This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
SED-MVS95.61 196.36 194.73 296.84 1998.15 297.08 392.92 295.64 291.84 495.98 495.33 192.83 696.00 194.94 396.90 498.45 2
DVP-MVS95.56 296.26 294.73 296.93 1698.19 196.62 692.81 496.15 191.73 595.01 795.31 293.41 195.95 294.77 796.90 498.46 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVS95.53 396.13 394.82 196.81 2298.05 397.42 193.09 194.31 891.49 697.12 195.03 393.27 395.55 594.58 1196.86 698.25 3
HPM-MVS++copyleft94.60 894.91 1094.24 797.86 196.53 3296.14 892.51 893.87 1590.76 1293.45 1893.84 492.62 895.11 1194.08 1895.58 5097.48 13
MSP-MVS95.12 595.83 494.30 596.82 2197.94 496.98 492.37 1195.40 390.59 1396.16 393.71 592.70 794.80 1594.77 796.37 1497.99 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MCST-MVS93.81 1694.06 1893.53 1796.79 2396.85 2095.95 1391.69 1692.20 2687.17 3290.83 2793.41 691.96 1494.49 2393.50 3197.61 197.12 22
SD-MVS94.53 995.22 793.73 1595.69 3697.03 1495.77 2291.95 1294.41 791.35 794.97 893.34 791.80 2094.72 1893.99 1995.82 3498.07 6
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS94.37 1194.65 1194.04 1197.29 697.11 1096.00 1092.43 1093.45 1689.85 1990.92 2593.04 892.59 995.77 494.82 596.11 2197.42 15
abl_690.66 4094.65 4796.27 3792.21 5086.94 4890.23 4186.38 3785.50 4092.96 988.37 4695.40 5795.46 53
APDe-MVS95.23 495.69 594.70 497.12 1097.81 597.19 292.83 395.06 590.98 1096.47 292.77 1093.38 295.34 894.21 1596.68 898.17 4
SMA-MVScopyleft94.70 695.35 693.93 1297.57 297.57 795.98 1191.91 1394.50 690.35 1493.46 1792.72 1191.89 1895.89 395.22 195.88 2798.10 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS94.61 794.96 994.20 896.75 2497.07 1195.82 1892.60 693.98 1291.09 895.89 592.54 1291.93 1594.40 2593.56 2897.04 297.27 16
SR-MVS96.58 2690.99 2292.40 13
NCCC93.69 1993.66 2293.72 1697.37 596.66 2995.93 1692.50 993.40 1988.35 2587.36 3592.33 1492.18 1294.89 1394.09 1796.00 2396.91 26
TSAR-MVS + MP.94.48 1094.97 893.90 1395.53 3797.01 1596.69 590.71 2494.24 990.92 1194.97 892.19 1593.03 494.83 1493.60 2696.51 1397.97 8
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
9.1492.16 16
CSCG92.76 2693.16 2792.29 2996.30 2897.74 694.67 3388.98 3692.46 2389.73 2086.67 3792.15 1788.69 4292.26 5492.92 4295.40 5797.89 9
TSAR-MVS + GP.92.71 2893.91 2091.30 3591.96 7296.00 4193.43 4187.94 4192.53 2286.27 4093.57 1591.94 1891.44 2593.29 4092.89 4396.78 797.15 21
train_agg92.87 2593.53 2492.09 3096.88 1895.38 4995.94 1490.59 2890.65 3883.65 5194.31 1391.87 1990.30 3193.38 3992.42 4695.17 6996.73 31
APD-MVScopyleft94.37 1194.47 1594.26 697.18 896.99 1696.53 792.68 592.45 2489.96 1794.53 1191.63 2092.89 594.58 2093.82 2296.31 1797.26 18
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepPCF-MVS88.51 292.64 2994.42 1690.56 4194.84 4496.92 1891.31 6189.61 3295.16 484.55 4689.91 2991.45 2190.15 3395.12 1094.81 692.90 14797.58 12
MTAPA92.97 291.03 22
PHI-MVS92.05 3293.74 2190.08 4494.96 4197.06 1393.11 4587.71 4490.71 3780.78 6892.40 2291.03 2287.68 5394.32 2794.48 1296.21 1996.16 40
SteuartSystems-ACMMP94.06 1394.65 1193.38 1996.97 1597.36 896.12 991.78 1492.05 2887.34 3094.42 1290.87 2491.87 1995.47 794.59 1096.21 1997.77 10
Skip Steuart: Steuart Systems R&D Blog.
