This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
SED-MVS90.08 290.85 287.77 2695.30 270.98 7093.57 794.06 1277.24 5193.10 195.72 882.99 197.44 589.07 996.63 494.88 9
test_241102_ONE95.30 270.98 7094.06 1277.17 5593.10 195.39 1182.99 197.27 10
test072695.27 571.25 6393.60 694.11 877.33 4992.81 395.79 380.98 9
DVP-MVS++.90.23 191.01 187.89 2494.34 2971.25 6395.06 194.23 578.38 3392.78 495.74 682.45 397.49 389.42 496.68 294.95 5
test_241102_TWO94.06 1277.24 5192.78 495.72 881.26 897.44 589.07 996.58 694.26 37
IU-MVS95.30 271.25 6392.95 5666.81 24192.39 688.94 1196.63 494.85 13
SMA-MVScopyleft89.08 789.23 788.61 594.25 3373.73 1092.40 2293.63 2374.77 11192.29 795.97 274.28 3497.24 1188.58 1396.91 194.87 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft89.48 589.98 488.01 1494.80 1172.69 3291.59 4294.10 1075.90 8892.29 795.66 1081.67 697.38 987.44 2096.34 1593.95 50
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft89.60 390.35 387.33 4595.27 571.25 6393.49 992.73 6577.33 4992.12 995.78 480.98 997.40 789.08 796.41 1293.33 81
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 789.42 496.57 794.67 20
test_one_060195.07 771.46 6194.14 778.27 3592.05 1195.74 680.83 11
PC_three_145268.21 23392.02 1294.00 4882.09 595.98 5584.58 4096.68 294.95 5
test_part295.06 872.65 3391.80 13
MSP-MVS89.51 489.91 588.30 994.28 3273.46 1892.90 1694.11 880.27 1291.35 1494.16 4178.35 1396.77 2389.59 394.22 6494.67 20
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
FOURS195.00 1072.39 4295.06 193.84 1874.49 11791.30 15
APDe-MVS89.15 689.63 687.73 3094.49 2071.69 5893.83 493.96 1675.70 9291.06 1696.03 176.84 1597.03 1589.09 695.65 3294.47 27
SD-MVS88.06 1488.50 1386.71 5792.60 7672.71 3091.81 4093.19 4077.87 3690.32 1794.00 4874.83 2793.78 14587.63 1794.27 6393.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepPCF-MVS80.84 188.10 1288.56 1286.73 5692.24 7869.03 11089.57 8993.39 3577.53 4689.79 1894.12 4378.98 1296.58 3685.66 2795.72 2994.58 23
xxxxxxxxxxxxxcwj87.88 1987.92 1987.77 2693.80 4472.35 4590.47 6689.69 16874.31 12189.16 1995.10 1375.65 2196.19 4587.07 2196.01 1794.79 15
SF-MVS88.46 1188.74 1187.64 3892.78 6971.95 5392.40 2294.74 275.71 9089.16 1995.10 1375.65 2196.19 4587.07 2196.01 1794.79 15
TSAR-MVS + MP.88.02 1788.11 1687.72 3293.68 4972.13 5091.41 4792.35 8074.62 11588.90 2193.85 5275.75 2096.00 5387.80 1594.63 5395.04 3
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ETH3D-3000-0.188.09 1388.29 1487.50 4192.76 7071.89 5691.43 4694.70 374.47 11888.86 2294.61 2175.23 2495.84 5886.62 2695.92 2194.78 17
APD-MVScopyleft87.44 2687.52 2487.19 4794.24 3472.39 4291.86 3992.83 6173.01 14988.58 2394.52 2373.36 4096.49 3784.26 4695.01 4292.70 103
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
9.1488.26 1592.84 6891.52 4594.75 173.93 13188.57 2494.67 1975.57 2395.79 5986.77 2395.76 28
testtj87.78 2087.78 2187.77 2694.55 1872.47 3992.23 3193.49 3074.75 11288.33 2594.43 3273.27 4297.02 1684.18 4994.84 4893.82 58
ACMMP_NAP88.05 1688.08 1787.94 1793.70 4773.05 2390.86 5693.59 2576.27 8188.14 2695.09 1571.06 5996.67 2887.67 1696.37 1494.09 42
SteuartSystems-ACMMP88.72 1088.86 1088.32 892.14 8072.96 2693.73 593.67 2280.19 1488.10 2794.80 1673.76 3997.11 1387.51 1895.82 2494.90 8
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS88.93 989.13 988.33 794.77 1273.82 990.51 6393.00 4780.90 988.06 2894.06 4676.43 1696.84 2088.48 1495.99 1994.34 33
canonicalmvs85.91 5385.87 5486.04 7289.84 11969.44 10890.45 6993.00 4776.70 7188.01 2991.23 10373.28 4193.91 14081.50 7788.80 12194.77 18
HPM-MVS++copyleft89.02 889.15 888.63 495.01 976.03 192.38 2592.85 6080.26 1387.78 3094.27 3675.89 1996.81 2287.45 1996.44 993.05 92
ZD-MVS94.38 2772.22 4892.67 6770.98 17887.75 3194.07 4574.01 3896.70 2684.66 3994.84 48
alignmvs85.48 5985.32 6185.96 7489.51 12669.47 10589.74 8592.47 7476.17 8287.73 3291.46 9970.32 6793.78 14581.51 7688.95 11894.63 22
ETH3 D test640087.50 2587.44 2687.70 3593.71 4671.75 5790.62 6194.05 1570.80 18087.59 3393.51 5677.57 1496.63 3183.31 5595.77 2694.72 19
ETH3D cwj APD-0.1687.31 3287.27 2887.44 4391.60 8772.45 4190.02 7794.37 471.76 16387.28 3494.27 3675.18 2596.08 4985.16 3095.77 2693.80 61
旧先验286.56 18558.10 32887.04 3588.98 27874.07 140
Regformer-286.63 4386.53 4286.95 5189.33 13371.24 6788.43 12392.05 9382.50 186.88 3690.09 12874.45 2995.61 6384.38 4390.63 10094.01 47
SR-MVS86.73 3986.67 4086.91 5294.11 4072.11 5192.37 2692.56 7374.50 11686.84 3794.65 2067.31 9595.77 6084.80 3792.85 7492.84 101
Regformer-186.41 4786.33 4486.64 5889.33 13370.93 7588.43 12391.39 12282.14 386.65 3890.09 12874.39 3295.01 9783.97 5190.63 10093.97 49
test117286.20 5086.22 4786.12 7093.95 4269.89 9691.79 4192.28 8275.07 10486.40 3994.58 2265.00 12095.56 6684.34 4592.60 7792.90 99
MP-MVS-pluss87.67 2287.72 2287.54 3993.64 5072.04 5289.80 8393.50 2875.17 10386.34 4095.29 1270.86 6096.00 5388.78 1296.04 1694.58 23
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
APD-MVS_3200maxsize85.97 5285.88 5386.22 6792.69 7269.53 10391.93 3692.99 4973.54 13985.94 4194.51 2665.80 11295.61 6383.04 6292.51 7993.53 76
zzz-MVS87.53 2487.41 2787.90 2194.18 3774.25 590.23 7392.02 9479.45 1985.88 4294.80 1668.07 8696.21 4386.69 2495.34 3693.23 84
MTAPA87.23 3387.00 3487.90 2194.18 3774.25 586.58 18492.02 9479.45 1985.88 4294.80 1668.07 8696.21 4386.69 2495.34 3693.23 84
TSAR-MVS + GP.85.71 5785.33 6086.84 5391.34 8972.50 3789.07 10187.28 23276.41 7485.80 4490.22 12674.15 3795.37 8381.82 7591.88 8492.65 107
NCCC88.06 1488.01 1888.24 1094.41 2473.62 1191.22 5192.83 6181.50 685.79 4593.47 5973.02 4597.00 1784.90 3394.94 4494.10 41
SR-MVS-dyc-post85.77 5585.61 5686.23 6693.06 6270.63 8291.88 3792.27 8373.53 14085.69 4694.45 2865.00 12095.56 6682.75 6591.87 8592.50 110
RE-MVS-def85.48 5793.06 6270.63 8291.88 3792.27 8373.53 14085.69 4694.45 2863.87 12782.75 6591.87 8592.50 110
testdata79.97 23790.90 9664.21 20784.71 26259.27 32085.40 4892.91 7062.02 15889.08 27668.95 18891.37 9286.63 289
Regformer-485.68 5885.45 5886.35 6288.95 15269.67 10088.29 13391.29 12481.73 585.36 4990.01 13172.62 4795.35 8483.28 5887.57 13394.03 45
abl_685.23 6484.95 7086.07 7192.23 7970.48 8690.80 5892.08 9273.51 14285.26 5094.16 4162.75 14495.92 5782.46 7291.30 9491.81 134
ZNCC-MVS87.94 1887.85 2088.20 1194.39 2673.33 2093.03 1493.81 2076.81 6585.24 5194.32 3571.76 5496.93 1885.53 2995.79 2594.32 34
PHI-MVS86.43 4586.17 5087.24 4690.88 9770.96 7292.27 3094.07 1172.45 15285.22 5291.90 8669.47 7696.42 3883.28 5895.94 2094.35 32
Regformer-385.23 6485.07 6685.70 7688.95 15269.01 11288.29 13389.91 16280.95 885.01 5390.01 13172.45 4894.19 12682.50 7187.57 13393.90 53
TEST993.26 5672.96 2688.75 11391.89 10368.44 23185.00 5493.10 6574.36 3395.41 77
train_agg86.43 4586.20 4887.13 4993.26 5672.96 2688.75 11391.89 10368.69 22785.00 5493.10 6574.43 3095.41 7784.97 3295.71 3093.02 94
HFP-MVS87.58 2387.47 2587.94 1794.58 1673.54 1593.04 1293.24 3776.78 6784.91 5694.44 3070.78 6196.61 3284.53 4194.89 4693.66 64
#test#87.33 3187.13 3387.94 1794.58 1673.54 1592.34 2793.24 3775.23 10084.91 5694.44 3070.78 6196.61 3283.75 5494.89 4693.66 64
test_prior386.73 3986.86 3986.33 6392.61 7469.59 10188.85 10892.97 5475.41 9684.91 5693.54 5474.28 3495.48 7183.31 5595.86 2293.91 51
test_prior288.85 10875.41 9684.91 5693.54 5474.28 3483.31 5595.86 22
test_893.13 5872.57 3688.68 11891.84 10668.69 22784.87 6093.10 6574.43 3095.16 89
MCST-MVS87.37 3087.25 3087.73 3094.53 1972.46 4089.82 8193.82 1973.07 14784.86 6192.89 7176.22 1796.33 3984.89 3595.13 4194.40 30
GST-MVS87.42 2887.26 2987.89 2494.12 3972.97 2592.39 2493.43 3376.89 6384.68 6293.99 5070.67 6496.82 2184.18 4995.01 4293.90 53
