This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
APDe-MVS89.15 689.63 687.73 3094.49 2071.69 5893.83 493.96 1675.70 9291.06 1696.03 176.84 1597.03 1589.09 695.65 3294.47 27
SMA-MVScopyleft89.08 789.23 788.61 594.25 3373.73 1092.40 2293.63 2374.77 11192.29 795.97 274.28 3497.24 1188.58 1396.91 194.87 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test072695.27 571.25 6393.60 694.11 877.33 4992.81 395.79 380.98 9
DVP-MVScopyleft89.60 390.35 387.33 4595.27 571.25 6393.49 992.73 6577.33 4992.12 995.78 480.98 997.40 789.08 796.41 1293.33 81
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 789.42 496.57 794.67 20
DVP-MVS++.90.23 191.01 187.89 2494.34 2971.25 6395.06 194.23 578.38 3392.78 495.74 682.45 397.49 389.42 496.68 294.95 5
test_one_060195.07 771.46 6194.14 778.27 3592.05 1195.74 680.83 11
SED-MVS90.08 290.85 287.77 2695.30 270.98 7093.57 794.06 1277.24 5193.10 195.72 882.99 197.44 589.07 996.63 494.88 9
test_241102_TWO94.06 1277.24 5192.78 495.72 881.26 897.44 589.07 996.58 694.26 37
DPE-MVScopyleft89.48 589.98 488.01 1494.80 1172.69 3291.59 4294.10 1075.90 8892.29 795.66 1081.67 697.38 987.44 2096.34 1593.95 50
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_241102_ONE95.30 270.98 7094.06 1277.17 5593.10 195.39 1182.99 197.27 10
MP-MVS-pluss87.67 2287.72 2287.54 3993.64 5072.04 5289.80 8393.50 2875.17 10386.34 4095.29 1270.86 6096.00 5388.78 1296.04 1694.58 23
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
xxxxxxxxxxxxxcwj87.88 1987.92 1987.77 2693.80 4472.35 4590.47 6689.69 16874.31 12189.16 1995.10 1375.65 2196.19 4587.07 2196.01 1794.79 15
SF-MVS88.46 1188.74 1187.64 3892.78 6971.95 5392.40 2294.74 275.71 9089.16 1995.10 1375.65 2196.19 4587.07 2196.01 1794.79 15
ACMMP_NAP88.05 1688.08 1787.94 1793.70 4773.05 2390.86 5693.59 2576.27 8188.14 2695.09 1571.06 5996.67 2887.67 1696.37 1494.09 42
zzz-MVS87.53 2487.41 2787.90 2194.18 3774.25 590.23 7392.02 9479.45 1985.88 4294.80 1668.07 8696.21 4386.69 2495.34 3693.23 84
MTAPA87.23 3387.00 3487.90 2194.18 3774.25 586.58 18492.02 9479.45 1985.88 4294.80 1668.07 8696.21 4386.69 2495.34 3693.23 84
SteuartSystems-ACMMP88.72 1088.86 1088.32 892.14 8072.96 2693.73 593.67 2280.19 1488.10 2794.80 1673.76 3997.11 1387.51 1895.82 2494.90 8
Skip Steuart: Steuart Systems R&D Blog.
9.1488.26 1592.84 6891.52 4594.75 173.93 13188.57 2494.67 1975.57 2395.79 5986.77 2395.76 28
SR-MVS86.73 3986.67 4086.91 5294.11 4072.11 5192.37 2692.56 7374.50 11686.84 3794.65 2067.31 9595.77 6084.80 3792.85 7492.84 101
ETH3D-3000-0.188.09 1388.29 1487.50 4192.76 7071.89 5691.43 4694.70 374.47 11888.86 2294.61 2175.23 2495.84 5886.62 2695.92 2194.78 17
test117286.20 5086.22 4786.12 7093.95 4269.89 9691.79 4192.28 8275.07 10486.40 3994.58 2265.00 12095.56 6684.34 4592.60 7792.90 99
region2R87.42 2887.20 3288.09 1294.63 1473.55 1393.03 1493.12 4276.73 7084.45 6894.52 2369.09 8096.70 2684.37 4494.83 5094.03 45
ACMMPR87.44 2687.23 3188.08 1394.64 1373.59 1293.04 1293.20 3976.78 6784.66 6594.52 2368.81 8496.65 2984.53 4194.90 4594.00 48
APD-MVScopyleft87.44 2687.52 2487.19 4794.24 3472.39 4291.86 3992.83 6173.01 14988.58 2394.52 2373.36 4096.49 3784.26 4695.01 4292.70 103
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
APD-MVS_3200maxsize85.97 5285.88 5386.22 6792.69 7269.53 10391.93 3692.99 4973.54 13985.94 4194.51 2665.80 11295.61 6383.04 6292.51 7993.53 76
CP-MVS87.11 3586.92 3687.68 3794.20 3673.86 893.98 392.82 6476.62 7283.68 8294.46 2767.93 8895.95 5684.20 4894.39 5993.23 84
SR-MVS-dyc-post85.77 5585.61 5686.23 6693.06 6270.63 8291.88 3792.27 8373.53 14085.69 4694.45 2865.00 12095.56 6682.75 6591.87 8592.50 110
RE-MVS-def85.48 5793.06 6270.63 8291.88 3792.27 8373.53 14085.69 4694.45 2863.87 12782.75 6591.87 8592.50 110
HFP-MVS87.58 2387.47 2587.94 1794.58 1673.54 1593.04 1293.24 3776.78 6784.91 5694.44 3070.78 6196.61 3284.53 4194.89 4693.66 64
#test#87.33 3187.13 3387.94 1794.58 1673.54 1592.34 2793.24 3775.23 10084.91 5694.44 3070.78 6196.61 3283.75 5494.89 4693.66 64
testtj87.78 2087.78 2187.77 2694.55 1872.47 3992.23 3193.49 3074.75 11288.33 2594.43 3273.27 4297.02 1684.18 4994.84 4893.82 58
PGM-MVS86.68 4186.27 4687.90 2194.22 3573.38 1990.22 7493.04 4375.53 9483.86 7994.42 3367.87 9096.64 3082.70 6994.57 5593.66 64
MP-MVScopyleft87.71 2187.64 2387.93 2094.36 2873.88 792.71 2192.65 7077.57 4283.84 8094.40 3472.24 5096.28 4185.65 2895.30 4093.62 71
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS87.94 1887.85 2088.20 1194.39 2673.33 2093.03 1493.81 2076.81 6585.24 5194.32 3571.76 5496.93 1885.53 2995.79 2594.32 34
ETH3D cwj APD-0.1687.31 3287.27 2887.44 4391.60 8772.45 4190.02 7794.37 471.76 16387.28 3494.27 3675.18 2596.08 4985.16 3095.77 2693.80 61
HPM-MVS++copyleft89.02 889.15 888.63 495.01 976.03 192.38 2592.85 6080.26 1387.78 3094.27 3675.89 1996.81 2287.45 1996.44 993.05 92
mPP-MVS86.67 4286.32 4587.72 3294.41 2473.55 1392.74 1992.22 8776.87 6482.81 9594.25 3866.44 10296.24 4282.88 6494.28 6293.38 78
DeepC-MVS79.81 287.08 3786.88 3887.69 3691.16 9172.32 4790.31 7193.94 1777.12 5782.82 9494.23 3972.13 5297.09 1484.83 3695.37 3593.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVS87.18 3486.91 3788.00 1594.42 2273.33 2092.78 1792.99 4979.14 2283.67 8394.17 4067.45 9396.60 3483.06 6094.50 5694.07 43
MSP-MVS89.51 489.91 588.30 994.28 3273.46 1892.90 1694.11 880.27 1291.35 1494.16 4178.35 1396.77 2389.59 394.22 6494.67 20
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
abl_685.23 6484.95 7086.07 7192.23 7970.48 8690.80 5892.08 9273.51 14285.26 5094.16 4162.75 14495.92 5782.46 7291.30 9491.81 134
DeepPCF-MVS80.84 188.10 1288.56 1286.73 5692.24 7869.03 11089.57 8993.39 3577.53 4689.79 1894.12 4378.98 1296.58 3685.66 2795.72 2994.58 23
HPM-MVS_fast85.35 6384.95 7086.57 6193.69 4870.58 8592.15 3491.62 11373.89 13282.67 9794.09 4462.60 14595.54 6980.93 8192.93 7293.57 73
ZD-MVS94.38 2772.22 4892.67 6770.98 17887.75 3194.07 4574.01 3896.70 2684.66 3994.84 48
CNVR-MVS88.93 989.13 988.33 794.77 1273.82 990.51 6393.00 4780.90 988.06 2894.06 4676.43 1696.84 2088.48 1495.99 1994.34 33
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4782.45 396.87 1983.77 5396.48 894.88 9
PC_three_145268.21 23392.02 1294.00 4882.09 595.98 5584.58 4096.68 294.95 5
SD-MVS88.06 1488.50 1386.71 5792.60 7672.71 3091.81 4093.19 4077.87 3690.32 1794.00 4874.83 2793.78 14587.63 1794.27 6393.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GST-MVS87.42 2887.26 2987.89 2494.12 3972.97 2592.39 2493.43 3376.89 6384.68 6293.99 5070.67 6496.82 2184.18 4995.01 4293.90 53
HPM-MVScopyleft87.11 3586.98 3587.50 4193.88 4372.16 4992.19 3293.33 3676.07 8483.81 8193.95 5169.77 7496.01 5285.15 3194.66 5294.32 34
