This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
test_0728_SECOND95.01 1598.79 186.43 4197.09 1197.49 599.61 395.62 599.08 798.99 5
DVP-MVS95.67 296.02 294.64 4098.78 285.93 5897.09 1196.73 7790.27 2897.04 898.05 691.47 699.55 1295.62 599.08 798.45 32
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.78 285.93 5897.19 697.47 890.27 2897.64 498.13 191.47 6
SED-MVS95.91 196.28 194.80 3398.77 485.99 5597.13 997.44 1290.31 2697.71 198.07 492.31 299.58 595.66 299.13 398.84 8
IU-MVS98.77 486.00 5496.84 6381.26 23997.26 695.50 799.13 399.03 4
test_241102_ONE98.77 485.99 5597.44 1290.26 3097.71 197.96 892.31 299.38 29
region2R94.43 2294.27 2494.92 2098.65 786.67 3296.92 1997.23 3288.60 7093.58 4797.27 2785.22 5699.54 1692.21 4698.74 2998.56 19
ACMMPR94.43 2294.28 2294.91 2298.63 886.69 3096.94 1597.32 2488.63 6893.53 5097.26 2985.04 5999.54 1692.35 4398.78 2198.50 22
HFP-MVS94.52 1794.40 1994.86 2598.61 986.81 2496.94 1597.34 1988.63 6893.65 4397.21 3286.10 4599.49 2392.35 4398.77 2498.30 41
#test#94.32 2894.14 3194.86 2598.61 986.81 2496.43 3197.34 1987.51 10093.65 4397.21 3286.10 4599.49 2391.68 6598.77 2498.30 41
test_part298.55 1187.22 1696.40 11
XVS94.45 2094.32 2094.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 5997.16 3785.02 6099.49 2391.99 5398.56 4798.47 28
X-MVStestdata88.31 16086.13 20294.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 5923.41 35785.02 6099.49 2391.99 5398.56 4798.47 28
ZNCC-MVS94.47 1894.28 2295.03 1498.52 1486.96 1796.85 2397.32 2488.24 8093.15 5597.04 4286.17 4499.62 192.40 4198.81 1898.52 20
mPP-MVS93.99 3893.78 4394.63 4198.50 1585.90 6396.87 2196.91 5688.70 6691.83 8897.17 3683.96 7499.55 1291.44 7098.64 4398.43 34
MSP-MVS95.42 595.56 594.98 1998.49 1686.52 3896.91 2097.47 891.73 896.10 1396.69 5889.90 999.30 3994.70 998.04 6499.13 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MP-MVScopyleft94.25 2994.07 3494.77 3598.47 1786.31 4796.71 2696.98 4889.04 5791.98 8297.19 3485.43 5499.56 792.06 5298.79 1998.44 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS94.45 2094.20 2895.19 998.46 1887.50 1395.00 10697.12 4087.13 10792.51 7396.30 7489.24 1499.34 3393.46 2198.62 4498.73 11
PGM-MVS93.96 4093.72 4594.68 3898.43 1986.22 5095.30 8497.78 187.45 10393.26 5197.33 2484.62 6599.51 2190.75 8398.57 4698.32 40
zzz-MVS94.47 1894.30 2195.00 1698.42 2086.95 1895.06 10496.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
MTAPA94.42 2494.22 2595.00 1698.42 2086.95 1894.36 15496.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
GST-MVS94.21 3393.97 3894.90 2498.41 2286.82 2396.54 3097.19 3588.24 8093.26 5196.83 5185.48 5399.59 491.43 7198.40 5398.30 41
HPM-MVScopyleft94.02 3793.88 3994.43 5098.39 2385.78 6597.25 597.07 4486.90 11592.62 7096.80 5584.85 6399.17 5092.43 3998.65 4298.33 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS94.34 2694.21 2794.74 3798.39 2386.64 3497.60 197.24 3088.53 7292.73 6697.23 3085.20 5799.32 3792.15 4998.83 1798.25 50
DPE-MVS95.57 395.67 395.25 798.36 2587.28 1595.56 7597.51 489.13 5597.14 797.91 991.64 599.62 194.61 1199.17 298.86 7
HPM-MVS_fast93.40 5593.22 5493.94 6198.36 2584.83 7697.15 896.80 6985.77 13792.47 7497.13 3882.38 8699.07 5890.51 8598.40 5397.92 75
DP-MVS Recon91.95 7691.28 8293.96 6098.33 2785.92 6094.66 12996.66 8582.69 20590.03 11395.82 9582.30 8999.03 6484.57 15096.48 10096.91 117
APDe-MVS95.46 495.64 494.91 2298.26 2886.29 4997.46 297.40 1789.03 5896.20 1298.10 289.39 1399.34 3395.88 199.03 999.10 3
TSAR-MVS + MP.94.85 1294.94 1094.58 4398.25 2986.33 4596.11 4996.62 8888.14 8596.10 1396.96 4689.09 1598.94 8394.48 1298.68 3598.48 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft95.14 994.91 1195.83 298.25 2989.65 295.92 5996.96 5291.75 794.02 3596.83 5188.12 2199.55 1293.41 2498.94 1298.28 45
testtj94.39 2594.18 2995.00 1698.24 3186.77 2896.16 4397.23 3287.28 10594.85 2497.04 4286.99 3799.52 2091.54 6798.33 5698.71 12
CPTT-MVS91.99 7591.80 7692.55 10798.24 3181.98 15496.76 2596.49 9581.89 22490.24 10996.44 7178.59 13198.61 10689.68 9097.85 7197.06 109
SR-MVS94.23 3194.17 3094.43 5098.21 3385.78 6596.40 3396.90 5788.20 8394.33 2797.40 2184.75 6499.03 6493.35 2597.99 6598.48 24
MP-MVS-pluss94.21 3394.00 3794.85 2798.17 3486.65 3394.82 11897.17 3886.26 12892.83 6197.87 1085.57 5299.56 794.37 1498.92 1398.34 38
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ZD-MVS98.15 3586.62 3597.07 4483.63 18294.19 3096.91 4887.57 2999.26 4391.99 5398.44 51
SMA-MVScopyleft95.20 795.07 995.59 398.14 3688.48 696.26 3997.28 2885.90 13497.67 398.10 288.41 1799.56 794.66 1099.19 198.71 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test117293.97 3994.07 3493.66 7198.11 3783.45 11596.26 3996.84 6388.33 7694.19 3097.43 1884.24 6999.01 7093.26 2797.98 6698.52 20
CNVR-MVS95.40 695.37 695.50 598.11 3788.51 595.29 8696.96 5292.09 395.32 1997.08 4089.49 1299.33 3695.10 898.85 1598.66 14
114514_t89.51 12588.50 13592.54 10898.11 3781.99 15395.16 9796.36 10370.19 33685.81 17895.25 10976.70 14898.63 10482.07 18596.86 9097.00 113
ACMMPcopyleft93.24 5992.88 6394.30 5498.09 4085.33 7296.86 2297.45 1188.33 7690.15 11197.03 4481.44 10099.51 2190.85 8295.74 10698.04 66
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APD-MVScopyleft94.24 3094.07 3494.75 3698.06 4186.90 2195.88 6096.94 5485.68 14095.05 2397.18 3587.31 3199.07 5891.90 6198.61 4598.28 45
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CSCG93.23 6093.05 5893.76 6998.04 4284.07 9896.22 4197.37 1884.15 17290.05 11295.66 10087.77 2399.15 5389.91 8898.27 5898.07 63
ACMMP_NAP94.74 1494.56 1695.28 698.02 4387.70 1095.68 6897.34 1988.28 7995.30 2097.67 1385.90 4999.54 1693.91 1798.95 1198.60 17
OPU-MVS96.21 198.00 4490.85 197.13 997.08 4092.59 198.94 8392.25 4598.99 1098.84 8
SR-MVS-dyc-post93.82 4493.82 4093.82 6497.92 4584.57 8196.28 3796.76 7387.46 10193.75 4097.43 1884.24 6999.01 7092.73 3497.80 7297.88 77
RE-MVS-def93.68 4697.92 4584.57 8196.28 3796.76 7387.46 10193.75 4097.43 1882.94 8092.73 3497.80 7297.88 77
APD-MVS_3200maxsize93.78 4593.77 4493.80 6897.92 4584.19 9696.30 3596.87 6186.96 11193.92 3797.47 1683.88 7598.96 8292.71 3797.87 7098.26 49
xxxxxxxxxxxxxcwj94.65 1594.70 1494.48 4797.85 4885.63 6895.21 9295.47 16889.44 4495.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
save fliter97.85 4885.63 6895.21 9296.82 6789.44 44
SF-MVS94.97 1094.90 1295.20 897.84 5087.76 896.65 2897.48 787.76 9495.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
NCCC94.81 1394.69 1595.17 1097.83 5187.46 1495.66 7096.93 5592.34 293.94 3696.58 6587.74 2499.44 2792.83 3398.40 5398.62 16
ETH3 D test640093.64 4993.22 5494.92 2097.79 5286.84 2295.31 8197.26 2982.67 20693.81 3996.29 7587.29 3299.27 4289.87 8998.67 3798.65 15