h-mvs3383.15 8782.19 9586.02 7390.56 10270.85 7888.15 14089.16 18476.02 8584.67 6391.39 10161.54 16395.50 7082.71 6775.48 27891.72 136
hse-mvs281.72 10980.94 11584.07 12488.72 16367.68 14485.87 20387.26 23376.02 8584.67 6388.22 18261.54 16393.48 16182.71 6773.44 30591.06 154
ACMMPR87.44 2687.23 3188.08 1394.64 1373.59 1293.04 1293.20 3976.78 6784.66 6594.52 2368.81 8496.65 2984.53 4194.90 4594.00 48
CDPH-MVS85.76 5685.29 6387.17 4893.49 5371.08 6888.58 12192.42 7868.32 23284.61 6693.48 5772.32 4996.15 4879.00 9495.43 3494.28 36
UA-Net85.08 6884.96 6985.45 7892.07 8168.07 13789.78 8490.86 13782.48 284.60 6793.20 6369.35 7795.22 8771.39 16490.88 9893.07 91
region2R87.42 2887.20 3288.09 1294.63 1473.55 1393.03 1493.12 4276.73 7084.45 6894.52 2369.09 8096.70 2684.37 4494.83 5094.03 45
agg_prior186.22 4986.09 5286.62 5992.85 6671.94 5488.59 12091.78 10968.96 22284.41 6993.18 6474.94 2694.93 9884.75 3895.33 3893.01 95
agg_prior92.85 6671.94 5491.78 10984.41 6994.93 98
VDD-MVS83.01 9282.36 9384.96 9191.02 9466.40 16488.91 10588.11 21277.57 4284.39 7193.29 6252.19 24393.91 14077.05 11688.70 12394.57 25
casdiffmvs85.11 6785.14 6585.01 8987.20 21165.77 17887.75 15092.83 6177.84 3784.36 7292.38 7972.15 5193.93 13981.27 7990.48 10295.33 1
MSLP-MVS++85.43 6185.76 5584.45 10991.93 8370.24 8790.71 5992.86 5977.46 4884.22 7392.81 7567.16 9792.94 18680.36 8894.35 6190.16 186
DeepC-MVS_fast79.65 386.91 3886.62 4187.76 2993.52 5272.37 4491.26 4893.04 4376.62 7284.22 7393.36 6171.44 5796.76 2480.82 8395.33 3894.16 39
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DROMVSNet86.01 5186.38 4384.91 9589.31 13866.27 16792.32 2893.63 2379.37 2184.17 7591.88 8769.04 8395.43 7583.93 5293.77 6793.01 95
ETV-MVS84.90 7284.67 7385.59 7789.39 13168.66 12688.74 11592.64 7179.97 1784.10 7685.71 24769.32 7895.38 8080.82 8391.37 9292.72 102
VNet82.21 10082.41 9181.62 19990.82 9860.93 25884.47 23589.78 16476.36 7984.07 7791.88 8764.71 12290.26 25670.68 16988.89 11993.66 64
baseline84.93 7084.98 6784.80 10087.30 20965.39 18687.30 16292.88 5877.62 4084.04 7892.26 8071.81 5393.96 13381.31 7890.30 10495.03 4
PGM-MVS86.68 4186.27 4687.90 2194.22 3573.38 1990.22 7493.04 4375.53 9483.86 7994.42 3367.87 9096.64 3082.70 6994.57 5593.66 64
MP-MVScopyleft87.71 2187.64 2387.93 2094.36 2873.88 792.71 2192.65 7077.57 4283.84 8094.40 3472.24 5096.28 4185.65 2895.30 4093.62 71
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft87.11 3586.98 3587.50 4193.88 4372.16 4992.19 3293.33 3676.07 8483.81 8193.95 5169.77 7496.01 5285.15 3194.66 5294.32 34
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS87.11 3586.92 3687.68 3794.20 3673.86 893.98 392.82 6476.62 7283.68 8294.46 2767.93 8895.95 5684.20 4894.39 5993.23 84
XVS87.18 3486.91 3788.00 1594.42 2273.33 2092.78 1792.99 4979.14 2283.67 8394.17 4067.45 9396.60 3483.06 6094.50 5694.07 43
X-MVStestdata80.37 14377.83 17988.00 1594.42 2273.33 2092.78 1792.99 4979.14 2283.67 8312.47 36967.45 9396.60 3483.06 6094.50 5694.07 43
DELS-MVS85.41 6285.30 6285.77 7588.49 17067.93 13985.52 21693.44 3278.70 2983.63 8589.03 16074.57 2895.71 6280.26 9094.04 6593.66 64
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
LFMVS81.82 10881.23 10983.57 14191.89 8463.43 22589.84 8081.85 30377.04 6083.21 8693.10 6552.26 24293.43 16571.98 15989.95 11193.85 55
VDDNet81.52 11580.67 11884.05 12690.44 10564.13 20989.73 8685.91 25271.11 17583.18 8793.48 5750.54 26693.49 16073.40 14888.25 12994.54 26
CSCG86.41 4786.19 4987.07 5092.91 6572.48 3890.81 5793.56 2673.95 12983.16 8891.07 10975.94 1895.19 8879.94 9294.38 6093.55 74
CS-MVS84.53 7384.97 6883.23 15487.54 20363.27 22888.82 11093.50 2875.98 8783.07 8989.73 13870.29 6895.23 8682.07 7493.70 6991.18 150
nrg03083.88 7583.53 7784.96 9186.77 21969.28 10990.46 6892.67 6774.79 11082.95 9091.33 10272.70 4693.09 18080.79 8579.28 23592.50 110
EI-MVSNet-Vis-set84.19 7483.81 7685.31 8088.18 17967.85 14087.66 15289.73 16780.05 1682.95 9089.59 14470.74 6394.82 10680.66 8684.72 16993.28 83
MVS_Test83.15 8783.06 8383.41 14686.86 21563.21 23086.11 19792.00 9774.31 12182.87 9289.44 15270.03 7093.21 17077.39 11388.50 12793.81 59
DPM-MVS84.93 7084.29 7586.84 5390.20 10973.04 2487.12 16693.04 4369.80 20082.85 9391.22 10473.06 4496.02 5176.72 12194.63 5391.46 144
DeepC-MVS79.81 287.08 3786.88 3887.69 3691.16 9172.32 4790.31 7193.94 1777.12 5782.82 9494.23 3972.13 5297.09 1484.83 3695.37 3593.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mPP-MVS86.67 4286.32 4587.72 3294.41 2473.55 1392.74 1992.22 8776.87 6482.81 9594.25 3866.44 10296.24 4282.88 6494.28 6293.38 78
test1286.80 5592.63 7370.70 8191.79 10882.71 9671.67 5596.16 4794.50 5693.54 75
HPM-MVS_fast85.35 6384.95 7086.57 6193.69 4870.58 8592.15 3491.62 11373.89 13282.67 9794.09 4462.60 14595.54 6980.93 8192.93 7293.57 73
Effi-MVS+83.62 8083.08 8285.24 8388.38 17567.45 14788.89 10689.15 18575.50 9582.27 9888.28 17969.61 7594.45 11677.81 10887.84 13193.84 57
EI-MVSNet-UG-set83.81 7683.38 7985.09 8787.87 18867.53 14687.44 15889.66 16979.74 1882.23 9989.41 15370.24 6994.74 10979.95 9183.92 17792.99 97
MVS_111021_HR85.14 6684.75 7286.32 6591.65 8672.70 3185.98 19990.33 15076.11 8382.08 10091.61 9471.36 5894.17 12881.02 8092.58 7892.08 126
diffmvs82.10 10181.88 10382.76 18083.00 28063.78 21583.68 25189.76 16572.94 15082.02 10189.85 13565.96 11190.79 25082.38 7387.30 14093.71 63
xiu_mvs_v1_base_debu80.80 13179.72 13584.03 12987.35 20470.19 9085.56 20988.77 19969.06 21881.83 10288.16 18350.91 26092.85 18878.29 10587.56 13589.06 224
xiu_mvs_v1_base80.80 13179.72 13584.03 12987.35 20470.19 9085.56 20988.77 19969.06 21881.83 10288.16 18350.91 26092.85 18878.29 10587.56 13589.06 224
xiu_mvs_v1_base_debi80.80 13179.72 13584.03 12987.35 20470.19 9085.56 20988.77 19969.06 21881.83 10288.16 18350.91 26092.85 18878.29 10587.56 13589.06 224
CS-MVS-test85.02 6985.21 6484.46 10889.28 14065.70 17991.16 5293.56 2677.83 3881.80 10589.89 13370.67 6495.61 6380.39 8792.34 8292.06 127
新几何183.42 14493.13 5870.71 8085.48 25557.43 33381.80 10591.98 8463.28 13392.27 20664.60 22692.99 7187.27 272
test_yl81.17 12080.47 12283.24 15289.13 14763.62 21686.21 19489.95 16072.43 15581.78 10789.61 14257.50 20493.58 15470.75 16786.90 14592.52 108
DCV-MVSNet81.17 12080.47 12283.24 15289.13 14763.62 21686.21 19489.95 16072.43 15581.78 10789.61 14257.50 20493.58 15470.75 16786.90 14592.52 108
112180.84 12679.77 13384.05 12693.11 6070.78 7984.66 22985.42 25657.37 33481.76 10992.02 8363.41 13194.12 12967.28 20292.93 7287.26 273
MG-MVS83.41 8383.45 7883.28 14992.74 7162.28 24488.17 13889.50 17275.22 10181.49 11092.74 7866.75 9895.11 9172.85 15491.58 8992.45 113
CANet86.45 4486.10 5187.51 4090.09 11170.94 7489.70 8792.59 7281.78 481.32 11191.43 10070.34 6697.23 1284.26 4693.36 7094.37 31
MVSFormer82.85 9382.05 9985.24 8387.35 20470.21 8890.50 6490.38 14668.55 22981.32 11189.47 14761.68 16093.46 16378.98 9590.26 10592.05 128
lupinMVS81.39 11880.27 12784.76 10187.35 20470.21 8885.55 21286.41 24462.85 29181.32 11188.61 16961.68 16092.24 20978.41 10390.26 10591.83 132
xiu_mvs_v2_base81.69 11181.05 11283.60 13989.15 14668.03 13884.46 23790.02 15870.67 18481.30 11486.53 23363.17 13794.19 12675.60 13088.54 12588.57 246
PS-MVSNAJ81.69 11181.02 11383.70 13889.51 12668.21 13584.28 24390.09 15770.79 18181.26 11585.62 25163.15 13894.29 11875.62 12988.87 12088.59 245
原ACMM184.35 11493.01 6468.79 11692.44 7563.96 28281.09 11691.57 9566.06 10895.45 7367.19 20594.82 5188.81 239
jason81.39 11880.29 12684.70 10286.63 22169.90 9585.95 20086.77 24063.24 28481.07 11789.47 14761.08 17692.15 21278.33 10490.07 11092.05 128
jason: jason.
