This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
test_0728_THIRD90.75 1997.04 898.05 692.09 499.55 1295.64 499.13 399.13 1
DVP-MVS95.42 595.56 594.98 1998.49 1686.52 3796.91 2097.47 891.73 896.10 1396.69 5489.90 999.30 3994.70 998.04 6399.13 1
APDe-MVS95.46 495.64 494.91 2298.26 2886.29 4897.46 297.40 1889.03 5896.20 1298.10 289.39 1399.34 3395.88 199.03 999.10 3
IU-MVS98.77 486.00 5396.84 6381.26 23397.26 695.50 799.13 399.03 4
test_0728_SECOND95.01 1598.79 186.43 4097.09 1197.49 599.61 395.62 599.08 798.99 5
test_241102_TWO97.44 1390.31 2697.62 598.07 491.46 899.58 595.66 299.12 698.98 6
DPE-MVS95.57 395.67 395.25 798.36 2587.28 1595.56 7197.51 489.13 5597.14 797.91 991.64 599.62 194.61 1199.17 298.86 7
SED-MVS95.91 196.28 194.80 3398.77 485.99 5497.13 997.44 1390.31 2697.71 198.07 492.31 299.58 595.66 299.13 398.84 8
OPU-MVS96.21 198.00 4290.85 197.13 997.08 3792.59 198.94 8092.25 4298.99 1098.84 8
SteuartSystems-ACMMP95.20 795.32 894.85 2796.99 7286.33 4497.33 397.30 2791.38 1195.39 1897.46 1788.98 1699.40 2894.12 1598.89 1498.82 10
Skip Steuart: Steuart Systems R&D Blog.
MCST-MVS94.45 2094.20 2895.19 998.46 1887.50 1395.00 10297.12 4187.13 10492.51 6996.30 7089.24 1499.34 3393.46 2198.62 4498.73 11
testtj94.39 2594.18 2995.00 1698.24 3186.77 2896.16 4097.23 3387.28 10294.85 2497.04 3986.99 3699.52 2091.54 6398.33 5598.71 12
SMA-MVS95.20 795.07 995.59 398.14 3588.48 696.26 3797.28 2985.90 13097.67 398.10 288.41 1799.56 794.66 1099.19 198.71 12
CNVR-MVS95.40 695.37 695.50 598.11 3688.51 595.29 8296.96 5292.09 395.32 1997.08 3789.49 1299.33 3695.10 898.85 1598.66 14
ETH3 D test640093.64 4793.22 5194.92 2097.79 4886.84 2295.31 7797.26 3082.67 20093.81 3796.29 7187.29 3199.27 4289.87 8598.67 3798.65 15
NCCC94.81 1394.69 1595.17 1097.83 4787.46 1495.66 6696.93 5592.34 293.94 3496.58 6187.74 2499.44 2792.83 3298.40 5298.62 16
ACMMP_NAP94.74 1494.56 1695.28 698.02 4187.70 1095.68 6497.34 2088.28 7895.30 2097.67 1385.90 4899.54 1693.91 1798.95 1198.60 17
3Dnovator+87.14 492.42 7091.37 7795.55 495.63 11688.73 497.07 1396.77 7190.84 1684.02 22796.62 5975.95 15299.34 3387.77 10797.68 7198.59 18
region2R94.43 2294.27 2494.92 2098.65 786.67 3296.92 1997.23 3388.60 7093.58 4397.27 2485.22 5599.54 1692.21 4398.74 2998.56 19
ZNCC-MVS94.47 1894.28 2295.03 1498.52 1486.96 1796.85 2397.32 2588.24 7993.15 5197.04 3986.17 4399.62 192.40 3898.81 1898.52 20
ACMMPR94.43 2294.28 2294.91 2298.63 886.69 3096.94 1597.32 2588.63 6893.53 4697.26 2685.04 5899.54 1692.35 4098.78 2198.50 21
DeepPCF-MVS89.96 194.20 3594.77 1392.49 10896.52 8680.00 20194.00 17497.08 4490.05 3295.65 1797.29 2389.66 1098.97 7693.95 1698.71 3098.50 21
xxxxxxxxxxxxxcwj94.65 1594.70 1494.48 4797.85 4485.63 6795.21 8895.47 16489.44 4495.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 23
SF-MVS94.97 1094.90 1295.20 897.84 4687.76 896.65 2897.48 787.76 9395.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 23
SR-MVS94.23 3194.17 3094.43 5098.21 3385.78 6496.40 3396.90 5788.20 8294.33 2797.40 1884.75 6399.03 6393.35 2597.99 6498.48 23
TSAR-MVS + MP.94.85 1294.94 1094.58 4398.25 2986.33 4496.11 4596.62 8488.14 8496.10 1396.96 4389.09 1598.94 8094.48 1298.68 3598.48 23
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
zzz-MVS94.47 1894.30 2195.00 1698.42 2086.95 1895.06 10096.97 4991.07 1393.14 5297.56 1484.30 6699.56 793.43 2298.75 2798.47 27
MTAPA94.42 2494.22 2595.00 1698.42 2086.95 1894.36 15096.97 4991.07 1393.14 5297.56 1484.30 6699.56 793.43 2298.75 2798.47 27
XVS94.45 2094.32 2094.85 2798.54 1286.60 3596.93 1797.19 3690.66 2392.85 5597.16 3485.02 5999.49 2391.99 5098.56 4798.47 27
X-MVStestdata88.31 15786.13 19794.85 2798.54 1286.60 3596.93 1797.19 3690.66 2392.85 5523.41 34785.02 5999.49 2391.99 5098.56 4798.47 27
MSP-MVS95.67 296.02 294.64 4098.78 285.93 5797.09 1196.73 7390.27 2897.04 898.05 691.47 699.55 1295.62 599.08 798.45 31
MP-MVScopyleft94.25 2994.07 3494.77 3598.47 1786.31 4696.71 2696.98 4889.04 5791.98 7897.19 3185.43 5399.56 792.06 4998.79 1998.44 32
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS93.99 3893.78 4194.63 4198.50 1585.90 6296.87 2196.91 5688.70 6691.83 8497.17 3383.96 7199.55 1291.44 6698.64 4398.43 33
ETH3D-3000-0.194.61 1694.44 1895.12 1197.70 5187.71 995.98 5297.44 1386.67 11795.25 2197.31 2287.73 2599.24 4393.11 3098.76 2698.40 34
CANet93.54 4993.20 5394.55 4495.65 11585.73 6694.94 10596.69 7991.89 590.69 10195.88 8981.99 9399.54 1693.14 2997.95 6698.39 35
DeepC-MVS_fast89.43 294.04 3693.79 4094.80 3397.48 5886.78 2695.65 6896.89 5889.40 4792.81 5896.97 4285.37 5499.24 4390.87 7798.69 3398.38 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVS-pluss94.21 3394.00 3694.85 2798.17 3486.65 3394.82 11497.17 3986.26 12492.83 5797.87 1085.57 5199.56 794.37 1498.92 1398.34 37
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVScopyleft94.02 3793.88 3894.43 5098.39 2385.78 6497.25 597.07 4586.90 11292.62 6696.80 5184.85 6299.17 4992.43 3698.65 4298.33 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PGM-MVS93.96 3993.72 4394.68 3898.43 1986.22 4995.30 8097.78 187.45 10093.26 4797.33 2184.62 6499.51 2190.75 7998.57 4698.32 39
GST-MVS94.21 3393.97 3794.90 2498.41 2286.82 2396.54 3097.19 3688.24 7993.26 4796.83 4785.48 5299.59 491.43 6798.40 5298.30 40
HFP-MVS94.52 1794.40 1994.86 2598.61 986.81 2496.94 1597.34 2088.63 6893.65 3997.21 2986.10 4499.49 2392.35 4098.77 2498.30 40
#test#94.32 2894.14 3194.86 2598.61 986.81 2496.43 3197.34 2087.51 9993.65 3997.21 2986.10 4499.49 2391.68 6198.77 2498.30 40
baseline92.39 7192.29 6992.69 10094.46 16281.77 15394.14 15996.27 10289.22 5191.88 8096.00 8482.35 8397.99 14891.05 7195.27 11498.30 40
HPM-MVS++copyleft95.14 994.91 1195.83 298.25 2989.65 295.92 5596.96 5291.75 794.02 3396.83 4788.12 2199.55 1293.41 2498.94 1298.28 44
APD-MVScopyleft94.24 3094.07 3494.75 3698.06 3986.90 2195.88 5696.94 5485.68 13695.05 2397.18 3287.31 3099.07 5791.90 5798.61 4598.28 44
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
agg_prior290.54 8098.68 3598.27 46
canonicalmvs93.27 5692.75 6194.85 2795.70 11487.66 1196.33 3496.41 9590.00 3494.09 3194.60 12982.33 8498.62 10192.40 3892.86 15398.27 46
APD-MVS_3200maxsize93.78 4393.77 4293.80 6797.92 4384.19 9396.30 3596.87 6186.96 10893.92 3597.47 1683.88 7298.96 7992.71 3497.87 6898.26 48
CP-MVS94.34 2694.21 2794.74 3798.39 2386.64 3497.60 197.24 3188.53 7292.73 6297.23 2785.20 5699.32 3792.15 4698.83 1798.25 49
casdiffmvs92.51 6892.43 6792.74 9594.41 16581.98 14994.54 13296.23 10789.57 4291.96 7996.17 8082.58 8098.01 14690.95 7595.45 10998.23 50
IS-MVSNet91.43 8391.09 8492.46 10995.87 10981.38 16496.95 1493.69 23989.72 4089.50 11395.98 8578.57 12897.77 15883.02 16296.50 9598.22 51
