This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS95.61 196.36 194.73 296.84 1998.15 297.08 392.92 295.64 291.84 495.98 495.33 192.83 696.00 194.94 396.90 498.45 2
DVP-MVS95.56 296.26 294.73 296.93 1698.19 196.62 692.81 496.15 191.73 595.01 795.31 293.41 195.95 294.77 796.90 498.46 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft95.53 396.13 394.82 196.81 2298.05 397.42 193.09 194.31 891.49 697.12 195.03 393.27 395.55 594.58 1196.86 698.25 3
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS95.23 495.69 594.70 497.12 1097.81 597.19 292.83 395.06 590.98 1096.47 292.77 1093.38 295.34 894.21 1596.68 898.17 4
MSP-MVS95.12 595.83 494.30 596.82 2197.94 496.98 492.37 1195.40 390.59 1396.16 393.71 592.70 794.80 1594.77 796.37 1497.99 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SMA-MVScopyleft94.70 695.35 693.93 1297.57 297.57 795.98 1191.91 1394.50 690.35 1493.46 1792.72 1191.89 1895.89 395.22 195.88 2898.10 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS94.61 794.96 994.20 896.75 2497.07 1195.82 1892.60 693.98 1291.09 895.89 592.54 1291.93 1594.40 2793.56 2897.04 297.27 16
HPM-MVS++copyleft94.60 894.91 1094.24 797.86 196.53 3296.14 892.51 893.87 1590.76 1293.45 1893.84 492.62 895.11 1194.08 1895.58 5197.48 13
SD-MVS94.53 995.22 793.73 1595.69 3697.03 1495.77 2291.95 1294.41 791.35 794.97 893.34 791.80 2094.72 1893.99 1995.82 3598.07 6
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.94.48 1094.97 893.90 1395.53 3797.01 1596.69 590.71 2494.24 990.92 1194.97 892.19 1593.03 494.83 1493.60 2696.51 1397.97 8
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVScopyleft94.37 1194.47 1594.26 697.18 896.99 1696.53 792.68 592.45 2489.96 1794.53 1191.63 2092.89 594.58 2193.82 2296.31 1797.26 18
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS94.37 1194.65 1194.04 1197.29 697.11 1096.00 1092.43 1093.45 1689.85 1990.92 2593.04 892.59 995.77 494.82 596.11 2297.42 15
SteuartSystems-ACMMP94.06 1394.65 1193.38 1996.97 1597.36 896.12 991.78 1492.05 2887.34 3094.42 1290.87 2491.87 1995.47 794.59 1096.21 2097.77 10
Skip Steuart: Steuart Systems R&D Blog.
HFP-MVS94.02 1494.22 1793.78 1497.25 796.85 2095.81 2090.94 2394.12 1090.29 1694.09 1489.98 3192.52 1093.94 3393.49 3395.87 3097.10 23
ACMMP_NAP93.94 1594.49 1493.30 2097.03 1397.31 995.96 1291.30 1893.41 1888.55 2493.00 1990.33 2891.43 2695.53 694.41 1395.53 5397.47 14
MCST-MVS93.81 1694.06 1893.53 1796.79 2396.85 2095.95 1391.69 1692.20 2687.17 3290.83 2793.41 691.96 1494.49 2593.50 3197.61 197.12 22
zzz-MVS93.80 1793.45 2594.20 897.53 396.43 3695.88 1791.12 2094.09 1192.74 387.68 3390.77 2592.04 1394.74 1793.56 2895.91 2796.85 27
ACMMPR93.72 1893.94 1993.48 1897.07 1196.93 1795.78 2190.66 2693.88 1489.24 2193.53 1689.08 3892.24 1193.89 3593.50 3195.88 2896.73 31
NCCC93.69 1993.66 2293.72 1697.37 596.66 2995.93 1692.50 993.40 1988.35 2587.36 3592.33 1492.18 1294.89 1394.09 1796.00 2496.91 26
MP-MVScopyleft93.35 2093.59 2393.08 2397.39 496.82 2295.38 2590.71 2490.82 3688.07 2792.83 2190.29 2991.32 2794.03 3093.19 3995.61 4997.16 20
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVS93.25 2193.26 2693.24 2196.84 1996.51 3395.52 2490.61 2792.37 2588.88 2290.91 2689.52 3491.91 1793.64 3792.78 4695.69 4297.09 24
DeepC-MVS_fast88.76 193.10 2293.02 2993.19 2297.13 996.51 3395.35 2691.19 1993.14 2188.14 2685.26 4189.49 3591.45 2395.17 995.07 295.85 3396.48 34
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + ACMM92.97 2394.51 1391.16 3795.88 3496.59 3095.09 2990.45 3093.42 1783.01 5394.68 1090.74 2688.74 4294.75 1693.78 2393.82 13197.63 11
xxxxxxxxxxxxxcwj92.95 2491.88 3394.20 896.75 2497.07 1195.82 1892.60 693.98 1291.09 895.89 571.01 12791.93 1594.40 2793.56 2897.04 297.27 16
train_agg92.87 2593.53 2492.09 3096.88 1895.38 4995.94 1490.59 2890.65 3883.65 5194.31 1391.87 1990.30 3193.38 4092.42 4795.17 7096.73 31
PGM-MVS92.76 2693.03 2892.45 2897.03 1396.67 2895.73 2387.92 4290.15 4386.53 3692.97 2088.33 4491.69 2193.62 3893.03 4095.83 3496.41 38
CSCG92.76 2693.16 2792.29 2996.30 2897.74 694.67 3388.98 3692.46 2389.73 2086.67 3792.15 1788.69 4392.26 5592.92 4495.40 5897.89 9
TSAR-MVS + GP.92.71 2893.91 2091.30 3591.96 7296.00 4193.43 4187.94 4192.53 2286.27 4093.57 1591.94 1891.44 2593.29 4192.89 4596.78 797.15 21