OPM-MVS83.50 8182.95 8585.14 8588.79 16070.95 7389.13 10091.52 11677.55 4580.96 11891.75 8960.71 18094.50 11579.67 9386.51 15289.97 202
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNetpermissive83.46 8282.80 8885.43 7990.25 10868.74 12090.30 7290.13 15676.33 8080.87 11992.89 7161.00 17794.20 12572.45 15890.97 9693.35 80
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMMPcopyleft85.89 5485.39 5987.38 4493.59 5172.63 3492.74 1993.18 4176.78 6780.73 12093.82 5364.33 12396.29 4082.67 7090.69 9993.23 84
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Anonymous2024052980.19 14778.89 15584.10 12290.60 10164.75 19688.95 10490.90 13565.97 25680.59 12191.17 10649.97 27193.73 15169.16 18682.70 19793.81 59
test_part182.78 9482.08 9884.89 9690.66 10066.97 15890.96 5592.93 5777.19 5480.53 12290.04 13063.44 13095.39 7976.04 12576.90 25592.31 117
MVS_111021_LR82.61 9782.11 9684.11 12188.82 15771.58 5985.15 21986.16 24974.69 11380.47 12391.04 11062.29 15290.55 25480.33 8990.08 10990.20 185
ECVR-MVScopyleft79.61 15579.26 14780.67 22490.08 11254.69 32487.89 14877.44 33574.88 10980.27 12492.79 7648.96 28592.45 19868.55 19192.50 8094.86 12
VPA-MVSNet80.60 13780.55 12080.76 22288.07 18360.80 26186.86 17491.58 11575.67 9380.24 12589.45 15163.34 13290.25 25770.51 17179.22 23691.23 149
ECVR-MVS1179.43 16279.18 15080.15 23489.99 11553.31 33787.33 16177.05 33875.04 10580.23 12692.77 7748.97 28492.33 20568.87 18992.40 8194.81 14
Anonymous20240521178.25 19077.01 19881.99 19391.03 9360.67 26284.77 22783.90 27570.65 18680.00 12791.20 10541.08 33191.43 23365.21 22085.26 16493.85 55
test22291.50 8868.26 13384.16 24483.20 28954.63 34579.74 12891.63 9358.97 19391.42 9186.77 285
OMC-MVS82.69 9581.97 10284.85 9788.75 16267.42 14887.98 14290.87 13674.92 10879.72 12991.65 9162.19 15593.96 13375.26 13386.42 15393.16 89
CPTT-MVS83.73 7783.33 8084.92 9493.28 5570.86 7792.09 3590.38 14668.75 22679.57 13092.83 7360.60 18493.04 18480.92 8291.56 9090.86 162
IS-MVSNet83.15 8782.81 8784.18 12089.94 11763.30 22791.59 4288.46 20979.04 2679.49 13192.16 8165.10 11794.28 11967.71 19791.86 8794.95 5
PS-MVSNAJss82.07 10381.31 10784.34 11586.51 22267.27 15289.27 9391.51 11771.75 16479.37 13290.22 12663.15 13894.27 12077.69 10982.36 20091.49 142
EPP-MVSNet83.40 8483.02 8484.57 10490.13 11064.47 20292.32 2890.73 13874.45 12079.35 13391.10 10769.05 8295.12 9072.78 15587.22 14194.13 40
DP-MVS Recon83.11 9082.09 9786.15 6894.44 2170.92 7688.79 11192.20 8870.53 18779.17 13491.03 11264.12 12596.03 5068.39 19490.14 10791.50 141
ab-mvs79.51 15878.97 15481.14 21488.46 17260.91 25983.84 24989.24 18170.36 18979.03 13588.87 16363.23 13690.21 25865.12 22182.57 19892.28 119
EIA-MVS83.31 8682.80 8884.82 9889.59 12265.59 18188.21 13692.68 6674.66 11478.96 13686.42 23569.06 8195.26 8575.54 13190.09 10893.62 71
PVSNet_Blended_VisFu82.62 9681.83 10484.96 9190.80 9969.76 9888.74 11591.70 11269.39 20778.96 13688.46 17465.47 11494.87 10574.42 13688.57 12490.24 184
HQP_MVS83.64 7983.14 8185.14 8590.08 11268.71 12291.25 4992.44 7579.12 2478.92 13891.00 11360.42 18695.38 8078.71 9786.32 15491.33 146
plane_prior368.60 12778.44 3178.92 138
RRT_MVS79.88 15278.38 16584.38 11185.42 23670.60 8488.71 11788.75 20372.30 15778.83 14089.14 15544.44 31292.18 21178.50 10079.33 23490.35 180
EI-MVSNet80.52 14079.98 12982.12 18884.28 25263.19 23286.41 18888.95 19574.18 12678.69 14187.54 19866.62 9992.43 19972.57 15780.57 21990.74 166
MVSTER79.01 17477.88 17882.38 18683.07 27764.80 19584.08 24888.95 19569.01 22178.69 14187.17 21054.70 22392.43 19974.69 13580.57 21989.89 205
API-MVS81.99 10581.23 10984.26 11890.94 9570.18 9391.10 5389.32 17671.51 17078.66 14388.28 17965.26 11595.10 9464.74 22591.23 9587.51 266
GeoE81.71 11081.01 11483.80 13789.51 12664.45 20388.97 10388.73 20471.27 17378.63 14489.76 13766.32 10493.20 17269.89 17886.02 15993.74 62
UniMVSNet (Re)81.60 11481.11 11183.09 16088.38 17564.41 20487.60 15393.02 4678.42 3278.56 14588.16 18369.78 7393.26 16969.58 18276.49 26291.60 137
MAR-MVS81.84 10780.70 11785.27 8291.32 9071.53 6089.82 8190.92 13469.77 20178.50 14686.21 23962.36 15194.52 11465.36 21992.05 8389.77 210
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Fast-Effi-MVS+80.81 12979.92 13083.47 14288.85 15464.51 19985.53 21489.39 17470.79 18178.49 14785.06 26367.54 9293.58 15467.03 20886.58 15092.32 116
FIs82.07 10382.42 9081.04 21788.80 15958.34 28288.26 13593.49 3076.93 6278.47 14891.04 11069.92 7292.34 20469.87 17984.97 16692.44 114
UniMVSNet_NR-MVSNet81.88 10681.54 10682.92 16988.46 17263.46 22387.13 16592.37 7980.19 1478.38 14989.14 15571.66 5693.05 18270.05 17576.46 26392.25 120
DU-MVS81.12 12280.52 12182.90 17087.80 19163.46 22387.02 16991.87 10579.01 2778.38 14989.07 15865.02 11893.05 18270.05 17576.46 26392.20 122
CLD-MVS82.31 9981.65 10584.29 11788.47 17167.73 14385.81 20792.35 8075.78 8978.33 15186.58 23064.01 12694.35 11776.05 12487.48 13890.79 163
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VPNet78.69 18178.66 15878.76 25788.31 17755.72 32084.45 23886.63 24276.79 6678.26 15290.55 12059.30 19189.70 26666.63 20977.05 25390.88 161
V4279.38 16678.24 17082.83 17281.10 31565.50 18385.55 21289.82 16371.57 16978.21 15386.12 24160.66 18293.18 17575.64 12875.46 28089.81 209
BH-RMVSNet79.61 15578.44 16383.14 15889.38 13265.93 17384.95 22487.15 23573.56 13878.19 15489.79 13656.67 21293.36 16659.53 26586.74 14890.13 188
v2v48280.23 14579.29 14683.05 16383.62 26464.14 20887.04 16889.97 15973.61 13678.18 15587.22 20761.10 17593.82 14376.11 12376.78 26091.18 150
PVSNet_BlendedMVS80.60 13780.02 12882.36 18788.85 15465.40 18486.16 19692.00 9769.34 20978.11 15686.09 24266.02 10994.27 12071.52 16182.06 20287.39 268
PVSNet_Blended80.98 12380.34 12482.90 17088.85 15465.40 18484.43 23992.00 9767.62 23678.11 15685.05 26466.02 10994.27 12071.52 16189.50 11489.01 229
v114480.03 14979.03 15283.01 16583.78 26264.51 19987.11 16790.57 14271.96 16278.08 15886.20 24061.41 16793.94 13674.93 13477.23 25090.60 171
TranMVSNet+NR-MVSNet80.84 12680.31 12582.42 18587.85 18962.33 24287.74 15191.33 12380.55 1177.99 15989.86 13465.23 11692.62 19267.05 20775.24 28892.30 118
Baseline_NR-MVSNet78.15 19578.33 16877.61 27585.79 22956.21 31686.78 17885.76 25373.60 13777.93 16087.57 19665.02 11888.99 27767.14 20675.33 28487.63 262
TR-MVS77.44 21176.18 21681.20 21288.24 17863.24 22984.61 23386.40 24567.55 23777.81 16186.48 23454.10 22893.15 17657.75 28382.72 19687.20 274
v119279.59 15778.43 16483.07 16283.55 26664.52 19886.93 17290.58 14170.83 17977.78 16285.90 24359.15 19293.94 13673.96 14177.19 25290.76 164
PCF-MVS73.52 780.38 14278.84 15685.01 8987.71 19568.99 11383.65 25291.46 12163.00 28877.77 16390.28 12366.10 10695.09 9561.40 25188.22 13090.94 160
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
WR-MVS79.49 15979.22 14980.27 23288.79 16058.35 28185.06 22188.61 20778.56 3077.65 16488.34 17763.81 12990.66 25364.98 22377.22 25191.80 135
