DVP-MVS |  | | 95.56 3 | 96.26 3 | 94.73 3 | 96.93 17 | 98.19 1 | 96.62 7 | 92.81 5 | 96.15 2 | 91.73 6 | 95.01 8 | 95.31 2 | 93.41 1 | 95.95 3 | 94.77 8 | 96.90 5 | 98.46 2 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
DVP-MVS++ | | | 95.79 1 | 96.42 1 | 95.06 1 | 97.84 2 | 98.17 2 | 97.03 4 | 92.84 3 | 96.68 1 | 92.83 3 | 95.90 5 | 94.38 4 | 92.90 5 | 95.98 2 | 94.85 5 | 96.93 4 | 98.99 1 |
|
SED-MVS | | | 95.61 2 | 96.36 2 | 94.73 3 | 96.84 20 | 98.15 3 | 97.08 3 | 92.92 2 | 95.64 3 | 91.84 5 | 95.98 4 | 95.33 1 | 92.83 7 | 96.00 1 | 94.94 3 | 96.90 5 | 98.45 3 |
|
DPE-MVS |  | | 95.53 4 | 96.13 4 | 94.82 2 | 96.81 23 | 98.05 4 | 97.42 1 | 93.09 1 | 94.31 9 | 91.49 7 | 97.12 1 | 95.03 3 | 93.27 3 | 95.55 6 | 94.58 12 | 96.86 7 | 98.25 4 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MSP-MVS | | | 95.12 6 | 95.83 5 | 94.30 6 | 96.82 22 | 97.94 5 | 96.98 5 | 92.37 12 | 95.40 4 | 90.59 14 | 96.16 3 | 93.71 6 | 92.70 8 | 94.80 16 | 94.77 8 | 96.37 15 | 97.99 8 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
APDe-MVS | | | 95.23 5 | 95.69 6 | 94.70 5 | 97.12 11 | 97.81 6 | 97.19 2 | 92.83 4 | 95.06 6 | 90.98 11 | 96.47 2 | 92.77 11 | 93.38 2 | 95.34 9 | 94.21 16 | 96.68 10 | 98.17 5 |
|
CSCG | | | 92.76 27 | 93.16 28 | 92.29 30 | 96.30 29 | 97.74 7 | 94.67 34 | 88.98 37 | 92.46 24 | 89.73 21 | 86.67 38 | 92.15 18 | 88.69 45 | 92.26 60 | 92.92 46 | 95.40 63 | 97.89 10 |
|
SMA-MVS |  | | 94.70 7 | 95.35 7 | 93.93 13 | 97.57 3 | 97.57 8 | 95.98 12 | 91.91 14 | 94.50 7 | 90.35 15 | 93.46 18 | 92.72 12 | 91.89 19 | 95.89 4 | 95.22 1 | 95.88 33 | 98.10 6 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
SteuartSystems-ACMMP | | | 94.06 14 | 94.65 12 | 93.38 20 | 96.97 16 | 97.36 9 | 96.12 10 | 91.78 15 | 92.05 29 | 87.34 31 | 94.42 13 | 90.87 25 | 91.87 20 | 95.47 8 | 94.59 11 | 96.21 25 | 97.77 11 |
Skip Steuart: Steuart Systems R&D Blog. |
ACMMP_NAP | | | 93.94 16 | 94.49 15 | 93.30 21 | 97.03 14 | 97.31 10 | 95.96 13 | 91.30 19 | 93.41 19 | 88.55 25 | 93.00 20 | 90.33 29 | 91.43 27 | 95.53 7 | 94.41 14 | 95.53 58 | 97.47 15 |
|
CNVR-MVS | | | 94.37 12 | 94.65 12 | 94.04 12 | 97.29 7 | 97.11 11 | 96.00 11 | 92.43 11 | 93.45 17 | 89.85 20 | 90.92 26 | 93.04 9 | 92.59 10 | 95.77 5 | 94.82 6 | 96.11 27 | 97.42 16 |
|
xxxxxxxxxxxxxcwj | | | 92.95 25 | 91.88 34 | 94.20 9 | 96.75 25 | 97.07 12 | 95.82 19 | 92.60 7 | 93.98 13 | 91.09 9 | 95.89 6 | 71.01 129 | 91.93 16 | 94.40 29 | 93.56 29 | 97.04 2 | 97.27 17 |
|
SF-MVS | | | 94.61 8 | 94.96 10 | 94.20 9 | 96.75 25 | 97.07 12 | 95.82 19 | 92.60 7 | 93.98 13 | 91.09 9 | 95.89 6 | 92.54 13 | 91.93 16 | 94.40 29 | 93.56 29 | 97.04 2 | 97.27 17 |
|
PHI-MVS | | | 92.05 33 | 93.74 22 | 90.08 45 | 94.96 42 | 97.06 14 | 93.11 46 | 87.71 45 | 90.71 38 | 80.78 69 | 92.40 23 | 91.03 23 | 87.68 56 | 94.32 31 | 94.48 13 | 96.21 25 | 96.16 44 |
|
SD-MVS | | | 94.53 10 | 95.22 8 | 93.73 16 | 95.69 37 | 97.03 15 | 95.77 23 | 91.95 13 | 94.41 8 | 91.35 8 | 94.97 9 | 93.34 8 | 91.80 21 | 94.72 21 | 93.99 20 | 95.82 40 | 98.07 7 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
TSAR-MVS + MP. | | | 94.48 11 | 94.97 9 | 93.90 14 | 95.53 38 | 97.01 16 | 96.69 6 | 90.71 25 | 94.24 10 | 90.92 12 | 94.97 9 | 92.19 16 | 93.03 4 | 94.83 15 | 93.60 27 | 96.51 14 | 97.97 9 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
APD-MVS |  | | 94.37 12 | 94.47 16 | 94.26 7 | 97.18 9 | 96.99 17 | 96.53 8 | 92.68 6 | 92.45 25 | 89.96 18 | 94.53 12 | 91.63 21 | 92.89 6 | 94.58 23 | 93.82 23 | 96.31 19 | 97.26 19 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ACMMPR | | | 93.72 19 | 93.94 20 | 93.48 19 | 97.07 12 | 96.93 18 | 95.78 22 | 90.66 27 | 93.88 15 | 89.24 22 | 93.53 17 | 89.08 39 | 92.24 12 | 93.89 37 | 93.50 32 | 95.88 33 | 96.73 32 |
|
DeepPCF-MVS | | 88.51 2 | 92.64 30 | 94.42 17 | 90.56 42 | 94.84 45 | 96.92 19 | 91.31 64 | 89.61 33 | 95.16 5 | 84.55 47 | 89.91 30 | 91.45 22 | 90.15 37 | 95.12 11 | 94.81 7 | 92.90 154 | 97.58 13 |
|
DeepC-MVS | | 87.86 3 | 92.26 32 | 91.86 35 | 92.73 26 | 96.18 30 | 96.87 20 | 95.19 29 | 91.76 16 | 92.17 28 | 86.58 36 | 81.79 54 | 85.85 53 | 90.88 33 | 94.57 24 | 94.61 10 | 95.80 41 | 97.18 20 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
HFP-MVS | | | 94.02 15 | 94.22 18 | 93.78 15 | 97.25 8 | 96.85 21 | 95.81 21 | 90.94 24 | 94.12 11 | 90.29 17 | 94.09 15 | 89.98 32 | 92.52 11 | 93.94 35 | 93.49 34 | 95.87 35 | 97.10 24 |
|
MCST-MVS | | | 93.81 17 | 94.06 19 | 93.53 18 | 96.79 24 | 96.85 21 | 95.95 14 | 91.69 17 | 92.20 27 | 87.17 33 | 90.83 28 | 93.41 7 | 91.96 15 | 94.49 26 | 93.50 32 | 97.61 1 | 97.12 23 |
|
MP-MVS |  | | 93.35 21 | 93.59 24 | 93.08 24 | 97.39 5 | 96.82 23 | 95.38 26 | 90.71 25 | 90.82 37 | 88.07 28 | 92.83 22 | 90.29 30 | 91.32 28 | 94.03 32 | 93.19 41 | 95.61 54 | 97.16 21 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
MVS_0304 | | | 90.88 41 | 91.35 39 | 90.34 43 | 93.91 53 | 96.79 24 | 94.49 35 | 86.54 51 | 86.57 57 | 82.85 57 | 81.68 57 | 89.70 34 | 87.57 58 | 94.64 22 | 93.93 21 | 96.67 12 | 96.15 45 |
|
CANet | | | 91.33 39 | 91.46 37 | 91.18 37 | 95.01 41 | 96.71 25 | 93.77 39 | 87.39 47 | 87.72 52 | 87.26 32 | 81.77 55 | 89.73 33 | 87.32 62 | 94.43 28 | 93.86 22 | 96.31 19 | 96.02 47 |
|
XVS | | | | | | 93.11 61 | 96.70 26 | 91.91 55 | | | 83.95 49 | | 88.82 41 | | | | 95.79 42 | |
|
X-MVStestdata | | | | | | 93.11 61 | 96.70 26 | 91.91 55 | | | 83.95 49 | | 88.82 41 | | | | 95.79 42 | |
|
X-MVS | | | 92.36 31 | 92.75 31 | 91.90 34 | 96.89 18 | 96.70 26 | 95.25 28 | 90.48 30 | 91.50 34 | 83.95 49 | 88.20 32 | 88.82 41 | 89.11 40 | 93.75 40 | 93.43 36 | 95.75 45 | 96.83 30 |
|
PGM-MVS | | | 92.76 27 | 93.03 29 | 92.45 29 | 97.03 14 | 96.67 29 | 95.73 24 | 87.92 43 | 90.15 44 | 86.53 37 | 92.97 21 | 88.33 45 | 91.69 22 | 93.62 43 | 93.03 42 | 95.83 39 | 96.41 39 |
|
NCCC | | | 93.69 20 | 93.66 23 | 93.72 17 | 97.37 6 | 96.66 30 | 95.93 17 | 92.50 10 | 93.40 20 | 88.35 26 | 87.36 36 | 92.33 15 | 92.18 13 | 94.89 14 | 94.09 18 | 96.00 29 | 96.91 27 |
|
