This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
APDe-MVS99.49 199.64 199.32 299.74 499.74 599.75 198.34 499.56 1098.72 799.57 699.97 799.53 1699.65 299.25 1499.84 599.77 52
SMA-MVScopyleft99.38 599.60 299.12 999.76 299.62 2999.39 2998.23 1999.52 1598.03 1799.45 1099.98 199.64 599.58 899.30 1199.68 8899.76 57
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SED-MVS99.44 399.58 399.28 399.69 899.76 199.62 1498.35 399.51 1699.05 299.60 599.98 199.28 3599.61 598.83 4399.70 7699.77 52
TSAR-MVS + MP.99.27 1099.57 498.92 2398.78 5499.53 5099.72 298.11 2999.73 297.43 2599.15 2299.96 1299.59 1099.73 199.07 2299.88 199.82 23
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPE-MVS99.39 499.55 599.20 499.63 2199.71 999.66 698.33 699.29 3498.40 1299.64 499.98 199.31 3199.56 998.96 3199.85 399.70 88
DVP-MVS99.45 299.54 699.35 199.72 799.76 199.63 1198.37 299.63 699.03 398.95 3699.98 199.60 799.60 699.05 2499.74 4499.79 38
ACMMPR99.30 999.54 699.03 1699.66 1699.64 2299.68 498.25 1499.56 1097.12 3099.19 1999.95 1799.72 199.43 1699.25 1499.72 5799.77 52
HFP-MVS99.32 799.53 899.07 1399.69 899.59 4199.63 1198.31 899.56 1097.37 2699.27 1699.97 799.70 399.35 2199.24 1699.71 6799.76 57
MSP-MVS99.34 699.52 999.14 899.68 1299.75 499.64 898.31 899.44 2098.10 1499.28 1599.98 199.30 3399.34 2299.05 2499.81 1699.79 38
SteuartSystems-ACMMP99.20 1599.51 1098.83 2799.66 1699.66 1599.71 398.12 2899.14 5596.62 3499.16 2199.98 199.12 4599.63 399.19 2099.78 2899.83 22
Skip Steuart: Steuart Systems R&D Blog.
SD-MVS99.25 1299.50 1198.96 2198.79 5399.55 4899.33 3298.29 1199.75 197.96 1999.15 2299.95 1799.61 699.17 3199.06 2399.81 1699.84 18
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepPCF-MVS97.74 398.34 4599.46 1297.04 6398.82 5299.33 8296.28 13997.47 3999.58 894.70 5998.99 3399.85 4097.24 11399.55 1099.34 997.73 19699.56 121
ACMMP_NAP99.05 2599.45 1398.58 3199.73 599.60 3999.64 898.28 1299.23 4394.57 6099.35 1399.97 799.55 1499.63 398.66 5199.70 7699.74 68
TSAR-MVS + ACMM98.77 3399.45 1397.98 4499.37 3799.46 5999.44 2798.13 2799.65 492.30 10298.91 3999.95 1799.05 5099.42 1798.95 3299.58 13499.82 23
DeepC-MVS_fast98.34 199.17 1799.45 1398.85 2599.55 2999.37 7399.64 898.05 3299.53 1396.58 3598.93 3799.92 2899.49 1999.46 1499.32 1099.80 2499.64 109
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
zzz-MVS99.31 899.44 1699.16 699.73 599.65 1799.63 1198.26 1399.27 3798.01 1899.27 1699.97 799.60 799.59 798.58 5699.71 6799.73 72
CP-MVS99.27 1099.44 1699.08 1299.62 2399.58 4499.53 1898.16 2299.21 4697.79 2199.15 2299.96 1299.59 1099.54 1198.86 3999.78 2899.74 68
PHI-MVS99.08 2299.43 1898.67 2999.15 4699.59 4199.11 4297.35 4099.14 5597.30 2799.44 1199.96 1299.32 3098.89 5099.39 799.79 2599.58 115
MVS_111021_LR98.67 3799.41 1997.81 4799.37 3799.53 5098.51 6695.52 4899.27 3794.85 5699.56 799.69 5099.04 5199.36 2098.88 3799.60 12499.58 115
APD-MVScopyleft99.25 1299.38 2099.09 1199.69 899.58 4499.56 1798.32 798.85 9097.87 2098.91 3999.92 2899.30 3399.45 1599.38 899.79 2599.58 115
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
X-MVS98.93 2999.37 2198.42 3299.67 1399.62 2999.60 1598.15 2499.08 6593.81 7898.46 5999.95 1799.59 1099.49 1399.21 1999.68 8899.75 64
MP-MVScopyleft99.07 2399.36 2298.74 2899.63 2199.57 4699.66 698.25 1499.00 7695.62 4398.97 3499.94 2599.54 1599.51 1298.79 4799.71 6799.73 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TSAR-MVS + GP.98.66 3999.36 2297.85 4697.16 8199.46 5999.03 4894.59 6299.09 6397.19 2999.73 399.95 1799.39 2698.95 4398.69 5099.75 3999.65 105
MVS_111021_HR98.59 4199.36 2297.68 4899.42 3599.61 3498.14 8494.81 5599.31 3195.00 5499.51 899.79 4599.00 5498.94 4498.83 4399.69 7999.57 120
PGM-MVS98.86 3199.35 2598.29 3599.77 199.63 2599.67 595.63 4698.66 11295.27 4999.11 2599.82 4299.67 499.33 2399.19 2099.73 5199.74 68
SF-MVS99.18 1699.32 2699.03 1699.65 1899.41 6898.87 5498.24 1799.14 5598.73 599.11 2599.92 2898.92 5899.22 2798.84 4199.76 3599.56 121
HPM-MVS++copyleft99.10 2199.30 2798.86 2499.69 899.48 5799.59 1698.34 499.26 4096.55 3799.10 2899.96 1299.36 2799.25 2698.37 6999.64 10999.66 102
CNVR-MVS99.23 1499.28 2899.17 599.65 1899.34 7999.46 2498.21 2099.28 3598.47 998.89 4199.94 2599.50 1799.42 1798.61 5499.73 5199.52 128