XVG-OURS80.41 14179.23 14883.97 13385.64 23269.02 11183.03 26590.39 14571.09 17677.63 16591.49 9854.62 22591.35 23575.71 12783.47 18591.54 139
v14419279.47 16078.37 16682.78 17883.35 26863.96 21186.96 17090.36 14969.99 19577.50 16685.67 24960.66 18293.77 14774.27 13876.58 26190.62 169
v192192079.22 16878.03 17382.80 17583.30 27063.94 21286.80 17690.33 15069.91 19877.48 16785.53 25258.44 19693.75 14973.60 14376.85 25890.71 167
thisisatest053079.40 16477.76 18384.31 11687.69 19765.10 19287.36 15984.26 27170.04 19477.42 16888.26 18149.94 27294.79 10870.20 17384.70 17093.03 93
FC-MVSNet-test81.52 11582.02 10080.03 23688.42 17455.97 31887.95 14493.42 3477.10 5877.38 16990.98 11569.96 7191.79 22368.46 19384.50 17192.33 115
v124078.99 17577.78 18182.64 18183.21 27263.54 22086.62 18390.30 15269.74 20477.33 17085.68 24857.04 21093.76 14873.13 15276.92 25490.62 169
PAPM_NR83.02 9182.41 9184.82 9892.47 7766.37 16587.93 14691.80 10773.82 13377.32 17190.66 11867.90 8994.90 10270.37 17289.48 11593.19 88
ACMM73.20 880.78 13479.84 13283.58 14089.31 13868.37 13089.99 7891.60 11470.28 19177.25 17289.66 14053.37 23493.53 15974.24 13982.85 19388.85 237
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP4-MVS77.24 17395.11 9191.03 156
AUN-MVS79.21 16977.60 18884.05 12688.71 16467.61 14585.84 20587.26 23369.08 21777.23 17488.14 18753.20 23693.47 16275.50 13273.45 30491.06 154
HQP-NCC89.33 13389.17 9576.41 7477.23 174
ACMP_Plane89.33 13389.17 9576.41 7477.23 174
HQP-MVS82.61 9782.02 10084.37 11289.33 13366.98 15689.17 9592.19 8976.41 7477.23 17490.23 12560.17 18995.11 9177.47 11185.99 16091.03 156
TAPA-MVS73.13 979.15 17077.94 17582.79 17789.59 12262.99 23788.16 13991.51 11765.77 25777.14 17891.09 10860.91 17893.21 17050.26 32087.05 14392.17 124
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PAPR81.66 11380.89 11683.99 13290.27 10764.00 21086.76 18091.77 11168.84 22577.13 17989.50 14567.63 9194.88 10467.55 19988.52 12693.09 90
UniMVSNet_ETH3D79.10 17278.24 17081.70 19886.85 21660.24 26887.28 16388.79 19874.25 12476.84 18090.53 12149.48 27791.56 22967.98 19582.15 20193.29 82
EPNet83.72 7882.92 8686.14 6984.22 25469.48 10491.05 5485.27 25781.30 776.83 18191.65 9166.09 10795.56 6676.00 12693.85 6693.38 78
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline176.98 21976.75 20877.66 27388.13 18055.66 32185.12 22081.89 30173.04 14876.79 18288.90 16162.43 15087.78 29463.30 23371.18 32089.55 216
tttt051779.40 16477.91 17683.90 13688.10 18263.84 21388.37 13084.05 27371.45 17176.78 18389.12 15749.93 27494.89 10370.18 17483.18 18992.96 98
TAMVS78.89 17877.51 19083.03 16487.80 19167.79 14284.72 22885.05 26067.63 23576.75 18487.70 19262.25 15390.82 24958.53 27687.13 14290.49 175
XVG-OURS-SEG-HR80.81 12979.76 13483.96 13485.60 23368.78 11783.54 25790.50 14370.66 18576.71 18591.66 9060.69 18191.26 23776.94 11881.58 20791.83 132
3Dnovator+77.84 485.48 5984.47 7488.51 691.08 9273.49 1793.18 1193.78 2180.79 1076.66 18693.37 6060.40 18896.75 2577.20 11493.73 6895.29 2
LPG-MVS_test82.08 10281.27 10884.50 10689.23 14368.76 11890.22 7491.94 10175.37 9876.64 18791.51 9654.29 22694.91 10078.44 10183.78 17889.83 207
LGP-MVS_train84.50 10689.23 14368.76 11891.94 10175.37 9876.64 18791.51 9654.29 22694.91 10078.44 10183.78 17889.83 207
tfpn200view976.42 22875.37 22779.55 24889.13 14757.65 29485.17 21783.60 27873.41 14376.45 18986.39 23652.12 24491.95 21848.33 32883.75 18089.07 222
thres40076.50 22575.37 22779.86 23989.13 14757.65 29485.17 21783.60 27873.41 14376.45 18986.39 23652.12 24491.95 21848.33 32883.75 18090.00 198
HyFIR lowres test77.53 21075.40 22583.94 13589.59 12266.62 16180.36 28888.64 20656.29 34076.45 18985.17 26057.64 20293.28 16861.34 25383.10 19191.91 130
mvs-test180.88 12479.40 14285.29 8185.13 24269.75 9989.28 9288.10 21374.99 10676.44 19286.72 21957.27 20794.26 12473.53 14483.18 18991.87 131
CDS-MVSNet79.07 17377.70 18583.17 15787.60 19868.23 13484.40 24186.20 24867.49 23876.36 19386.54 23261.54 16390.79 25061.86 24787.33 13990.49 175
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thres100view90076.50 22575.55 22179.33 24989.52 12556.99 30285.83 20683.23 28773.94 13076.32 19487.12 21151.89 25191.95 21848.33 32883.75 18089.07 222
thres600view776.50 22575.44 22379.68 24389.40 13057.16 29985.53 21483.23 28773.79 13476.26 19587.09 21251.89 25191.89 22148.05 33383.72 18390.00 198
UGNet80.83 12879.59 13884.54 10588.04 18468.09 13689.42 9088.16 21176.95 6176.22 19689.46 14949.30 28093.94 13668.48 19290.31 10391.60 137
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_djsdf80.30 14479.32 14583.27 15083.98 25965.37 18790.50 6490.38 14668.55 22976.19 19788.70 16556.44 21393.46 16378.98 9580.14 22590.97 159
v14878.72 18077.80 18081.47 20382.73 28761.96 24886.30 19288.08 21573.26 14576.18 19885.47 25462.46 14992.36 20371.92 16073.82 30190.09 192
WTY-MVS75.65 23875.68 21975.57 29486.40 22356.82 30477.92 31482.40 29765.10 26476.18 19887.72 19163.13 14180.90 33360.31 25981.96 20389.00 231
mvs_anonymous79.42 16379.11 15180.34 23084.45 25157.97 28882.59 26787.62 22567.40 23976.17 20088.56 17268.47 8589.59 26770.65 17086.05 15893.47 77
Anonymous2023121178.97 17677.69 18682.81 17490.54 10364.29 20690.11 7691.51 11765.01 26776.16 20188.13 18850.56 26593.03 18569.68 18177.56 24891.11 153
bset_n11_16_dypcd77.12 21675.47 22282.06 19081.12 31465.99 17181.37 28183.20 28969.94 19776.09 20283.38 28547.75 29092.26 20778.51 9977.91 24487.95 254
thisisatest051577.33 21475.38 22683.18 15685.27 23863.80 21482.11 27283.27 28665.06 26575.91 20383.84 27749.54 27694.27 12067.24 20486.19 15691.48 143
RRT_test8_iter0578.38 18877.40 19181.34 20886.00 22758.86 27786.55 18691.26 12572.13 16175.91 20387.42 20144.97 30993.73 15177.02 11775.30 28591.45 145
CANet_DTU80.61 13679.87 13182.83 17285.60 23363.17 23387.36 15988.65 20576.37 7875.88 20588.44 17553.51 23393.07 18173.30 14989.74 11392.25 120
thres20075.55 23974.47 23778.82 25687.78 19457.85 29183.07 26483.51 28172.44 15475.84 20684.42 26952.08 24691.75 22447.41 33583.64 18486.86 283
CHOSEN 1792x268877.63 20975.69 21883.44 14389.98 11668.58 12878.70 30687.50 22856.38 33975.80 20786.84 21558.67 19491.40 23461.58 25085.75 16390.34 181
AdaColmapbinary80.58 13979.42 14184.06 12593.09 6168.91 11589.36 9188.97 19469.27 21075.70 20889.69 13957.20 20995.77 6063.06 23588.41 12887.50 267
c3_l78.75 17977.91 17681.26 21082.89 28461.56 25384.09 24789.13 18769.97 19675.56 20984.29 27166.36 10392.09 21473.47 14775.48 27890.12 189
miper_ehance_all_eth78.59 18477.76 18381.08 21682.66 28961.56 25383.65 25289.15 18568.87 22475.55 21083.79 27966.49 10192.03 21573.25 15076.39 26589.64 213
miper_enhance_ethall77.87 20476.86 20280.92 21981.65 30361.38 25582.68 26688.98 19265.52 26175.47 21182.30 29765.76 11392.00 21772.95 15376.39 26589.39 218