TSAR-MVS + ACMM | | | 92.97 24 | 94.51 14 | 91.16 38 | 95.88 35 | 96.59 31 | 95.09 30 | 90.45 31 | 93.42 18 | 83.01 55 | 94.68 11 | 90.74 27 | 88.74 44 | 94.75 19 | 93.78 24 | 93.82 135 | 97.63 12 |
|
ACMMP |  | | 92.03 34 | 92.16 32 | 91.87 35 | 95.88 35 | 96.55 32 | 94.47 36 | 89.49 34 | 91.71 32 | 85.26 43 | 91.52 25 | 84.48 59 | 90.21 36 | 92.82 54 | 91.63 58 | 95.92 31 | 96.42 38 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
HPM-MVS++ |  | | 94.60 9 | 94.91 11 | 94.24 8 | 97.86 1 | 96.53 33 | 96.14 9 | 92.51 9 | 93.87 16 | 90.76 13 | 93.45 19 | 93.84 5 | 92.62 9 | 95.11 12 | 94.08 19 | 95.58 56 | 97.48 14 |
|
CP-MVS | | | 93.25 22 | 93.26 27 | 93.24 22 | 96.84 20 | 96.51 34 | 95.52 25 | 90.61 28 | 92.37 26 | 88.88 23 | 90.91 27 | 89.52 35 | 91.91 18 | 93.64 42 | 92.78 48 | 95.69 47 | 97.09 25 |
|
DeepC-MVS_fast | | 88.76 1 | 93.10 23 | 93.02 30 | 93.19 23 | 97.13 10 | 96.51 34 | 95.35 27 | 91.19 20 | 93.14 22 | 88.14 27 | 85.26 42 | 89.49 36 | 91.45 24 | 95.17 10 | 95.07 2 | 95.85 38 | 96.48 36 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
3Dnovator+ | | 86.06 4 | 91.60 37 | 90.86 43 | 92.47 28 | 96.00 34 | 96.50 36 | 94.70 33 | 87.83 44 | 90.49 40 | 89.92 19 | 74.68 93 | 89.35 37 | 90.66 34 | 94.02 33 | 94.14 17 | 95.67 49 | 96.85 28 |
|
zzz-MVS | | | 93.80 18 | 93.45 26 | 94.20 9 | 97.53 4 | 96.43 37 | 95.88 18 | 91.12 21 | 94.09 12 | 92.74 4 | 87.68 34 | 90.77 26 | 92.04 14 | 94.74 20 | 93.56 29 | 95.91 32 | 96.85 28 |
|
abl_6 | | | | | 90.66 41 | 94.65 48 | 96.27 38 | 92.21 51 | 86.94 49 | 90.23 42 | 86.38 38 | 85.50 41 | 92.96 10 | 88.37 49 | | | 95.40 63 | 95.46 57 |
|
DELS-MVS | | | 89.71 48 | 89.68 52 | 89.74 48 | 93.75 55 | 96.22 39 | 93.76 40 | 85.84 54 | 82.53 78 | 85.05 45 | 78.96 71 | 84.24 60 | 84.25 78 | 94.91 13 | 94.91 4 | 95.78 44 | 96.02 47 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
CDPH-MVS | | | 91.14 40 | 92.01 33 | 90.11 44 | 96.18 30 | 96.18 40 | 94.89 32 | 88.80 39 | 88.76 49 | 77.88 87 | 89.18 31 | 87.71 48 | 87.29 63 | 93.13 48 | 93.31 39 | 95.62 52 | 95.84 49 |
|
PCF-MVS | | 84.60 6 | 88.66 57 | 87.75 70 | 89.73 49 | 93.06 63 | 96.02 41 | 93.22 45 | 90.00 32 | 82.44 81 | 80.02 74 | 77.96 77 | 85.16 56 | 87.36 61 | 88.54 116 | 88.54 120 | 94.72 95 | 95.61 54 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
TSAR-MVS + GP. | | | 92.71 29 | 93.91 21 | 91.30 36 | 91.96 73 | 96.00 42 | 93.43 42 | 87.94 42 | 92.53 23 | 86.27 41 | 93.57 16 | 91.94 19 | 91.44 26 | 93.29 46 | 92.89 47 | 96.78 8 | 97.15 22 |
|
QAPM | | | 89.49 50 | 89.58 53 | 89.38 53 | 94.73 46 | 95.94 43 | 92.35 50 | 85.00 61 | 85.69 62 | 80.03 73 | 76.97 81 | 87.81 47 | 87.87 53 | 92.18 64 | 92.10 54 | 96.33 17 | 96.40 40 |
|
canonicalmvs | | | 89.36 52 | 89.92 47 | 88.70 60 | 91.38 79 | 95.92 44 | 91.81 58 | 82.61 98 | 90.37 41 | 82.73 59 | 82.09 52 | 79.28 87 | 88.30 50 | 91.17 76 | 93.59 28 | 95.36 66 | 97.04 26 |
|
MSLP-MVS++ | | | 92.02 35 | 91.40 38 | 92.75 25 | 96.01 33 | 95.88 45 | 93.73 41 | 89.00 35 | 89.89 45 | 90.31 16 | 81.28 60 | 88.85 40 | 91.45 24 | 92.88 53 | 94.24 15 | 96.00 29 | 96.76 31 |
|
DPM-MVS | | | 91.72 36 | 91.48 36 | 92.00 32 | 95.53 38 | 95.75 46 | 95.94 15 | 91.07 22 | 91.20 35 | 85.58 42 | 81.63 58 | 90.74 27 | 88.40 48 | 93.40 44 | 93.75 25 | 95.45 62 | 93.85 85 |
|
3Dnovator | | 85.17 5 | 90.48 43 | 89.90 49 | 91.16 38 | 94.88 44 | 95.74 47 | 93.82 38 | 85.36 58 | 89.28 46 | 87.81 29 | 74.34 96 | 87.40 49 | 88.56 46 | 93.07 49 | 93.74 26 | 96.53 13 | 95.71 51 |
|
MVS_111021_HR | | | 90.56 42 | 91.29 40 | 89.70 50 | 94.71 47 | 95.63 48 | 91.81 58 | 86.38 52 | 87.53 53 | 81.29 64 | 87.96 33 | 85.43 55 | 87.69 55 | 93.90 36 | 92.93 45 | 96.33 17 | 95.69 52 |
|
PVSNet_Blended_VisFu | | | 87.40 72 | 87.80 67 | 86.92 76 | 92.86 65 | 95.40 49 | 88.56 103 | 83.45 86 | 79.55 109 | 82.26 60 | 74.49 95 | 84.03 61 | 79.24 130 | 92.97 52 | 91.53 60 | 95.15 77 | 96.65 35 |
|
train_agg | | | 92.87 26 | 93.53 25 | 92.09 31 | 96.88 19 | 95.38 50 | 95.94 15 | 90.59 29 | 90.65 39 | 83.65 52 | 94.31 14 | 91.87 20 | 90.30 35 | 93.38 45 | 92.42 52 | 95.17 75 | 96.73 32 |
|
OMC-MVS | | | 90.23 45 | 90.40 46 | 90.03 46 | 93.45 58 | 95.29 51 | 91.89 57 | 86.34 53 | 93.25 21 | 84.94 46 | 81.72 56 | 86.65 51 | 88.90 41 | 91.69 68 | 90.27 81 | 94.65 99 | 93.95 83 |
|
test2506 | | | 85.20 86 | 84.11 98 | 86.47 78 | 91.84 74 | 95.28 52 | 89.18 86 | 84.49 65 | 82.59 76 | 75.34 96 | 74.66 94 | 58.07 188 | 81.68 93 | 93.76 38 | 92.71 49 | 96.28 23 | 91.71 129 |
|
ECVR-MVS |  | | 85.25 85 | 84.47 94 | 86.16 81 | 91.84 74 | 95.28 52 | 89.18 86 | 84.49 65 | 82.59 76 | 73.49 105 | 66.12 138 | 69.28 137 | 81.68 93 | 93.76 38 | 92.71 49 | 96.28 23 | 91.58 136 |
|
CPTT-MVS | | | 91.39 38 | 90.95 41 | 91.91 33 | 95.06 40 | 95.24 54 | 95.02 31 | 88.98 37 | 91.02 36 | 86.71 35 | 84.89 44 | 88.58 44 | 91.60 23 | 90.82 87 | 89.67 98 | 94.08 122 | 96.45 37 |
|
AdaColmap |  | | 90.29 44 | 88.38 60 | 92.53 27 | 96.10 32 | 95.19 55 | 92.98 47 | 91.40 18 | 89.08 48 | 88.65 24 | 78.35 74 | 81.44 72 | 91.30 29 | 90.81 88 | 90.21 82 | 94.72 95 | 93.59 91 |
|
DROMVSNet | | | 89.96 47 | 90.77 44 | 89.01 56 | 90.54 91 | 95.15 56 | 91.34 62 | 81.43 106 | 85.27 63 | 83.08 54 | 82.83 48 | 87.22 50 | 90.97 31 | 94.79 17 | 93.38 37 | 96.73 9 | 96.71 34 |
|
test1111 | | | 84.86 91 | 84.21 97 | 85.61 86 | 91.75 76 | 95.14 57 | 88.63 100 | 84.57 64 | 81.88 86 | 71.21 114 | 65.66 144 | 68.51 141 | 81.19 97 | 93.74 41 | 92.68 51 | 96.31 19 | 91.86 126 |
|
UA-Net | | | 86.07 78 | 87.78 68 | 84.06 104 | 92.85 66 | 95.11 58 | 87.73 110 | 84.38 67 | 73.22 153 | 73.18 107 | 79.99 65 | 89.22 38 | 71.47 174 | 93.22 47 | 93.03 42 | 94.76 92 | 90.69 143 |
|
MAR-MVS | | | 88.39 62 | 88.44 59 | 88.33 66 | 94.90 43 | 95.06 59 | 90.51 68 | 83.59 79 | 85.27 63 | 79.07 79 | 77.13 79 | 82.89 66 | 87.70 54 | 92.19 63 | 92.32 53 | 94.23 119 | 94.20 81 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
OpenMVS |  | 82.53 11 | 87.71 68 | 86.84 75 | 88.73 59 | 94.42 49 | 95.06 59 | 91.02 66 | 83.49 82 | 82.50 80 | 82.24 61 | 67.62 133 | 85.48 54 | 85.56 73 | 91.19 75 | 91.30 61 | 95.67 49 | 94.75 68 |
|