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + MP.88.02 1788.11 1687.72 3293.68 4972.13 5091.41 4792.35 8074.62 11588.90 2193.85 5275.75 2096.00 5387.80 1594.63 5395.04 3
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMPcopyleft85.89 5485.39 5987.38 4493.59 5172.63 3492.74 1993.18 4176.78 6780.73 12093.82 5364.33 12396.29 4082.67 7090.69 9993.23 84
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_prior386.73 3986.86 3986.33 6392.61 7469.59 10188.85 10892.97 5475.41 9684.91 5693.54 5474.28 3495.48 7183.31 5595.86 2293.91 51
test_prior288.85 10875.41 9684.91 5693.54 5474.28 3483.31 5595.86 22
ETH3 D test640087.50 2587.44 2687.70 3593.71 4671.75 5790.62 6194.05 1570.80 18087.59 3393.51 5677.57 1496.63 3183.31 5595.77 2694.72 19
VDDNet81.52 11580.67 11884.05 12690.44 10564.13 20989.73 8685.91 25271.11 17583.18 8793.48 5750.54 26693.49 16073.40 14888.25 12994.54 26
CDPH-MVS85.76 5685.29 6387.17 4893.49 5371.08 6888.58 12192.42 7868.32 23284.61 6693.48 5772.32 4996.15 4879.00 9495.43 3494.28 36
NCCC88.06 1488.01 1888.24 1094.41 2473.62 1191.22 5192.83 6181.50 685.79 4593.47 5973.02 4597.00 1784.90 3394.94 4494.10 41
3Dnovator+77.84 485.48 5984.47 7488.51 691.08 9273.49 1793.18 1193.78 2180.79 1076.66 18693.37 6060.40 18896.75 2577.20 11493.73 6895.29 2
DeepC-MVS_fast79.65 386.91 3886.62 4187.76 2993.52 5272.37 4491.26 4893.04 4376.62 7284.22 7393.36 6171.44 5796.76 2480.82 8395.33 3894.16 39
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDD-MVS83.01 9282.36 9384.96 9191.02 9466.40 16488.91 10588.11 21277.57 4284.39 7193.29 6252.19 24393.91 14077.05 11688.70 12394.57 25
UA-Net85.08 6884.96 6985.45 7892.07 8168.07 13789.78 8490.86 13782.48 284.60 6793.20 6369.35 7795.22 8771.39 16490.88 9893.07 91
agg_prior186.22 4986.09 5286.62 5992.85 6671.94 5488.59 12091.78 10968.96 22284.41 6993.18 6474.94 2694.93 9884.75 3895.33 3893.01 95
TEST993.26 5672.96 2688.75 11391.89 10368.44 23185.00 5493.10 6574.36 3395.41 77
train_agg86.43 4586.20 4887.13 4993.26 5672.96 2688.75 11391.89 10368.69 22785.00 5493.10 6574.43 3095.41 7784.97 3295.71 3093.02 94
test_893.13 5872.57 3688.68 11891.84 10668.69 22784.87 6093.10 6574.43 3095.16 89
LFMVS81.82 10881.23 10983.57 14191.89 8463.43 22589.84 8081.85 30377.04 6083.21 8693.10 6552.26 24293.43 16571.98 15989.95 11193.85 55
旧先验191.96 8265.79 17786.37 24693.08 6969.31 7992.74 7588.74 242
testdata79.97 23790.90 9664.21 20784.71 26259.27 32085.40 4892.91 7062.02 15889.08 27668.95 18891.37 9286.63 289
MCST-MVS87.37 3087.25 3087.73 3094.53 1972.46 4089.82 8193.82 1973.07 14784.86 6192.89 7176.22 1796.33 3984.89 3595.13 4194.40 30
Vis-MVSNetpermissive83.46 8282.80 8885.43 7990.25 10868.74 12090.30 7290.13 15676.33 8080.87 11992.89 7161.00 17794.20 12572.45 15890.97 9693.35 80
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CPTT-MVS83.73 7783.33 8084.92 9493.28 5570.86 7792.09 3590.38 14668.75 22679.57 13092.83 7360.60 18493.04 18480.92 8291.56 9090.86 162
3Dnovator76.31 583.38 8582.31 9486.59 6087.94 18772.94 2990.64 6092.14 9177.21 5375.47 21192.83 7358.56 19594.72 11073.24 15192.71 7692.13 125
MSLP-MVS++85.43 6185.76 5584.45 10991.93 8370.24 8790.71 5992.86 5977.46 4884.22 7392.81 7567.16 9792.94 18680.36 8894.35 6190.16 186
ECVR-MVScopyleft79.61 15579.26 14780.67 22490.08 11254.69 32487.89 14877.44 33574.88 10980.27 12492.79 7648.96 28592.45 19868.55 19192.50 8094.86 12
ECVR-MVS1179.43 16279.18 15080.15 23489.99 11553.31 33787.33 16177.05 33875.04 10580.23 12692.77 7748.97 28492.33 20568.87 18992.40 8194.81 14
MG-MVS83.41 8383.45 7883.28 14992.74 7162.28 24488.17 13889.50 17275.22 10181.49 11092.74 7866.75 9895.11 9172.85 15491.58 8992.45 113
casdiffmvs85.11 6785.14 6585.01 8987.20 21165.77 17887.75 15092.83 6177.84 3784.36 7292.38 7972.15 5193.93 13981.27 7990.48 10295.33 1
baseline84.93 7084.98 6784.80 10087.30 20965.39 18687.30 16292.88 5877.62 4084.04 7892.26 8071.81 5393.96 13381.31 7890.30 10495.03 4
QAPM80.88 12479.50 14085.03 8888.01 18668.97 11491.59 4292.00 9766.63 24875.15 22592.16 8157.70 20195.45 7363.52 22988.76 12290.66 168
IS-MVSNet83.15 8782.81 8784.18 12089.94 11763.30 22791.59 4288.46 20979.04 2679.49 13192.16 8165.10 11794.28 11967.71 19791.86 8794.95 5
112180.84 12679.77 13384.05 12693.11 6070.78 7984.66 22985.42 25657.37 33481.76 10992.02 8363.41 13194.12 12967.28 20292.93 7287.26 273
新几何183.42 14493.13 5870.71 8085.48 25557.43 33381.80 10591.98 8463.28 13392.27 20664.60 22692.99 7187.27 272
OpenMVScopyleft72.83 1079.77 15378.33 16884.09 12385.17 23969.91 9490.57 6290.97 13366.70 24472.17 25791.91 8554.70 22393.96 13361.81 24890.95 9788.41 250
PHI-MVS86.43 4586.17 5087.24 4690.88 9770.96 7292.27 3094.07 1172.45 15285.22 5291.90 8669.47 7696.42 3883.28 5895.94 2094.35 32
VNet82.21 10082.41 9181.62 19990.82 9860.93 25884.47 23589.78 16476.36 7984.07 7791.88 8764.71 12290.26 25670.68 16988.89 11993.66 64
DROMVSNet86.01 5186.38 4384.91 9589.31 13866.27 16792.32 2893.63 2379.37 2184.17 7591.88 8769.04 8395.43 7583.93 5293.77 6793.01 95
OPM-MVS83.50 8182.95 8585.14 8588.79 16070.95 7389.13 10091.52 11677.55 4580.96 11891.75 8960.71 18094.50 11579.67 9386.51 15289.97 202
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XVG-OURS-SEG-HR80.81 12979.76 13483.96 13485.60 23368.78 11783.54 25790.50 14370.66 18576.71 18591.66 9060.69 18191.26 23776.94 11881.58 20791.83 132
EPNet83.72 7882.92 8686.14 6984.22 25469.48 10491.05 5485.27 25781.30 776.83 18191.65 9166.09 10795.56 6676.00 12693.85 6693.38 78
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OMC-MVS82.69 9581.97 10284.85 9788.75 16267.42 14887.98 14290.87 13674.92 10879.72 12991.65 9162.19 15593.96 13375.26 13386.42 15393.16 89
test22291.50 8868.26 13384.16 24483.20 28954.63 34579.74 12891.63 9358.97 19391.42 9186.77 285
MVS_111021_HR85.14 6684.75 7286.32 6591.65 8672.70 3185.98 19990.33 15076.11 8382.08 10091.61 9471.36 5894.17 12881.02 8092.58 7892.08 126
原ACMM184.35 11493.01 6468.79 11692.44 7563.96 28281.09 11691.57 9566.06 10895.45 7367.19 20594.82 5188.81 239
LPG-MVS_test82.08 10281.27 10884.50 10689.23 14368.76 11890.22 7491.94 10175.37 9876.64 18791.51 9654.29 22694.91 10078.44 10183.78 17889.83 207
LGP-MVS_train84.50 10689.23 14368.76 11891.94 10175.37 9876.64 18791.51 9654.29 22694.91 10078.44 10183.78 17889.83 207
XVG-OURS80.41 14179.23 14883.97 13385.64 23269.02 11183.03 26590.39 14571.09 17677.63 16591.49 9854.62 22591.35 23575.71 12783.47 18591.54 139
alignmvs85.48 5985.32 6185.96 7489.51 12669.47 10589.74 8592.47 7476.17 8287.73 3291.46 9970.32 6793.78 14581.51 7688.95 11894.63 22
CANet86.45 4486.10 5187.51 4090.09 11170.94 7489.70 8792.59 7281.78 481.32 11191.43 10070.34 6697.23 1284.26 4693.36 7094.37 31
h-mvs3383.15 8782.19 9586.02 7390.56 10270.85 7888.15 14089.16 18476.02 8584.67 6391.39 10161.54 16395.50 7082.71 6775.48 27891.72 136