3Dnovator76.31 583.38 8582.31 9486.59 6087.94 18772.94 2990.64 6092.14 9177.21 5375.47 21192.83 7358.56 19594.72 11073.24 15192.71 7692.13 125
jajsoiax79.29 16777.96 17483.27 15084.68 24866.57 16389.25 9490.16 15569.20 21475.46 21389.49 14645.75 30693.13 17876.84 11980.80 21590.11 190
IterMVS-LS80.06 14879.38 14382.11 18985.89 22863.20 23186.79 17789.34 17574.19 12575.45 21486.72 21966.62 9992.39 20172.58 15676.86 25790.75 165
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
BH-untuned79.47 16078.60 15982.05 19189.19 14565.91 17486.07 19888.52 20872.18 15875.42 21587.69 19361.15 17493.54 15860.38 25886.83 14786.70 287
mvs_tets79.13 17177.77 18283.22 15584.70 24766.37 16589.17 9590.19 15469.38 20875.40 21689.46 14944.17 31493.15 17676.78 12080.70 21790.14 187
HY-MVS69.67 1277.95 20177.15 19680.36 22987.57 20260.21 26983.37 25987.78 22366.11 25275.37 21787.06 21463.27 13490.48 25561.38 25282.43 19990.40 179
GBi-Net78.40 18677.40 19181.40 20587.60 19863.01 23488.39 12789.28 17771.63 16675.34 21887.28 20354.80 21991.11 24062.72 23679.57 22890.09 192
test178.40 18677.40 19181.40 20587.60 19863.01 23488.39 12789.28 17771.63 16675.34 21887.28 20354.80 21991.11 24062.72 23679.57 22890.09 192
FMVSNet377.88 20376.85 20380.97 21886.84 21762.36 24186.52 18788.77 19971.13 17475.34 21886.66 22654.07 22991.10 24362.72 23679.57 22889.45 217
CostFormer75.24 24473.90 24379.27 25082.65 29058.27 28380.80 28282.73 29561.57 30275.33 22183.13 28755.52 21591.07 24664.98 22378.34 24288.45 248
FMVSNet278.20 19377.21 19581.20 21287.60 19862.89 23887.47 15789.02 19071.63 16675.29 22287.28 20354.80 21991.10 24362.38 24079.38 23289.61 214
v879.97 15179.02 15382.80 17584.09 25664.50 20187.96 14390.29 15374.13 12875.24 22386.81 21662.88 14393.89 14274.39 13775.40 28290.00 198
anonymousdsp78.60 18377.15 19682.98 16780.51 32167.08 15487.24 16489.53 17165.66 25975.16 22487.19 20952.52 23792.25 20877.17 11579.34 23389.61 214
QAPM80.88 12479.50 14085.03 8888.01 18668.97 11491.59 4292.00 9766.63 24875.15 22592.16 8157.70 20195.45 7363.52 22988.76 12290.66 168
v1079.74 15478.67 15782.97 16884.06 25764.95 19387.88 14990.62 14073.11 14675.11 22686.56 23161.46 16694.05 13273.68 14275.55 27689.90 204
Vis-MVSNet (Re-imp)78.36 18978.45 16278.07 26888.64 16651.78 34286.70 18179.63 32474.14 12775.11 22690.83 11661.29 17189.75 26458.10 28091.60 8892.69 105
cl2278.07 19777.01 19881.23 21182.37 29661.83 25083.55 25687.98 21768.96 22275.06 22883.87 27561.40 16891.88 22273.53 14476.39 26589.98 201
ACMP74.13 681.51 11780.57 11984.36 11389.42 12968.69 12589.97 7991.50 12074.46 11975.04 22990.41 12253.82 23194.54 11277.56 11082.91 19289.86 206
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Effi-MVS+-dtu80.03 14978.57 16084.42 11085.13 24268.74 12088.77 11288.10 21374.99 10674.97 23083.49 28357.27 20793.36 16673.53 14480.88 21391.18 150
XXY-MVS75.41 24275.56 22074.96 30083.59 26557.82 29280.59 28783.87 27666.54 24974.93 23188.31 17863.24 13580.09 33662.16 24376.85 25886.97 281
eth_miper_zixun_eth77.92 20276.69 20981.61 20183.00 28061.98 24783.15 26189.20 18369.52 20674.86 23284.35 27061.76 15992.56 19571.50 16372.89 30990.28 183
GA-MVS76.87 22175.17 23081.97 19482.75 28662.58 23981.44 28086.35 24772.16 16074.74 23382.89 28946.20 30192.02 21668.85 19081.09 21191.30 148
sss73.60 25673.64 24673.51 31182.80 28555.01 32376.12 32081.69 30462.47 29674.68 23485.85 24657.32 20678.11 34360.86 25680.93 21287.39 268
BH-w/o78.21 19277.33 19480.84 22088.81 15865.13 19184.87 22587.85 22269.75 20274.52 23584.74 26761.34 16993.11 17958.24 27985.84 16284.27 317
FMVSNet177.44 21176.12 21781.40 20586.81 21863.01 23488.39 12789.28 17770.49 18874.39 23687.28 20349.06 28391.11 24060.91 25578.52 23890.09 192
cl____77.72 20676.76 20680.58 22582.49 29360.48 26583.09 26287.87 22069.22 21274.38 23785.22 25962.10 15691.53 23071.09 16575.41 28189.73 212
DIV-MVS_self_test77.72 20676.76 20680.58 22582.48 29460.48 26583.09 26287.86 22169.22 21274.38 23785.24 25862.10 15691.53 23071.09 16575.40 28289.74 211
114514_t80.68 13579.51 13984.20 11994.09 4167.27 15289.64 8891.11 13158.75 32574.08 23990.72 11758.10 19795.04 9669.70 18089.42 11690.30 182
WR-MVS_H78.51 18578.49 16178.56 26088.02 18556.38 31388.43 12392.67 6777.14 5673.89 24087.55 19766.25 10589.24 27358.92 27173.55 30390.06 196
tpm273.26 26171.46 26378.63 25883.34 26956.71 30780.65 28680.40 31756.63 33873.55 24182.02 30251.80 25391.24 23856.35 29478.42 24187.95 254
CP-MVSNet78.22 19178.34 16777.84 27087.83 19054.54 32687.94 14591.17 12977.65 3973.48 24288.49 17362.24 15488.43 28662.19 24274.07 29690.55 173
pm-mvs177.25 21576.68 21078.93 25584.22 25458.62 28086.41 18888.36 21071.37 17273.31 24388.01 18961.22 17389.15 27564.24 22773.01 30889.03 228
PS-CasMVS78.01 20078.09 17277.77 27287.71 19554.39 32888.02 14191.22 12677.50 4773.26 24488.64 16860.73 17988.41 28761.88 24673.88 30090.53 174
CVMVSNet72.99 26572.58 25474.25 30784.28 25250.85 34886.41 18883.45 28444.56 35573.23 24587.54 19849.38 27885.70 30765.90 21578.44 24086.19 294
PEN-MVS77.73 20577.69 18677.84 27087.07 21453.91 33187.91 14791.18 12877.56 4473.14 24688.82 16461.23 17289.17 27459.95 26172.37 31190.43 177
1112_ss77.40 21376.43 21380.32 23189.11 15160.41 26783.65 25287.72 22462.13 29973.05 24786.72 21962.58 14789.97 26162.11 24580.80 21590.59 172
tpm72.37 27171.71 26274.35 30682.19 29852.00 34079.22 30077.29 33664.56 27172.95 24883.68 28251.35 25683.26 32558.33 27875.80 27287.81 259
cascas76.72 22374.64 23382.99 16685.78 23065.88 17582.33 27089.21 18260.85 30772.74 24981.02 30847.28 29393.75 14967.48 20085.02 16589.34 219
CR-MVSNet73.37 25871.27 26779.67 24481.32 31265.19 18975.92 32280.30 31859.92 31472.73 25081.19 30552.50 23886.69 30059.84 26277.71 24587.11 279
RPMNet73.51 25770.49 27382.58 18381.32 31265.19 18975.92 32292.27 8357.60 33272.73 25076.45 34252.30 24195.43 7548.14 33277.71 24587.11 279
DTE-MVSNet76.99 21876.80 20477.54 27786.24 22453.06 33987.52 15590.66 13977.08 5972.50 25288.67 16760.48 18589.52 26857.33 28770.74 32290.05 197
Test_1112_low_res76.40 22975.44 22379.27 25089.28 14058.09 28481.69 27687.07 23659.53 31872.48 25386.67 22561.30 17089.33 27160.81 25780.15 22490.41 178
v7n78.97 17677.58 18983.14 15883.45 26765.51 18288.32 13191.21 12773.69 13572.41 25486.32 23857.93 19893.81 14469.18 18575.65 27490.11 190
SCA74.22 25072.33 25779.91 23884.05 25862.17 24579.96 29379.29 32666.30 25172.38 25580.13 31751.95 24988.60 28459.25 26777.67 24788.96 233
CNLPA78.08 19676.79 20581.97 19490.40 10671.07 6987.59 15484.55 26566.03 25572.38 25589.64 14157.56 20386.04 30559.61 26483.35 18688.79 240
NR-MVSNet80.23 14579.38 14382.78 17887.80 19163.34 22686.31 19191.09 13279.01 2772.17 25789.07 15867.20 9692.81 19166.08 21475.65 27492.20 122
OpenMVScopyleft72.83 1079.77 15378.33 16884.09 12385.17 23969.91 9490.57 6290.97 13366.70 24472.17 25791.91 8554.70 22393.96 13361.81 24890.95 9788.41 250