MCST-MVS99.11 2099.27 2998.93 2299.67 1399.33 8299.51 2098.31 899.28 3596.57 3699.10 2899.90 3299.71 299.19 3098.35 7099.82 1099.71 86
ETV-MVS98.05 5499.25 3096.65 7695.61 11799.61 3498.26 8093.52 8198.90 8693.74 8199.32 1499.20 5898.90 6199.21 2998.72 4999.87 299.79 38
CHOSEN 280x42097.99 5699.24 3196.53 8098.34 6099.61 3498.36 7489.80 13999.27 3795.08 5399.81 198.58 6598.64 7299.02 4098.92 3498.93 18299.48 136
MSLP-MVS++99.15 1899.24 3199.04 1599.52 3299.49 5699.09 4498.07 3099.37 2598.47 997.79 7799.89 3499.50 1798.93 4599.45 499.61 11699.76 57
CPTT-MVS99.14 1999.20 3399.06 1499.58 2699.53 5099.45 2597.80 3799.19 4998.32 1398.58 5399.95 1799.60 799.28 2598.20 8199.64 10999.69 92
CANet98.46 4299.16 3497.64 4998.48 5899.64 2299.35 3194.71 5899.53 1395.17 5197.63 8399.59 5398.38 8198.88 5198.99 2999.74 4499.86 15
UA-Net97.13 8099.14 3594.78 10997.21 7999.38 7197.56 10292.04 9898.48 12288.03 12498.39 6299.91 3194.03 18299.33 2399.23 1799.81 1699.25 152
CS-MVS98.06 5399.12 3696.82 7295.83 10899.66 1598.93 5293.12 9198.95 7994.29 6998.55 5499.05 6198.94 5699.05 3998.78 4899.83 899.80 30
train_agg98.73 3599.11 3798.28 3699.36 3999.35 7799.48 2397.96 3498.83 9593.86 7798.70 5199.86 3799.44 2399.08 3798.38 6799.61 11699.58 115
CDPH-MVS98.41 4399.10 3897.61 5099.32 4399.36 7499.49 2196.15 4598.82 9791.82 10698.41 6099.66 5199.10 4798.93 4598.97 3099.75 3999.58 115
CANet_DTU96.64 9899.08 3993.81 12397.10 8299.42 6698.85 5690.01 13399.31 3179.98 17499.78 299.10 6097.42 11098.35 8598.05 8999.47 15599.53 125
NCCC99.05 2599.08 3999.02 1999.62 2399.38 7199.43 2898.21 2099.36 2797.66 2397.79 7799.90 3299.45 2299.17 3198.43 6499.77 3399.51 132
UGNet97.66 6599.07 4196.01 9397.19 8099.65 1797.09 12193.39 8399.35 2894.40 6798.79 4499.59 5394.24 17998.04 10698.29 7799.73 5199.80 30
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CNLPA99.03 2799.05 4299.01 2099.27 4499.22 9299.03 4897.98 3399.34 2999.00 498.25 6699.71 4999.31 3198.80 5598.82 4599.48 15399.17 156
3Dnovator+96.92 798.71 3699.05 4298.32 3499.53 3099.34 7999.06 4694.61 6099.65 497.49 2496.75 10099.86 3799.44 2398.78 5799.30 1199.81 1699.67 98
3Dnovator96.92 798.67 3799.05 4298.23 3899.57 2799.45 6199.11 4294.66 5999.69 396.80 3396.55 11099.61 5299.40 2598.87 5299.49 399.85 399.66 102
QAPM98.62 4099.04 4598.13 3999.57 2799.48 5799.17 3894.78 5699.57 996.16 3896.73 10199.80 4399.33 2998.79 5699.29 1399.75 3999.64 109
MVS_030498.14 5199.03 4697.10 6098.05 6599.63 2599.27 3494.33 6599.63 693.06 9097.32 8699.05 6198.09 8898.82 5498.87 3899.81 1699.89 6
ACMMPcopyleft98.74 3499.03 4698.40 3399.36 3999.64 2299.20 3697.75 3898.82 9795.24 5098.85 4299.87 3699.17 4298.74 6297.50 11199.71 6799.76 57
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
OMC-MVS98.84 3299.01 4898.65 3099.39 3699.23 9199.22 3596.70 4299.40 2297.77 2297.89 7699.80 4399.21 3699.02 4098.65 5299.57 13899.07 163
AdaColmapbinary99.06 2498.98 4999.15 799.60 2599.30 8599.38 3098.16 2299.02 7498.55 898.71 5099.57 5599.58 1399.09 3597.84 9899.64 10999.36 146
PLCcopyleft97.93 299.02 2898.94 5099.11 1099.46 3499.24 9099.06 4697.96 3499.31 3199.16 197.90 7599.79 4599.36 2798.71 6398.12 8599.65 10599.52 128
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CSCG98.90 3098.93 5198.85 2599.75 399.72 699.49 2196.58 4399.38 2398.05 1698.97 3497.87 7499.49 1997.78 12098.92 3499.78 2899.90 3
Vis-MVSNet (Re-imp)97.40 7498.89 5295.66 10195.99 10399.62 2997.82 9393.22 8898.82 9791.40 10996.94 9698.56 6695.70 15299.14 3399.41 699.79 2599.75 64
EPNet98.05 5498.86 5397.10 6099.02 4999.43 6598.47 6794.73 5799.05 7195.62 4398.93 3797.62 7895.48 16098.59 7498.55 5799.29 17299.84 18
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS_MVSNet97.86 5898.86 5396.68 7496.02 10099.72 698.35 7593.37 8598.75 10994.01 7296.88 9998.40 6898.48 7999.09 3599.42 599.83 899.80 30
TAPA-MVS97.53 598.41 4398.84 5597.91 4599.08 4899.33 8299.15 3997.13 4199.34 2993.20 8797.75 7999.19 5999.20 3798.66 6598.13 8499.66 10199.48 136
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
EIA-MVS97.70 6498.78 5696.44 8495.72 11299.65 1798.14 8493.72 7898.30 12992.31 10198.63 5297.90 7398.97 5598.92 4798.30 7699.78 2899.80 30
