This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++99.41 499.64 199.14 899.69 899.75 799.64 898.33 699.67 498.10 1499.66 499.99 199.33 3299.62 598.86 4599.74 4999.90 6
APDe-MVS99.49 199.64 199.32 299.74 499.74 999.75 198.34 499.56 1198.72 799.57 799.97 899.53 1799.65 299.25 1599.84 1199.77 56
SMA-MVScopyleft99.38 699.60 399.12 1099.76 299.62 3399.39 3098.23 2099.52 1698.03 1899.45 1199.98 299.64 599.58 999.30 1199.68 9599.76 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SED-MVS99.44 399.58 499.28 399.69 899.76 499.62 1598.35 399.51 1799.05 299.60 699.98 299.28 3999.61 698.83 5099.70 8399.77 56
TSAR-MVS + MP.99.27 1199.57 598.92 2498.78 5599.53 5699.72 298.11 3099.73 297.43 2799.15 2599.96 1399.59 1099.73 199.07 2899.88 399.82 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPE-MVScopyleft99.39 599.55 699.20 499.63 2299.71 1399.66 698.33 699.29 3798.40 1299.64 599.98 299.31 3599.56 1098.96 3799.85 999.70 92
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft99.45 299.54 799.35 199.72 799.76 499.63 1298.37 299.63 799.03 398.95 4099.98 299.60 799.60 799.05 3099.74 4999.79 42
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
ACMMPR99.30 1099.54 799.03 1799.66 1799.64 2699.68 498.25 1599.56 1197.12 3299.19 2299.95 1899.72 199.43 1799.25 1599.72 6499.77 56
HFP-MVS99.32 899.53 999.07 1499.69 899.59 4699.63 1298.31 999.56 1197.37 2899.27 1999.97 899.70 399.35 2299.24 1799.71 7499.76 61
MSP-MVS99.34 799.52 1099.14 899.68 1399.75 799.64 898.31 999.44 2198.10 1499.28 1899.98 299.30 3799.34 2399.05 3099.81 2199.79 42
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SteuartSystems-ACMMP99.20 1699.51 1198.83 2899.66 1799.66 2099.71 398.12 2999.14 6296.62 3699.16 2499.98 299.12 4999.63 399.19 2199.78 3399.83 27
Skip Steuart: Steuart Systems R&D Blog.
SD-MVS99.25 1399.50 1298.96 2298.79 5499.55 5499.33 3398.29 1299.75 197.96 2099.15 2599.95 1899.61 699.17 3399.06 2999.81 2199.84 23
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepPCF-MVS97.74 398.34 4699.46 1397.04 6798.82 5399.33 8996.28 14697.47 4099.58 994.70 6398.99 3799.85 4197.24 12099.55 1199.34 997.73 20499.56 128
ACMMP_NAP99.05 2699.45 1498.58 3299.73 599.60 4499.64 898.28 1399.23 4694.57 6499.35 1599.97 899.55 1499.63 398.66 5799.70 8399.74 72
TSAR-MVS + ACMM98.77 3499.45 1497.98 4599.37 3899.46 6599.44 2898.13 2899.65 592.30 10798.91 4399.95 1899.05 5499.42 1898.95 3899.58 14199.82 28
DeepC-MVS_fast98.34 199.17 1899.45 1498.85 2699.55 3099.37 8099.64 898.05 3399.53 1496.58 3798.93 4199.92 2999.49 2099.46 1599.32 1099.80 2999.64 113
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
zzz-MVS99.31 999.44 1799.16 699.73 599.65 2199.63 1298.26 1499.27 4098.01 1999.27 1999.97 899.60 799.59 898.58 6299.71 7499.73 76
CP-MVS99.27 1199.44 1799.08 1399.62 2499.58 4999.53 1998.16 2399.21 4997.79 2299.15 2599.96 1399.59 1099.54 1298.86 4599.78 3399.74 72
DROMVSNet98.22 5099.44 1796.79 7695.62 12099.56 5299.01 5192.22 10099.17 5494.51 6799.41 1399.62 5399.49 2099.16 3599.26 1499.91 299.94 1
PHI-MVS99.08 2399.43 2098.67 3099.15 4799.59 4699.11 4397.35 4199.14 6297.30 2999.44 1299.96 1399.32 3498.89 5699.39 799.79 3099.58 122
MVS_111021_LR98.67 3899.41 2197.81 4899.37 3899.53 5698.51 6895.52 4999.27 4094.85 6099.56 899.69 5199.04 5599.36 2198.88 4399.60 13199.58 122
APD-MVScopyleft99.25 1399.38 2299.09 1299.69 899.58 4999.56 1898.32 898.85 9697.87 2198.91 4399.92 2999.30 3799.45 1699.38 899.79 3099.58 122
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
X-MVS98.93 3099.37 2398.42 3399.67 1499.62 3399.60 1698.15 2599.08 7293.81 8398.46 6399.95 1899.59 1099.49 1499.21 2099.68 9599.75 68
MP-MVScopyleft99.07 2499.36 2498.74 2999.63 2299.57 5199.66 698.25 1599.00 8395.62 4798.97 3899.94 2699.54 1699.51 1398.79 5499.71 7499.73 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TSAR-MVS + GP.98.66 4099.36 2497.85 4797.16 8299.46 6599.03 4994.59 6399.09 7097.19 3199.73 399.95 1899.39 2998.95 4998.69 5699.75 4499.65 109
MVS_111021_HR98.59 4299.36 2497.68 5099.42 3699.61 3898.14 9094.81 5699.31 3495.00 5899.51 999.79 4699.00 5898.94 5098.83 5099.69 8699.57 127
PGM-MVS98.86 3299.35 2798.29 3699.77 199.63 2999.67 595.63 4798.66 11995.27 5399.11 2999.82 4399.67 499.33 2499.19 2199.73 5799.74 72
SF-MVS99.18 1799.32 2899.03 1799.65 1999.41 7498.87 5698.24 1899.14 6298.73 599.11 2999.92 2998.92 6199.22 2998.84 4899.76 4099.56 128