LFMVS90.08 10989.13 11992.95 8796.71 7882.32 14496.08 4689.91 31786.79 11392.15 7696.81 4962.60 28698.34 12187.18 11693.90 13198.19 52
CDPH-MVS92.83 6292.30 6894.44 4897.79 4886.11 5194.06 16996.66 8180.09 24592.77 5996.63 5886.62 3899.04 6287.40 11298.66 4098.17 53
Regformer-294.33 2794.22 2594.68 3895.54 11986.75 2994.57 13096.70 7791.84 694.41 2596.56 6387.19 3399.13 5393.50 2097.65 7398.16 54
alignmvs93.08 6092.50 6694.81 3295.62 11787.61 1295.99 5096.07 11889.77 3894.12 3094.87 11780.56 10298.66 9792.42 3793.10 14898.15 55
Regformer-194.22 3294.13 3294.51 4695.54 11986.36 4394.57 13096.44 9291.69 994.32 2896.56 6387.05 3599.03 6393.35 2597.65 7398.15 55
VNet92.24 7291.91 7293.24 7496.59 8283.43 11194.84 11396.44 9289.19 5394.08 3295.90 8877.85 13798.17 13188.90 9493.38 14298.13 57
ETH3D cwj APD-0.1693.91 4093.53 4695.06 1396.76 7787.78 794.92 10797.21 3584.33 16593.89 3697.09 3687.20 3299.29 4191.90 5798.44 5198.12 58
PHI-MVS93.89 4293.65 4494.62 4296.84 7586.43 4096.69 2797.49 585.15 15193.56 4596.28 7285.60 5099.31 3892.45 3598.79 1998.12 58
test_prior393.60 4893.53 4693.82 6497.29 6584.49 8294.12 16096.88 5987.67 9692.63 6496.39 6886.62 3898.87 8391.50 6498.67 3798.11 60
test_prior93.82 6497.29 6584.49 8296.88 5998.87 8398.11 60
test9_res91.91 5498.71 3098.07 62
CSCG93.23 5893.05 5593.76 6898.04 4084.07 9596.22 3897.37 1984.15 16790.05 10895.66 9687.77 2399.15 5289.91 8498.27 5798.07 62
EPNet91.79 7691.02 8594.10 5890.10 30085.25 7296.03 4992.05 26792.83 187.39 14795.78 9279.39 11899.01 6988.13 10497.48 7598.05 64
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMMPcopyleft93.24 5792.88 6094.30 5498.09 3885.33 7196.86 2297.45 1188.33 7690.15 10797.03 4181.44 9699.51 2190.85 7895.74 10298.04 65
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SD-MVS94.96 1195.33 793.88 6297.25 6986.69 3096.19 3997.11 4390.42 2596.95 1097.27 2489.53 1196.91 22894.38 1398.85 1598.03 66
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_111021_HR93.45 5093.31 4993.84 6396.99 7284.84 7493.24 20697.24 3188.76 6491.60 8995.85 9086.07 4698.66 9791.91 5498.16 5998.03 66
Regformer-493.91 4093.81 3994.19 5795.36 12385.47 6994.68 12296.41 9591.60 1093.75 3896.71 5285.95 4799.10 5693.21 2896.65 9098.01 68
Anonymous20240521187.68 17286.13 19792.31 11896.66 7980.74 18094.87 11191.49 28480.47 24189.46 11495.44 9954.72 32398.23 12782.19 17789.89 18497.97 69
Regformer-393.68 4593.64 4593.81 6695.36 12384.61 7894.68 12295.83 13791.27 1293.60 4296.71 5285.75 4998.86 8692.87 3196.65 9097.96 70
train_agg93.44 5193.08 5494.52 4597.53 5486.49 3894.07 16796.78 6981.86 21992.77 5996.20 7687.63 2799.12 5492.14 4798.69 3397.94 71
mvs_anonymous89.37 13289.32 11489.51 22793.47 19874.22 28791.65 25394.83 20582.91 19585.45 18793.79 16181.23 9996.36 26086.47 12794.09 12997.94 71
VDD-MVS90.74 9489.92 10593.20 7596.27 9283.02 12295.73 6193.86 23488.42 7592.53 6796.84 4662.09 28998.64 9990.95 7592.62 15697.93 73
HPM-MVS_fast93.40 5393.22 5193.94 6198.36 2584.83 7597.15 896.80 6885.77 13392.47 7097.13 3582.38 8299.07 5790.51 8198.40 5297.92 74
agg_prior193.29 5592.97 5894.26 5597.38 6085.92 5993.92 17796.72 7581.96 21392.16 7496.23 7487.85 2298.97 7691.95 5398.55 4997.90 75
test1294.34 5397.13 7086.15 5096.29 10191.04 9985.08 5799.01 6998.13 6097.86 76
VDDNet89.56 12288.49 13492.76 9495.07 13482.09 14696.30 3593.19 24581.05 23791.88 8096.86 4561.16 29998.33 12388.43 10092.49 15997.84 77
TSAR-MVS + GP.93.66 4693.41 4894.41 5296.59 8286.78 2694.40 14293.93 23389.77 3894.21 2995.59 9887.35 2998.61 10292.72 3396.15 9997.83 78
Vis-MVSNet (Re-imp)89.59 12189.44 11190.03 20595.74 11175.85 27895.61 6990.80 30287.66 9887.83 13795.40 10276.79 14296.46 25478.37 23196.73 8797.80 79
3Dnovator86.66 591.73 7990.82 8994.44 4894.59 15686.37 4297.18 797.02 4689.20 5284.31 22296.66 5773.74 18599.17 4986.74 12297.96 6597.79 80
Vis-MVSNetpermissive91.75 7891.23 8093.29 7295.32 12683.78 10296.14 4295.98 12389.89 3590.45 10396.58 6175.09 16298.31 12584.75 14296.90 8497.78 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DELS-MVS93.43 5293.25 5093.97 5995.42 12285.04 7393.06 21397.13 4090.74 2091.84 8295.09 11186.32 4299.21 4691.22 6998.45 5097.65 82
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MG-MVS91.77 7791.70 7592.00 12797.08 7180.03 19993.60 18995.18 18487.85 9090.89 10096.47 6682.06 9198.36 11885.07 13697.04 8397.62 83
diffmvs91.37 8591.23 8091.77 14193.09 20880.27 18992.36 23295.52 16187.03 10791.40 9494.93 11480.08 10797.44 18192.13 4894.56 12397.61 84
PAPM_NR91.22 8890.78 9092.52 10797.60 5381.46 16194.37 14996.24 10686.39 12287.41 14494.80 12282.06 9198.48 10882.80 16895.37 11097.61 84
Effi-MVS+91.59 8291.11 8293.01 8494.35 16983.39 11394.60 12795.10 18887.10 10590.57 10293.10 18181.43 9798.07 14289.29 9094.48 12597.59 86
DeepC-MVS88.79 393.31 5492.99 5794.26 5596.07 10185.83 6394.89 10996.99 4789.02 5989.56 11197.37 2082.51 8199.38 2992.20 4498.30 5697.57 87
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPP-MVSNet91.70 8091.56 7692.13 12495.88 10780.50 18797.33 395.25 18086.15 12689.76 11095.60 9783.42 7498.32 12487.37 11493.25 14597.56 88
MVS_Test91.31 8691.11 8291.93 13294.37 16680.14 19293.46 19495.80 13986.46 12091.35 9593.77 16382.21 8798.09 14087.57 11094.95 11697.55 89
EIA-MVS91.95 7491.94 7191.98 12895.16 13280.01 20095.36 7496.73 7388.44 7389.34 11592.16 20983.82 7398.45 11489.35 8997.06 8297.48 90
PAPR90.02 11089.27 11792.29 12095.78 11080.95 17492.68 22196.22 10881.91 21686.66 15993.75 16582.23 8698.44 11579.40 22594.79 11797.48 90
UA-Net92.83 6292.54 6593.68 6996.10 9984.71 7795.66 6696.39 9791.92 493.22 4996.49 6583.16 7598.87 8384.47 14595.47 10797.45 92
EI-MVSNet-Vis-set93.01 6192.92 5993.29 7295.01 13583.51 11094.48 13495.77 14190.87 1592.52 6896.67 5684.50 6599.00 7291.99 5094.44 12797.36 93
CS-MVS92.60 6692.56 6492.73 9695.55 11882.35 14396.14 4296.85 6288.71 6591.44 9291.51 23684.13 6898.48 10891.27 6897.47 7697.34 94
test_yl90.69 9690.02 10392.71 9795.72 11282.41 14194.11 16295.12 18685.63 13791.49 9094.70 12374.75 16698.42 11686.13 12892.53 15797.31 95
DCV-MVSNet90.69 9690.02 10392.71 9795.72 11282.41 14194.11 16295.12 18685.63 13791.49 9094.70 12374.75 16698.42 11686.13 12892.53 15797.31 95
abl_693.18 5993.05 5593.57 7197.52 5684.27 9295.53 7296.67 8087.85 9093.20 5097.22 2880.35 10399.18 4891.91 5497.21 7997.26 97
MVSFormer91.68 8191.30 7892.80 9293.86 18583.88 10095.96 5395.90 13184.66 16191.76 8594.91 11577.92 13497.30 19689.64 8797.11 8097.24 98
jason90.80 9390.10 9892.90 8993.04 21183.53 10993.08 21194.15 22780.22 24291.41 9394.91 11576.87 14097.93 15390.28 8396.90 8497.24 98
jason: jason.