zzz-MVS93.80 1793.45 2594.20 897.53 396.43 3695.88 1791.12 2094.09 1192.74 387.68 3390.77 2592.04 1394.74 1793.56 2895.91 2696.85 27
DPM-MVS91.72 3591.48 3592.00 3195.53 3795.75 4595.94 1491.07 2191.20 3485.58 4181.63 5490.74 2688.40 4593.40 3893.75 2495.45 5693.85 81
TSAR-MVS + ACMM92.97 2394.51 1391.16 3795.88 3496.59 3095.09 2990.45 3093.42 1783.01 5394.68 1090.74 2688.74 4094.75 1693.78 2393.82 12897.63 11
ACMMP_NAP93.94 1594.49 1493.30 2097.03 1397.31 995.96 1291.30 1893.41 1888.55 2493.00 1990.33 2891.43 2695.53 694.41 1395.53 5297.47 14
MP-MVScopyleft93.35 2093.59 2393.08 2397.39 496.82 2295.38 2590.71 2490.82 3688.07 2792.83 2190.29 2991.32 2794.03 2993.19 3895.61 4897.16 20
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTMP93.14 190.21 30
HFP-MVS94.02 1494.22 1793.78 1497.25 796.85 2095.81 2090.94 2394.12 1090.29 1694.09 1489.98 3192.52 1093.94 3293.49 3395.87 2997.10 23
CANet91.33 3891.46 3691.18 3695.01 4096.71 2493.77 3887.39 4687.72 5187.26 3181.77 5189.73 3287.32 5994.43 2493.86 2196.31 1796.02 43
MVS_030490.88 4091.35 3890.34 4293.91 5296.79 2394.49 3486.54 5086.57 5582.85 5581.68 5389.70 3387.57 5594.64 1993.93 2096.67 1096.15 41
CP-MVS93.25 2193.26 2693.24 2196.84 1996.51 3395.52 2490.61 2792.37 2588.88 2290.91 2689.52 3491.91 1793.64 3692.78 4495.69 4197.09 24
DeepC-MVS_fast88.76 193.10 2293.02 2993.19 2297.13 996.51 3395.35 2691.19 1993.14 2188.14 2685.26 4189.49 3591.45 2395.17 995.07 295.85 3296.48 34
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+86.06 491.60 3690.86 4292.47 2796.00 3396.50 3594.70 3287.83 4390.49 3989.92 1874.68 9089.35 3690.66 3094.02 3094.14 1695.67 4396.85 27
UA-Net86.07 7587.78 6584.06 9792.85 6595.11 5487.73 10384.38 6373.22 14673.18 10179.99 6289.22 3771.47 16793.22 4193.03 3994.76 8590.69 136
ACMMPR93.72 1893.94 1993.48 1897.07 1196.93 1795.78 2190.66 2693.88 1489.24 2193.53 1689.08 3892.24 1193.89 3493.50 3195.88 2796.73 31
MSLP-MVS++92.02 3491.40 3792.75 2496.01 3295.88 4493.73 4089.00 3489.89 4490.31 1581.28 5688.85 3991.45 2392.88 4794.24 1496.00 2396.76 30
XVS93.11 6096.70 2591.91 5483.95 4888.82 4095.79 36
X-MVStestdata93.11 6096.70 2591.91 5483.95 4888.82 4095.79 36
X-MVS92.36 3092.75 3091.90 3396.89 1796.70 2595.25 2790.48 2991.50 3383.95 4888.20 3188.82 4089.11 3693.75 3593.43 3495.75 3996.83 29
CPTT-MVS91.39 3790.95 4091.91 3295.06 3995.24 5195.02 3088.98 3691.02 3586.71 3484.89 4388.58 4391.60 2290.82 8189.67 9294.08 11596.45 35
PGM-MVS92.76 2693.03 2892.45 2897.03 1396.67 2895.73 2387.92 4290.15 4386.53 3692.97 2088.33 4491.69 2193.62 3793.03 3995.83 3396.41 37
mPP-MVS97.06 1288.08 45
QAPM89.49 4889.58 4989.38 5294.73 4595.94 4292.35 4985.00 6085.69 6080.03 7276.97 7887.81 4687.87 5092.18 5892.10 4896.33 1596.40 38
CDPH-MVS91.14 3992.01 3290.11 4396.18 2996.18 3994.89 3188.80 3888.76 4877.88 8489.18 3087.71 4787.29 6093.13 4293.31 3695.62 4695.84 45
3Dnovator85.17 590.48 4289.90 4691.16 3794.88 4395.74 4693.82 3785.36 5789.28 4587.81 2874.34 9287.40 4888.56 4393.07 4393.74 2596.53 1295.71 47
OMC-MVS90.23 4490.40 4390.03 4593.45 5795.29 5091.89 5686.34 5293.25 2084.94 4581.72 5286.65 4988.90 3791.69 6290.27 7594.65 9293.95 79
DeepC-MVS87.86 392.26 3191.86 3492.73 2596.18 2996.87 1995.19 2891.76 1592.17 2786.58 3581.79 5085.85 5090.88 2994.57 2194.61 995.80 3597.18 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OpenMVScopyleft82.53 1187.71 6586.84 7288.73 5794.42 4895.06 5591.02 6383.49 7882.50 7582.24 5967.62 12885.48 5185.56 7091.19 6991.30 5595.67 4394.75 65
MVS_111021_HR90.56 4191.29 3989.70 4994.71 4695.63 4791.81 5786.38 5187.53 5281.29 6287.96 3285.43 5287.69 5293.90 3392.93 4196.33 1595.69 48
PCF-MVS84.60 688.66 5487.75 6789.73 4893.06 6296.02 4093.22 4490.00 3182.44 7680.02 7377.96 7485.16 5387.36 5888.54 10988.54 11394.72 8895.61 50
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TAPA-MVS84.37 788.91 5388.93 5388.89 5593.00 6394.85 5992.00 5384.84 6191.68 3280.05 7179.77 6384.56 5488.17 4890.11 9189.00 10895.30 6492.57 109
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMMPcopyleft92.03 3392.16 3191.87 3495.88 3496.55 3194.47 3589.49 3391.71 3185.26 4291.52 2484.48 5590.21 3292.82 4891.63 5295.92 2596.42 36
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DELS-MVS89.71 4689.68 4889.74 4793.75 5496.22 3893.76 3985.84 5382.53 7385.05 4478.96 6884.24 5684.25 7594.91 1294.91 495.78 3896.02 43