CS-MVS-test98.09 5599.32 2896.67 7995.48 13199.61 3899.01 5192.22 10099.32 3393.89 8199.30 1798.77 6699.49 2099.16 3599.16 2499.92 199.91 5
HPM-MVS++copyleft99.10 2299.30 3098.86 2599.69 899.48 6399.59 1798.34 499.26 4396.55 3999.10 3299.96 1399.36 3099.25 2898.37 7599.64 11699.66 106
CNVR-MVS99.23 1599.28 3199.17 599.65 1999.34 8699.46 2598.21 2199.28 3898.47 998.89 4599.94 2699.50 1899.42 1898.61 6099.73 5799.52 135
MCST-MVS99.11 2199.27 3298.93 2399.67 1499.33 8999.51 2198.31 999.28 3896.57 3899.10 3299.90 3399.71 299.19 3298.35 7699.82 1599.71 90
CS-MVS97.98 5999.26 3396.48 8995.60 12399.67 1698.46 7293.16 9599.37 2692.22 11098.49 6098.95 6599.55 1499.27 2799.17 2399.88 399.92 2
ETV-MVS98.05 5699.25 3496.65 8195.61 12199.61 3898.26 8693.52 8598.90 9293.74 8699.32 1699.20 6098.90 6499.21 3198.72 5599.87 899.79 42
CHOSEN 280x42097.99 5899.24 3596.53 8598.34 6199.61 3898.36 8089.80 14699.27 4095.08 5799.81 198.58 6898.64 7899.02 4598.92 4098.93 18999.48 143
MSLP-MVS++99.15 1999.24 3599.04 1699.52 3399.49 6299.09 4598.07 3199.37 2698.47 997.79 8199.89 3599.50 1898.93 5199.45 499.61 12399.76 61
CPTT-MVS99.14 2099.20 3799.06 1599.58 2799.53 5699.45 2697.80 3899.19 5298.32 1398.58 5799.95 1899.60 799.28 2698.20 8799.64 11699.69 96
CANet98.46 4399.16 3897.64 5198.48 5999.64 2699.35 3294.71 5999.53 1495.17 5597.63 8799.59 5598.38 8898.88 5798.99 3599.74 4999.86 19
UA-Net97.13 8599.14 3994.78 11597.21 8099.38 7797.56 10992.04 10498.48 12988.03 13098.39 6699.91 3294.03 19099.33 2499.23 1899.81 2199.25 159
train_agg98.73 3699.11 4098.28 3799.36 4099.35 8499.48 2497.96 3598.83 10193.86 8298.70 5599.86 3899.44 2699.08 4198.38 7399.61 12399.58 122
CDPH-MVS98.41 4499.10 4197.61 5299.32 4499.36 8199.49 2296.15 4698.82 10391.82 11298.41 6499.66 5299.10 5198.93 5198.97 3699.75 4499.58 122
CANet_DTU96.64 10499.08 4293.81 13097.10 8399.42 7298.85 5890.01 14099.31 3479.98 18199.78 299.10 6297.42 11798.35 9298.05 9599.47 16299.53 132
NCCC99.05 2699.08 4299.02 2099.62 2499.38 7799.43 2998.21 2199.36 2997.66 2597.79 8199.90 3399.45 2599.17 3398.43 7099.77 3899.51 139
UGNet97.66 6899.07 4496.01 9997.19 8199.65 2197.09 12893.39 8799.35 3094.40 7298.79 4899.59 5594.24 18798.04 11398.29 8399.73 5799.80 35
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CNLPA99.03 2899.05 4599.01 2199.27 4599.22 9999.03 4997.98 3499.34 3199.00 498.25 7099.71 5099.31 3598.80 6198.82 5299.48 16099.17 163
3Dnovator+96.92 798.71 3799.05 4598.32 3599.53 3199.34 8699.06 4794.61 6199.65 597.49 2696.75 10499.86 3899.44 2698.78 6399.30 1199.81 2199.67 102
3Dnovator96.92 798.67 3899.05 4598.23 3999.57 2899.45 6799.11 4394.66 6099.69 396.80 3596.55 11499.61 5499.40 2898.87 5899.49 399.85 999.66 106
QAPM98.62 4199.04 4898.13 4099.57 2899.48 6399.17 3994.78 5799.57 1096.16 4196.73 10599.80 4499.33 3298.79 6299.29 1399.75 4499.64 113
MVS_030498.14 5399.03 4997.10 6498.05 6699.63 2999.27 3594.33 6999.63 793.06 9597.32 9099.05 6398.09 9598.82 6098.87 4499.81 2199.89 10
ACMMPcopyleft98.74 3599.03 4998.40 3499.36 4099.64 2699.20 3797.75 3998.82 10395.24 5498.85 4699.87 3799.17 4698.74 6897.50 11899.71 7499.76 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
OMC-MVS98.84 3399.01 5198.65 3199.39 3799.23 9899.22 3696.70 4399.40 2397.77 2397.89 8099.80 4499.21 4099.02 4598.65 5899.57 14599.07 170
AdaColmapbinary99.06 2598.98 5299.15 799.60 2699.30 9299.38 3198.16 2399.02 8198.55 898.71 5499.57 5799.58 1399.09 3997.84 10599.64 11699.36 153
PLCcopyleft97.93 299.02 2998.94 5399.11 1199.46 3599.24 9799.06 4797.96 3599.31 3499.16 197.90 7999.79 4699.36 3098.71 6998.12 9199.65 11299.52 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CSCG98.90 3198.93 5498.85 2699.75 399.72 1099.49 2296.58 4499.38 2498.05 1798.97 3897.87 7799.49 2097.78 12798.92 4099.78 3399.90 6
Vis-MVSNet (Re-imp)97.40 7798.89 5595.66 10795.99 10799.62 3397.82 10093.22 9298.82 10391.40 11596.94 10098.56 6995.70 15999.14 3799.41 699.79 3099.75 68
EPNet98.05 5698.86 5697.10 6499.02 5099.43 7198.47 7194.73 5899.05 7895.62 4798.93 4197.62 8195.48 16798.59 8198.55 6399.29 17999.84 23
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS_MVSNet97.86 6198.86 5696.68 7896.02 10499.72 1098.35 8193.37 8998.75 11694.01 7696.88 10398.40 7198.48 8699.09 3999.42 599.83 1499.80 35
TAPA-MVS97.53 598.41 4498.84 5897.91 4699.08 4999.33 8999.15 4097.13 4299.34 3193.20 9297.75 8399.19 6199.20 4198.66 7198.13 9099.66 10899.48 143
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