EIA-MVS | | | 87.94 67 | 88.05 64 | 87.81 70 | 91.46 78 | 95.00 61 | 88.67 98 | 82.81 90 | 82.53 78 | 80.81 68 | 80.04 64 | 80.20 78 | 87.48 59 | 92.58 57 | 91.61 59 | 95.63 51 | 94.36 75 |
|
Vis-MVSNet |  | | 84.38 99 | 86.68 79 | 81.70 128 | 87.65 125 | 94.89 62 | 88.14 106 | 80.90 112 | 74.48 139 | 68.23 131 | 77.53 78 | 80.72 75 | 69.98 178 | 92.68 55 | 91.90 55 | 95.33 69 | 94.58 72 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
TAPA-MVS | | 84.37 7 | 88.91 56 | 88.93 56 | 88.89 57 | 93.00 64 | 94.85 63 | 92.00 54 | 84.84 62 | 91.68 33 | 80.05 72 | 79.77 66 | 84.56 58 | 88.17 51 | 90.11 97 | 89.00 115 | 95.30 70 | 92.57 113 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PVSNet_BlendedMVS | | | 88.19 65 | 88.00 65 | 88.42 64 | 92.71 69 | 94.82 64 | 89.08 90 | 83.81 74 | 84.91 68 | 86.38 38 | 79.14 68 | 78.11 92 | 82.66 85 | 93.05 50 | 91.10 62 | 95.86 36 | 94.86 66 |
|
PVSNet_Blended | | | 88.19 65 | 88.00 65 | 88.42 64 | 92.71 69 | 94.82 64 | 89.08 90 | 83.81 74 | 84.91 68 | 86.38 38 | 79.14 68 | 78.11 92 | 82.66 85 | 93.05 50 | 91.10 62 | 95.86 36 | 94.86 66 |
|
IS_MVSNet | | | 86.18 77 | 88.18 62 | 83.85 107 | 91.02 84 | 94.72 66 | 87.48 113 | 82.46 99 | 81.05 96 | 70.28 119 | 76.98 80 | 82.20 70 | 76.65 146 | 93.97 34 | 93.38 37 | 95.18 74 | 94.97 63 |
|
ETV-MVS | | | 89.22 53 | 89.76 51 | 88.60 62 | 91.60 77 | 94.61 67 | 89.48 83 | 83.46 85 | 85.20 65 | 81.58 62 | 82.75 49 | 82.59 67 | 88.80 42 | 94.57 24 | 93.28 40 | 96.68 10 | 95.31 59 |
|
CS-MVS | | | 89.44 51 | 90.69 45 | 87.99 68 | 91.16 81 | 94.56 68 | 89.02 95 | 80.75 113 | 86.95 55 | 79.62 76 | 83.07 47 | 85.88 52 | 91.03 30 | 94.49 26 | 93.49 34 | 96.37 15 | 96.40 40 |
|
EPP-MVSNet | | | 86.55 74 | 87.76 69 | 85.15 89 | 90.52 92 | 94.41 69 | 87.24 119 | 82.32 100 | 81.79 88 | 73.60 104 | 78.57 73 | 82.41 68 | 82.07 91 | 91.23 72 | 90.39 79 | 95.14 78 | 95.48 56 |
|
CNLPA | | | 88.40 60 | 87.00 74 | 90.03 46 | 93.73 56 | 94.28 70 | 89.56 81 | 85.81 55 | 91.87 30 | 87.55 30 | 69.53 122 | 81.49 71 | 89.23 39 | 89.45 107 | 88.59 119 | 94.31 118 | 93.82 86 |
|
casdiffmvs | | | 87.45 71 | 87.15 73 | 87.79 72 | 90.15 101 | 94.22 71 | 89.96 74 | 83.93 73 | 85.08 66 | 80.91 66 | 75.81 86 | 77.88 95 | 86.08 70 | 91.86 67 | 90.86 68 | 95.74 46 | 94.37 74 |
|
CLD-MVS | | | 88.66 57 | 88.52 58 | 88.82 58 | 91.37 80 | 94.22 71 | 92.82 49 | 82.08 101 | 88.27 51 | 85.14 44 | 81.86 53 | 78.53 91 | 85.93 72 | 91.17 76 | 90.61 75 | 95.55 57 | 95.00 62 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
UGNet | | | 85.90 81 | 88.23 61 | 83.18 114 | 88.96 112 | 94.10 73 | 87.52 112 | 83.60 78 | 81.66 89 | 77.90 86 | 80.76 62 | 83.19 64 | 66.70 191 | 91.13 81 | 90.71 73 | 94.39 115 | 96.06 46 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
OPM-MVS | | | 87.56 70 | 85.80 86 | 89.62 51 | 93.90 54 | 94.09 74 | 94.12 37 | 88.18 40 | 75.40 133 | 77.30 90 | 76.41 82 | 77.93 94 | 88.79 43 | 92.20 62 | 90.82 69 | 95.40 63 | 93.72 89 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
MVS_111021_LR | | | 90.14 46 | 90.89 42 | 89.26 54 | 93.23 60 | 94.05 75 | 90.43 69 | 84.65 63 | 90.16 43 | 84.52 48 | 90.14 29 | 83.80 62 | 87.99 52 | 92.50 58 | 90.92 67 | 94.74 93 | 94.70 70 |
|
ACMP | | 83.90 8 | 88.32 63 | 88.06 63 | 88.62 61 | 92.18 71 | 93.98 76 | 91.28 65 | 85.24 59 | 86.69 56 | 81.23 65 | 85.62 40 | 75.13 105 | 87.01 66 | 89.83 100 | 89.77 95 | 94.79 89 | 95.43 58 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
TSAR-MVS + COLMAP | | | 88.40 60 | 89.09 55 | 87.60 73 | 92.72 68 | 93.92 77 | 92.21 51 | 85.57 57 | 91.73 31 | 73.72 103 | 91.75 24 | 73.22 121 | 87.64 57 | 91.49 70 | 89.71 97 | 93.73 138 | 91.82 127 |
|
HQP-MVS | | | 89.13 55 | 89.58 53 | 88.60 62 | 93.53 57 | 93.67 78 | 93.29 44 | 87.58 46 | 88.53 50 | 75.50 92 | 87.60 35 | 80.32 77 | 87.07 64 | 90.66 93 | 89.95 90 | 94.62 101 | 96.35 42 |
|
LGP-MVS_train | | | 88.25 64 | 88.55 57 | 87.89 69 | 92.84 67 | 93.66 79 | 93.35 43 | 85.22 60 | 85.77 60 | 74.03 102 | 86.60 39 | 76.29 101 | 86.62 68 | 91.20 74 | 90.58 77 | 95.29 71 | 95.75 50 |
|
EPNet | | | 89.60 49 | 89.91 48 | 89.24 55 | 96.45 28 | 93.61 80 | 92.95 48 | 88.03 41 | 85.74 61 | 83.36 53 | 87.29 37 | 83.05 65 | 80.98 100 | 92.22 61 | 91.85 56 | 93.69 140 | 95.58 55 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
IB-MVS | | 79.09 12 | 82.60 112 | 82.19 110 | 83.07 115 | 91.08 83 | 93.55 81 | 80.90 180 | 81.35 108 | 76.56 125 | 80.87 67 | 64.81 152 | 69.97 133 | 68.87 181 | 85.64 155 | 90.06 86 | 95.36 66 | 94.74 69 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
MVS_Test | | | 86.93 73 | 87.24 72 | 86.56 77 | 90.10 102 | 93.47 82 | 90.31 70 | 80.12 123 | 83.55 73 | 78.12 83 | 79.58 67 | 79.80 82 | 85.45 74 | 90.17 96 | 90.59 76 | 95.29 71 | 93.53 92 |
|
Effi-MVS+ | | | 85.33 84 | 85.08 90 | 85.63 85 | 89.69 105 | 93.42 83 | 89.90 75 | 80.31 121 | 79.32 110 | 72.48 113 | 73.52 102 | 74.03 112 | 86.55 69 | 90.99 83 | 89.98 88 | 94.83 88 | 94.27 80 |
|
HyFIR lowres test | | | 81.62 125 | 79.45 145 | 84.14 103 | 91.00 85 | 93.38 84 | 88.27 105 | 78.19 146 | 76.28 127 | 70.18 120 | 48.78 204 | 73.69 116 | 83.52 80 | 87.05 132 | 87.83 127 | 93.68 141 | 89.15 154 |
|
LS3D | | | 85.96 80 | 84.37 96 | 87.81 70 | 94.13 51 | 93.27 85 | 90.26 72 | 89.00 35 | 84.91 68 | 72.84 111 | 71.74 108 | 72.47 123 | 87.45 60 | 89.53 106 | 89.09 111 | 93.20 150 | 89.60 151 |
|
CS-MVS-test | | | 89.17 54 | 89.90 49 | 88.31 67 | 89.96 103 | 93.19 86 | 91.34 62 | 81.43 106 | 84.69 71 | 79.88 75 | 82.62 51 | 84.70 57 | 90.97 31 | 94.79 17 | 92.96 44 | 96.29 22 | 96.34 43 |
|
DI_MVS_plusplus_trai | | | 86.41 76 | 85.54 88 | 87.42 74 | 89.24 108 | 93.13 87 | 92.16 53 | 82.65 96 | 82.30 82 | 80.75 70 | 68.30 129 | 80.41 76 | 85.01 75 | 90.56 94 | 90.07 85 | 94.70 97 | 94.01 82 |
|
tfpn200view9 | | | 82.86 108 | 81.46 115 | 84.48 94 | 90.30 99 | 93.09 88 | 89.05 92 | 82.71 92 | 75.14 134 | 69.56 122 | 65.72 141 | 63.13 157 | 80.38 111 | 91.15 78 | 89.51 101 | 94.91 85 | 92.50 117 |
|
thres600view7 | | | 82.53 114 | 81.02 122 | 84.28 99 | 90.61 90 | 93.05 89 | 88.57 102 | 82.67 94 | 74.12 144 | 68.56 130 | 65.09 149 | 62.13 168 | 80.40 110 | 91.15 78 | 89.02 114 | 94.88 86 | 92.59 111 |
