This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
APDe-MVS99.49 199.64 199.32 299.74 499.74 499.75 198.34 399.56 1098.72 699.57 599.97 699.53 1699.65 299.25 1499.84 599.77 51
MSP-MVS99.45 299.54 599.35 199.72 799.76 199.63 1198.37 299.63 699.03 298.95 3599.98 199.60 799.60 599.05 2499.74 4499.79 38
DPE-MVS99.39 399.55 499.20 399.63 2099.71 899.66 698.33 599.29 3398.40 1199.64 499.98 199.31 3199.56 898.96 3199.85 399.70 86
SMA-MVS99.38 499.60 299.12 899.76 299.62 2899.39 2898.23 1899.52 1598.03 1699.45 999.98 199.64 599.58 799.30 1199.68 8799.76 55
DVP-MVS99.34 599.52 899.14 799.68 1199.75 399.64 898.31 799.44 1998.10 1399.28 1499.98 199.30 3399.34 2199.05 2499.81 1699.79 38
HFP-MVS99.32 699.53 799.07 1299.69 899.59 4099.63 1198.31 799.56 1097.37 2599.27 1599.97 699.70 399.35 2099.24 1699.71 6799.76 55
zzz-MVS99.31 799.44 1599.16 599.73 599.65 1699.63 1198.26 1299.27 3698.01 1799.27 1599.97 699.60 799.59 698.58 5599.71 6799.73 70
ACMMPR99.30 899.54 599.03 1599.66 1599.64 2199.68 498.25 1399.56 1097.12 2999.19 1899.95 1699.72 199.43 1599.25 1499.72 5799.77 51
TSAR-MVS + MP.99.27 999.57 398.92 2298.78 5399.53 4999.72 298.11 2899.73 297.43 2499.15 2199.96 1199.59 1099.73 199.07 2299.88 199.82 23
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CP-MVS99.27 999.44 1599.08 1199.62 2299.58 4399.53 1798.16 2199.21 4597.79 2099.15 2199.96 1199.59 1099.54 1098.86 3999.78 2899.74 66
SD-MVS99.25 1199.50 1098.96 2098.79 5299.55 4799.33 3198.29 1099.75 197.96 1899.15 2199.95 1699.61 699.17 3099.06 2399.81 1699.84 18
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVScopyleft99.25 1199.38 1999.09 1099.69 899.58 4399.56 1698.32 698.85 8997.87 1998.91 3899.92 2799.30 3399.45 1499.38 899.79 2599.58 114
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS99.23 1399.28 2799.17 499.65 1799.34 7899.46 2398.21 1999.28 3498.47 898.89 4099.94 2499.50 1799.42 1698.61 5399.73 5199.52 127
SteuartSystems-ACMMP99.20 1499.51 998.83 2699.66 1599.66 1499.71 398.12 2799.14 5496.62 3399.16 2099.98 199.12 4499.63 399.19 2099.78 2899.83 22
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS99.18 1599.32 2599.03 1599.65 1799.41 6798.87 5398.24 1699.14 5498.73 499.11 2499.92 2798.92 5799.22 2698.84 4199.76 3599.56 120
DeepC-MVS_fast98.34 199.17 1699.45 1298.85 2499.55 2899.37 7299.64 898.05 3199.53 1396.58 3498.93 3699.92 2799.49 1999.46 1399.32 1099.80 2499.64 107
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSLP-MVS++99.15 1799.24 3099.04 1499.52 3199.49 5599.09 4398.07 2999.37 2498.47 897.79 7699.89 3399.50 1798.93 4499.45 499.61 11599.76 55
CPTT-MVS99.14 1899.20 3299.06 1399.58 2599.53 4999.45 2497.80 3699.19 4898.32 1298.58 5299.95 1699.60 799.28 2498.20 8099.64 10899.69 90
MCST-MVS99.11 1999.27 2898.93 2199.67 1299.33 8199.51 1998.31 799.28 3496.57 3599.10 2799.90 3199.71 299.19 2998.35 6999.82 1099.71 84
HPM-MVS++copyleft99.10 2099.30 2698.86 2399.69 899.48 5699.59 1598.34 399.26 3996.55 3699.10 2799.96 1199.36 2799.25 2598.37 6899.64 10899.66 100
PHI-MVS99.08 2199.43 1798.67 2899.15 4599.59 4099.11 4197.35 3999.14 5497.30 2699.44 1099.96 1199.32 3098.89 4999.39 799.79 2599.58 114
MP-MVScopyleft99.07 2299.36 2198.74 2799.63 2099.57 4599.66 698.25 1399.00 7595.62 4298.97 3399.94 2499.54 1599.51 1198.79 4699.71 6799.73 70
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
AdaColmapbinary99.06 2398.98 4899.15 699.60 2499.30 8499.38 2998.16 2199.02 7398.55 798.71 4999.57 5499.58 1399.09 3497.84 9799.64 10899.36 145
ACMMP_NAP99.05 2499.45 1298.58 3099.73 599.60 3899.64 898.28 1199.23 4294.57 5999.35 1299.97 699.55 1499.63 398.66 5099.70 7699.74 66
NCCC99.05 2499.08 3899.02 1899.62 2299.38 7099.43 2798.21 1999.36 2697.66 2297.79 7699.90 3199.45 2299.17 3098.43 6399.77 3399.51 131
CNLPA99.03 2699.05 4199.01 1999.27 4399.22 9199.03 4797.98 3299.34 2899.00 398.25 6599.71 4899.31 3198.80 5498.82 4499.48 15299.17 155
PLCcopyleft97.93 299.02 2798.94 4999.11 999.46 3399.24 8999.06 4597.96 3399.31 3099.16 197.90 7499.79 4499.36 2798.71 6298.12 8499.65 10499.52 127
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
X-MVS98.93 2899.37 2098.42 3199.67 1299.62 2899.60 1498.15 2399.08 6493.81 7798.46 5899.95 1699.59 1099.49 1299.21 1999.68 8799.75 62