DELS-MVS98.19 4998.77 5797.52 5198.29 6199.71 999.12 4194.58 6398.80 10095.38 4896.24 11598.24 7197.92 9599.06 3899.52 199.82 1099.79 38
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EPP-MVSNet97.75 6298.71 5896.63 7895.68 11599.56 4797.51 10393.10 9299.22 4494.99 5597.18 9297.30 8198.65 7198.83 5398.93 3399.84 599.92 1
baseline97.45 7298.70 5995.99 9495.89 10599.36 7498.29 7791.37 11399.21 4692.99 9398.40 6196.87 8697.96 9398.60 7298.60 5599.42 16299.86 15
DeepC-MVS97.63 498.33 4698.57 6098.04 4298.62 5799.65 1799.45 2598.15 2499.51 1692.80 9595.74 12596.44 8999.46 2199.37 1999.50 299.78 2899.81 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_Test97.30 7698.54 6195.87 9595.74 11199.28 8698.19 8291.40 11299.18 5091.59 10898.17 6896.18 9498.63 7398.61 7098.55 5799.66 10199.78 44
DPM-MVS98.31 4798.53 6298.05 4198.76 5598.77 11499.13 4098.07 3099.10 6294.27 7196.70 10299.84 4198.70 6897.90 11498.11 8699.40 16599.28 149
EPNet_dtu96.30 10598.53 6293.70 12798.97 5098.24 15197.36 10794.23 6798.85 9079.18 17899.19 1998.47 6794.09 18197.89 11598.21 8098.39 18898.85 172
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended_VisFu97.41 7398.49 6496.15 8897.49 7199.76 196.02 14393.75 7799.26 4093.38 8693.73 14499.35 5696.47 13598.96 4298.46 6199.77 3399.90 3
OpenMVScopyleft96.23 1197.95 5798.45 6597.35 5299.52 3299.42 6698.91 5394.61 6098.87 8792.24 10494.61 13699.05 6199.10 4798.64 6799.05 2499.74 4499.51 132
PMMVS97.52 6998.39 6696.51 8295.82 10998.73 12197.80 9493.05 9398.76 10794.39 6899.07 3197.03 8598.55 7698.31 8797.61 10699.43 16099.21 155
DCV-MVSNet97.56 6898.36 6796.62 7996.44 8998.36 14798.37 7291.73 10499.11 6194.80 5798.36 6396.28 9298.60 7598.12 9598.44 6299.76 3599.87 12
PCF-MVS97.50 698.18 5098.35 6897.99 4398.65 5699.36 7498.94 5198.14 2698.59 11493.62 8296.61 10699.76 4899.03 5297.77 12197.45 11699.57 13898.89 171
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MSDG98.27 4898.29 6998.24 3799.20 4599.22 9299.20 3697.82 3699.37 2594.43 6595.90 12197.31 8099.12 4598.76 5998.35 7099.67 9699.14 160
thisisatest053097.23 7798.25 7096.05 9095.60 11999.59 4196.96 12593.23 8699.17 5192.60 9898.75 4896.19 9398.17 8398.19 9396.10 15299.72 5799.77 52
PatchMatch-RL97.77 6198.25 7097.21 5899.11 4799.25 8897.06 12394.09 6898.72 11095.14 5298.47 5896.29 9198.43 8098.65 6697.44 11799.45 15798.94 166
LS3D97.79 5998.25 7097.26 5798.40 5999.63 2599.53 1898.63 199.25 4288.13 12396.93 9794.14 11999.19 3899.14 3399.23 1799.69 7999.42 140
tttt051797.23 7798.24 7396.04 9195.60 11999.60 3996.94 12693.23 8699.15 5292.56 9998.74 4996.12 9698.17 8398.21 9196.10 15299.73 5199.78 44
Vis-MVSNetpermissive96.16 10998.22 7493.75 12495.33 12999.70 1197.27 11190.85 12198.30 12985.51 14195.72 12796.45 8793.69 18898.70 6499.00 2899.84 599.69 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Fast-Effi-MVS+-dtu95.38 12498.20 7592.09 15293.91 14598.87 10897.35 10885.01 18099.08 6581.09 16698.10 6996.36 9095.62 15598.43 8497.03 12599.55 14399.50 134
COLMAP_ROBcopyleft96.15 1297.78 6098.17 7697.32 5398.84 5199.45 6199.28 3395.43 4999.48 1891.80 10794.83 13598.36 6998.90 6198.09 9897.85 9799.68 8899.15 157
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RPSCF97.61 6698.16 7796.96 7198.10 6299.00 10098.84 5793.76 7599.45 1994.78 5899.39 1299.31 5798.53 7896.61 15595.43 16697.74 19497.93 187
GG-mvs-BLEND69.11 20598.13 7835.26 2103.49 21998.20 15394.89 1632.38 21698.42 1255.82 22096.37 11398.60 645.97 21598.75 6197.98 9199.01 18198.61 174
test0.0.03 196.69 9598.12 7995.01 10795.49 12498.99 10295.86 14590.82 12298.38 12692.54 10096.66 10497.33 7995.75 15097.75 12398.34 7299.60 12499.40 144
FMVSNet397.02 8398.12 7995.73 10093.59 15497.98 15798.34 7691.32 11498.80 10093.92 7497.21 8995.94 9997.63 10598.61 7098.62 5399.61 11699.65 105
baseline197.58 6798.05 8197.02 6696.21 9799.45 6197.71 9893.71 7998.47 12395.75 4298.78 4593.20 12898.91 6098.52 7898.44 6299.81 1699.53 125
Effi-MVS+-dtu95.74 11698.04 8293.06 14193.92 14499.16 9597.90 9188.16 15999.07 7082.02 16298.02 7394.32 11796.74 12598.53 7797.56 10899.61 11699.62 112
MAR-MVS97.71 6398.04 8297.32 5399.35 4198.91 10797.65 10091.68 10598.00 14197.01 3197.72 8194.83 10998.85 6598.44 8398.86 3999.41 16399.52 128