WTY-MVS89.60 12088.92 12491.67 14495.47 12181.15 17092.38 23194.78 20983.11 18989.06 12094.32 13678.67 12696.61 24181.57 19190.89 17397.24 98
HyFIR lowres test88.09 16386.81 17291.93 13296.00 10380.63 18290.01 27995.79 14073.42 30887.68 14192.10 21573.86 18297.96 15080.75 20391.70 16397.19 101
ET-MVSNet_ETH3D87.51 18485.91 20892.32 11793.70 19383.93 9892.33 23390.94 29884.16 16672.09 32592.52 19869.90 22895.85 28089.20 9188.36 21097.17 102
EI-MVSNet-UG-set92.74 6492.62 6393.12 7894.86 14683.20 11694.40 14295.74 14490.71 2292.05 7796.60 6084.00 7098.99 7391.55 6293.63 13597.17 102
lupinMVS90.92 9290.21 9593.03 8393.86 18583.88 10092.81 21993.86 23479.84 24891.76 8594.29 13877.92 13498.04 14490.48 8297.11 8097.17 102
CHOSEN 1792x268888.84 14487.69 15192.30 11996.14 9581.42 16390.01 27995.86 13574.52 30087.41 14493.94 15275.46 15998.36 11880.36 21095.53 10497.12 105
thisisatest053088.67 14887.61 15491.86 13594.87 14580.07 19594.63 12689.90 31884.00 17088.46 12693.78 16266.88 26098.46 11183.30 15892.65 15597.06 106
CPTT-MVS91.99 7391.80 7392.55 10598.24 3181.98 14996.76 2596.49 9181.89 21890.24 10596.44 6778.59 12798.61 10289.68 8697.85 6997.06 106
tttt051788.61 15087.78 15091.11 16194.96 13977.81 25095.35 7589.69 32185.09 15388.05 13394.59 13066.93 25898.48 10883.27 15992.13 16297.03 108
Anonymous2024052988.09 16386.59 18392.58 10496.53 8581.92 15195.99 5095.84 13674.11 30389.06 12095.21 10761.44 29498.81 9283.67 15687.47 22197.01 109
114514_t89.51 12388.50 13292.54 10698.11 3681.99 14895.16 9396.36 9970.19 32685.81 17395.25 10576.70 14498.63 10082.07 17996.86 8697.00 110
旧先验196.79 7681.81 15295.67 14896.81 4986.69 3797.66 7296.97 111
ab-mvs89.41 12988.35 13692.60 10295.15 13382.65 13692.20 23895.60 15583.97 17188.55 12493.70 16674.16 17798.21 13082.46 17389.37 19296.94 112
DPM-MVS92.58 6791.74 7495.08 1296.19 9489.31 392.66 22296.56 8983.44 18291.68 8895.04 11286.60 4198.99 7385.60 13297.92 6796.93 113
DP-MVS Recon91.95 7491.28 7993.96 6098.33 2785.92 5994.66 12596.66 8182.69 19990.03 10995.82 9182.30 8599.03 6384.57 14496.48 9696.91 114
QAPM89.51 12388.15 14393.59 7094.92 14284.58 7996.82 2496.70 7778.43 26583.41 24396.19 7973.18 19399.30 3977.11 24696.54 9396.89 115
OMC-MVS91.23 8790.62 9193.08 8096.27 9284.07 9593.52 19195.93 12786.95 10989.51 11296.13 8278.50 12998.35 12085.84 13092.90 15296.83 116
MSLP-MVS++93.72 4494.08 3392.65 10197.31 6383.43 11195.79 5997.33 2390.03 3393.58 4396.96 4384.87 6197.76 15992.19 4598.66 4096.76 117
MVS_111021_LR92.47 6992.29 6992.98 8595.99 10484.43 8993.08 21196.09 11688.20 8291.12 9895.72 9581.33 9897.76 15991.74 5997.37 7896.75 118
UGNet89.95 11388.95 12392.95 8794.51 15983.31 11495.70 6395.23 18189.37 4887.58 14293.94 15264.00 28198.78 9483.92 15196.31 9896.74 119
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_ETH3D87.53 18386.37 18891.00 16892.44 22478.96 22494.74 11995.61 15484.07 16985.36 19794.52 13259.78 30897.34 19582.93 16387.88 21896.71 120
LCM-MVSNet-Re88.30 15888.32 13988.27 25694.71 15172.41 30693.15 20790.98 29687.77 9279.25 29391.96 22178.35 13195.75 28583.04 16195.62 10396.65 121
无先验93.28 20296.26 10373.95 30499.05 5980.56 20796.59 122
Fast-Effi-MVS+89.41 12988.64 12991.71 14394.74 14880.81 17893.54 19095.10 18883.11 18986.82 15790.67 26079.74 11297.75 16280.51 20993.55 13696.57 123
sss88.93 14288.26 14290.94 17294.05 17580.78 17991.71 25095.38 17481.55 22788.63 12393.91 15675.04 16395.47 29782.47 17291.61 16496.57 123
ETV-MVS92.74 6492.66 6292.97 8695.20 13184.04 9795.07 9796.51 9090.73 2192.96 5491.19 24384.06 6998.34 12191.72 6096.54 9396.54 125
DP-MVS87.25 19485.36 22292.90 8997.65 5283.24 11594.81 11592.00 26974.99 29581.92 26295.00 11372.66 19899.05 5966.92 30992.33 16096.40 126
CANet_DTU90.26 10789.41 11292.81 9193.46 19983.01 12393.48 19294.47 21589.43 4687.76 14094.23 14270.54 22399.03 6384.97 13796.39 9796.38 127
TAMVS89.21 13488.29 14091.96 13093.71 19182.62 13793.30 20094.19 22582.22 20687.78 13993.94 15278.83 12296.95 22577.70 23992.98 15196.32 128
thisisatest051587.33 19085.99 20391.37 15293.49 19779.55 20890.63 26889.56 32480.17 24387.56 14390.86 25467.07 25798.28 12681.50 19293.02 15096.29 129
CDS-MVSNet89.45 12688.51 13192.29 12093.62 19483.61 10893.01 21494.68 21281.95 21487.82 13893.24 17578.69 12596.99 22380.34 21193.23 14696.28 130
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
1112_ss88.42 15387.33 16091.72 14294.92 14280.98 17292.97 21694.54 21378.16 27083.82 23293.88 15778.78 12497.91 15479.45 22189.41 19196.26 131
Test_1112_low_res87.65 17486.51 18591.08 16294.94 14179.28 21991.77 24794.30 22176.04 28683.51 24192.37 20277.86 13697.73 16378.69 23089.13 19896.22 132
GA-MVS86.61 21485.27 22390.66 17591.33 26178.71 22690.40 27193.81 23785.34 14685.12 20089.57 28161.25 29697.11 21480.99 19989.59 19096.15 133
原ACMM192.01 12597.34 6281.05 17196.81 6778.89 25790.45 10395.92 8782.65 7998.84 9180.68 20598.26 5896.14 134
TAPA-MVS84.62 688.16 16187.01 16891.62 14596.64 8080.65 18194.39 14496.21 11176.38 28186.19 16995.44 9979.75 11198.08 14162.75 32495.29 11296.13 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
GSMVS96.12 136
sam_mvs171.70 20696.12 136
SCA86.32 22385.18 22489.73 21992.15 22976.60 26991.12 26291.69 27883.53 18085.50 18488.81 28966.79 26196.48 25176.65 24990.35 17796.12 136
112190.42 10489.49 10993.20 7597.27 6784.46 8592.63 22395.51 16271.01 32491.20 9796.21 7582.92 7799.05 5980.56 20798.07 6296.10 139
PatchmatchNetpermissive85.85 23084.70 23589.29 23091.76 24475.54 28188.49 30091.30 28881.63 22585.05 20188.70 29371.71 20596.24 26474.61 26989.05 19996.08 140
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
新几何193.10 7997.30 6484.35 9195.56 15771.09 32391.26 9696.24 7382.87 7898.86 8679.19 22698.10 6196.07 141
PVSNet78.82 1885.55 23484.65 23688.23 25994.72 15071.93 30787.12 31392.75 25378.80 26084.95 20390.53 26264.43 28096.71 23574.74 26793.86 13296.06 142
test22296.55 8481.70 15492.22 23795.01 19168.36 32990.20 10696.14 8180.26 10697.80 7096.05 143
PVSNet_Blended_VisFu91.38 8490.91 8792.80 9296.39 8983.17 11794.87 11196.66 8183.29 18689.27 11694.46 13380.29 10599.17 4987.57 11095.37 11096.05 143
testdata90.49 18496.40 8877.89 24795.37 17672.51 31693.63 4196.69 5482.08 9097.65 16583.08 16097.39 7795.94 145
XVG-OURS-SEG-HR89.95 11389.45 11091.47 14994.00 18081.21 16991.87 24596.06 12085.78 13288.55 12495.73 9474.67 16997.27 20088.71 9789.64 18995.91 146
