This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
SED-MVS95.91 196.28 194.80 3398.77 485.99 5597.13 997.44 1290.31 2697.71 198.07 492.31 299.58 595.66 299.13 398.84 8
test_241102_ONE98.77 485.99 5597.44 1290.26 3097.71 197.96 892.31 299.38 29
SMA-MVScopyleft95.20 795.07 995.59 398.14 3688.48 696.26 4097.28 2885.90 13897.67 398.10 288.41 1799.56 794.66 1099.19 198.71 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test072698.78 285.93 5897.19 697.47 890.27 2897.64 498.13 191.47 6
test_241102_TWO97.44 1290.31 2697.62 598.07 491.46 899.58 595.66 299.12 698.98 6
IU-MVS98.77 486.00 5496.84 6281.26 24497.26 695.50 799.13 399.03 4
DPE-MVScopyleft95.57 395.67 395.25 798.36 2587.28 1595.56 7697.51 489.13 5897.14 797.91 991.64 599.62 194.61 1199.17 298.86 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS95.67 296.02 294.64 4098.78 285.93 5897.09 1196.73 7690.27 2897.04 898.05 691.47 699.55 1295.62 599.08 798.45 32
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD90.75 1997.04 898.05 692.09 499.55 1295.64 499.13 399.13 1
SD-MVS94.96 1195.33 793.88 6297.25 7386.69 3096.19 4397.11 4290.42 2596.95 1097.27 2789.53 1196.91 23994.38 1398.85 1598.03 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_part298.55 1187.22 1696.40 11
APDe-MVS95.46 495.64 494.91 2298.26 2886.29 4997.46 297.40 1789.03 6196.20 1298.10 289.39 1399.34 3395.88 199.03 999.10 3
MSP-MVS95.42 595.56 594.98 1998.49 1686.52 3896.91 2097.47 891.73 896.10 1396.69 5889.90 999.30 3994.70 998.04 6699.13 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TSAR-MVS + MP.94.85 1294.94 1094.58 4398.25 2986.33 4596.11 4996.62 8988.14 8896.10 1396.96 4689.09 1598.94 8494.48 1298.68 3598.48 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xxxxxxxxxxxxxcwj94.65 1594.70 1494.48 4797.85 4885.63 6895.21 9595.47 17189.44 4795.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
SF-MVS94.97 1094.90 1295.20 897.84 5087.76 896.65 2997.48 787.76 9795.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
DeepPCF-MVS89.96 194.20 3594.77 1392.49 11096.52 9080.00 21294.00 18297.08 4390.05 3295.65 1797.29 2689.66 1098.97 8093.95 1698.71 3098.50 22
SteuartSystems-ACMMP95.20 795.32 894.85 2796.99 7686.33 4597.33 397.30 2691.38 1195.39 1897.46 1788.98 1699.40 2894.12 1598.89 1498.82 10
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS95.40 695.37 695.50 598.11 3788.51 595.29 8996.96 5292.09 395.32 1997.08 4089.49 1299.33 3695.10 898.85 1598.66 14
ACMMP_NAP94.74 1494.56 1695.28 698.02 4387.70 1095.68 6997.34 1988.28 8195.30 2097.67 1385.90 4999.54 1693.91 1798.95 1198.60 17
ETH3D-3000-0.194.61 1694.44 1895.12 1197.70 5587.71 995.98 5697.44 1286.67 12495.25 2197.31 2587.73 2599.24 4493.11 3298.76 2698.40 35
9.1494.47 1797.79 5296.08 5097.44 1286.13 13695.10 2297.40 2188.34 1899.22 4693.25 2998.70 32
APD-MVScopyleft94.24 3094.07 3494.75 3698.06 4186.90 2195.88 6096.94 5485.68 14495.05 2397.18 3587.31 3199.07 5891.90 6598.61 4598.28 45
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
testtj94.39 2594.18 2995.00 1698.24 3186.77 2896.16 4497.23 3287.28 10994.85 2497.04 4286.99 3799.52 2091.54 7298.33 5698.71 12
Regformer-294.33 2794.22 2594.68 3895.54 12486.75 2994.57 13896.70 8091.84 694.41 2596.56 6787.19 3499.13 5493.50 2097.65 8098.16 55
旧先验293.36 20571.25 33894.37 2697.13 22386.74 131
SR-MVS94.23 3194.17 3094.43 5098.21 3385.78 6596.40 3496.90 5788.20 8594.33 2797.40 2184.75 6499.03 6493.35 2697.99 6798.48 24
Regformer-194.22 3294.13 3294.51 4695.54 12486.36 4494.57 13896.44 9891.69 994.32 2896.56 6787.05 3699.03 6493.35 2697.65 8098.15 56
TSAR-MVS + GP.93.66 4893.41 5294.41 5296.59 8686.78 2694.40 15093.93 24189.77 4094.21 2995.59 10387.35 3098.61 10792.72 3796.15 10597.83 81
ZD-MVS98.15 3586.62 3597.07 4483.63 18794.19 3096.91 4887.57 2999.26 4391.99 5798.44 51
test117293.97 3994.07 3493.66 7198.11 3783.45 11596.26 4096.84 6288.33 7894.19 3097.43 1884.24 6999.01 7093.26 2897.98 6898.52 20
alignmvs93.08 6392.50 7094.81 3295.62 12387.61 1295.99 5496.07 12489.77 4094.12 3294.87 12380.56 10898.66 10292.42 4293.10 15598.15 56
canonicalmvs93.27 5892.75 6694.85 2795.70 12087.66 1196.33 3596.41 10190.00 3494.09 3394.60 13682.33 9098.62 10692.40 4392.86 16098.27 47
VNet92.24 7591.91 7793.24 7696.59 8683.43 11694.84 12196.44 9889.19 5694.08 3495.90 9277.85 14498.17 13588.90 10393.38 14998.13 58
HPM-MVS++copyleft95.14 994.91 1195.83 298.25 2989.65 295.92 5996.96 5291.75 794.02 3596.83 5188.12 2199.55 1293.41 2498.94 1298.28 45
NCCC94.81 1394.69 1595.17 1097.83 5187.46 1495.66 7196.93 5592.34 293.94 3696.58 6587.74 2499.44 2792.83 3498.40 5398.62 16
APD-MVS_3200maxsize93.78 4593.77 4493.80 6897.92 4584.19 9696.30 3696.87 6186.96 11593.92 3797.47 1683.88 7598.96 8392.71 3897.87 7398.26 49
ETH3D cwj APD-0.1693.91 4193.53 4995.06 1396.76 8187.78 794.92 11597.21 3484.33 17493.89 3897.09 3987.20 3399.29 4191.90 6598.44 5198.12 59
ETH3 D test640093.64 4993.22 5594.92 2097.79 5286.84 2295.31 8397.26 2982.67 21193.81 3996.29 7587.29 3299.27 4289.87 9398.67 3798.65 15
SR-MVS-dyc-post93.82 4493.82 4093.82 6497.92 4584.57 8196.28 3896.76 7287.46 10593.75 4097.43 1884.24 6999.01 7092.73 3597.80 7597.88 77
RE-MVS-def93.68 4697.92 4584.57 8196.28 3896.76 7287.46 10593.75 4097.43 1882.94 8292.73 3597.80 7597.88 77
Regformer-493.91 4193.81 4194.19 5795.36 12885.47 7094.68 13096.41 10191.60 1093.75 4096.71 5685.95 4899.10 5793.21 3096.65 9698.01 69
HFP-MVS94.52 1794.40 1994.86 2598.61 986.81 2496.94 1597.34 1988.63 7093.65 4397.21 3286.10 4599.49 2392.35 4598.77 2498.30 41
#test#94.32 2894.14 3194.86 2598.61 986.81 2496.43 3297.34 1987.51 10493.65 4397.21 3286.10 4599.49 2391.68 7098.77 2498.30 41
testdata90.49 19496.40 9277.89 25895.37 18372.51 33293.63 4596.69 5882.08 9697.65 17583.08 17097.39 8395.94 151
Regformer-393.68 4793.64 4893.81 6795.36 12884.61 7994.68 13095.83 14491.27 1293.60 4696.71 5685.75 5098.86 9192.87 3396.65 9697.96 71
region2R94.43 2294.27 2494.92 2098.65 786.67 3296.92 1997.23 3288.60 7293.58 4797.27 2785.22 5699.54 1692.21 4898.74 2998.56 19
MSLP-MVS++93.72 4694.08 3392.65 10397.31 6783.43 11695.79 6497.33 2290.03 3393.58 4796.96 4684.87 6297.76 16692.19 5098.66 4096.76 121
PHI-MVS93.89 4393.65 4794.62 4296.84 7986.43 4196.69 2897.49 585.15 16093.56 4996.28 7685.60 5199.31 3892.45 4098.79 1998.12 59
ACMMPR94.43 2294.28 2294.91 2298.63 886.69 3096.94 1597.32 2488.63 7093.53 5097.26 2985.04 5999.54 1692.35 4598.78 2198.50 22
GST-MVS94.21 3393.97 3894.90 2498.41 2286.82 2396.54 3197.19 3588.24 8293.26 5196.83 5185.48 5399.59 491.43 7698.40 5398.30 41