9.1494.47 1797.79 5296.08 5097.44 1286.13 13295.10 2297.40 2188.34 1899.22 4693.25 2898.70 32
CDPH-MVS92.83 6492.30 7194.44 4897.79 5286.11 5294.06 17396.66 8580.09 25292.77 6396.63 6286.62 3999.04 6387.40 11798.66 4098.17 54
ETH3D-3000-0.194.61 1694.44 1895.12 1197.70 5587.71 995.98 5697.44 1286.67 12095.25 2197.31 2587.73 2599.24 4493.11 3198.76 2698.40 35
DP-MVS87.25 19885.36 22892.90 9197.65 5683.24 12094.81 11992.00 27874.99 30581.92 26995.00 11772.66 20299.05 6066.92 31992.33 16496.40 129
PAPM_NR91.22 9090.78 9392.52 10997.60 5781.46 16794.37 15396.24 11086.39 12687.41 14894.80 12682.06 9598.48 11282.80 17495.37 11497.61 87
TEST997.53 5886.49 3994.07 17196.78 7081.61 23292.77 6396.20 8087.71 2699.12 55
train_agg93.44 5393.08 5794.52 4597.53 5886.49 3994.07 17196.78 7081.86 22592.77 6396.20 8087.63 2799.12 5592.14 5098.69 3397.94 72
abl_693.18 6193.05 5893.57 7397.52 6084.27 9595.53 7696.67 8487.85 9193.20 5497.22 3180.35 10799.18 4991.91 5897.21 8397.26 100
test_897.49 6186.30 4894.02 17696.76 7381.86 22592.70 6796.20 8087.63 2799.02 68
DeepC-MVS_fast89.43 294.04 3693.79 4294.80 3397.48 6286.78 2695.65 7296.89 5889.40 4792.81 6296.97 4585.37 5599.24 4490.87 8198.69 3398.38 37
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary89.89 11889.07 12392.37 11797.41 6383.03 12694.42 14595.92 13382.81 20386.34 17194.65 13173.89 18599.02 6880.69 21095.51 10995.05 175
agg_prior193.29 5792.97 6194.26 5597.38 6485.92 6093.92 18196.72 7981.96 21992.16 7896.23 7887.85 2298.97 7991.95 5798.55 4997.90 76
agg_prior97.38 6485.92 6096.72 7992.16 7898.97 79
原ACMM192.01 12897.34 6681.05 17796.81 6878.89 26690.45 10795.92 9182.65 8398.84 9580.68 21198.26 5996.14 137
MSLP-MVS++93.72 4694.08 3392.65 10397.31 6783.43 11695.79 6397.33 2290.03 3393.58 4796.96 4684.87 6297.76 16392.19 4898.66 4096.76 120
新几何193.10 8197.30 6884.35 9495.56 16171.09 33391.26 10096.24 7782.87 8298.86 9079.19 23298.10 6296.07 144
test_prior393.60 5093.53 4993.82 6497.29 6984.49 8594.12 16496.88 5987.67 9792.63 6896.39 7286.62 3998.87 8791.50 6898.67 3798.11 61
test_prior93.82 6497.29 6984.49 8596.88 5998.87 8798.11 61
112190.42 10689.49 11293.20 7797.27 7184.46 8892.63 22895.51 16671.01 33491.20 10196.21 7982.92 8199.05 6080.56 21398.07 6396.10 142
PLCcopyleft84.53 789.06 14088.03 14892.15 12597.27 7182.69 14094.29 15695.44 17479.71 25784.01 23594.18 14776.68 14998.75 9977.28 24993.41 14595.02 176
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SD-MVS94.96 1195.33 793.88 6297.25 7386.69 3096.19 4297.11 4290.42 2596.95 1097.27 2789.53 1196.91 23494.38 1398.85 1598.03 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test1294.34 5397.13 7486.15 5196.29 10591.04 10385.08 5899.01 7098.13 6197.86 79
MG-MVS91.77 7991.70 7892.00 13097.08 7580.03 20593.60 19495.18 18887.85 9190.89 10496.47 7082.06 9598.36 12285.07 14297.04 8797.62 86
SteuartSystems-ACMMP95.20 795.32 894.85 2796.99 7686.33 4597.33 397.30 2691.38 1195.39 1897.46 1788.98 1699.40 2894.12 1598.89 1498.82 10
Skip Steuart: Steuart Systems R&D Blog.
MVS_111021_HR93.45 5293.31 5293.84 6396.99 7684.84 7593.24 21197.24 3088.76 6491.60 9395.85 9486.07 4798.66 10191.91 5898.16 6098.03 67
CNLPA89.07 13987.98 15092.34 11896.87 7884.78 7794.08 17093.24 25081.41 23584.46 21995.13 11475.57 16296.62 24477.21 25093.84 13795.61 161
PHI-MVS93.89 4393.65 4794.62 4296.84 7986.43 4196.69 2797.49 585.15 15693.56 4996.28 7685.60 5199.31 3892.45 3898.79 1998.12 59
旧先验196.79 8081.81 15795.67 15396.81 5386.69 3897.66 7696.97 114
ETH3D cwj APD-0.1693.91 4193.53 4995.06 1396.76 8187.78 794.92 11197.21 3484.33 17093.89 3897.09 3987.20 3399.29 4191.90 6198.44 5198.12 59
LFMVS90.08 11189.13 12292.95 8996.71 8282.32 14996.08 5089.91 32686.79 11692.15 8096.81 5362.60 29498.34 12587.18 12193.90 13598.19 53
Anonymous20240521187.68 17686.13 20292.31 12096.66 8380.74 18794.87 11591.49 29380.47 24889.46 11895.44 10354.72 33298.23 13182.19 18389.89 18897.97 70
TAPA-MVS84.62 688.16 16487.01 17291.62 14896.64 8480.65 18894.39 14896.21 11576.38 29186.19 17495.44 10379.75 11598.08 14562.75 33495.29 11696.13 138
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MAR-MVS90.30 10789.37 11693.07 8496.61 8584.48 8795.68 6895.67 15382.36 21087.85 14092.85 19376.63 15098.80 9780.01 22196.68 9395.91 149
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VNet92.24 7491.91 7593.24 7696.59 8683.43 11694.84 11796.44 9689.19 5394.08 3495.90 9277.85 14198.17 13588.90 9993.38 14698.13 58
TSAR-MVS + GP.93.66 4893.41 5194.41 5296.59 8686.78 2694.40 14693.93 23789.77 3894.21 2995.59 10287.35 3098.61 10692.72 3696.15 10397.83 81
test22296.55 8881.70 15992.22 24295.01 19568.36 33990.20 11096.14 8580.26 11097.80 7296.05 146
Anonymous2024052988.09 16686.59 18792.58 10696.53 8981.92 15695.99 5495.84 14174.11 31389.06 12495.21 11161.44 30298.81 9683.67 16287.47 22597.01 112
Anonymous2023121186.59 22185.13 23190.98 17696.52 9081.50 16396.14 4596.16 11673.78 31583.65 24492.15 21663.26 29297.37 20082.82 17381.74 28194.06 223
DeepPCF-MVS89.96 194.20 3594.77 1392.49 11096.52 9080.00 20794.00 17897.08 4390.05 3295.65 1797.29 2689.66 1098.97 7993.95 1698.71 3098.50 22
testdata90.49 18996.40 9277.89 25395.37 18072.51 32693.63 4596.69 5882.08 9497.65 17183.08 16697.39 8195.94 148
PVSNet_Blended_VisFu91.38 8690.91 9092.80 9496.39 9383.17 12294.87 11596.66 8583.29 19289.27 12094.46 13780.29 10999.17 5087.57 11595.37 11496.05 146
API-MVS90.66 10090.07 10292.45 11296.36 9484.57 8196.06 5295.22 18782.39 20889.13 12194.27 14580.32 10898.46 11580.16 22096.71 9294.33 211
F-COLMAP87.95 16986.80 17791.40 15596.35 9580.88 18394.73 12495.45 17279.65 25882.04 26794.61 13271.13 21698.50 11176.24 26091.05 17594.80 189
VDD-MVS90.74 9689.92 10893.20 7796.27 9683.02 12795.73 6593.86 24088.42 7592.53 7196.84 5062.09 29798.64 10390.95 7992.62 16097.93 74
OMC-MVS91.23 8990.62 9493.08 8296.27 9684.07 9893.52 19695.93 13286.95 11289.51 11696.13 8678.50 13398.35 12485.84 13592.90 15696.83 119
DPM-MVS92.58 6991.74 7795.08 1296.19 9889.31 392.66 22796.56 9383.44 18891.68 9295.04 11686.60 4298.99 7685.60 13897.92 6996.93 116
CHOSEN 1792x268888.84 14787.69 15592.30 12196.14 9981.42 16990.01 28595.86 14074.52 31087.41 14893.94 15675.46 16398.36 12280.36 21695.53 10897.12 108
thres100view90087.63 18186.71 18090.38 19596.12 10078.55 23595.03 10591.58 28987.15 10688.06 13692.29 21268.91 25198.10 13870.13 29891.10 17194.48 207
PVSNet_BlendedMVS89.98 11389.70 10990.82 17896.12 10081.25 17293.92 18196.83 6583.49 18789.10 12292.26 21381.04 10498.85 9386.72 12987.86 22392.35 293
PVSNet_Blended90.73 9790.32 9791.98 13196.12 10081.25 17292.55 23296.83 6582.04 21789.10 12292.56 20381.04 10498.85 9386.72 12995.91 10495.84 153