nrg03083.88 7583.53 7784.96 9186.77 21969.28 10990.46 6892.67 6774.79 11082.95 9091.33 10272.70 4693.09 18080.79 8579.28 23592.50 110
canonicalmvs85.91 5385.87 5486.04 7289.84 11969.44 10890.45 6993.00 4776.70 7188.01 2991.23 10373.28 4193.91 14081.50 7788.80 12194.77 18
DPM-MVS84.93 7084.29 7586.84 5390.20 10973.04 2487.12 16693.04 4369.80 20082.85 9391.22 10473.06 4496.02 5176.72 12194.63 5391.46 144
Anonymous20240521178.25 19077.01 19881.99 19391.03 9360.67 26284.77 22783.90 27570.65 18680.00 12791.20 10541.08 33191.43 23365.21 22085.26 16493.85 55
Anonymous2024052980.19 14778.89 15584.10 12290.60 10164.75 19688.95 10490.90 13565.97 25680.59 12191.17 10649.97 27193.73 15169.16 18682.70 19793.81 59
EPP-MVSNet83.40 8483.02 8484.57 10490.13 11064.47 20292.32 2890.73 13874.45 12079.35 13391.10 10769.05 8295.12 9072.78 15587.22 14194.13 40
TAPA-MVS73.13 979.15 17077.94 17582.79 17789.59 12262.99 23788.16 13991.51 11765.77 25777.14 17891.09 10860.91 17893.21 17050.26 32087.05 14392.17 124
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CSCG86.41 4786.19 4987.07 5092.91 6572.48 3890.81 5793.56 2673.95 12983.16 8891.07 10975.94 1895.19 8879.94 9294.38 6093.55 74
FIs82.07 10382.42 9081.04 21788.80 15958.34 28288.26 13593.49 3076.93 6278.47 14891.04 11069.92 7292.34 20469.87 17984.97 16692.44 114
MVS_111021_LR82.61 9782.11 9684.11 12188.82 15771.58 5985.15 21986.16 24974.69 11380.47 12391.04 11062.29 15290.55 25480.33 8990.08 10990.20 185
DP-MVS Recon83.11 9082.09 9786.15 6894.44 2170.92 7688.79 11192.20 8870.53 18779.17 13491.03 11264.12 12596.03 5068.39 19490.14 10791.50 141
HQP_MVS83.64 7983.14 8185.14 8590.08 11268.71 12291.25 4992.44 7579.12 2478.92 13891.00 11360.42 18695.38 8078.71 9786.32 15491.33 146
plane_prior491.00 113
FC-MVSNet-test81.52 11582.02 10080.03 23688.42 17455.97 31887.95 14493.42 3477.10 5877.38 16990.98 11569.96 7191.79 22368.46 19384.50 17192.33 115
Vis-MVSNet (Re-imp)78.36 18978.45 16278.07 26888.64 16651.78 34286.70 18179.63 32474.14 12775.11 22690.83 11661.29 17189.75 26458.10 28091.60 8892.69 105
114514_t80.68 13579.51 13984.20 11994.09 4167.27 15289.64 8891.11 13158.75 32574.08 23990.72 11758.10 19795.04 9669.70 18089.42 11690.30 182
PAPM_NR83.02 9182.41 9184.82 9892.47 7766.37 16587.93 14691.80 10773.82 13377.32 17190.66 11867.90 8994.90 10270.37 17289.48 11593.19 88
LS3D76.95 22074.82 23283.37 14790.45 10467.36 15189.15 9986.94 23861.87 30169.52 28690.61 11951.71 25494.53 11346.38 34086.71 14988.21 252
VPNet78.69 18178.66 15878.76 25788.31 17755.72 32084.45 23886.63 24276.79 6678.26 15290.55 12059.30 19189.70 26666.63 20977.05 25390.88 161
UniMVSNet_ETH3D79.10 17278.24 17081.70 19886.85 21660.24 26887.28 16388.79 19874.25 12476.84 18090.53 12149.48 27791.56 22967.98 19582.15 20193.29 82
ACMP74.13 681.51 11780.57 11984.36 11389.42 12968.69 12589.97 7991.50 12074.46 11975.04 22990.41 12253.82 23194.54 11277.56 11082.91 19289.86 206
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PCF-MVS73.52 780.38 14278.84 15685.01 8987.71 19568.99 11383.65 25291.46 12163.00 28877.77 16390.28 12366.10 10695.09 9561.40 25188.22 13090.94 160
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
NP-MVS89.62 12168.32 13190.24 124
HQP-MVS82.61 9782.02 10084.37 11289.33 13366.98 15689.17 9592.19 8976.41 7477.23 17490.23 12560.17 18995.11 9177.47 11185.99 16091.03 156
PS-MVSNAJss82.07 10381.31 10784.34 11586.51 22267.27 15289.27 9391.51 11771.75 16479.37 13290.22 12663.15 13894.27 12077.69 10982.36 20091.49 142
TSAR-MVS + GP.85.71 5785.33 6086.84 5391.34 8972.50 3789.07 10187.28 23276.41 7485.80 4490.22 12674.15 3795.37 8381.82 7591.88 8492.65 107
Regformer-186.41 4786.33 4486.64 5889.33 13370.93 7588.43 12391.39 12282.14 386.65 3890.09 12874.39 3295.01 9783.97 5190.63 10093.97 49
Regformer-286.63 4386.53 4286.95 5189.33 13371.24 6788.43 12392.05 9382.50 186.88 3690.09 12874.45 2995.61 6384.38 4390.63 10094.01 47
test_part182.78 9482.08 9884.89 9690.66 10066.97 15890.96 5592.93 5777.19 5480.53 12290.04 13063.44 13095.39 7976.04 12576.90 25592.31 117
Regformer-385.23 6485.07 6685.70 7688.95 15269.01 11288.29 13389.91 16280.95 885.01 5390.01 13172.45 4894.19 12682.50 7187.57 13393.90 53
Regformer-485.68 5885.45 5886.35 6288.95 15269.67 10088.29 13391.29 12481.73 585.36 4990.01 13172.62 4795.35 8483.28 5887.57 13394.03 45
CS-MVS-test85.02 6985.21 6484.46 10889.28 14065.70 17991.16 5293.56 2677.83 3881.80 10589.89 13370.67 6495.61 6380.39 8792.34 8292.06 127
TranMVSNet+NR-MVSNet80.84 12680.31 12582.42 18587.85 18962.33 24287.74 15191.33 12380.55 1177.99 15989.86 13465.23 11692.62 19267.05 20775.24 28892.30 118
diffmvs82.10 10181.88 10382.76 18083.00 28063.78 21583.68 25189.76 16572.94 15082.02 10189.85 13565.96 11190.79 25082.38 7387.30 14093.71 63
BH-RMVSNet79.61 15578.44 16383.14 15889.38 13265.93 17384.95 22487.15 23573.56 13878.19 15489.79 13656.67 21293.36 16659.53 26586.74 14890.13 188
GeoE81.71 11081.01 11483.80 13789.51 12664.45 20388.97 10388.73 20471.27 17378.63 14489.76 13766.32 10493.20 17269.89 17886.02 15993.74 62
CS-MVS84.53 7384.97 6883.23 15487.54 20363.27 22888.82 11093.50 2875.98 8783.07 8989.73 13870.29 6895.23 8682.07 7493.70 6991.18 150
AdaColmapbinary80.58 13979.42 14184.06 12593.09 6168.91 11589.36 9188.97 19469.27 21075.70 20889.69 13957.20 20995.77 6063.06 23588.41 12887.50 267
ACMM73.20 880.78 13479.84 13283.58 14089.31 13868.37 13089.99 7891.60 11470.28 19177.25 17289.66 14053.37 23493.53 15974.24 13982.85 19388.85 237
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CNLPA78.08 19676.79 20581.97 19490.40 10671.07 6987.59 15484.55 26566.03 25572.38 25589.64 14157.56 20386.04 30559.61 26483.35 18688.79 240
test_yl81.17 12080.47 12283.24 15289.13 14763.62 21686.21 19489.95 16072.43 15581.78 10789.61 14257.50 20493.58 15470.75 16786.90 14592.52 108
DCV-MVSNet81.17 12080.47 12283.24 15289.13 14763.62 21686.21 19489.95 16072.43 15581.78 10789.61 14257.50 20493.58 15470.75 16786.90 14592.52 108
EI-MVSNet-Vis-set84.19 7483.81 7685.31 8088.18 17967.85 14087.66 15289.73 16780.05 1682.95 9089.59 14470.74 6394.82 10680.66 8684.72 16993.28 83
PAPR81.66 11380.89 11683.99 13290.27 10764.00 21086.76 18091.77 11168.84 22577.13 17989.50 14567.63 9194.88 10467.55 19988.52 12693.09 90
jajsoiax79.29 16777.96 17483.27 15084.68 24866.57 16389.25 9490.16 15569.20 21475.46 21389.49 14645.75 30693.13 17876.84 11980.80 21590.11 190
MVSFormer82.85 9382.05 9985.24 8387.35 20470.21 8890.50 6490.38 14668.55 22981.32 11189.47 14761.68 16093.46 16378.98 9590.26 10592.05 128
jason81.39 11880.29 12684.70 10286.63 22169.90 9585.95 20086.77 24063.24 28481.07 11789.47 14761.08 17692.15 21278.33 10490.07 11092.05 128
jason: jason.