MAR-MVS90.30 10589.37 11393.07 8296.61 8184.48 8495.68 6495.67 14882.36 20487.85 13692.85 18776.63 14698.80 9380.01 21596.68 8995.91 146
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HY-MVS83.01 1289.03 13987.94 14892.29 12094.86 14682.77 12892.08 24394.49 21481.52 22886.93 15392.79 19378.32 13298.23 12779.93 21690.55 17495.88 148
BH-RMVSNet88.37 15587.48 15691.02 16695.28 12779.45 21192.89 21893.07 24785.45 14386.91 15494.84 12170.35 22497.76 15973.97 27294.59 12295.85 149
PVSNet_Blended90.73 9590.32 9491.98 12896.12 9681.25 16692.55 22796.83 6482.04 21189.10 11892.56 19781.04 10098.85 8986.72 12595.91 10095.84 150
Patchmatch-test81.37 28379.30 28887.58 27190.92 27874.16 28980.99 33687.68 33170.52 32576.63 30688.81 28971.21 21092.76 32560.01 33286.93 23095.83 151
XVG-OURS89.40 13188.70 12891.52 14794.06 17481.46 16191.27 25996.07 11886.14 12788.89 12295.77 9368.73 24797.26 20287.39 11389.96 18295.83 151
EPNet_dtu86.49 22185.94 20788.14 26190.24 29872.82 29994.11 16292.20 26386.66 11879.42 29292.36 20373.52 18695.81 28371.26 28293.66 13495.80 153
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm84.73 25084.02 24386.87 29190.33 29668.90 32689.06 29389.94 31680.85 23885.75 17489.86 27668.54 24995.97 27477.76 23884.05 24895.75 154
Patchmatch-RL test81.67 27779.96 28286.81 29285.42 33071.23 31282.17 33487.50 33278.47 26477.19 30482.50 32970.81 21693.48 31882.66 17072.89 32495.71 155
LS3D87.89 16786.32 19292.59 10396.07 10182.92 12695.23 8694.92 19975.66 28882.89 25095.98 8572.48 20199.21 4668.43 30195.23 11595.64 156
CNLPA89.07 13787.98 14692.34 11696.87 7484.78 7694.08 16693.24 24481.41 22984.46 21295.13 11075.57 15896.62 23877.21 24493.84 13395.61 157
MDTV_nov1_ep13_2view55.91 34587.62 31173.32 30984.59 20870.33 22574.65 26895.50 158
mvs-test189.45 12689.14 11890.38 19093.33 20177.63 25694.95 10494.36 21887.70 9487.10 15192.81 19173.45 18898.03 14585.57 13393.04 14995.48 159
DWT-MVSNet_test84.95 24783.68 24888.77 24191.43 25573.75 29191.74 24990.98 29680.66 24083.84 23187.36 31062.44 28797.11 21478.84 22985.81 23495.46 160
baseline188.10 16287.28 16290.57 17794.96 13980.07 19594.27 15391.29 28986.74 11487.41 14494.00 14976.77 14396.20 26580.77 20279.31 30995.44 161
EPMVS83.90 25982.70 26187.51 27290.23 29972.67 30188.62 29981.96 34181.37 23085.01 20288.34 29766.31 26894.45 30775.30 26287.12 22795.43 162
CR-MVSNet85.35 23883.76 24790.12 20090.58 29179.34 21585.24 32391.96 27378.27 26785.55 17987.87 30671.03 21395.61 28773.96 27389.36 19395.40 163
tpmrst85.35 23884.99 22786.43 29490.88 28167.88 32988.71 29791.43 28680.13 24486.08 17188.80 29173.05 19496.02 27282.48 17183.40 25895.40 163
RPMNet83.18 26680.87 27390.12 20090.58 29179.34 21585.24 32390.78 30371.44 32185.55 17982.97 32870.87 21595.61 28761.01 32889.36 19395.40 163
CostFormer85.77 23284.94 23088.26 25791.16 26772.58 30589.47 28791.04 29576.26 28486.45 16389.97 27470.74 21796.86 23182.35 17487.07 22995.34 166
IB-MVS80.51 1585.24 24283.26 25391.19 15692.13 23179.86 20491.75 24891.29 28983.28 18780.66 27588.49 29561.28 29598.46 11180.99 19979.46 30795.25 167
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
baseline286.50 21985.39 22089.84 21291.12 26876.70 26891.88 24488.58 32682.35 20579.95 28790.95 25373.42 19097.63 16880.27 21389.95 18395.19 168
ADS-MVSNet281.66 27879.71 28587.50 27391.35 25974.19 28883.33 33088.48 32772.90 31382.24 25785.77 31864.98 27793.20 32264.57 31883.74 25095.12 169
ADS-MVSNet81.56 28079.78 28386.90 28991.35 25971.82 30883.33 33089.16 32572.90 31382.24 25785.77 31864.98 27793.76 31564.57 31883.74 25095.12 169
AdaColmapbinary89.89 11689.07 12092.37 11597.41 5983.03 12194.42 14195.92 12882.81 19786.34 16694.65 12773.89 18199.02 6780.69 20495.51 10595.05 171
PLCcopyleft84.53 789.06 13888.03 14592.15 12397.27 6782.69 13594.29 15295.44 17079.71 25084.01 22894.18 14376.68 14598.75 9577.28 24393.41 14195.02 172
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Effi-MVS+-dtu88.65 14988.35 13689.54 22493.33 20176.39 27394.47 13794.36 21887.70 9485.43 19089.56 28273.45 18897.26 20285.57 13391.28 16694.97 173
test-LLR85.87 22985.41 21987.25 28090.95 27471.67 30989.55 28389.88 31983.41 18384.54 20987.95 30367.25 25495.11 30281.82 18593.37 14394.97 173
test-mter84.54 25383.64 25087.25 28090.95 27471.67 30989.55 28389.88 31979.17 25384.54 20987.95 30355.56 31995.11 30281.82 18593.37 14394.97 173
nrg03091.08 9190.39 9293.17 7793.07 20986.91 2096.41 3296.26 10388.30 7788.37 12894.85 12082.19 8897.64 16791.09 7082.95 25994.96 176
thres600view787.65 17486.67 17890.59 17696.08 10078.72 22594.88 11091.58 28087.06 10688.08 13192.30 20568.91 24498.10 13470.05 29491.10 16794.96 176
thres40087.62 17986.64 17990.57 17795.99 10478.64 22794.58 12891.98 27186.94 11088.09 12991.77 22569.18 24198.10 13470.13 29191.10 16794.96 176
PAPM86.68 21385.39 22090.53 18093.05 21079.33 21889.79 28294.77 21078.82 25981.95 26193.24 17576.81 14197.30 19666.94 30793.16 14794.95 179
MIMVSNet82.59 27080.53 27488.76 24291.51 25178.32 23686.57 31690.13 31179.32 25280.70 27488.69 29452.98 32893.07 32466.03 31288.86 20194.90 180
CVMVSNet84.69 25284.79 23484.37 30991.84 24164.92 33693.70 18691.47 28566.19 33286.16 17095.28 10367.18 25693.33 32080.89 20190.42 17694.88 181
PatchT82.68 26981.27 26886.89 29090.09 30170.94 31784.06 32790.15 31074.91 29685.63 17883.57 32569.37 23594.87 30665.19 31488.50 20694.84 182
OpenMVScopyleft83.78 1188.74 14787.29 16193.08 8092.70 22085.39 7096.57 2996.43 9478.74 26280.85 27296.07 8369.64 23399.01 6978.01 23796.65 9094.83 183
PCF-MVS84.11 1087.74 17186.08 20192.70 9994.02 17684.43 8989.27 28995.87 13473.62 30784.43 21494.33 13578.48 13098.86 8670.27 28794.45 12694.81 184
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
F-COLMAP87.95 16686.80 17391.40 15196.35 9180.88 17694.73 12095.45 16879.65 25182.04 26094.61 12871.13 21198.50 10776.24 25491.05 17194.80 185
FIs90.51 10390.35 9390.99 16993.99 18180.98 17295.73 6197.54 389.15 5486.72 15894.68 12581.83 9597.24 20485.18 13588.31 21194.76 186
FC-MVSNet-test90.27 10690.18 9790.53 18093.71 19179.85 20595.77 6097.59 289.31 4986.27 16794.67 12681.93 9497.01 22284.26 14788.09 21594.71 187
HQP_MVS90.60 10290.19 9691.82 13894.70 15282.73 13295.85 5796.22 10890.81 1786.91 15494.86 11874.23 17398.12 13288.15 10289.99 18094.63 188
plane_prior596.22 10898.12 13288.15 10289.99 18094.63 188
tpm284.08 25682.94 25787.48 27591.39 25771.27 31189.23 29190.37 30771.95 31984.64 20689.33 28367.30 25396.55 24875.17 26387.09 22894.63 188