UA-Net92.83 6492.54 6893.68 7096.10 10384.71 7895.66 7096.39 10191.92 493.22 5396.49 6983.16 7898.87 8784.47 15195.47 11197.45 95
thres600view787.65 17886.67 18290.59 18296.08 10478.72 23194.88 11491.58 28987.06 10988.08 13592.30 21168.91 25198.10 13870.05 30191.10 17194.96 180
DeepC-MVS88.79 393.31 5692.99 6094.26 5596.07 10585.83 6494.89 11396.99 4789.02 5989.56 11597.37 2382.51 8599.38 2992.20 4798.30 5797.57 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D87.89 17086.32 19792.59 10596.07 10582.92 13195.23 9094.92 20375.66 29882.89 25795.98 8972.48 20599.21 4768.43 30895.23 11995.64 160
HyFIR lowres test88.09 16686.81 17691.93 13596.00 10780.63 18990.01 28595.79 14573.42 31887.68 14592.10 22173.86 18697.96 15480.75 20991.70 16797.19 104
tfpn200view987.58 18586.64 18390.41 19295.99 10878.64 23394.58 13291.98 28086.94 11388.09 13391.77 23169.18 24898.10 13870.13 29891.10 17194.48 207
thres40087.62 18386.64 18390.57 18395.99 10878.64 23394.58 13291.98 28086.94 11388.09 13391.77 23169.18 24898.10 13870.13 29891.10 17194.96 180
MVS_111021_LR92.47 7192.29 7292.98 8795.99 10884.43 9293.08 21696.09 12088.20 8391.12 10295.72 9981.33 10297.76 16391.74 6397.37 8296.75 121
test_part189.00 14487.99 14992.04 12795.94 11183.81 10596.14 4596.05 12586.44 12485.69 18193.73 17071.57 21197.66 17085.80 13680.54 29994.66 192
PatchMatch-RL86.77 21785.54 22290.47 19195.88 11282.71 13990.54 27492.31 26979.82 25684.32 22791.57 24168.77 25396.39 26373.16 28393.48 14492.32 294
EPP-MVSNet91.70 8291.56 7992.13 12695.88 11280.50 19397.33 395.25 18486.15 13089.76 11495.60 10183.42 7798.32 12887.37 11993.25 14997.56 91
IS-MVSNet91.43 8591.09 8792.46 11195.87 11481.38 17096.95 1493.69 24589.72 4089.50 11795.98 8978.57 13297.77 16283.02 16896.50 9998.22 52
PAPR90.02 11289.27 12092.29 12295.78 11580.95 18192.68 22696.22 11281.91 22286.66 16493.75 16982.23 9098.44 11979.40 23194.79 12197.48 93
Vis-MVSNet (Re-imp)89.59 12389.44 11490.03 20995.74 11675.85 28495.61 7390.80 31187.66 9987.83 14195.40 10676.79 14696.46 26078.37 23796.73 9197.80 82
test_yl90.69 9890.02 10692.71 9995.72 11782.41 14694.11 16695.12 19085.63 14191.49 9494.70 12774.75 17098.42 12086.13 13392.53 16197.31 98
DCV-MVSNet90.69 9890.02 10692.71 9995.72 11782.41 14694.11 16695.12 19085.63 14191.49 9494.70 12774.75 17098.42 12086.13 13392.53 16197.31 98
canonicalmvs93.27 5892.75 6494.85 2795.70 11987.66 1196.33 3496.41 9990.00 3494.09 3394.60 13382.33 8898.62 10592.40 4192.86 15798.27 47
CANet93.54 5193.20 5694.55 4495.65 12085.73 6794.94 10996.69 8391.89 590.69 10595.88 9381.99 9799.54 1693.14 3097.95 6898.39 36
3Dnovator+87.14 492.42 7291.37 8095.55 495.63 12188.73 497.07 1396.77 7290.84 1684.02 23496.62 6375.95 15699.34 3387.77 11297.68 7598.59 18
alignmvs93.08 6292.50 6994.81 3295.62 12287.61 1295.99 5496.07 12289.77 3894.12 3294.87 12180.56 10698.66 10192.42 4093.10 15298.15 56
CS-MVS92.60 6892.56 6792.73 9895.55 12382.35 14896.14 4596.85 6288.71 6591.44 9691.51 24284.13 7198.48 11291.27 7297.47 8097.34 97
Regformer-194.22 3294.13 3294.51 4695.54 12486.36 4494.57 13496.44 9691.69 994.32 2896.56 6787.05 3699.03 6493.35 2597.65 7798.15 56
Regformer-294.33 2794.22 2594.68 3895.54 12486.75 2994.57 13496.70 8191.84 694.41 2596.56 6787.19 3499.13 5493.50 2097.65 7798.16 55
WTY-MVS89.60 12288.92 12791.67 14795.47 12681.15 17692.38 23694.78 21383.11 19589.06 12494.32 14078.67 13096.61 24781.57 19790.89 17797.24 101
DELS-MVS93.43 5493.25 5393.97 5995.42 12785.04 7493.06 21897.13 3990.74 2091.84 8695.09 11586.32 4399.21 4791.22 7398.45 5097.65 85
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Regformer-393.68 4793.64 4893.81 6795.36 12884.61 7994.68 12695.83 14291.27 1293.60 4696.71 5685.75 5098.86 9092.87 3296.65 9497.96 71
Regformer-493.91 4193.81 4194.19 5795.36 12885.47 7094.68 12696.41 9991.60 1093.75 4096.71 5685.95 4899.10 5793.21 2996.65 9498.01 69
thres20087.21 20286.24 20090.12 20595.36 12878.53 23693.26 20892.10 27486.42 12588.00 13891.11 25569.24 24798.00 15169.58 30291.04 17693.83 236
Vis-MVSNetpermissive91.75 8091.23 8393.29 7495.32 13183.78 10696.14 4595.98 12889.89 3590.45 10796.58 6575.09 16698.31 12984.75 14896.90 8897.78 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
BH-RMVSNet88.37 15887.48 16091.02 17195.28 13279.45 21792.89 22393.07 25385.45 14786.91 15994.84 12570.35 23097.76 16373.97 27894.59 12695.85 152
COLMAP_ROBcopyleft80.39 1683.96 26282.04 26989.74 22195.28 13279.75 21294.25 15892.28 27075.17 30378.02 30793.77 16758.60 32197.84 16065.06 32785.92 23791.63 304
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PS-MVSNAJ91.18 9190.92 8991.96 13395.26 13482.60 14392.09 24795.70 15186.27 12791.84 8692.46 20579.70 11798.99 7689.08 9795.86 10594.29 212
BH-untuned88.60 15488.13 14790.01 21195.24 13578.50 23893.29 20694.15 23184.75 16484.46 21993.40 17375.76 15797.40 19677.59 24694.52 12894.12 218
ETV-MVS92.74 6692.66 6592.97 8895.20 13684.04 10095.07 10196.51 9490.73 2192.96 5891.19 24984.06 7298.34 12591.72 6496.54 9796.54 128
EIA-MVS91.95 7691.94 7491.98 13195.16 13780.01 20695.36 7896.73 7788.44 7389.34 11992.16 21583.82 7698.45 11889.35 9497.06 8697.48 93
ab-mvs89.41 13188.35 13992.60 10495.15 13882.65 14192.20 24395.60 16083.97 17688.55 12893.70 17174.16 18198.21 13482.46 17989.37 19696.94 115
VDDNet89.56 12488.49 13792.76 9695.07 13982.09 15196.30 3593.19 25181.05 24491.88 8496.86 4961.16 30798.33 12788.43 10592.49 16397.84 80
AllTest83.42 26881.39 27489.52 22995.01 14077.79 25793.12 21390.89 30977.41 28376.12 31993.34 17454.08 33597.51 18068.31 30984.27 25093.26 259
TestCases89.52 22995.01 14077.79 25790.89 30977.41 28376.12 31993.34 17454.08 33597.51 18068.31 30984.27 25093.26 259
EI-MVSNet-Vis-set93.01 6392.92 6293.29 7495.01 14083.51 11494.48 13895.77 14690.87 1592.52 7296.67 6084.50 6699.00 7591.99 5394.44 13197.36 96
xiu_mvs_v2_base91.13 9290.89 9191.86 13894.97 14382.42 14492.24 24195.64 15886.11 13391.74 9193.14 18579.67 12098.89 8689.06 9895.46 11294.28 213
tttt051788.61 15387.78 15491.11 16694.96 14477.81 25695.35 7989.69 33085.09 15888.05 13794.59 13466.93 26698.48 11283.27 16592.13 16697.03 111
baseline188.10 16587.28 16690.57 18394.96 14480.07 20194.27 15791.29 29886.74 11787.41 14894.00 15376.77 14796.20 27180.77 20879.31 31495.44 165
Test_1112_low_res87.65 17886.51 19091.08 16794.94 14679.28 22591.77 25294.30 22576.04 29683.51 24892.37 20877.86 14097.73 16778.69 23689.13 20296.22 135
1112_ss88.42 15687.33 16491.72 14594.92 14780.98 17992.97 22194.54 21778.16 28083.82 23993.88 16178.78 12897.91 15879.45 22789.41 19596.26 134
QAPM89.51 12588.15 14693.59 7294.92 14784.58 8096.82 2496.70 8178.43 27583.41 25096.19 8373.18 19799.30 3977.11 25296.54 9796.89 118