mvs_tets79.13 17177.77 18283.22 15584.70 24766.37 16589.17 9590.19 15469.38 20875.40 21689.46 14944.17 31493.15 17676.78 12080.70 21790.14 187
UGNet80.83 12879.59 13884.54 10588.04 18468.09 13689.42 9088.16 21176.95 6176.22 19689.46 14949.30 28093.94 13668.48 19290.31 10391.60 137
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VPA-MVSNet80.60 13780.55 12080.76 22288.07 18360.80 26186.86 17491.58 11575.67 9380.24 12589.45 15163.34 13290.25 25770.51 17179.22 23691.23 149
MVS_Test83.15 8783.06 8383.41 14686.86 21563.21 23086.11 19792.00 9774.31 12182.87 9289.44 15270.03 7093.21 17077.39 11388.50 12793.81 59
EI-MVSNet-UG-set83.81 7683.38 7985.09 8787.87 18867.53 14687.44 15889.66 16979.74 1882.23 9989.41 15370.24 6994.74 10979.95 9183.92 17792.99 97
RPSCF73.23 26271.46 26378.54 26182.50 29259.85 27082.18 27182.84 29458.96 32271.15 26789.41 15345.48 30884.77 31558.82 27371.83 31691.02 158
RRT_MVS79.88 15278.38 16584.38 11185.42 23670.60 8488.71 11788.75 20372.30 15778.83 14089.14 15544.44 31292.18 21178.50 10079.33 23490.35 180
UniMVSNet_NR-MVSNet81.88 10681.54 10682.92 16988.46 17263.46 22387.13 16592.37 7980.19 1478.38 14989.14 15571.66 5693.05 18270.05 17576.46 26392.25 120
tttt051779.40 16477.91 17683.90 13688.10 18263.84 21388.37 13084.05 27371.45 17176.78 18389.12 15749.93 27494.89 10370.18 17483.18 18992.96 98
DU-MVS81.12 12280.52 12182.90 17087.80 19163.46 22387.02 16991.87 10579.01 2778.38 14989.07 15865.02 11893.05 18270.05 17576.46 26392.20 122
NR-MVSNet80.23 14579.38 14382.78 17887.80 19163.34 22686.31 19191.09 13279.01 2772.17 25789.07 15867.20 9692.81 19166.08 21475.65 27492.20 122
DELS-MVS85.41 6285.30 6285.77 7588.49 17067.93 13985.52 21693.44 3278.70 2983.63 8589.03 16074.57 2895.71 6280.26 9094.04 6593.66 64
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
baseline176.98 21976.75 20877.66 27388.13 18055.66 32185.12 22081.89 30173.04 14876.79 18288.90 16162.43 15087.78 29463.30 23371.18 32089.55 216
DP-MVS76.78 22274.57 23483.42 14493.29 5469.46 10788.55 12283.70 27763.98 28170.20 27488.89 16254.01 23094.80 10746.66 33781.88 20586.01 299
ab-mvs79.51 15878.97 15481.14 21488.46 17260.91 25983.84 24989.24 18170.36 18979.03 13588.87 16363.23 13690.21 25865.12 22182.57 19892.28 119
PEN-MVS77.73 20577.69 18677.84 27087.07 21453.91 33187.91 14791.18 12877.56 4473.14 24688.82 16461.23 17289.17 27459.95 26172.37 31190.43 177
test_djsdf80.30 14479.32 14583.27 15083.98 25965.37 18790.50 6490.38 14668.55 22976.19 19788.70 16556.44 21393.46 16378.98 9580.14 22590.97 159
PAPM77.68 20876.40 21481.51 20287.29 21061.85 24983.78 25089.59 17064.74 26971.23 26588.70 16562.59 14693.66 15352.66 30787.03 14489.01 229
DTE-MVSNet76.99 21876.80 20477.54 27786.24 22453.06 33987.52 15590.66 13977.08 5972.50 25288.67 16760.48 18589.52 26857.33 28770.74 32290.05 197
PS-CasMVS78.01 20078.09 17277.77 27287.71 19554.39 32888.02 14191.22 12677.50 4773.26 24488.64 16860.73 17988.41 28761.88 24673.88 30090.53 174
cdsmvs_eth3d_5k19.96 33726.61 3390.00 3570.00 3800.00 3810.00 36889.26 1800.00 3750.00 37688.61 16961.62 1620.00 3760.00 3740.00 3740.00 372
lupinMVS81.39 11880.27 12784.76 10187.35 20470.21 8885.55 21286.41 24462.85 29181.32 11188.61 16961.68 16092.24 20978.41 10390.26 10591.83 132
F-COLMAP76.38 23074.33 23982.50 18489.28 14066.95 16088.41 12689.03 18964.05 27966.83 30888.61 16946.78 29692.89 18757.48 28478.55 23787.67 261
mvs_anonymous79.42 16379.11 15180.34 23084.45 25157.97 28882.59 26787.62 22567.40 23976.17 20088.56 17268.47 8589.59 26770.65 17086.05 15893.47 77
CP-MVSNet78.22 19178.34 16777.84 27087.83 19054.54 32687.94 14591.17 12977.65 3973.48 24288.49 17362.24 15488.43 28662.19 24274.07 29690.55 173
PVSNet_Blended_VisFu82.62 9681.83 10484.96 9190.80 9969.76 9888.74 11591.70 11269.39 20778.96 13688.46 17465.47 11494.87 10574.42 13688.57 12490.24 184
CANet_DTU80.61 13679.87 13182.83 17285.60 23363.17 23387.36 15988.65 20576.37 7875.88 20588.44 17553.51 23393.07 18173.30 14989.74 11392.25 120
PLCcopyleft70.83 1178.05 19876.37 21583.08 16191.88 8567.80 14188.19 13789.46 17364.33 27569.87 28388.38 17653.66 23293.58 15458.86 27282.73 19587.86 258
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
WR-MVS79.49 15979.22 14980.27 23288.79 16058.35 28185.06 22188.61 20778.56 3077.65 16488.34 17763.81 12990.66 25364.98 22377.22 25191.80 135
XXY-MVS75.41 24275.56 22074.96 30083.59 26557.82 29280.59 28783.87 27666.54 24974.93 23188.31 17863.24 13580.09 33662.16 24376.85 25886.97 281
Effi-MVS+83.62 8083.08 8285.24 8388.38 17567.45 14788.89 10689.15 18575.50 9582.27 9888.28 17969.61 7594.45 11677.81 10887.84 13193.84 57
API-MVS81.99 10581.23 10984.26 11890.94 9570.18 9391.10 5389.32 17671.51 17078.66 14388.28 17965.26 11595.10 9464.74 22591.23 9587.51 266
thisisatest053079.40 16477.76 18384.31 11687.69 19765.10 19287.36 15984.26 27170.04 19477.42 16888.26 18149.94 27294.79 10870.20 17384.70 17093.03 93
hse-mvs281.72 10980.94 11584.07 12488.72 16367.68 14485.87 20387.26 23376.02 8584.67 6388.22 18261.54 16393.48 16182.71 6773.44 30591.06 154
xiu_mvs_v1_base_debu80.80 13179.72 13584.03 12987.35 20470.19 9085.56 20988.77 19969.06 21881.83 10288.16 18350.91 26092.85 18878.29 10587.56 13589.06 224
xiu_mvs_v1_base80.80 13179.72 13584.03 12987.35 20470.19 9085.56 20988.77 19969.06 21881.83 10288.16 18350.91 26092.85 18878.29 10587.56 13589.06 224
xiu_mvs_v1_base_debi80.80 13179.72 13584.03 12987.35 20470.19 9085.56 20988.77 19969.06 21881.83 10288.16 18350.91 26092.85 18878.29 10587.56 13589.06 224
UniMVSNet (Re)81.60 11481.11 11183.09 16088.38 17564.41 20487.60 15393.02 4678.42 3278.56 14588.16 18369.78 7393.26 16969.58 18276.49 26291.60 137
AUN-MVS79.21 16977.60 18884.05 12688.71 16467.61 14585.84 20587.26 23369.08 21777.23 17488.14 18753.20 23693.47 16275.50 13273.45 30491.06 154
Anonymous2023121178.97 17677.69 18682.81 17490.54 10364.29 20690.11 7691.51 11765.01 26776.16 20188.13 18850.56 26593.03 18569.68 18177.56 24891.11 153