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet_Blended_VisFu87.40 6987.80 6486.92 7392.86 6495.40 4888.56 9783.45 8279.55 10382.26 5874.49 9184.03 5779.24 12392.97 4691.53 5495.15 7196.65 33
CS-MVS88.97 5289.44 5188.41 6491.45 7595.24 5190.03 7082.43 9684.08 6881.16 6481.02 5883.83 5888.74 4094.25 2892.73 4596.67 1094.95 60
MVS_111021_LR90.14 4590.89 4189.26 5393.23 5994.05 7090.43 6684.65 6290.16 4284.52 4790.14 2883.80 5987.99 4992.50 5290.92 6194.74 8694.70 67
GG-mvs-BLEND57.56 20382.61 10228.34 2100.22 21890.10 11979.37 1810.14 21679.56 1020.40 21971.25 10783.40 600.30 21686.27 14183.87 16789.59 18083.83 180
UGNet85.90 7888.23 5883.18 10788.96 10594.10 6887.52 10583.60 7481.66 8377.90 8380.76 5983.19 6166.70 18491.13 7590.71 6794.39 10896.06 42
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EPNet89.60 4789.91 4589.24 5496.45 2793.61 7592.95 4788.03 4085.74 5983.36 5287.29 3683.05 6280.98 9392.22 5591.85 5093.69 13395.58 51
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MAR-MVS88.39 5988.44 5688.33 6594.90 4295.06 5590.51 6583.59 7585.27 6179.07 7677.13 7682.89 6387.70 5192.19 5792.32 4794.23 11294.20 77
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETV-MVS89.22 5089.76 4788.60 6091.60 7394.61 6389.48 8183.46 8185.20 6281.58 6082.75 4682.59 6488.80 3894.57 2193.28 3796.68 895.31 55
EPP-MVSNet86.55 7187.76 6685.15 8290.52 8794.41 6487.24 11282.32 9781.79 8273.60 9978.57 7082.41 6582.07 8791.23 6690.39 7395.14 7295.48 52
Vis-MVSNet (Re-imp)83.65 9686.81 7479.96 14190.46 9092.71 8884.84 14282.00 9980.93 9262.44 15776.29 8082.32 6665.54 18792.29 5391.66 5194.49 10291.47 131
IS_MVSNet86.18 7488.18 5983.85 10091.02 8094.72 6287.48 10682.46 9581.05 9070.28 11276.98 7782.20 6776.65 13993.97 3193.38 3595.18 6894.97 59
CNLPA88.40 5787.00 7190.03 4593.73 5594.28 6589.56 7985.81 5491.87 2987.55 2969.53 11881.49 6889.23 3589.45 10188.59 11294.31 11193.82 82
AdaColmapbinary90.29 4388.38 5792.53 2696.10 3195.19 5392.98 4691.40 1789.08 4788.65 2378.35 7181.44 6991.30 2890.81 8290.21 7694.72 8893.59 87
baseline84.89 8586.06 8083.52 10587.25 12289.67 13287.76 10275.68 16184.92 6478.40 7880.10 6080.98 7080.20 10786.69 13487.05 12891.86 15992.99 93
PLCcopyleft83.76 988.61 5686.83 7390.70 3994.22 4992.63 9191.50 5987.19 4789.16 4686.87 3375.51 8580.87 7189.98 3490.01 9289.20 10294.41 10790.45 141
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Vis-MVSNetpermissive84.38 9286.68 7681.70 12187.65 11894.89 5888.14 9980.90 10774.48 13268.23 12477.53 7580.72 7269.98 17192.68 4991.90 4995.33 6394.58 69
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DI_MVS_plusplus_trai86.41 7385.54 8587.42 7189.24 10193.13 8192.16 5282.65 9282.30 7780.75 6968.30 12580.41 7385.01 7290.56 8890.07 7994.70 9094.01 78
HQP-MVS89.13 5189.58 4988.60 6093.53 5693.67 7393.29 4387.58 4588.53 4975.50 8887.60 3480.32 7487.07 6190.66 8789.95 8494.62 9496.35 39
EIA-MVS87.94 6488.05 6187.81 6791.46 7495.00 5788.67 9382.81 8682.53 7380.81 6780.04 6180.20 7587.48 5692.58 5191.61 5395.63 4594.36 71
CANet_DTU85.43 8087.72 6882.76 11190.95 8393.01 8589.99 7175.46 16282.67 7264.91 14283.14 4580.09 7680.68 9792.03 6091.03 5894.57 9792.08 117
CHOSEN 280x42080.28 12581.66 10678.67 15282.92 17579.24 20285.36 13766.79 19478.11 11170.32 11075.03 8979.87 7781.09 9289.07 10383.16 17285.54 19987.17 163
RPSCF83.46 9783.36 9683.59 10387.75 11487.35 15984.82 14379.46 12783.84 6978.12 8082.69 4779.87 7782.60 8382.47 17981.13 18288.78 18486.13 171
MVS_Test86.93 7087.24 6986.56 7490.10 9793.47 7790.31 6780.12 11783.55 7078.12 8079.58 6479.80 7985.45 7190.17 9090.59 7095.29 6593.53 88
PMMVS81.65 11584.05 9378.86 14878.56 19682.63 19083.10 15467.22 19281.39 8470.11 11484.91 4279.74 8082.12 8687.31 12185.70 15292.03 15786.67 169
GBi-Net84.51 8884.80 8884.17 9484.20 15789.95 12089.70 7580.37 11181.17 8675.50 8869.63 11479.69 8179.75 11590.73 8390.72 6495.52 5391.71 124
test184.51 8884.80 8884.17 9484.20 15789.95 12089.70 7580.37 11181.17 8675.50 8869.63 11479.69 8179.75 11590.73 8390.72 6495.52 5391.71 124
FMVSNet384.44 9084.64 9084.21 9384.32 15690.13 11889.85 7480.37 11181.17 8675.50 8869.63 11479.69 8179.62 11889.72 9690.52 7295.59 4991.58 130
canonicalmvs89.36 4989.92 4488.70 5891.38 7695.92 4391.81 5782.61 9490.37 4082.73 5782.09 4879.28 8488.30 4791.17 7093.59 2795.36 6097.04 25
DCV-MVSNet85.88 7986.17 7785.54 8189.10 10489.85 12589.34 8280.70 10883.04 7178.08 8276.19 8179.00 8582.42 8489.67 9790.30 7493.63 13695.12 56