EIA-MVS97.70 6798.78 5996.44 9095.72 11599.65 2198.14 9093.72 8298.30 13792.31 10698.63 5697.90 7698.97 5998.92 5398.30 8299.78 3399.80 35
DELS-MVS98.19 5198.77 6097.52 5398.29 6299.71 1399.12 4294.58 6498.80 10695.38 5296.24 11998.24 7497.92 10299.06 4299.52 199.82 1599.79 42
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EPP-MVSNet97.75 6598.71 6196.63 8395.68 11899.56 5297.51 11093.10 9699.22 4794.99 5997.18 9697.30 8498.65 7798.83 5998.93 3999.84 1199.92 2
baseline97.45 7598.70 6295.99 10095.89 10999.36 8198.29 8391.37 11999.21 4992.99 9898.40 6596.87 8997.96 10098.60 7998.60 6199.42 16999.86 19
DeepC-MVS97.63 498.33 4798.57 6398.04 4398.62 5899.65 2199.45 2698.15 2599.51 1792.80 10095.74 12996.44 9299.46 2499.37 2099.50 299.78 3399.81 33
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_Test97.30 7998.54 6495.87 10195.74 11499.28 9398.19 8891.40 11899.18 5391.59 11498.17 7296.18 9798.63 7998.61 7698.55 6399.66 10899.78 48
DPM-MVS98.31 4898.53 6598.05 4298.76 5698.77 12199.13 4198.07 3199.10 6994.27 7596.70 10699.84 4298.70 7497.90 12198.11 9299.40 17299.28 156
EPNet_dtu96.30 11198.53 6593.70 13498.97 5198.24 15897.36 11494.23 7198.85 9679.18 18599.19 2298.47 7094.09 18997.89 12298.21 8698.39 19598.85 179
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended_VisFu97.41 7698.49 6796.15 9497.49 7299.76 496.02 15093.75 8199.26 4393.38 9193.73 14899.35 5896.47 14298.96 4898.46 6799.77 3899.90 6
OpenMVScopyleft96.23 1197.95 6098.45 6897.35 5699.52 3399.42 7298.91 5594.61 6198.87 9392.24 10994.61 14099.05 6399.10 5198.64 7399.05 3099.74 4999.51 139
PMMVS97.52 7298.39 6996.51 8795.82 11298.73 12897.80 10193.05 9798.76 11394.39 7399.07 3597.03 8898.55 8398.31 9497.61 11399.43 16799.21 162
DCV-MVSNet97.56 7198.36 7096.62 8496.44 9398.36 15498.37 7891.73 11099.11 6894.80 6198.36 6796.28 9598.60 8198.12 10298.44 6899.76 4099.87 16
PCF-MVS97.50 698.18 5298.35 7197.99 4498.65 5799.36 8198.94 5498.14 2798.59 12193.62 8796.61 11099.76 4999.03 5697.77 12897.45 12399.57 14598.89 178
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MSDG98.27 4998.29 7298.24 3899.20 4699.22 9999.20 3797.82 3799.37 2694.43 7095.90 12597.31 8399.12 4998.76 6598.35 7699.67 10399.14 167
thisisatest053097.23 8198.25 7396.05 9695.60 12399.59 4696.96 13293.23 9099.17 5492.60 10398.75 5296.19 9698.17 9098.19 10096.10 15999.72 6499.77 56
PatchMatch-RL97.77 6498.25 7397.21 6299.11 4899.25 9597.06 13094.09 7298.72 11795.14 5698.47 6296.29 9498.43 8798.65 7297.44 12499.45 16498.94 173
LS3D97.79 6298.25 7397.26 6198.40 6099.63 2999.53 1998.63 199.25 4588.13 12996.93 10194.14 12299.19 4299.14 3799.23 1899.69 8699.42 147
tttt051797.23 8198.24 7696.04 9795.60 12399.60 4496.94 13393.23 9099.15 5992.56 10498.74 5396.12 9998.17 9098.21 9896.10 15999.73 5799.78 48
Vis-MVSNetpermissive96.16 11598.22 7793.75 13195.33 13599.70 1597.27 11890.85 12798.30 13785.51 14895.72 13196.45 9093.69 19698.70 7099.00 3499.84 1199.69 96
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Fast-Effi-MVS+-dtu95.38 13198.20 7892.09 15993.91 15298.87 11597.35 11585.01 18899.08 7281.09 17398.10 7396.36 9395.62 16298.43 9197.03 13299.55 15099.50 141
COLMAP_ROBcopyleft96.15 1297.78 6398.17 7997.32 5798.84 5299.45 6799.28 3495.43 5099.48 1991.80 11394.83 13998.36 7298.90 6498.09 10597.85 10499.68 9599.15 164
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RPSCF97.61 6998.16 8096.96 7598.10 6399.00 10798.84 5993.76 7999.45 2094.78 6299.39 1499.31 5998.53 8596.61 16395.43 17397.74 20297.93 196
GG-mvs-BLEND69.11 21498.13 8135.26 2193.49 22898.20 16094.89 1702.38 22598.42 1325.82 22996.37 11798.60 675.97 22498.75 6797.98 9799.01 18898.61 181
test0.0.03 196.69 10198.12 8295.01 11395.49 12998.99 10995.86 15290.82 12898.38 13392.54 10596.66 10897.33 8295.75 15797.75 13098.34 7899.60 13199.40 151
FMVSNet397.02 8998.12 8295.73 10693.59 16197.98 16498.34 8291.32 12098.80 10693.92 7897.21 9395.94 10297.63 11298.61 7698.62 5999.61 12399.65 109
baseline197.58 7098.05 8497.02 7096.21 10199.45 6797.71 10593.71 8398.47 13095.75 4698.78 4993.20 13298.91 6398.52 8598.44 6899.81 2199.53 132
Effi-MVS+-dtu95.74 12398.04 8593.06 14893.92 15199.16 10297.90 9888.16 16699.07 7782.02 16998.02 7794.32 12096.74 13298.53 8497.56 11599.61 12399.62 117
MAR-MVS97.71 6698.04 8597.32 5799.35 4298.91 11497.65 10791.68 11198.00 14997.01 3397.72 8594.83 11298.85 7098.44 9098.86 4599.41 17099.52 135