RRT_test8_iter0586.90 20586.36 18988.52 25093.00 21473.27 29594.32 15195.96 12585.50 14284.26 22392.86 18660.76 30197.70 16488.32 10182.29 26794.60 191
DU-MVS89.34 13388.50 13291.85 13793.04 21183.72 10394.47 13796.59 8689.50 4386.46 16193.29 17377.25 13897.23 20684.92 13881.02 28794.59 192
NR-MVSNet88.58 15287.47 15791.93 13293.04 21184.16 9494.77 11896.25 10589.05 5680.04 28693.29 17379.02 12197.05 22081.71 19080.05 30194.59 192
PS-MVSNAJss89.97 11289.62 10791.02 16691.90 23980.85 17795.26 8595.98 12386.26 12486.21 16894.29 13879.70 11397.65 16588.87 9588.10 21394.57 194
VPNet88.20 16087.47 15790.39 18893.56 19679.46 21094.04 17095.54 16088.67 6786.96 15294.58 13169.33 23697.15 21084.05 15080.53 29694.56 195
RPSCF85.07 24484.27 24087.48 27592.91 21770.62 31991.69 25292.46 25876.20 28582.67 25395.22 10663.94 28297.29 19977.51 24285.80 23594.53 196
VPA-MVSNet89.62 11988.96 12291.60 14693.86 18582.89 12795.46 7397.33 2387.91 8788.43 12793.31 17174.17 17697.40 19087.32 11582.86 26494.52 197
HQP4-MVS85.43 19097.96 15094.51 198
TranMVSNet+NR-MVSNet88.84 14487.95 14791.49 14892.68 22183.01 12394.92 10796.31 10089.88 3685.53 18193.85 15976.63 14696.96 22481.91 18379.87 30494.50 199
HQP-MVS89.80 11789.28 11691.34 15394.17 17181.56 15594.39 14496.04 12188.81 6185.43 19093.97 15173.83 18397.96 15087.11 11989.77 18794.50 199
UniMVSNet_NR-MVSNet89.92 11589.29 11591.81 14093.39 20083.72 10394.43 14097.12 4189.80 3786.46 16193.32 17083.16 7597.23 20684.92 13881.02 28794.49 201
thres100view90087.63 17786.71 17690.38 19096.12 9678.55 22995.03 10191.58 28087.15 10388.06 13292.29 20668.91 24498.10 13470.13 29191.10 16794.48 202
tfpn200view987.58 18186.64 17990.41 18795.99 10478.64 22794.58 12891.98 27186.94 11088.09 12991.77 22569.18 24198.10 13470.13 29191.10 16794.48 202
WR-MVS88.38 15487.67 15390.52 18293.30 20380.18 19093.26 20395.96 12588.57 7185.47 18692.81 19176.12 14896.91 22881.24 19482.29 26794.47 204
TESTMET0.1,183.74 26082.85 25986.42 29589.96 30471.21 31389.55 28387.88 32877.41 27383.37 24487.31 31156.71 31693.65 31780.62 20692.85 15494.40 205
API-MVS90.66 9890.07 9992.45 11096.36 9084.57 8096.06 4895.22 18382.39 20289.13 11794.27 14180.32 10498.46 11180.16 21496.71 8894.33 206
PS-MVSNAJ91.18 8990.92 8691.96 13095.26 12982.60 13892.09 24295.70 14686.27 12391.84 8292.46 19979.70 11398.99 7389.08 9295.86 10194.29 207
xiu_mvs_v2_base91.13 9090.89 8891.86 13594.97 13882.42 13992.24 23695.64 15386.11 12991.74 8793.14 17979.67 11698.89 8289.06 9395.46 10894.28 208
xiu_mvs_v1_base_debu90.64 9990.05 10092.40 11193.97 18284.46 8593.32 19695.46 16585.17 14892.25 7194.03 14470.59 21998.57 10490.97 7294.67 11894.18 209
xiu_mvs_v1_base90.64 9990.05 10092.40 11193.97 18284.46 8593.32 19695.46 16585.17 14892.25 7194.03 14470.59 21998.57 10490.97 7294.67 11894.18 209
xiu_mvs_v1_base_debi90.64 9990.05 10092.40 11193.97 18284.46 8593.32 19695.46 16585.17 14892.25 7194.03 14470.59 21998.57 10490.97 7294.67 11894.18 209
Fast-Effi-MVS+-dtu87.44 18786.72 17589.63 22292.04 23477.68 25594.03 17193.94 23285.81 13182.42 25491.32 24070.33 22597.06 21980.33 21290.23 17894.14 212
131487.51 18486.57 18490.34 19392.42 22579.74 20792.63 22395.35 17878.35 26680.14 28391.62 23274.05 17897.15 21081.05 19593.53 13794.12 213
UniMVSNet (Re)89.80 11789.07 12092.01 12593.60 19584.52 8194.78 11797.47 889.26 5086.44 16492.32 20482.10 8997.39 19384.81 14180.84 29194.12 213
BH-untuned88.60 15188.13 14490.01 20795.24 13078.50 23293.29 20194.15 22784.75 15984.46 21293.40 16775.76 15397.40 19077.59 24094.52 12494.12 213
dp81.47 28280.23 27885.17 30489.92 30565.49 33586.74 31490.10 31276.30 28381.10 26987.12 31462.81 28595.92 27668.13 30479.88 30394.09 216
ACMM84.12 989.14 13588.48 13591.12 15894.65 15581.22 16895.31 7796.12 11585.31 14785.92 17294.34 13470.19 22798.06 14385.65 13188.86 20194.08 217
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2023121186.59 21685.13 22590.98 17196.52 8681.50 15796.14 4296.16 11273.78 30583.65 23792.15 21063.26 28497.37 19482.82 16781.74 27794.06 218
test_djsdf89.03 13988.64 12990.21 19590.74 28679.28 21995.96 5395.90 13184.66 16185.33 19892.94 18574.02 17997.30 19689.64 8788.53 20494.05 219
cascas86.43 22284.98 22890.80 17492.10 23380.92 17590.24 27395.91 13073.10 31183.57 24088.39 29665.15 27697.46 17884.90 14091.43 16594.03 220
XXY-MVS87.65 17486.85 17190.03 20592.14 23080.60 18493.76 18295.23 18182.94 19384.60 20794.02 14774.27 17295.49 29681.04 19683.68 25294.01 221
RRT_MVS88.86 14387.68 15292.39 11492.02 23686.09 5294.38 14894.94 19485.45 14387.14 15093.84 16065.88 27397.11 21488.73 9686.77 23193.98 222
testing_283.40 26481.02 27090.56 17985.06 33280.51 18691.37 25795.57 15682.92 19467.06 33385.54 32049.47 33397.24 20486.74 12285.44 23793.93 223
CLD-MVS89.47 12588.90 12591.18 15794.22 17082.07 14792.13 24096.09 11687.90 8885.37 19692.45 20074.38 17197.56 17187.15 11790.43 17593.93 223
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
jajsoiax88.24 15987.50 15590.48 18590.89 28080.14 19295.31 7795.65 15284.97 15584.24 22494.02 14765.31 27597.42 18388.56 9888.52 20593.89 225
IterMVS-LS88.36 15687.91 14989.70 22093.80 18878.29 23893.73 18395.08 19085.73 13484.75 20591.90 22379.88 10996.92 22783.83 15282.51 26593.89 225
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet89.10 13688.86 12789.80 21691.84 24178.30 23793.70 18695.01 19185.73 13487.15 14895.28 10379.87 11097.21 20883.81 15387.36 22493.88 227
mvs_tets88.06 16587.28 16290.38 19090.94 27679.88 20395.22 8795.66 15085.10 15284.21 22593.94 15263.53 28397.40 19088.50 9988.40 20993.87 228
MVSTER88.84 14488.29 14090.51 18392.95 21680.44 18893.73 18395.01 19184.66 16187.15 14893.12 18072.79 19797.21 20887.86 10687.36 22493.87 228
tpm cat181.96 27380.27 27787.01 28691.09 26971.02 31587.38 31291.53 28366.25 33180.17 28186.35 31668.22 25296.15 26869.16 29682.29 26793.86 230
v2v48287.84 16887.06 16690.17 19690.99 27279.23 22294.00 17495.13 18584.87 15685.53 18192.07 21874.45 17097.45 17984.71 14381.75 27693.85 231
thres20087.21 19886.24 19590.12 20095.36 12378.53 23093.26 20392.10 26586.42 12188.00 13491.11 24969.24 24098.00 14769.58 29591.04 17293.83 232
CP-MVSNet87.63 17787.26 16488.74 24593.12 20776.59 27095.29 8296.58 8788.43 7483.49 24292.98 18475.28 16095.83 28178.97 22781.15 28393.79 233
GBi-Net87.26 19285.98 20491.08 16294.01 17783.10 11895.14 9494.94 19483.57 17784.37 21591.64 22866.59 26596.34 26178.23 23485.36 23893.79 233