CSCG98.90 2998.93 5098.85 2499.75 399.72 599.49 2096.58 4299.38 2298.05 1598.97 3397.87 7399.49 1997.78 11998.92 3499.78 2899.90 3
PGM-MVS98.86 3099.35 2498.29 3499.77 199.63 2499.67 595.63 4598.66 11195.27 4899.11 2499.82 4199.67 499.33 2299.19 2099.73 5199.74 66
OMC-MVS98.84 3199.01 4798.65 2999.39 3599.23 9099.22 3496.70 4199.40 2197.77 2197.89 7599.80 4299.21 3599.02 3998.65 5199.57 13799.07 162
TSAR-MVS + ACMM98.77 3299.45 1297.98 4399.37 3699.46 5899.44 2698.13 2699.65 492.30 10098.91 3899.95 1699.05 4999.42 1698.95 3299.58 13399.82 23
ACMMPcopyleft98.74 3399.03 4598.40 3299.36 3899.64 2199.20 3597.75 3798.82 9695.24 4998.85 4199.87 3599.17 4198.74 6197.50 11099.71 6799.76 55
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
train_agg98.73 3499.11 3698.28 3599.36 3899.35 7699.48 2297.96 3398.83 9493.86 7698.70 5099.86 3699.44 2399.08 3698.38 6699.61 11599.58 114
3Dnovator+96.92 798.71 3599.05 4198.32 3399.53 2999.34 7899.06 4594.61 5999.65 497.49 2396.75 9999.86 3699.44 2398.78 5699.30 1199.81 1699.67 96
MVS_111021_LR98.67 3699.41 1897.81 4699.37 3699.53 4998.51 6595.52 4799.27 3694.85 5599.56 699.69 4999.04 5099.36 1998.88 3799.60 12399.58 114
3Dnovator96.92 798.67 3699.05 4198.23 3799.57 2699.45 6099.11 4194.66 5899.69 396.80 3296.55 10999.61 5199.40 2598.87 5199.49 399.85 399.66 100
TSAR-MVS + GP.98.66 3899.36 2197.85 4597.16 8099.46 5899.03 4794.59 6199.09 6297.19 2899.73 399.95 1699.39 2698.95 4298.69 4999.75 3999.65 103
QAPM98.62 3999.04 4498.13 3899.57 2699.48 5699.17 3794.78 5599.57 996.16 3796.73 10099.80 4299.33 2998.79 5599.29 1399.75 3999.64 107
MVS_111021_HR98.59 4099.36 2197.68 4799.42 3499.61 3398.14 8394.81 5499.31 3095.00 5399.51 799.79 4499.00 5398.94 4398.83 4399.69 7899.57 119
CANet98.46 4199.16 3397.64 4898.48 5799.64 2199.35 3094.71 5799.53 1395.17 5097.63 8299.59 5298.38 8098.88 5098.99 2999.74 4499.86 15
CDPH-MVS98.41 4299.10 3797.61 4999.32 4299.36 7399.49 2096.15 4498.82 9691.82 10498.41 5999.66 5099.10 4698.93 4498.97 3099.75 3999.58 114
TAPA-MVS97.53 598.41 4298.84 5497.91 4499.08 4799.33 8199.15 3897.13 4099.34 2893.20 8697.75 7899.19 5899.20 3698.66 6498.13 8399.66 10099.48 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DeepPCF-MVS97.74 398.34 4499.46 1197.04 6298.82 5199.33 8196.28 13797.47 3899.58 894.70 5898.99 3299.85 3997.24 11199.55 999.34 997.73 19499.56 120
DeepC-MVS97.63 498.33 4598.57 5998.04 4198.62 5699.65 1699.45 2498.15 2399.51 1692.80 9395.74 12496.44 8899.46 2199.37 1899.50 299.78 2899.81 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DPM-MVS98.31 4698.53 6198.05 4098.76 5498.77 11399.13 3998.07 2999.10 6194.27 7096.70 10199.84 4098.70 6797.90 11398.11 8599.40 16499.28 148
MSDG98.27 4798.29 6898.24 3699.20 4499.22 9199.20 3597.82 3599.37 2494.43 6495.90 12097.31 7999.12 4498.76 5898.35 6999.67 9599.14 159
DELS-MVS98.19 4898.77 5697.52 5098.29 6099.71 899.12 4094.58 6298.80 9995.38 4796.24 11498.24 7097.92 9399.06 3799.52 199.82 1099.79 38
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PCF-MVS97.50 698.18 4998.35 6797.99 4298.65 5599.36 7398.94 5098.14 2598.59 11393.62 8196.61 10599.76 4799.03 5197.77 12097.45 11599.57 13798.89 170
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
xxxxxxxxxxxxxcwj98.14 5097.38 10499.03 1599.65 1799.41 6798.87 5398.24 1699.14 5498.73 499.11 2486.38 15998.92 5799.22 2698.84 4199.76 3599.56 120
MVS_030498.14 5099.03 4597.10 5998.05 6499.63 2499.27 3394.33 6499.63 693.06 8997.32 8599.05 6098.09 8798.82 5398.87 3899.81 1699.89 6
CS-MVS98.06 5299.12 3596.82 7195.83 10699.66 1498.93 5193.12 9098.95 7894.29 6898.55 5399.05 6098.94 5599.05 3898.78 4799.83 899.80 30
ETV-MVS98.05 5399.25 2996.65 7595.61 11599.61 3398.26 7993.52 8098.90 8593.74 8099.32 1399.20 5798.90 6099.21 2898.72 4899.87 299.79 38
EPNet98.05 5398.86 5297.10 5999.02 4899.43 6498.47 6694.73 5699.05 7095.62 4298.93 3697.62 7795.48 15898.59 7398.55 5699.29 17199.84 18
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 280x42097.99 5599.24 3096.53 7998.34 5999.61 3398.36 7389.80 13799.27 3695.08 5299.81 198.58 6498.64 7199.02 3998.92 3498.93 18099.48 135
OpenMVScopyleft96.23 1197.95 5698.45 6497.35 5199.52 3199.42 6598.91 5294.61 5998.87 8692.24 10294.61 13599.05 6099.10 4698.64 6699.05 2499.74 4499.51 131