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CDS-MVSNet96.59 10798.02 8794.92 11494.45 14898.96 11297.46 11291.75 10997.86 15890.07 12196.02 12297.25 8596.21 14698.04 11398.38 7399.60 13199.65 109
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
GBi-Net96.98 9098.00 8895.78 10293.81 15597.98 16498.09 9291.32 12098.80 10693.92 7897.21 9395.94 10297.89 10398.07 10898.34 7899.68 9599.67 102
test196.98 9098.00 8895.78 10293.81 15597.98 16498.09 9291.32 12098.80 10693.92 7897.21 9395.94 10297.89 10398.07 10898.34 7899.68 9599.67 102
FC-MVSNet-test96.07 11797.94 9093.89 12893.60 16098.67 13196.62 13890.30 13998.76 11388.62 12695.57 13497.63 8094.48 18397.97 11797.48 12199.71 7499.52 135
FC-MVSNet-train97.04 8897.91 9196.03 9896.00 10698.41 15096.53 14193.42 8699.04 8093.02 9798.03 7694.32 12097.47 11697.93 11997.77 10999.75 4499.88 14
IterMVS-SCA-FT94.89 14097.87 9291.42 17394.86 14497.70 17597.24 12084.88 18998.93 8975.74 19794.26 14498.25 7396.69 13398.52 8597.68 11199.10 18799.73 76
baseline296.36 11097.82 9394.65 11794.60 14799.09 10596.45 14389.63 14898.36 13591.29 11797.60 8894.13 12396.37 14398.45 8897.70 11099.54 15499.41 148
canonicalmvs97.31 7897.81 9496.72 7796.20 10299.45 6798.21 8791.60 11399.22 4795.39 5198.48 6190.95 14099.16 4797.66 13499.05 3099.76 4099.90 6
MVSTER97.16 8397.71 9596.52 8695.97 10898.48 14398.63 6592.10 10398.68 11895.96 4499.23 2191.79 13796.87 12898.76 6597.37 12899.57 14599.68 101
PVSNet_BlendedMVS97.51 7397.71 9597.28 5998.06 6499.61 3897.31 11695.02 5399.08 7295.51 4998.05 7490.11 14398.07 9698.91 5498.40 7199.72 6499.78 48
PVSNet_Blended97.51 7397.71 9597.28 5998.06 6499.61 3897.31 11695.02 5399.08 7295.51 4998.05 7490.11 14398.07 9698.91 5498.40 7199.72 6499.78 48
IterMVS94.81 14297.71 9591.42 17394.83 14597.63 18297.38 11385.08 18698.93 8975.67 19894.02 14597.64 7996.66 13698.45 8897.60 11498.90 19099.72 87
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MIMVSNet94.49 15197.59 9990.87 18591.74 18698.70 13094.68 17978.73 21197.98 15083.71 15797.71 8694.81 11396.96 12697.97 11797.92 9999.40 17298.04 193
FMVSNet296.64 10497.50 10095.63 10893.81 15597.98 16498.09 9290.87 12698.99 8493.48 8993.17 15795.25 10797.89 10398.63 7498.80 5399.68 9599.67 102
DI_MVS_plusplus_trai96.90 9397.49 10196.21 9395.61 12199.40 7698.72 6392.11 10299.14 6292.98 9993.08 16095.14 10898.13 9498.05 11297.91 10199.74 4999.73 76
testgi95.67 12497.48 10293.56 13795.07 13999.00 10795.33 16388.47 16198.80 10686.90 13997.30 9192.33 13495.97 15497.66 13497.91 10199.60 13199.38 152
MDTV_nov1_ep1395.57 12597.48 10293.35 14595.43 13298.97 11197.19 12383.72 19598.92 9187.91 13297.75 8396.12 9997.88 10696.84 16295.64 17197.96 20098.10 192
IterMVS-LS96.12 11697.48 10294.53 11895.19 13797.56 18997.15 12489.19 15399.08 7288.23 12894.97 13694.73 11497.84 10897.86 12498.26 8499.60 13199.88 14
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SCA94.95 13897.44 10592.04 16095.55 12699.16 10296.26 14779.30 20699.02 8185.73 14698.18 7197.13 8697.69 11096.03 18394.91 18797.69 20597.65 198
casdiffmvs96.93 9297.43 10696.34 9195.70 11699.50 6197.75 10493.22 9298.98 8592.64 10194.97 13691.71 13898.93 6098.62 7598.52 6699.82 1599.72 87
Anonymous20240521197.40 10796.45 9299.54 5598.08 9593.79 7898.24 14193.55 14994.41 11898.88 6998.04 11398.24 8599.75 4499.76 61
xxxxxxxxxxxxxcwj98.14 5397.38 10899.03 1799.65 1999.41 7498.87 5698.24 1899.14 6298.73 599.11 2986.38 16898.92 6199.22 2998.84 4899.76 4099.56 128
PatchT93.96 15997.36 10990.00 19294.76 14698.65 13290.11 20778.57 21297.96 15380.42 17796.07 12194.10 12496.85 12998.10 10397.49 11999.26 18199.15 164
CR-MVSNet94.57 15097.34 11091.33 17694.90 14298.59 13797.15 12479.14 20797.98 15080.42 17796.59 11393.50 12996.85 12998.10 10397.49 11999.50 15999.15 164
diffmvs96.83 9497.33 11196.25 9295.76 11399.34 8698.06 9693.22 9299.43 2292.30 10796.90 10289.83 14898.55 8398.00 11698.14 8999.64 11699.70 92
test-LLR95.50 12897.32 11293.37 14395.49 12998.74 12696.44 14490.82 12898.18 14282.75 16496.60 11194.67 11595.54 16598.09 10596.00 16199.20 18398.93 174
TESTMET0.1,194.95 13897.32 11292.20 15792.62 16698.74 12696.44 14486.67 17798.18 14282.75 16496.60 11194.67 11595.54 16598.09 10596.00 16199.20 18398.93 174
test-mter94.86 14197.32 11292.00 16292.41 17198.82 11796.18 14986.35 18198.05 14782.28 16796.48 11594.39 11995.46 16998.17 10196.20 15599.32 17799.13 168
Effi-MVS+95.81 12197.31 11594.06 12695.09 13899.35 8497.24 12088.22 16498.54 12585.38 14998.52 5888.68 15298.70 7498.32 9397.93 9899.74 4999.84 23