PGM-MVS93.96 4093.72 4594.68 3898.43 1986.22 5095.30 8697.78 187.45 10793.26 5197.33 2484.62 6599.51 2190.75 8798.57 4698.32 40
UA-Net92.83 6592.54 6993.68 7096.10 10384.71 7895.66 7196.39 10391.92 493.22 5396.49 6983.16 8098.87 8884.47 15595.47 11397.45 96
abl_693.18 6193.05 5993.57 7397.52 6084.27 9595.53 7796.67 8587.85 9493.20 5497.22 3180.35 10999.18 4991.91 6297.21 8597.26 100
ZNCC-MVS94.47 1894.28 2295.03 1498.52 1486.96 1796.85 2497.32 2488.24 8293.15 5597.04 4286.17 4499.62 192.40 4398.81 1898.52 20
zzz-MVS94.47 1894.30 2195.00 1698.42 2086.95 1895.06 10896.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
MTAPA94.42 2494.22 2595.00 1698.42 2086.95 1894.36 15896.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
hse-mvs390.80 9790.15 10392.75 9796.01 10782.66 14195.43 7995.53 16789.80 3793.08 5895.64 10175.77 16099.00 7592.07 5478.05 32296.60 126
hse-mvs289.88 12389.34 12191.51 15594.83 15581.12 17993.94 18593.91 24489.80 3793.08 5893.60 17675.77 16097.66 17392.07 5477.07 32995.74 161
ETV-MVS92.74 6792.66 6792.97 8895.20 13684.04 10095.07 10596.51 9690.73 2192.96 6091.19 25484.06 7198.34 12591.72 6996.54 9996.54 130
XVS94.45 2094.32 2094.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 6197.16 3785.02 6099.49 2391.99 5798.56 4798.47 28
X-MVStestdata88.31 16586.13 20794.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 6123.41 36485.02 6099.49 2391.99 5798.56 4798.47 28
MP-MVS-pluss94.21 3394.00 3794.85 2798.17 3486.65 3394.82 12297.17 3886.26 13292.83 6397.87 1085.57 5299.56 794.37 1498.92 1398.34 38
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DeepC-MVS_fast89.43 294.04 3693.79 4294.80 3397.48 6286.78 2695.65 7396.89 5889.40 5092.81 6496.97 4585.37 5599.24 4490.87 8598.69 3398.38 37
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TEST997.53 5886.49 3994.07 17596.78 6981.61 23792.77 6596.20 8087.71 2699.12 55
train_agg93.44 5393.08 5894.52 4597.53 5886.49 3994.07 17596.78 6981.86 23092.77 6596.20 8087.63 2799.12 5592.14 5298.69 3397.94 72
CDPH-MVS92.83 6592.30 7394.44 4897.79 5286.11 5294.06 17796.66 8680.09 25792.77 6596.63 6286.62 3999.04 6387.40 12198.66 4098.17 54
CP-MVS94.34 2694.21 2794.74 3798.39 2386.64 3497.60 197.24 3088.53 7492.73 6897.23 3085.20 5799.32 3792.15 5198.83 1798.25 50
test_897.49 6186.30 4894.02 18096.76 7281.86 23092.70 6996.20 8087.63 2799.02 68
test_prior393.60 5093.53 4993.82 6497.29 6984.49 8594.12 16896.88 5987.67 10092.63 7096.39 7286.62 3998.87 8891.50 7398.67 3798.11 61
test_prior294.12 16887.67 10092.63 7096.39 7286.62 3991.50 7398.67 37
HPM-MVScopyleft94.02 3793.88 3994.43 5098.39 2385.78 6597.25 597.07 4486.90 11992.62 7296.80 5584.85 6399.17 5092.43 4198.65 4298.33 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
VDD-MVS90.74 9989.92 11193.20 7796.27 9683.02 12795.73 6693.86 24588.42 7792.53 7396.84 5062.09 30298.64 10490.95 8392.62 16397.93 74
EI-MVSNet-Vis-set93.01 6492.92 6393.29 7495.01 14183.51 11494.48 14295.77 14890.87 1592.52 7496.67 6084.50 6699.00 7591.99 5794.44 13397.36 97
MCST-MVS94.45 2094.20 2895.19 998.46 1887.50 1395.00 11097.12 4087.13 11192.51 7596.30 7489.24 1499.34 3393.46 2198.62 4498.73 11
HPM-MVS_fast93.40 5593.22 5593.94 6198.36 2584.83 7697.15 896.80 6885.77 14192.47 7697.13 3882.38 8899.07 5890.51 8998.40 5397.92 75
DROMVSNet93.18 6193.44 5192.40 11394.99 14481.96 15696.87 2196.69 8289.72 4292.47 7695.44 10483.30 7998.15 13693.40 2598.10 6397.10 109
xiu_mvs_v1_base_debu90.64 10490.05 10692.40 11393.97 19384.46 8893.32 20695.46 17285.17 15792.25 7894.03 15270.59 23098.57 10990.97 8094.67 12494.18 219
xiu_mvs_v1_base90.64 10490.05 10692.40 11393.97 19384.46 8893.32 20695.46 17285.17 15792.25 7894.03 15270.59 23098.57 10990.97 8094.67 12494.18 219
xiu_mvs_v1_base_debi90.64 10490.05 10692.40 11393.97 19384.46 8893.32 20695.46 17285.17 15792.25 7894.03 15270.59 23098.57 10990.97 8094.67 12494.18 219
agg_prior193.29 5792.97 6294.26 5597.38 6485.92 6093.92 18696.72 7881.96 22492.16 8196.23 7887.85 2298.97 8091.95 6198.55 4997.90 76
agg_prior97.38 6485.92 6096.72 7892.16 8198.97 80
LFMVS90.08 11489.13 12792.95 8996.71 8282.32 14996.08 5089.91 33286.79 12092.15 8396.81 5362.60 29998.34 12587.18 12593.90 13798.19 53
CS-MVS92.55 7092.87 6591.58 15294.21 18080.54 19595.30 8696.68 8488.18 8792.09 8494.57 13984.06 7198.05 15092.56 3998.19 6096.15 138
EI-MVSNet-UG-set92.74 6792.62 6893.12 8094.86 15383.20 12194.40 15095.74 15190.71 2292.05 8596.60 6484.00 7398.99 7791.55 7193.63 14197.17 105
MP-MVScopyleft94.25 2994.07 3494.77 3598.47 1786.31 4796.71 2796.98 4889.04 6091.98 8697.19 3485.43 5499.56 792.06 5698.79 1998.44 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
casdiffmvs92.51 7192.43 7192.74 9894.41 17481.98 15494.54 14096.23 11389.57 4591.96 8796.17 8482.58 8698.01 15390.95 8395.45 11598.23 51
VDDNet89.56 12988.49 14292.76 9695.07 14082.09 15196.30 3693.19 25781.05 24991.88 8896.86 4961.16 31298.33 12788.43 10992.49 16697.84 80
baseline92.39 7492.29 7492.69 10294.46 17181.77 15994.14 16796.27 10889.22 5491.88 8896.00 8882.35 8997.99 15591.05 7995.27 12098.30 41
PS-MVSNAJ91.18 9390.92 9191.96 13495.26 13482.60 14492.09 25395.70 15386.27 13191.84 9092.46 21179.70 11998.99 7789.08 10195.86 10794.29 217
DELS-MVS93.43 5493.25 5493.97 5995.42 12785.04 7493.06 22397.13 3990.74 2091.84 9095.09 11786.32 4399.21 4791.22 7798.45 5097.65 86
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
mPP-MVS93.99 3893.78 4394.63 4198.50 1585.90 6396.87 2196.91 5688.70 6891.83 9297.17 3683.96 7499.55 1291.44 7598.64 4398.43 34
MVSFormer91.68 8591.30 8392.80 9493.86 19683.88 10395.96 5795.90 13884.66 17091.76 9394.91 12177.92 14197.30 20789.64 9597.11 8697.24 101
lupinMVS90.92 9690.21 10093.03 8593.86 19683.88 10392.81 23093.86 24579.84 26091.76 9394.29 14677.92 14198.04 15190.48 9097.11 8697.17 105
xiu_mvs_v2_base91.13 9490.89 9391.86 14094.97 14582.42 14592.24 24795.64 16086.11 13791.74 9593.14 19079.67 12298.89 8789.06 10295.46 11494.28 218
DPM-MVS92.58 6991.74 7995.08 1296.19 9889.31 392.66 23396.56 9583.44 19391.68 9695.04 11886.60 4298.99 7785.60 14297.92 7296.93 117
MVS_111021_HR93.45 5293.31 5393.84 6396.99 7684.84 7593.24 21697.24 3088.76 6791.60 9795.85 9486.07 4798.66 10291.91 6298.16 6198.03 67
test_yl90.69 10190.02 10992.71 9995.72 11882.41 14794.11 17095.12 19385.63 14591.49 9894.70 13074.75 17598.42 12086.13 13792.53 16497.31 98
DCV-MVSNet90.69 10190.02 10992.71 9995.72 11882.41 14794.11 17095.12 19385.63 14591.49 9894.70 13074.75 17598.42 12086.13 13792.53 16497.31 98
jason90.80 9790.10 10492.90 9193.04 22283.53 11393.08 22194.15 23580.22 25491.41 10094.91 12176.87 14797.93 16090.28 9196.90 9097.24 101
jason: jason.