Anonymous2023121184.42 9183.02 9786.05 7788.85 10692.70 8988.92 9283.40 8379.99 9878.31 7955.83 18478.92 8683.33 7889.06 10489.76 9093.50 13894.90 61
MS-PatchMatch81.79 11481.44 10982.19 11890.35 9289.29 13988.08 10175.36 16377.60 11469.00 12164.37 14878.87 8777.14 13888.03 11585.70 15293.19 14486.24 170
CLD-MVS88.66 5488.52 5588.82 5691.37 7794.22 6692.82 4882.08 9888.27 5085.14 4381.86 4978.53 8885.93 6991.17 7090.61 6995.55 5195.00 58
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PVSNet_BlendedMVS88.19 6288.00 6288.42 6292.71 6894.82 6089.08 8683.81 7084.91 6586.38 3779.14 6578.11 8982.66 8193.05 4491.10 5695.86 3094.86 63
PVSNet_Blended88.19 6288.00 6288.42 6292.71 6894.82 6089.08 8683.81 7084.91 6586.38 3779.14 6578.11 8982.66 8193.05 4491.10 5695.86 3094.86 63
OPM-MVS87.56 6785.80 8389.62 5093.90 5394.09 6994.12 3688.18 3975.40 12677.30 8776.41 7977.93 9188.79 3992.20 5690.82 6395.40 5793.72 85
casdiffmvs87.45 6887.15 7087.79 6990.15 9694.22 6689.96 7283.93 6985.08 6380.91 6575.81 8377.88 9286.08 6791.86 6190.86 6295.74 4094.37 70
FMVSNet283.87 9383.73 9584.05 9884.20 15789.95 12089.70 7580.21 11679.17 10674.89 9265.91 13377.49 9379.75 11590.87 8091.00 6095.52 5391.71 124
diffmvs86.52 7286.76 7586.23 7688.31 11192.63 9189.58 7881.61 10286.14 5680.26 7079.00 6777.27 9483.58 7688.94 10589.06 10594.05 11794.29 72
EPNet_dtu81.98 11083.82 9479.83 14394.10 5185.97 16887.29 11084.08 6880.61 9559.96 17581.62 5577.19 9562.91 19187.21 12286.38 14190.66 17387.77 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
gg-mvs-nofinetune75.64 17977.26 15873.76 18487.92 11392.20 9687.32 10964.67 20251.92 20735.35 21146.44 20077.05 9671.97 16492.64 5091.02 5995.34 6289.53 145
Anonymous20240521182.75 10189.58 10092.97 8689.04 8984.13 6778.72 10857.18 18076.64 9783.13 7989.55 9989.92 8593.38 14194.28 75
LGP-MVS_train88.25 6188.55 5487.89 6692.84 6693.66 7493.35 4285.22 5985.77 5874.03 9786.60 3876.29 9886.62 6591.20 6890.58 7195.29 6595.75 46
SCA79.51 13680.15 12778.75 15086.58 12887.70 15683.07 15568.53 18781.31 8566.40 13173.83 9475.38 9979.30 12280.49 18679.39 18788.63 18682.96 185
IterMVS-LS83.28 9982.95 9983.65 10188.39 11088.63 15086.80 12178.64 13676.56 11873.43 10072.52 10375.35 10080.81 9586.43 14088.51 11493.84 12792.66 104
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMM83.27 1087.68 6686.09 7989.54 5193.26 5892.19 9791.43 6086.74 4986.02 5782.85 5575.63 8475.14 10188.41 4490.68 8689.99 8194.59 9592.97 94
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP83.90 888.32 6088.06 6088.62 5992.18 7093.98 7191.28 6285.24 5886.69 5481.23 6385.62 3975.13 10287.01 6389.83 9489.77 8994.79 8295.43 54
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVSTER86.03 7686.12 7885.93 7888.62 10789.93 12389.33 8379.91 12281.87 8181.35 6181.07 5774.91 10380.66 9892.13 5990.10 7895.68 4292.80 99
test_part183.23 10080.55 12286.35 7588.60 10890.61 10990.78 6481.13 10670.89 15783.01 5355.72 18574.60 10482.19 8587.79 11789.26 10092.39 15295.01 57
test-LLR79.47 13779.84 13279.03 14787.47 11982.40 19381.24 17078.05 14173.72 14162.69 15473.76 9574.42 10573.49 15884.61 16482.99 17491.25 16787.01 164
TESTMET0.1,177.78 15579.84 13275.38 17680.86 19182.40 19381.24 17062.72 20573.72 14162.69 15473.76 9574.42 10573.49 15884.61 16482.99 17491.25 16787.01 164
baseline184.54 8784.43 9184.67 8590.62 8591.16 10488.63 9583.75 7279.78 10071.16 10875.14 8774.10 10777.84 13291.56 6390.67 6896.04 2288.58 150
Effi-MVS+85.33 8185.08 8785.63 8089.69 9993.42 7889.90 7380.31 11579.32 10472.48 10773.52 9874.03 10886.55 6690.99 7789.98 8294.83 8194.27 76
CDS-MVSNet81.63 11782.09 10481.09 13087.21 12390.28 11487.46 10880.33 11469.06 16770.66 10971.30 10573.87 10967.99 17789.58 9889.87 8692.87 14890.69 136
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test-mter77.79 15480.02 12975.18 17781.18 19082.85 18880.52 17662.03 20673.62 14362.16 15973.55 9773.83 11073.81 15684.67 16383.34 17191.37 16588.31 153
thisisatest053085.15 8385.86 8184.33 9089.19 10392.57 9487.22 11380.11 11882.15 7974.41 9478.15 7273.80 11179.90 11190.99 7789.58 9395.13 7393.75 84
HyFIR lowres test81.62 11879.45 13884.14 9691.00 8193.38 7988.27 9878.19 13976.28 12070.18 11348.78 19773.69 11283.52 7787.05 12587.83 12093.68 13489.15 147
tttt051785.11 8485.81 8284.30 9189.24 10192.68 9087.12 11780.11 11881.98 8074.31 9678.08 7373.57 11379.90 11191.01 7689.58 9395.11 7593.77 83