DeepPCF-MVS88.51 292.64 2994.42 1690.56 4194.84 4496.92 1891.31 6189.61 3295.16 484.55 4689.91 2991.45 2190.15 3495.12 1094.81 692.90 15097.58 12
X-MVS92.36 3092.75 3091.90 3396.89 1796.70 2595.25 2790.48 2991.50 3383.95 4888.20 3188.82 4089.11 3893.75 3693.43 3595.75 4096.83 29
DeepC-MVS87.86 392.26 3191.86 3492.73 2596.18 2996.87 1995.19 2891.76 1592.17 2786.58 3581.79 5185.85 5190.88 2994.57 2294.61 995.80 3697.18 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS92.05 3293.74 2190.08 4494.96 4197.06 1393.11 4587.71 4490.71 3780.78 6892.40 2291.03 2287.68 5494.32 2994.48 1296.21 2096.16 41
ACMMPcopyleft92.03 3392.16 3191.87 3495.88 3496.55 3194.47 3589.49 3391.71 3185.26 4291.52 2484.48 5690.21 3392.82 4991.63 5395.92 2696.42 37
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MSLP-MVS++92.02 3491.40 3792.75 2496.01 3295.88 4493.73 4089.00 3489.89 4490.31 1581.28 5888.85 3991.45 2392.88 4894.24 1496.00 2496.76 30
DPM-MVS91.72 3591.48 3592.00 3195.53 3795.75 4595.94 1491.07 2191.20 3485.58 4181.63 5590.74 2688.40 4693.40 3993.75 2495.45 5793.85 83
3Dnovator+86.06 491.60 3690.86 4292.47 2796.00 3396.50 3594.70 3287.83 4390.49 3989.92 1874.68 9189.35 3690.66 3094.02 3194.14 1695.67 4496.85 27
CPTT-MVS91.39 3790.95 4091.91 3295.06 3995.24 5195.02 3088.98 3691.02 3586.71 3484.89 4388.58 4391.60 2290.82 8289.67 9494.08 11896.45 36
CANet91.33 3891.46 3691.18 3695.01 4096.71 2493.77 3887.39 4687.72 5187.26 3181.77 5289.73 3287.32 6094.43 2693.86 2196.31 1796.02 44
CDPH-MVS91.14 3992.01 3290.11 4396.18 2996.18 3994.89 3188.80 3888.76 4877.88 8589.18 3087.71 4787.29 6193.13 4393.31 3795.62 4795.84 46
MVS_030490.88 4091.35 3890.34 4293.91 5296.79 2394.49 3486.54 5086.57 5582.85 5581.68 5489.70 3387.57 5694.64 2093.93 2096.67 1096.15 42
MVS_111021_HR90.56 4191.29 3989.70 4994.71 4695.63 4791.81 5786.38 5187.53 5281.29 6387.96 3285.43 5387.69 5393.90 3492.93 4396.33 1595.69 49
3Dnovator85.17 590.48 4289.90 4891.16 3794.88 4395.74 4693.82 3785.36 5789.28 4587.81 2874.34 9387.40 4888.56 4493.07 4493.74 2596.53 1295.71 48
AdaColmapbinary90.29 4388.38 5892.53 2696.10 3195.19 5292.98 4691.40 1789.08 4788.65 2378.35 7281.44 7091.30 2890.81 8390.21 7794.72 9093.59 89
OMC-MVS90.23 4490.40 4390.03 4593.45 5795.29 5091.89 5686.34 5293.25 2084.94 4581.72 5386.65 5088.90 3991.69 6390.27 7694.65 9593.95 81
MVS_111021_LR90.14 4590.89 4189.26 5393.23 5994.05 7190.43 6784.65 6290.16 4284.52 4790.14 2883.80 6087.99 5092.50 5390.92 6294.74 8894.70 68
DELS-MVS89.71 4689.68 5089.74 4793.75 5496.22 3893.76 3985.84 5382.53 7485.05 4478.96 6984.24 5884.25 7794.91 1294.91 495.78 3996.02 44
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EPNet89.60 4789.91 4789.24 5496.45 2793.61 7692.95 4788.03 4085.74 5983.36 5287.29 3683.05 6380.98 9692.22 5691.85 5193.69 13695.58 52
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CS-MVS89.50 4890.33 4488.52 6290.14 9694.40 6591.00 6480.28 11584.74 6982.81 5782.72 4787.23 4990.22 3294.66 1993.48 3496.67 1095.07 58
QAPM89.49 4989.58 5189.38 5294.73 4595.94 4292.35 4985.00 6085.69 6080.03 7276.97 7987.81 4687.87 5192.18 5992.10 4996.33 1596.40 39
canonicalmvs89.36 5089.92 4688.70 5891.38 7595.92 4391.81 5782.61 9490.37 4082.73 5882.09 4979.28 8588.30 4891.17 7193.59 2795.36 6197.04 25
ETV-MVS89.22 5189.76 4988.60 6091.60 7394.61 6289.48 8283.46 8185.20 6381.58 6182.75 4682.59 6588.80 4094.57 2293.28 3896.68 895.31 56
HQP-MVS89.13 5289.58 5188.60 6093.53 5693.67 7493.29 4387.58 4588.53 4975.50 9087.60 3480.32 7587.07 6290.66 8889.95 8594.62 9796.35 40
TAPA-MVS84.37 788.91 5388.93 5488.89 5593.00 6394.85 5892.00 5384.84 6191.68 3280.05 7179.77 6484.56 5588.17 4990.11 9389.00 11195.30 6592.57 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CS-MVS-test88.71 5489.94 4587.27 7289.50 10194.42 6389.94 7379.65 12485.35 6178.11 8281.53 5784.35 5790.12 3594.52 2492.95 4296.29 1996.48 34
PCF-MVS84.60 688.66 5587.75 6889.73 4893.06 6296.02 4093.22 4490.00 3182.44 7780.02 7377.96 7585.16 5487.36 5988.54 11288.54 11694.72 9095.61 51
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CLD-MVS88.66 5588.52 5688.82 5691.37 7694.22 6792.82 4882.08 9788.27 5085.14 4381.86 5078.53 8985.93 7191.17 7190.61 7095.55 5295.00 60
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PLCcopyleft83.76 988.61 5786.83 7490.70 3994.22 4992.63 9391.50 5987.19 4789.16 4686.87 3375.51 8680.87 7289.98 3690.01 9489.20 10594.41 11090.45 144