diffmvs91.37 8991.23 8591.77 14693.09 21980.27 20092.36 24395.52 16887.03 11491.40 10194.93 12080.08 11397.44 19292.13 5394.56 12997.61 88
MVS_Test91.31 9091.11 8791.93 13694.37 17580.14 20393.46 20495.80 14686.46 12791.35 10293.77 17182.21 9398.09 14587.57 11994.95 12297.55 93
新几何193.10 8197.30 6884.35 9495.56 16371.09 33991.26 10396.24 7782.87 8498.86 9179.19 23798.10 6396.07 147
112190.42 10989.49 11593.20 7797.27 7184.46 8892.63 23495.51 16971.01 34091.20 10496.21 7982.92 8399.05 6080.56 21898.07 6596.10 145
MVS_111021_LR92.47 7292.29 7492.98 8795.99 10984.43 9293.08 22196.09 12288.20 8591.12 10595.72 9981.33 10497.76 16691.74 6897.37 8496.75 122
test1294.34 5397.13 7486.15 5196.29 10791.04 10685.08 5899.01 7098.13 6297.86 79
CS-MVS-test92.16 7692.35 7291.57 15394.15 18481.18 17795.09 10496.62 8987.64 10390.92 10793.10 19283.86 7698.06 14891.82 6797.98 6895.49 167
MG-MVS91.77 8191.70 8092.00 13197.08 7580.03 21093.60 19995.18 19187.85 9490.89 10896.47 7082.06 9798.36 12285.07 14697.04 8997.62 87
CANet93.54 5193.20 5794.55 4495.65 12185.73 6794.94 11396.69 8291.89 590.69 10995.88 9381.99 9999.54 1693.14 3197.95 7198.39 36
Effi-MVS+91.59 8691.11 8793.01 8694.35 17883.39 11894.60 13595.10 19587.10 11290.57 11093.10 19281.43 10398.07 14789.29 9994.48 13197.59 90
原ACMM192.01 12997.34 6681.05 18096.81 6778.89 27190.45 11195.92 9182.65 8598.84 9680.68 21698.26 5996.14 140
Vis-MVSNetpermissive91.75 8291.23 8593.29 7495.32 13183.78 10696.14 4695.98 13089.89 3590.45 11196.58 6575.09 17198.31 12984.75 15296.90 9097.78 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CPTT-MVS91.99 7791.80 7892.55 10798.24 3181.98 15496.76 2696.49 9781.89 22990.24 11396.44 7178.59 13398.61 10789.68 9497.85 7497.06 110
test22296.55 8881.70 16092.22 24895.01 19868.36 34590.20 11496.14 8580.26 11297.80 7596.05 149
ACMMPcopyleft93.24 5992.88 6494.30 5498.09 4085.33 7296.86 2397.45 1188.33 7890.15 11597.03 4481.44 10299.51 2190.85 8695.74 10898.04 66
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG93.23 6093.05 5993.76 6998.04 4284.07 9896.22 4297.37 1884.15 17690.05 11695.66 10087.77 2399.15 5389.91 9298.27 5898.07 63
DP-MVS Recon91.95 7891.28 8493.96 6098.33 2785.92 6094.66 13396.66 8682.69 21090.03 11795.82 9582.30 9199.03 6484.57 15496.48 10296.91 118
EPP-MVSNet91.70 8491.56 8192.13 12795.88 11380.50 19797.33 395.25 18786.15 13489.76 11895.60 10283.42 7898.32 12887.37 12393.25 15297.56 92
DeepC-MVS88.79 393.31 5692.99 6194.26 5596.07 10585.83 6494.89 11796.99 4789.02 6289.56 11997.37 2382.51 8799.38 2992.20 4998.30 5797.57 91
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OMC-MVS91.23 9190.62 9693.08 8296.27 9684.07 9893.52 20195.93 13486.95 11689.51 12096.13 8678.50 13598.35 12485.84 13992.90 15996.83 120
IS-MVSNet91.43 8791.09 8992.46 11195.87 11581.38 17196.95 1493.69 25089.72 4289.50 12195.98 8978.57 13497.77 16583.02 17296.50 10198.22 52
Anonymous20240521187.68 18186.13 20792.31 12196.66 8380.74 19094.87 11991.49 29980.47 25389.46 12295.44 10454.72 33798.23 13182.19 18789.89 19197.97 70
EIA-MVS91.95 7891.94 7691.98 13295.16 13780.01 21195.36 8096.73 7688.44 7589.34 12392.16 22183.82 7798.45 11889.35 9897.06 8897.48 94
PVSNet_Blended_VisFu91.38 8890.91 9292.80 9496.39 9383.17 12294.87 11996.66 8683.29 19789.27 12494.46 14180.29 11199.17 5087.57 11995.37 11696.05 149
API-MVS90.66 10390.07 10592.45 11296.36 9484.57 8196.06 5295.22 19082.39 21389.13 12594.27 14980.32 11098.46 11580.16 22596.71 9494.33 216
PVSNet_BlendedMVS89.98 11789.70 11290.82 18396.12 10081.25 17393.92 18696.83 6483.49 19289.10 12692.26 21981.04 10698.85 9486.72 13387.86 22692.35 298
PVSNet_Blended90.73 10090.32 9991.98 13296.12 10081.25 17392.55 23896.83 6482.04 22289.10 12692.56 20981.04 10698.85 9486.72 13395.91 10695.84 156
Anonymous2024052988.09 17186.59 19292.58 10696.53 8981.92 15795.99 5495.84 14374.11 31989.06 12895.21 11361.44 30798.81 9783.67 16687.47 22897.01 113
WTY-MVS89.60 12788.92 13291.67 14995.47 12681.15 17892.38 24294.78 21683.11 20089.06 12894.32 14478.67 13296.61 25281.57 20190.89 18097.24 101
XVG-OURS89.40 13888.70 13691.52 15494.06 18581.46 16891.27 26996.07 12486.14 13588.89 13095.77 9768.73 25997.26 21387.39 12289.96 18995.83 157
sss88.93 15088.26 15090.94 18294.05 18680.78 18991.71 26195.38 18181.55 23888.63 13193.91 16475.04 17295.47 30782.47 18291.61 17196.57 128
XVG-OURS-SEG-HR89.95 11989.45 11691.47 15894.00 19181.21 17691.87 25696.06 12685.78 14088.55 13295.73 9874.67 17897.27 21188.71 10689.64 19695.91 152
ab-mvs89.41 13688.35 14492.60 10495.15 13982.65 14292.20 24995.60 16283.97 18088.55 13293.70 17574.16 18698.21 13482.46 18389.37 19996.94 116
thisisatest053088.67 15687.61 16391.86 14094.87 15280.07 20694.63 13489.90 33384.00 17988.46 13493.78 17066.88 27398.46 11583.30 16892.65 16297.06 110
VPA-MVSNet89.62 12688.96 13091.60 15193.86 19682.89 13295.46 7897.33 2287.91 9188.43 13593.31 18274.17 18597.40 20187.32 12482.86 27194.52 207
nrg03091.08 9590.39 9793.17 7993.07 22086.91 2096.41 3396.26 10988.30 8088.37 13694.85 12682.19 9497.64 17791.09 7882.95 26694.96 185
tfpn200view987.58 19086.64 18890.41 19795.99 10978.64 23894.58 13691.98 28686.94 11788.09 13791.77 23769.18 25398.10 13970.13 30491.10 17494.48 212
thres40087.62 18886.64 18890.57 18895.99 10978.64 23894.58 13691.98 28686.94 11788.09 13791.77 23769.18 25398.10 13970.13 30491.10 17494.96 185
thres600view787.65 18386.67 18790.59 18796.08 10478.72 23694.88 11891.58 29587.06 11388.08 13992.30 21768.91 25698.10 13970.05 30791.10 17494.96 185
thres100view90087.63 18686.71 18590.38 20096.12 10078.55 24095.03 10991.58 29587.15 11088.06 14092.29 21868.91 25698.10 13970.13 30491.10 17494.48 212
tttt051788.61 15887.78 15991.11 17194.96 14677.81 26195.35 8189.69 33685.09 16288.05 14194.59 13766.93 27198.48 11383.27 16992.13 16997.03 112
thres20087.21 20786.24 20590.12 21095.36 12878.53 24193.26 21392.10 28086.42 12988.00 14291.11 26069.24 25298.00 15469.58 30891.04 17993.83 241
OPM-MVS90.12 11389.56 11491.82 14393.14 21783.90 10294.16 16695.74 15188.96 6387.86 14395.43 10772.48 21097.91 16188.10 11490.18 18693.65 252
MAR-MVS90.30 11089.37 12093.07 8496.61 8584.48 8795.68 6995.67 15582.36 21587.85 14492.85 19976.63 15398.80 9880.01 22696.68 9595.91 152
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Vis-MVSNet (Re-imp)89.59 12889.44 11790.03 21495.74 11775.85 28995.61 7490.80 31787.66 10287.83 14595.40 10876.79 14996.46 26578.37 24296.73 9397.80 82
CDS-MVSNet89.45 13388.51 13992.29 12393.62 20583.61 11293.01 22494.68 21981.95 22587.82 14693.24 18678.69 13196.99 23480.34 22293.23 15396.28 135
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS89.21 14188.29 14891.96 13493.71 20282.62 14393.30 21094.19 23382.22 21787.78 14793.94 16078.83 12896.95 23677.70 25092.98 15896.32 133
CANet_DTU90.26 11289.41 11992.81 9393.46 21083.01 12893.48 20294.47 22389.43 4987.76 14894.23 15070.54 23499.03 6484.97 14796.39 10396.38 132