test187.26 19285.98 20491.08 16294.01 17783.10 11895.14 9494.94 19483.57 17784.37 21591.64 22866.59 26596.34 26178.23 23485.36 23893.79 233
FMVSNet185.85 23084.11 24291.08 16292.81 21883.10 11895.14 9494.94 19481.64 22482.68 25291.64 22859.01 31196.34 26175.37 26183.78 24993.79 233
LPG-MVS_test89.45 12688.90 12591.12 15894.47 16081.49 15995.30 8096.14 11386.73 11585.45 18795.16 10869.89 22998.10 13487.70 10889.23 19693.77 237
LGP-MVS_train91.12 15894.47 16081.49 15996.14 11386.73 11585.45 18795.16 10869.89 22998.10 13487.70 10889.23 19693.77 237
PS-CasMVS87.32 19186.88 16988.63 24892.99 21576.33 27595.33 7696.61 8588.22 8183.30 24793.07 18273.03 19595.79 28478.36 23281.00 28993.75 239
FMVSNet287.19 19985.82 21091.30 15494.01 17783.67 10594.79 11694.94 19483.57 17783.88 23092.05 21966.59 26596.51 24977.56 24185.01 24193.73 240
ACMP84.23 889.01 14188.35 13690.99 16994.73 14981.27 16595.07 9795.89 13386.48 11983.67 23694.30 13769.33 23697.99 14887.10 12188.55 20393.72 241
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
FMVSNet387.40 18986.11 19991.30 15493.79 19083.64 10694.20 15794.81 20783.89 17284.37 21591.87 22468.45 25096.56 24678.23 23485.36 23893.70 242
OPM-MVS90.12 10889.56 10891.82 13893.14 20683.90 9994.16 15895.74 14488.96 6087.86 13595.43 10172.48 20197.91 15488.10 10590.18 17993.65 243
PEN-MVS86.80 20886.27 19488.40 25292.32 22775.71 28095.18 9196.38 9887.97 8582.82 25193.15 17873.39 19195.92 27676.15 25579.03 31193.59 244
TR-MVS86.78 20985.76 21489.82 21394.37 16678.41 23492.47 22892.83 25081.11 23686.36 16592.40 20168.73 24797.48 17673.75 27589.85 18693.57 245
v14419287.19 19986.35 19089.74 21790.64 28978.24 23993.92 17795.43 17181.93 21585.51 18391.05 25174.21 17597.45 17982.86 16581.56 27893.53 246
v192192086.97 20486.06 20289.69 22190.53 29478.11 24293.80 18095.43 17181.90 21785.33 19891.05 25172.66 19897.41 18882.05 18081.80 27593.53 246
v119287.25 19486.33 19190.00 20890.76 28579.04 22393.80 18095.48 16382.57 20185.48 18591.18 24573.38 19297.42 18382.30 17582.06 27093.53 246
tpmvs83.35 26582.07 26287.20 28491.07 27071.00 31688.31 30391.70 27778.91 25680.49 27887.18 31369.30 23997.08 21768.12 30583.56 25493.51 249
v124086.78 20985.85 20989.56 22390.45 29577.79 25193.61 18895.37 17681.65 22385.43 19091.15 24771.50 20897.43 18281.47 19382.05 27293.47 250
eth_miper_zixun_eth86.50 21985.77 21388.68 24691.94 23875.81 27990.47 27094.89 20082.05 20984.05 22690.46 26375.96 15196.77 23282.76 16979.36 30893.46 251
v114487.61 18086.79 17490.06 20491.01 27179.34 21593.95 17695.42 17383.36 18585.66 17791.31 24174.98 16497.42 18383.37 15782.06 27093.42 252
cl-mvsnet286.78 20985.98 20489.18 23392.34 22677.62 25790.84 26594.13 22981.33 23183.97 22990.15 26973.96 18096.60 24384.19 14882.94 26093.33 253
v14887.04 20386.32 19289.21 23190.94 27677.26 26293.71 18594.43 21684.84 15784.36 21890.80 25776.04 15097.05 22082.12 17879.60 30693.31 254
AllTest83.42 26281.39 26789.52 22595.01 13577.79 25193.12 20890.89 30077.41 27376.12 30893.34 16854.08 32697.51 17468.31 30284.27 24693.26 255
TestCases89.52 22595.01 13577.79 25190.89 30077.41 27376.12 30893.34 16854.08 32697.51 17468.31 30284.27 24693.26 255
cl_fuxian87.14 20186.50 18689.04 23792.20 22877.26 26291.22 26194.70 21182.01 21284.34 21990.43 26478.81 12396.61 24183.70 15581.09 28493.25 257
cl-mvsnet186.53 21785.78 21188.75 24392.02 23676.45 27290.74 26694.30 22181.83 22183.34 24590.82 25675.75 15496.57 24481.73 18981.52 28093.24 258
cl-mvsnet_86.52 21885.78 21188.75 24392.03 23576.46 27190.74 26694.30 22181.83 22183.34 24590.78 25875.74 15696.57 24481.74 18881.54 27993.22 259
DTE-MVSNet86.11 22585.48 21887.98 26491.65 25074.92 28394.93 10695.75 14387.36 10182.26 25693.04 18372.85 19695.82 28274.04 27177.46 31693.20 260
SixPastTwentyTwo83.91 25882.90 25886.92 28890.99 27270.67 31893.48 19291.99 27085.54 14077.62 30292.11 21460.59 30296.87 23076.05 25677.75 31393.20 260
WR-MVS_H87.80 17087.37 15989.10 23593.23 20478.12 24195.61 6997.30 2787.90 8883.72 23492.01 22079.65 11796.01 27376.36 25180.54 29593.16 262
OurMVSNet-221017-085.35 23884.64 23787.49 27490.77 28472.59 30494.01 17394.40 21784.72 16079.62 29193.17 17761.91 29196.72 23381.99 18181.16 28193.16 262
gg-mvs-nofinetune81.77 27679.37 28788.99 23990.85 28277.73 25486.29 31779.63 34474.88 29883.19 24869.05 33860.34 30396.11 26975.46 26094.64 12193.11 264
MSDG84.86 24983.09 25590.14 19993.80 18880.05 19789.18 29293.09 24678.89 25778.19 29691.91 22265.86 27497.27 20068.47 30088.45 20793.11 264
v7n86.81 20785.76 21489.95 20990.72 28779.25 22195.07 9795.92 12884.45 16482.29 25590.86 25472.60 20097.53 17379.42 22480.52 29793.08 266
miper_ehance_all_eth87.22 19786.62 18289.02 23892.13 23177.40 26190.91 26494.81 20781.28 23284.32 22090.08 27179.26 11996.62 23883.81 15382.94 26093.04 267
miper_lstm_enhance85.27 24184.59 23887.31 27791.28 26274.63 28487.69 30994.09 23181.20 23581.36 26789.85 27774.97 16594.30 31081.03 19879.84 30593.01 268
ACMH80.38 1785.36 23783.68 24890.39 18894.45 16380.63 18294.73 12094.85 20382.09 20877.24 30392.65 19560.01 30697.58 16972.25 28084.87 24292.96 269
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
miper_enhance_ethall86.90 20586.18 19689.06 23691.66 24977.58 25890.22 27594.82 20679.16 25484.48 21189.10 28579.19 12096.66 23684.06 14982.94 26092.94 270
lessismore_v086.04 29788.46 31768.78 32780.59 34273.01 32390.11 27055.39 32096.43 25675.06 26565.06 33492.90 271
V4287.68 17286.86 17090.15 19890.58 29180.14 19294.24 15595.28 17983.66 17685.67 17691.33 23874.73 16897.41 18884.43 14681.83 27492.89 272
XVG-ACMP-BASELINE86.00 22684.84 23389.45 22891.20 26378.00 24391.70 25195.55 15885.05 15482.97 24992.25 20854.49 32497.48 17682.93 16387.45 22392.89 272
v887.50 18686.71 17689.89 21091.37 25879.40 21294.50 13395.38 17484.81 15883.60 23991.33 23876.05 14997.42 18382.84 16680.51 29892.84 274
pm-mvs186.61 21485.54 21689.82 21391.44 25280.18 19095.28 8494.85 20383.84 17381.66 26392.62 19672.45 20396.48 25179.67 21978.06 31292.82 275
K. test v381.59 27980.15 28085.91 29989.89 30669.42 32592.57 22687.71 33085.56 13973.44 32189.71 27955.58 31895.52 29277.17 24569.76 32892.78 276
anonymousdsp87.84 16887.09 16590.12 20089.13 31080.54 18594.67 12495.55 15882.05 20983.82 23292.12 21271.47 20997.15 21087.15 11787.80 22092.67 277
IterMVS-SCA-FT85.45 23584.53 23988.18 26091.71 24676.87 26790.19 27692.65 25685.40 14581.44 26590.54 26166.79 26195.00 30581.04 19681.05 28592.66 278
v1087.25 19486.38 18789.85 21191.19 26479.50 20994.48 13495.45 16883.79 17483.62 23891.19 24375.13 16197.42 18381.94 18280.60 29392.63 279