BH-w/o87.57 18687.05 17189.12 23894.90 14977.90 25292.41 23493.51 24782.89 20283.70 24291.34 24375.75 15897.07 22375.49 26593.49 14292.39 291
thisisatest053088.67 15187.61 15891.86 13894.87 15080.07 20194.63 13089.90 32784.00 17588.46 13093.78 16666.88 26898.46 11583.30 16492.65 15997.06 109
EI-MVSNet-UG-set92.74 6692.62 6693.12 8094.86 15183.20 12194.40 14695.74 14990.71 2292.05 8196.60 6484.00 7398.99 7691.55 6693.63 13997.17 105
HY-MVS83.01 1289.03 14187.94 15292.29 12294.86 15182.77 13392.08 24894.49 21881.52 23486.93 15792.79 19978.32 13698.23 13179.93 22290.55 17895.88 151
AUN-MVS87.78 17486.54 18991.48 15294.82 15381.05 17793.91 18493.93 23783.00 19886.93 15793.53 17269.50 24197.67 16986.14 13277.12 32395.73 158
Fast-Effi-MVS+89.41 13188.64 13291.71 14694.74 15480.81 18593.54 19595.10 19283.11 19586.82 16290.67 26779.74 11697.75 16680.51 21593.55 14096.57 126
ACMP84.23 889.01 14388.35 13990.99 17494.73 15581.27 17195.07 10195.89 13886.48 12283.67 24394.30 14169.33 24397.99 15287.10 12688.55 20793.72 245
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PVSNet78.82 1885.55 23984.65 24288.23 26394.72 15671.93 31687.12 32092.75 26078.80 26984.95 21090.53 26964.43 28896.71 24174.74 27393.86 13696.06 145
LCM-MVSNet-Re88.30 16188.32 14288.27 26094.71 15772.41 31593.15 21290.98 30587.77 9379.25 30191.96 22778.35 13595.75 29183.04 16795.62 10796.65 124
HQP_MVS90.60 10490.19 9991.82 14194.70 15882.73 13795.85 6196.22 11290.81 1786.91 15994.86 12274.23 17798.12 13688.15 10789.99 18494.63 193
plane_prior794.70 15882.74 136
ACMH+81.04 1485.05 25083.46 25889.82 21794.66 16079.37 21994.44 14394.12 23482.19 21378.04 30692.82 19658.23 32297.54 17873.77 28082.90 26792.54 285
ACMM84.12 989.14 13788.48 13891.12 16394.65 16181.22 17495.31 8196.12 11985.31 15185.92 17794.34 13870.19 23398.06 14785.65 13788.86 20594.08 222
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
plane_prior194.59 162
3Dnovator86.66 591.73 8190.82 9294.44 4894.59 16286.37 4397.18 797.02 4689.20 5284.31 22996.66 6173.74 18999.17 5086.74 12797.96 6797.79 83
plane_prior694.52 16482.75 13474.23 177
UGNet89.95 11588.95 12692.95 8994.51 16583.31 11995.70 6795.23 18589.37 4887.58 14693.94 15664.00 28998.78 9883.92 15796.31 10296.74 122
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LPG-MVS_test89.45 12888.90 12891.12 16394.47 16681.49 16595.30 8496.14 11786.73 11885.45 19495.16 11269.89 23598.10 13887.70 11389.23 20093.77 241
LGP-MVS_train91.12 16394.47 16681.49 16596.14 11786.73 11885.45 19495.16 11269.89 23598.10 13887.70 11389.23 20093.77 241
baseline92.39 7392.29 7292.69 10294.46 16881.77 15894.14 16396.27 10689.22 5191.88 8496.00 8882.35 8797.99 15291.05 7595.27 11898.30 41
ACMH80.38 1785.36 24283.68 25490.39 19394.45 16980.63 18994.73 12494.85 20782.09 21477.24 31192.65 20160.01 31497.58 17572.25 28784.87 24592.96 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB82.13 1386.26 22984.90 23790.34 19894.44 17081.50 16392.31 24094.89 20483.03 19779.63 29892.67 20069.69 23897.79 16171.20 29086.26 23691.72 302
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
casdiffmvs92.51 7092.43 7092.74 9794.41 17181.98 15494.54 13696.23 11189.57 4291.96 8396.17 8482.58 8498.01 15090.95 7995.45 11398.23 51
MVS_Test91.31 8891.11 8591.93 13594.37 17280.14 19893.46 19995.80 14486.46 12391.35 9993.77 16782.21 9198.09 14487.57 11594.95 12097.55 92
NP-MVS94.37 17282.42 14493.98 154
TR-MVS86.78 21485.76 21989.82 21794.37 17278.41 24092.47 23392.83 25781.11 24386.36 17092.40 20768.73 25497.48 18273.75 28189.85 19093.57 249
Effi-MVS+91.59 8491.11 8593.01 8694.35 17583.39 11894.60 13195.10 19287.10 10890.57 10693.10 18781.43 10198.07 14689.29 9594.48 12997.59 89
CLD-MVS89.47 12788.90 12891.18 16294.22 17682.07 15292.13 24596.09 12087.90 8985.37 20392.45 20674.38 17597.56 17787.15 12290.43 17993.93 228
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP-NCC94.17 17794.39 14888.81 6185.43 197
ACMP_Plane94.17 17794.39 14888.81 6185.43 197
HQP-MVS89.80 11989.28 11991.34 15794.17 17781.56 16194.39 14896.04 12688.81 6185.43 19793.97 15573.83 18797.96 15487.11 12489.77 19194.50 204
XVG-OURS89.40 13388.70 13191.52 15094.06 18081.46 16791.27 26396.07 12286.14 13188.89 12695.77 9768.73 25497.26 20887.39 11889.96 18695.83 154
sss88.93 14588.26 14590.94 17794.05 18180.78 18691.71 25595.38 17881.55 23388.63 12793.91 16075.04 16795.47 30282.47 17891.61 16896.57 126
PCF-MVS84.11 1087.74 17586.08 20692.70 10194.02 18284.43 9289.27 29595.87 13973.62 31784.43 22194.33 13978.48 13498.86 9070.27 29494.45 13094.81 188
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GBi-Net87.26 19685.98 20991.08 16794.01 18383.10 12395.14 9894.94 19883.57 18384.37 22291.64 23466.59 27396.34 26778.23 24085.36 24193.79 237
test187.26 19685.98 20991.08 16794.01 18383.10 12395.14 9894.94 19883.57 18384.37 22291.64 23466.59 27396.34 26778.23 24085.36 24193.79 237
FMVSNet287.19 20385.82 21591.30 15894.01 18383.67 10994.79 12094.94 19883.57 18383.88 23792.05 22566.59 27396.51 25577.56 24785.01 24493.73 244
XVG-OURS-SEG-HR89.95 11589.45 11391.47 15394.00 18681.21 17591.87 25096.06 12485.78 13688.55 12895.73 9874.67 17397.27 20688.71 10289.64 19395.91 149
FIs90.51 10590.35 9690.99 17493.99 18780.98 17995.73 6597.54 389.15 5486.72 16394.68 12981.83 9997.24 21085.18 14188.31 21594.76 190
xiu_mvs_v1_base_debu90.64 10190.05 10392.40 11393.97 18884.46 8893.32 20195.46 16985.17 15392.25 7594.03 14870.59 22598.57 10890.97 7694.67 12294.18 214
xiu_mvs_v1_base90.64 10190.05 10392.40 11393.97 18884.46 8893.32 20195.46 16985.17 15392.25 7594.03 14870.59 22598.57 10890.97 7694.67 12294.18 214
xiu_mvs_v1_base_debi90.64 10190.05 10392.40 11393.97 18884.46 8893.32 20195.46 16985.17 15392.25 7594.03 14870.59 22598.57 10890.97 7694.67 12294.18 214
VPA-MVSNet89.62 12188.96 12591.60 14993.86 19182.89 13295.46 7797.33 2287.91 8888.43 13193.31 17774.17 18097.40 19687.32 12082.86 26894.52 202
MVSFormer91.68 8391.30 8192.80 9493.86 19183.88 10395.96 5795.90 13684.66 16691.76 8994.91 11977.92 13897.30 20289.64 9197.11 8497.24 101
lupinMVS90.92 9490.21 9893.03 8593.86 19183.88 10392.81 22493.86 24079.84 25591.76 8994.29 14277.92 13898.04 14890.48 8697.11 8497.17 105
IterMVS-LS88.36 15987.91 15389.70 22493.80 19478.29 24493.73 18895.08 19485.73 13884.75 21291.90 22979.88 11396.92 23383.83 15882.51 26993.89 229
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG84.86 25483.09 26190.14 20493.80 19480.05 20389.18 29893.09 25278.89 26678.19 30491.91 22865.86 28297.27 20668.47 30788.45 21193.11 269
FMVSNet387.40 19386.11 20491.30 15893.79 19683.64 11094.20 16194.81 21183.89 17784.37 22291.87 23068.45 25796.56 25278.23 24085.36 24193.70 246