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CDS-MVSNet96.59 10198.02 8494.92 10894.45 14198.96 10597.46 10591.75 10397.86 15090.07 11596.02 11897.25 8296.21 13998.04 10698.38 6799.60 12499.65 105
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
GBi-Net96.98 8498.00 8595.78 9693.81 14897.98 15798.09 8691.32 11498.80 10093.92 7497.21 8995.94 9997.89 9698.07 10198.34 7299.68 8899.67 98
test196.98 8498.00 8595.78 9693.81 14897.98 15798.09 8691.32 11498.80 10093.92 7497.21 8995.94 9997.89 9698.07 10198.34 7299.68 8899.67 98
FC-MVSNet-test96.07 11197.94 8793.89 12193.60 15398.67 12496.62 13190.30 13298.76 10788.62 12095.57 13097.63 7794.48 17597.97 11097.48 11499.71 6799.52 128
FC-MVSNet-train97.04 8297.91 8896.03 9296.00 10298.41 14396.53 13493.42 8299.04 7393.02 9298.03 7294.32 11797.47 10997.93 11297.77 10299.75 3999.88 10
IterMVS-SCA-FT94.89 13397.87 8991.42 16694.86 13797.70 16897.24 11384.88 18198.93 8375.74 19094.26 14098.25 7096.69 12698.52 7897.68 10499.10 18099.73 72
baseline296.36 10497.82 9094.65 11194.60 14099.09 9896.45 13689.63 14198.36 12791.29 11197.60 8494.13 12096.37 13698.45 8197.70 10399.54 14799.41 141
canonicalmvs97.31 7597.81 9196.72 7396.20 9899.45 6198.21 8191.60 10799.22 4495.39 4798.48 5790.95 13699.16 4397.66 12799.05 2499.76 3599.90 3
MVSTER97.16 7997.71 9296.52 8195.97 10498.48 13698.63 6392.10 9798.68 11195.96 4199.23 1891.79 13396.87 12198.76 5997.37 12199.57 13899.68 97
PVSNet_BlendedMVS97.51 7097.71 9297.28 5598.06 6399.61 3497.31 10995.02 5299.08 6595.51 4598.05 7090.11 13998.07 8998.91 4898.40 6599.72 5799.78 44
PVSNet_Blended97.51 7097.71 9297.28 5598.06 6399.61 3497.31 10995.02 5299.08 6595.51 4598.05 7090.11 13998.07 8998.91 4898.40 6599.72 5799.78 44
IterMVS94.81 13597.71 9291.42 16694.83 13897.63 17497.38 10685.08 17898.93 8375.67 19194.02 14197.64 7696.66 12998.45 8197.60 10798.90 18399.72 83
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MIMVSNet94.49 14497.59 9690.87 17891.74 17898.70 12394.68 17278.73 20397.98 14283.71 15097.71 8294.81 11096.96 11997.97 11097.92 9399.40 16598.04 185
FMVSNet296.64 9897.50 9795.63 10293.81 14897.98 15798.09 8690.87 12098.99 7793.48 8493.17 15295.25 10497.89 9698.63 6898.80 4699.68 8899.67 98
DI_MVS_plusplus_trai96.90 8797.49 9896.21 8795.61 11799.40 7098.72 6192.11 9699.14 5592.98 9493.08 15595.14 10598.13 8798.05 10597.91 9499.74 4499.73 72
testgi95.67 11797.48 9993.56 13095.07 13399.00 10095.33 15688.47 15498.80 10086.90 13297.30 8792.33 13095.97 14797.66 12797.91 9499.60 12499.38 145
MDTV_nov1_ep1395.57 11897.48 9993.35 13895.43 12698.97 10497.19 11683.72 18798.92 8587.91 12697.75 7996.12 9697.88 9996.84 15495.64 16497.96 19298.10 184
IterMVS-LS96.12 11097.48 9994.53 11295.19 13197.56 18197.15 11789.19 14699.08 6588.23 12294.97 13294.73 11197.84 10197.86 11798.26 7899.60 12499.88 10
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SCA94.95 13197.44 10292.04 15395.55 12199.16 9596.26 14079.30 19899.02 7485.73 13998.18 6797.13 8397.69 10396.03 17594.91 17997.69 19797.65 189
casdiffmvs96.93 8697.43 10396.34 8595.70 11399.50 5597.75 9793.22 8898.98 7892.64 9694.97 13291.71 13498.93 5798.62 6998.52 6099.82 1099.72 83
Anonymous20240521197.40 10496.45 8899.54 4998.08 8993.79 7498.24 13393.55 14594.41 11598.88 6498.04 10698.24 7999.75 3999.76 57
xxxxxxxxxxxxxcwj98.14 5197.38 10599.03 1699.65 1899.41 6898.87 5498.24 1799.14 5598.73 599.11 2586.38 16198.92 5899.22 2798.84 4199.76 3599.56 121
PatchT93.96 15297.36 10690.00 18594.76 13998.65 12590.11 20078.57 20497.96 14580.42 17096.07 11794.10 12196.85 12298.10 9697.49 11299.26 17499.15 157
CR-MVSNet94.57 14397.34 10791.33 16994.90 13598.59 13097.15 11779.14 19997.98 14280.42 17096.59 10993.50 12596.85 12298.10 9697.49 11299.50 15299.15 157
diffmvs96.83 8897.33 10896.25 8695.76 11099.34 7998.06 9093.22 8899.43 2192.30 10296.90 9889.83 14398.55 7698.00 10998.14 8399.64 10999.70 88
test-LLR95.50 12197.32 10993.37 13695.49 12498.74 11996.44 13790.82 12298.18 13482.75 15796.60 10794.67 11295.54 15898.09 9896.00 15499.20 17698.93 167
TESTMET0.1,194.95 13197.32 10992.20 15092.62 15998.74 11996.44 13786.67 16998.18 13482.75 15796.60 10794.67 11295.54 15898.09 9896.00 15499.20 17698.93 167
test-mter94.86 13497.32 10992.00 15592.41 16398.82 11096.18 14286.35 17398.05 13982.28 16096.48 11194.39 11695.46 16298.17 9496.20 14899.32 17099.13 161