FC-MVSNet-test76.53 16781.62 10770.58 19284.99 14985.73 17174.81 19478.85 13477.00 11739.13 21075.90 8273.50 11454.08 19986.54 13785.99 14991.65 16186.68 167
PatchmatchNetpermissive78.67 14778.85 14178.46 15586.85 12786.03 16783.77 15168.11 19080.88 9366.19 13272.90 10173.40 11578.06 12979.25 19277.71 19287.75 18981.75 188
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep1379.14 14179.49 13778.74 15185.40 14186.89 16384.32 14870.29 18078.85 10769.42 11875.37 8673.29 11675.64 14480.61 18579.48 18687.36 19081.91 187
TSAR-MVS + COLMAP88.40 5789.09 5287.60 7092.72 6793.92 7292.21 5085.57 5691.73 3073.72 9891.75 2373.22 11787.64 5491.49 6489.71 9193.73 13191.82 122
CHOSEN 1792x268882.16 10880.91 11883.61 10291.14 7892.01 9889.55 8079.15 13179.87 9970.29 11152.51 19372.56 11881.39 8988.87 10788.17 11690.15 17792.37 116
LS3D85.96 7784.37 9287.81 6794.13 5093.27 8090.26 6989.00 3484.91 6572.84 10571.74 10472.47 11987.45 5789.53 10089.09 10493.20 14389.60 144
FMVSNet181.64 11680.61 12082.84 11082.36 18289.20 14188.67 9379.58 12570.79 15872.63 10658.95 17572.26 12079.34 12190.73 8390.72 6494.47 10391.62 128
Effi-MVS+-dtu82.05 10981.76 10582.38 11587.72 11590.56 11086.90 12078.05 14173.85 14066.85 12971.29 10671.90 12182.00 8886.64 13585.48 15492.76 14992.58 108
CostFormer80.94 12180.21 12581.79 12087.69 11688.58 15187.47 10770.66 17880.02 9777.88 8473.03 9971.40 12278.24 12879.96 18879.63 18488.82 18388.84 148
FC-MVSNet-train85.18 8285.31 8685.03 8390.67 8491.62 10187.66 10483.61 7379.75 10174.37 9578.69 6971.21 12378.91 12491.23 6689.96 8394.96 7794.69 68
ET-MVSNet_ETH3D84.65 8685.58 8483.56 10474.99 20592.62 9390.29 6880.38 11082.16 7873.01 10483.41 4471.10 12487.05 6287.77 11890.17 7795.62 4691.82 122
xxxxxxxxxxxxxcwj92.95 2491.88 3394.20 896.75 2497.07 1195.82 1892.60 693.98 1291.09 895.89 571.01 12591.93 1594.40 2593.56 2897.04 297.27 16
IterMVS-SCA-FT79.41 13880.20 12678.49 15485.88 13386.26 16683.95 14971.94 17373.55 14461.94 16170.48 11170.50 12675.23 14585.81 14784.61 16491.99 15890.18 142
IterMVS78.79 14579.71 13577.71 15885.26 14485.91 16984.54 14569.84 18473.38 14561.25 16970.53 11070.35 12774.43 15485.21 15783.80 16990.95 17188.77 149
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CVMVSNet76.70 16378.46 14474.64 18283.34 16784.48 18181.83 16674.58 16468.88 16851.23 19669.77 11370.05 12867.49 18084.27 16783.81 16889.38 18187.96 158
IB-MVS79.09 1282.60 10582.19 10383.07 10891.08 7993.55 7680.90 17381.35 10376.56 11880.87 6664.81 14569.97 12968.87 17485.64 14890.06 8095.36 6094.74 66
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
baseline282.80 10282.86 10082.73 11287.68 11790.50 11184.92 14178.93 13278.07 11373.06 10275.08 8869.77 13077.31 13588.90 10686.94 13094.50 10090.74 135
EPMVS77.53 15778.07 15076.90 16586.89 12684.91 18082.18 16566.64 19581.00 9164.11 14672.75 10269.68 13174.42 15579.36 19178.13 19087.14 19280.68 194
CR-MVSNet78.71 14678.86 14078.55 15385.85 13685.15 17782.30 16268.23 18874.71 13065.37 13864.39 14769.59 13277.18 13685.10 16084.87 15992.34 15488.21 154
test0.0.03 176.03 17378.51 14273.12 18887.47 11985.13 17976.32 19178.05 14173.19 14850.98 19770.64 10869.28 13355.53 19585.33 15384.38 16690.39 17581.63 189
TAMVS76.42 16877.16 16075.56 17483.05 17185.55 17480.58 17571.43 17565.40 18661.04 17267.27 12969.22 13467.99 17784.88 16284.78 16189.28 18283.01 184
MSDG83.87 9381.02 11587.19 7292.17 7189.80 12789.15 8485.72 5580.61 9579.24 7566.66 13168.75 13582.69 8087.95 11687.44 12294.19 11385.92 173
Fast-Effi-MVS+83.77 9582.98 9884.69 8487.98 11291.87 9988.10 10077.70 14578.10 11273.04 10369.13 12068.51 13686.66 6490.49 8989.85 8794.67 9192.88 96
Fast-Effi-MVS+-dtu79.95 12880.69 11979.08 14686.36 13089.14 14385.85 12972.28 17272.85 14959.32 17870.43 11268.42 13777.57 13386.14 14286.44 14093.11 14591.39 132
FMVSNet575.50 18076.07 17074.83 17976.16 20181.19 19681.34 16870.21 18173.20 14761.59 16658.97 17468.33 13868.50 17585.87 14685.85 15091.18 17079.11 197
ADS-MVSNet74.53 18475.69 17773.17 18781.57 18880.71 19879.27 18263.03 20479.27 10559.94 17667.86 12668.32 13971.08 16877.33 19676.83 19484.12 20479.53 195
PatchT76.42 16877.81 15474.80 18078.46 19784.30 18271.82 20065.03 20173.89 13865.37 13861.58 15666.70 14077.18 13685.10 16084.87 15990.94 17288.21 154
RPMNet77.07 16077.63 15676.42 16885.56 14085.15 17781.37 16765.27 19974.71 13060.29 17463.71 15066.59 14173.64 15782.71 17782.12 17992.38 15388.39 152