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TSAR-MVS + COLMAP88.40 5889.09 5387.60 7092.72 6793.92 7392.21 5085.57 5691.73 3073.72 10091.75 2373.22 11987.64 5591.49 6589.71 9393.73 13491.82 125
CNLPA88.40 5887.00 7290.03 4593.73 5594.28 6689.56 8085.81 5491.87 2987.55 2969.53 11981.49 6989.23 3789.45 10388.59 11594.31 11493.82 84
MAR-MVS88.39 6088.44 5788.33 6594.90 4295.06 5490.51 6683.59 7585.27 6279.07 7677.13 7782.89 6487.70 5292.19 5892.32 4894.23 11594.20 79
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ACMP83.90 888.32 6188.06 6188.62 5992.18 7093.98 7291.28 6285.24 5886.69 5481.23 6485.62 3975.13 10387.01 6489.83 9689.77 9194.79 8495.43 55
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LGP-MVS_train88.25 6288.55 5587.89 6692.84 6693.66 7593.35 4285.22 5985.77 5874.03 9986.60 3876.29 9986.62 6791.20 6990.58 7295.29 6695.75 47
PVSNet_BlendedMVS88.19 6388.00 6388.42 6392.71 6894.82 5989.08 8783.81 7084.91 6686.38 3779.14 6678.11 9082.66 8493.05 4591.10 5795.86 3194.86 64
PVSNet_Blended88.19 6388.00 6388.42 6392.71 6894.82 5989.08 8783.81 7084.91 6686.38 3779.14 6678.11 9082.66 8493.05 4591.10 5795.86 3194.86 64
EIA-MVS87.94 6588.05 6287.81 6791.46 7495.00 5688.67 9482.81 8682.53 7480.81 6780.04 6280.20 7687.48 5792.58 5291.61 5495.63 4694.36 73
OpenMVScopyleft82.53 1187.71 6686.84 7388.73 5794.42 4895.06 5491.02 6383.49 7882.50 7682.24 6067.62 13185.48 5285.56 7291.19 7091.30 5695.67 4494.75 66
ACMM83.27 1087.68 6786.09 8089.54 5193.26 5892.19 9991.43 6086.74 4986.02 5782.85 5575.63 8575.14 10288.41 4590.68 8789.99 8294.59 9892.97 96
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OPM-MVS87.56 6885.80 8489.62 5093.90 5394.09 7094.12 3688.18 3975.40 12977.30 8876.41 8077.93 9288.79 4192.20 5790.82 6495.40 5893.72 87
casdiffmvs87.45 6987.15 7187.79 6990.15 9594.22 6789.96 7283.93 6985.08 6480.91 6575.81 8477.88 9386.08 6991.86 6290.86 6395.74 4194.37 72
PVSNet_Blended_VisFu87.40 7087.80 6586.92 7492.86 6495.40 4888.56 9883.45 8279.55 10482.26 5974.49 9284.03 5979.24 12692.97 4791.53 5595.15 7296.65 33
MVS_Test86.93 7187.24 7086.56 7590.10 9793.47 7890.31 6880.12 11783.55 7178.12 8079.58 6579.80 8085.45 7390.17 9290.59 7195.29 6693.53 90
EPP-MVSNet86.55 7287.76 6785.15 8490.52 8694.41 6487.24 11582.32 9681.79 8373.60 10178.57 7182.41 6682.07 9091.23 6790.39 7495.14 7395.48 53
diffmvs86.52 7386.76 7686.23 7788.31 11392.63 9389.58 7981.61 10186.14 5680.26 7079.00 6877.27 9583.58 7888.94 10889.06 10894.05 12094.29 74
DI_MVS_plusplus_trai86.41 7485.54 8687.42 7189.24 10393.13 8292.16 5282.65 9282.30 7880.75 6968.30 12780.41 7485.01 7490.56 8990.07 8094.70 9294.01 80
IS_MVSNet86.18 7588.18 6083.85 10391.02 7994.72 6187.48 10982.46 9581.05 9170.28 11576.98 7882.20 6876.65 14293.97 3293.38 3695.18 6994.97 61
UA-Net86.07 7687.78 6684.06 10092.85 6595.11 5387.73 10684.38 6373.22 14973.18 10379.99 6389.22 3771.47 17093.22 4293.03 4094.76 8790.69 139
MVSTER86.03 7786.12 7985.93 7988.62 10989.93 12689.33 8479.91 12281.87 8281.35 6281.07 5974.91 10480.66 10192.13 6090.10 7995.68 4392.80 102
LS3D85.96 7884.37 9387.81 6794.13 5093.27 8190.26 7089.00 3484.91 6672.84 10871.74 10572.47 12187.45 5889.53 10289.09 10793.20 14689.60 147
UGNet85.90 7988.23 5983.18 11088.96 10794.10 6987.52 10883.60 7481.66 8477.90 8480.76 6083.19 6266.70 18791.13 7690.71 6894.39 11196.06 43
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DCV-MVSNet85.88 8086.17 7885.54 8289.10 10689.85 12889.34 8380.70 10783.04 7278.08 8376.19 8279.00 8682.42 8789.67 9990.30 7593.63 13995.12 57
CANet_DTU85.43 8187.72 6982.76 11490.95 8293.01 8689.99 7175.46 16582.67 7364.91 14583.14 4580.09 7780.68 10092.03 6191.03 5994.57 10092.08 120
Effi-MVS+85.33 8285.08 8885.63 8189.69 9993.42 7989.90 7480.31 11479.32 10572.48 11073.52 9974.03 11086.55 6890.99 7889.98 8394.83 8394.27 78
FC-MVSNet-train85.18 8385.31 8785.03 8590.67 8391.62 10487.66 10783.61 7379.75 10274.37 9778.69 7071.21 12578.91 12791.23 6789.96 8494.96 7894.69 69
thisisatest053085.15 8485.86 8284.33 9389.19 10592.57 9687.22 11680.11 11882.15 8074.41 9678.15 7373.80 11379.90 11490.99 7889.58 9595.13 7493.75 86
tttt051785.11 8585.81 8384.30 9489.24 10392.68 9287.12 12080.11 11881.98 8174.31 9878.08 7473.57 11579.90 11491.01 7789.58 9595.11 7693.77 85