ACMH+81.04 1485.05 24583.46 25289.82 21394.66 15479.37 21394.44 13994.12 23082.19 20778.04 29892.82 19058.23 31397.54 17273.77 27482.90 26392.54 280
pmmvs584.21 25582.84 26088.34 25588.95 31276.94 26692.41 22991.91 27575.63 28980.28 28091.18 24564.59 27995.57 28977.09 24783.47 25592.53 281
IterMVS84.88 24883.98 24587.60 27091.44 25276.03 27790.18 27792.41 25983.24 18881.06 27190.42 26566.60 26494.28 31179.46 22080.98 29092.48 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS87.44 18786.10 20091.44 15092.61 22283.62 10792.63 22395.66 15067.26 33081.47 26492.15 21077.95 13398.22 12979.71 21895.48 10692.47 283
testgi80.94 28980.20 27983.18 31387.96 32466.29 33291.28 25890.70 30583.70 17578.12 29792.84 18851.37 33090.82 33463.34 32182.46 26692.43 284
JIA-IIPM81.04 28678.98 29387.25 28088.64 31473.48 29381.75 33589.61 32373.19 31082.05 25973.71 33566.07 27295.87 27971.18 28584.60 24492.41 285
BH-w/o87.57 18287.05 16789.12 23494.90 14477.90 24692.41 22993.51 24182.89 19683.70 23591.34 23775.75 15497.07 21875.49 25993.49 13892.39 286
PMMVS85.71 23384.96 22987.95 26588.90 31377.09 26488.68 29890.06 31372.32 31786.47 16090.76 25972.15 20494.40 30881.78 18793.49 13892.36 287
PVSNet_BlendedMVS89.98 11189.70 10690.82 17396.12 9681.25 16693.92 17796.83 6483.49 18189.10 11892.26 20781.04 10098.85 8986.72 12587.86 21992.35 288
Patchmtry82.71 26880.93 27288.06 26390.05 30276.37 27484.74 32591.96 27372.28 31881.32 26887.87 30671.03 21395.50 29568.97 29780.15 30092.32 289
PatchMatch-RL86.77 21285.54 21690.47 18695.88 10782.71 13490.54 26992.31 26079.82 24984.32 22091.57 23568.77 24696.39 25773.16 27793.48 14092.32 289
pmmvs683.42 26281.60 26688.87 24088.01 32377.87 24894.96 10394.24 22474.67 29978.80 29491.09 25060.17 30596.49 25077.06 24875.40 32092.23 291
DSMNet-mixed76.94 30376.29 30378.89 31983.10 33756.11 34487.78 30779.77 34360.65 33675.64 31188.71 29261.56 29388.34 33860.07 33189.29 19592.21 292
CHOSEN 280x42085.15 24383.99 24488.65 24792.47 22378.40 23579.68 33892.76 25274.90 29781.41 26689.59 28069.85 23195.51 29379.92 21795.29 11292.03 293
UnsupCasMVSNet_eth80.07 29278.27 29585.46 30185.24 33172.63 30388.45 30294.87 20282.99 19271.64 32888.07 30256.34 31791.75 33173.48 27663.36 33792.01 294
test0.0.03 182.41 27181.69 26584.59 30788.23 32072.89 29890.24 27387.83 32983.41 18379.86 28889.78 27867.25 25488.99 33765.18 31583.42 25791.90 295
pmmvs485.43 23683.86 24690.16 19790.02 30382.97 12590.27 27292.67 25575.93 28780.73 27391.74 22771.05 21295.73 28678.85 22883.46 25691.78 296
LTVRE_ROB82.13 1386.26 22484.90 23190.34 19394.44 16481.50 15792.31 23594.89 20083.03 19179.63 29092.67 19469.69 23297.79 15771.20 28386.26 23291.72 297
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ppachtmachnet_test81.84 27580.07 28187.15 28588.46 31774.43 28689.04 29492.16 26475.33 29177.75 30088.99 28666.20 26995.37 29865.12 31677.60 31491.65 298
COLMAP_ROBcopyleft80.39 1683.96 25782.04 26389.74 21795.28 12779.75 20694.25 15492.28 26175.17 29378.02 29993.77 16358.60 31297.84 15665.06 31785.92 23391.63 299
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet581.52 28179.60 28687.27 27891.17 26577.95 24491.49 25592.26 26276.87 27876.16 30787.91 30551.67 32992.34 32667.74 30681.16 28191.52 300
ITE_SJBPF88.24 25891.88 24077.05 26592.92 24885.54 14080.13 28493.30 17257.29 31596.20 26572.46 27984.71 24391.49 301
MDA-MVSNet-bldmvs78.85 30076.31 30286.46 29389.76 30773.88 29088.79 29690.42 30679.16 25459.18 33888.33 29860.20 30494.04 31362.00 32568.96 33091.48 302
MIMVSNet179.38 29777.28 29885.69 30086.35 32873.67 29291.61 25492.75 25378.11 27172.64 32488.12 30148.16 33591.97 33060.32 32977.49 31591.43 303
EU-MVSNet81.32 28480.95 27182.42 31688.50 31663.67 33793.32 19691.33 28764.02 33480.57 27792.83 18961.21 29892.27 32776.34 25280.38 29991.32 304
Baseline_NR-MVSNet87.07 20286.63 18188.40 25291.44 25277.87 24894.23 15692.57 25784.12 16885.74 17592.08 21677.25 13896.04 27082.29 17679.94 30291.30 305
D2MVS85.90 22885.09 22688.35 25490.79 28377.42 26091.83 24695.70 14680.77 23980.08 28590.02 27266.74 26396.37 25881.88 18487.97 21791.26 306
MVS_030483.46 26181.92 26488.10 26290.63 29077.49 25993.26 20393.75 23880.04 24680.44 27987.24 31247.94 33695.55 29075.79 25788.16 21291.26 306
TransMVSNet (Re)84.43 25483.06 25688.54 24991.72 24578.44 23395.18 9192.82 25182.73 19879.67 28992.12 21273.49 18795.96 27571.10 28668.73 33291.21 308
YYNet179.22 29877.20 29985.28 30388.20 32272.66 30285.87 31990.05 31574.33 30262.70 33687.61 30866.09 27192.03 32866.94 30772.97 32391.15 309
our_test_381.93 27480.46 27586.33 29688.46 31773.48 29388.46 30191.11 29176.46 27976.69 30588.25 29966.89 25994.36 30968.75 29879.08 31091.14 310
Anonymous2023120681.03 28779.77 28484.82 30687.85 32570.26 32191.42 25692.08 26673.67 30677.75 30089.25 28462.43 28893.08 32361.50 32782.00 27391.12 311
MDA-MVSNet_test_wron79.21 29977.19 30085.29 30288.22 32172.77 30085.87 31990.06 31374.34 30162.62 33787.56 30966.14 27091.99 32966.90 31073.01 32291.10 312
CMPMVSbinary59.16 2180.52 29079.20 28984.48 30883.98 33467.63 33189.95 28193.84 23664.79 33366.81 33491.14 24857.93 31495.17 30076.25 25388.10 21390.65 313
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ambc83.06 31479.99 34063.51 33877.47 33992.86 24974.34 31884.45 32228.74 34495.06 30473.06 27868.89 33190.61 314
USDC82.76 26781.26 26987.26 27991.17 26574.55 28589.27 28993.39 24378.26 26875.30 31292.08 21654.43 32596.63 23771.64 28185.79 23690.61 314
GG-mvs-BLEND87.94 26689.73 30877.91 24587.80 30678.23 34680.58 27683.86 32359.88 30795.33 29971.20 28392.22 16190.60 316
tfpnnormal84.72 25183.23 25489.20 23292.79 21980.05 19794.48 13495.81 13882.38 20381.08 27091.21 24269.01 24396.95 22561.69 32680.59 29490.58 317
N_pmnet68.89 30968.44 31170.23 32589.07 31128.79 35388.06 30419.50 35469.47 32771.86 32784.93 32161.24 29791.75 33154.70 33677.15 31790.15 318
test20.0379.95 29379.08 29182.55 31585.79 32967.74 33091.09 26391.08 29281.23 23474.48 31789.96 27561.63 29290.15 33560.08 33076.38 31889.76 319
TDRefinement79.81 29477.34 29787.22 28379.24 34175.48 28293.12 20892.03 26876.45 28075.01 31391.58 23349.19 33496.44 25570.22 29069.18 32989.75 320
EG-PatchMatch MVS82.37 27280.34 27688.46 25190.27 29779.35 21492.80 22094.33 22077.14 27773.26 32290.18 26847.47 33896.72 23370.25 28887.32 22689.30 321
pmmvs-eth3d80.97 28878.72 29487.74 26784.99 33379.97 20290.11 27891.65 27975.36 29073.51 32086.03 31759.45 30993.96 31475.17 26372.21 32589.29 322