thisisatest051579.76 13280.59 12178.80 14984.40 15588.91 14879.48 17976.94 15172.29 15067.33 12767.82 12765.99 14270.80 16988.50 11087.84 11893.86 12692.75 102
tpmrst76.55 16675.99 17377.20 16187.32 12183.05 18682.86 15665.62 19778.61 11067.22 12869.19 11965.71 14375.87 14376.75 19875.33 19784.31 20283.28 183
COLMAP_ROBcopyleft76.78 1580.50 12478.49 14382.85 10990.96 8289.65 13386.20 12783.40 8377.15 11666.54 13062.27 15365.62 14477.89 13185.23 15584.70 16292.11 15584.83 177
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+79.08 1381.84 11380.06 12883.91 9989.92 9890.62 10886.21 12683.48 8073.88 13965.75 13566.38 13265.30 14584.63 7385.90 14587.25 12593.45 13991.13 134
pm-mvs178.51 15077.75 15579.40 14484.83 15389.30 13883.55 15379.38 12862.64 19163.68 14958.73 17764.68 14670.78 17089.79 9587.84 11894.17 11491.28 133
UniMVSNet_NR-MVSNet81.87 11181.33 11182.50 11385.31 14391.30 10285.70 13184.25 6475.89 12264.21 14466.95 13064.65 14780.22 10587.07 12489.18 10395.27 6794.29 72
MIMVSNet74.69 18375.60 17873.62 18576.02 20385.31 17681.21 17267.43 19171.02 15559.07 18054.48 18664.07 14866.14 18686.52 13886.64 13591.83 16081.17 191
ACMH78.52 1481.86 11280.45 12383.51 10690.51 8991.22 10385.62 13484.23 6570.29 16362.21 15869.04 12264.05 14984.48 7487.57 12088.45 11594.01 11992.54 111
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpm cat177.78 15575.28 18180.70 13387.14 12485.84 17085.81 13070.40 17977.44 11578.80 7763.72 14964.01 15076.55 14075.60 20075.21 19885.51 20085.12 175
thres100view90082.55 10681.01 11784.34 8990.30 9492.27 9589.04 8982.77 8775.14 12769.56 11565.72 13563.13 15179.62 11889.97 9389.26 10094.73 8791.61 129
tfpn200view982.86 10181.46 10884.48 8790.30 9493.09 8289.05 8882.71 8875.14 12769.56 11565.72 13563.13 15180.38 10491.15 7289.51 9594.91 7892.50 113
UniMVSNet (Re)81.22 11981.08 11481.39 12585.35 14291.76 10084.93 14082.88 8576.13 12165.02 14164.94 14363.09 15375.17 14787.71 11989.04 10694.97 7694.88 62
thres20082.77 10381.25 11284.54 8690.38 9193.05 8389.13 8582.67 9074.40 13369.53 11765.69 13763.03 15480.63 9991.15 7289.42 9794.88 7992.04 119
tpm76.30 17276.05 17276.59 16786.97 12583.01 18783.83 15067.06 19371.83 15163.87 14869.56 11762.88 15573.41 16079.79 18978.59 18884.41 20186.68 167
PatchMatch-RL83.34 9881.36 11085.65 7990.33 9389.52 13584.36 14681.82 10080.87 9479.29 7474.04 9362.85 15686.05 6888.40 11287.04 12992.04 15686.77 166
thres40082.68 10481.15 11384.47 8890.52 8792.89 8788.95 9182.71 8874.33 13469.22 12065.31 13962.61 15780.63 9990.96 7989.50 9694.79 8292.45 115
v879.90 12978.39 14681.66 12283.97 16189.81 12687.16 11577.40 14771.49 15267.71 12561.24 15862.49 15879.83 11485.48 15286.17 14493.89 12492.02 121
anonymousdsp77.94 15379.00 13976.71 16679.03 19487.83 15579.58 17872.87 17065.80 18258.86 18265.82 13462.48 15975.99 14286.77 13188.66 11193.92 12295.68 49
V4279.59 13478.43 14580.94 13182.79 17889.71 13086.66 12276.73 15471.38 15367.42 12661.01 16062.30 16078.39 12785.56 15086.48 13893.65 13592.60 106
EG-PatchMatch MVS76.40 17075.47 17977.48 16085.86 13590.22 11682.45 15973.96 16859.64 19959.60 17752.75 19262.20 16168.44 17688.23 11387.50 12194.55 9887.78 160
thres600view782.53 10781.02 11584.28 9290.61 8693.05 8388.57 9682.67 9074.12 13768.56 12365.09 14262.13 16280.40 10391.15 7289.02 10794.88 7992.59 107
GA-MVS79.52 13579.71 13579.30 14585.68 13790.36 11384.55 14478.44 13770.47 16257.87 18368.52 12461.38 16376.21 14189.40 10287.89 11793.04 14689.96 143
WR-MVS76.63 16478.02 15275.02 17884.14 16089.76 12978.34 18680.64 10969.56 16452.32 19261.26 15761.24 16460.66 19284.45 16687.07 12793.99 12092.77 100
Baseline_NR-MVSNet79.84 13078.37 14781.55 12484.98 15086.66 16485.06 13883.49 7875.57 12563.31 15158.22 17960.97 16578.00 13086.89 12787.13 12694.47 10393.15 91
pmmvs674.83 18272.89 18977.09 16282.11 18387.50 15880.88 17476.97 15052.79 20661.91 16346.66 19960.49 16669.28 17386.74 13385.46 15591.39 16490.56 139
v1079.62 13378.19 14881.28 12883.73 16389.69 13187.27 11176.86 15270.50 16165.46 13660.58 16560.47 16780.44 10286.91 12686.63 13693.93 12192.55 110
v14878.59 14876.84 16480.62 13583.61 16589.16 14283.65 15279.24 13069.38 16569.34 11959.88 16960.41 16875.19 14683.81 17084.63 16392.70 15090.63 138
v2v48279.84 13078.07 15081.90 11983.75 16290.21 11787.17 11479.85 12370.65 15965.93 13461.93 15560.07 16980.82 9485.25 15486.71 13393.88 12591.70 127