HyFIR lowres test88.09 17186.81 18191.93 13696.00 10880.63 19290.01 29195.79 14773.42 32487.68 14992.10 22773.86 19197.96 15780.75 21491.70 17097.19 104
UGNet89.95 11988.95 13192.95 8994.51 16883.31 11995.70 6895.23 18889.37 5187.58 15093.94 16064.00 29498.78 9983.92 16196.31 10496.74 123
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
thisisatest051587.33 19985.99 21391.37 16193.49 20879.55 21990.63 27989.56 33980.17 25587.56 15190.86 26567.07 27098.28 13081.50 20293.02 15796.29 134
GeoE90.05 11589.43 11891.90 13995.16 13780.37 19995.80 6394.65 22083.90 18187.55 15294.75 12978.18 13997.62 17981.28 20493.63 14197.71 85
baseline188.10 17087.28 17190.57 18894.96 14680.07 20694.27 16191.29 30486.74 12187.41 15394.00 15776.77 15096.20 27680.77 21379.31 31895.44 170
CHOSEN 1792x268888.84 15287.69 16092.30 12296.14 9981.42 17090.01 29195.86 14274.52 31687.41 15393.94 16075.46 16898.36 12280.36 22195.53 11097.12 108
PAPM_NR91.22 9290.78 9592.52 10997.60 5781.46 16894.37 15796.24 11286.39 13087.41 15394.80 12882.06 9798.48 11382.80 17895.37 11697.61 88
EPNet91.79 8091.02 9094.10 5890.10 31185.25 7396.03 5392.05 28292.83 187.39 15695.78 9679.39 12499.01 7088.13 11397.48 8298.05 65
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EI-MVSNet89.10 14388.86 13589.80 22591.84 25278.30 24893.70 19695.01 19885.73 14287.15 15795.28 10979.87 11697.21 21883.81 16387.36 23193.88 236
MVSTER88.84 15288.29 14890.51 19392.95 22780.44 19893.73 19395.01 19884.66 17087.15 15793.12 19172.79 20697.21 21887.86 11587.36 23193.87 237
RRT_MVS88.86 15187.68 16192.39 11792.02 24786.09 5394.38 15694.94 20185.45 15187.14 15993.84 16865.88 28697.11 22488.73 10586.77 23893.98 232
mvs-test189.45 13389.14 12690.38 20093.33 21277.63 26794.95 11294.36 22687.70 9887.10 16092.81 20373.45 19798.03 15285.57 14393.04 15695.48 168
VPNet88.20 16887.47 16690.39 19893.56 20779.46 22194.04 17895.54 16688.67 6986.96 16194.58 13869.33 24897.15 22084.05 16080.53 30594.56 205
AUN-MVS87.78 17986.54 19491.48 15794.82 15681.05 18093.91 18993.93 24183.00 20386.93 16293.53 17769.50 24697.67 17286.14 13677.12 32895.73 162
HY-MVS83.01 1289.03 14687.94 15792.29 12394.86 15382.77 13392.08 25494.49 22281.52 23986.93 16292.79 20578.32 13898.23 13179.93 22790.55 18195.88 154
HQP_MVS90.60 10790.19 10191.82 14394.70 16182.73 13795.85 6196.22 11490.81 1786.91 16494.86 12474.23 18298.12 13788.15 11189.99 18794.63 198
plane_prior382.75 13490.26 3086.91 164
BH-RMVSNet88.37 16387.48 16591.02 17695.28 13279.45 22292.89 22893.07 25985.45 15186.91 16494.84 12770.35 23597.76 16673.97 28394.59 12895.85 155
Fast-Effi-MVS+89.41 13688.64 13791.71 14894.74 15780.81 18893.54 20095.10 19583.11 20086.82 16790.67 27279.74 11897.75 16980.51 22093.55 14396.57 128
FIs90.51 10890.35 9890.99 17993.99 19280.98 18295.73 6697.54 389.15 5786.72 16894.68 13281.83 10197.24 21585.18 14588.31 21894.76 195
PAPR90.02 11689.27 12592.29 12395.78 11680.95 18492.68 23296.22 11481.91 22786.66 16993.75 17382.23 9298.44 11979.40 23694.79 12397.48 94
PMMVS85.71 24384.96 24087.95 27488.90 32477.09 27588.68 31190.06 32872.32 33386.47 17090.76 27072.15 21394.40 31881.78 19793.49 14592.36 297
UniMVSNet_NR-MVSNet89.92 12189.29 12391.81 14593.39 21183.72 10794.43 14897.12 4089.80 3786.46 17193.32 18183.16 8097.23 21684.92 14881.02 29594.49 211
DU-MVS89.34 14088.50 14091.85 14293.04 22283.72 10794.47 14596.59 9289.50 4686.46 17193.29 18477.25 14597.23 21684.92 14881.02 29594.59 202
CostFormer85.77 24284.94 24188.26 26691.16 27872.58 31889.47 29991.04 31076.26 29986.45 17389.97 28670.74 22896.86 24282.35 18487.07 23695.34 175
UniMVSNet (Re)89.80 12489.07 12892.01 12993.60 20684.52 8494.78 12597.47 889.26 5386.44 17492.32 21682.10 9597.39 20484.81 15180.84 29994.12 223
TR-MVS86.78 21985.76 22489.82 22294.37 17578.41 24592.47 23992.83 26381.11 24886.36 17592.40 21368.73 25997.48 18773.75 28689.85 19393.57 254
AdaColmapbinary89.89 12289.07 12892.37 11897.41 6383.03 12694.42 14995.92 13582.81 20886.34 17694.65 13473.89 19099.02 6880.69 21595.51 11195.05 180
FC-MVSNet-test90.27 11190.18 10290.53 19093.71 20279.85 21695.77 6597.59 289.31 5286.27 17794.67 13381.93 10097.01 23384.26 15788.09 22294.71 196
PS-MVSNAJss89.97 11889.62 11391.02 17691.90 25080.85 18795.26 9295.98 13086.26 13286.21 17894.29 14679.70 11997.65 17588.87 10488.10 22094.57 204
TAPA-MVS84.62 688.16 16987.01 17791.62 15096.64 8480.65 19194.39 15296.21 11776.38 29686.19 17995.44 10479.75 11798.08 14662.75 34095.29 11896.13 141
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CVMVSNet84.69 26284.79 24584.37 32191.84 25264.92 35293.70 19691.47 30066.19 34886.16 18095.28 10967.18 26893.33 33380.89 21290.42 18394.88 190
tpmrst85.35 24884.99 23886.43 30390.88 29267.88 34488.71 31091.43 30180.13 25686.08 18188.80 30373.05 20396.02 28382.48 18183.40 26595.40 172
ACMM84.12 989.14 14288.48 14391.12 16894.65 16481.22 17595.31 8396.12 12185.31 15585.92 18294.34 14270.19 23898.06 14885.65 14188.86 20894.08 227
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
114514_t89.51 13088.50 14092.54 10898.11 3781.99 15395.16 10096.36 10570.19 34285.81 18395.25 11176.70 15198.63 10582.07 18996.86 9297.00 114
tpm84.73 26084.02 25486.87 30090.33 30768.90 34089.06 30589.94 33180.85 25085.75 18489.86 28868.54 26195.97 28577.76 24984.05 25595.75 160
Baseline_NR-MVSNet87.07 21186.63 19088.40 26191.44 26377.87 25994.23 16492.57 27084.12 17785.74 18592.08 22877.25 14596.04 28182.29 18679.94 31191.30 315
test_part189.00 14987.99 15492.04 12895.94 11283.81 10596.14 4696.05 12786.44 12885.69 18693.73 17471.57 21697.66 17385.80 14080.54 30394.66 197
V4287.68 18186.86 17990.15 20890.58 30280.14 20394.24 16395.28 18683.66 18685.67 18791.33 24974.73 17797.41 19984.43 15681.83 28192.89 282
v114487.61 18986.79 18390.06 21391.01 28279.34 22693.95 18495.42 18083.36 19685.66 18891.31 25274.98 17397.42 19483.37 16782.06 27793.42 261
PatchT82.68 27881.27 28086.89 29990.09 31270.94 33184.06 34290.15 32574.91 31285.63 18983.57 34169.37 24794.87 31665.19 33088.50 21394.84 191
CR-MVSNet85.35 24883.76 25890.12 21090.58 30279.34 22685.24 33691.96 28878.27 28285.55 19087.87 31871.03 22395.61 29873.96 28489.36 20095.40 172
RPMNet83.95 26881.53 27891.21 16590.58 30279.34 22685.24 33696.76 7271.44 33785.55 19082.97 34470.87 22698.91 8661.01 34489.36 20095.40 172
v2v48287.84 17687.06 17590.17 20690.99 28379.23 23394.00 18295.13 19284.87 16585.53 19292.07 23074.45 17997.45 19084.71 15381.75 28393.85 240
TranMVSNet+NR-MVSNet88.84 15287.95 15691.49 15692.68 23283.01 12894.92 11596.31 10689.88 3685.53 19293.85 16776.63 15396.96 23581.91 19379.87 31394.50 209
v14419287.19 20886.35 20089.74 22690.64 30078.24 25093.92 18695.43 17881.93 22685.51 19491.05 26274.21 18497.45 19082.86 17581.56 28593.53 255
SCA86.32 23385.18 23589.73 22892.15 24076.60 28091.12 27291.69 29383.53 19185.50 19588.81 30166.79 27496.48 26276.65 26090.35 18496.12 142