pm-mvs177.25 21576.68 21078.93 25584.22 25458.62 28086.41 18888.36 21071.37 17273.31 24388.01 18961.22 17389.15 27564.24 22773.01 30889.03 228
LTVRE_ROB69.57 1376.25 23174.54 23681.41 20488.60 16764.38 20579.24 29989.12 18870.76 18369.79 28587.86 19049.09 28293.20 17256.21 29580.16 22386.65 288
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WTY-MVS75.65 23875.68 21975.57 29486.40 22356.82 30477.92 31482.40 29765.10 26476.18 19887.72 19163.13 14180.90 33360.31 25981.96 20389.00 231
TAMVS78.89 17877.51 19083.03 16487.80 19167.79 14284.72 22885.05 26067.63 23576.75 18487.70 19262.25 15390.82 24958.53 27687.13 14290.49 175
BH-untuned79.47 16078.60 15982.05 19189.19 14565.91 17486.07 19888.52 20872.18 15875.42 21587.69 19361.15 17493.54 15860.38 25886.83 14786.70 287
COLMAP_ROBcopyleft66.92 1773.01 26470.41 27580.81 22187.13 21365.63 18088.30 13284.19 27262.96 28963.80 33287.69 19338.04 34192.56 19546.66 33774.91 29084.24 318
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OurMVSNet-221017-074.26 24972.42 25679.80 24183.76 26359.59 27385.92 20286.64 24166.39 25066.96 30587.58 19539.46 33591.60 22765.76 21769.27 32688.22 251
Baseline_NR-MVSNet78.15 19578.33 16877.61 27585.79 22956.21 31686.78 17885.76 25373.60 13777.93 16087.57 19665.02 11888.99 27767.14 20675.33 28487.63 262
WR-MVS_H78.51 18578.49 16178.56 26088.02 18556.38 31388.43 12392.67 6777.14 5673.89 24087.55 19766.25 10589.24 27358.92 27173.55 30390.06 196
EI-MVSNet80.52 14079.98 12982.12 18884.28 25263.19 23286.41 18888.95 19574.18 12678.69 14187.54 19866.62 9992.43 19972.57 15780.57 21990.74 166
CVMVSNet72.99 26572.58 25474.25 30784.28 25250.85 34886.41 18883.45 28444.56 35573.23 24587.54 19849.38 27885.70 30765.90 21578.44 24086.19 294
ACMH+68.96 1476.01 23474.01 24182.03 19288.60 16765.31 18888.86 10787.55 22670.25 19267.75 29787.47 20041.27 32993.19 17458.37 27775.94 27187.60 263
RRT_test8_iter0578.38 18877.40 19181.34 20886.00 22758.86 27786.55 18691.26 12572.13 16175.91 20387.42 20144.97 30993.73 15177.02 11775.30 28591.45 145
TransMVSNet (Re)75.39 24374.56 23577.86 26985.50 23557.10 30186.78 17886.09 25172.17 15971.53 26387.34 20263.01 14289.31 27256.84 29161.83 34487.17 275
GBi-Net78.40 18677.40 19181.40 20587.60 19863.01 23488.39 12789.28 17771.63 16675.34 21887.28 20354.80 21991.11 24062.72 23679.57 22890.09 192
test178.40 18677.40 19181.40 20587.60 19863.01 23488.39 12789.28 17771.63 16675.34 21887.28 20354.80 21991.11 24062.72 23679.57 22890.09 192
FMVSNet278.20 19377.21 19581.20 21287.60 19862.89 23887.47 15789.02 19071.63 16675.29 22287.28 20354.80 21991.10 24362.38 24079.38 23289.61 214
FMVSNet177.44 21176.12 21781.40 20586.81 21863.01 23488.39 12789.28 17770.49 18874.39 23687.28 20349.06 28391.11 24060.91 25578.52 23890.09 192
v2v48280.23 14579.29 14683.05 16383.62 26464.14 20887.04 16889.97 15973.61 13678.18 15587.22 20761.10 17593.82 14376.11 12376.78 26091.18 150
ITE_SJBPF78.22 26581.77 30260.57 26383.30 28569.25 21167.54 29987.20 20836.33 34687.28 29854.34 30074.62 29386.80 284
anonymousdsp78.60 18377.15 19682.98 16780.51 32167.08 15487.24 16489.53 17165.66 25975.16 22487.19 20952.52 23792.25 20877.17 11579.34 23389.61 214
MVSTER79.01 17477.88 17882.38 18683.07 27764.80 19584.08 24888.95 19569.01 22178.69 14187.17 21054.70 22392.43 19974.69 13580.57 21989.89 205
thres100view90076.50 22575.55 22179.33 24989.52 12556.99 30285.83 20683.23 28773.94 13076.32 19487.12 21151.89 25191.95 21848.33 32883.75 18089.07 222
thres600view776.50 22575.44 22379.68 24389.40 13057.16 29985.53 21483.23 28773.79 13476.26 19587.09 21251.89 25191.89 22148.05 33383.72 18390.00 198
XVG-ACMP-BASELINE76.11 23374.27 24081.62 19983.20 27364.67 19783.60 25589.75 16669.75 20271.85 26087.09 21232.78 35392.11 21369.99 17780.43 22188.09 253
HY-MVS69.67 1277.95 20177.15 19680.36 22987.57 20260.21 26983.37 25987.78 22366.11 25275.37 21787.06 21463.27 13490.48 25561.38 25282.43 19990.40 179
CHOSEN 1792x268877.63 20975.69 21883.44 14389.98 11668.58 12878.70 30687.50 22856.38 33975.80 20786.84 21558.67 19491.40 23461.58 25085.75 16390.34 181
v879.97 15179.02 15382.80 17584.09 25664.50 20187.96 14390.29 15374.13 12875.24 22386.81 21662.88 14393.89 14274.39 13775.40 28290.00 198
AllTest70.96 27868.09 29079.58 24685.15 24063.62 21684.58 23479.83 32262.31 29760.32 34286.73 21732.02 35488.96 28050.28 31871.57 31886.15 295
TestCases79.58 24685.15 24063.62 21679.83 32262.31 29760.32 34286.73 21732.02 35488.96 28050.28 31871.57 31886.15 295
mvs-test180.88 12479.40 14285.29 8185.13 24269.75 9989.28 9288.10 21374.99 10676.44 19286.72 21957.27 20794.26 12473.53 14483.18 18991.87 131
LCM-MVSNet-Re77.05 21776.94 20177.36 27887.20 21151.60 34380.06 29180.46 31675.20 10267.69 29886.72 21962.48 14888.98 27863.44 23189.25 11791.51 140
1112_ss77.40 21376.43 21380.32 23189.11 15160.41 26783.65 25287.72 22462.13 29973.05 24786.72 21962.58 14789.97 26162.11 24580.80 21590.59 172
ab-mvs-re7.23 3409.64 3430.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 37686.72 2190.00 3800.00 3760.00 3740.00 3740.00 372
IterMVS-LS80.06 14879.38 14382.11 18985.89 22863.20 23186.79 17789.34 17574.19 12575.45 21486.72 21966.62 9992.39 20172.58 15676.86 25790.75 165
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH67.68 1675.89 23573.93 24281.77 19788.71 16466.61 16288.62 11989.01 19169.81 19966.78 30986.70 22441.95 32891.51 23255.64 29678.14 24387.17 275
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Test_1112_low_res76.40 22975.44 22379.27 25089.28 14058.09 28481.69 27687.07 23659.53 31872.48 25386.67 22561.30 17089.33 27160.81 25780.15 22490.41 178
FMVSNet377.88 20376.85 20380.97 21886.84 21762.36 24186.52 18788.77 19971.13 17475.34 21886.66 22654.07 22991.10 24362.72 23679.57 22889.45 217
pmmvs674.69 24673.39 24778.61 25981.38 30957.48 29786.64 18287.95 21864.99 26870.18 27586.61 22750.43 26789.52 26862.12 24470.18 32488.83 238