baseline84.89 8686.06 8183.52 10887.25 12589.67 13587.76 10575.68 16484.92 6578.40 7880.10 6180.98 7180.20 11086.69 13787.05 13191.86 16292.99 95
ET-MVSNet_ETH3D84.65 8785.58 8583.56 10774.99 20892.62 9590.29 6980.38 10982.16 7973.01 10783.41 4471.10 12687.05 6387.77 12190.17 7895.62 4791.82 125
GeoE84.62 8883.98 9585.35 8389.34 10292.83 8988.34 9978.95 13379.29 10677.16 8968.10 12874.56 10683.40 8089.31 10589.23 10494.92 7994.57 71
baseline184.54 8984.43 9284.67 8890.62 8491.16 10788.63 9683.75 7279.78 10171.16 11175.14 8874.10 10977.84 13591.56 6490.67 6996.04 2388.58 153
GBi-Net84.51 9084.80 8984.17 9784.20 16089.95 12389.70 7680.37 11081.17 8775.50 9069.63 11579.69 8279.75 11890.73 8490.72 6595.52 5491.71 127
test184.51 9084.80 8984.17 9784.20 16089.95 12389.70 7680.37 11081.17 8775.50 9069.63 11579.69 8279.75 11890.73 8490.72 6595.52 5491.71 127
FMVSNet384.44 9284.64 9184.21 9684.32 15990.13 12189.85 7580.37 11081.17 8775.50 9069.63 11579.69 8279.62 12189.72 9890.52 7395.59 5091.58 133
Anonymous2023121184.42 9383.02 9986.05 7888.85 10892.70 9188.92 9383.40 8379.99 9978.31 7955.83 18778.92 8783.33 8189.06 10789.76 9293.50 14194.90 62
Vis-MVSNetpermissive84.38 9486.68 7781.70 12487.65 12194.89 5788.14 10180.90 10674.48 13568.23 12777.53 7680.72 7369.98 17492.68 5091.90 5095.33 6494.58 70
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FMVSNet283.87 9583.73 9784.05 10184.20 16089.95 12389.70 7680.21 11679.17 10874.89 9465.91 13677.49 9479.75 11890.87 8191.00 6195.52 5491.71 127
MSDG83.87 9581.02 11887.19 7392.17 7189.80 13089.15 8585.72 5580.61 9679.24 7566.66 13468.75 13782.69 8387.95 11987.44 12594.19 11685.92 176
Fast-Effi-MVS+83.77 9782.98 10084.69 8687.98 11491.87 10188.10 10277.70 14778.10 11473.04 10569.13 12168.51 13886.66 6590.49 9089.85 8894.67 9392.88 98
DROMVSNet83.77 9782.98 10084.69 8687.98 11491.87 10188.10 10277.70 14778.10 11473.04 10569.13 12168.51 13886.66 6590.49 9089.85 8894.67 9392.88 98
Vis-MVSNet (Re-imp)83.65 9986.81 7579.96 14490.46 8992.71 9084.84 14582.00 9880.93 9362.44 16076.29 8182.32 6765.54 19092.29 5491.66 5294.49 10591.47 134
RPSCF83.46 10083.36 9883.59 10687.75 11787.35 16284.82 14679.46 12883.84 7078.12 8082.69 4879.87 7882.60 8682.47 18281.13 18588.78 18786.13 174
PatchMatch-RL83.34 10181.36 11385.65 8090.33 9289.52 13884.36 14981.82 9980.87 9579.29 7474.04 9462.85 15986.05 7088.40 11587.04 13292.04 15986.77 169
IterMVS-LS83.28 10282.95 10283.65 10488.39 11288.63 15386.80 12478.64 13876.56 12173.43 10272.52 10475.35 10180.81 9886.43 14388.51 11793.84 13092.66 107
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_part183.23 10380.55 12586.35 7688.60 11090.61 11290.78 6581.13 10570.89 16083.01 5355.72 18874.60 10582.19 8887.79 12089.26 10292.39 15595.01 59
tfpn200view982.86 10481.46 11184.48 9090.30 9393.09 8389.05 8982.71 8875.14 13069.56 11865.72 13863.13 15480.38 10791.15 7389.51 9794.91 8092.50 116
baseline282.80 10582.86 10382.73 11587.68 12090.50 11484.92 14478.93 13478.07 11673.06 10475.08 8969.77 13277.31 13888.90 10986.94 13394.50 10390.74 138
thres20082.77 10681.25 11584.54 8990.38 9093.05 8489.13 8682.67 9074.40 13669.53 12065.69 14063.03 15780.63 10291.15 7389.42 9994.88 8192.04 122
thres40082.68 10781.15 11684.47 9190.52 8692.89 8888.95 9282.71 8874.33 13769.22 12365.31 14262.61 16080.63 10290.96 8089.50 9894.79 8492.45 118
IB-MVS79.09 1282.60 10882.19 10683.07 11191.08 7893.55 7780.90 17681.35 10276.56 12180.87 6664.81 14869.97 13168.87 17785.64 15190.06 8195.36 6194.74 67
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres100view90082.55 10981.01 12084.34 9290.30 9392.27 9789.04 9082.77 8775.14 13069.56 11865.72 13863.13 15479.62 12189.97 9589.26 10294.73 8991.61 132
thres600view782.53 11081.02 11884.28 9590.61 8593.05 8488.57 9782.67 9074.12 14068.56 12665.09 14562.13 16580.40 10691.15 7389.02 11094.88 8192.59 110
CHOSEN 1792x268882.16 11180.91 12183.61 10591.14 7792.01 10089.55 8179.15 13279.87 10070.29 11452.51 19672.56 12081.39 9288.87 11088.17 11990.15 18092.37 119
Effi-MVS+-dtu82.05 11281.76 10882.38 11887.72 11890.56 11386.90 12378.05 14373.85 14366.85 13271.29 10771.90 12382.00 9186.64 13885.48 15792.76 15292.58 111
EPNet_dtu81.98 11383.82 9679.83 14694.10 5185.97 17187.29 11384.08 6880.61 9659.96 17881.62 5677.19 9662.91 19487.21 12586.38 14490.66 17687.77 164