IS_MVSNet97.86 5798.86 5296.68 7396.02 9899.72 598.35 7493.37 8498.75 10894.01 7196.88 9898.40 6798.48 7899.09 3499.42 599.83 899.80 30
LS3D97.79 5898.25 6997.26 5698.40 5899.63 2499.53 1798.63 199.25 4188.13 12196.93 9694.14 11899.19 3799.14 3299.23 1799.69 7899.42 139
COLMAP_ROBcopyleft96.15 1297.78 5998.17 7597.32 5298.84 5099.45 6099.28 3295.43 4899.48 1791.80 10594.83 13498.36 6898.90 6098.09 9797.85 9699.68 8799.15 156
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PatchMatch-RL97.77 6098.25 6997.21 5799.11 4699.25 8797.06 12194.09 6798.72 10995.14 5198.47 5796.29 9098.43 7998.65 6597.44 11699.45 15698.94 165
EPP-MVSNet97.75 6198.71 5796.63 7795.68 11399.56 4697.51 10193.10 9199.22 4394.99 5497.18 9197.30 8098.65 7098.83 5298.93 3399.84 599.92 1
MAR-MVS97.71 6298.04 8197.32 5299.35 4098.91 10697.65 9991.68 10498.00 14097.01 3097.72 8094.83 10898.85 6498.44 8298.86 3999.41 16299.52 127
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EIA-MVS97.70 6398.78 5596.44 8395.72 11099.65 1698.14 8393.72 7798.30 12892.31 9998.63 5197.90 7298.97 5498.92 4698.30 7599.78 2899.80 30
UGNet97.66 6499.07 4096.01 9297.19 7999.65 1697.09 11993.39 8299.35 2794.40 6698.79 4399.59 5294.24 17798.04 10598.29 7699.73 5199.80 30
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
RPSCF97.61 6598.16 7696.96 7098.10 6199.00 9998.84 5693.76 7499.45 1894.78 5799.39 1199.31 5698.53 7796.61 15495.43 16497.74 19297.93 186
baseline197.58 6698.05 8097.02 6596.21 9699.45 6097.71 9793.71 7898.47 12295.75 4198.78 4493.20 12798.91 5998.52 7798.44 6199.81 1699.53 124
DCV-MVSNet97.56 6798.36 6696.62 7896.44 8898.36 14698.37 7191.73 10399.11 6094.80 5698.36 6296.28 9198.60 7498.12 9498.44 6199.76 3599.87 12
PMMVS97.52 6898.39 6596.51 8195.82 10798.73 12097.80 9393.05 9298.76 10694.39 6799.07 3097.03 8498.55 7598.31 8697.61 10599.43 15999.21 154
PVSNet_BlendedMVS97.51 6997.71 9197.28 5498.06 6299.61 3397.31 10795.02 5199.08 6495.51 4498.05 6990.11 13898.07 8898.91 4798.40 6499.72 5799.78 44
PVSNet_Blended97.51 6997.71 9197.28 5498.06 6299.61 3397.31 10795.02 5199.08 6495.51 4498.05 6990.11 13898.07 8898.91 4798.40 6499.72 5799.78 44
baseline97.45 7198.70 5895.99 9395.89 10399.36 7398.29 7691.37 11299.21 4592.99 9198.40 6096.87 8597.96 9298.60 7198.60 5499.42 16199.86 15
PVSNet_Blended_VisFu97.41 7298.49 6396.15 8797.49 7099.76 196.02 14193.75 7699.26 3993.38 8593.73 14399.35 5596.47 13398.96 4198.46 6099.77 3399.90 3
Vis-MVSNet (Re-imp)97.40 7398.89 5195.66 9995.99 10199.62 2897.82 9293.22 8798.82 9691.40 10796.94 9598.56 6595.70 15099.14 3299.41 699.79 2599.75 62
canonicalmvs97.31 7497.81 9096.72 7296.20 9799.45 6098.21 8091.60 10699.22 4395.39 4698.48 5690.95 13599.16 4297.66 12699.05 2499.76 3599.90 3
MVS_Test97.30 7598.54 6095.87 9495.74 10999.28 8598.19 8191.40 11199.18 4991.59 10698.17 6796.18 9398.63 7298.61 6998.55 5699.66 10099.78 44
thisisatest053097.23 7698.25 6996.05 8995.60 11799.59 4096.96 12393.23 8599.17 5092.60 9698.75 4796.19 9298.17 8298.19 9296.10 15099.72 5799.77 51
tttt051797.23 7698.24 7296.04 9095.60 11799.60 3896.94 12493.23 8599.15 5192.56 9798.74 4896.12 9598.17 8298.21 9096.10 15099.73 5199.78 44
MVSTER97.16 7897.71 9196.52 8095.97 10298.48 13598.63 6292.10 9698.68 11095.96 4099.23 1791.79 13296.87 11998.76 5897.37 11999.57 13799.68 95
UA-Net97.13 7999.14 3494.78 10797.21 7899.38 7097.56 10092.04 9798.48 12188.03 12298.39 6199.91 3094.03 18099.33 2299.23 1799.81 1699.25 151
Anonymous2023121197.10 8097.06 11697.14 5896.32 9099.52 5298.16 8293.76 7498.84 9395.98 3990.92 16094.58 11398.90 6097.72 12498.10 8699.71 6799.75 62
FC-MVSNet-train97.04 8197.91 8796.03 9196.00 10098.41 14296.53 13293.42 8199.04 7293.02 9098.03 7194.32 11697.47 10797.93 11197.77 10199.75 3999.88 10
FMVSNet397.02 8298.12 7895.73 9893.59 15297.98 15598.34 7591.32 11398.80 9993.92 7397.21 8895.94 9897.63 10398.61 6998.62 5299.61 11599.65 103
GBi-Net96.98 8398.00 8495.78 9593.81 14697.98 15598.09 8591.32 11398.80 9993.92 7397.21 8895.94 9897.89 9498.07 10098.34 7199.68 8799.67 96
test196.98 8398.00 8495.78 9593.81 14697.98 15598.09 8591.32 11398.80 9993.92 7397.21 8895.94 9897.89 9498.07 10098.34 7199.68 8799.67 96