MS-PatchMatch95.99 11897.26 11694.51 11997.46 7398.76 12497.27 11886.97 17499.09 7089.83 12493.51 15297.78 7896.18 14897.53 14195.71 17099.35 17598.41 186
GeoE95.98 12097.24 11794.51 11995.02 14099.38 7798.02 9787.86 16998.37 13487.86 13392.99 16293.54 12798.56 8298.61 7697.92 9999.73 5799.85 22
RPMNet94.66 14497.16 11891.75 16994.98 14198.59 13797.00 13178.37 21397.98 15083.78 15496.27 11894.09 12596.91 12797.36 14696.73 13899.48 16099.09 169
ECVR-MVScopyleft97.27 8097.09 11997.48 5496.95 8699.79 298.48 6994.42 6699.17 5496.28 4093.54 15089.39 15098.89 6799.03 4399.09 2699.88 399.61 120
CVMVSNet95.33 13397.09 11993.27 14695.23 13698.39 15295.49 15992.58 9997.71 16483.00 16394.44 14393.28 13093.92 19397.79 12698.54 6599.41 17099.45 145
PatchmatchNetpermissive94.70 14397.08 12191.92 16595.53 12798.85 11695.77 15379.54 20498.95 8685.98 14398.52 5896.45 9097.39 11895.32 19194.09 19797.32 20897.38 201
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Anonymous2023121197.10 8697.06 12297.14 6396.32 9599.52 5998.16 8993.76 7998.84 10095.98 4390.92 16994.58 11798.90 6497.72 13298.10 9399.71 7499.75 68
ADS-MVSNet94.65 14597.04 12391.88 16895.68 11898.99 10995.89 15179.03 20999.15 5985.81 14596.96 9998.21 7597.10 12294.48 20294.24 19697.74 20297.21 202
ET-MVSNet_ETH3D96.17 11496.99 12495.21 11188.53 21198.54 14098.28 8492.61 9898.85 9693.60 8899.06 3690.39 14298.63 7995.98 18596.68 14099.61 12399.41 148
CHOSEN 1792x268896.41 10896.99 12495.74 10598.01 6799.72 1097.70 10690.78 13099.13 6790.03 12287.35 19795.36 10698.33 8998.59 8198.91 4299.59 13799.87 16
thisisatest051594.61 14796.89 12691.95 16492.00 17898.47 14492.01 19990.73 13298.18 14283.96 15194.51 14195.13 10993.38 19797.38 14594.74 19399.61 12399.79 42
LGP-MVS_train96.23 11296.89 12695.46 10997.32 7698.77 12198.81 6093.60 8498.58 12285.52 14799.08 3486.67 16497.83 10997.87 12397.51 11799.69 8699.73 76
EPMVS95.05 13696.86 12892.94 15095.84 11198.96 11296.68 13579.87 20299.05 7890.15 12097.12 9795.99 10197.49 11595.17 19494.75 19297.59 20696.96 206
test111197.09 8796.83 12997.39 5596.92 8899.81 198.44 7494.45 6599.17 5495.85 4592.10 16388.97 15198.78 7199.02 4599.11 2599.88 399.63 115
ACMP96.25 1096.62 10696.72 13096.50 8896.96 8598.75 12597.80 10194.30 7098.85 9693.12 9498.78 4986.61 16597.23 12197.73 13196.61 14399.62 12199.71 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM96.26 996.67 10396.69 13196.66 8097.29 7998.46 14596.48 14295.09 5299.21 4993.19 9398.78 4986.73 16398.17 9097.84 12596.32 15199.74 4999.49 142
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test250697.16 8396.68 13297.73 4996.95 8699.79 298.48 6994.42 6699.17 5497.74 2499.15 2580.93 20198.89 6799.03 4399.09 2699.88 399.62 117
HQP-MVS96.37 10996.58 13396.13 9597.31 7898.44 14798.45 7395.22 5198.86 9488.58 12798.33 6887.00 15997.67 11197.23 15196.56 14599.56 14899.62 117
HyFIR lowres test95.99 11896.56 13495.32 11097.99 6899.65 2196.54 13988.86 15598.44 13189.77 12584.14 20797.05 8799.03 5698.55 8398.19 8899.73 5799.86 19
TSAR-MVS + COLMAP96.79 9596.55 13597.06 6697.70 7198.46 14599.07 4696.23 4599.38 2491.32 11698.80 4785.61 17498.69 7697.64 13796.92 13599.37 17499.06 171
thres20096.76 9696.53 13697.03 6896.31 9699.67 1698.37 7893.99 7597.68 16594.49 6895.83 12886.77 16299.18 4498.26 9597.82 10699.82 1599.66 106
Fast-Effi-MVS+95.38 13196.52 13794.05 12794.15 15099.14 10497.24 12086.79 17598.53 12687.62 13594.51 14187.06 15798.76 7298.60 7998.04 9699.72 6499.77 56
tfpn200view996.75 9796.51 13897.03 6896.31 9699.67 1698.41 7593.99 7597.35 17094.52 6595.90 12586.93 16099.14 4898.26 9597.80 10799.82 1599.70 92
CLD-MVS96.74 9896.51 13897.01 7296.71 9098.62 13498.73 6294.38 6898.94 8894.46 6997.33 8987.03 15898.07 9697.20 15396.87 13699.72 6499.54 131
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TAMVS95.53 12796.50 14094.39 12293.86 15499.03 10696.67 13689.55 15097.33 17290.64 11993.02 16191.58 13996.21 14697.72 13297.43 12599.43 16799.36 153
thres100view90096.72 9996.47 14197.00 7396.31 9699.52 5998.28 8494.01 7397.35 17094.52 6595.90 12586.93 16099.09 5398.07 10897.87 10399.81 2199.63 115
FMVSNet595.42 12996.47 14194.20 12392.26 17495.99 21095.66 15587.15 17397.87 15793.46 9096.68 10793.79 12697.52 11397.10 15797.21 13099.11 18696.62 210
thres40096.71 10096.45 14397.02 7096.28 9999.63 2998.41 7594.00 7497.82 16094.42 7195.74 12986.26 16999.18 4498.20 9997.79 10899.81 2199.70 92