MVP-Stereo85.97 22784.86 23289.32 22990.92 27882.19 14592.11 24194.19 22578.76 26178.77 29591.63 23168.38 25196.56 24675.01 26693.95 13089.20 323
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
new-patchmatchnet76.41 30475.17 30580.13 31882.65 33959.61 33987.66 31091.08 29278.23 26969.85 32983.22 32654.76 32291.63 33364.14 32064.89 33589.16 324
MS-PatchMatch85.05 24584.16 24187.73 26891.42 25678.51 23191.25 26093.53 24077.50 27280.15 28291.58 23361.99 29095.51 29375.69 25894.35 12889.16 324
UnsupCasMVSNet_bld76.23 30573.27 30785.09 30583.79 33572.92 29785.65 32293.47 24271.52 32068.84 33179.08 33349.77 33193.21 32166.81 31160.52 33989.13 326
PM-MVS78.11 30176.12 30484.09 31283.54 33670.08 32288.97 29585.27 33679.93 24774.73 31586.43 31534.70 34393.48 31879.43 22372.06 32688.72 327
LF4IMVS80.37 29179.07 29284.27 31186.64 32769.87 32489.39 28891.05 29476.38 28174.97 31490.00 27347.85 33794.25 31274.55 27080.82 29288.69 328
TinyColmap79.76 29577.69 29685.97 29891.71 24673.12 29689.55 28390.36 30875.03 29472.03 32690.19 26746.22 33996.19 26763.11 32281.03 28688.59 329
test_040281.30 28579.17 29087.67 26993.19 20578.17 24092.98 21591.71 27675.25 29276.02 31090.31 26659.23 31096.37 25850.22 33883.63 25388.47 330
PVSNet_073.20 2077.22 30274.83 30684.37 30990.70 28871.10 31483.09 33289.67 32272.81 31573.93 31983.13 32760.79 30093.70 31668.54 29950.84 34188.30 331
OpenMVS_ROBcopyleft74.94 1979.51 29677.03 30186.93 28787.00 32676.23 27692.33 23390.74 30468.93 32874.52 31688.23 30049.58 33296.62 23857.64 33484.29 24587.94 332
LCM-MVSNet66.00 31062.16 31377.51 32264.51 34858.29 34083.87 32990.90 29948.17 34154.69 33973.31 33616.83 35286.75 33965.47 31361.67 33887.48 333
pmmvs371.81 30868.71 31081.11 31775.86 34270.42 32086.74 31483.66 33858.95 33768.64 33280.89 33136.93 34289.52 33663.10 32363.59 33683.39 334
MVS-HIRNet73.70 30672.20 30878.18 32191.81 24356.42 34382.94 33382.58 33955.24 33868.88 33066.48 33955.32 32195.13 30158.12 33388.42 20883.01 335
new_pmnet72.15 30770.13 30978.20 32082.95 33865.68 33383.91 32882.40 34062.94 33564.47 33579.82 33242.85 34186.26 34057.41 33574.44 32182.65 336
ANet_high58.88 31354.22 31672.86 32356.50 35156.67 34280.75 33786.00 33373.09 31237.39 34464.63 34122.17 34779.49 34543.51 34023.96 34582.43 337
PMMVS259.60 31256.40 31469.21 32668.83 34546.58 34873.02 34377.48 34755.07 33949.21 34172.95 33717.43 35180.04 34449.32 33944.33 34280.99 338
FPMVS64.63 31162.55 31270.88 32470.80 34456.71 34184.42 32684.42 33751.78 34049.57 34081.61 33023.49 34681.48 34340.61 34276.25 31974.46 339
PMVScopyleft47.18 2252.22 31548.46 31763.48 32845.72 35246.20 34973.41 34278.31 34541.03 34430.06 34665.68 3406.05 35383.43 34230.04 34465.86 33360.80 340
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 31638.59 32157.77 32956.52 35048.77 34755.38 34558.64 35129.33 34728.96 34752.65 3434.68 35464.62 34828.11 34533.07 34359.93 341
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft56.31 33074.23 34351.81 34656.67 35244.85 34248.54 34275.16 33427.87 34558.74 34940.92 34152.22 34058.39 342
Gipumacopyleft57.99 31454.91 31567.24 32788.51 31565.59 33452.21 34690.33 30943.58 34342.84 34351.18 34420.29 34985.07 34134.77 34370.45 32751.05 343
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN43.23 31742.29 31846.03 33165.58 34737.41 35073.51 34164.62 34833.99 34528.47 34847.87 34519.90 35067.91 34622.23 34624.45 34432.77 344
EMVS42.07 31841.12 31944.92 33263.45 34935.56 35273.65 34063.48 34933.05 34626.88 34945.45 34621.27 34867.14 34719.80 34723.02 34632.06 345
tmp_tt35.64 31939.24 32024.84 33314.87 35323.90 35462.71 34451.51 3536.58 34936.66 34562.08 34244.37 34030.34 35152.40 33722.00 34720.27 346
wuyk23d21.27 32120.48 32323.63 33468.59 34636.41 35149.57 3476.85 3559.37 3487.89 3504.46 3524.03 35531.37 35017.47 34816.07 3483.12 347
test1238.76 32311.22 3251.39 3350.85 3550.97 35585.76 3210.35 3570.54 3512.45 3528.14 3510.60 3560.48 3522.16 3500.17 3502.71 348
testmvs8.92 32211.52 3241.12 3361.06 3540.46 35686.02 3180.65 3560.62 3502.74 3519.52 3500.31 3570.45 3532.38 3490.39 3492.46 349
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_part10.00 3370.00 3570.00 34897.45 110.00 3580.00 3540.00 3510.00 3510.00 350
cdsmvs_eth3d_5k22.14 32029.52 3220.00 3370.00 3560.00 3570.00 34895.76 1420.00 3520.00 35394.29 13875.66 1570.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas6.64 3258.86 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35379.70 1130.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re7.82 32410.43 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35393.88 1570.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_241102_ONE98.77 485.99 5497.44 1390.26 3097.71 197.96 892.31 299.38 29
9.1494.47 1797.79 4896.08 4697.44 1386.13 12895.10 2297.40 1888.34 1899.22 4593.25 2798.70 32
save fliter97.85 4485.63 6795.21 8896.82 6689.44 44
test072698.78 285.93 5797.19 697.47 890.27 2897.64 498.13 191.47 6
test_part298.55 1187.22 1696.40 11
sam_mvs70.60 218
MTGPAbinary96.97 49
test_post188.00 3059.81 34969.31 23895.53 29176.65 249
test_post10.29 34870.57 22295.91 278
patchmatchnet-post83.76 32471.53 20796.48 251
MTMP96.16 4060.64 350
gm-plane-assit89.60 30968.00 32877.28 27688.99 28697.57 17079.44 222
TEST997.53 5486.49 3894.07 16796.78 6981.61 22692.77 5996.20 7687.71 2699.12 54
test_897.49 5786.30 4794.02 17296.76 7281.86 21992.70 6396.20 7687.63 2799.02 67
agg_prior97.38 6085.92 5996.72 7592.16 7498.97 76
test_prior485.96 5694.11 162
test_prior294.12 16087.67 9692.63 6496.39 6886.62 3891.50 6498.67 37
旧先验293.36 19571.25 32294.37 2697.13 21386.74 122
新几何293.11 210
原ACMM292.94 217
testdata298.75 9578.30 233
segment_acmp87.16 34
testdata192.15 23987.94 86
plane_prior794.70 15282.74 131
plane_prior694.52 15882.75 12974.23 173
plane_prior494.86 118
plane_prior382.75 12990.26 3086.91 154
plane_prior295.85 5790.81 17
plane_prior194.59 156
plane_prior82.73 13295.21 8889.66 4189.88 185
n20.00 358
nn0.00 358
door-mid85.49 334
test1196.57 88
door85.33 335
HQP5-MVS81.56 155
HQP-NCC94.17 17194.39 14488.81 6185.43 190
ACMP_Plane94.17 17194.39 14488.81 6185.43 190
BP-MVS87.11 119
HQP3-MVS96.04 12189.77 187
HQP2-MVS73.83 183
NP-MVS94.37 16682.42 13993.98 150
MDTV_nov1_ep1383.56 25191.69 24869.93 32387.75 30891.54 28278.60 26384.86 20488.90 28869.54 23496.03 27170.25 28888.93 200
ACMMP++_ref87.47 221
ACMMP++88.01 216
Test By Simon80.02 108