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UniMVSNet_NR-MVSNet81.87 11481.33 11482.50 11685.31 14691.30 10585.70 13484.25 6475.89 12564.21 14766.95 13364.65 15080.22 10887.07 12789.18 10695.27 6894.29 74
ACMH78.52 1481.86 11580.45 12683.51 10990.51 8891.22 10685.62 13784.23 6570.29 16662.21 16169.04 12464.05 15284.48 7687.57 12388.45 11894.01 12292.54 114
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+79.08 1381.84 11680.06 13183.91 10289.92 9890.62 11186.21 12983.48 8073.88 14265.75 13866.38 13565.30 14884.63 7585.90 14887.25 12893.45 14291.13 137
MS-PatchMatch81.79 11781.44 11282.19 12190.35 9189.29 14288.08 10475.36 16677.60 11769.00 12464.37 15178.87 8877.14 14188.03 11885.70 15593.19 14786.24 173
PMMVS81.65 11884.05 9478.86 15178.56 19982.63 19383.10 15767.22 19581.39 8570.11 11784.91 4279.74 8182.12 8987.31 12485.70 15592.03 16086.67 172
FMVSNet181.64 11980.61 12382.84 11382.36 18589.20 14488.67 9479.58 12670.79 16172.63 10958.95 17872.26 12279.34 12490.73 8490.72 6594.47 10691.62 131
CDS-MVSNet81.63 12082.09 10781.09 13387.21 12690.28 11787.46 11180.33 11369.06 17070.66 11271.30 10673.87 11167.99 18089.58 10089.87 8792.87 15190.69 139
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HyFIR lowres test81.62 12179.45 14184.14 9991.00 8093.38 8088.27 10078.19 14176.28 12370.18 11648.78 20073.69 11483.52 7987.05 12887.83 12393.68 13789.15 150
UniMVSNet (Re)81.22 12281.08 11781.39 12885.35 14591.76 10384.93 14382.88 8576.13 12465.02 14464.94 14663.09 15675.17 15087.71 12289.04 10994.97 7794.88 63
DU-MVS81.20 12380.30 12782.25 11984.98 15390.94 10985.70 13483.58 7675.74 12664.21 14765.30 14359.60 17880.22 10886.89 13089.31 10094.77 8694.29 74
CostFormer80.94 12480.21 12881.79 12387.69 11988.58 15487.47 11070.66 18180.02 9877.88 8573.03 10071.40 12478.24 13179.96 19179.63 18788.82 18688.84 151
USDC80.69 12579.89 13481.62 12686.48 13289.11 14786.53 12678.86 13581.15 9063.48 15372.98 10159.12 18381.16 9487.10 12685.01 16193.23 14584.77 181
TranMVSNet+NR-MVSNet80.52 12679.84 13581.33 13084.92 15590.39 11585.53 13984.22 6674.27 13860.68 17664.93 14759.96 17377.48 13786.75 13589.28 10195.12 7593.29 91
COLMAP_ROBcopyleft76.78 1580.50 12778.49 14682.85 11290.96 8189.65 13686.20 13083.40 8377.15 11966.54 13362.27 15665.62 14777.89 13485.23 15884.70 16592.11 15884.83 180
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CHOSEN 280x42080.28 12881.66 10978.67 15582.92 17879.24 20585.36 14066.79 19778.11 11370.32 11375.03 9079.87 7881.09 9589.07 10683.16 17585.54 20287.17 166
NR-MVSNet80.25 12979.98 13380.56 13985.20 14890.94 10985.65 13683.58 7675.74 12661.36 17165.30 14356.75 19172.38 16688.46 11488.80 11395.16 7193.87 82
pmmvs479.99 13078.08 15282.22 12083.04 17587.16 16584.95 14278.80 13778.64 11174.53 9564.61 14959.41 17979.45 12384.13 17184.54 16892.53 15488.08 159
Fast-Effi-MVS+-dtu79.95 13180.69 12279.08 14986.36 13389.14 14685.85 13272.28 17572.85 15259.32 18170.43 11368.42 14077.57 13686.14 14586.44 14393.11 14891.39 135
v879.90 13278.39 14981.66 12583.97 16489.81 12987.16 11877.40 15071.49 15567.71 12861.24 16162.49 16179.83 11785.48 15586.17 14793.89 12792.02 124
v2v48279.84 13378.07 15381.90 12283.75 16590.21 12087.17 11779.85 12370.65 16265.93 13761.93 15860.07 17280.82 9785.25 15786.71 13693.88 12891.70 130
Baseline_NR-MVSNet79.84 13378.37 15081.55 12784.98 15386.66 16785.06 14183.49 7875.57 12863.31 15458.22 18260.97 16878.00 13386.89 13087.13 12994.47 10693.15 93
thisisatest051579.76 13580.59 12478.80 15284.40 15888.91 15179.48 18276.94 15472.29 15367.33 13067.82 13065.99 14570.80 17288.50 11387.84 12193.86 12992.75 105
v1079.62 13678.19 15181.28 13183.73 16689.69 13487.27 11476.86 15570.50 16465.46 13960.58 16860.47 17080.44 10586.91 12986.63 13993.93 12492.55 113
V4279.59 13778.43 14880.94 13482.79 18189.71 13386.66 12576.73 15771.38 15667.42 12961.01 16362.30 16378.39 13085.56 15386.48 14193.65 13892.60 109
GA-MVS79.52 13879.71 13879.30 14885.68 14090.36 11684.55 14778.44 13970.47 16557.87 18668.52 12661.38 16676.21 14489.40 10487.89 12093.04 14989.96 146
SCA79.51 13980.15 13078.75 15386.58 13187.70 15983.07 15868.53 19081.31 8666.40 13473.83 9575.38 10079.30 12580.49 18979.39 19088.63 18982.96 188
test-LLR79.47 14079.84 13579.03 15087.47 12282.40 19681.24 17378.05 14373.72 14462.69 15773.76 9674.42 10773.49 16184.61 16782.99 17791.25 17087.01 167