casdiffmvs96.93 8597.43 10296.34 8495.70 11199.50 5497.75 9693.22 8798.98 7792.64 9494.97 13191.71 13398.93 5698.62 6898.52 5999.82 1099.72 81
DI_MVS_plusplus_trai96.90 8697.49 9796.21 8695.61 11599.40 6998.72 6092.11 9599.14 5492.98 9293.08 15495.14 10498.13 8698.05 10497.91 9399.74 4499.73 70
diffmvs96.83 8797.33 10796.25 8595.76 10899.34 7898.06 8993.22 8799.43 2092.30 10096.90 9789.83 14298.55 7598.00 10898.14 8299.64 10899.70 86
TSAR-MVS + COLMAP96.79 8896.55 12797.06 6197.70 6998.46 13799.07 4496.23 4399.38 2291.32 10898.80 4285.61 16598.69 6997.64 12996.92 12699.37 16699.06 163
thres20096.76 8996.53 12897.03 6396.31 9199.67 1198.37 7193.99 7097.68 15694.49 6295.83 12386.77 15399.18 3998.26 8797.82 9899.82 1099.66 100
tfpn200view996.75 9096.51 13097.03 6396.31 9199.67 1198.41 6893.99 7097.35 15994.52 6095.90 12086.93 15199.14 4398.26 8797.80 9999.82 1099.70 86
CLD-MVS96.74 9196.51 13097.01 6796.71 8598.62 12698.73 5994.38 6398.94 8194.46 6397.33 8487.03 14998.07 8897.20 14496.87 12799.72 5799.54 123
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thres100view90096.72 9296.47 13397.00 6896.31 9199.52 5298.28 7794.01 6897.35 15994.52 6095.90 12086.93 15199.09 4898.07 10097.87 9599.81 1699.63 109
thres40096.71 9396.45 13597.02 6596.28 9499.63 2498.41 6894.00 6997.82 15194.42 6595.74 12486.26 16099.18 3998.20 9197.79 10099.81 1699.70 86
thres600view796.69 9496.43 13797.00 6896.28 9499.67 1198.41 6893.99 7097.85 15094.29 6895.96 11885.91 16399.19 3798.26 8797.63 10499.82 1099.73 70
test0.0.03 196.69 9498.12 7895.01 10595.49 12298.99 10195.86 14390.82 12198.38 12592.54 9896.66 10397.33 7895.75 14897.75 12298.34 7199.60 12399.40 143
ACMM96.26 996.67 9696.69 12496.66 7497.29 7798.46 13796.48 13395.09 5099.21 4593.19 8798.78 4486.73 15498.17 8297.84 11796.32 14299.74 4499.49 134
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CANet_DTU96.64 9799.08 3893.81 12197.10 8199.42 6598.85 5590.01 13199.31 3079.98 17299.78 299.10 5997.42 10898.35 8498.05 8899.47 15499.53 124
FMVSNet296.64 9797.50 9695.63 10093.81 14697.98 15598.09 8590.87 11998.99 7693.48 8393.17 15195.25 10397.89 9498.63 6798.80 4599.68 8799.67 96
ACMP96.25 1096.62 9996.72 12396.50 8296.96 8398.75 11797.80 9394.30 6598.85 8993.12 8898.78 4486.61 15697.23 11297.73 12396.61 13499.62 11399.71 84
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CDS-MVSNet96.59 10098.02 8394.92 10694.45 13998.96 10497.46 10391.75 10297.86 14990.07 11396.02 11797.25 8196.21 13798.04 10598.38 6699.60 12399.65 103
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CHOSEN 1792x268896.41 10196.99 11895.74 9798.01 6599.72 597.70 9890.78 12399.13 5990.03 11487.35 18795.36 10298.33 8198.59 7398.91 3699.59 12999.87 12
HQP-MVS96.37 10296.58 12596.13 8897.31 7698.44 13998.45 6795.22 4998.86 8788.58 11998.33 6387.00 15097.67 10297.23 14296.56 13699.56 14099.62 110
baseline296.36 10397.82 8994.65 10994.60 13899.09 9796.45 13489.63 13998.36 12691.29 10997.60 8394.13 11996.37 13498.45 8097.70 10299.54 14699.41 140
EPNet_dtu96.30 10498.53 6193.70 12598.97 4998.24 15097.36 10594.23 6698.85 8979.18 17699.19 1898.47 6694.09 17997.89 11498.21 7998.39 18698.85 171
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LGP-MVS_train96.23 10596.89 12095.46 10197.32 7498.77 11398.81 5793.60 7998.58 11485.52 13899.08 2986.67 15597.83 10097.87 11597.51 10999.69 7899.73 70
OPM-MVS96.22 10695.85 14696.65 7597.75 6798.54 13299.00 4995.53 4696.88 17289.88 11595.95 11986.46 15898.07 8897.65 12896.63 13399.67 9598.83 172
ET-MVSNet_ETH3D96.17 10796.99 11895.21 10388.53 20198.54 13298.28 7792.61 9398.85 8993.60 8299.06 3190.39 13798.63 7295.98 17596.68 13199.61 11599.41 140
Vis-MVSNetpermissive96.16 10898.22 7393.75 12295.33 12799.70 1097.27 10990.85 12098.30 12885.51 13995.72 12696.45 8693.69 18698.70 6399.00 2899.84 599.69 90
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IterMVS-LS96.12 10997.48 9894.53 11095.19 12997.56 17997.15 11589.19 14499.08 6488.23 12094.97 13194.73 11097.84 9997.86 11698.26 7799.60 12399.88 10
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FC-MVSNet-test96.07 11097.94 8693.89 11993.60 15198.67 12396.62 12990.30 13098.76 10688.62 11895.57 12997.63 7694.48 17397.97 10997.48 11399.71 6799.52 127