FC-MVSNet-test90.27 10890.18 10090.53 18593.71 19779.85 21195.77 6497.59 289.31 4986.27 17294.67 13081.93 9897.01 22884.26 15388.09 21994.71 191
TAMVS89.21 13688.29 14391.96 13393.71 19782.62 14293.30 20594.19 22982.22 21287.78 14393.94 15678.83 12696.95 23177.70 24592.98 15596.32 131
ET-MVSNet_ETH3D87.51 18885.91 21392.32 11993.70 19983.93 10192.33 23890.94 30784.16 17172.09 33692.52 20469.90 23495.85 28689.20 9688.36 21497.17 105
CDS-MVSNet89.45 12888.51 13492.29 12293.62 20083.61 11293.01 21994.68 21681.95 22087.82 14293.24 18178.69 12996.99 22980.34 21793.23 15096.28 133
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UniMVSNet (Re)89.80 11989.07 12392.01 12893.60 20184.52 8494.78 12197.47 889.26 5086.44 16992.32 21082.10 9397.39 19984.81 14780.84 29594.12 218
VPNet88.20 16387.47 16190.39 19393.56 20279.46 21694.04 17495.54 16488.67 6786.96 15694.58 13569.33 24397.15 21584.05 15680.53 30194.56 200
thisisatest051587.33 19485.99 20891.37 15693.49 20379.55 21490.63 27389.56 33380.17 25087.56 14790.86 26067.07 26598.28 13081.50 19893.02 15496.29 132
mvs_anonymous89.37 13489.32 11789.51 23193.47 20474.22 29591.65 25894.83 20982.91 20185.45 19493.79 16581.23 10396.36 26686.47 13194.09 13397.94 72
CANet_DTU90.26 10989.41 11592.81 9393.46 20583.01 12893.48 19794.47 21989.43 4687.76 14494.23 14670.54 22999.03 6484.97 14396.39 10196.38 130
UniMVSNet_NR-MVSNet89.92 11789.29 11891.81 14393.39 20683.72 10794.43 14497.12 4089.80 3786.46 16693.32 17683.16 7897.23 21184.92 14481.02 29194.49 206
Effi-MVS+-dtu88.65 15288.35 13989.54 22893.33 20776.39 27994.47 14194.36 22287.70 9585.43 19789.56 28973.45 19297.26 20885.57 13991.28 17094.97 177
mvs-test189.45 12889.14 12190.38 19593.33 20777.63 26294.95 10894.36 22287.70 9587.10 15592.81 19773.45 19298.03 14985.57 13993.04 15395.48 163
WR-MVS88.38 15787.67 15790.52 18793.30 20980.18 19693.26 20895.96 13088.57 7185.47 19392.81 19776.12 15296.91 23481.24 20082.29 27194.47 209
WR-MVS_H87.80 17387.37 16389.10 23993.23 21078.12 24795.61 7397.30 2687.90 8983.72 24192.01 22679.65 12196.01 27976.36 25780.54 29993.16 267
test_040281.30 29079.17 29787.67 27393.19 21178.17 24692.98 22091.71 28575.25 30276.02 32190.31 27359.23 31896.37 26450.22 34883.63 25788.47 339
OPM-MVS90.12 11089.56 11191.82 14193.14 21283.90 10294.16 16295.74 14988.96 6087.86 13995.43 10572.48 20597.91 15888.10 11090.18 18393.65 247
CP-MVSNet87.63 18187.26 16888.74 24993.12 21376.59 27695.29 8696.58 9188.43 7483.49 24992.98 19075.28 16495.83 28778.97 23381.15 28793.79 237
diffmvs91.37 8791.23 8391.77 14493.09 21480.27 19592.36 23795.52 16587.03 11091.40 9894.93 11880.08 11197.44 18792.13 5194.56 12797.61 87
nrg03091.08 9390.39 9593.17 7993.07 21586.91 2096.41 3296.26 10788.30 7888.37 13294.85 12482.19 9297.64 17391.09 7482.95 26394.96 180
PAPM86.68 21885.39 22690.53 18593.05 21679.33 22489.79 28894.77 21478.82 26881.95 26893.24 18176.81 14597.30 20266.94 31793.16 15194.95 183
DU-MVS89.34 13588.50 13591.85 14093.04 21783.72 10794.47 14196.59 9089.50 4386.46 16693.29 17977.25 14297.23 21184.92 14481.02 29194.59 197
NR-MVSNet88.58 15587.47 16191.93 13593.04 21784.16 9794.77 12296.25 10989.05 5680.04 29393.29 17979.02 12597.05 22581.71 19680.05 30694.59 197
jason90.80 9590.10 10192.90 9193.04 21783.53 11393.08 21694.15 23180.22 24991.41 9794.91 11976.87 14497.93 15790.28 8796.90 8897.24 101
jason: jason.
RRT_test8_iter0586.90 20986.36 19488.52 25493.00 22073.27 30394.32 15595.96 13085.50 14684.26 23092.86 19260.76 30997.70 16888.32 10682.29 27194.60 196
PS-CasMVS87.32 19586.88 17388.63 25292.99 22176.33 28195.33 8096.61 8988.22 8283.30 25493.07 18873.03 19995.79 29078.36 23881.00 29393.75 243
MVSTER88.84 14788.29 14390.51 18892.95 22280.44 19493.73 18895.01 19584.66 16687.15 15293.12 18672.79 20197.21 21387.86 11187.36 22893.87 232
RPSCF85.07 24984.27 24687.48 27992.91 22370.62 32891.69 25792.46 26576.20 29582.67 26095.22 11063.94 29097.29 20577.51 24885.80 23994.53 201
FMVSNet185.85 23584.11 24891.08 16792.81 22483.10 12395.14 9894.94 19881.64 23082.68 25991.64 23459.01 32096.34 26775.37 26783.78 25393.79 237
tfpnnormal84.72 25683.23 26089.20 23692.79 22580.05 20394.48 13895.81 14382.38 20981.08 27791.21 24869.01 25096.95 23161.69 33680.59 29890.58 324
OpenMVScopyleft83.78 1188.74 15087.29 16593.08 8292.70 22685.39 7196.57 2996.43 9878.74 27180.85 27996.07 8769.64 23999.01 7078.01 24396.65 9494.83 187
TranMVSNet+NR-MVSNet88.84 14787.95 15191.49 15192.68 22783.01 12894.92 11196.31 10489.88 3685.53 18793.85 16376.63 15096.96 23081.91 18979.87 30994.50 204
MVS87.44 19186.10 20591.44 15492.61 22883.62 11192.63 22895.66 15567.26 34081.47 27192.15 21677.95 13798.22 13379.71 22495.48 11092.47 288
CHOSEN 280x42085.15 24883.99 25088.65 25192.47 22978.40 24179.68 34792.76 25974.90 30781.41 27389.59 28769.85 23795.51 29879.92 22395.29 11692.03 298
UniMVSNet_ETH3D87.53 18786.37 19391.00 17392.44 23078.96 23094.74 12395.61 15984.07 17485.36 20494.52 13659.78 31697.34 20182.93 16987.88 22296.71 123
131487.51 18886.57 18890.34 19892.42 23179.74 21392.63 22895.35 18278.35 27680.14 29091.62 23874.05 18297.15 21581.05 20193.53 14194.12 218
cl-mvsnet286.78 21485.98 20989.18 23792.34 23277.62 26390.84 27094.13 23381.33 23783.97 23690.15 27673.96 18496.60 24984.19 15482.94 26493.33 257
PEN-MVS86.80 21386.27 19988.40 25692.32 23375.71 28695.18 9596.38 10287.97 8682.82 25893.15 18473.39 19595.92 28276.15 26179.03 31693.59 248
cl_fuxian87.14 20586.50 19189.04 24192.20 23477.26 26891.22 26594.70 21582.01 21884.34 22690.43 27178.81 12796.61 24783.70 16181.09 28893.25 261
SCA86.32 22885.18 23089.73 22392.15 23576.60 27591.12 26691.69 28783.53 18685.50 19088.81 29666.79 26996.48 25776.65 25590.35 18196.12 139
XXY-MVS87.65 17886.85 17590.03 20992.14 23680.60 19193.76 18795.23 18582.94 20084.60 21494.02 15174.27 17695.49 30181.04 20283.68 25694.01 226
miper_ehance_all_eth87.22 20186.62 18689.02 24292.13 23777.40 26790.91 26994.81 21181.28 23884.32 22790.08 27879.26 12396.62 24483.81 15982.94 26493.04 272
IB-MVS80.51 1585.24 24783.26 25991.19 16192.13 23779.86 21091.75 25391.29 29883.28 19380.66 28288.49 30261.28 30398.46 11580.99 20579.46 31295.25 171
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cascas86.43 22784.98 23490.80 17992.10 23980.92 18290.24 27995.91 13573.10 32183.57 24788.39 30365.15 28497.46 18484.90 14691.43 16994.03 225
Fast-Effi-MVS+-dtu87.44 19186.72 17989.63 22692.04 24077.68 26194.03 17593.94 23685.81 13582.42 26191.32 24670.33 23197.06 22480.33 21890.23 18294.14 217
cl-mvsnet_86.52 22385.78 21688.75 24792.03 24176.46 27790.74 27194.30 22581.83 22783.34 25290.78 26475.74 16096.57 25081.74 19481.54 28393.22 264
cl-mvsnet186.53 22285.78 21688.75 24792.02 24276.45 27890.74 27194.30 22581.83 22783.34 25290.82 26275.75 15896.57 25081.73 19581.52 28493.24 262