MVS78.19 19476.99 20081.78 19685.66 23166.99 15584.66 22990.47 14455.08 34472.02 25985.27 25763.83 12894.11 13166.10 21389.80 11284.24 318
XVG-ACMP-BASELINE76.11 23374.27 24081.62 19983.20 27364.67 19783.60 25589.75 16669.75 20271.85 26087.09 21232.78 35392.11 21369.99 17780.43 22188.09 253
PatchmatchNetpermissive73.12 26371.33 26678.49 26383.18 27460.85 26079.63 29578.57 32864.13 27671.73 26179.81 32251.20 25885.97 30657.40 28676.36 26888.66 243
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst72.39 26972.13 25873.18 31580.54 32049.91 35179.91 29479.08 32763.11 28671.69 26279.95 31955.32 21682.77 32765.66 21873.89 29986.87 282
TransMVSNet (Re)75.39 24374.56 23577.86 26985.50 23557.10 30186.78 17886.09 25172.17 15971.53 26387.34 20263.01 14289.31 27256.84 29161.83 34487.17 275
Fast-Effi-MVS+-dtu78.02 19976.49 21282.62 18283.16 27666.96 15986.94 17187.45 23072.45 15271.49 26484.17 27254.79 22291.58 22867.61 19880.31 22289.30 220
PAPM77.68 20876.40 21481.51 20287.29 21061.85 24983.78 25089.59 17064.74 26971.23 26588.70 16562.59 14693.66 15352.66 30787.03 14489.01 229
tfpnnormal74.39 24773.16 25078.08 26786.10 22658.05 28584.65 23287.53 22770.32 19071.22 26685.63 25054.97 21889.86 26243.03 34975.02 28986.32 291
RPSCF73.23 26271.46 26378.54 26182.50 29259.85 27082.18 27182.84 29458.96 32271.15 26789.41 15345.48 30884.77 31558.82 27371.83 31691.02 158
DWT-MVSNet_test73.70 25571.86 26079.21 25282.91 28358.94 27682.34 26982.17 29865.21 26271.05 26878.31 33144.21 31390.17 25963.29 23477.28 24988.53 247
PatchT68.46 29967.85 29370.29 32780.70 31843.93 36172.47 33574.88 34460.15 31270.55 26976.57 34149.94 27281.59 33050.58 31474.83 29185.34 305
CL-MVSNet_self_test72.37 27171.46 26375.09 29979.49 33453.53 33380.76 28485.01 26169.12 21670.51 27082.05 30157.92 19984.13 31852.27 30866.00 33787.60 263
IterMVS-SCA-FT75.43 24173.87 24480.11 23582.69 28864.85 19481.57 27883.47 28369.16 21570.49 27184.15 27351.95 24988.15 28969.23 18472.14 31487.34 270
miper_lstm_enhance74.11 25173.11 25177.13 28380.11 32459.62 27272.23 33686.92 23966.76 24370.40 27282.92 28856.93 21182.92 32669.06 18772.63 31088.87 236
gg-mvs-nofinetune69.95 28867.96 29175.94 29083.07 27754.51 32777.23 31770.29 35463.11 28670.32 27362.33 35543.62 31688.69 28353.88 30287.76 13284.62 316
DP-MVS76.78 22274.57 23483.42 14493.29 5469.46 10788.55 12283.70 27763.98 28170.20 27488.89 16254.01 23094.80 10746.66 33781.88 20586.01 299
pmmvs674.69 24673.39 24778.61 25981.38 30957.48 29786.64 18287.95 21864.99 26870.18 27586.61 22750.43 26789.52 26862.12 24470.18 32488.83 238
PVSNet64.34 1872.08 27370.87 27275.69 29286.21 22556.44 31174.37 33280.73 31162.06 30070.17 27682.23 29942.86 32083.31 32454.77 29984.45 17387.32 271
131476.53 22475.30 22980.21 23383.93 26062.32 24384.66 22988.81 19760.23 31170.16 27784.07 27455.30 21790.73 25267.37 20183.21 18887.59 265
Patchmtry70.74 27969.16 28175.49 29680.72 31754.07 33074.94 33180.30 31858.34 32670.01 27881.19 30552.50 23886.54 30153.37 30471.09 32185.87 302
EPMVS69.02 29368.16 28871.59 31979.61 33249.80 35377.40 31666.93 36162.82 29270.01 27879.05 32445.79 30477.86 34556.58 29275.26 28787.13 278
IterMVS74.29 24872.94 25278.35 26481.53 30663.49 22281.58 27782.49 29668.06 23469.99 28083.69 28151.66 25585.54 30865.85 21671.64 31786.01 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test-LLR72.94 26672.43 25574.48 30481.35 31058.04 28678.38 30777.46 33366.66 24569.95 28179.00 32648.06 28879.24 33766.13 21184.83 16786.15 295
test-mter71.41 27570.39 27674.48 30481.35 31058.04 28678.38 30777.46 33360.32 31069.95 28179.00 32636.08 34779.24 33766.13 21184.83 16786.15 295
pmmvs474.03 25371.91 25980.39 22881.96 30068.32 13181.45 27982.14 29959.32 31969.87 28385.13 26152.40 24088.13 29060.21 26074.74 29284.73 314
PLCcopyleft70.83 1178.05 19876.37 21583.08 16191.88 8567.80 14188.19 13789.46 17364.33 27569.87 28388.38 17653.66 23293.58 15458.86 27282.73 19587.86 258
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LTVRE_ROB69.57 1376.25 23174.54 23681.41 20488.60 16764.38 20579.24 29989.12 18870.76 18369.79 28587.86 19049.09 28293.20 17256.21 29580.16 22386.65 288
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LS3D76.95 22074.82 23283.37 14790.45 10467.36 15189.15 9986.94 23861.87 30169.52 28690.61 11951.71 25494.53 11346.38 34086.71 14988.21 252
IB-MVS68.01 1575.85 23673.36 24883.31 14884.76 24666.03 16983.38 25885.06 25970.21 19369.40 28781.05 30745.76 30594.66 11165.10 22275.49 27789.25 221
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PatchMatch-RL72.38 27070.90 27076.80 28688.60 16767.38 15079.53 29676.17 34162.75 29369.36 28882.00 30345.51 30784.89 31453.62 30380.58 21878.12 350
MDTV_nov1_ep1369.97 27883.18 27453.48 33477.10 31880.18 32160.45 30869.33 28980.44 31448.89 28686.90 29951.60 31178.51 239
D2MVS74.82 24573.21 24979.64 24579.81 32862.56 24080.34 28987.35 23164.37 27468.86 29082.66 29346.37 29890.10 26067.91 19681.24 21086.25 292
PMMVS69.34 29168.67 28371.35 32375.67 34862.03 24675.17 32673.46 34950.00 35368.68 29179.05 32452.07 24778.13 34261.16 25482.77 19473.90 354
Patchmatch-RL test70.24 28567.78 29677.61 27577.43 34259.57 27471.16 33870.33 35362.94 29068.65 29272.77 34950.62 26485.49 30969.58 18266.58 33587.77 260
MS-PatchMatch73.83 25472.67 25377.30 28083.87 26166.02 17081.82 27384.66 26361.37 30568.61 29382.82 29147.29 29288.21 28859.27 26684.32 17477.68 351
tpm cat170.57 28168.31 28677.35 27982.41 29557.95 28978.08 31180.22 32052.04 35068.54 29477.66 33752.00 24887.84 29351.77 30972.07 31586.25 292
TESTMET0.1,169.89 28969.00 28272.55 31679.27 33756.85 30378.38 30774.71 34757.64 33168.09 29577.19 33937.75 34276.70 34863.92 22884.09 17684.10 321
MIMVSNet70.69 28069.30 27974.88 30184.52 24956.35 31475.87 32479.42 32564.59 27067.76 29682.41 29541.10 33081.54 33146.64 33981.34 20886.75 286
ACMH+68.96 1476.01 23474.01 24182.03 19288.60 16765.31 18888.86 10787.55 22670.25 19267.75 29787.47 20041.27 32993.19 17458.37 27775.94 27187.60 263
LCM-MVSNet-Re77.05 21776.94 20177.36 27887.20 21151.60 34380.06 29180.46 31675.20 10267.69 29886.72 21962.48 14888.98 27863.44 23189.25 11791.51 140
ITE_SJBPF78.22 26581.77 30260.57 26383.30 28569.25 21167.54 29987.20 20836.33 34687.28 29854.34 30074.62 29386.80 284
pmmvs571.55 27470.20 27775.61 29377.83 34056.39 31281.74 27580.89 30857.76 33067.46 30084.49 26849.26 28185.32 31157.08 28975.29 28685.11 310
MVP-Stereo76.12 23274.46 23881.13 21585.37 23769.79 9784.42 24087.95 21865.03 26667.46 30085.33 25653.28 23591.73 22658.01 28183.27 18781.85 337
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_040272.79 26770.44 27479.84 24088.13 18065.99 17185.93 20184.29 26965.57 26067.40 30285.49 25346.92 29592.61 19335.88 35874.38 29580.94 342
GG-mvs-BLEND75.38 29781.59 30555.80 31979.32 29869.63 35667.19 30373.67 34843.24 31788.90 28250.41 31584.50 17181.45 339