IB-MVS93.96 1595.02 13796.44 14493.36 14497.05 8499.28 9390.43 20493.39 8798.02 14896.02 4294.92 13892.07 13683.52 21395.38 19095.82 16799.72 6499.59 121
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres600view796.69 10196.43 14597.00 7396.28 9999.67 1698.41 7593.99 7597.85 15994.29 7495.96 12385.91 17299.19 4298.26 9597.63 11299.82 1599.73 76
FMVSNet195.77 12296.41 14695.03 11293.42 16297.86 17197.11 12789.89 14398.53 12692.00 11189.17 18193.23 13198.15 9398.07 10898.34 7899.61 12399.69 96
GA-MVS93.93 16096.31 14791.16 18093.61 15998.79 11895.39 16290.69 13498.25 14073.28 20696.15 12088.42 15394.39 18597.76 12995.35 17599.58 14199.45 145
ACMH+95.51 1395.40 13096.00 14894.70 11696.33 9498.79 11896.79 13491.32 12098.77 11287.18 13795.60 13385.46 17596.97 12597.15 15496.59 14499.59 13799.65 109
MVS-HIRNet92.51 18395.97 14988.48 20093.73 15898.37 15390.33 20575.36 21998.32 13677.78 19189.15 18294.87 11195.14 17797.62 13896.39 14998.51 19297.11 203
ACMH95.42 1495.27 13495.96 15094.45 12196.83 8998.78 12094.72 17791.67 11298.95 8686.82 14096.42 11683.67 18597.00 12497.48 14396.68 14099.69 8699.76 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs495.09 13595.90 15194.14 12492.29 17397.70 17595.45 16090.31 13798.60 12090.70 11893.25 15589.90 14696.67 13597.13 15595.42 17499.44 16699.28 156
tpmrst93.86 16295.88 15291.50 17295.69 11798.62 13495.64 15679.41 20598.80 10683.76 15695.63 13296.13 9897.25 11992.92 20692.31 20597.27 20996.74 207
anonymousdsp93.12 17195.86 15389.93 19491.09 20398.25 15795.12 16485.08 18697.44 16873.30 20590.89 17090.78 14195.25 17597.91 12095.96 16599.71 7499.82 28
OPM-MVS96.22 11395.85 15496.65 8197.75 6998.54 14099.00 5395.53 4896.88 18389.88 12395.95 12486.46 16798.07 9697.65 13696.63 14299.67 10398.83 180
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MDTV_nov1_ep13_2view92.44 18595.66 15588.68 19891.05 20497.92 16892.17 19879.64 20398.83 10176.20 19591.45 16693.51 12895.04 17895.68 18993.70 20097.96 20098.53 183
pm-mvs194.27 15295.57 15692.75 15192.58 16798.13 16294.87 17290.71 13396.70 18983.78 15489.94 17789.85 14794.96 18097.58 13997.07 13199.61 12399.72 87
UniMVSNet_NR-MVSNet94.59 14895.47 15793.55 13891.85 18397.89 17095.03 16592.00 10597.33 17286.12 14193.19 15687.29 15696.60 13896.12 18096.70 13999.72 6499.80 35
test_part195.56 12695.38 15895.78 10296.07 10398.16 16197.57 10890.78 13097.43 16993.04 9689.12 18489.41 14997.93 10196.38 17197.38 12799.29 17999.78 48
UniMVSNet (Re)94.58 14995.34 15993.71 13392.25 17598.08 16394.97 16791.29 12497.03 18187.94 13193.97 14786.25 17096.07 15196.27 17795.97 16499.72 6499.79 42
SixPastTwentyTwo93.44 16795.32 16091.24 17892.11 17698.40 15192.77 19588.64 16098.09 14677.83 19093.51 15285.74 17396.52 14196.91 16094.89 19099.59 13799.73 76
dps94.63 14695.31 16193.84 12995.53 12798.71 12996.54 13980.12 20197.81 16297.21 3096.98 9892.37 13396.34 14592.46 20991.77 20997.26 21097.08 204
LTVRE_ROB93.20 1692.84 17594.92 16290.43 18992.83 16498.63 13397.08 12987.87 16897.91 15568.42 21593.54 15079.46 21196.62 13797.55 14097.40 12699.74 4999.92 2
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tpm cat194.06 15594.90 16393.06 14895.42 13498.52 14296.64 13780.67 19897.82 16092.63 10293.39 15495.00 11096.06 15291.36 21291.58 21196.98 21296.66 209
CostFormer94.25 15494.88 16493.51 14095.43 13298.34 15596.21 14880.64 19997.94 15494.01 7698.30 6986.20 17197.52 11392.71 20792.69 20397.23 21198.02 194
USDC94.26 15394.83 16593.59 13696.02 10498.44 14797.84 9988.65 15998.86 9482.73 16694.02 14580.56 20296.76 13197.28 15096.15 15899.55 15098.50 184
tpm92.38 18994.79 16689.56 19694.30 14997.50 19294.24 18978.97 21097.72 16374.93 20297.97 7882.91 19096.60 13893.65 20594.81 19198.33 19698.98 172
EU-MVSNet92.80 17794.76 16790.51 18791.88 18196.74 20792.48 19788.69 15896.21 19579.00 18691.51 16587.82 15491.83 20595.87 18796.27 15299.21 18298.92 177
pmnet_mix0292.44 18594.68 16889.83 19592.46 17097.65 18189.92 20990.49 13698.76 11373.05 20891.78 16490.08 14594.86 18194.53 20191.94 20898.21 19898.01 195
WR-MVS_H93.54 16594.67 16992.22 15591.95 17997.91 16994.58 18388.75 15796.64 19083.88 15390.66 17385.13 17894.40 18496.54 16795.91 16699.73 5799.89 10
N_pmnet92.21 19394.60 17089.42 19791.88 18197.38 19889.15 21189.74 14797.89 15673.75 20487.94 19492.23 13593.85 19496.10 18193.20 20298.15 19997.43 200