RRT_MVS88.86 14687.68 15692.39 11692.02 24286.09 5394.38 15294.94 19885.45 14787.14 15493.84 16465.88 28197.11 21988.73 10186.77 23593.98 227
eth_miper_zixun_eth86.50 22485.77 21888.68 25091.94 24475.81 28590.47 27594.89 20482.05 21584.05 23390.46 27075.96 15596.77 23882.76 17579.36 31393.46 255
PS-MVSNAJss89.97 11489.62 11091.02 17191.90 24580.85 18495.26 8995.98 12886.26 12886.21 17394.29 14279.70 11797.65 17188.87 10088.10 21794.57 199
ITE_SJBPF88.24 26291.88 24677.05 27192.92 25585.54 14480.13 29193.30 17857.29 32496.20 27172.46 28684.71 24691.49 306
EI-MVSNet89.10 13888.86 13089.80 22091.84 24778.30 24393.70 19195.01 19585.73 13887.15 15295.28 10779.87 11497.21 21383.81 15987.36 22893.88 231
CVMVSNet84.69 25784.79 24084.37 31691.84 24764.92 34693.70 19191.47 29466.19 34286.16 17595.28 10767.18 26393.33 32780.89 20790.42 18094.88 185
MVS-HIRNet73.70 31472.20 31778.18 32991.81 24956.42 35382.94 34282.58 34855.24 34868.88 34166.48 34955.32 33095.13 30658.12 34388.42 21283.01 344
PatchmatchNetpermissive85.85 23584.70 24189.29 23491.76 25075.54 28788.49 30791.30 29781.63 23185.05 20888.70 30071.71 20996.24 27074.61 27589.05 20396.08 143
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TransMVSNet (Re)84.43 25983.06 26288.54 25391.72 25178.44 23995.18 9592.82 25882.73 20479.67 29792.12 21873.49 19195.96 28171.10 29368.73 34091.21 313
IterMVS-SCA-FT85.45 24084.53 24588.18 26491.71 25276.87 27390.19 28292.65 26385.40 14981.44 27290.54 26866.79 26995.00 31081.04 20281.05 28992.66 283
TinyColmap79.76 30177.69 30385.97 30291.71 25273.12 30489.55 28990.36 31775.03 30472.03 33790.19 27446.22 34996.19 27363.11 33281.03 29088.59 338
MDTV_nov1_ep1383.56 25791.69 25469.93 33287.75 31591.54 29178.60 27384.86 21188.90 29569.54 24096.03 27770.25 29588.93 204
miper_enhance_ethall86.90 20986.18 20189.06 24091.66 25577.58 26490.22 28194.82 21079.16 26384.48 21889.10 29279.19 12496.66 24284.06 15582.94 26492.94 275
DTE-MVSNet86.11 23085.48 22487.98 26891.65 25674.92 28994.93 11095.75 14887.36 10482.26 26393.04 18972.85 20095.82 28874.04 27777.46 32193.20 265
MIMVSNet82.59 27480.53 27988.76 24691.51 25778.32 24286.57 32390.13 32079.32 25980.70 28188.69 30152.98 33993.07 33166.03 32288.86 20594.90 184
pm-mvs186.61 21985.54 22289.82 21791.44 25880.18 19695.28 8894.85 20783.84 17881.66 27092.62 20272.45 20796.48 25779.67 22578.06 31792.82 280
Baseline_NR-MVSNet87.07 20686.63 18588.40 25691.44 25877.87 25494.23 16092.57 26484.12 17385.74 18092.08 22277.25 14296.04 27682.29 18279.94 30791.30 310
IterMVS84.88 25383.98 25187.60 27491.44 25876.03 28390.18 28392.41 26683.24 19481.06 27890.42 27266.60 27294.28 31679.46 22680.98 29492.48 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DWT-MVSNet_test84.95 25283.68 25488.77 24591.43 26173.75 29991.74 25490.98 30580.66 24783.84 23887.36 31762.44 29597.11 21978.84 23585.81 23895.46 164
MS-PatchMatch85.05 25084.16 24787.73 27291.42 26278.51 23791.25 26493.53 24677.50 28280.15 28991.58 23961.99 29895.51 29875.69 26494.35 13289.16 333
tpm284.08 26182.94 26387.48 27991.39 26371.27 32089.23 29790.37 31671.95 32984.64 21389.33 29067.30 26096.55 25475.17 26987.09 23294.63 193
v887.50 19086.71 18089.89 21491.37 26479.40 21894.50 13795.38 17884.81 16383.60 24691.33 24476.05 15397.42 18982.84 17280.51 30392.84 279
ADS-MVSNet281.66 28379.71 29187.50 27791.35 26574.19 29683.33 33988.48 33672.90 32382.24 26485.77 32964.98 28593.20 32964.57 32883.74 25495.12 173
ADS-MVSNet81.56 28579.78 28986.90 29391.35 26571.82 31783.33 33989.16 33472.90 32382.24 26485.77 32964.98 28593.76 32264.57 32883.74 25495.12 173
GA-MVS86.61 21985.27 22990.66 18091.33 26778.71 23290.40 27693.81 24385.34 15085.12 20789.57 28861.25 30497.11 21980.99 20589.59 19496.15 136
miper_lstm_enhance85.27 24684.59 24487.31 28191.28 26874.63 29087.69 31694.09 23581.20 24281.36 27489.85 28474.97 16994.30 31581.03 20479.84 31093.01 273
XVG-ACMP-BASELINE86.00 23184.84 23989.45 23291.20 26978.00 24991.70 25695.55 16285.05 15982.97 25692.25 21454.49 33397.48 18282.93 16987.45 22792.89 277
v1087.25 19886.38 19289.85 21591.19 27079.50 21594.48 13895.45 17283.79 17983.62 24591.19 24975.13 16597.42 18981.94 18880.60 29792.63 284
FMVSNet581.52 28679.60 29287.27 28291.17 27177.95 25091.49 26092.26 27176.87 28876.16 31887.91 31251.67 34092.34 33567.74 31381.16 28591.52 305
USDC82.76 27181.26 27687.26 28391.17 27174.55 29189.27 29593.39 24978.26 27875.30 32392.08 22254.43 33496.63 24371.64 28885.79 24090.61 321
CostFormer85.77 23784.94 23688.26 26191.16 27372.58 31389.47 29391.04 30476.26 29486.45 16889.97 28170.74 22396.86 23782.35 18087.07 23395.34 170
baseline286.50 22485.39 22689.84 21691.12 27476.70 27491.88 24988.58 33582.35 21179.95 29490.95 25973.42 19497.63 17480.27 21989.95 18795.19 172
tpm cat181.96 27780.27 28387.01 29091.09 27571.02 32487.38 31991.53 29266.25 34180.17 28886.35 32568.22 25996.15 27469.16 30382.29 27193.86 234
tpmvs83.35 27082.07 26887.20 28891.07 27671.00 32588.31 31091.70 28678.91 26580.49 28587.18 32169.30 24697.08 22268.12 31283.56 25893.51 253
v114487.61 18486.79 17890.06 20891.01 27779.34 22193.95 18095.42 17783.36 19185.66 18391.31 24774.98 16897.42 18983.37 16382.06 27493.42 256
v2v48287.84 17187.06 17090.17 20190.99 27879.23 22894.00 17895.13 18984.87 16185.53 18792.07 22474.45 17497.45 18584.71 14981.75 28093.85 235
SixPastTwentyTwo83.91 26482.90 26486.92 29290.99 27870.67 32793.48 19791.99 27985.54 14477.62 31092.11 22060.59 31096.87 23676.05 26277.75 31893.20 265
test-LLR85.87 23485.41 22587.25 28490.95 28071.67 31889.55 28989.88 32883.41 18984.54 21687.95 31067.25 26195.11 30781.82 19193.37 14794.97 177
test-mter84.54 25883.64 25687.25 28490.95 28071.67 31889.55 28989.88 32879.17 26284.54 21687.95 31055.56 32895.11 30781.82 19193.37 14794.97 177
v14887.04 20786.32 19789.21 23590.94 28277.26 26893.71 19094.43 22084.84 16284.36 22590.80 26376.04 15497.05 22582.12 18479.60 31193.31 258
mvs_tets88.06 16887.28 16690.38 19590.94 28279.88 20995.22 9195.66 15585.10 15784.21 23293.94 15663.53 29197.40 19688.50 10488.40 21393.87 232
MVP-Stereo85.97 23284.86 23889.32 23390.92 28482.19 15092.11 24694.19 22978.76 27078.77 30391.63 23768.38 25896.56 25275.01 27293.95 13489.20 332
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Patchmatch-test81.37 28879.30 29487.58 27590.92 28474.16 29780.99 34587.68 34070.52 33576.63 31688.81 29671.21 21592.76 33360.01 34286.93 23495.83 154
jajsoiax88.24 16287.50 15990.48 19090.89 28680.14 19895.31 8195.65 15784.97 16084.24 23194.02 15165.31 28397.42 18988.56 10388.52 20993.89 229
tpmrst85.35 24384.99 23386.43 29890.88 28767.88 33888.71 30491.43 29580.13 25186.08 17688.80 29873.05 19896.02 27882.48 17783.40 26295.40 167