tpmvs71.09 27769.29 28076.49 28782.04 29956.04 31778.92 30481.37 30764.05 27967.18 30478.28 33249.74 27589.77 26349.67 32372.37 31183.67 323
OurMVSNet-221017-074.26 24972.42 25679.80 24183.76 26359.59 27385.92 20286.64 24166.39 25066.96 30587.58 19539.46 33591.60 22765.76 21769.27 32688.22 251
baseline275.70 23773.83 24581.30 20983.26 27161.79 25182.57 26880.65 31266.81 24166.88 30683.42 28457.86 20092.19 21063.47 23079.57 22889.91 203
MVS_030472.48 26870.89 27177.24 28182.20 29759.68 27184.11 24683.49 28267.10 24066.87 30780.59 31335.00 35087.40 29659.07 27079.58 22784.63 315
F-COLMAP76.38 23074.33 23982.50 18489.28 14066.95 16088.41 12689.03 18964.05 27966.83 30888.61 16946.78 29692.89 18757.48 28478.55 23787.67 261
ACMH67.68 1675.89 23573.93 24281.77 19788.71 16466.61 16288.62 11989.01 19169.81 19966.78 30986.70 22441.95 32891.51 23255.64 29678.14 24387.17 275
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test0.0.03 168.00 30067.69 29768.90 33277.55 34147.43 35575.70 32572.95 35166.66 24566.56 31082.29 29848.06 28875.87 35244.97 34674.51 29483.41 325
MDTV_nov1_ep13_2view37.79 36675.16 32755.10 34366.53 31149.34 27953.98 30187.94 256
KD-MVS_2432*160066.22 31163.89 31273.21 31275.47 35153.42 33570.76 34184.35 26764.10 27766.52 31278.52 32934.55 35184.98 31250.40 31650.33 35981.23 340
miper_refine_blended66.22 31163.89 31273.21 31275.47 35153.42 33570.76 34184.35 26764.10 27766.52 31278.52 32934.55 35184.98 31250.40 31650.33 35981.23 340
ET-MVSNet_ETH3D78.63 18276.63 21184.64 10386.73 22069.47 10585.01 22284.61 26469.54 20566.51 31486.59 22850.16 26991.75 22476.26 12284.24 17592.69 105
EU-MVSNet68.53 29867.61 29871.31 32478.51 33947.01 35784.47 23584.27 27042.27 35666.44 31584.79 26640.44 33383.76 32058.76 27468.54 33183.17 327
EPNet_dtu75.46 24074.86 23177.23 28282.57 29154.60 32586.89 17383.09 29171.64 16566.25 31685.86 24555.99 21488.04 29154.92 29886.55 15189.05 227
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2023120668.60 29667.80 29571.02 32580.23 32350.75 34978.30 31080.47 31556.79 33766.11 31782.63 29446.35 29978.95 33943.62 34875.70 27383.36 326
SixPastTwentyTwo73.37 25871.26 26879.70 24285.08 24457.89 29085.57 20883.56 28071.03 17765.66 31885.88 24442.10 32692.57 19459.11 26963.34 34388.65 244
MSDG73.36 26070.99 26980.49 22784.51 25065.80 17680.71 28586.13 25065.70 25865.46 31983.74 28044.60 31090.91 24851.13 31376.89 25684.74 313
OpenMVS_ROBcopyleft64.09 1970.56 28268.19 28777.65 27480.26 32259.41 27585.01 22282.96 29358.76 32465.43 32082.33 29637.63 34391.23 23945.34 34576.03 27082.32 334
ppachtmachnet_test70.04 28767.34 30078.14 26679.80 32961.13 25679.19 30180.59 31359.16 32165.27 32179.29 32346.75 29787.29 29749.33 32466.72 33386.00 301
ADS-MVSNet266.20 31363.33 31574.82 30279.92 32658.75 27967.55 35175.19 34353.37 34765.25 32275.86 34342.32 32380.53 33541.57 35268.91 32885.18 307
ADS-MVSNet64.36 31762.88 31968.78 33479.92 32647.17 35667.55 35171.18 35253.37 34765.25 32275.86 34342.32 32373.99 35941.57 35268.91 32885.18 307
testgi66.67 30766.53 30567.08 33775.62 34941.69 36475.93 32176.50 34066.11 25265.20 32486.59 22835.72 34874.71 35643.71 34773.38 30684.84 312
PM-MVS66.41 30964.14 31173.20 31473.92 35556.45 31078.97 30364.96 36563.88 28364.72 32580.24 31619.84 36483.44 32366.24 21064.52 34179.71 347
JIA-IIPM66.32 31062.82 32076.82 28577.09 34461.72 25265.34 35475.38 34258.04 32964.51 32662.32 35642.05 32786.51 30251.45 31269.22 32782.21 335
ambc75.24 29873.16 35950.51 35063.05 35887.47 22964.28 32777.81 33617.80 36589.73 26557.88 28260.64 34785.49 303
EG-PatchMatch MVS74.04 25271.82 26180.71 22384.92 24567.42 14885.86 20488.08 21566.04 25464.22 32883.85 27635.10 34992.56 19557.44 28580.83 21482.16 336
dp66.80 30565.43 30770.90 32679.74 33148.82 35475.12 32974.77 34559.61 31664.08 32977.23 33842.89 31980.72 33448.86 32666.58 33583.16 328
KD-MVS_self_test68.81 29467.59 29972.46 31774.29 35445.45 35877.93 31387.00 23763.12 28563.99 33078.99 32842.32 32384.77 31556.55 29364.09 34287.16 277
pmmvs-eth3d70.50 28367.83 29478.52 26277.37 34366.18 16881.82 27381.51 30558.90 32363.90 33180.42 31542.69 32186.28 30458.56 27565.30 33983.11 329
COLMAP_ROBcopyleft66.92 1773.01 26470.41 27580.81 22187.13 21365.63 18088.30 13284.19 27262.96 28963.80 33287.69 19338.04 34192.56 19546.66 33774.91 29084.24 318
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet569.50 29067.96 29174.15 30882.97 28255.35 32280.01 29282.12 30062.56 29563.02 33381.53 30436.92 34481.92 32948.42 32774.06 29785.17 309
test20.0367.45 30266.95 30368.94 33175.48 35044.84 36077.50 31577.67 33266.66 24563.01 33483.80 27847.02 29478.40 34142.53 35168.86 33083.58 324
K. test v371.19 27668.51 28479.21 25283.04 27957.78 29384.35 24276.91 33972.90 15162.99 33582.86 29039.27 33691.09 24561.65 24952.66 35688.75 241
our_test_369.14 29267.00 30275.57 29479.80 32958.80 27877.96 31277.81 33159.55 31762.90 33678.25 33347.43 29183.97 31951.71 31067.58 33283.93 322
CHOSEN 280x42066.51 30864.71 30971.90 31881.45 30763.52 22157.98 35968.95 36053.57 34662.59 33776.70 34046.22 30075.29 35555.25 29779.68 22676.88 353
Anonymous2024052168.80 29567.22 30173.55 31074.33 35354.11 32983.18 26085.61 25458.15 32761.68 33880.94 31030.71 35781.27 33257.00 29073.34 30785.28 306
USDC70.33 28468.37 28576.21 28980.60 31956.23 31579.19 30186.49 24360.89 30661.29 33985.47 25431.78 35689.47 27053.37 30476.21 26982.94 333
lessismore_v078.97 25481.01 31657.15 30065.99 36261.16 34082.82 29139.12 33791.34 23659.67 26346.92 36188.43 249
UnsupCasMVSNet_eth67.33 30365.99 30671.37 32173.48 35751.47 34575.16 32785.19 25865.20 26360.78 34180.93 31242.35 32277.20 34757.12 28853.69 35585.44 304
AllTest70.96 27868.09 29079.58 24685.15 24063.62 21684.58 23479.83 32262.31 29760.32 34286.73 21732.02 35488.96 28050.28 31871.57 31886.15 295
TestCases79.58 24685.15 24063.62 21679.83 32262.31 29760.32 34286.73 21732.02 35488.96 28050.28 31871.57 31886.15 295
Patchmatch-test64.82 31663.24 31669.57 32979.42 33549.82 35263.49 35769.05 35951.98 35159.95 34480.13 31750.91 26070.98 36140.66 35473.57 30287.90 257
MIMVSNet168.58 29766.78 30473.98 30980.07 32551.82 34180.77 28384.37 26664.40 27359.75 34582.16 30036.47 34583.63 32242.73 35070.33 32386.48 290
LF4IMVS64.02 31862.19 32169.50 33070.90 36253.29 33876.13 31977.18 33752.65 34958.59 34680.98 30923.55 36176.52 34953.06 30666.66 33478.68 349
PVSNet_057.27 2061.67 32159.27 32468.85 33379.61 33257.44 29868.01 35073.44 35055.93 34158.54 34770.41 35244.58 31177.55 34647.01 33635.91 36271.55 356
TDRefinement67.49 30164.34 31076.92 28473.47 35861.07 25784.86 22682.98 29259.77 31558.30 34885.13 26126.06 35987.89 29247.92 33460.59 34881.81 338
UnsupCasMVSNet_bld63.70 31961.53 32370.21 32873.69 35651.39 34672.82 33481.89 30155.63 34257.81 34971.80 35138.67 33878.61 34049.26 32552.21 35780.63 343