NR-MVSNet94.01 15694.51 17193.44 14192.56 16897.77 17295.67 15491.57 11497.17 17685.84 14493.13 15880.53 20395.29 17397.01 15896.17 15699.69 8699.75 68
WR-MVS93.43 16894.48 17292.21 15691.52 19597.69 17794.66 18189.98 14196.86 18483.43 15890.12 17585.03 17993.94 19296.02 18495.82 16799.71 7499.82 28
DU-MVS93.98 15894.44 17393.44 14191.66 18897.77 17295.03 16591.57 11497.17 17686.12 14193.13 15881.13 20096.60 13895.10 19697.01 13499.67 10399.80 35
TinyColmap94.00 15794.35 17493.60 13595.89 10998.26 15697.49 11188.82 15698.56 12483.21 16091.28 16880.48 20496.68 13497.34 14796.26 15499.53 15698.24 190
pmmvs592.71 18294.27 17590.90 18491.42 19797.74 17493.23 19286.66 17895.99 20278.96 18791.45 16683.44 18795.55 16497.30 14995.05 18499.58 14198.93 174
gg-mvs-nofinetune90.85 19794.14 17687.02 20394.89 14399.25 9598.64 6476.29 21788.24 21857.50 22279.93 21395.45 10595.18 17698.77 6498.07 9499.62 12199.24 160
TranMVSNet+NR-MVSNet93.67 16494.14 17693.13 14791.28 20297.58 18795.60 15791.97 10697.06 17984.05 15090.64 17482.22 19596.17 14994.94 19996.78 13799.69 8699.78 48
tfpnnormal93.85 16394.12 17893.54 13993.22 16398.24 15895.45 16091.96 10794.61 20983.91 15290.74 17181.75 19897.04 12397.49 14296.16 15799.68 9599.84 23
TransMVSNet (Re)93.45 16694.08 17992.72 15292.83 16497.62 18594.94 16891.54 11695.65 20683.06 16288.93 18583.53 18694.25 18697.41 14497.03 13299.67 10398.40 189
v1092.79 17894.06 18091.31 17791.78 18597.29 20194.87 17286.10 18296.97 18279.82 18288.16 19184.56 18295.63 16196.33 17595.31 17699.65 11299.80 35
v114492.81 17694.03 18191.40 17591.68 18797.60 18694.73 17688.40 16296.71 18878.48 18888.14 19284.46 18395.45 17096.31 17695.22 17999.65 11299.76 61
CP-MVSNet93.25 16994.00 18292.38 15491.65 19097.56 18994.38 18689.20 15296.05 20083.16 16189.51 17981.97 19696.16 15096.43 16996.56 14599.71 7499.89 10
Baseline_NR-MVSNet93.87 16193.98 18393.75 13191.66 18897.02 20295.53 15891.52 11797.16 17887.77 13487.93 19583.69 18496.35 14495.10 19697.23 12999.68 9599.73 76
Anonymous2023120690.70 19993.93 18486.92 20490.21 20996.79 20590.30 20686.61 17996.05 20069.25 21388.46 18984.86 18185.86 21197.11 15696.47 14899.30 17897.80 197
EG-PatchMatch MVS92.45 18493.92 18590.72 18692.56 16898.43 14994.88 17184.54 19197.18 17579.55 18386.12 20483.23 18993.15 20097.22 15296.00 16199.67 10399.27 158
V4293.05 17293.90 18692.04 16091.91 18097.66 17994.91 16989.91 14296.85 18580.58 17689.66 17883.43 18895.37 17195.03 19894.90 18899.59 13799.78 48
v892.87 17493.87 18791.72 17192.05 17797.50 19294.79 17588.20 16596.85 18580.11 18090.01 17682.86 19295.48 16795.15 19594.90 18899.66 10899.80 35
test20.0390.65 20093.71 18887.09 20290.44 20796.24 20889.74 21085.46 18595.59 20772.99 20990.68 17285.33 17684.41 21295.94 18695.10 18399.52 15797.06 205
v119292.43 18793.61 18991.05 18191.53 19497.43 19594.61 18287.99 16796.60 19176.72 19387.11 19982.74 19395.85 15696.35 17495.30 17799.60 13199.74 72
v192192092.36 19193.57 19090.94 18391.39 19897.39 19794.70 17887.63 17196.60 19176.63 19486.98 20082.89 19195.75 15796.26 17895.14 18299.55 15099.73 76
TDRefinement93.04 17393.57 19092.41 15396.58 9198.77 12197.78 10391.96 10798.12 14580.84 17489.13 18379.87 20987.78 20996.44 16894.50 19599.54 15498.15 191
v14419292.38 18993.55 19291.00 18291.44 19697.47 19494.27 18787.41 17296.52 19378.03 18987.50 19682.65 19495.32 17295.82 18895.15 18199.55 15099.78 48
v2v48292.77 17993.52 19391.90 16791.59 19397.63 18294.57 18490.31 13796.80 18779.22 18488.74 18781.55 19996.04 15395.26 19294.97 18699.66 10899.69 96
PS-CasMVS92.72 18093.36 19491.98 16391.62 19297.52 19194.13 19088.98 15495.94 20381.51 17287.35 19779.95 20895.91 15596.37 17296.49 14799.70 8399.89 10
v124091.99 19493.33 19590.44 18891.29 20097.30 20094.25 18886.79 17596.43 19475.49 20086.34 20381.85 19795.29 17396.42 17095.22 17999.52 15799.73 76
PEN-MVS92.72 18093.20 19692.15 15891.29 20097.31 19994.67 18089.81 14496.19 19681.83 17088.58 18879.06 21295.61 16395.21 19396.27 15299.72 6499.82 28
v7n91.61 19692.95 19790.04 19190.56 20697.69 17793.74 19185.59 18495.89 20476.95 19286.60 20278.60 21493.76 19597.01 15894.99 18599.65 11299.87 16
v14892.36 19192.88 19891.75 16991.63 19197.66 17992.64 19690.55 13596.09 19883.34 15988.19 19080.00 20692.74 20193.98 20494.58 19499.58 14199.69 96
DTE-MVSNet92.42 18892.85 19991.91 16690.87 20596.97 20394.53 18589.81 14495.86 20581.59 17188.83 18677.88 21595.01 17994.34 20396.35 15099.64 11699.73 76