gg-mvs-nofinetune81.77 28079.37 29388.99 24390.85 28877.73 26086.29 32479.63 35374.88 30883.19 25569.05 34860.34 31196.11 27575.46 26694.64 12593.11 269
D2MVS85.90 23385.09 23288.35 25890.79 28977.42 26691.83 25195.70 15180.77 24680.08 29290.02 27966.74 27196.37 26481.88 19087.97 22191.26 311
OurMVSNet-221017-085.35 24384.64 24387.49 27890.77 29072.59 31294.01 17794.40 22184.72 16579.62 29993.17 18361.91 29996.72 23981.99 18781.16 28593.16 267
v119287.25 19886.33 19690.00 21290.76 29179.04 22993.80 18595.48 16782.57 20785.48 19291.18 25173.38 19697.42 18982.30 18182.06 27493.53 250
test_djsdf89.03 14188.64 13290.21 20090.74 29279.28 22595.96 5795.90 13684.66 16685.33 20592.94 19174.02 18397.30 20289.64 9188.53 20894.05 224
v7n86.81 21285.76 21989.95 21390.72 29379.25 22795.07 10195.92 13384.45 16982.29 26290.86 26072.60 20497.53 17979.42 23080.52 30293.08 271
PVSNet_073.20 2077.22 31074.83 31584.37 31690.70 29471.10 32383.09 34189.67 33172.81 32573.93 33083.13 33760.79 30893.70 32368.54 30650.84 35188.30 340
v14419287.19 20386.35 19589.74 22190.64 29578.24 24593.92 18195.43 17581.93 22185.51 18991.05 25774.21 17997.45 18582.86 17181.56 28293.53 250
MVS_030483.46 26781.92 27088.10 26690.63 29677.49 26593.26 20893.75 24480.04 25380.44 28687.24 32047.94 34695.55 29575.79 26388.16 21691.26 311
V4287.68 17686.86 17490.15 20390.58 29780.14 19894.24 15995.28 18383.66 18185.67 18291.33 24474.73 17297.41 19484.43 15281.83 27892.89 277
CR-MVSNet85.35 24383.76 25390.12 20590.58 29779.34 22185.24 33091.96 28278.27 27785.55 18587.87 31371.03 21895.61 29373.96 27989.36 19795.40 167
RPMNet83.95 26381.53 27391.21 16090.58 29779.34 22185.24 33096.76 7371.44 33185.55 18582.97 33870.87 22198.91 8561.01 33889.36 19795.40 167
v192192086.97 20886.06 20789.69 22590.53 30078.11 24893.80 18595.43 17581.90 22385.33 20591.05 25772.66 20297.41 19482.05 18681.80 27993.53 250
v124086.78 21485.85 21489.56 22790.45 30177.79 25793.61 19395.37 18081.65 22985.43 19791.15 25371.50 21397.43 18881.47 19982.05 27693.47 254
tpm84.73 25584.02 24986.87 29590.33 30268.90 33589.06 29989.94 32580.85 24585.75 17989.86 28368.54 25695.97 28077.76 24484.05 25295.75 157
EG-PatchMatch MVS82.37 27680.34 28288.46 25590.27 30379.35 22092.80 22594.33 22477.14 28773.26 33390.18 27547.47 34896.72 23970.25 29587.32 23089.30 330
EPNet_dtu86.49 22685.94 21288.14 26590.24 30472.82 30794.11 16692.20 27286.66 12179.42 30092.36 20973.52 19095.81 28971.26 28993.66 13895.80 156
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPMVS83.90 26582.70 26787.51 27690.23 30572.67 30988.62 30681.96 35081.37 23685.01 20988.34 30466.31 27694.45 31275.30 26887.12 23195.43 166
EPNet91.79 7891.02 8894.10 5890.10 30685.25 7396.03 5392.05 27692.83 187.39 15195.78 9679.39 12299.01 7088.13 10997.48 7998.05 65
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchT82.68 27381.27 27586.89 29490.09 30770.94 32684.06 33690.15 31974.91 30685.63 18483.57 33569.37 24294.87 31165.19 32488.50 21094.84 186
Patchmtry82.71 27280.93 27888.06 26790.05 30876.37 28084.74 33491.96 28272.28 32881.32 27587.87 31371.03 21895.50 30068.97 30480.15 30592.32 294
pmmvs485.43 24183.86 25290.16 20290.02 30982.97 13090.27 27792.67 26275.93 29780.73 28091.74 23371.05 21795.73 29278.85 23483.46 26091.78 301
TESTMET0.1,183.74 26682.85 26586.42 29989.96 31071.21 32289.55 28987.88 33777.41 28383.37 25187.31 31856.71 32593.65 32480.62 21292.85 15894.40 210
dp81.47 28780.23 28485.17 31189.92 31165.49 34486.74 32190.10 32176.30 29381.10 27687.12 32262.81 29395.92 28268.13 31179.88 30894.09 221
K. test v381.59 28480.15 28685.91 30589.89 31269.42 33492.57 23187.71 33985.56 14373.44 33289.71 28655.58 32795.52 29777.17 25169.76 33492.78 281
MDA-MVSNet-bldmvs78.85 30676.31 30986.46 29789.76 31373.88 29888.79 30390.42 31479.16 26359.18 34888.33 30560.20 31294.04 31862.00 33568.96 33891.48 307
GG-mvs-BLEND87.94 27089.73 31477.91 25187.80 31378.23 35580.58 28383.86 33359.88 31595.33 30471.20 29092.22 16590.60 323
gm-plane-assit89.60 31568.00 33777.28 28688.99 29397.57 17679.44 228
anonymousdsp87.84 17187.09 16990.12 20589.13 31680.54 19294.67 12895.55 16282.05 21583.82 23992.12 21871.47 21497.15 21587.15 12287.80 22492.67 282
N_pmnet68.89 31768.44 32070.23 33389.07 31728.79 36388.06 31119.50 36369.47 33771.86 33884.93 33161.24 30591.75 34054.70 34677.15 32290.15 325
pmmvs584.21 26082.84 26688.34 25988.95 31876.94 27292.41 23491.91 28475.63 29980.28 28791.18 25164.59 28795.57 29477.09 25383.47 25992.53 286
PMMVS85.71 23884.96 23587.95 26988.90 31977.09 27088.68 30590.06 32272.32 32786.47 16590.76 26572.15 20894.40 31381.78 19393.49 14292.36 292
JIA-IIPM81.04 29178.98 30087.25 28488.64 32073.48 30181.75 34489.61 33273.19 32082.05 26673.71 34566.07 28095.87 28571.18 29284.60 24792.41 290
Gipumacopyleft57.99 32254.91 32467.24 33588.51 32165.59 34352.21 35590.33 31843.58 35342.84 35351.18 35420.29 35985.07 35034.77 35370.45 33351.05 352
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EU-MVSNet81.32 28980.95 27782.42 32488.50 32263.67 34793.32 20191.33 29664.02 34480.57 28492.83 19561.21 30692.27 33676.34 25880.38 30491.32 309
our_test_381.93 27880.46 28186.33 30088.46 32373.48 30188.46 30891.11 30076.46 28976.69 31588.25 30666.89 26794.36 31468.75 30579.08 31591.14 315
ppachtmachnet_test81.84 27980.07 28787.15 28988.46 32374.43 29489.04 30092.16 27375.33 30177.75 30888.99 29366.20 27795.37 30365.12 32677.60 31991.65 303
lessismore_v086.04 30188.46 32368.78 33680.59 35173.01 33490.11 27755.39 32996.43 26275.06 27165.06 34292.90 276
test0.0.03 182.41 27581.69 27184.59 31488.23 32672.89 30690.24 27987.83 33883.41 18979.86 29589.78 28567.25 26188.99 34665.18 32583.42 26191.90 300
bset_n11_16_dypcd86.83 21185.55 22190.65 18188.22 32781.70 15988.88 30290.42 31485.26 15285.49 19190.69 26667.11 26497.02 22789.51 9384.39 24893.23 263
MDA-MVSNet_test_wron79.21 30577.19 30785.29 30988.22 32772.77 30885.87 32690.06 32274.34 31162.62 34787.56 31666.14 27891.99 33866.90 32073.01 32891.10 318
YYNet179.22 30477.20 30685.28 31088.20 32972.66 31085.87 32690.05 32474.33 31262.70 34687.61 31566.09 27992.03 33766.94 31772.97 32991.15 314
pmmvs683.42 26881.60 27288.87 24488.01 33077.87 25494.96 10794.24 22874.67 30978.80 30291.09 25660.17 31396.49 25677.06 25475.40 32692.23 296
testgi80.94 29480.20 28583.18 32087.96 33166.29 34191.28 26290.70 31383.70 18078.12 30592.84 19451.37 34190.82 34363.34 33182.46 27092.43 289
Anonymous2023120681.03 29279.77 29084.82 31387.85 33270.26 33091.42 26192.08 27573.67 31677.75 30889.25 29162.43 29693.08 33061.50 33782.00 27791.12 316