|
thres200 | | | 82.77 110 | 81.25 119 | 84.54 93 | 90.38 96 | 93.05 89 | 89.13 89 | 82.67 94 | 74.40 140 | 69.53 124 | 65.69 143 | 63.03 160 | 80.63 106 | 91.15 78 | 89.42 103 | 94.88 86 | 92.04 123 |
|
CANet_DTU | | | 85.43 83 | 87.72 71 | 82.76 118 | 90.95 87 | 93.01 91 | 89.99 73 | 75.46 169 | 82.67 75 | 64.91 149 | 83.14 46 | 80.09 79 | 80.68 104 | 92.03 66 | 91.03 64 | 94.57 104 | 92.08 121 |
|
Anonymous202405211 | | | | 82.75 108 | | 89.58 106 | 92.97 92 | 89.04 93 | 84.13 71 | 78.72 115 | | 57.18 187 | 76.64 100 | 83.13 83 | 89.55 105 | 89.92 91 | 93.38 148 | 94.28 79 |
|
thres400 | | | 82.68 111 | 81.15 120 | 84.47 95 | 90.52 92 | 92.89 93 | 88.95 96 | 82.71 92 | 74.33 141 | 69.22 127 | 65.31 146 | 62.61 163 | 80.63 106 | 90.96 85 | 89.50 102 | 94.79 89 | 92.45 119 |
|
GeoE | | | 84.62 93 | 83.98 100 | 85.35 88 | 89.34 107 | 92.83 94 | 88.34 104 | 78.95 138 | 79.29 111 | 77.16 91 | 68.10 130 | 74.56 108 | 83.40 81 | 89.31 109 | 89.23 108 | 94.92 84 | 94.57 73 |
|
Vis-MVSNet (Re-imp) | | | 83.65 103 | 86.81 77 | 79.96 148 | 90.46 95 | 92.71 95 | 84.84 149 | 82.00 102 | 80.93 98 | 62.44 164 | 76.29 83 | 82.32 69 | 65.54 194 | 92.29 59 | 91.66 57 | 94.49 109 | 91.47 138 |
|
Anonymous20231211 | | | 84.42 98 | 83.02 104 | 86.05 82 | 88.85 113 | 92.70 96 | 88.92 97 | 83.40 87 | 79.99 104 | 78.31 82 | 55.83 191 | 78.92 89 | 83.33 82 | 89.06 111 | 89.76 96 | 93.50 145 | 94.90 64 |
|
tttt0517 | | | 85.11 89 | 85.81 85 | 84.30 98 | 89.24 108 | 92.68 97 | 87.12 124 | 80.11 124 | 81.98 85 | 74.31 101 | 78.08 76 | 73.57 117 | 79.90 118 | 91.01 82 | 89.58 99 | 95.11 81 | 93.77 87 |
|
diffmvs | | | 86.52 75 | 86.76 78 | 86.23 80 | 88.31 118 | 92.63 98 | 89.58 80 | 81.61 105 | 86.14 58 | 80.26 71 | 79.00 70 | 77.27 97 | 83.58 79 | 88.94 112 | 89.06 112 | 94.05 124 | 94.29 76 |
|
PLC |  | 83.76 9 | 88.61 59 | 86.83 76 | 90.70 40 | 94.22 50 | 92.63 98 | 91.50 60 | 87.19 48 | 89.16 47 | 86.87 34 | 75.51 88 | 80.87 74 | 89.98 38 | 90.01 98 | 89.20 109 | 94.41 114 | 90.45 148 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
ET-MVSNet_ETH3D | | | 84.65 92 | 85.58 87 | 83.56 111 | 74.99 212 | 92.62 100 | 90.29 71 | 80.38 116 | 82.16 83 | 73.01 110 | 83.41 45 | 71.10 128 | 87.05 65 | 87.77 125 | 90.17 83 | 95.62 52 | 91.82 127 |
|
thisisatest0530 | | | 85.15 88 | 85.86 84 | 84.33 97 | 89.19 110 | 92.57 101 | 87.22 120 | 80.11 124 | 82.15 84 | 74.41 99 | 78.15 75 | 73.80 115 | 79.90 118 | 90.99 83 | 89.58 99 | 95.13 79 | 93.75 88 |
|
thres100view900 | | | 82.55 113 | 81.01 124 | 84.34 96 | 90.30 99 | 92.27 102 | 89.04 93 | 82.77 91 | 75.14 134 | 69.56 122 | 65.72 141 | 63.13 157 | 79.62 125 | 89.97 99 | 89.26 106 | 94.73 94 | 91.61 135 |
|
gg-mvs-nofinetune | | | 75.64 186 | 77.26 165 | 73.76 191 | 87.92 120 | 92.20 103 | 87.32 116 | 64.67 209 | 51.92 215 | 35.35 219 | 46.44 207 | 77.05 99 | 71.97 171 | 92.64 56 | 91.02 65 | 95.34 68 | 89.53 152 |
|
ACMM | | 83.27 10 | 87.68 69 | 86.09 82 | 89.54 52 | 93.26 59 | 92.19 104 | 91.43 61 | 86.74 50 | 86.02 59 | 82.85 57 | 75.63 87 | 75.14 104 | 88.41 47 | 90.68 92 | 89.99 87 | 94.59 102 | 92.97 98 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CHOSEN 1792x2688 | | | 82.16 115 | 80.91 125 | 83.61 109 | 91.14 82 | 92.01 105 | 89.55 82 | 79.15 137 | 79.87 105 | 70.29 118 | 52.51 200 | 72.56 122 | 81.39 95 | 88.87 114 | 88.17 123 | 90.15 184 | 92.37 120 |
|
Fast-Effi-MVS+ | | | 83.77 102 | 82.98 105 | 84.69 91 | 87.98 119 | 91.87 106 | 88.10 107 | 77.70 152 | 78.10 119 | 73.04 109 | 69.13 124 | 68.51 141 | 86.66 67 | 90.49 95 | 89.85 93 | 94.67 98 | 92.88 100 |
|
UniMVSNet (Re) | | | 81.22 126 | 81.08 121 | 81.39 132 | 85.35 149 | 91.76 107 | 84.93 147 | 82.88 89 | 76.13 128 | 65.02 148 | 64.94 150 | 63.09 159 | 75.17 154 | 87.71 126 | 89.04 113 | 94.97 82 | 94.88 65 |
|
FC-MVSNet-train | | | 85.18 87 | 85.31 89 | 85.03 90 | 90.67 88 | 91.62 108 | 87.66 111 | 83.61 77 | 79.75 107 | 74.37 100 | 78.69 72 | 71.21 127 | 78.91 131 | 91.23 72 | 89.96 89 | 94.96 83 | 94.69 71 |
|
UniMVSNet_NR-MVSNet | | | 81.87 118 | 81.33 118 | 82.50 120 | 85.31 150 | 91.30 109 | 85.70 138 | 84.25 68 | 75.89 129 | 64.21 151 | 66.95 135 | 64.65 153 | 80.22 112 | 87.07 131 | 89.18 110 | 95.27 73 | 94.29 76 |
|
ACMH | | 78.52 14 | 81.86 119 | 80.45 130 | 83.51 113 | 90.51 94 | 91.22 110 | 85.62 141 | 84.23 69 | 70.29 170 | 62.21 165 | 69.04 126 | 64.05 155 | 84.48 77 | 87.57 127 | 88.45 122 | 94.01 126 | 92.54 115 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
baseline1 | | | 84.54 94 | 84.43 95 | 84.67 92 | 90.62 89 | 91.16 111 | 88.63 100 | 83.75 76 | 79.78 106 | 71.16 115 | 75.14 90 | 74.10 111 | 77.84 139 | 91.56 69 | 90.67 74 | 96.04 28 | 88.58 157 |
|
UniMVSNet_ETH3D | | | 79.24 147 | 76.47 173 | 82.48 121 | 85.66 145 | 90.97 112 | 86.08 135 | 81.63 104 | 64.48 194 | 68.94 129 | 54.47 194 | 57.65 190 | 78.83 132 | 85.20 165 | 88.91 116 | 93.72 139 | 93.60 90 |
|
DU-MVS | | | 81.20 127 | 80.30 131 | 82.25 123 | 84.98 157 | 90.94 113 | 85.70 138 | 83.58 80 | 75.74 130 | 64.21 151 | 65.30 147 | 59.60 181 | 80.22 112 | 86.89 134 | 89.31 104 | 94.77 91 | 94.29 76 |
|
NR-MVSNet | | | 80.25 133 | 79.98 137 | 80.56 143 | 85.20 152 | 90.94 113 | 85.65 140 | 83.58 80 | 75.74 130 | 61.36 175 | 65.30 147 | 56.75 195 | 72.38 170 | 88.46 118 | 88.80 117 | 95.16 76 | 93.87 84 |
|
ACMH+ | | 79.08 13 | 81.84 120 | 80.06 135 | 83.91 106 | 89.92 104 | 90.62 115 | 86.21 133 | 83.48 84 | 73.88 146 | 65.75 142 | 66.38 137 | 65.30 151 | 84.63 76 | 85.90 152 | 87.25 132 | 93.45 146 | 91.13 141 |
|
test_part1 | | | 83.23 107 | 80.55 129 | 86.35 79 | 88.60 115 | 90.61 116 | 90.78 67 | 81.13 111 | 70.89 164 | 83.01 55 | 55.72 192 | 74.60 107 | 82.19 89 | 87.79 124 | 89.26 106 | 92.39 159 | 95.01 61 |
|
Effi-MVS+-dtu | | | 82.05 116 | 81.76 112 | 82.38 122 | 87.72 122 | 90.56 117 | 86.90 127 | 78.05 148 | 73.85 147 | 66.85 136 | 71.29 110 | 71.90 125 | 82.00 92 | 86.64 142 | 85.48 161 | 92.76 156 | 92.58 112 |
|