MS-PatchMatch95.99 11197.26 11294.51 11197.46 7198.76 11697.27 10986.97 16499.09 6289.83 11693.51 14697.78 7496.18 13997.53 13395.71 16199.35 16798.41 178
HyFIR lowres test95.99 11196.56 12695.32 10297.99 6699.65 1696.54 13088.86 14698.44 12389.77 11784.14 19697.05 8399.03 5198.55 7598.19 8199.73 5199.86 15
Effi-MVS+95.81 11397.31 11194.06 11795.09 13099.35 7697.24 11188.22 15598.54 11785.38 14098.52 5488.68 14398.70 6798.32 8597.93 9199.74 4499.84 18
FMVSNet195.77 11496.41 13895.03 10493.42 15397.86 16297.11 11889.89 13498.53 11892.00 10389.17 17293.23 12698.15 8598.07 10098.34 7199.61 11599.69 90
Effi-MVS+-dtu95.74 11598.04 8193.06 13993.92 14299.16 9497.90 9088.16 15799.07 6982.02 16098.02 7294.32 11696.74 12398.53 7697.56 10799.61 11599.62 110
testgi95.67 11697.48 9893.56 12895.07 13199.00 9995.33 15488.47 15298.80 9986.90 13097.30 8692.33 12995.97 14597.66 12697.91 9399.60 12399.38 144
MDTV_nov1_ep1395.57 11797.48 9893.35 13695.43 12498.97 10397.19 11483.72 18598.92 8487.91 12497.75 7896.12 9597.88 9796.84 15395.64 16297.96 19098.10 183
TAMVS95.53 11896.50 13294.39 11393.86 14599.03 9896.67 12789.55 14197.33 16190.64 11193.02 15591.58 13496.21 13797.72 12497.43 11799.43 15999.36 145
test-LLR95.50 11997.32 10893.37 13495.49 12298.74 11896.44 13590.82 12198.18 13382.75 15596.60 10694.67 11195.54 15698.09 9796.00 15299.20 17498.93 166
FMVSNet595.42 12096.47 13394.20 11492.26 16495.99 20095.66 14687.15 16397.87 14893.46 8496.68 10293.79 12297.52 10497.10 14897.21 12199.11 17796.62 200
ACMH+95.51 1395.40 12196.00 14094.70 10896.33 8998.79 11096.79 12591.32 11398.77 10587.18 12895.60 12885.46 16696.97 11697.15 14596.59 13599.59 12999.65 103
Fast-Effi-MVS+-dtu95.38 12298.20 7492.09 15093.91 14398.87 10797.35 10685.01 17899.08 6481.09 16498.10 6896.36 8995.62 15398.43 8397.03 12399.55 14299.50 133
Fast-Effi-MVS+95.38 12296.52 12994.05 11894.15 14199.14 9697.24 11186.79 16598.53 11887.62 12694.51 13687.06 14898.76 6598.60 7198.04 8999.72 5799.77 51
CVMVSNet95.33 12497.09 11493.27 13795.23 12898.39 14495.49 15092.58 9497.71 15583.00 15494.44 13893.28 12593.92 18397.79 11898.54 5899.41 16299.45 137
ACMH95.42 1495.27 12595.96 14294.45 11296.83 8498.78 11294.72 16891.67 10598.95 7886.82 13196.42 11183.67 17697.00 11597.48 13596.68 13199.69 7899.76 55
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs495.09 12695.90 14394.14 11592.29 16397.70 16695.45 15190.31 12898.60 11290.70 11093.25 14989.90 14096.67 12697.13 14695.42 16599.44 15899.28 148
EPMVS95.05 12796.86 12292.94 14195.84 10598.96 10496.68 12679.87 19299.05 7090.15 11297.12 9295.99 9797.49 10695.17 18494.75 18297.59 19696.96 196
IB-MVS93.96 1595.02 12896.44 13693.36 13597.05 8299.28 8590.43 19593.39 8298.02 13996.02 3894.92 13392.07 13183.52 20295.38 18095.82 15899.72 5799.59 113
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
SCA94.95 12997.44 10192.04 15195.55 11999.16 9496.26 13879.30 19699.02 7385.73 13798.18 6697.13 8297.69 10196.03 17394.91 17797.69 19597.65 188
TESTMET0.1,194.95 12997.32 10892.20 14892.62 15798.74 11896.44 13586.67 16798.18 13382.75 15596.60 10694.67 11195.54 15698.09 9796.00 15299.20 17498.93 166
IterMVS-SCA-FT94.89 13197.87 8891.42 16494.86 13597.70 16697.24 11184.88 17998.93 8275.74 18894.26 13998.25 6996.69 12498.52 7797.68 10399.10 17899.73 70
test-mter94.86 13297.32 10892.00 15392.41 16198.82 10996.18 14086.35 17198.05 13882.28 15896.48 11094.39 11595.46 16098.17 9396.20 14699.32 16999.13 160
IterMVS94.81 13397.71 9191.42 16494.83 13697.63 17297.38 10485.08 17698.93 8275.67 18994.02 14097.64 7596.66 12798.45 8097.60 10698.90 18199.72 81
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PatchmatchNetpermissive94.70 13497.08 11591.92 15695.53 12098.85 10895.77 14479.54 19498.95 7885.98 13498.52 5496.45 8697.39 10995.32 18194.09 18797.32 19897.38 191
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
RPMNet94.66 13597.16 11391.75 16094.98 13298.59 12997.00 12278.37 20397.98 14183.78 14596.27 11394.09 12196.91 11897.36 13896.73 12999.48 15299.09 161
ADS-MVSNet94.65 13697.04 11791.88 15995.68 11398.99 10195.89 14279.03 19999.15 5185.81 13696.96 9498.21 7197.10 11394.48 19194.24 18697.74 19297.21 192