OpenMVS_ROBcopyleft74.94 1979.51 30277.03 30886.93 29187.00 33376.23 28292.33 23890.74 31268.93 33874.52 32788.23 30749.58 34396.62 24457.64 34484.29 24987.94 341
LF4IMVS80.37 29679.07 29984.27 31886.64 33469.87 33389.39 29491.05 30376.38 29174.97 32590.00 28047.85 34794.25 31774.55 27680.82 29688.69 337
MIMVSNet179.38 30377.28 30585.69 30686.35 33573.67 30091.61 25992.75 26078.11 28172.64 33588.12 30848.16 34591.97 33960.32 33977.49 32091.43 308
KD-MVS_2432*160078.50 30776.02 31285.93 30386.22 33674.47 29284.80 33292.33 26779.29 26076.98 31385.92 32753.81 33793.97 31967.39 31457.42 34889.36 328
miper_refine_blended78.50 30776.02 31285.93 30386.22 33674.47 29284.80 33292.33 26779.29 26076.98 31385.92 32753.81 33793.97 31967.39 31457.42 34889.36 328
CL-MVSNet_2432*160081.74 28180.53 27985.36 30885.96 33872.45 31490.25 27893.07 25381.24 24079.85 29687.29 31970.93 22092.52 33466.95 31669.23 33691.11 317
test20.0379.95 29979.08 29882.55 32385.79 33967.74 33991.09 26791.08 30181.23 24174.48 32889.96 28261.63 30090.15 34460.08 34076.38 32489.76 326
DIV-MVS_2432*160080.20 29779.24 29583.07 32185.64 34065.29 34591.01 26893.93 23778.71 27276.32 31786.40 32459.20 31992.93 33272.59 28569.35 33591.00 319
Patchmatch-RL test81.67 28279.96 28886.81 29685.42 34171.23 32182.17 34387.50 34178.47 27477.19 31282.50 33970.81 22293.48 32582.66 17672.89 33095.71 159
UnsupCasMVSNet_eth80.07 29878.27 30285.46 30785.24 34272.63 31188.45 30994.87 20682.99 19971.64 33988.07 30956.34 32691.75 34073.48 28263.36 34592.01 299
pmmvs-eth3d80.97 29378.72 30187.74 27184.99 34379.97 20890.11 28491.65 28875.36 30073.51 33186.03 32659.45 31793.96 32175.17 26972.21 33189.29 331
CMPMVSbinary59.16 2180.52 29579.20 29684.48 31583.98 34467.63 34089.95 28793.84 24264.79 34366.81 34491.14 25457.93 32395.17 30576.25 25988.10 21790.65 320
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UnsupCasMVSNet_bld76.23 31373.27 31685.09 31283.79 34572.92 30585.65 32993.47 24871.52 33068.84 34279.08 34349.77 34293.21 32866.81 32160.52 34789.13 335
PM-MVS78.11 30976.12 31184.09 31983.54 34670.08 33188.97 30185.27 34579.93 25474.73 32686.43 32334.70 35393.48 32579.43 22972.06 33288.72 336
DSMNet-mixed76.94 31176.29 31078.89 32783.10 34756.11 35487.78 31479.77 35260.65 34675.64 32288.71 29961.56 30188.34 34760.07 34189.29 19992.21 297
new_pmnet72.15 31570.13 31878.20 32882.95 34865.68 34283.91 33782.40 34962.94 34564.47 34579.82 34242.85 35186.26 34957.41 34574.44 32782.65 345
new-patchmatchnet76.41 31275.17 31480.13 32682.65 34959.61 34987.66 31791.08 30178.23 27969.85 34083.22 33654.76 33191.63 34264.14 33064.89 34389.16 333
ambc83.06 32279.99 35063.51 34877.47 34892.86 25674.34 32984.45 33228.74 35495.06 30973.06 28468.89 33990.61 321
TDRefinement79.81 30077.34 30487.22 28779.24 35175.48 28893.12 21392.03 27776.45 29075.01 32491.58 23949.19 34496.44 26170.22 29769.18 33789.75 327
pmmvs371.81 31668.71 31981.11 32575.86 35270.42 32986.74 32183.66 34758.95 34768.64 34380.89 34136.93 35289.52 34563.10 33363.59 34483.39 343
DeepMVS_CXcopyleft56.31 33874.23 35351.81 35656.67 36144.85 35248.54 35275.16 34427.87 35558.74 35840.92 35152.22 35058.39 351
FPMVS64.63 31962.55 32170.88 33270.80 35456.71 35184.42 33584.42 34651.78 35049.57 35081.61 34023.49 35681.48 35240.61 35276.25 32574.46 348
PMMVS259.60 32056.40 32369.21 33468.83 35546.58 35873.02 35277.48 35655.07 34949.21 35172.95 34717.43 36180.04 35349.32 34944.33 35280.99 347
wuyk23d21.27 32920.48 33223.63 34268.59 35636.41 36149.57 3566.85 3649.37 3587.89 3604.46 3624.03 36531.37 35917.47 35816.07 3583.12 356
E-PMN43.23 32542.29 32746.03 33965.58 35737.41 36073.51 35064.62 35733.99 35528.47 35847.87 35519.90 36067.91 35522.23 35624.45 35432.77 353
LCM-MVSNet66.00 31862.16 32277.51 33064.51 35858.29 35083.87 33890.90 30848.17 35154.69 34973.31 34616.83 36286.75 34865.47 32361.67 34687.48 342
EMVS42.07 32641.12 32844.92 34063.45 35935.56 36273.65 34963.48 35833.05 35626.88 35945.45 35621.27 35867.14 35619.80 35723.02 35632.06 354
MVEpermissive39.65 2343.39 32438.59 33057.77 33756.52 36048.77 35755.38 35458.64 36029.33 35728.96 35752.65 3534.68 36464.62 35728.11 35533.07 35359.93 350
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high58.88 32154.22 32572.86 33156.50 36156.67 35280.75 34686.00 34273.09 32237.39 35464.63 35122.17 35779.49 35443.51 35023.96 35582.43 346
PMVScopyleft47.18 2252.22 32348.46 32663.48 33645.72 36246.20 35973.41 35178.31 35441.03 35430.06 35665.68 3506.05 36383.43 35130.04 35465.86 34160.80 349
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt35.64 32739.24 32924.84 34114.87 36323.90 36462.71 35351.51 3626.58 35936.66 35562.08 35244.37 35030.34 36052.40 34722.00 35720.27 355
testmvs8.92 33011.52 3331.12 3441.06 3640.46 36686.02 3250.65 3650.62 3602.74 3619.52 3600.31 3670.45 3622.38 3590.39 3592.46 358
test1238.76 33111.22 3341.39 3430.85 3650.97 36585.76 3280.35 3660.54 3612.45 3628.14 3610.60 3660.48 3612.16 3600.17 3602.71 357
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
cdsmvs_eth3d_5k22.14 32829.52 3310.00 3450.00 3660.00 3670.00 35795.76 1470.00 3620.00 36394.29 14275.66 1610.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas6.64 3338.86 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36379.70 1170.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ab-mvs-re7.82 33210.43 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36393.88 1610.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
test_241102_TWO97.44 1290.31 2697.62 598.07 491.46 899.58 595.66 299.12 698.98 6
test_0728_THIRD90.75 1997.04 898.05 692.09 499.55 1295.64 499.13 399.13 1
GSMVS96.12 139
sam_mvs171.70 21096.12 139
sam_mvs70.60 224
MTGPAbinary96.97 49
test_post188.00 3129.81 35969.31 24595.53 29676.65 255
test_post10.29 35870.57 22895.91 284
patchmatchnet-post83.76 33471.53 21296.48 257
MTMP96.16 4360.64 359
test9_res91.91 5898.71 3098.07 63
agg_prior290.54 8498.68 3598.27 47
test_prior485.96 5794.11 166
test_prior294.12 16487.67 9792.63 6896.39 7286.62 3991.50 6898.67 37
旧先验293.36 20071.25 33294.37 2697.13 21886.74 127
新几何293.11 215
无先验93.28 20796.26 10773.95 31499.05 6080.56 21396.59 125
原ACMM292.94 222
testdata298.75 9978.30 239
segment_acmp87.16 35
testdata192.15 24487.94 87
plane_prior596.22 11298.12 13688.15 10789.99 18494.63 193
plane_prior494.86 122
plane_prior382.75 13490.26 3086.91 159
plane_prior295.85 6190.81 17
plane_prior82.73 13795.21 9289.66 4189.88 189
n20.00 367
nn0.00 367
door-mid85.49 343
test1196.57 92
door85.33 344
HQP5-MVS81.56 161
BP-MVS87.11 124
HQP4-MVS85.43 19797.96 15494.51 203
HQP3-MVS96.04 12689.77 191
HQP2-MVS73.83 187
MDTV_nov1_ep13_2view55.91 35587.62 31873.32 31984.59 21570.33 23174.65 27495.50 162
ACMMP++_ref87.47 225
ACMMP++88.01 220
Test By Simon80.02 112