baseline2 | | | 82.80 109 | 82.86 107 | 82.73 119 | 87.68 124 | 90.50 118 | 84.92 148 | 78.93 139 | 78.07 120 | 73.06 108 | 75.08 91 | 69.77 134 | 77.31 142 | 88.90 113 | 86.94 137 | 94.50 107 | 90.74 142 |
|
TranMVSNet+NR-MVSNet | | | 80.52 130 | 79.84 139 | 81.33 134 | 84.92 159 | 90.39 119 | 85.53 143 | 84.22 70 | 74.27 142 | 60.68 180 | 64.93 151 | 59.96 176 | 77.48 141 | 86.75 139 | 89.28 105 | 95.12 80 | 93.29 93 |
|
GA-MVS | | | 79.52 142 | 79.71 142 | 79.30 152 | 85.68 144 | 90.36 120 | 84.55 151 | 78.44 144 | 70.47 169 | 57.87 190 | 68.52 128 | 61.38 169 | 76.21 148 | 89.40 108 | 87.89 124 | 93.04 153 | 89.96 150 |
|
CDS-MVSNet | | | 81.63 124 | 82.09 111 | 81.09 137 | 87.21 130 | 90.28 121 | 87.46 115 | 80.33 120 | 69.06 174 | 70.66 116 | 71.30 109 | 73.87 113 | 67.99 184 | 89.58 104 | 89.87 92 | 92.87 155 | 90.69 143 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
v1144 | | | 79.38 146 | 77.83 160 | 81.18 136 | 83.62 171 | 90.23 122 | 87.15 123 | 78.35 145 | 69.13 173 | 64.02 154 | 60.20 174 | 59.41 182 | 80.14 116 | 86.78 137 | 86.57 144 | 93.81 136 | 92.53 116 |
|
EG-PatchMatch MVS | | | 76.40 177 | 75.47 186 | 77.48 167 | 85.86 142 | 90.22 123 | 82.45 166 | 73.96 175 | 59.64 207 | 59.60 184 | 52.75 199 | 62.20 167 | 68.44 183 | 88.23 120 | 87.50 128 | 94.55 105 | 87.78 167 |
|
v2v482 | | | 79.84 137 | 78.07 157 | 81.90 126 | 83.75 169 | 90.21 124 | 87.17 121 | 79.85 129 | 70.65 166 | 65.93 141 | 61.93 162 | 60.07 175 | 80.82 101 | 85.25 161 | 86.71 140 | 93.88 132 | 91.70 133 |
|
FMVSNet3 | | | 84.44 97 | 84.64 93 | 84.21 100 | 84.32 163 | 90.13 125 | 89.85 76 | 80.37 117 | 81.17 92 | 75.50 92 | 69.63 118 | 79.69 84 | 79.62 125 | 89.72 102 | 90.52 78 | 95.59 55 | 91.58 136 |
|
GG-mvs-BLEND | | | 57.56 210 | 82.61 109 | 28.34 218 | 0.22 226 | 90.10 126 | 79.37 188 | 0.14 224 | 79.56 108 | 0.40 227 | 71.25 111 | 83.40 63 | 0.30 224 | 86.27 148 | 83.87 174 | 89.59 187 | 83.83 187 |
|
GBi-Net | | | 84.51 95 | 84.80 91 | 84.17 101 | 84.20 164 | 89.95 127 | 89.70 77 | 80.37 117 | 81.17 92 | 75.50 92 | 69.63 118 | 79.69 84 | 79.75 122 | 90.73 89 | 90.72 70 | 95.52 59 | 91.71 129 |
|
test1 | | | 84.51 95 | 84.80 91 | 84.17 101 | 84.20 164 | 89.95 127 | 89.70 77 | 80.37 117 | 81.17 92 | 75.50 92 | 69.63 118 | 79.69 84 | 79.75 122 | 90.73 89 | 90.72 70 | 95.52 59 | 91.71 129 |
|
FMVSNet2 | | | 83.87 100 | 83.73 102 | 84.05 105 | 84.20 164 | 89.95 127 | 89.70 77 | 80.21 122 | 79.17 113 | 74.89 97 | 65.91 139 | 77.49 96 | 79.75 122 | 90.87 86 | 91.00 66 | 95.52 59 | 91.71 129 |
|
MVSTER | | | 86.03 79 | 86.12 81 | 85.93 83 | 88.62 114 | 89.93 130 | 89.33 85 | 79.91 128 | 81.87 87 | 81.35 63 | 81.07 61 | 74.91 106 | 80.66 105 | 92.13 65 | 90.10 84 | 95.68 48 | 92.80 103 |
|
v1192 | | | 78.94 150 | 77.33 164 | 80.82 139 | 83.25 175 | 89.90 131 | 86.91 126 | 77.72 151 | 68.63 177 | 62.61 163 | 59.17 179 | 57.53 191 | 80.62 108 | 86.89 134 | 86.47 146 | 93.79 137 | 92.75 106 |
|
DCV-MVSNet | | | 85.88 82 | 86.17 80 | 85.54 87 | 89.10 111 | 89.85 132 | 89.34 84 | 80.70 114 | 83.04 74 | 78.08 85 | 76.19 84 | 79.00 88 | 82.42 88 | 89.67 103 | 90.30 80 | 93.63 143 | 95.12 60 |
|
v8 | | | 79.90 136 | 78.39 153 | 81.66 129 | 83.97 168 | 89.81 133 | 87.16 122 | 77.40 154 | 71.49 159 | 67.71 132 | 61.24 165 | 62.49 164 | 79.83 121 | 85.48 159 | 86.17 151 | 93.89 131 | 92.02 125 |
|
MSDG | | | 83.87 100 | 81.02 122 | 87.19 75 | 92.17 72 | 89.80 134 | 89.15 88 | 85.72 56 | 80.61 101 | 79.24 78 | 66.66 136 | 68.75 140 | 82.69 84 | 87.95 123 | 87.44 129 | 94.19 120 | 85.92 180 |
|
v144192 | | | 78.81 151 | 77.22 166 | 80.67 141 | 82.95 180 | 89.79 135 | 86.40 131 | 77.42 153 | 68.26 179 | 63.13 159 | 59.50 177 | 58.13 187 | 80.08 117 | 85.93 151 | 86.08 153 | 94.06 123 | 92.83 102 |
|
WR-MVS | | | 76.63 171 | 78.02 159 | 75.02 185 | 84.14 167 | 89.76 136 | 78.34 193 | 80.64 115 | 69.56 171 | 52.32 199 | 61.26 164 | 61.24 170 | 60.66 199 | 84.45 173 | 87.07 134 | 93.99 127 | 92.77 104 |
|
V42 | | | 79.59 141 | 78.43 152 | 80.94 138 | 82.79 185 | 89.71 137 | 86.66 129 | 76.73 161 | 71.38 160 | 67.42 133 | 61.01 167 | 62.30 166 | 78.39 134 | 85.56 157 | 86.48 145 | 93.65 142 | 92.60 110 |
|
v10 | | | 79.62 140 | 78.19 155 | 81.28 135 | 83.73 170 | 89.69 138 | 87.27 118 | 76.86 159 | 70.50 168 | 65.46 143 | 60.58 172 | 60.47 173 | 80.44 109 | 86.91 133 | 86.63 143 | 93.93 128 | 92.55 114 |
|
baseline | | | 84.89 90 | 86.06 83 | 83.52 112 | 87.25 129 | 89.67 139 | 87.76 109 | 75.68 168 | 84.92 67 | 78.40 81 | 80.10 63 | 80.98 73 | 80.20 114 | 86.69 141 | 87.05 135 | 91.86 166 | 92.99 97 |
|
COLMAP_ROB |  | 76.78 15 | 80.50 131 | 78.49 150 | 82.85 116 | 90.96 86 | 89.65 140 | 86.20 134 | 83.40 87 | 77.15 123 | 66.54 137 | 62.27 160 | 65.62 150 | 77.89 138 | 85.23 162 | 84.70 169 | 92.11 162 | 84.83 184 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
v1921920 | | | 78.57 156 | 76.99 169 | 80.41 146 | 82.93 181 | 89.63 141 | 86.38 132 | 77.14 156 | 68.31 178 | 61.80 171 | 58.89 183 | 56.79 194 | 80.19 115 | 86.50 146 | 86.05 155 | 94.02 125 | 92.76 105 |
|
PatchMatch-RL | | | 83.34 105 | 81.36 117 | 85.65 84 | 90.33 98 | 89.52 142 | 84.36 153 | 81.82 103 | 80.87 100 | 79.29 77 | 74.04 97 | 62.85 162 | 86.05 71 | 88.40 119 | 87.04 136 | 92.04 163 | 86.77 173 |
|
WR-MVS_H | | | 75.84 184 | 76.93 170 | 74.57 190 | 82.86 183 | 89.50 143 | 78.34 193 | 79.36 135 | 66.90 182 | 52.51 198 | 60.20 174 | 59.71 178 | 59.73 200 | 83.61 178 | 85.77 158 | 94.65 99 | 92.84 101 |
|
v1240 | | | 78.15 158 | 76.53 172 | 80.04 147 | 82.85 184 | 89.48 144 | 85.61 142 | 76.77 160 | 67.05 181 | 61.18 178 | 58.37 185 | 56.16 198 | 79.89 120 | 86.11 150 | 86.08 153 | 93.92 129 | 92.47 118 |
|
pm-mvs1 | | | 78.51 157 | 77.75 162 | 79.40 151 | 84.83 160 | 89.30 145 | 83.55 160 | 79.38 134 | 62.64 198 | 63.68 156 | 58.73 184 | 64.68 152 | 70.78 177 | 89.79 101 | 87.84 125 | 94.17 121 | 91.28 140 |
|
MS-PatchMatch | | | 81.79 121 | 81.44 116 | 82.19 125 | 90.35 97 | 89.29 146 | 88.08 108 | 75.36 170 | 77.60 121 | 69.00 128 | 64.37 155 | 78.87 90 | 77.14 145 | 88.03 122 | 85.70 159 | 93.19 151 | 86.24 177 |
|