Effi-MVS+95.81 11497.31 11294.06 11995.09 13299.35 7797.24 11388.22 15798.54 11885.38 14298.52 5588.68 14598.70 6898.32 8697.93 9299.74 4499.84 18
MS-PatchMatch95.99 11297.26 11394.51 11397.46 7298.76 11797.27 11186.97 16699.09 6389.83 11893.51 14797.78 7596.18 14197.53 13495.71 16399.35 16898.41 179
RPMNet94.66 13797.16 11491.75 16294.98 13498.59 13097.00 12478.37 20597.98 14283.78 14796.27 11494.09 12296.91 12097.36 13996.73 13199.48 15399.09 162
CVMVSNet95.33 12697.09 11593.27 13995.23 13098.39 14595.49 15292.58 9597.71 15683.00 15694.44 13993.28 12693.92 18597.79 11998.54 5999.41 16399.45 138
PatchmatchNetpermissive94.70 13697.08 11691.92 15895.53 12298.85 10995.77 14679.54 19698.95 7985.98 13698.52 5596.45 8797.39 11195.32 18394.09 18997.32 20097.38 192
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Anonymous2023121197.10 8197.06 11797.14 5996.32 9199.52 5398.16 8393.76 7598.84 9495.98 4090.92 16194.58 11498.90 6197.72 12598.10 8799.71 6799.75 64
ADS-MVSNet94.65 13897.04 11891.88 16195.68 11598.99 10295.89 14479.03 20199.15 5285.81 13896.96 9598.21 7297.10 11594.48 19394.24 18897.74 19497.21 193
ET-MVSNet_ETH3D96.17 10896.99 11995.21 10588.53 20398.54 13398.28 7892.61 9498.85 9093.60 8399.06 3290.39 13898.63 7395.98 17796.68 13399.61 11699.41 141
CHOSEN 1792x268896.41 10296.99 11995.74 9998.01 6699.72 697.70 9990.78 12499.13 6090.03 11687.35 18995.36 10398.33 8298.59 7498.91 3699.59 13099.87 12
thisisatest051594.61 14096.89 12191.95 15792.00 17098.47 13792.01 19290.73 12698.18 13483.96 14494.51 13795.13 10693.38 18997.38 13894.74 18599.61 11699.79 38
LGP-MVS_train96.23 10696.89 12195.46 10397.32 7598.77 11498.81 5893.60 8098.58 11585.52 14099.08 3086.67 15797.83 10297.87 11697.51 11099.69 7999.73 72
EPMVS95.05 12996.86 12392.94 14395.84 10798.96 10596.68 12879.87 19499.05 7190.15 11497.12 9395.99 9897.49 10895.17 18694.75 18497.59 19896.96 197
ACMP96.25 1096.62 10096.72 12496.50 8396.96 8498.75 11897.80 9494.30 6698.85 9093.12 8998.78 4586.61 15897.23 11497.73 12496.61 13699.62 11499.71 86
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM96.26 996.67 9796.69 12596.66 7597.29 7898.46 13896.48 13595.09 5199.21 4693.19 8898.78 4586.73 15698.17 8397.84 11896.32 14499.74 4499.49 135
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP-MVS96.37 10396.58 12696.13 8997.31 7798.44 14098.45 6895.22 5098.86 8888.58 12198.33 6487.00 15297.67 10497.23 14396.56 13899.56 14199.62 112
HyFIR lowres test95.99 11296.56 12795.32 10497.99 6799.65 1796.54 13288.86 14898.44 12489.77 11984.14 19897.05 8499.03 5298.55 7698.19 8299.73 5199.86 15
TSAR-MVS + COLMAP96.79 8996.55 12897.06 6297.70 7098.46 13899.07 4596.23 4499.38 2391.32 11098.80 4385.61 16798.69 7097.64 13096.92 12899.37 16799.06 164
thres20096.76 9096.53 12997.03 6496.31 9299.67 1298.37 7293.99 7197.68 15794.49 6395.83 12486.77 15599.18 4098.26 8897.82 9999.82 1099.66 102
Fast-Effi-MVS+95.38 12496.52 13094.05 12094.15 14399.14 9797.24 11386.79 16798.53 11987.62 12894.51 13787.06 15098.76 6698.60 7298.04 9099.72 5799.77 52
tfpn200view996.75 9196.51 13197.03 6496.31 9299.67 1298.41 6993.99 7197.35 16194.52 6195.90 12186.93 15399.14 4498.26 8897.80 10099.82 1099.70 88
CLD-MVS96.74 9296.51 13197.01 6896.71 8698.62 12798.73 6094.38 6498.94 8294.46 6497.33 8587.03 15198.07 8997.20 14596.87 12999.72 5799.54 124
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TAMVS95.53 12096.50 13394.39 11593.86 14799.03 9996.67 12989.55 14397.33 16390.64 11393.02 15691.58 13596.21 13997.72 12597.43 11899.43 16099.36 146
thres100view90096.72 9396.47 13497.00 6996.31 9299.52 5398.28 7894.01 6997.35 16194.52 6195.90 12186.93 15399.09 4998.07 10197.87 9699.81 1699.63 111
FMVSNet595.42 12296.47 13494.20 11692.26 16695.99 20295.66 14887.15 16597.87 14993.46 8596.68 10393.79 12397.52 10697.10 14997.21 12399.11 17996.62 201
thres40096.71 9496.45 13697.02 6696.28 9599.63 2598.41 6994.00 7097.82 15294.42 6695.74 12586.26 16299.18 4098.20 9297.79 10199.81 1699.70 88
IB-MVS93.96 1595.02 13096.44 13793.36 13797.05 8399.28 8690.43 19793.39 8398.02 14096.02 3994.92 13492.07 13283.52 20495.38 18295.82 16099.72 5799.59 114
