | 92.36 215 | 63.66 220 | 89.51 178 | 77.10 215 | 93.22 198 | 96.37 171 | 92.40 203 | 98.30 196 | 97.46 198 |
|
Gipuma |  | | 81.40 210 | 81.78 212 | 80.96 212 | 83.21 215 | 85.61 221 | 79.73 219 | 76.25 217 | 97.33 171 | 64.21 219 | 55.32 218 | 55.55 223 | 86.04 209 | 92.43 209 | 92.20 206 | 96.32 215 | 93.99 214 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MDA-MVSNet-bldmvs | | | 87.84 206 | 89.22 209 | 86.23 204 | 81.74 216 | 96.77 205 | 83.74 216 | 89.57 148 | 94.50 210 | 72.83 209 | 96.64 108 | 64.47 221 | 92.71 201 | 81.43 216 | 92.28 205 | 96.81 212 | 98.47 184 |
|
MIMVSNet1 | | | 88.61 204 | 90.68 206 | 86.19 205 | 81.56 217 | 95.30 213 | 87.78 212 | 85.98 182 | 94.19 211 | 72.30 210 | 78.84 213 | 78.90 212 | 90.06 205 | 96.59 163 | 95.47 171 | 99.46 162 | 95.49 211 |
|
PMVS |  | 72.60 17 | 76.39 212 | 77.66 215 | 74.92 213 | 81.04 218 | 69.37 225 | 68.47 222 | 80.54 199 | 85.39 218 | 65.07 217 | 73.52 215 | 72.91 218 | 65.67 220 | 80.35 217 | 76.81 218 | 88.71 220 | 85.25 220 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
ambc | | | | 80.99 213 | | 80.04 219 | 90.84 216 | 90.91 200 | | 96.09 197 | 74.18 202 | 62.81 217 | 30.59 228 | 82.44 213 | 96.25 178 | 91.77 208 | 95.91 216 | 98.56 181 |
|
PMMVS2 | | | 77.26 211 | 79.47 214 | 74.70 214 | 76.00 220 | 88.37 219 | 74.22 221 | 76.34 215 | 78.31 219 | 54.13 222 | 69.96 216 | 52.50 224 | 70.14 218 | 84.83 214 | 88.71 213 | 97.35 206 | 93.58 215 |
|
test_method | | | 87.27 207 | 91.58 203 | 82.25 210 | 75.65 221 | 87.52 220 | 86.81 214 | 72.60 219 | 97.51 166 | 73.20 206 | 85.07 205 | 79.97 206 | 88.69 207 | 97.31 147 | 95.24 177 | 96.53 213 | 98.41 185 |
|
EMVS | | | 68.12 215 | 68.11 217 | 68.14 216 | 75.51 222 | 71.76 223 | 55.38 225 | 77.20 214 | 77.78 220 | 37.79 225 | 53.59 219 | 43.61 225 | 74.72 215 | 67.05 220 | 76.70 219 | 88.27 222 | 86.24 218 |
|
E-PMN | | | 68.30 214 | 68.43 216 | 68.15 215 | 74.70 223 | 71.56 224 | 55.64 224 | 77.24 213 | 77.48 221 | 39.46 224 | 51.95 221 | 41.68 226 | 73.28 216 | 70.65 219 | 79.51 216 | 88.61 221 | 86.20 219 |
|
MVE |  | 67.97 19 | 65.53 216 | 67.43 218 | 63.31 217 | 59.33 224 | 74.20 222 | 53.09 226 | 70.43 220 | 66.27 222 | 43.13 223 | 45.98 222 | 30.62 227 | 70.65 217 | 79.34 218 | 86.30 214 | 83.25 223 | 89.33 216 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testmvs | | | 31.24 217 | 40.15 219 | 20.86 219 | 12.61 225 | 17.99 226 | 25.16 227 | 13.30 222 | 48.42 223 | 24.82 226 | 53.07 220 | 30.13 229 | 28.47 221 | 42.73 221 | 37.65 220 | 20.79 224 | 51.04 221 |
|
test123 | | | 26.75 218 | 34.25 220 | 18.01 220 | 7.93 226 | 17.18 227 | 24.85 228 | 12.36 223 | 44.83 224 | 16.52 227 | 41.80 223 | 18.10 230 | 28.29 222 | 33.08 222 | 34.79 221 | 18.10 225 | 49.95 222 |
|
GG-mvs-BLEND | | | 69.11 213 | 98.13 81 | 35.26 218 | 3.49 227 | 98.20 159 | 94.89 169 | 2.38 224 | 98.42 131 | 5.82 228 | 96.37 116 | 98.60 67 | 5.97 223 | 98.75 66 | 97.98 96 | 99.01 187 | 98.61 180 |
|
uanet_test | | | 0.00 219 | 0.00 221 | 0.00 221 | 0.00 228 | 0.00 228 | 0.00 229 | 0.00 225 | 0.00 225 | 0.00 229 | 0.00 224 | 0.00 231 | 0.00 224 | 0.00 223 | 0.00 222 | 0.00 226 | 0.00 223 |
|
sosnet-low-res | | | 0.00 219 | 0.00 221 | 0.00 221 | 0.00 228 | 0.00 228 | 0.00 229 | 0.00 225 | 0.00 225 | 0.00 229 | 0.00 224 | 0.00 231 | 0.00 224 | 0.00 223 | 0.00 222 | 0.00 226 | 0.00 223 |
|
sosnet | | | 0.00 219 | 0.00 221 | 0.00 221 | 0.00 228 | 0.00 228 | 0.00 229 | 0.00 225 | 0.00 225 | 0.00 229 | 0.00 224 | 0.00 231 | 0.00 224 | 0.00 223 | 0.00 222 | 0.00 226 | 0.00 223 |
|
RE-MVS-def | | | | | | | | | | | 69.05 213 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 99.79 46 | | | | | |
|
MTAPA | | | | | | | | | | | 98.09 16 | | 99.97 8 | | | | | |
|
MTMP | | | | | | | | | | | 98.46 11 | | 99.96 13 | | | | | |
|
Patchmatch-RL test | | | | | | | | 66.86 223 | | | | | | | | | | |
|
NP-MVS | | | | | | | | | | 98.57 122 | | | | | | | | |
|
Patchmtry | | | | | | | 98.59 136 | 97.15 123 | 79.14 206 | | 80.42 176 | | | | | | | |
|
DeepMVS_CX |  | | | | | | 96.85 203 | 87.43 213 | 89.27 150 | 98.30 136 | 75.55 198 | 95.05 134 | 79.47 209 | 92.62 202 | 89.48 212 | | 95.18 217 | 95.96 210 |
|