bset_n11_16_dypcd86.83 21685.55 22690.65 18688.22 33281.70 16088.88 30890.42 32085.26 15685.49 19690.69 27167.11 26997.02 23289.51 9784.39 25193.23 268
v119287.25 20386.33 20190.00 21790.76 29679.04 23493.80 19095.48 17082.57 21285.48 19791.18 25673.38 20197.42 19482.30 18582.06 27793.53 255
WR-MVS88.38 16287.67 16290.52 19293.30 21480.18 20193.26 21395.96 13288.57 7385.47 19892.81 20376.12 15596.91 23981.24 20582.29 27494.47 214
mvs_anonymous89.37 13989.32 12289.51 23693.47 20974.22 30091.65 26494.83 21282.91 20685.45 19993.79 16981.23 10596.36 27186.47 13594.09 13597.94 72
LPG-MVS_test89.45 13388.90 13391.12 16894.47 16981.49 16695.30 8696.14 11986.73 12285.45 19995.16 11469.89 24098.10 13987.70 11789.23 20393.77 246
LGP-MVS_train91.12 16894.47 16981.49 16696.14 11986.73 12285.45 19995.16 11469.89 24098.10 13987.70 11789.23 20393.77 246
Effi-MVS+-dtu88.65 15788.35 14489.54 23393.33 21276.39 28494.47 14594.36 22687.70 9885.43 20289.56 29473.45 19797.26 21385.57 14391.28 17394.97 182
v124086.78 21985.85 21989.56 23290.45 30677.79 26293.61 19895.37 18381.65 23485.43 20291.15 25871.50 21897.43 19381.47 20382.05 27993.47 259
HQP-NCC94.17 18194.39 15288.81 6485.43 202
ACMP_Plane94.17 18194.39 15288.81 6485.43 202
HQP4-MVS85.43 20297.96 15794.51 208
HQP-MVS89.80 12489.28 12491.34 16294.17 18181.56 16294.39 15296.04 12888.81 6485.43 20293.97 15973.83 19297.96 15787.11 12889.77 19494.50 209
CLD-MVS89.47 13288.90 13391.18 16794.22 17982.07 15292.13 25196.09 12287.90 9285.37 20892.45 21274.38 18097.56 18287.15 12690.43 18293.93 233
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_ETH3D87.53 19286.37 19891.00 17892.44 23578.96 23594.74 12795.61 16184.07 17885.36 20994.52 14059.78 32197.34 20682.93 17387.88 22596.71 124
v192192086.97 21386.06 21289.69 23090.53 30578.11 25393.80 19095.43 17881.90 22885.33 21091.05 26272.66 20797.41 19982.05 19081.80 28293.53 255
test_djsdf89.03 14688.64 13790.21 20590.74 29779.28 23095.96 5795.90 13884.66 17085.33 21092.94 19774.02 18897.30 20789.64 9588.53 21194.05 229
GA-MVS86.61 22485.27 23490.66 18591.33 27278.71 23790.40 28293.81 24885.34 15485.12 21289.57 29361.25 30997.11 22480.99 21089.59 19796.15 138
PatchmatchNetpermissive85.85 24084.70 24689.29 23991.76 25575.54 29288.49 31391.30 30381.63 23685.05 21388.70 30571.71 21496.24 27574.61 28089.05 20696.08 146
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS83.90 27082.70 27287.51 28190.23 31072.67 31488.62 31281.96 35681.37 24185.01 21488.34 30966.31 28194.45 31775.30 27387.12 23495.43 171
PVSNet78.82 1885.55 24484.65 24788.23 26894.72 15971.93 32187.12 32692.75 26678.80 27484.95 21590.53 27464.43 29396.71 24674.74 27893.86 13896.06 148
MDTV_nov1_ep1383.56 26291.69 25969.93 33787.75 32191.54 29778.60 27884.86 21688.90 30069.54 24596.03 28270.25 30188.93 207
IterMVS-LS88.36 16487.91 15889.70 22993.80 19978.29 24993.73 19395.08 19785.73 14284.75 21791.90 23579.88 11596.92 23883.83 16282.51 27293.89 234
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tpm284.08 26682.94 26887.48 28491.39 26871.27 32589.23 30390.37 32271.95 33584.64 21889.33 29567.30 26596.55 25975.17 27487.09 23594.63 198
XXY-MVS87.65 18386.85 18090.03 21492.14 24180.60 19493.76 19295.23 18882.94 20584.60 21994.02 15574.27 18195.49 30681.04 20783.68 25994.01 231
MDTV_nov1_ep13_2view55.91 36187.62 32473.32 32584.59 22070.33 23674.65 27995.50 166
test-LLR85.87 23985.41 23087.25 28990.95 28571.67 32389.55 29589.88 33483.41 19484.54 22187.95 31567.25 26695.11 31281.82 19593.37 15094.97 182
test-mter84.54 26383.64 26187.25 28990.95 28571.67 32389.55 29589.88 33479.17 26784.54 22187.95 31555.56 33395.11 31281.82 19593.37 15094.97 182
miper_enhance_ethall86.90 21486.18 20689.06 24591.66 26077.58 26990.22 28794.82 21379.16 26884.48 22389.10 29779.19 12696.66 24784.06 15982.94 26792.94 280
BH-untuned88.60 15988.13 15290.01 21695.24 13578.50 24393.29 21194.15 23584.75 16884.46 22493.40 17875.76 16297.40 20177.59 25194.52 13094.12 223
CNLPA89.07 14487.98 15592.34 11996.87 7884.78 7794.08 17493.24 25581.41 24084.46 22495.13 11675.57 16796.62 24977.21 25593.84 13995.61 165
PCF-MVS84.11 1087.74 18086.08 21192.70 10194.02 18784.43 9289.27 30195.87 14173.62 32384.43 22694.33 14378.48 13698.86 9170.27 30094.45 13294.81 193
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GBi-Net87.26 20185.98 21491.08 17294.01 18883.10 12395.14 10194.94 20183.57 18884.37 22791.64 24066.59 27896.34 27278.23 24585.36 24493.79 242
test187.26 20185.98 21491.08 17294.01 18883.10 12395.14 10194.94 20183.57 18884.37 22791.64 24066.59 27896.34 27278.23 24585.36 24493.79 242
FMVSNet387.40 19886.11 20991.30 16393.79 20183.64 11094.20 16594.81 21483.89 18284.37 22791.87 23668.45 26296.56 25778.23 24585.36 24493.70 251
v14887.04 21286.32 20289.21 24090.94 28777.26 27393.71 19594.43 22484.84 16684.36 23090.80 26876.04 15797.05 23082.12 18879.60 31593.31 263
cl_fuxian87.14 21086.50 19689.04 24692.20 23977.26 27391.22 27194.70 21882.01 22384.34 23190.43 27678.81 12996.61 25283.70 16581.09 29293.25 266
miper_ehance_all_eth87.22 20686.62 19189.02 24792.13 24277.40 27290.91 27594.81 21481.28 24384.32 23290.08 28379.26 12596.62 24983.81 16382.94 26793.04 277
PatchMatch-RL86.77 22285.54 22790.47 19695.88 11382.71 13990.54 28092.31 27579.82 26184.32 23291.57 24768.77 25896.39 26873.16 28893.48 14792.32 299
3Dnovator86.66 591.73 8390.82 9494.44 4894.59 16586.37 4397.18 797.02 4689.20 5584.31 23496.66 6173.74 19499.17 5086.74 13197.96 7097.79 83
RRT_test8_iter0586.90 21486.36 19988.52 25993.00 22573.27 30894.32 15995.96 13285.50 15084.26 23592.86 19860.76 31497.70 17188.32 11082.29 27494.60 201
jajsoiax88.24 16787.50 16490.48 19590.89 29180.14 20395.31 8395.65 15984.97 16484.24 23694.02 15565.31 28897.42 19488.56 10788.52 21293.89 234
mvs_tets88.06 17387.28 17190.38 20090.94 28779.88 21495.22 9495.66 15785.10 16184.21 23793.94 16063.53 29697.40 20188.50 10888.40 21693.87 237
eth_miper_zixun_eth86.50 22985.77 22388.68 25591.94 24975.81 29090.47 28194.89 20782.05 22084.05 23890.46 27575.96 15896.77 24382.76 17979.36 31793.46 260
3Dnovator+87.14 492.42 7391.37 8295.55 495.63 12288.73 497.07 1396.77 7190.84 1684.02 23996.62 6375.95 15999.34 3387.77 11697.68 7898.59 18
PLCcopyleft84.53 789.06 14588.03 15392.15 12697.27 7182.69 14094.29 16095.44 17779.71 26284.01 24094.18 15176.68 15298.75 10077.28 25493.41 14895.02 181
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
cl-mvsnet286.78 21985.98 21489.18 24292.34 23777.62 26890.84 27694.13 23781.33 24283.97 24190.15 28173.96 18996.60 25484.19 15882.94 26793.33 262
FMVSNet287.19 20885.82 22091.30 16394.01 18883.67 10994.79 12494.94 20183.57 18883.88 24292.05 23166.59 27896.51 26077.56 25285.01 24793.73 249
DWT-MVSNet_test84.95 25783.68 25988.77 25091.43 26673.75 30491.74 26090.98 31180.66 25283.84 24387.36 32362.44 30097.11 22478.84 24085.81 24195.46 169