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres600view796.69 9596.43 13897.00 6996.28 9599.67 1298.41 6993.99 7197.85 15194.29 6995.96 11985.91 16599.19 3898.26 8897.63 10599.82 1099.73 72
FMVSNet195.77 11596.41 13995.03 10693.42 15597.86 16497.11 12089.89 13698.53 11992.00 10589.17 17393.23 12798.15 8698.07 10198.34 7299.61 11699.69 92
GA-MVS93.93 15396.31 14091.16 17393.61 15298.79 11195.39 15590.69 12898.25 13273.28 19996.15 11688.42 14694.39 17797.76 12295.35 16899.58 13499.45 138
ACMH+95.51 1395.40 12396.00 14194.70 11096.33 9098.79 11196.79 12791.32 11498.77 10687.18 13095.60 12985.46 16896.97 11897.15 14696.59 13799.59 13099.65 105
MVS-HIRNet92.51 17695.97 14288.48 19293.73 15198.37 14690.33 19875.36 21198.32 12877.78 18489.15 17494.87 10895.14 17097.62 13196.39 14298.51 18597.11 194
ACMH95.42 1495.27 12795.96 14394.45 11496.83 8598.78 11394.72 17091.67 10698.95 7986.82 13396.42 11283.67 17897.00 11797.48 13696.68 13399.69 7999.76 57
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs495.09 12895.90 14494.14 11792.29 16597.70 16895.45 15390.31 13098.60 11390.70 11293.25 15089.90 14196.67 12897.13 14795.42 16799.44 15999.28 149
tpmrst93.86 15595.88 14591.50 16595.69 11498.62 12795.64 14979.41 19798.80 10083.76 14995.63 12896.13 9597.25 11292.92 19792.31 19797.27 20196.74 198
anonymousdsp93.12 16495.86 14689.93 18791.09 19598.25 15095.12 15785.08 17897.44 15973.30 19890.89 16290.78 13795.25 16897.91 11395.96 15899.71 6799.82 23
OPM-MVS96.22 10795.85 14796.65 7697.75 6898.54 13399.00 5095.53 4796.88 17489.88 11795.95 12086.46 16098.07 8997.65 12996.63 13599.67 9698.83 173
MDTV_nov1_ep13_2view92.44 17895.66 14888.68 19091.05 19697.92 16192.17 19179.64 19598.83 9576.20 18891.45 15893.51 12495.04 17195.68 18193.70 19297.96 19298.53 176
pm-mvs194.27 14595.57 14992.75 14492.58 16098.13 15594.87 16590.71 12796.70 18083.78 14789.94 16989.85 14294.96 17397.58 13297.07 12499.61 11699.72 83
UniMVSNet_NR-MVSNet94.59 14195.47 15093.55 13191.85 17597.89 16395.03 15892.00 9997.33 16386.12 13493.19 15187.29 14996.60 13196.12 17296.70 13299.72 5799.80 30
test_part195.56 11995.38 15195.78 9696.07 9998.16 15497.57 10190.78 12497.43 16093.04 9189.12 17689.41 14497.93 9496.38 16397.38 12099.29 17299.78 44
UniMVSNet (Re)94.58 14295.34 15293.71 12692.25 16798.08 15694.97 16091.29 11897.03 17287.94 12593.97 14386.25 16396.07 14496.27 16995.97 15799.72 5799.79 38
SixPastTwentyTwo93.44 16095.32 15391.24 17192.11 16898.40 14492.77 18888.64 15398.09 13877.83 18393.51 14785.74 16696.52 13496.91 15294.89 18299.59 13099.73 72
dps94.63 13995.31 15493.84 12295.53 12298.71 12296.54 13280.12 19397.81 15497.21 2896.98 9492.37 12996.34 13892.46 20091.77 20097.26 20297.08 195
LTVRE_ROB93.20 1692.84 16894.92 15590.43 18292.83 15798.63 12697.08 12287.87 16197.91 14768.42 20693.54 14679.46 20296.62 13097.55 13397.40 11999.74 4499.92 1
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tpm cat194.06 14894.90 15693.06 14195.42 12898.52 13596.64 13080.67 19097.82 15292.63 9793.39 14995.00 10796.06 14591.36 20391.58 20296.98 20496.66 200
CostFormer94.25 14794.88 15793.51 13395.43 12698.34 14896.21 14180.64 19197.94 14694.01 7298.30 6586.20 16497.52 10692.71 19892.69 19597.23 20398.02 186
USDC94.26 14694.83 15893.59 12996.02 10098.44 14097.84 9288.65 15298.86 8882.73 15994.02 14180.56 19496.76 12497.28 14296.15 15199.55 14398.50 177
tpm92.38 18194.79 15989.56 18894.30 14297.50 18494.24 18278.97 20297.72 15574.93 19597.97 7482.91 18396.60 13193.65 19694.81 18398.33 18998.98 165
EU-MVSNet92.80 17094.76 16090.51 18091.88 17396.74 19992.48 19088.69 15196.21 18679.00 17991.51 15787.82 14791.83 19795.87 17996.27 14599.21 17598.92 170
WR-MVS_H93.54 15894.67 16192.22 14891.95 17197.91 16294.58 17688.75 15096.64 18183.88 14690.66 16585.13 17194.40 17696.54 15995.91 15999.73 5199.89 6
N_pmnet92.21 18594.60 16289.42 18991.88 17397.38 19089.15 20389.74 14097.89 14873.75 19787.94 18692.23 13193.85 18696.10 17393.20 19498.15 19197.43 191
NR-MVSNet94.01 14994.51 16393.44 13492.56 16197.77 16595.67 14791.57 10897.17 16785.84 13793.13 15380.53 19595.29 16697.01 15096.17 14999.69 7999.75 64
WR-MVS93.43 16194.48 16492.21 14991.52 18797.69 17094.66 17489.98 13496.86 17583.43 15190.12 16785.03 17293.94 18496.02 17695.82 16099.71 6799.82 23