IterMVS-SCA-FT79.41 14180.20 12978.49 15785.88 13686.26 16983.95 15271.94 17673.55 14761.94 16470.48 11270.50 12875.23 14885.81 15084.61 16791.99 16190.18 145
v114479.38 14277.83 15681.18 13283.62 16790.23 11887.15 11978.35 14069.13 16964.02 15060.20 17059.41 17980.14 11286.78 13386.57 14093.81 13292.53 115
UniMVSNet_ETH3D79.24 14376.47 16982.48 11785.66 14190.97 10886.08 13181.63 10064.48 19068.94 12554.47 19057.65 18678.83 12885.20 16188.91 11293.72 13593.60 88
MDTV_nov1_ep1379.14 14479.49 14078.74 15485.40 14486.89 16684.32 15170.29 18378.85 10969.42 12175.37 8773.29 11875.64 14780.61 18879.48 18987.36 19381.91 190
TDRefinement79.05 14577.05 16481.39 12888.45 11189.00 14986.92 12182.65 9274.21 13964.41 14659.17 17559.16 18174.52 15685.23 15885.09 16091.37 16887.51 165
v119278.94 14677.33 16080.82 13583.25 17189.90 12786.91 12277.72 14668.63 17362.61 15959.17 17557.53 18780.62 10486.89 13086.47 14293.79 13392.75 105
v14419278.81 14777.22 16280.67 13782.95 17689.79 13186.40 12777.42 14968.26 17563.13 15559.50 17358.13 18480.08 11385.93 14786.08 14994.06 11992.83 101
IterMVS78.79 14879.71 13877.71 16185.26 14785.91 17284.54 14869.84 18773.38 14861.25 17270.53 11170.35 12974.43 15785.21 16083.80 17290.95 17488.77 152
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CR-MVSNet78.71 14978.86 14378.55 15685.85 13985.15 18082.30 16568.23 19174.71 13365.37 14164.39 15069.59 13477.18 13985.10 16384.87 16292.34 15788.21 157
PatchmatchNetpermissive78.67 15078.85 14478.46 15886.85 13086.03 17083.77 15468.11 19380.88 9466.19 13572.90 10273.40 11778.06 13279.25 19577.71 19587.75 19281.75 191
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v14878.59 15176.84 16780.62 13883.61 16889.16 14583.65 15579.24 13169.38 16869.34 12259.88 17260.41 17175.19 14983.81 17384.63 16692.70 15390.63 141
v192192078.57 15276.99 16580.41 14282.93 17789.63 13786.38 12877.14 15268.31 17461.80 16758.89 17956.79 19080.19 11186.50 14286.05 15194.02 12192.76 104
pm-mvs178.51 15377.75 15879.40 14784.83 15689.30 14183.55 15679.38 12962.64 19463.68 15258.73 18064.68 14970.78 17389.79 9787.84 12194.17 11791.28 136
v124078.15 15476.53 16880.04 14382.85 18089.48 14085.61 13876.77 15667.05 17761.18 17458.37 18156.16 19479.89 11686.11 14686.08 14993.92 12592.47 117
dps78.02 15575.94 17780.44 14186.06 13586.62 16882.58 16069.98 18575.14 13077.76 8769.08 12359.93 17478.47 12979.47 19377.96 19487.78 19183.40 185
anonymousdsp77.94 15679.00 14276.71 16979.03 19787.83 15879.58 18172.87 17365.80 18558.86 18565.82 13762.48 16275.99 14586.77 13488.66 11493.92 12595.68 50
test-mter77.79 15780.02 13275.18 18081.18 19382.85 19180.52 17962.03 20973.62 14662.16 16273.55 9873.83 11273.81 15984.67 16683.34 17491.37 16888.31 156
TESTMET0.1,177.78 15879.84 13575.38 17980.86 19482.40 19681.24 17362.72 20873.72 14462.69 15773.76 9674.42 10773.49 16184.61 16782.99 17791.25 17087.01 167
tpm cat177.78 15875.28 18480.70 13687.14 12785.84 17385.81 13370.40 18277.44 11878.80 7763.72 15264.01 15376.55 14375.60 20375.21 20185.51 20385.12 178
EPMVS77.53 16078.07 15376.90 16886.89 12984.91 18382.18 16866.64 19881.00 9264.11 14972.75 10369.68 13374.42 15879.36 19478.13 19387.14 19580.68 197
tfpnnormal77.46 16174.86 18680.49 14086.34 13488.92 15084.33 15081.26 10361.39 19861.70 16851.99 19753.66 20374.84 15388.63 11187.38 12794.50 10392.08 120
v7n77.22 16276.23 17278.38 15981.89 18889.10 14882.24 16776.36 15865.96 18461.21 17356.56 18555.79 19575.07 15286.55 13986.68 13793.52 14092.95 97
RPMNet77.07 16377.63 15976.42 17185.56 14385.15 18081.37 17065.27 20274.71 13360.29 17763.71 15366.59 14473.64 16082.71 18082.12 18292.38 15688.39 155
pmmvs576.93 16476.33 17177.62 16281.97 18788.40 15681.32 17274.35 16965.42 18861.42 17063.07 15457.95 18573.23 16485.60 15285.35 15993.41 14388.55 154
TinyColmap76.73 16573.95 18979.96 14485.16 15085.64 17682.34 16478.19 14170.63 16362.06 16360.69 16749.61 20880.81 9885.12 16283.69 17391.22 17282.27 189
CVMVSNet76.70 16678.46 14774.64 18583.34 17084.48 18481.83 16974.58 16768.88 17151.23 19969.77 11470.05 13067.49 18384.27 17083.81 17189.38 18487.96 161
WR-MVS76.63 16778.02 15575.02 18184.14 16389.76 13278.34 18980.64 10869.56 16752.32 19561.26 16061.24 16760.66 19584.45 16987.07 13093.99 12392.77 103
TransMVSNet (Re)76.57 16875.16 18578.22 16085.60 14287.24 16382.46 16181.23 10459.80 20259.05 18457.07 18459.14 18266.60 18888.09 11786.82 13494.37 11287.95 162