dps94.63 13795.31 15293.84 12095.53 12098.71 12196.54 13080.12 19197.81 15397.21 2796.98 9392.37 12896.34 13692.46 19891.77 19897.26 20097.08 194
thisisatest051594.61 13896.89 12091.95 15592.00 16898.47 13692.01 19090.73 12498.18 13383.96 14294.51 13695.13 10593.38 18797.38 13794.74 18399.61 11599.79 38
UniMVSNet_NR-MVSNet94.59 13995.47 14993.55 12991.85 17397.89 16195.03 15692.00 9897.33 16186.12 13293.19 15087.29 14796.60 12996.12 17096.70 13099.72 5799.80 30
UniMVSNet (Re)94.58 14095.34 15093.71 12492.25 16598.08 15494.97 15891.29 11797.03 17087.94 12393.97 14286.25 16196.07 14296.27 16795.97 15599.72 5799.79 38
CR-MVSNet94.57 14197.34 10691.33 16794.90 13398.59 12997.15 11579.14 19797.98 14180.42 16896.59 10893.50 12496.85 12098.10 9597.49 11199.50 15199.15 156
MIMVSNet94.49 14297.59 9590.87 17691.74 17698.70 12294.68 17078.73 20197.98 14183.71 14897.71 8194.81 10996.96 11797.97 10997.92 9299.40 16498.04 184
pm-mvs194.27 14395.57 14892.75 14292.58 15898.13 15394.87 16390.71 12596.70 17883.78 14589.94 16889.85 14194.96 17197.58 13197.07 12299.61 11599.72 81
USDC94.26 14494.83 15693.59 12796.02 9898.44 13997.84 9188.65 15098.86 8782.73 15794.02 14080.56 19296.76 12297.28 14196.15 14999.55 14298.50 176
CostFormer94.25 14594.88 15593.51 13195.43 12498.34 14796.21 13980.64 18997.94 14594.01 7198.30 6486.20 16297.52 10492.71 19692.69 19397.23 20198.02 185
tpm cat194.06 14694.90 15493.06 13995.42 12698.52 13496.64 12880.67 18897.82 15192.63 9593.39 14895.00 10696.06 14391.36 20191.58 20096.98 20296.66 199
NR-MVSNet94.01 14794.51 16193.44 13292.56 15997.77 16395.67 14591.57 10797.17 16585.84 13593.13 15280.53 19395.29 16497.01 14996.17 14799.69 7899.75 62
TinyColmap94.00 14894.35 16493.60 12695.89 10398.26 14897.49 10288.82 14798.56 11683.21 15191.28 15980.48 19496.68 12597.34 13996.26 14599.53 14898.24 181
DU-MVS93.98 14994.44 16393.44 13291.66 17897.77 16395.03 15691.57 10797.17 16586.12 13293.13 15281.13 19196.60 12995.10 18697.01 12599.67 9599.80 30
PatchT93.96 15097.36 10590.00 18394.76 13798.65 12490.11 19878.57 20297.96 14480.42 16896.07 11694.10 12096.85 12098.10 9597.49 11199.26 17299.15 156
GA-MVS93.93 15196.31 13991.16 17193.61 15098.79 11095.39 15390.69 12698.25 13173.28 19796.15 11588.42 14494.39 17597.76 12195.35 16699.58 13399.45 137
Baseline_NR-MVSNet93.87 15293.98 17393.75 12291.66 17897.02 19295.53 14991.52 11097.16 16787.77 12587.93 18583.69 17596.35 13595.10 18697.23 12099.68 8799.73 70
tpmrst93.86 15395.88 14491.50 16395.69 11298.62 12695.64 14779.41 19598.80 9983.76 14795.63 12796.13 9497.25 11092.92 19592.31 19597.27 19996.74 197
tfpnnormal93.85 15494.12 16893.54 13093.22 15498.24 15095.45 15191.96 10094.61 19883.91 14390.74 16281.75 18997.04 11497.49 13496.16 14899.68 8799.84 18
TranMVSNet+NR-MVSNet93.67 15594.14 16693.13 13891.28 19297.58 17795.60 14891.97 9997.06 16884.05 14190.64 16582.22 18696.17 14094.94 18996.78 12899.69 7899.78 44
WR-MVS_H93.54 15694.67 15992.22 14691.95 16997.91 16094.58 17488.75 14896.64 17983.88 14490.66 16485.13 16994.40 17496.54 15895.91 15799.73 5199.89 6
TransMVSNet (Re)93.45 15794.08 16992.72 14392.83 15597.62 17594.94 15991.54 10995.65 19583.06 15388.93 17583.53 17794.25 17697.41 13697.03 12399.67 9598.40 180
SixPastTwentyTwo93.44 15895.32 15191.24 16992.11 16698.40 14392.77 18688.64 15198.09 13777.83 18193.51 14685.74 16496.52 13296.91 15194.89 18099.59 12999.73 70
WR-MVS93.43 15994.48 16292.21 14791.52 18597.69 16894.66 17289.98 13296.86 17383.43 14990.12 16685.03 17093.94 18296.02 17495.82 15899.71 6799.82 23
CP-MVSNet93.25 16094.00 17292.38 14591.65 18097.56 17994.38 17789.20 14396.05 18983.16 15289.51 17081.97 18796.16 14196.43 16096.56 13699.71 6799.89 6
UniMVSNet_ETH3D93.15 16192.33 19394.11 11693.91 14398.61 12894.81 16590.98 11897.06 16887.51 12782.27 20076.33 20697.87 9894.79 19097.47 11499.56 14099.81 28
anonymousdsp93.12 16295.86 14589.93 18591.09 19398.25 14995.12 15585.08 17697.44 15873.30 19690.89 16190.78 13695.25 16697.91 11295.96 15699.71 6799.82 23
V4293.05 16393.90 17692.04 15191.91 17097.66 17094.91 16089.91 13396.85 17480.58 16789.66 16983.43 17995.37 16295.03 18894.90 17899.59 12999.78 44
TDRefinement93.04 16493.57 18092.41 14496.58 8698.77 11397.78 9591.96 10098.12 13680.84 16589.13 17479.87 19887.78 19896.44 15994.50 18599.54 14698.15 182