DU-MVS93.98 15194.44 16593.44 13491.66 18097.77 16595.03 15891.57 10897.17 16786.12 13493.13 15381.13 19396.60 13195.10 18897.01 12799.67 9699.80 30
TinyColmap94.00 15094.35 16693.60 12895.89 10598.26 14997.49 10488.82 14998.56 11783.21 15391.28 16080.48 19696.68 12797.34 14096.26 14799.53 14998.24 182
pmmvs592.71 17594.27 16790.90 17791.42 18997.74 16793.23 18586.66 17095.99 19378.96 18091.45 15883.44 18095.55 15797.30 14195.05 17699.58 13498.93 167
gg-mvs-nofinetune90.85 18994.14 16887.02 19594.89 13699.25 8898.64 6276.29 20988.24 20957.50 21379.93 20495.45 10295.18 16998.77 5898.07 8899.62 11499.24 153
TranMVSNet+NR-MVSNet93.67 15794.14 16893.13 14091.28 19497.58 17995.60 15091.97 10097.06 17084.05 14390.64 16682.22 18896.17 14294.94 19196.78 13099.69 7999.78 44
tfpnnormal93.85 15694.12 17093.54 13293.22 15698.24 15195.45 15391.96 10194.61 20083.91 14590.74 16381.75 19197.04 11697.49 13596.16 15099.68 8899.84 18
TransMVSNet (Re)93.45 15994.08 17192.72 14592.83 15797.62 17794.94 16191.54 11095.65 19783.06 15588.93 17783.53 17994.25 17897.41 13797.03 12599.67 9698.40 181
v1092.79 17194.06 17291.31 17091.78 17797.29 19394.87 16586.10 17496.97 17379.82 17588.16 18384.56 17595.63 15496.33 16795.31 16999.65 10599.80 30
v114492.81 16994.03 17391.40 16891.68 17997.60 17894.73 16988.40 15596.71 17978.48 18188.14 18484.46 17695.45 16396.31 16895.22 17199.65 10599.76 57
CP-MVSNet93.25 16294.00 17492.38 14791.65 18297.56 18194.38 17989.20 14596.05 19183.16 15489.51 17181.97 18996.16 14396.43 16196.56 13899.71 6799.89 6
Baseline_NR-MVSNet93.87 15493.98 17593.75 12491.66 18097.02 19495.53 15191.52 11197.16 16987.77 12787.93 18783.69 17796.35 13795.10 18897.23 12299.68 8899.73 72
Anonymous2023120690.70 19193.93 17686.92 19690.21 20196.79 19790.30 19986.61 17196.05 19169.25 20488.46 18184.86 17485.86 20297.11 14896.47 14199.30 17197.80 188
EG-PatchMatch MVS92.45 17793.92 17790.72 17992.56 16198.43 14294.88 16484.54 18397.18 16679.55 17686.12 19683.23 18293.15 19297.22 14496.00 15499.67 9699.27 151
V4293.05 16593.90 17892.04 15391.91 17297.66 17294.91 16289.91 13596.85 17680.58 16989.66 17083.43 18195.37 16495.03 19094.90 18099.59 13099.78 44
v892.87 16793.87 17991.72 16492.05 16997.50 18494.79 16888.20 15896.85 17680.11 17390.01 16882.86 18595.48 16095.15 18794.90 18099.66 10199.80 30
test20.0390.65 19293.71 18087.09 19490.44 19996.24 20089.74 20285.46 17795.59 19872.99 20090.68 16485.33 16984.41 20395.94 17895.10 17599.52 15097.06 196
v119292.43 17993.61 18191.05 17491.53 18697.43 18794.61 17587.99 16096.60 18276.72 18687.11 19182.74 18695.85 14996.35 16695.30 17099.60 12499.74 68
v192192092.36 18393.57 18290.94 17691.39 19097.39 18994.70 17187.63 16396.60 18276.63 18786.98 19282.89 18495.75 15096.26 17095.14 17499.55 14399.73 72
TDRefinement93.04 16693.57 18292.41 14696.58 8798.77 11497.78 9691.96 10198.12 13780.84 16789.13 17579.87 20087.78 20096.44 16094.50 18799.54 14798.15 183
v14419292.38 18193.55 18491.00 17591.44 18897.47 18694.27 18087.41 16496.52 18478.03 18287.50 18882.65 18795.32 16595.82 18095.15 17399.55 14399.78 44
v2v48292.77 17293.52 18591.90 16091.59 18597.63 17494.57 17790.31 13096.80 17879.22 17788.74 17981.55 19296.04 14695.26 18494.97 17899.66 10199.69 92
PS-CasMVS92.72 17393.36 18691.98 15691.62 18497.52 18394.13 18388.98 14795.94 19481.51 16587.35 18979.95 19995.91 14896.37 16496.49 14099.70 7699.89 6
v124091.99 18693.33 18790.44 18191.29 19297.30 19294.25 18186.79 16796.43 18575.49 19386.34 19581.85 19095.29 16696.42 16295.22 17199.52 15099.73 72
PEN-MVS92.72 17393.20 18892.15 15191.29 19297.31 19194.67 17389.81 13796.19 18781.83 16388.58 18079.06 20395.61 15695.21 18596.27 14599.72 5799.82 23
v7n91.61 18892.95 18990.04 18490.56 19897.69 17093.74 18485.59 17695.89 19576.95 18586.60 19478.60 20593.76 18797.01 15094.99 17799.65 10599.87 12
v14892.36 18392.88 19091.75 16291.63 18397.66 17292.64 18990.55 12996.09 18983.34 15288.19 18280.00 19892.74 19393.98 19594.58 18699.58 13499.69 92
DTE-MVSNet92.42 18092.85 19191.91 15990.87 19796.97 19594.53 17889.81 13795.86 19681.59 16488.83 17877.88 20695.01 17294.34 19496.35 14399.64 10999.73 72
new_pmnet90.45 19392.84 19287.66 19388.96 20296.16 20188.71 20484.66 18297.56 15871.91 20385.60 19786.58 15993.28 19096.07 17493.54 19398.46 18694.39 205