anonymousdsp87.84 17687.09 17490.12 21089.13 32180.54 19594.67 13295.55 16482.05 22083.82 24492.12 22471.47 21997.15 22087.15 12687.80 22792.67 287
1112_ss88.42 16187.33 16991.72 14794.92 14980.98 18292.97 22694.54 22178.16 28583.82 24493.88 16578.78 13097.91 16179.45 23289.41 19896.26 136
WR-MVS_H87.80 17887.37 16889.10 24493.23 21578.12 25295.61 7497.30 2687.90 9283.72 24692.01 23279.65 12396.01 28476.36 26280.54 30393.16 272
BH-w/o87.57 19187.05 17689.12 24394.90 15177.90 25792.41 24093.51 25282.89 20783.70 24791.34 24875.75 16397.07 22875.49 27093.49 14592.39 296
ACMP84.23 889.01 14888.35 14490.99 17994.73 15881.27 17295.07 10595.89 14086.48 12683.67 24894.30 14569.33 24897.99 15587.10 13088.55 21093.72 250
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2023121186.59 22685.13 23690.98 18196.52 9081.50 16496.14 4696.16 11873.78 32183.65 24992.15 22263.26 29797.37 20582.82 17781.74 28494.06 228
v1087.25 20386.38 19789.85 22091.19 27579.50 22094.48 14295.45 17583.79 18483.62 25091.19 25475.13 17097.42 19481.94 19280.60 30192.63 289
v887.50 19586.71 18589.89 21991.37 26979.40 22394.50 14195.38 18184.81 16783.60 25191.33 24976.05 15697.42 19482.84 17680.51 30792.84 284
cascas86.43 23284.98 23990.80 18492.10 24480.92 18590.24 28595.91 13773.10 32783.57 25288.39 30865.15 28997.46 18984.90 15091.43 17294.03 230
Test_1112_low_res87.65 18386.51 19591.08 17294.94 14879.28 23091.77 25894.30 22976.04 30183.51 25392.37 21477.86 14397.73 17078.69 24189.13 20596.22 137
CP-MVSNet87.63 18687.26 17388.74 25493.12 21876.59 28195.29 8996.58 9388.43 7683.49 25492.98 19675.28 16995.83 29278.97 23881.15 29193.79 242
QAPM89.51 13088.15 15193.59 7294.92 14984.58 8096.82 2596.70 8078.43 28083.41 25596.19 8373.18 20299.30 3977.11 25796.54 9996.89 119
TESTMET0.1,183.74 27182.85 27086.42 30489.96 31571.21 32789.55 29587.88 34377.41 28883.37 25687.31 32456.71 33093.65 33080.62 21792.85 16194.40 215
cl-mvsnet____86.52 22885.78 22188.75 25292.03 24676.46 28290.74 27794.30 22981.83 23283.34 25790.78 26975.74 16596.57 25581.74 19881.54 28693.22 269
cl-mvsnet186.53 22785.78 22188.75 25292.02 24776.45 28390.74 27794.30 22981.83 23283.34 25790.82 26775.75 16396.57 25581.73 19981.52 28793.24 267
PS-CasMVS87.32 20086.88 17888.63 25792.99 22676.33 28695.33 8296.61 9188.22 8483.30 25993.07 19473.03 20495.79 29578.36 24381.00 29793.75 248
gg-mvs-nofinetune81.77 28579.37 29888.99 24890.85 29377.73 26586.29 33079.63 36074.88 31483.19 26069.05 35560.34 31696.11 28075.46 27194.64 12793.11 274
XVG-ACMP-BASELINE86.00 23684.84 24489.45 23791.20 27478.00 25491.70 26295.55 16485.05 16382.97 26192.25 22054.49 33897.48 18782.93 17387.45 23092.89 282
LS3D87.89 17586.32 20292.59 10596.07 10582.92 13195.23 9394.92 20675.66 30382.89 26295.98 8972.48 21099.21 4768.43 31495.23 12195.64 164
PEN-MVS86.80 21886.27 20488.40 26192.32 23875.71 29195.18 9896.38 10487.97 8982.82 26393.15 18973.39 20095.92 28776.15 26679.03 32093.59 253
FMVSNet185.85 24084.11 25391.08 17292.81 22983.10 12395.14 10194.94 20181.64 23582.68 26491.64 24059.01 32596.34 27275.37 27283.78 25693.79 242
RPSCF85.07 25484.27 25187.48 28492.91 22870.62 33391.69 26392.46 27176.20 30082.67 26595.22 11263.94 29597.29 21077.51 25385.80 24294.53 206
Fast-Effi-MVS+-dtu87.44 19686.72 18489.63 23192.04 24577.68 26694.03 17993.94 24085.81 13982.42 26691.32 25170.33 23697.06 22980.33 22390.23 18594.14 222
v7n86.81 21785.76 22489.95 21890.72 29879.25 23295.07 10595.92 13584.45 17382.29 26790.86 26572.60 20997.53 18479.42 23580.52 30693.08 276
DTE-MVSNet86.11 23585.48 22987.98 27391.65 26174.92 29494.93 11495.75 15087.36 10882.26 26893.04 19572.85 20595.82 29374.04 28277.46 32693.20 270
ADS-MVSNet281.66 28879.71 29687.50 28291.35 27074.19 30183.33 34588.48 34272.90 32982.24 26985.77 33564.98 29093.20 33564.57 33483.74 25795.12 178
ADS-MVSNet81.56 29079.78 29486.90 29891.35 27071.82 32283.33 34589.16 34072.90 32982.24 26985.77 33564.98 29093.76 32864.57 33483.74 25795.12 178
JIA-IIPM81.04 29678.98 30687.25 28988.64 32573.48 30681.75 35089.61 33873.19 32682.05 27173.71 35266.07 28595.87 29071.18 29784.60 25092.41 295
F-COLMAP87.95 17486.80 18291.40 16096.35 9580.88 18694.73 12895.45 17579.65 26382.04 27294.61 13571.13 22198.50 11276.24 26591.05 17894.80 194
PAPM86.68 22385.39 23190.53 19093.05 22179.33 22989.79 29494.77 21778.82 27381.95 27393.24 18676.81 14897.30 20766.94 32393.16 15494.95 188
DP-MVS87.25 20385.36 23392.90 9197.65 5683.24 12094.81 12392.00 28474.99 31181.92 27495.00 11972.66 20799.05 6066.92 32592.33 16796.40 131
pm-mvs186.61 22485.54 22789.82 22291.44 26380.18 20195.28 9194.85 21083.84 18381.66 27592.62 20872.45 21296.48 26279.67 23078.06 32192.82 285
MVS87.44 19686.10 21091.44 15992.61 23383.62 11192.63 23495.66 15767.26 34681.47 27692.15 22277.95 14098.22 13379.71 22995.48 11292.47 293
IterMVS-SCA-FT85.45 24584.53 25088.18 26991.71 25776.87 27890.19 28892.65 26985.40 15381.44 27790.54 27366.79 27495.00 31581.04 20781.05 29392.66 288
CHOSEN 280x42085.15 25383.99 25588.65 25692.47 23478.40 24679.68 35392.76 26574.90 31381.41 27889.59 29269.85 24295.51 30379.92 22895.29 11892.03 303
miper_lstm_enhance85.27 25184.59 24987.31 28691.28 27374.63 29587.69 32294.09 23981.20 24781.36 27989.85 28974.97 17494.30 32181.03 20979.84 31493.01 278
Patchmtry82.71 27780.93 28388.06 27290.05 31376.37 28584.74 34091.96 28872.28 33481.32 28087.87 31871.03 22395.50 30568.97 31080.15 30992.32 299
dp81.47 29280.23 28985.17 31689.92 31665.49 35086.74 32790.10 32776.30 29881.10 28187.12 32862.81 29895.92 28768.13 31779.88 31294.09 226
tfpnnormal84.72 26183.23 26589.20 24192.79 23080.05 20894.48 14295.81 14582.38 21481.08 28291.21 25369.01 25596.95 23661.69 34280.59 30290.58 329
IterMVS84.88 25883.98 25687.60 27991.44 26376.03 28890.18 28992.41 27283.24 19981.06 28390.42 27766.60 27794.28 32279.46 23180.98 29892.48 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OpenMVScopyleft83.78 1188.74 15587.29 17093.08 8292.70 23185.39 7196.57 3096.43 10078.74 27680.85 28496.07 8769.64 24499.01 7078.01 24896.65 9694.83 192
pmmvs485.43 24683.86 25790.16 20790.02 31482.97 13090.27 28392.67 26875.93 30280.73 28591.74 23971.05 22295.73 29778.85 23983.46 26391.78 306
MIMVSNet82.59 27980.53 28488.76 25191.51 26278.32 24786.57 32990.13 32679.32 26480.70 28688.69 30652.98 34493.07 33766.03 32888.86 20894.90 189
IB-MVS80.51 1585.24 25283.26 26491.19 16692.13 24279.86 21591.75 25991.29 30483.28 19880.66 28788.49 30761.28 30898.46 11580.99 21079.46 31695.25 176
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND87.94 27589.73 31977.91 25687.80 31978.23 36280.58 28883.86 33959.88 32095.33 30971.20 29592.22 16890.60 328
EU-MVSNet81.32 29480.95 28282.42 33088.50 32763.67 35393.32 20691.33 30264.02 35080.57 28992.83 20161.21 31192.27 34276.34 26380.38 30891.32 314
tpmvs83.35 27582.07 27387.20 29391.07 28171.00 33088.31 31691.70 29278.91 27080.49 29087.18 32769.30 25197.08 22768.12 31883.56 26193.51 258