tpmrst76.55 16975.99 17677.20 16487.32 12483.05 18982.86 15965.62 20078.61 11267.22 13169.19 12065.71 14675.87 14676.75 20175.33 20084.31 20583.28 186
FC-MVSNet-test76.53 17081.62 11070.58 19584.99 15285.73 17474.81 19778.85 13677.00 12039.13 21375.90 8373.50 11654.08 20286.54 14085.99 15291.65 16486.68 170
PatchT76.42 17177.81 15774.80 18378.46 20084.30 18571.82 20365.03 20473.89 14165.37 14161.58 15966.70 14377.18 13985.10 16384.87 16290.94 17588.21 157
TAMVS76.42 17177.16 16375.56 17783.05 17485.55 17780.58 17871.43 17865.40 18961.04 17567.27 13269.22 13667.99 18084.88 16584.78 16489.28 18583.01 187
EG-PatchMatch MVS76.40 17375.47 18277.48 16385.86 13890.22 11982.45 16273.96 17159.64 20359.60 18052.75 19562.20 16468.44 17988.23 11687.50 12494.55 10187.78 163
CP-MVSNet76.36 17476.41 17076.32 17382.73 18288.64 15279.39 18379.62 12567.21 17653.70 19160.72 16655.22 19767.91 18283.52 17586.34 14594.55 10193.19 92
tpm76.30 17576.05 17576.59 17086.97 12883.01 19083.83 15367.06 19671.83 15463.87 15169.56 11862.88 15873.41 16379.79 19278.59 19184.41 20486.68 170
test0.0.03 176.03 17678.51 14573.12 19187.47 12285.13 18276.32 19478.05 14373.19 15150.98 20070.64 10969.28 13555.53 19885.33 15684.38 16990.39 17881.63 192
PEN-MVS76.02 17776.07 17375.95 17683.17 17387.97 15779.65 18080.07 12166.57 18051.45 19760.94 16455.47 19666.81 18682.72 17986.80 13594.59 9892.03 123
SixPastTwentyTwo76.02 17775.72 17976.36 17283.38 16987.54 16075.50 19676.22 15965.50 18757.05 18770.64 10953.97 20274.54 15580.96 18782.12 18291.44 16689.35 149
PS-CasMVS75.90 17975.86 17875.96 17582.59 18388.46 15579.23 18679.56 12766.00 18352.77 19359.48 17454.35 20167.14 18583.37 17686.23 14694.47 10693.10 94
WR-MVS_H75.84 18076.93 16674.57 18682.86 17989.50 13978.34 18979.36 13066.90 17852.51 19460.20 17059.71 17559.73 19683.61 17485.77 15494.65 9592.84 100
LTVRE_ROB74.41 1675.78 18174.72 18777.02 16785.88 13689.22 14382.44 16377.17 15150.57 21245.45 20665.44 14152.29 20581.25 9385.50 15487.42 12689.94 18292.62 108
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
gg-mvs-nofinetune75.64 18277.26 16173.76 18787.92 11692.20 9887.32 11264.67 20551.92 21135.35 21546.44 20377.05 9771.97 16792.64 5191.02 6095.34 6389.53 148
FMVSNet575.50 18376.07 17374.83 18276.16 20481.19 19981.34 17170.21 18473.20 15061.59 16958.97 17768.33 14168.50 17885.87 14985.85 15391.18 17379.11 200
DTE-MVSNet75.14 18475.44 18374.80 18383.18 17287.19 16478.25 19180.11 11866.05 18248.31 20260.88 16554.67 19864.54 19182.57 18186.17 14794.43 10990.53 143
pmmvs674.83 18572.89 19277.09 16582.11 18687.50 16180.88 17776.97 15352.79 21061.91 16646.66 20260.49 16969.28 17686.74 13685.46 15891.39 16790.56 142
MIMVSNet74.69 18675.60 18173.62 18876.02 20685.31 17981.21 17567.43 19471.02 15859.07 18354.48 18964.07 15166.14 18986.52 14186.64 13891.83 16381.17 194
ADS-MVSNet74.53 18775.69 18073.17 19081.57 19180.71 20179.27 18563.03 20779.27 10759.94 17967.86 12968.32 14271.08 17177.33 19976.83 19784.12 20779.53 198
pmmvs-eth3d74.32 18871.96 19477.08 16677.33 20282.71 19278.41 18876.02 16266.65 17965.98 13654.23 19249.02 21073.14 16582.37 18382.69 17991.61 16586.05 175
PM-MVS74.17 18973.10 19075.41 17876.07 20582.53 19477.56 19271.69 17771.04 15761.92 16561.23 16247.30 21174.82 15481.78 18579.80 18690.42 17788.05 160
CMPMVSbinary56.49 1773.84 19071.73 19676.31 17485.20 14885.67 17575.80 19573.23 17262.26 19565.40 14053.40 19459.70 17671.77 16980.25 19079.56 18886.45 19981.28 193
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MDTV_nov1_ep13_2view73.21 19172.91 19173.56 18980.01 19584.28 18678.62 18766.43 19968.64 17259.12 18260.39 16959.69 17769.81 17578.82 19777.43 19687.36 19381.11 195
pmnet_mix0271.95 19271.83 19572.10 19281.40 19280.63 20273.78 19972.85 17470.90 15954.89 18962.17 15757.42 18862.92 19376.80 20073.98 20486.74 19880.87 196
testgi71.92 19374.20 18869.27 19784.58 15783.06 18873.40 20074.39 16864.04 19246.17 20568.90 12557.15 18948.89 20684.07 17283.08 17688.18 19079.09 201
Anonymous2023120670.80 19470.59 19871.04 19481.60 19082.49 19574.64 19875.87 16364.17 19149.27 20144.85 20653.59 20454.68 20183.07 17782.34 18190.17 17983.65 184
gm-plane-assit70.29 19570.65 19769.88 19685.03 15178.50 20658.41 21365.47 20150.39 21340.88 21149.60 19950.11 20775.14 15191.43 6689.78 9094.32 11384.73 182