v892.87 16593.87 17791.72 16292.05 16797.50 18294.79 16688.20 15696.85 17480.11 17190.01 16782.86 18395.48 15895.15 18594.90 17899.66 10099.80 30
LTVRE_ROB93.20 1692.84 16694.92 15390.43 18092.83 15598.63 12597.08 12087.87 15997.91 14668.42 20393.54 14579.46 20096.62 12897.55 13297.40 11899.74 4499.92 1
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v114492.81 16794.03 17191.40 16691.68 17797.60 17694.73 16788.40 15396.71 17778.48 17988.14 18284.46 17495.45 16196.31 16695.22 16999.65 10499.76 55
EU-MVSNet92.80 16894.76 15890.51 17891.88 17196.74 19792.48 18888.69 14996.21 18479.00 17791.51 15687.82 14591.83 19595.87 17796.27 14399.21 17398.92 169
v1092.79 16994.06 17091.31 16891.78 17597.29 19194.87 16386.10 17296.97 17179.82 17388.16 18184.56 17395.63 15296.33 16595.31 16799.65 10499.80 30
v2v48292.77 17093.52 18391.90 15891.59 18397.63 17294.57 17590.31 12896.80 17679.22 17588.74 17781.55 19096.04 14495.26 18294.97 17699.66 10099.69 90
PS-CasMVS92.72 17193.36 18491.98 15491.62 18297.52 18194.13 18188.98 14595.94 19281.51 16387.35 18779.95 19795.91 14696.37 16296.49 13899.70 7699.89 6
PEN-MVS92.72 17193.20 18692.15 14991.29 19097.31 18994.67 17189.81 13596.19 18581.83 16188.58 17879.06 20195.61 15495.21 18396.27 14399.72 5799.82 23
pmmvs592.71 17394.27 16590.90 17591.42 18797.74 16593.23 18386.66 16895.99 19178.96 17891.45 15783.44 17895.55 15597.30 14095.05 17499.58 13398.93 166
MVS-HIRNet92.51 17495.97 14188.48 19093.73 14998.37 14590.33 19675.36 20998.32 12777.78 18289.15 17394.87 10795.14 16897.62 13096.39 14098.51 18397.11 193
EG-PatchMatch MVS92.45 17593.92 17590.72 17792.56 15998.43 14194.88 16284.54 18197.18 16479.55 17486.12 19483.23 18093.15 19097.22 14396.00 15299.67 9599.27 150
MDTV_nov1_ep13_2view92.44 17695.66 14788.68 18891.05 19497.92 15992.17 18979.64 19398.83 9476.20 18691.45 15793.51 12395.04 16995.68 17993.70 19097.96 19098.53 175
v119292.43 17793.61 17991.05 17291.53 18497.43 18594.61 17387.99 15896.60 18076.72 18487.11 18982.74 18495.85 14796.35 16495.30 16899.60 12399.74 66
DTE-MVSNet92.42 17892.85 18991.91 15790.87 19596.97 19394.53 17689.81 13595.86 19481.59 16288.83 17677.88 20495.01 17094.34 19296.35 14199.64 10899.73 70
v14419292.38 17993.55 18291.00 17391.44 18697.47 18494.27 17887.41 16296.52 18278.03 18087.50 18682.65 18595.32 16395.82 17895.15 17199.55 14299.78 44
tpm92.38 17994.79 15789.56 18694.30 14097.50 18294.24 18078.97 20097.72 15474.93 19397.97 7382.91 18196.60 12993.65 19494.81 18198.33 18798.98 164
v192192092.36 18193.57 18090.94 17491.39 18897.39 18794.70 16987.63 16196.60 18076.63 18586.98 19082.89 18295.75 14896.26 16895.14 17299.55 14299.73 70
v14892.36 18192.88 18891.75 16091.63 18197.66 17092.64 18790.55 12796.09 18783.34 15088.19 18080.00 19692.74 19193.98 19394.58 18499.58 13399.69 90
N_pmnet92.21 18394.60 16089.42 18791.88 17197.38 18889.15 20189.74 13897.89 14773.75 19587.94 18492.23 13093.85 18496.10 17193.20 19298.15 18997.43 190
v124091.99 18493.33 18590.44 17991.29 19097.30 19094.25 17986.79 16596.43 18375.49 19186.34 19381.85 18895.29 16496.42 16195.22 16999.52 14999.73 70
pmmvs691.90 18592.53 19291.17 17091.81 17497.63 17293.23 18388.37 15493.43 20380.61 16677.32 20487.47 14694.12 17896.58 15695.72 16098.88 18299.53 124
v7n91.61 18692.95 18790.04 18290.56 19697.69 16893.74 18285.59 17495.89 19376.95 18386.60 19278.60 20393.76 18597.01 14994.99 17599.65 10499.87 12
gg-mvs-nofinetune90.85 18794.14 16687.02 19394.89 13499.25 8798.64 6176.29 20788.24 20757.50 21079.93 20295.45 10195.18 16798.77 5798.07 8799.62 11399.24 152
CMPMVSbinary70.31 1890.74 18891.06 19590.36 18197.32 7497.43 18592.97 18587.82 16093.50 20275.34 19283.27 19884.90 17192.19 19492.64 19791.21 20196.50 20494.46 203
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2023120690.70 18993.93 17486.92 19490.21 19996.79 19590.30 19786.61 16996.05 18969.25 20288.46 17984.86 17285.86 20097.11 14796.47 13999.30 17097.80 187
test20.0390.65 19093.71 17887.09 19290.44 19796.24 19889.74 20085.46 17595.59 19672.99 19890.68 16385.33 16784.41 20195.94 17695.10 17399.52 14997.06 195
new_pmnet90.45 19192.84 19087.66 19188.96 20096.16 19988.71 20284.66 18097.56 15771.91 20185.60 19586.58 15793.28 18896.07 17293.54 19198.46 18494.39 204