MVS_030483.46 27281.92 27588.10 27190.63 30177.49 27093.26 21393.75 24980.04 25880.44 29187.24 32647.94 35295.55 30075.79 26888.16 21991.26 316
pmmvs584.21 26582.84 27188.34 26488.95 32376.94 27792.41 24091.91 29075.63 30480.28 29291.18 25664.59 29295.57 29977.09 25883.47 26292.53 291
tpm cat181.96 28280.27 28887.01 29591.09 28071.02 32987.38 32591.53 29866.25 34780.17 29386.35 33168.22 26496.15 27969.16 30982.29 27493.86 239
MS-PatchMatch85.05 25584.16 25287.73 27791.42 26778.51 24291.25 27093.53 25177.50 28780.15 29491.58 24561.99 30395.51 30375.69 26994.35 13489.16 339
131487.51 19386.57 19390.34 20392.42 23679.74 21892.63 23495.35 18578.35 28180.14 29591.62 24474.05 18797.15 22081.05 20693.53 14494.12 223
ITE_SJBPF88.24 26791.88 25177.05 27692.92 26185.54 14880.13 29693.30 18357.29 32996.20 27672.46 29184.71 24991.49 311
D2MVS85.90 23885.09 23788.35 26390.79 29477.42 27191.83 25795.70 15380.77 25180.08 29790.02 28466.74 27696.37 26981.88 19487.97 22491.26 316
NR-MVSNet88.58 16087.47 16691.93 13693.04 22284.16 9794.77 12696.25 11189.05 5980.04 29893.29 18479.02 12797.05 23081.71 20080.05 31094.59 202
baseline286.50 22985.39 23189.84 22191.12 27976.70 27991.88 25588.58 34182.35 21679.95 29990.95 26473.42 19997.63 17880.27 22489.95 19095.19 177
test0.0.03 182.41 28081.69 27684.59 31988.23 33172.89 31190.24 28587.83 34483.41 19479.86 30089.78 29067.25 26688.99 35265.18 33183.42 26491.90 305
CL-MVSNet_2432*160081.74 28680.53 28485.36 31385.96 34372.45 31990.25 28493.07 25981.24 24579.85 30187.29 32570.93 22592.52 34066.95 32269.23 34291.11 322
TransMVSNet (Re)84.43 26483.06 26788.54 25891.72 25678.44 24495.18 9892.82 26482.73 20979.67 30292.12 22473.49 19695.96 28671.10 29968.73 34691.21 318
LTVRE_ROB82.13 1386.26 23484.90 24290.34 20394.44 17381.50 16492.31 24694.89 20783.03 20279.63 30392.67 20669.69 24397.79 16471.20 29586.26 23991.72 307
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-085.35 24884.64 24887.49 28390.77 29572.59 31794.01 18194.40 22584.72 16979.62 30493.17 18861.91 30496.72 24481.99 19181.16 28993.16 272
EPNet_dtu86.49 23185.94 21788.14 27090.24 30972.82 31294.11 17092.20 27886.66 12579.42 30592.36 21573.52 19595.81 29471.26 29493.66 14095.80 159
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LCM-MVSNet-Re88.30 16688.32 14788.27 26594.71 16072.41 32093.15 21790.98 31187.77 9679.25 30691.96 23378.35 13795.75 29683.04 17195.62 10996.65 125
pmmvs683.42 27381.60 27788.87 24988.01 33577.87 25994.96 11194.24 23274.67 31578.80 30791.09 26160.17 31896.49 26177.06 25975.40 33292.23 301
MVP-Stereo85.97 23784.86 24389.32 23890.92 28982.19 15092.11 25294.19 23378.76 27578.77 30891.63 24368.38 26396.56 25775.01 27793.95 13689.20 338
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MSDG84.86 25983.09 26690.14 20993.80 19980.05 20889.18 30493.09 25878.89 27178.19 30991.91 23465.86 28797.27 21168.47 31388.45 21493.11 274
testgi80.94 29980.20 29083.18 32687.96 33666.29 34791.28 26890.70 31983.70 18578.12 31092.84 20051.37 34690.82 34963.34 33782.46 27392.43 294
ACMH+81.04 1485.05 25583.46 26389.82 22294.66 16379.37 22494.44 14794.12 23882.19 21878.04 31192.82 20258.23 32797.54 18373.77 28582.90 27092.54 290
COLMAP_ROBcopyleft80.39 1683.96 26782.04 27489.74 22695.28 13279.75 21794.25 16292.28 27675.17 30978.02 31293.77 17158.60 32697.84 16365.06 33385.92 24091.63 309
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ppachtmachnet_test81.84 28480.07 29287.15 29488.46 32874.43 29989.04 30692.16 27975.33 30777.75 31388.99 29866.20 28295.37 30865.12 33277.60 32491.65 308
Anonymous2023120681.03 29779.77 29584.82 31887.85 33770.26 33591.42 26792.08 28173.67 32277.75 31389.25 29662.43 30193.08 33661.50 34382.00 28091.12 321
SixPastTwentyTwo83.91 26982.90 26986.92 29790.99 28370.67 33293.48 20291.99 28585.54 14877.62 31592.11 22660.59 31596.87 24176.05 26777.75 32393.20 270
ACMH80.38 1785.36 24783.68 25990.39 19894.45 17280.63 19294.73 12894.85 21082.09 21977.24 31692.65 20760.01 31997.58 18072.25 29284.87 24892.96 279
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Patchmatch-RL test81.67 28779.96 29386.81 30185.42 34771.23 32682.17 34987.50 34778.47 27977.19 31782.50 34570.81 22793.48 33182.66 18072.89 33695.71 163
KD-MVS_2432*160078.50 31376.02 31885.93 30886.22 34174.47 29784.80 33892.33 27379.29 26576.98 31885.92 33353.81 34293.97 32567.39 32057.42 35489.36 334
miper_refine_blended78.50 31376.02 31885.93 30886.22 34174.47 29784.80 33892.33 27379.29 26576.98 31885.92 33353.81 34293.97 32567.39 32057.42 35489.36 334
our_test_381.93 28380.46 28686.33 30588.46 32873.48 30688.46 31491.11 30676.46 29476.69 32088.25 31166.89 27294.36 31968.75 31179.08 31991.14 320
Patchmatch-test81.37 29379.30 29987.58 28090.92 28974.16 30280.99 35187.68 34670.52 34176.63 32188.81 30171.21 22092.76 33960.01 34886.93 23795.83 157
DIV-MVS_2432*160080.20 30379.24 30083.07 32785.64 34665.29 35191.01 27493.93 24178.71 27776.32 32286.40 33059.20 32492.93 33872.59 29069.35 34191.00 324
FMVSNet581.52 29179.60 29787.27 28791.17 27677.95 25591.49 26692.26 27776.87 29376.16 32387.91 31751.67 34592.34 34167.74 31981.16 28991.52 310
AllTest83.42 27381.39 27989.52 23495.01 14177.79 26293.12 21890.89 31577.41 28876.12 32493.34 17954.08 34097.51 18568.31 31584.27 25393.26 264
TestCases89.52 23495.01 14177.79 26290.89 31577.41 28876.12 32493.34 17954.08 34097.51 18568.31 31584.27 25393.26 264
test_040281.30 29579.17 30387.67 27893.19 21678.17 25192.98 22591.71 29175.25 30876.02 32690.31 27859.23 32396.37 26950.22 35583.63 26088.47 345
DSMNet-mixed76.94 31776.29 31678.89 33383.10 35356.11 36087.78 32079.77 35960.65 35275.64 32788.71 30461.56 30688.34 35360.07 34789.29 20292.21 302
Anonymous2024052180.44 30179.21 30184.11 32485.75 34567.89 34392.86 22993.23 25675.61 30575.59 32887.47 32250.03 34794.33 32071.14 29881.21 28890.12 331
USDC82.76 27681.26 28187.26 28891.17 27674.55 29689.27 30193.39 25478.26 28375.30 32992.08 22854.43 33996.63 24871.64 29385.79 24390.61 326
TDRefinement79.81 30677.34 31087.22 29279.24 35775.48 29393.12 21892.03 28376.45 29575.01 33091.58 24549.19 35096.44 26670.22 30369.18 34389.75 333
LF4IMVS80.37 30279.07 30584.27 32386.64 33969.87 33889.39 30091.05 30976.38 29674.97 33190.00 28547.85 35394.25 32374.55 28180.82 30088.69 343
PM-MVS78.11 31576.12 31784.09 32583.54 35270.08 33688.97 30785.27 35179.93 25974.73 33286.43 32934.70 35993.48 33179.43 23472.06 33888.72 342
OpenMVS_ROBcopyleft74.94 1979.51 30877.03 31486.93 29687.00 33876.23 28792.33 24490.74 31868.93 34474.52 33388.23 31249.58 34996.62 24957.64 35084.29 25287.94 347
test20.0379.95 30579.08 30482.55 32985.79 34467.74 34591.09 27391.08 30781.23 24674.48 33489.96 28761.63 30590.15 35060.08 34676.38 33089.76 332
ambc83.06 32879.99 35663.51 35477.47 35492.86 26274.34 33584.45 33828.74 36095.06 31473.06 28968.89 34590.61 326
PVSNet_073.20 2077.22 31674.83 32184.37 32190.70 29971.10 32883.09 34789.67 33772.81 33173.93 33683.13 34360.79 31393.70 32968.54 31250.84 35788.30 346