EU-MVSNet69.98 19672.30 19367.28 20075.67 20779.39 20473.12 20169.94 18663.59 19342.80 20962.93 15556.71 19255.07 20079.13 19678.55 19287.06 19685.82 177
MVS-HIRNet68.83 19766.39 20171.68 19377.58 20175.52 20866.45 20865.05 20362.16 19662.84 15644.76 20756.60 19371.96 16878.04 19875.06 20286.18 20172.56 207
test20.0368.31 19870.05 19966.28 20282.41 18480.84 20067.35 20776.11 16158.44 20540.80 21253.77 19354.54 19942.28 20983.07 17781.96 18488.73 18877.76 203
N_pmnet66.85 19966.63 20067.11 20178.73 19874.66 20970.53 20471.07 17966.46 18146.54 20451.68 19851.91 20655.48 19974.68 20472.38 20580.29 21074.65 206
MDA-MVSNet-bldmvs66.22 20064.49 20368.24 19861.67 21282.11 19870.07 20576.16 16059.14 20447.94 20354.35 19135.82 21867.33 18464.94 21075.68 19986.30 20079.36 199
MIMVSNet165.00 20166.24 20263.55 20458.41 21580.01 20369.00 20674.03 17055.81 20841.88 21036.81 21149.48 20947.89 20781.32 18682.40 18090.08 18177.88 202
new-patchmatchnet63.80 20263.31 20464.37 20376.49 20375.99 20763.73 21070.99 18057.27 20643.08 20845.86 20443.80 21245.13 20873.20 20570.68 20886.80 19776.34 205
FPMVS63.63 20360.08 20867.78 19980.01 19571.50 21172.88 20269.41 18961.82 19753.11 19245.12 20542.11 21550.86 20466.69 20863.84 20980.41 20969.46 209
pmmvs361.89 20461.74 20662.06 20564.30 21170.83 21264.22 20952.14 21348.78 21444.47 20741.67 20941.70 21663.03 19276.06 20276.02 19884.18 20677.14 204
new_pmnet59.28 20561.47 20756.73 20761.66 21368.29 21359.57 21254.91 21060.83 19934.38 21644.66 20843.65 21349.90 20571.66 20671.56 20779.94 21169.67 208
GG-mvs-BLEND57.56 20682.61 10528.34 2140.22 22290.10 12279.37 1840.14 22079.56 1030.40 22371.25 10883.40 610.30 22086.27 14483.87 17089.59 18383.83 183
PMVScopyleft50.48 1855.81 20751.93 20960.33 20672.90 20949.34 21548.78 21469.51 18843.49 21554.25 19036.26 21241.04 21739.71 21165.07 20960.70 21076.85 21267.58 210
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft49.17 20847.05 21151.65 20859.67 21448.39 21641.98 21763.47 20655.64 20933.33 21714.90 21513.78 22241.34 21069.31 20772.30 20670.11 21355.00 214
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method41.78 20948.10 21034.42 21210.74 22119.78 22244.64 21617.73 21759.83 20138.67 21435.82 21354.41 20034.94 21262.87 21143.13 21459.81 21560.82 212
PMMVS241.68 21044.74 21238.10 20946.97 21852.32 21440.63 21848.08 21435.51 2167.36 22226.86 21424.64 22016.72 21655.24 21359.03 21168.85 21459.59 213
E-PMN31.40 21126.80 21436.78 21051.39 21729.96 21920.20 22054.17 21125.93 21812.75 22014.73 2168.58 22434.10 21427.36 21637.83 21548.07 21843.18 216
MVEpermissive30.17 1930.88 21233.52 21327.80 21523.78 22039.16 21818.69 22246.90 21521.88 21915.39 21914.37 2177.31 22524.41 21541.63 21556.22 21237.64 22054.07 215
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS30.49 21325.44 21536.39 21151.47 21629.89 22020.17 22154.00 21226.49 21712.02 22113.94 2188.84 22334.37 21325.04 21734.37 21646.29 21939.53 217
testmvs1.03 2141.63 2160.34 2160.09 2230.35 2230.61 2240.16 2191.49 2200.10 2243.15 2190.15 2260.86 2191.32 2181.18 2170.20 2213.76 219
test1230.87 2151.40 2170.25 2170.03 2240.25 2240.35 2250.08 2211.21 2210.05 2252.84 2200.03 2270.89 2180.43 2191.16 2180.13 2223.87 218
uanet_test0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
sosnet-low-res0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
sosnet0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
RE-MVS-def56.08 188
9.1492.16 16
SR-MVS96.58 2690.99 2292.40 13
Anonymous20240521182.75 10489.58 10092.97 8789.04 9084.13 6778.72 11057.18 18376.64 9883.13 8289.55 10189.92 8693.38 14494.28 77
our_test_381.81 18983.96 18776.61 193
ambc61.92 20570.98 21073.54 21063.64 21160.06 20052.23 19638.44 21019.17 22157.12 19782.33 18475.03 20383.21 20884.89 179
MTAPA92.97 291.03 22
MTMP93.14 190.21 30
Patchmatch-RL test8.55 223
tmp_tt32.73 21343.96 21921.15 22126.71 2198.99 21865.67 18651.39 19856.01 18642.64 21411.76 21756.60 21250.81 21353.55 217
XVS93.11 6096.70 2591.91 5483.95 4888.82 4095.79 37
X-MVStestdata93.11 6096.70 2591.91 5483.95 4888.82 4095.79 37
abl_690.66 4094.65 4796.27 3792.21 5086.94 4890.23 4186.38 3785.50 4092.96 988.37 4795.40 5895.46 54
mPP-MVS97.06 1288.08 45
NP-MVS87.47 53
Patchmtry85.54 17882.30 16568.23 19165.37 141
DeepMVS_CXcopyleft48.31 21748.03 21526.08 21656.42 20725.77 21847.51 20131.31 21951.30 20348.49 21453.61 21661.52 211