LTVRE_ROB | | 74.41 16 | 75.78 185 | 74.72 191 | 77.02 171 | 85.88 140 | 89.22 147 | 82.44 167 | 77.17 155 | 50.57 216 | 45.45 210 | 65.44 145 | 52.29 209 | 81.25 96 | 85.50 158 | 87.42 130 | 89.94 186 | 92.62 109 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
FMVSNet1 | | | 81.64 123 | 80.61 127 | 82.84 117 | 82.36 189 | 89.20 148 | 88.67 98 | 79.58 131 | 70.79 165 | 72.63 112 | 58.95 182 | 72.26 124 | 79.34 128 | 90.73 89 | 90.72 70 | 94.47 110 | 91.62 134 |
|
v148 | | | 78.59 155 | 76.84 171 | 80.62 142 | 83.61 172 | 89.16 149 | 83.65 159 | 79.24 136 | 69.38 172 | 69.34 126 | 59.88 176 | 60.41 174 | 75.19 153 | 83.81 177 | 84.63 170 | 92.70 157 | 90.63 145 |
|
Fast-Effi-MVS+-dtu | | | 79.95 135 | 80.69 126 | 79.08 153 | 86.36 137 | 89.14 150 | 85.85 136 | 72.28 179 | 72.85 156 | 59.32 185 | 70.43 116 | 68.42 143 | 77.57 140 | 86.14 149 | 86.44 147 | 93.11 152 | 91.39 139 |
|
USDC | | | 80.69 129 | 79.89 138 | 81.62 130 | 86.48 136 | 89.11 151 | 86.53 130 | 78.86 140 | 81.15 95 | 63.48 157 | 72.98 104 | 59.12 186 | 81.16 98 | 87.10 130 | 85.01 165 | 93.23 149 | 84.77 185 |
|
v7n | | | 77.22 166 | 76.23 176 | 78.38 163 | 81.89 192 | 89.10 152 | 82.24 171 | 76.36 162 | 65.96 188 | 61.21 177 | 56.56 189 | 55.79 199 | 75.07 156 | 86.55 143 | 86.68 141 | 93.52 144 | 92.95 99 |
|
TDRefinement | | | 79.05 149 | 77.05 168 | 81.39 132 | 88.45 116 | 89.00 153 | 86.92 125 | 82.65 96 | 74.21 143 | 64.41 150 | 59.17 179 | 59.16 184 | 74.52 160 | 85.23 162 | 85.09 164 | 91.37 172 | 87.51 169 |
|
tfpnnormal | | | 77.46 165 | 74.86 190 | 80.49 144 | 86.34 138 | 88.92 154 | 84.33 154 | 81.26 109 | 61.39 202 | 61.70 172 | 51.99 201 | 53.66 207 | 74.84 157 | 88.63 115 | 87.38 131 | 94.50 107 | 92.08 121 |
|
thisisatest0515 | | | 79.76 139 | 80.59 128 | 78.80 156 | 84.40 162 | 88.91 155 | 79.48 186 | 76.94 158 | 72.29 157 | 67.33 134 | 67.82 132 | 65.99 148 | 70.80 176 | 88.50 117 | 87.84 125 | 93.86 133 | 92.75 106 |
|
CP-MVSNet | | | 76.36 178 | 76.41 174 | 76.32 177 | 82.73 186 | 88.64 156 | 79.39 187 | 79.62 130 | 67.21 180 | 53.70 195 | 60.72 170 | 55.22 201 | 67.91 186 | 83.52 179 | 86.34 149 | 94.55 105 | 93.19 94 |
|
IterMVS-LS | | | 83.28 106 | 82.95 106 | 83.65 108 | 88.39 117 | 88.63 157 | 86.80 128 | 78.64 143 | 76.56 125 | 73.43 106 | 72.52 107 | 75.35 103 | 80.81 102 | 86.43 147 | 88.51 121 | 93.84 134 | 92.66 108 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CostFormer | | | 80.94 128 | 80.21 132 | 81.79 127 | 87.69 123 | 88.58 158 | 87.47 114 | 70.66 185 | 80.02 103 | 77.88 87 | 73.03 103 | 71.40 126 | 78.24 135 | 79.96 195 | 79.63 191 | 88.82 190 | 88.84 155 |
|
PS-CasMVS | | | 75.90 183 | 75.86 182 | 75.96 179 | 82.59 187 | 88.46 159 | 79.23 190 | 79.56 132 | 66.00 187 | 52.77 197 | 59.48 178 | 54.35 205 | 67.14 189 | 83.37 180 | 86.23 150 | 94.47 110 | 93.10 96 |
|
pmmvs5 | | | 76.93 168 | 76.33 175 | 77.62 166 | 81.97 191 | 88.40 160 | 81.32 176 | 74.35 173 | 65.42 192 | 61.42 174 | 63.07 158 | 57.95 189 | 73.23 168 | 85.60 156 | 85.35 163 | 93.41 147 | 88.55 158 |
|
PEN-MVS | | | 76.02 181 | 76.07 177 | 75.95 180 | 83.17 177 | 87.97 161 | 79.65 184 | 80.07 127 | 66.57 184 | 51.45 201 | 60.94 168 | 55.47 200 | 66.81 190 | 82.72 183 | 86.80 139 | 94.59 102 | 92.03 124 |
|
anonymousdsp | | | 77.94 160 | 79.00 146 | 76.71 173 | 79.03 201 | 87.83 162 | 79.58 185 | 72.87 177 | 65.80 189 | 58.86 189 | 65.82 140 | 62.48 165 | 75.99 149 | 86.77 138 | 88.66 118 | 93.92 129 | 95.68 53 |
|
SCA | | | 79.51 143 | 80.15 134 | 78.75 157 | 86.58 135 | 87.70 163 | 83.07 162 | 68.53 194 | 81.31 91 | 66.40 138 | 73.83 98 | 75.38 102 | 79.30 129 | 80.49 193 | 79.39 194 | 88.63 193 | 82.96 192 |
|
SixPastTwentyTwo | | | 76.02 181 | 75.72 183 | 76.36 176 | 83.38 173 | 87.54 164 | 75.50 200 | 76.22 163 | 65.50 191 | 57.05 191 | 70.64 112 | 53.97 206 | 74.54 159 | 80.96 191 | 82.12 186 | 91.44 170 | 89.35 153 |
|
pmmvs6 | | | 74.83 189 | 72.89 196 | 77.09 169 | 82.11 190 | 87.50 165 | 80.88 181 | 76.97 157 | 52.79 214 | 61.91 170 | 46.66 206 | 60.49 172 | 69.28 180 | 86.74 140 | 85.46 162 | 91.39 171 | 90.56 146 |
|
RPSCF | | | 83.46 104 | 83.36 103 | 83.59 110 | 87.75 121 | 87.35 166 | 84.82 150 | 79.46 133 | 83.84 72 | 78.12 83 | 82.69 50 | 79.87 80 | 82.60 87 | 82.47 186 | 81.13 189 | 88.78 191 | 86.13 178 |
|
TransMVSNet (Re) | | | 76.57 172 | 75.16 189 | 78.22 164 | 85.60 146 | 87.24 167 | 82.46 165 | 81.23 110 | 59.80 206 | 59.05 188 | 57.07 188 | 59.14 185 | 66.60 192 | 88.09 121 | 86.82 138 | 94.37 116 | 87.95 166 |
|
DTE-MVSNet | | | 75.14 188 | 75.44 187 | 74.80 187 | 83.18 176 | 87.19 168 | 78.25 195 | 80.11 124 | 66.05 186 | 48.31 206 | 60.88 169 | 54.67 202 | 64.54 195 | 82.57 185 | 86.17 151 | 94.43 113 | 90.53 147 |
|
pmmvs4 | | | 79.99 134 | 78.08 156 | 82.22 124 | 83.04 179 | 87.16 169 | 84.95 146 | 78.80 142 | 78.64 116 | 74.53 98 | 64.61 153 | 59.41 182 | 79.45 127 | 84.13 175 | 84.54 172 | 92.53 158 | 88.08 163 |
|
MDTV_nov1_ep13 | | | 79.14 148 | 79.49 144 | 78.74 158 | 85.40 148 | 86.89 170 | 84.32 155 | 70.29 187 | 78.85 114 | 69.42 125 | 75.37 89 | 73.29 120 | 75.64 151 | 80.61 192 | 79.48 193 | 87.36 197 | 81.91 194 |
|
Baseline_NR-MVSNet | | | 79.84 137 | 78.37 154 | 81.55 131 | 84.98 157 | 86.66 171 | 85.06 145 | 83.49 82 | 75.57 132 | 63.31 158 | 58.22 186 | 60.97 171 | 78.00 137 | 86.89 134 | 87.13 133 | 94.47 110 | 93.15 95 |
|
dps | | | 78.02 159 | 75.94 181 | 80.44 145 | 86.06 139 | 86.62 172 | 82.58 164 | 69.98 189 | 75.14 134 | 77.76 89 | 69.08 125 | 59.93 177 | 78.47 133 | 79.47 197 | 77.96 198 | 87.78 195 | 83.40 189 |
|
IterMVS-SCA-FT | | | 79.41 145 | 80.20 133 | 78.49 161 | 85.88 140 | 86.26 173 | 83.95 156 | 71.94 180 | 73.55 151 | 61.94 168 | 70.48 115 | 70.50 130 | 75.23 152 | 85.81 154 | 84.61 171 | 91.99 165 | 90.18 149 |
|
PatchmatchNet |  | | 78.67 154 | 78.85 148 | 78.46 162 | 86.85 134 | 86.03 174 | 83.77 158 | 68.11 197 | 80.88 99 | 66.19 139 | 72.90 105 | 73.40 119 | 78.06 136 | 79.25 199 | 77.71 199 | 87.75 196 | 81.75 195 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