pmmvs-eth3d80.97 29878.72 30787.74 27684.99 34979.97 21390.11 29091.65 29475.36 30673.51 33786.03 33259.45 32293.96 32775.17 27472.21 33789.29 337
K. test v381.59 28980.15 29185.91 31089.89 31769.42 33992.57 23787.71 34585.56 14773.44 33889.71 29155.58 33295.52 30277.17 25669.76 34092.78 286
EG-PatchMatch MVS82.37 28180.34 28788.46 26090.27 30879.35 22592.80 23194.33 22877.14 29273.26 33990.18 28047.47 35496.72 24470.25 30187.32 23389.30 336
lessismore_v086.04 30688.46 32868.78 34180.59 35873.01 34090.11 28255.39 33496.43 26775.06 27665.06 34892.90 281
MIMVSNet179.38 30977.28 31185.69 31186.35 34073.67 30591.61 26592.75 26678.11 28672.64 34188.12 31348.16 35191.97 34560.32 34577.49 32591.43 313
ET-MVSNet_ETH3D87.51 19385.91 21892.32 12093.70 20483.93 10192.33 24490.94 31384.16 17572.09 34292.52 21069.90 23995.85 29189.20 10088.36 21797.17 105
TinyColmap79.76 30777.69 30985.97 30791.71 25773.12 30989.55 29590.36 32375.03 31072.03 34390.19 27946.22 35596.19 27863.11 33881.03 29488.59 344
N_pmnet68.89 32368.44 32670.23 33989.07 32228.79 36988.06 31719.50 37069.47 34371.86 34484.93 33761.24 31091.75 34654.70 35277.15 32790.15 330
UnsupCasMVSNet_eth80.07 30478.27 30885.46 31285.24 34872.63 31688.45 31594.87 20982.99 20471.64 34588.07 31456.34 33191.75 34673.48 28763.36 35192.01 304
new-patchmatchnet76.41 31875.17 32080.13 33282.65 35559.61 35587.66 32391.08 30778.23 28469.85 34683.22 34254.76 33691.63 34864.14 33664.89 34989.16 339
MVS-HIRNet73.70 32072.20 32378.18 33591.81 25456.42 35982.94 34882.58 35455.24 35468.88 34766.48 35655.32 33595.13 31158.12 34988.42 21583.01 350
UnsupCasMVSNet_bld76.23 31973.27 32285.09 31783.79 35172.92 31085.65 33593.47 25371.52 33668.84 34879.08 34949.77 34893.21 33466.81 32760.52 35389.13 341
pmmvs371.81 32268.71 32581.11 33175.86 35870.42 33486.74 32783.66 35358.95 35368.64 34980.89 34736.93 35889.52 35163.10 33963.59 35083.39 349
CMPMVSbinary59.16 2180.52 30079.20 30284.48 32083.98 35067.63 34689.95 29393.84 24764.79 34966.81 35091.14 25957.93 32895.17 31076.25 26488.10 22090.65 325
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet72.15 32170.13 32478.20 33482.95 35465.68 34883.91 34382.40 35562.94 35164.47 35179.82 34842.85 35786.26 35557.41 35174.44 33382.65 352
YYNet179.22 31077.20 31285.28 31588.20 33472.66 31585.87 33290.05 33074.33 31862.70 35287.61 32066.09 28492.03 34366.94 32372.97 33591.15 319
MDA-MVSNet_test_wron79.21 31177.19 31385.29 31488.22 33272.77 31385.87 33290.06 32874.34 31762.62 35387.56 32166.14 28391.99 34466.90 32673.01 33491.10 323
MDA-MVSNet-bldmvs78.85 31276.31 31586.46 30289.76 31873.88 30388.79 30990.42 32079.16 26859.18 35488.33 31060.20 31794.04 32462.00 34168.96 34491.48 312
LCM-MVSNet66.00 32462.16 32877.51 33664.51 36458.29 35683.87 34490.90 31448.17 35754.69 35573.31 35316.83 36986.75 35465.47 32961.67 35287.48 348
FPMVS64.63 32562.55 32770.88 33870.80 36056.71 35784.42 34184.42 35251.78 35649.57 35681.61 34623.49 36381.48 35840.61 35976.25 33174.46 355
PMMVS259.60 32656.40 32969.21 34068.83 36146.58 36473.02 35877.48 36355.07 35549.21 35772.95 35417.43 36880.04 35949.32 35644.33 35980.99 354
DeepMVS_CXcopyleft56.31 34574.23 35951.81 36256.67 36844.85 35848.54 35875.16 35027.87 36258.74 36540.92 35852.22 35658.39 358
test_method50.52 33048.47 33256.66 34452.26 36818.98 37141.51 36381.40 35710.10 36444.59 35975.01 35128.51 36168.16 36153.54 35349.31 35882.83 351
Gipumacopyleft57.99 32854.91 33067.24 34188.51 32665.59 34952.21 36190.33 32443.58 35942.84 36051.18 36120.29 36685.07 35634.77 36070.45 33951.05 359
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high58.88 32754.22 33172.86 33756.50 36756.67 35880.75 35286.00 34873.09 32837.39 36164.63 35822.17 36479.49 36043.51 35723.96 36282.43 353
tmp_tt35.64 33439.24 33624.84 34814.87 37023.90 37062.71 35951.51 3696.58 36636.66 36262.08 35944.37 35630.34 36752.40 35422.00 36420.27 362
PMVScopyleft47.18 2252.22 32948.46 33363.48 34245.72 36946.20 36573.41 35778.31 36141.03 36030.06 36365.68 3576.05 37083.43 35730.04 36165.86 34760.80 356
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 33138.59 33757.77 34356.52 36648.77 36355.38 36058.64 36729.33 36328.96 36452.65 3604.68 37164.62 36428.11 36233.07 36059.93 357
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN43.23 33242.29 33446.03 34665.58 36337.41 36673.51 35664.62 36433.99 36128.47 36547.87 36219.90 36767.91 36222.23 36324.45 36132.77 360
EMVS42.07 33341.12 33544.92 34763.45 36535.56 36873.65 35563.48 36533.05 36226.88 36645.45 36321.27 36567.14 36319.80 36423.02 36332.06 361
wuyk23d21.27 33620.48 33923.63 34968.59 36236.41 36749.57 3626.85 3719.37 3657.89 3674.46 3694.03 37231.37 36617.47 36516.07 3653.12 363
testmvs8.92 33711.52 3401.12 3511.06 3710.46 37386.02 3310.65 3720.62 3672.74 3689.52 3670.31 3740.45 3692.38 3660.39 3662.46 365
test1238.76 33811.22 3411.39 3500.85 3720.97 37285.76 3340.35 3730.54 3682.45 3698.14 3680.60 3730.48 3682.16 3670.17 3672.71 364
uanet_test0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
cdsmvs_eth3d_5k22.14 33529.52 3380.00 3520.00 3730.00 3740.00 36495.76 1490.00 3690.00 37094.29 14675.66 1660.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas6.64 3408.86 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 37079.70 1190.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
ab-mvs-re7.82 33910.43 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37093.88 1650.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
OPU-MVS96.21 198.00 4490.85 197.13 997.08 4092.59 198.94 8492.25 4798.99 1098.84 8
save fliter97.85 4885.63 6895.21 9596.82 6689.44 47
test_0728_SECOND95.01 1598.79 186.43 4197.09 1197.49 599.61 395.62 599.08 798.99 5
GSMVS96.12 142
sam_mvs171.70 21596.12 142
sam_mvs70.60 229
MTGPAbinary96.97 49
test_post188.00 3189.81 36669.31 25095.53 30176.65 260
test_post10.29 36570.57 23395.91 289
patchmatchnet-post83.76 34071.53 21796.48 262
MTMP96.16 4460.64 366
gm-plane-assit89.60 32068.00 34277.28 29188.99 29897.57 18179.44 233
test9_res91.91 6298.71 3098.07 63
agg_prior290.54 8898.68 3598.27 47
test_prior485.96 5794.11 170
test_prior93.82 6497.29 6984.49 8596.88 5998.87 8898.11 61
新几何293.11 220
旧先验196.79 8081.81 15895.67 15596.81 5386.69 3897.66 7996.97 115
无先验93.28 21296.26 10973.95 32099.05 6080.56 21896.59 127
原ACMM292.94 227
testdata298.75 10078.30 244
segment_acmp87.16 35
testdata192.15 25087.94 90
plane_prior794.70 16182.74 136
plane_prior694.52 16782.75 13474.23 182
plane_prior596.22 11498.12 13788.15 11189.99 18794.63 198
plane_prior494.86 124
plane_prior295.85 6190.81 17
plane_prior194.59 165
plane_prior82.73 13795.21 9589.66 4489.88 192
n20.00 374
nn0.00 374
door-mid85.49 349
test1196.57 94
door85.33 350
HQP5-MVS81.56 162
BP-MVS87.11 128
HQP3-MVS96.04 12889.77 194
HQP2-MVS73.83 192
NP-MVS94.37 17582.42 14593.98 158
ACMMP++_ref87.47 228
ACMMP++88.01 223
Test By Simon80.02 114