ET-MVSNet_ETH3D78.63 18276.63 21184.64 10386.73 22069.47 10585.01 22284.61 26469.54 20566.51 31486.59 22850.16 26991.75 22476.26 12284.24 17592.69 105
testgi66.67 30766.53 30567.08 33775.62 34941.69 36475.93 32176.50 34066.11 25265.20 32486.59 22835.72 34874.71 35643.71 34773.38 30684.84 312
CLD-MVS82.31 9981.65 10584.29 11788.47 17167.73 14385.81 20792.35 8075.78 8978.33 15186.58 23064.01 12694.35 11776.05 12487.48 13890.79 163
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v1079.74 15478.67 15782.97 16884.06 25764.95 19387.88 14990.62 14073.11 14675.11 22686.56 23161.46 16694.05 13273.68 14275.55 27689.90 204
CDS-MVSNet79.07 17377.70 18583.17 15787.60 19868.23 13484.40 24186.20 24867.49 23876.36 19386.54 23261.54 16390.79 25061.86 24787.33 13990.49 175
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
xiu_mvs_v2_base81.69 11181.05 11283.60 13989.15 14668.03 13884.46 23790.02 15870.67 18481.30 11486.53 23363.17 13794.19 12675.60 13088.54 12588.57 246
TR-MVS77.44 21176.18 21681.20 21288.24 17863.24 22984.61 23386.40 24567.55 23777.81 16186.48 23454.10 22893.15 17657.75 28382.72 19687.20 274
EIA-MVS83.31 8682.80 8884.82 9889.59 12265.59 18188.21 13692.68 6674.66 11478.96 13686.42 23569.06 8195.26 8575.54 13190.09 10893.62 71
tfpn200view976.42 22875.37 22779.55 24889.13 14757.65 29485.17 21783.60 27873.41 14376.45 18986.39 23652.12 24491.95 21848.33 32883.75 18089.07 222
thres40076.50 22575.37 22779.86 23989.13 14757.65 29485.17 21783.60 27873.41 14376.45 18986.39 23652.12 24491.95 21848.33 32883.75 18090.00 198
v7n78.97 17677.58 18983.14 15883.45 26765.51 18288.32 13191.21 12773.69 13572.41 25486.32 23857.93 19893.81 14469.18 18575.65 27490.11 190
MAR-MVS81.84 10780.70 11785.27 8291.32 9071.53 6089.82 8190.92 13469.77 20178.50 14686.21 23962.36 15194.52 11465.36 21992.05 8389.77 210
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
v114480.03 14979.03 15283.01 16583.78 26264.51 19987.11 16790.57 14271.96 16278.08 15886.20 24061.41 16793.94 13674.93 13477.23 25090.60 171
V4279.38 16678.24 17082.83 17281.10 31565.50 18385.55 21289.82 16371.57 16978.21 15386.12 24160.66 18293.18 17575.64 12875.46 28089.81 209
PVSNet_BlendedMVS80.60 13780.02 12882.36 18788.85 15465.40 18486.16 19692.00 9769.34 20978.11 15686.09 24266.02 10994.27 12071.52 16182.06 20287.39 268
v119279.59 15778.43 16483.07 16283.55 26664.52 19886.93 17290.58 14170.83 17977.78 16285.90 24359.15 19293.94 13673.96 14177.19 25290.76 164
SixPastTwentyTwo73.37 25871.26 26879.70 24285.08 24457.89 29085.57 20883.56 28071.03 17765.66 31885.88 24442.10 32692.57 19459.11 26963.34 34388.65 244
EPNet_dtu75.46 24074.86 23177.23 28282.57 29154.60 32586.89 17383.09 29171.64 16566.25 31685.86 24555.99 21488.04 29154.92 29886.55 15189.05 227
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
sss73.60 25673.64 24673.51 31182.80 28555.01 32376.12 32081.69 30462.47 29674.68 23485.85 24657.32 20678.11 34360.86 25680.93 21287.39 268
ETV-MVS84.90 7284.67 7385.59 7789.39 13168.66 12688.74 11592.64 7179.97 1784.10 7685.71 24769.32 7895.38 8080.82 8391.37 9292.72 102
v124078.99 17577.78 18182.64 18183.21 27263.54 22086.62 18390.30 15269.74 20477.33 17085.68 24857.04 21093.76 14873.13 15276.92 25490.62 169
v14419279.47 16078.37 16682.78 17883.35 26863.96 21186.96 17090.36 14969.99 19577.50 16685.67 24960.66 18293.77 14774.27 13876.58 26190.62 169
tfpnnormal74.39 24773.16 25078.08 26786.10 22658.05 28584.65 23287.53 22770.32 19071.22 26685.63 25054.97 21889.86 26243.03 34975.02 28986.32 291
PS-MVSNAJ81.69 11181.02 11383.70 13889.51 12668.21 13584.28 24390.09 15770.79 18181.26 11585.62 25163.15 13894.29 11875.62 12988.87 12088.59 245
v192192079.22 16878.03 17382.80 17583.30 27063.94 21286.80 17690.33 15069.91 19877.48 16785.53 25258.44 19693.75 14973.60 14376.85 25890.71 167
test_040272.79 26770.44 27479.84 24088.13 18065.99 17185.93 20184.29 26965.57 26067.40 30285.49 25346.92 29592.61 19335.88 35874.38 29580.94 342
v14878.72 18077.80 18081.47 20382.73 28761.96 24886.30 19288.08 21573.26 14576.18 19885.47 25462.46 14992.36 20371.92 16073.82 30190.09 192
USDC70.33 28468.37 28576.21 28980.60 31956.23 31579.19 30186.49 24360.89 30661.29 33985.47 25431.78 35689.47 27053.37 30476.21 26982.94 333
MVP-Stereo76.12 23274.46 23881.13 21585.37 23769.79 9784.42 24087.95 21865.03 26667.46 30085.33 25653.28 23591.73 22658.01 28183.27 18781.85 337
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MVS78.19 19476.99 20081.78 19685.66 23166.99 15584.66 22990.47 14455.08 34472.02 25985.27 25763.83 12894.11 13166.10 21389.80 11284.24 318
DIV-MVS_self_test77.72 20676.76 20680.58 22582.48 29460.48 26583.09 26287.86 22169.22 21274.38 23785.24 25862.10 15691.53 23071.09 16575.40 28289.74 211
cl____77.72 20676.76 20680.58 22582.49 29360.48 26583.09 26287.87 22069.22 21274.38 23785.22 25962.10 15691.53 23071.09 16575.41 28189.73 212
HyFIR lowres test77.53 21075.40 22583.94 13589.59 12266.62 16180.36 28888.64 20656.29 34076.45 18985.17 26057.64 20293.28 16861.34 25383.10 19191.91 130
pmmvs474.03 25371.91 25980.39 22881.96 30068.32 13181.45 27982.14 29959.32 31969.87 28385.13 26152.40 24088.13 29060.21 26074.74 29284.73 314
TDRefinement67.49 30164.34 31076.92 28473.47 35861.07 25784.86 22682.98 29259.77 31558.30 34885.13 26126.06 35987.89 29247.92 33460.59 34881.81 338
Fast-Effi-MVS+80.81 12979.92 13083.47 14288.85 15464.51 19985.53 21489.39 17470.79 18178.49 14785.06 26367.54 9293.58 15467.03 20886.58 15092.32 116
PVSNet_Blended80.98 12380.34 12482.90 17088.85 15465.40 18484.43 23992.00 9767.62 23678.11 15685.05 26466.02 10994.27 12071.52 16189.50 11489.01 229
CMPMVSbinary51.72 2170.19 28668.16 28876.28 28873.15 36057.55 29679.47 29783.92 27448.02 35456.48 35384.81 26543.13 31886.42 30362.67 23981.81 20684.89 311
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet68.53 29867.61 29871.31 32478.51 33947.01 35784.47 23584.27 27042.27 35666.44 31584.79 26640.44 33383.76 32058.76 27468.54 33183.17 327