EPNet_dtu | | | 81.98 117 | 83.82 101 | 79.83 150 | 94.10 52 | 85.97 175 | 87.29 117 | 84.08 72 | 80.61 101 | 59.96 182 | 81.62 59 | 77.19 98 | 62.91 198 | 87.21 129 | 86.38 148 | 90.66 180 | 87.77 168 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
IterMVS | | | 78.79 152 | 79.71 142 | 77.71 165 | 85.26 151 | 85.91 176 | 84.54 152 | 69.84 191 | 73.38 152 | 61.25 176 | 70.53 114 | 70.35 131 | 74.43 161 | 85.21 164 | 83.80 176 | 90.95 178 | 88.77 156 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
tpm cat1 | | | 77.78 162 | 75.28 188 | 80.70 140 | 87.14 131 | 85.84 177 | 85.81 137 | 70.40 186 | 77.44 122 | 78.80 80 | 63.72 156 | 64.01 156 | 76.55 147 | 75.60 207 | 75.21 205 | 85.51 207 | 85.12 182 |
|
FC-MVSNet-test | | | 76.53 174 | 81.62 114 | 70.58 199 | 84.99 156 | 85.73 178 | 74.81 201 | 78.85 141 | 77.00 124 | 39.13 217 | 75.90 85 | 73.50 118 | 54.08 206 | 86.54 144 | 85.99 156 | 91.65 168 | 86.68 174 |
|
CMPMVS |  | 56.49 17 | 73.84 194 | 71.73 200 | 76.31 178 | 85.20 152 | 85.67 179 | 75.80 199 | 73.23 176 | 62.26 199 | 65.40 144 | 53.40 198 | 59.70 179 | 71.77 173 | 80.25 194 | 79.56 192 | 86.45 203 | 81.28 197 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
TinyColmap | | | 76.73 169 | 73.95 193 | 79.96 148 | 85.16 154 | 85.64 180 | 82.34 168 | 78.19 146 | 70.63 167 | 62.06 167 | 60.69 171 | 49.61 212 | 80.81 102 | 85.12 166 | 83.69 177 | 91.22 176 | 82.27 193 |
|
TAMVS | | | 76.42 175 | 77.16 167 | 75.56 181 | 83.05 178 | 85.55 181 | 80.58 182 | 71.43 182 | 65.40 193 | 61.04 179 | 67.27 134 | 69.22 139 | 67.99 184 | 84.88 169 | 84.78 168 | 89.28 189 | 83.01 191 |
|
Patchmtry | | | | | | | 85.54 182 | 82.30 169 | 68.23 195 | | 65.37 145 | | | | | | | |
|
MIMVSNet | | | 74.69 190 | 75.60 185 | 73.62 192 | 76.02 210 | 85.31 183 | 81.21 179 | 67.43 198 | 71.02 162 | 59.07 187 | 54.48 193 | 64.07 154 | 66.14 193 | 86.52 145 | 86.64 142 | 91.83 167 | 81.17 198 |
|
CR-MVSNet | | | 78.71 153 | 78.86 147 | 78.55 160 | 85.85 143 | 85.15 184 | 82.30 169 | 68.23 195 | 74.71 137 | 65.37 145 | 64.39 154 | 69.59 136 | 77.18 143 | 85.10 167 | 84.87 166 | 92.34 161 | 88.21 161 |
|
RPMNet | | | 77.07 167 | 77.63 163 | 76.42 175 | 85.56 147 | 85.15 184 | 81.37 174 | 65.27 206 | 74.71 137 | 60.29 181 | 63.71 157 | 66.59 147 | 73.64 164 | 82.71 184 | 82.12 186 | 92.38 160 | 88.39 159 |
|
test0.0.03 1 | | | 76.03 180 | 78.51 149 | 73.12 195 | 87.47 126 | 85.13 186 | 76.32 198 | 78.05 148 | 73.19 155 | 50.98 204 | 70.64 112 | 69.28 137 | 55.53 202 | 85.33 160 | 84.38 173 | 90.39 182 | 81.63 196 |
|
EPMVS | | | 77.53 164 | 78.07 157 | 76.90 172 | 86.89 133 | 84.91 187 | 82.18 172 | 66.64 202 | 81.00 97 | 64.11 153 | 72.75 106 | 69.68 135 | 74.42 162 | 79.36 198 | 78.13 197 | 87.14 199 | 80.68 201 |
|
CVMVSNet | | | 76.70 170 | 78.46 151 | 74.64 189 | 83.34 174 | 84.48 188 | 81.83 173 | 74.58 171 | 68.88 175 | 51.23 203 | 69.77 117 | 70.05 132 | 67.49 187 | 84.27 174 | 83.81 175 | 89.38 188 | 87.96 165 |
|
PatchT | | | 76.42 175 | 77.81 161 | 74.80 187 | 78.46 204 | 84.30 189 | 71.82 207 | 65.03 208 | 73.89 145 | 65.37 145 | 61.58 163 | 66.70 146 | 77.18 143 | 85.10 167 | 84.87 166 | 90.94 179 | 88.21 161 |
|
MDTV_nov1_ep13_2view | | | 73.21 195 | 72.91 195 | 73.56 193 | 80.01 199 | 84.28 190 | 78.62 191 | 66.43 203 | 68.64 176 | 59.12 186 | 60.39 173 | 59.69 180 | 69.81 179 | 78.82 201 | 77.43 200 | 87.36 197 | 81.11 199 |
|
our_test_3 | | | | | | 81.81 193 | 83.96 191 | 76.61 197 | | | | | | | | | | |
|
testgi | | | 71.92 197 | 74.20 192 | 69.27 201 | 84.58 161 | 83.06 192 | 73.40 204 | 74.39 172 | 64.04 196 | 46.17 209 | 68.90 127 | 57.15 193 | 48.89 210 | 84.07 176 | 83.08 180 | 88.18 194 | 79.09 205 |
|
tpmrst | | | 76.55 173 | 75.99 180 | 77.20 168 | 87.32 128 | 83.05 193 | 82.86 163 | 65.62 204 | 78.61 117 | 67.22 135 | 69.19 123 | 65.71 149 | 75.87 150 | 76.75 205 | 75.33 204 | 84.31 209 | 83.28 190 |
|
tpm | | | 76.30 179 | 76.05 179 | 76.59 174 | 86.97 132 | 83.01 194 | 83.83 157 | 67.06 200 | 71.83 158 | 63.87 155 | 69.56 121 | 62.88 161 | 73.41 167 | 79.79 196 | 78.59 195 | 84.41 208 | 86.68 174 |
|
test-mter | | | 77.79 161 | 80.02 136 | 75.18 184 | 81.18 197 | 82.85 195 | 80.52 183 | 62.03 213 | 73.62 150 | 62.16 166 | 73.55 101 | 73.83 114 | 73.81 163 | 84.67 170 | 83.34 178 | 91.37 172 | 88.31 160 |
|
pmmvs-eth3d | | | 74.32 192 | 71.96 198 | 77.08 170 | 77.33 206 | 82.71 196 | 78.41 192 | 76.02 166 | 66.65 183 | 65.98 140 | 54.23 196 | 49.02 214 | 73.14 169 | 82.37 187 | 82.69 183 | 91.61 169 | 86.05 179 |
|
PMMVS | | | 81.65 122 | 84.05 99 | 78.86 155 | 78.56 203 | 82.63 197 | 83.10 161 | 67.22 199 | 81.39 90 | 70.11 121 | 84.91 43 | 79.74 83 | 82.12 90 | 87.31 128 | 85.70 159 | 92.03 164 | 86.67 176 |
|
PM-MVS | | | 74.17 193 | 73.10 194 | 75.41 182 | 76.07 209 | 82.53 198 | 77.56 196 | 71.69 181 | 71.04 161 | 61.92 169 | 61.23 166 | 47.30 215 | 74.82 158 | 81.78 189 | 79.80 190 | 90.42 181 | 88.05 164 |
|
Anonymous20231206 | | | 70.80 198 | 70.59 202 | 71.04 198 | 81.60 194 | 82.49 199 | 74.64 202 | 75.87 167 | 64.17 195 | 49.27 205 | 44.85 210 | 53.59 208 | 54.68 205 | 83.07 181 | 82.34 185 | 90.17 183 | 83.65 188 |
|
test-LLR | | | 79.47 144 | 79.84 139 | 79.03 154 | 87.47 126 | 82.40 200 | 81.24 177 | 78.05 148 | 73.72 148 | 62.69 161 | 73.76 99 | 74.42 109 | 73.49 165 | 84.61 171 | 82.99 181 | 91.25 174 | 87.01 171 |
|
TESTMET0.1,1 | | | 77.78 162 | 79.84 139 | 75.38 183 | 80.86 198 | 82.40 200 | 81.24 177 | 62.72 212 | 73.72 148 | 62.69 161 | 73.76 99 | 74.42 109 | 73.49 165 | 84.61 171 | 82.99 181 | 91.25 174 | 87.01 171 |
|
MDA-MVSNet-bldmvs | | | 66.22 204 | 64.49 207 | 68.24 202 | 61.67 216 | 82.11 202 | 70.07 209 | 76.16 164 | 59.14 208 | 47.94 207 | 54.35 195 | 35.82 222 | 67.33 188 | 64.94 214 | 75.68 203 | 86.30 204 | 79.36 203 |
|
FMVSNet5 | | | 75.50 187 | 76.07 177 | 74.83 186 | 76.16 208 | 81.19 203 | 81.34 175 | 70.21 188 | 73.20 154 | 61.59 173 | 58.97 181 | 68.33 144 | 68.50 182 | 85.87 153 | 85.85 157 | 91.18 177 | 79.11 204 |
|
test20.03 | | | 68.31 202 | 70.05 203 | 66.28 206 | 82.41 188 | 80.84 204 | 67.35 211 | 76.11 165 | 58.44 209 | 40.80 216 | 53.77 197 | 54.54 203 | 42.28 213 | 83.07 181 | 81.96 188 | 88.73 192 | 77.76 207 |