TranMVSNet+NR-MVSNet80.52 12379.84 13281.33 12784.92 15290.39 11285.53 13684.22 6674.27 13560.68 17364.93 14459.96 17077.48 13486.75 13289.28 9995.12 7493.29 89
dps78.02 15275.94 17480.44 13886.06 13286.62 16582.58 15769.98 18275.14 12777.76 8669.08 12159.93 17178.47 12679.47 19077.96 19187.78 18883.40 182
WR-MVS_H75.84 17776.93 16374.57 18382.86 17689.50 13678.34 18679.36 12966.90 17552.51 19160.20 16759.71 17259.73 19383.61 17185.77 15194.65 9292.84 97
CMPMVSbinary56.49 1773.84 18771.73 19376.31 17185.20 14585.67 17275.80 19273.23 16962.26 19265.40 13753.40 19159.70 17371.77 16680.25 18779.56 18586.45 19681.28 190
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MDTV_nov1_ep13_2view73.21 18872.91 18873.56 18680.01 19284.28 18378.62 18466.43 19668.64 16959.12 17960.39 16659.69 17469.81 17278.82 19477.43 19387.36 19081.11 192
DU-MVS81.20 12080.30 12482.25 11684.98 15090.94 10685.70 13183.58 7675.74 12364.21 14465.30 14059.60 17580.22 10586.89 12789.31 9894.77 8494.29 72
v114479.38 13977.83 15381.18 12983.62 16490.23 11587.15 11678.35 13869.13 16664.02 14760.20 16759.41 17680.14 10986.78 13086.57 13793.81 12992.53 112
pmmvs479.99 12778.08 14982.22 11783.04 17287.16 16284.95 13978.80 13578.64 10974.53 9364.61 14659.41 17679.45 12084.13 16884.54 16592.53 15188.08 156
TDRefinement79.05 14277.05 16181.39 12588.45 10989.00 14686.92 11882.65 9274.21 13664.41 14359.17 17259.16 17874.52 15385.23 15585.09 15791.37 16587.51 162
TransMVSNet (Re)76.57 16575.16 18278.22 15785.60 13987.24 16082.46 15881.23 10559.80 19859.05 18157.07 18159.14 17966.60 18588.09 11486.82 13194.37 10987.95 159
USDC80.69 12279.89 13181.62 12386.48 12989.11 14486.53 12378.86 13381.15 8963.48 15072.98 10059.12 18081.16 9187.10 12385.01 15893.23 14284.77 178
v14419278.81 14477.22 15980.67 13482.95 17389.79 12886.40 12477.42 14668.26 17263.13 15259.50 17058.13 18180.08 11085.93 14486.08 14694.06 11692.83 98
pmmvs576.93 16176.33 16877.62 15981.97 18488.40 15381.32 16974.35 16665.42 18561.42 16763.07 15157.95 18273.23 16185.60 14985.35 15693.41 14088.55 151
UniMVSNet_ETH3D79.24 14076.47 16682.48 11485.66 13890.97 10586.08 12881.63 10164.48 18768.94 12254.47 18757.65 18378.83 12585.20 15888.91 10993.72 13293.60 86
v119278.94 14377.33 15780.82 13283.25 16889.90 12486.91 11977.72 14468.63 17062.61 15659.17 17257.53 18480.62 10186.89 12786.47 13993.79 13092.75 102
pmnet_mix0271.95 18971.83 19272.10 18981.40 18980.63 19973.78 19672.85 17170.90 15654.89 18662.17 15457.42 18562.92 19076.80 19773.98 20186.74 19580.87 193
testgi71.92 19074.20 18569.27 19484.58 15483.06 18573.40 19774.39 16564.04 18946.17 20268.90 12357.15 18648.89 20384.07 16983.08 17388.18 18779.09 198
v192192078.57 14976.99 16280.41 13982.93 17489.63 13486.38 12577.14 14968.31 17161.80 16458.89 17656.79 18780.19 10886.50 13986.05 14894.02 11892.76 101
NR-MVSNet80.25 12679.98 13080.56 13685.20 14590.94 10685.65 13383.58 7675.74 12361.36 16865.30 14056.75 18872.38 16388.46 11188.80 11095.16 7093.87 80
EU-MVSNet69.98 19372.30 19067.28 19775.67 20479.39 20173.12 19869.94 18363.59 19042.80 20662.93 15256.71 18955.07 19779.13 19378.55 18987.06 19385.82 174
MVS-HIRNet68.83 19466.39 19871.68 19077.58 19875.52 20566.45 20565.05 20062.16 19362.84 15344.76 20456.60 19071.96 16578.04 19575.06 19986.18 19872.56 204
v124078.15 15176.53 16580.04 14082.85 17789.48 13785.61 13576.77 15367.05 17461.18 17158.37 17856.16 19179.89 11386.11 14386.08 14693.92 12292.47 114
v7n77.22 15976.23 16978.38 15681.89 18589.10 14582.24 16476.36 15565.96 18161.21 17056.56 18255.79 19275.07 14986.55 13686.68 13493.52 13792.95 95
PEN-MVS76.02 17476.07 17075.95 17383.17 17087.97 15479.65 17780.07 12166.57 17751.45 19460.94 16155.47 19366.81 18382.72 17686.80 13294.59 9592.03 120
CP-MVSNet76.36 17176.41 16776.32 17082.73 17988.64 14979.39 18079.62 12467.21 17353.70 18860.72 16355.22 19467.91 17983.52 17286.34 14294.55 9893.19 90
DTE-MVSNet75.14 18175.44 18074.80 18083.18 16987.19 16178.25 18880.11 11866.05 17948.31 19960.88 16254.67 19564.54 18882.57 17886.17 14494.43 10690.53 140
test20.0368.31 19570.05 19666.28 19982.41 18180.84 19767.35 20476.11 15858.44 20140.80 20953.77 19054.54 19642.28 20683.07 17481.96 18188.73 18577.76 200
PS-CasMVS75.90 17675.86 17575.96 17282.59 18088.46 15279.23 18379.56 12666.00 18052.77 19059.48 17154.35 19767.14 18283.37 17386.23 14394.47 10393.10 92