BH-w/o78.21 19277.33 19480.84 22088.81 15865.13 19184.87 22587.85 22269.75 20274.52 23584.74 26761.34 16993.11 17958.24 27985.84 16284.27 317
pmmvs571.55 27470.20 27775.61 29377.83 34056.39 31281.74 27580.89 30857.76 33067.46 30084.49 26849.26 28185.32 31157.08 28975.29 28685.11 310
thres20075.55 23974.47 23778.82 25687.78 19457.85 29183.07 26483.51 28172.44 15475.84 20684.42 26952.08 24691.75 22447.41 33583.64 18486.86 283
eth_miper_zixun_eth77.92 20276.69 20981.61 20183.00 28061.98 24783.15 26189.20 18369.52 20674.86 23284.35 27061.76 15992.56 19571.50 16372.89 30990.28 183
c3_l78.75 17977.91 17681.26 21082.89 28461.56 25384.09 24789.13 18769.97 19675.56 20984.29 27166.36 10392.09 21473.47 14775.48 27890.12 189
Fast-Effi-MVS+-dtu78.02 19976.49 21282.62 18283.16 27666.96 15986.94 17187.45 23072.45 15271.49 26484.17 27254.79 22291.58 22867.61 19880.31 22289.30 220
IterMVS-SCA-FT75.43 24173.87 24480.11 23582.69 28864.85 19481.57 27883.47 28369.16 21570.49 27184.15 27351.95 24988.15 28969.23 18472.14 31487.34 270
131476.53 22475.30 22980.21 23383.93 26062.32 24384.66 22988.81 19760.23 31170.16 27784.07 27455.30 21790.73 25267.37 20183.21 18887.59 265
cl2278.07 19777.01 19881.23 21182.37 29661.83 25083.55 25687.98 21768.96 22275.06 22883.87 27561.40 16891.88 22273.53 14476.39 26589.98 201
EG-PatchMatch MVS74.04 25271.82 26180.71 22384.92 24567.42 14885.86 20488.08 21566.04 25464.22 32883.85 27635.10 34992.56 19557.44 28580.83 21482.16 336
thisisatest051577.33 21475.38 22683.18 15685.27 23863.80 21482.11 27283.27 28665.06 26575.91 20383.84 27749.54 27694.27 12067.24 20486.19 15691.48 143
test20.0367.45 30266.95 30368.94 33175.48 35044.84 36077.50 31577.67 33266.66 24563.01 33483.80 27847.02 29478.40 34142.53 35168.86 33083.58 324
miper_ehance_all_eth78.59 18477.76 18381.08 21682.66 28961.56 25383.65 25289.15 18568.87 22475.55 21083.79 27966.49 10192.03 21573.25 15076.39 26589.64 213
MSDG73.36 26070.99 26980.49 22784.51 25065.80 17680.71 28586.13 25065.70 25865.46 31983.74 28044.60 31090.91 24851.13 31376.89 25684.74 313
IterMVS74.29 24872.94 25278.35 26481.53 30663.49 22281.58 27782.49 29668.06 23469.99 28083.69 28151.66 25585.54 30865.85 21671.64 31786.01 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tpm72.37 27171.71 26274.35 30682.19 29852.00 34079.22 30077.29 33664.56 27172.95 24883.68 28251.35 25683.26 32558.33 27875.80 27287.81 259
Effi-MVS+-dtu80.03 14978.57 16084.42 11085.13 24268.74 12088.77 11288.10 21374.99 10674.97 23083.49 28357.27 20793.36 16673.53 14480.88 21391.18 150
baseline275.70 23773.83 24581.30 20983.26 27161.79 25182.57 26880.65 31266.81 24166.88 30683.42 28457.86 20092.19 21063.47 23079.57 22889.91 203
bset_n11_16_dypcd77.12 21675.47 22282.06 19081.12 31465.99 17181.37 28183.20 28969.94 19776.09 20283.38 28547.75 29092.26 20778.51 9977.91 24487.95 254
TinyColmap67.30 30464.81 30874.76 30381.92 30156.68 30880.29 29081.49 30660.33 30956.27 35483.22 28624.77 36087.66 29545.52 34369.47 32579.95 346
CostFormer75.24 24473.90 24379.27 25082.65 29058.27 28380.80 28282.73 29561.57 30275.33 22183.13 28755.52 21591.07 24664.98 22378.34 24288.45 248
miper_lstm_enhance74.11 25173.11 25177.13 28380.11 32459.62 27272.23 33686.92 23966.76 24370.40 27282.92 28856.93 21182.92 32669.06 18772.63 31088.87 236
GA-MVS76.87 22175.17 23081.97 19482.75 28662.58 23981.44 28086.35 24772.16 16074.74 23382.89 28946.20 30192.02 21668.85 19081.09 21191.30 148
K. test v371.19 27668.51 28479.21 25283.04 27957.78 29384.35 24276.91 33972.90 15162.99 33582.86 29039.27 33691.09 24561.65 24952.66 35688.75 241
MS-PatchMatch73.83 25472.67 25377.30 28083.87 26166.02 17081.82 27384.66 26361.37 30568.61 29382.82 29147.29 29288.21 28859.27 26684.32 17477.68 351
lessismore_v078.97 25481.01 31657.15 30065.99 36261.16 34082.82 29139.12 33791.34 23659.67 26346.92 36188.43 249
D2MVS74.82 24573.21 24979.64 24579.81 32862.56 24080.34 28987.35 23164.37 27468.86 29082.66 29346.37 29890.10 26067.91 19681.24 21086.25 292
Anonymous2023120668.60 29667.80 29571.02 32580.23 32350.75 34978.30 31080.47 31556.79 33766.11 31782.63 29446.35 29978.95 33943.62 34875.70 27383.36 326
MIMVSNet70.69 28069.30 27974.88 30184.52 24956.35 31475.87 32479.42 32564.59 27067.76 29682.41 29541.10 33081.54 33146.64 33981.34 20886.75 286
OpenMVS_ROBcopyleft64.09 1970.56 28268.19 28777.65 27480.26 32259.41 27585.01 22282.96 29358.76 32465.43 32082.33 29637.63 34391.23 23945.34 34576.03 27082.32 334
miper_enhance_ethall77.87 20476.86 20280.92 21981.65 30361.38 25582.68 26688.98 19265.52 26175.47 21182.30 29765.76 11392.00 21772.95 15376.39 26589.39 218
test0.0.03 168.00 30067.69 29768.90 33277.55 34147.43 35575.70 32572.95 35166.66 24566.56 31082.29 29848.06 28875.87 35244.97 34674.51 29483.41 325
PVSNet64.34 1872.08 27370.87 27275.69 29286.21 22556.44 31174.37 33280.73 31162.06 30070.17 27682.23 29942.86 32083.31 32454.77 29984.45 17387.32 271
MIMVSNet168.58 29766.78 30473.98 30980.07 32551.82 34180.77 28384.37 26664.40 27359.75 34582.16 30036.47 34583.63 32242.73 35070.33 32386.48 290
CL-MVSNet_self_test72.37 27171.46 26375.09 29979.49 33453.53 33380.76 28485.01 26169.12 21670.51 27082.05 30157.92 19984.13 31852.27 30866.00 33787.60 263
tpm273.26 26171.46 26378.63 25883.34 26956.71 30780.65 28680.40 31756.63 33873.55 24182.02 30251.80 25391.24 23856.35 29478.42 24187.95 254
PatchMatch-RL72.38 27070.90 27076.80 28688.60 16767.38 15079.53 29676.17 34162.75 29369.36 28882.00 30345.51 30784.89 31453.62 30380.58 21878.12 350
FMVSNet569.50 29067.96 29174.15 30882.97 28255.35 32280.01 29282.12 30062.56 29563.02 33381.53 30436.92 34481.92 32948.42 32774.06 29785.17 309
CR-MVSNet73.37 25871.27 26779.67 24481.32 31265.19 18975.92 32280.30 31859.92 31472.73 25081.19 30552.50 23886.69 30059.84 26277.71 24587.11 279
Patchmtry70.74 27969.16 28175.49 29680.72 31754.07 33074.94 33180.30 31858.34 32670.01 27881.19 30552.50 23886.54 30153.37 30471.09 32185.87 302