|
ADS-MVSNet | | | 74.53 191 | 75.69 184 | 73.17 194 | 81.57 195 | 80.71 205 | 79.27 189 | 63.03 211 | 79.27 112 | 59.94 183 | 67.86 131 | 68.32 145 | 71.08 175 | 77.33 203 | 76.83 201 | 84.12 211 | 79.53 202 |
|
pmnet_mix02 | | | 71.95 196 | 71.83 199 | 72.10 196 | 81.40 196 | 80.63 206 | 73.78 203 | 72.85 178 | 70.90 163 | 54.89 193 | 62.17 161 | 57.42 192 | 62.92 197 | 76.80 204 | 73.98 208 | 86.74 202 | 80.87 200 |
|
MIMVSNet1 | | | 65.00 205 | 66.24 206 | 63.55 208 | 58.41 219 | 80.01 207 | 69.00 210 | 74.03 174 | 55.81 212 | 41.88 214 | 36.81 215 | 49.48 213 | 47.89 211 | 81.32 190 | 82.40 184 | 90.08 185 | 77.88 206 |
|
EU-MVSNet | | | 69.98 200 | 72.30 197 | 67.28 204 | 75.67 211 | 79.39 208 | 73.12 205 | 69.94 190 | 63.59 197 | 42.80 213 | 62.93 159 | 56.71 196 | 55.07 204 | 79.13 200 | 78.55 196 | 87.06 200 | 85.82 181 |
|
CHOSEN 280x420 | | | 80.28 132 | 81.66 113 | 78.67 159 | 82.92 182 | 79.24 209 | 85.36 144 | 66.79 201 | 78.11 118 | 70.32 117 | 75.03 92 | 79.87 80 | 81.09 99 | 89.07 110 | 83.16 179 | 85.54 206 | 87.17 170 |
|
gm-plane-assit | | | 70.29 199 | 70.65 201 | 69.88 200 | 85.03 155 | 78.50 210 | 58.41 217 | 65.47 205 | 50.39 217 | 40.88 215 | 49.60 203 | 50.11 211 | 75.14 155 | 91.43 71 | 89.78 94 | 94.32 117 | 84.73 186 |
|
new-patchmatchnet | | | 63.80 206 | 63.31 208 | 64.37 207 | 76.49 207 | 75.99 211 | 63.73 214 | 70.99 184 | 57.27 210 | 43.08 212 | 45.86 208 | 43.80 216 | 45.13 212 | 73.20 209 | 70.68 212 | 86.80 201 | 76.34 209 |
|
MVS-HIRNet | | | 68.83 201 | 66.39 205 | 71.68 197 | 77.58 205 | 75.52 212 | 66.45 212 | 65.05 207 | 62.16 200 | 62.84 160 | 44.76 211 | 56.60 197 | 71.96 172 | 78.04 202 | 75.06 206 | 86.18 205 | 72.56 211 |
|
N_pmnet | | | 66.85 203 | 66.63 204 | 67.11 205 | 78.73 202 | 74.66 213 | 70.53 208 | 71.07 183 | 66.46 185 | 46.54 208 | 51.68 202 | 51.91 210 | 55.48 203 | 74.68 208 | 72.38 209 | 80.29 214 | 74.65 210 |
|
ambc | | | | 61.92 209 | | 70.98 214 | 73.54 214 | 63.64 215 | | 60.06 204 | 52.23 200 | 38.44 214 | 19.17 225 | 57.12 201 | 82.33 188 | 75.03 207 | 83.21 212 | 84.89 183 |
|
FPMVS | | | 63.63 207 | 60.08 212 | 67.78 203 | 80.01 199 | 71.50 215 | 72.88 206 | 69.41 193 | 61.82 201 | 53.11 196 | 45.12 209 | 42.11 219 | 50.86 208 | 66.69 212 | 63.84 213 | 80.41 213 | 69.46 213 |
|
pmmvs3 | | | 61.89 208 | 61.74 210 | 62.06 209 | 64.30 215 | 70.83 216 | 64.22 213 | 52.14 217 | 48.78 218 | 44.47 211 | 41.67 213 | 41.70 220 | 63.03 196 | 76.06 206 | 76.02 202 | 84.18 210 | 77.14 208 |
|
new_pmnet | | | 59.28 209 | 61.47 211 | 56.73 211 | 61.66 217 | 68.29 217 | 59.57 216 | 54.91 214 | 60.83 203 | 34.38 220 | 44.66 212 | 43.65 217 | 49.90 209 | 71.66 210 | 71.56 211 | 79.94 215 | 69.67 212 |
|
PMMVS2 | | | 41.68 214 | 44.74 216 | 38.10 213 | 46.97 222 | 52.32 218 | 40.63 222 | 48.08 218 | 35.51 220 | 7.36 226 | 26.86 218 | 24.64 224 | 16.72 220 | 55.24 217 | 59.03 215 | 68.85 218 | 59.59 217 |
|
PMVS |  | 50.48 18 | 55.81 211 | 51.93 213 | 60.33 210 | 72.90 213 | 49.34 219 | 48.78 218 | 69.51 192 | 43.49 219 | 54.25 194 | 36.26 216 | 41.04 221 | 39.71 215 | 65.07 213 | 60.70 214 | 76.85 216 | 67.58 214 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
Gipuma |  | | 49.17 212 | 47.05 215 | 51.65 212 | 59.67 218 | 48.39 220 | 41.98 221 | 63.47 210 | 55.64 213 | 33.33 221 | 14.90 219 | 13.78 226 | 41.34 214 | 69.31 211 | 72.30 210 | 70.11 217 | 55.00 218 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
DeepMVS_CX |  | | | | | | 48.31 221 | 48.03 219 | 26.08 220 | 56.42 211 | 25.77 222 | 47.51 205 | 31.31 223 | 51.30 207 | 48.49 218 | | 53.61 220 | 61.52 215 |
|
MVE |  | 30.17 19 | 30.88 216 | 33.52 217 | 27.80 219 | 23.78 224 | 39.16 222 | 18.69 226 | 46.90 219 | 21.88 223 | 15.39 223 | 14.37 221 | 7.31 229 | 24.41 219 | 41.63 219 | 56.22 216 | 37.64 224 | 54.07 219 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 31.40 215 | 26.80 218 | 36.78 214 | 51.39 221 | 29.96 223 | 20.20 224 | 54.17 215 | 25.93 222 | 12.75 224 | 14.73 220 | 8.58 228 | 34.10 218 | 27.36 220 | 37.83 219 | 48.07 222 | 43.18 220 |
|
EMVS | | | 30.49 217 | 25.44 219 | 36.39 215 | 51.47 220 | 29.89 224 | 20.17 225 | 54.00 216 | 26.49 221 | 12.02 225 | 13.94 222 | 8.84 227 | 34.37 217 | 25.04 221 | 34.37 220 | 46.29 223 | 39.53 221 |
|
tmp_tt | | | | | 32.73 217 | 43.96 223 | 21.15 225 | 26.71 223 | 8.99 222 | 65.67 190 | 51.39 202 | 56.01 190 | 42.64 218 | 11.76 221 | 56.60 216 | 50.81 217 | 53.55 221 | |
|
test_method | | | 41.78 213 | 48.10 214 | 34.42 216 | 10.74 225 | 19.78 226 | 44.64 220 | 17.73 221 | 59.83 205 | 38.67 218 | 35.82 217 | 54.41 204 | 34.94 216 | 62.87 215 | 43.13 218 | 59.81 219 | 60.82 216 |
|
testmvs | | | 1.03 218 | 1.63 220 | 0.34 220 | 0.09 227 | 0.35 227 | 0.61 228 | 0.16 223 | 1.49 224 | 0.10 228 | 3.15 223 | 0.15 230 | 0.86 223 | 1.32 222 | 1.18 221 | 0.20 225 | 3.76 223 |
|
test123 | | | 0.87 219 | 1.40 221 | 0.25 221 | 0.03 228 | 0.25 228 | 0.35 229 | 0.08 225 | 1.21 225 | 0.05 229 | 2.84 224 | 0.03 231 | 0.89 222 | 0.43 223 | 1.16 222 | 0.13 226 | 3.87 222 |
|
uanet_test | | | 0.00 220 | 0.00 222 | 0.00 222 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 226 | 0.00 226 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
sosnet-low-res | | | 0.00 220 | 0.00 222 | 0.00 222 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 226 | 0.00 226 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
sosnet | | | 0.00 220 | 0.00 222 | 0.00 222 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 226 | 0.00 226 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
RE-MVS-def | | | | | | | | | | | 56.08 192 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 92.16 17 | | | | | |
|
SR-MVS | | | | | | 96.58 27 | | | 90.99 23 | | | | 92.40 14 | | | | | |
|
MTAPA | | | | | | | | | | | 92.97 2 | | 91.03 23 | | | | | |
|
MTMP | | | | | | | | | | | 93.14 1 | | 90.21 31 | | | | | |
|
Patchmatch-RL test | | | | | | | | 8.55 227 | | | | | | | | | | |
|
mPP-MVS | | | | | | 97.06 13 | | | | | | | 88.08 46 | | | | | |
|
NP-MVS | | | | | | | | | | 87.47 54 | | | | | | | | |
|