pmmvs-eth3d89.81 19289.65 19890.00 18386.94 20395.38 20291.08 19186.39 17094.57 19982.27 15983.03 19964.94 20993.96 18196.57 15793.82 18999.35 16799.24 152
PM-MVS89.55 19390.30 19788.67 18987.06 20295.60 20190.88 19384.51 18296.14 18675.75 18786.89 19163.47 21294.64 17296.85 15293.89 18899.17 17699.29 147
gm-plane-assit89.44 19492.82 19185.49 19791.37 18995.34 20379.55 21082.12 18691.68 20664.79 20787.98 18380.26 19595.66 15198.51 7997.56 10799.45 15698.41 178
MIMVSNet188.61 19590.68 19686.19 19681.56 20895.30 20487.78 20385.98 17394.19 20172.30 20078.84 20378.90 20290.06 19696.59 15595.47 16399.46 15595.49 202
pmmvs388.19 19691.27 19484.60 19985.60 20593.66 20685.68 20581.13 18792.36 20563.66 20989.51 17077.10 20593.22 18996.37 16292.40 19498.30 18897.46 189
MDA-MVSNet-bldmvs87.84 19789.22 19986.23 19581.74 20796.77 19683.74 20689.57 14094.50 20072.83 19996.64 10464.47 21192.71 19281.43 20692.28 19696.81 20398.47 177
new-patchmatchnet86.12 19887.30 20084.74 19886.92 20495.19 20583.57 20784.42 18392.67 20465.66 20480.32 20164.72 21089.41 19792.33 20089.21 20298.43 18596.69 198
FPMVS83.82 19984.61 20182.90 20090.39 19890.71 20890.85 19484.10 18495.47 19765.15 20583.44 19774.46 20775.48 20481.63 20579.42 20791.42 20987.14 208
Gipumacopyleft81.40 20081.78 20280.96 20283.21 20685.61 21179.73 20976.25 20897.33 16164.21 20855.32 20855.55 21386.04 19992.43 19992.20 19796.32 20593.99 205
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS277.26 20179.47 20474.70 20476.00 21188.37 21074.22 21176.34 20678.31 20954.13 21169.96 20652.50 21470.14 20884.83 20488.71 20397.35 19793.58 206
PMVScopyleft72.60 1776.39 20277.66 20574.92 20381.04 20969.37 21568.47 21280.54 19085.39 20865.07 20673.52 20572.91 20865.67 21080.35 20776.81 20888.71 21085.25 211
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
GG-mvs-BLEND69.11 20398.13 7735.26 2083.49 21798.20 15294.89 1612.38 21498.42 1245.82 21796.37 11298.60 635.97 21398.75 6097.98 9099.01 17998.61 173
E-PMN68.30 20468.43 20668.15 20574.70 21371.56 21455.64 21477.24 20477.48 21139.46 21351.95 21141.68 21673.28 20670.65 20979.51 20688.61 21186.20 210
EMVS68.12 20568.11 20768.14 20675.51 21271.76 21355.38 21577.20 20577.78 21037.79 21453.59 20943.61 21574.72 20567.05 21076.70 20988.27 21286.24 209
MVEpermissive67.97 1965.53 20667.43 20863.31 20759.33 21474.20 21253.09 21670.43 21066.27 21243.13 21245.98 21230.62 21770.65 20779.34 20886.30 20483.25 21389.33 207
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs31.24 20740.15 20920.86 20912.61 21517.99 21625.16 21713.30 21248.42 21324.82 21553.07 21030.13 21928.47 21142.73 21137.65 21020.79 21451.04 212
test12326.75 20834.25 21018.01 2107.93 21617.18 21724.85 21812.36 21344.83 21416.52 21641.80 21318.10 22028.29 21233.08 21234.79 21118.10 21549.95 213
uanet_test0.00 2090.00 2110.00 2110.00 2180.00 2180.00 2190.00 2150.00 2150.00 2180.00 2140.00 2210.00 2140.00 2130.00 2120.00 2160.00 214
sosnet-low-res0.00 2090.00 2110.00 2110.00 2180.00 2180.00 2190.00 2150.00 2150.00 2180.00 2140.00 2210.00 2140.00 2130.00 2120.00 2160.00 214
sosnet0.00 2090.00 2110.00 2110.00 2180.00 2180.00 2190.00 2150.00 2150.00 2180.00 2140.00 2210.00 2140.00 2130.00 2120.00 2160.00 214
9.1499.79 44
SR-MVS99.67 1298.25 1399.94 24
Anonymous20240521197.40 10396.45 8799.54 4898.08 8893.79 7398.24 13293.55 14494.41 11498.88 6398.04 10598.24 7899.75 3999.76 55
our_test_392.30 16297.58 17790.09 199
test_part199.62 110
ambc80.99 20380.04 21090.84 20790.91 19296.09 18774.18 19462.81 20730.59 21882.44 20396.25 16991.77 19895.91 20698.56 174
MTAPA98.09 1499.97 6
MTMP98.46 1099.96 11
Patchmatch-RL test66.86 213
tmp_tt82.25 20197.73 6888.71 20980.18 20868.65 21199.15 5186.98 12999.47 885.31 16868.35 20987.51 20383.81 20591.64 208
XVS97.42 7299.62 2898.59 6393.81 7799.95 1699.69 78
X-MVStestdata97.42 7299.62 2898.59 6393.81 7799.95 1699.69 78
abl_698.09 3999.33 4199.22 9198.79 5894.96 5398.52 12097.00 3197.30 8699.86 3698.76 6599.69 7899.41 140
mPP-MVS99.53 2999.89 33
NP-MVS98.57 115
Patchmtry98.59 12997.15 11579.14 19780.42 168
DeepMVS_CXcopyleft96.85 19487.43 20489.27 14298.30 12875.55 19095.05 13079.47 19992.62 19389.48 20295.18 20795.96 201