gm-plane-assit89.44 19692.82 19385.49 19991.37 19195.34 20579.55 21282.12 18891.68 20864.79 21087.98 18580.26 19795.66 15398.51 8097.56 10899.45 15798.41 179
pmmvs691.90 18792.53 19491.17 17291.81 17697.63 17493.23 18588.37 15693.43 20580.61 16877.32 20687.47 14894.12 18096.58 15795.72 16298.88 18499.53 125
UniMVSNet_ETH3D93.15 16392.33 19594.11 11893.91 14598.61 12994.81 16790.98 11997.06 17087.51 12982.27 20276.33 20897.87 10094.79 19297.47 11599.56 14199.81 28
pmmvs388.19 19891.27 19684.60 20185.60 20793.66 20885.68 20781.13 18992.36 20763.66 21289.51 17177.10 20793.22 19196.37 16492.40 19698.30 19097.46 190
CMPMVSbinary70.31 1890.74 19091.06 19790.36 18397.32 7597.43 18792.97 18787.82 16293.50 20475.34 19483.27 20084.90 17392.19 19692.64 19991.21 20396.50 20694.46 204
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet188.61 19790.68 19886.19 19881.56 21095.30 20687.78 20585.98 17594.19 20372.30 20278.84 20578.90 20490.06 19896.59 15695.47 16599.46 15695.49 203
PM-MVS89.55 19590.30 19988.67 19187.06 20495.60 20390.88 19584.51 18496.14 18875.75 18986.89 19363.47 21494.64 17496.85 15393.89 19099.17 17899.29 148
pmmvs-eth3d89.81 19489.65 20090.00 18586.94 20595.38 20491.08 19386.39 17294.57 20182.27 16183.03 20164.94 21193.96 18396.57 15893.82 19199.35 16899.24 153
MDA-MVSNet-bldmvs87.84 19989.22 20186.23 19781.74 20996.77 19883.74 20889.57 14294.50 20272.83 20196.64 10564.47 21392.71 19481.43 20892.28 19896.81 20598.47 178
new-patchmatchnet86.12 20087.30 20284.74 20086.92 20695.19 20783.57 20984.42 18592.67 20665.66 20780.32 20364.72 21289.41 19992.33 20289.21 20498.43 18796.69 199
FPMVS83.82 20184.61 20382.90 20290.39 20090.71 21090.85 19684.10 18695.47 19965.15 20883.44 19974.46 20975.48 20681.63 20779.42 20991.42 21187.14 209
Gipumacopyleft81.40 20281.78 20480.96 20483.21 20885.61 21379.73 21176.25 21097.33 16364.21 21155.32 21055.55 21586.04 20192.43 20192.20 19996.32 20793.99 206
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ambc80.99 20580.04 21290.84 20990.91 19496.09 18974.18 19662.81 20930.59 22082.44 20596.25 17191.77 20095.91 20898.56 175
PMMVS277.26 20379.47 20674.70 20676.00 21388.37 21274.22 21376.34 20878.31 21154.13 21469.96 20852.50 21670.14 21084.83 20688.71 20597.35 19993.58 207
PMVScopyleft72.60 1776.39 20477.66 20774.92 20581.04 21169.37 21768.47 21480.54 19285.39 21065.07 20973.52 20772.91 21065.67 21280.35 20976.81 21088.71 21285.25 212
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN68.30 20668.43 20868.15 20774.70 21571.56 21655.64 21677.24 20677.48 21339.46 21651.95 21341.68 21873.28 20870.65 21179.51 20888.61 21386.20 211
EMVS68.12 20768.11 20968.14 20875.51 21471.76 21555.38 21777.20 20777.78 21237.79 21753.59 21143.61 21774.72 20767.05 21276.70 21188.27 21486.24 210
MVEpermissive67.97 1965.53 20867.43 21063.31 20959.33 21674.20 21453.09 21870.43 21266.27 21443.13 21545.98 21430.62 21970.65 20979.34 21086.30 20683.25 21589.33 208
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs31.24 20940.15 21120.86 21112.61 21717.99 21825.16 21913.30 21448.42 21524.82 21853.07 21230.13 22128.47 21342.73 21337.65 21220.79 21651.04 213
test12326.75 21034.25 21218.01 2127.93 21817.18 21924.85 22012.36 21544.83 21616.52 21941.80 21518.10 22228.29 21433.08 21434.79 21318.10 21749.95 214
uanet_test0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
sosnet-low-res0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
sosnet0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
RE-MVS-def69.05 205
9.1499.79 45
SR-MVS99.67 1398.25 1499.94 25
our_test_392.30 16497.58 17990.09 201
MTAPA98.09 1599.97 7
MTMP98.46 1199.96 12
Patchmatch-RL test66.86 215
tmp_tt82.25 20397.73 6988.71 21180.18 21068.65 21399.15 5286.98 13199.47 985.31 17068.35 21187.51 20583.81 20791.64 210
XVS97.42 7399.62 2998.59 6493.81 7899.95 1799.69 79
X-MVStestdata97.42 7399.62 2998.59 6493.81 7899.95 1799.69 79
abl_698.09 4099.33 4299.22 9298.79 5994.96 5498.52 12197.00 3297.30 8799.86 3798.76 6699.69 7999.41 141
mPP-MVS99.53 3099.89 34
NP-MVS98.57 116
Patchmtry98.59 13097.15 11779.14 19980.42 170
DeepMVS_CXcopyleft96.85 19687.43 20689.27 14498.30 12975.55 19295.05 13179.47 20192.62 19589.48 20495.18 20995.96 202