SixPastTwentyTwo76.02 17475.72 17676.36 16983.38 16687.54 15775.50 19376.22 15665.50 18457.05 18470.64 10853.97 19874.54 15280.96 18482.12 17991.44 16389.35 146
tfpnnormal77.46 15874.86 18380.49 13786.34 13188.92 14784.33 14781.26 10461.39 19561.70 16551.99 19453.66 19974.84 15088.63 10887.38 12494.50 10092.08 117
Anonymous2023120670.80 19170.59 19571.04 19181.60 18782.49 19274.64 19575.87 16064.17 18849.27 19844.85 20353.59 20054.68 19883.07 17482.34 17890.17 17683.65 181
LTVRE_ROB74.41 1675.78 17874.72 18477.02 16485.88 13389.22 14082.44 16077.17 14850.57 20845.45 20365.44 13852.29 20181.25 9085.50 15187.42 12389.94 17992.62 105
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
N_pmnet66.85 19666.63 19767.11 19878.73 19574.66 20670.53 20171.07 17666.46 17846.54 20151.68 19551.91 20255.48 19674.68 20172.38 20280.29 20774.65 203
gm-plane-assit70.29 19270.65 19469.88 19385.03 14878.50 20358.41 21065.47 19850.39 20940.88 20849.60 19650.11 20375.14 14891.43 6589.78 8894.32 11084.73 179
TinyColmap76.73 16273.95 18679.96 14185.16 14785.64 17382.34 16178.19 13970.63 16062.06 16060.69 16449.61 20480.81 9585.12 15983.69 17091.22 16982.27 186
MIMVSNet165.00 19866.24 19963.55 20158.41 21280.01 20069.00 20374.03 16755.81 20441.88 20736.81 20849.48 20547.89 20481.32 18382.40 17790.08 17877.88 199
pmmvs-eth3d74.32 18571.96 19177.08 16377.33 19982.71 18978.41 18576.02 15966.65 17665.98 13354.23 18949.02 20673.14 16282.37 18082.69 17691.61 16286.05 172
PM-MVS74.17 18673.10 18775.41 17576.07 20282.53 19177.56 18971.69 17471.04 15461.92 16261.23 15947.30 20774.82 15181.78 18279.80 18390.42 17488.05 157
new-patchmatchnet63.80 19963.31 20164.37 20076.49 20075.99 20463.73 20770.99 17757.27 20243.08 20545.86 20143.80 20845.13 20573.20 20270.68 20586.80 19476.34 202
new_pmnet59.28 20261.47 20456.73 20461.66 21068.29 21059.57 20954.91 20760.83 19634.38 21244.66 20543.65 20949.90 20271.66 20371.56 20479.94 20869.67 205
tmp_tt32.73 20943.96 21621.15 21826.71 2158.99 21465.67 18351.39 19556.01 18342.64 21011.76 21356.60 20850.81 21053.55 213
FPMVS63.63 20060.08 20567.78 19680.01 19271.50 20872.88 19969.41 18661.82 19453.11 18945.12 20242.11 21150.86 20166.69 20563.84 20680.41 20669.46 206
pmmvs361.89 20161.74 20362.06 20264.30 20870.83 20964.22 20652.14 21048.78 21044.47 20441.67 20641.70 21263.03 18976.06 19976.02 19584.18 20377.14 201
PMVScopyleft50.48 1855.81 20451.93 20660.33 20372.90 20649.34 21248.78 21169.51 18543.49 21154.25 18736.26 20941.04 21339.71 20865.07 20660.70 20776.85 20967.58 207
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MDA-MVSNet-bldmvs66.22 19764.49 20068.24 19561.67 20982.11 19570.07 20276.16 15759.14 20047.94 20054.35 18835.82 21467.33 18164.94 20775.68 19686.30 19779.36 196
DeepMVS_CXcopyleft48.31 21448.03 21226.08 21356.42 20325.77 21447.51 19831.31 21551.30 20048.49 21053.61 21261.52 208
PMMVS241.68 20644.74 20838.10 20646.97 21552.32 21140.63 21448.08 21135.51 2127.36 21826.86 21024.64 21616.72 21255.24 20959.03 20868.85 21159.59 209
ambc61.92 20270.98 20773.54 20763.64 20860.06 19752.23 19338.44 20719.17 21757.12 19482.33 18175.03 20083.21 20584.89 176
Gipumacopyleft49.17 20547.05 20751.65 20559.67 21148.39 21341.98 21363.47 20355.64 20533.33 21314.90 21113.78 21841.34 20769.31 20472.30 20370.11 21055.00 210
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS30.49 20925.44 21136.39 20851.47 21329.89 21720.17 21754.00 20926.49 21312.02 21713.94 2148.84 21934.37 20925.04 21334.37 21246.29 21539.53 213
E-PMN31.40 20726.80 21036.78 20751.39 21429.96 21620.20 21654.17 20825.93 21412.75 21614.73 2128.58 22034.10 21027.36 21237.83 21148.07 21443.18 212
MVEpermissive30.17 1930.88 20833.52 20927.80 21123.78 21739.16 21518.69 21846.90 21221.88 21515.39 21514.37 2137.31 22124.41 21141.63 21156.22 20937.64 21654.07 211
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs1.03 2101.63 2120.34 2120.09 2190.35 2190.61 2200.16 2151.49 2160.10 2203.15 2150.15 2220.86 2151.32 2141.18 2130.20 2173.76 215
test1230.87 2111.40 2130.25 2130.03 2200.25 2200.35 2210.08 2171.21 2170.05 2212.84 2160.03 2230.89 2140.43 2151.16 2140.13 2183.87 214
uanet_test0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
sosnet-low-res0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
sosnet0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
RE-MVS-def56.08 185
our_test_381.81 18683.96 18476.61 190
Patchmatch-RL test8.55 219
NP-MVS87.47 53
Patchmtry85.54 17582.30 16268.23 18865.37 138