DSMNet-mixed57.77 32456.90 32660.38 34167.70 36435.61 36769.18 34653.97 36932.30 36557.49 35079.88 32040.39 33468.57 36338.78 35672.37 31176.97 352
N_pmnet52.79 32753.26 32851.40 34678.99 3387.68 37769.52 3443.89 37751.63 35257.01 35174.98 34640.83 33265.96 36437.78 35764.67 34080.56 345
new-patchmatchnet61.73 32061.73 32261.70 34072.74 36124.50 37469.16 34778.03 33061.40 30356.72 35275.53 34538.42 33976.48 35045.95 34257.67 35084.13 320
CMPMVSbinary51.72 2170.19 28668.16 28876.28 28873.15 36057.55 29679.47 29783.92 27448.02 35456.48 35384.81 26543.13 31886.42 30362.67 23981.81 20684.89 311
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TinyColmap67.30 30464.81 30874.76 30381.92 30156.68 30880.29 29081.49 30660.33 30956.27 35483.22 28624.77 36087.66 29545.52 34369.47 32579.95 346
YYNet165.03 31462.91 31871.38 32075.85 34756.60 30969.12 34874.66 34857.28 33554.12 35577.87 33545.85 30374.48 35749.95 32161.52 34683.05 330
MDA-MVSNet_test_wron65.03 31462.92 31771.37 32175.93 34656.73 30569.09 34974.73 34657.28 33554.03 35677.89 33445.88 30274.39 35849.89 32261.55 34582.99 332
pmmvs357.79 32354.26 32768.37 33564.02 36656.72 30675.12 32965.17 36340.20 35852.93 35769.86 35320.36 36375.48 35445.45 34455.25 35472.90 355
MVS-HIRNet59.14 32257.67 32563.57 33981.65 30343.50 36271.73 33765.06 36439.59 36051.43 35857.73 35938.34 34082.58 32839.53 35573.95 29864.62 359
MDA-MVSNet-bldmvs66.68 30663.66 31475.75 29179.28 33660.56 26473.92 33378.35 32964.43 27250.13 35979.87 32144.02 31583.67 32146.10 34156.86 35183.03 331
new_pmnet50.91 32850.29 33052.78 34568.58 36334.94 36963.71 35656.63 36839.73 35944.95 36065.47 35421.93 36258.48 36534.98 35956.62 35264.92 358
FPMVS53.68 32651.64 32959.81 34265.08 36551.03 34769.48 34569.58 35741.46 35740.67 36172.32 35016.46 36770.00 36224.24 36465.42 33858.40 361
LCM-MVSNet54.25 32549.68 33167.97 33653.73 36945.28 35966.85 35380.78 31035.96 36239.45 36262.23 3578.70 37378.06 34448.24 33151.20 35880.57 344
PMMVS240.82 33238.86 33546.69 34753.84 36816.45 37548.61 36249.92 37037.49 36131.67 36360.97 3588.14 37456.42 36628.42 36130.72 36467.19 357
ANet_high50.57 32946.10 33263.99 33848.67 37239.13 36570.99 34080.85 30961.39 30431.18 36457.70 36017.02 36673.65 36031.22 36015.89 36979.18 348
Gipumacopyleft45.18 33041.86 33355.16 34477.03 34551.52 34432.50 36580.52 31432.46 36427.12 36535.02 3659.52 37275.50 35322.31 36560.21 34938.45 364
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft37.38 2244.16 33140.28 33455.82 34340.82 37442.54 36365.12 35563.99 36634.43 36324.48 36657.12 3613.92 37576.17 35117.10 36755.52 35348.75 362
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepMVS_CXcopyleft27.40 35240.17 37526.90 37224.59 37617.44 36923.95 36748.61 3639.77 37126.48 37118.06 36624.47 36528.83 365
tmp_tt18.61 33821.40 34110.23 3544.82 37710.11 37634.70 36430.74 3751.48 37223.91 36826.07 36828.42 35813.41 37327.12 36215.35 3707.17 368
test_method31.52 33429.28 33838.23 34927.03 3766.50 37820.94 36762.21 3674.05 37122.35 36952.50 36213.33 36847.58 36927.04 36334.04 36360.62 360
MVEpermissive26.22 2330.37 33625.89 34043.81 34844.55 37335.46 36828.87 36639.07 37318.20 36818.58 37040.18 3642.68 37647.37 37017.07 36823.78 36648.60 363
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN31.77 33330.64 33635.15 35052.87 37027.67 37157.09 36047.86 37124.64 36616.40 37133.05 36611.23 37054.90 36714.46 36918.15 36722.87 366
EMVS30.81 33529.65 33734.27 35150.96 37125.95 37356.58 36146.80 37224.01 36715.53 37230.68 36712.47 36954.43 36812.81 37017.05 36822.43 367
wuyk23d16.82 33915.94 34219.46 35358.74 36731.45 37039.22 3633.74 3786.84 3706.04 3732.70 3721.27 37724.29 37210.54 37114.40 3712.63 369
testmvs6.04 3428.02 3450.10 3560.08 3780.03 38069.74 3430.04 3790.05 3730.31 3741.68 3730.02 3790.04 3740.24 3720.02 3720.25 371
test1236.12 3418.11 3440.14 3550.06 3790.09 37971.05 3390.03 3800.04 3740.25 3751.30 3740.05 3780.03 3750.21 3730.01 3730.29 370
test_blank0.00 3440.00 3470.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.00 3750.00 3800.00 3760.00 3740.00 3740.00 372
uanet_test0.00 3440.00 3470.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.00 3750.00 3800.00 3760.00 3740.00 3740.00 372
cdsmvs_eth3d_5k19.96 33726.61 3390.00 3570.00 3800.00 3810.00 36889.26 1800.00 3750.00 37688.61 16961.62 1620.00 3760.00 3740.00 3740.00 372
pcd_1.5k_mvsjas5.26 3437.02 3460.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.00 37563.15 1380.00 3760.00 3740.00 3740.00 372
sosnet-low-res0.00 3440.00 3470.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.00 3750.00 3800.00 3760.00 3740.00 3740.00 372
sosnet0.00 3440.00 3470.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.00 3750.00 3800.00 3760.00 3740.00 3740.00 372
uncertanet0.00 3440.00 3470.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.00 3750.00 3800.00 3760.00 3740.00 3740.00 372
Regformer0.00 3440.00 3470.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.00 3750.00 3800.00 3760.00 3740.00 3740.00 372
ab-mvs-re7.23 3409.64 3430.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 37686.72 2190.00 3800.00 3760.00 3740.00 3740.00 372
uanet0.00 3440.00 3470.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.00 3750.00 3800.00 3760.00 3740.00 3740.00 372
MSC_two_6792asdad89.16 194.34 2975.53 292.99 4997.53 189.67 196.44 994.41 28
No_MVS89.16 194.34 2975.53 292.99 4997.53 189.67 196.44 994.41 28
eth-test20.00 380
eth-test0.00 380
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4782.45 396.87 1983.77 5396.48 894.88 9
save fliter93.80 4472.35 4590.47 6691.17 12974.31 121
test_0728_SECOND87.71 3495.34 171.43 6293.49 994.23 597.49 389.08 796.41 1294.21 38
GSMVS88.96 233
sam_mvs151.32 25788.96 233
sam_mvs50.01 270
MTGPAbinary92.02 94
test_post178.90 3055.43 37148.81 28785.44 31059.25 267
test_post5.46 37050.36 26884.24 317
patchmatchnet-post74.00 34751.12 25988.60 284
MTMP92.18 3332.83 374
gm-plane-assit81.40 30853.83 33262.72 29480.94 31092.39 20163.40 232
test9_res84.90 3395.70 3192.87 100
agg_prior282.91 6395.45 3392.70 103
test_prior472.60 3589.01 102
test_prior86.33 6392.61 7469.59 10192.97 5495.48 7193.91 51
新几何286.29 193
旧先验191.96 8265.79 17786.37 24693.08 6969.31 7992.74 7588.74 242
无先验87.48 15688.98 19260.00 31394.12 12967.28 20288.97 232
原ACMM286.86 174
testdata291.01 24762.37 241
segment_acmp73.08 43
testdata184.14 24575.71 90
plane_prior790.08 11268.51 129
plane_prior689.84 11968.70 12460.42 186
plane_prior592.44 7595.38 8078.71 9786.32 15491.33 146
plane_prior491.00 113
plane_prior291.25 4979.12 24
plane_prior189.90 118
plane_prior68.71 12290.38 7077.62 4086.16 157
n20.00 381
nn0.00 381
door-mid69.98 355
test1192.23 86
door69.44 358
HQP5-MVS66.98 156
BP-MVS77.47 111
HQP3-MVS92.19 8985.99 160
HQP2-MVS60.17 189
NP-MVS89.62 12168.32 13190.24 124
ACMMP++_ref81.95 204
ACMMP++81.25 209
Test By Simon64.33 123