new_pmnet90.45 20192.84 20087.66 20188.96 21096.16 20988.71 21284.66 19097.56 16671.91 21285.60 20586.58 16693.28 19896.07 18293.54 20198.46 19394.39 214
gm-plane-assit89.44 20492.82 20185.49 20791.37 19995.34 21379.55 22182.12 19691.68 21764.79 21987.98 19380.26 20595.66 16098.51 8797.56 11599.45 16498.41 186
pmmvs691.90 19592.53 20291.17 17991.81 18497.63 18293.23 19288.37 16393.43 21480.61 17577.32 21587.47 15594.12 18896.58 16595.72 16998.88 19199.53 132
UniMVSNet_ETH3D93.15 17092.33 20394.11 12593.91 15298.61 13694.81 17490.98 12597.06 17987.51 13682.27 21176.33 21797.87 10794.79 20097.47 12299.56 14899.81 33
test_method87.27 20891.58 20482.25 21175.65 22287.52 22186.81 21572.60 22097.51 16773.20 20785.07 20679.97 20788.69 20897.31 14895.24 17896.53 21498.41 186
pmmvs388.19 20691.27 20584.60 20985.60 21593.66 21685.68 21681.13 19792.36 21663.66 22189.51 17977.10 21693.22 19996.37 17292.40 20498.30 19797.46 199
CMPMVSbinary70.31 1890.74 19891.06 20690.36 19097.32 7697.43 19592.97 19487.82 17093.50 21375.34 20183.27 20984.90 18092.19 20492.64 20891.21 21296.50 21594.46 213
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet188.61 20590.68 20786.19 20681.56 21895.30 21487.78 21385.98 18394.19 21272.30 21178.84 21478.90 21390.06 20696.59 16495.47 17299.46 16395.49 212
PM-MVS89.55 20390.30 20888.67 19987.06 21295.60 21190.88 20284.51 19296.14 19775.75 19686.89 20163.47 22394.64 18296.85 16193.89 19899.17 18599.29 155
pmmvs-eth3d89.81 20289.65 20990.00 19286.94 21395.38 21291.08 20086.39 18094.57 21082.27 16883.03 21064.94 22093.96 19196.57 16693.82 19999.35 17599.24 160
MDA-MVSNet-bldmvs87.84 20789.22 21086.23 20581.74 21796.77 20683.74 21789.57 14994.50 21172.83 21096.64 10964.47 22292.71 20281.43 21792.28 20696.81 21398.47 185
new-patchmatchnet86.12 20987.30 21184.74 20886.92 21495.19 21583.57 21884.42 19392.67 21565.66 21680.32 21264.72 22189.41 20792.33 21189.21 21398.43 19496.69 208
FPMVS83.82 21084.61 21282.90 21090.39 20890.71 21890.85 20384.10 19495.47 20865.15 21783.44 20874.46 21875.48 21581.63 21679.42 21891.42 22087.14 218
Gipumacopyleft81.40 21181.78 21380.96 21383.21 21685.61 22279.73 22076.25 21897.33 17264.21 22055.32 21955.55 22486.04 21092.43 21092.20 20796.32 21693.99 215
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ambc80.99 21480.04 22090.84 21790.91 20196.09 19874.18 20362.81 21830.59 22982.44 21496.25 17991.77 20995.91 21798.56 182
PMMVS277.26 21279.47 21574.70 21576.00 22188.37 22074.22 22276.34 21678.31 22054.13 22369.96 21752.50 22570.14 21984.83 21588.71 21497.35 20793.58 216
PMVScopyleft72.60 1776.39 21377.66 21674.92 21481.04 21969.37 22668.47 22380.54 20085.39 21965.07 21873.52 21672.91 21965.67 22180.35 21876.81 21988.71 22185.25 221
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN68.30 21568.43 21768.15 21674.70 22471.56 22555.64 22577.24 21477.48 22239.46 22551.95 22241.68 22773.28 21770.65 22079.51 21788.61 22286.20 220
EMVS68.12 21668.11 21868.14 21775.51 22371.76 22455.38 22677.20 21577.78 22137.79 22653.59 22043.61 22674.72 21667.05 22176.70 22088.27 22386.24 219
MVEpermissive67.97 1965.53 21767.43 21963.31 21859.33 22574.20 22353.09 22770.43 22166.27 22343.13 22445.98 22330.62 22870.65 21879.34 21986.30 21583.25 22489.33 217
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs31.24 21840.15 22020.86 22012.61 22617.99 22725.16 22813.30 22348.42 22424.82 22753.07 22130.13 23028.47 22242.73 22237.65 22120.79 22551.04 222
test12326.75 21934.25 22118.01 2217.93 22717.18 22824.85 22912.36 22444.83 22516.52 22841.80 22418.10 23128.29 22333.08 22334.79 22218.10 22649.95 223
uanet_test0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2220.00 2290.00 2290.00 2300.00 2260.00 2260.00 2300.00 2250.00 2320.00 2250.00 2240.00 2230.00 2270.00 224
RE-MVS-def69.05 214
9.1499.79 46
SR-MVS99.67 1498.25 1599.94 26
our_test_392.30 17297.58 18790.09 208
MTAPA98.09 1699.97 8
MTMP98.46 1199.96 13
Patchmatch-RL test66.86 224
tmp_tt82.25 21197.73 7088.71 21980.18 21968.65 22299.15 5986.98 13899.47 1085.31 17768.35 22087.51 21483.81 21691.64 219
XVS97.42 7499.62 3398.59 6693.81 8399.95 1899.69 86
X-MVStestdata97.42 7499.62 3398.59 6693.81 8399.95 1899.69 86
abl_698.09 4199.33 4399.22 9998.79 6194.96 5598.52 12897.00 3497.30 9199.86 3898.76 7299.69 8699.41 148
mPP-MVS99.53 3199.89 35
NP-MVS98.57 123
Patchmtry98.59 13797.15 12479.14 20780.42 177
DeepMVS_CXcopyleft96.85 20487.43 21489.27 15198.30 13775.55 19995.05 13579.47 21092.62 20389.48 21395.18 21895.96 211