IB-MVS68.01 1575.85 23673.36 24883.31 14884.76 24666.03 16983.38 25885.06 25970.21 19369.40 28781.05 30745.76 30594.66 11165.10 22275.49 27789.25 221
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cascas76.72 22374.64 23382.99 16685.78 23065.88 17582.33 27089.21 18260.85 30772.74 24981.02 30847.28 29393.75 14967.48 20085.02 16589.34 219
LF4IMVS64.02 31862.19 32169.50 33070.90 36253.29 33876.13 31977.18 33752.65 34958.59 34680.98 30923.55 36176.52 34953.06 30666.66 33478.68 349
Anonymous2024052168.80 29567.22 30173.55 31074.33 35354.11 32983.18 26085.61 25458.15 32761.68 33880.94 31030.71 35781.27 33257.00 29073.34 30785.28 306
gm-plane-assit81.40 30853.83 33262.72 29480.94 31092.39 20163.40 232
UnsupCasMVSNet_eth67.33 30365.99 30671.37 32173.48 35751.47 34575.16 32785.19 25865.20 26360.78 34180.93 31242.35 32277.20 34757.12 28853.69 35585.44 304
MVS_030472.48 26870.89 27177.24 28182.20 29759.68 27184.11 24683.49 28267.10 24066.87 30780.59 31335.00 35087.40 29659.07 27079.58 22784.63 315
MDTV_nov1_ep1369.97 27883.18 27453.48 33477.10 31880.18 32160.45 30869.33 28980.44 31448.89 28686.90 29951.60 31178.51 239
pmmvs-eth3d70.50 28367.83 29478.52 26277.37 34366.18 16881.82 27381.51 30558.90 32363.90 33180.42 31542.69 32186.28 30458.56 27565.30 33983.11 329
PM-MVS66.41 30964.14 31173.20 31473.92 35556.45 31078.97 30364.96 36563.88 28364.72 32580.24 31619.84 36483.44 32366.24 21064.52 34179.71 347
SCA74.22 25072.33 25779.91 23884.05 25862.17 24579.96 29379.29 32666.30 25172.38 25580.13 31751.95 24988.60 28459.25 26777.67 24788.96 233
Patchmatch-test64.82 31663.24 31669.57 32979.42 33549.82 35263.49 35769.05 35951.98 35159.95 34480.13 31750.91 26070.98 36140.66 35473.57 30287.90 257
tpmrst72.39 26972.13 25873.18 31580.54 32049.91 35179.91 29479.08 32763.11 28671.69 26279.95 31955.32 21682.77 32765.66 21873.89 29986.87 282
DSMNet-mixed57.77 32456.90 32660.38 34167.70 36435.61 36769.18 34653.97 36932.30 36557.49 35079.88 32040.39 33468.57 36338.78 35672.37 31176.97 352
MDA-MVSNet-bldmvs66.68 30663.66 31475.75 29179.28 33660.56 26473.92 33378.35 32964.43 27250.13 35979.87 32144.02 31583.67 32146.10 34156.86 35183.03 331
PatchmatchNetpermissive73.12 26371.33 26678.49 26383.18 27460.85 26079.63 29578.57 32864.13 27671.73 26179.81 32251.20 25885.97 30657.40 28676.36 26888.66 243
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ppachtmachnet_test70.04 28767.34 30078.14 26679.80 32961.13 25679.19 30180.59 31359.16 32165.27 32179.29 32346.75 29787.29 29749.33 32466.72 33386.00 301
EPMVS69.02 29368.16 28871.59 31979.61 33249.80 35377.40 31666.93 36162.82 29270.01 27879.05 32445.79 30477.86 34556.58 29275.26 28787.13 278
PMMVS69.34 29168.67 28371.35 32375.67 34862.03 24675.17 32673.46 34950.00 35368.68 29179.05 32452.07 24778.13 34261.16 25482.77 19473.90 354
test-LLR72.94 26672.43 25574.48 30481.35 31058.04 28678.38 30777.46 33366.66 24569.95 28179.00 32648.06 28879.24 33766.13 21184.83 16786.15 295
test-mter71.41 27570.39 27674.48 30481.35 31058.04 28678.38 30777.46 33360.32 31069.95 28179.00 32636.08 34779.24 33766.13 21184.83 16786.15 295
KD-MVS_self_test68.81 29467.59 29972.46 31774.29 35445.45 35877.93 31387.00 23763.12 28563.99 33078.99 32842.32 32384.77 31556.55 29364.09 34287.16 277
KD-MVS_2432*160066.22 31163.89 31273.21 31275.47 35153.42 33570.76 34184.35 26764.10 27766.52 31278.52 32934.55 35184.98 31250.40 31650.33 35981.23 340
miper_refine_blended66.22 31163.89 31273.21 31275.47 35153.42 33570.76 34184.35 26764.10 27766.52 31278.52 32934.55 35184.98 31250.40 31650.33 35981.23 340
DWT-MVSNet_test73.70 25571.86 26079.21 25282.91 28358.94 27682.34 26982.17 29865.21 26271.05 26878.31 33144.21 31390.17 25963.29 23477.28 24988.53 247
tpmvs71.09 27769.29 28076.49 28782.04 29956.04 31778.92 30481.37 30764.05 27967.18 30478.28 33249.74 27589.77 26349.67 32372.37 31183.67 323
our_test_369.14 29267.00 30275.57 29479.80 32958.80 27877.96 31277.81 33159.55 31762.90 33678.25 33347.43 29183.97 31951.71 31067.58 33283.93 322
MDA-MVSNet_test_wron65.03 31462.92 31771.37 32175.93 34656.73 30569.09 34974.73 34657.28 33554.03 35677.89 33445.88 30274.39 35849.89 32261.55 34582.99 332
YYNet165.03 31462.91 31871.38 32075.85 34756.60 30969.12 34874.66 34857.28 33554.12 35577.87 33545.85 30374.48 35749.95 32161.52 34683.05 330
ambc75.24 29873.16 35950.51 35063.05 35887.47 22964.28 32777.81 33617.80 36589.73 26557.88 28260.64 34785.49 303
tpm cat170.57 28168.31 28677.35 27982.41 29557.95 28978.08 31180.22 32052.04 35068.54 29477.66 33752.00 24887.84 29351.77 30972.07 31586.25 292
dp66.80 30565.43 30770.90 32679.74 33148.82 35475.12 32974.77 34559.61 31664.08 32977.23 33842.89 31980.72 33448.86 32666.58 33583.16 328
TESTMET0.1,169.89 28969.00 28272.55 31679.27 33756.85 30378.38 30774.71 34757.64 33168.09 29577.19 33937.75 34276.70 34863.92 22884.09 17684.10 321
CHOSEN 280x42066.51 30864.71 30971.90 31881.45 30763.52 22157.98 35968.95 36053.57 34662.59 33776.70 34046.22 30075.29 35555.25 29779.68 22676.88 353
PatchT68.46 29967.85 29370.29 32780.70 31843.93 36172.47 33574.88 34460.15 31270.55 26976.57 34149.94 27281.59 33050.58 31474.83 29185.34 305
RPMNet73.51 25770.49 27382.58 18381.32 31265.19 18975.92 32292.27 8357.60 33272.73 25076.45 34252.30 24195.43 7548.14 33277.71 24587.11 279
ADS-MVSNet266.20 31363.33 31574.82 30279.92 32658.75 27967.55 35175.19 34353.37 34765.25 32275.86 34342.32 32380.53 33541.57 35268.91 32885.18 307
ADS-MVSNet64.36 31762.88 31968.78 33479.92 32647.17 35667.55 35171.18 35253.37 34765.25 32275.86 34342.32 32373.99 35941.57 35268.91 32885.18 307
new-patchmatchnet61.73 32061.73 32261.70 34072.74 36124.50 37469.16 34778.03 33061.40 30356.72 35275.53 34538.42 33976.48 35045.95 34257.67 35084.13 320
N_pmnet52.79 32753.26 32851.40 34678.99 3387.68 37769.52 3443.89 37751.63 35257.01 35174.98 34640.83 33265.96 36437.78 35764.67 34080.56 345
patchmatchnet-post74.00 34751.12 25988.60 284
GG-mvs-BLEND75.38 29781.59 30555.80 31979.32 29869.63 35667.19 30373.67 34843.24 31788.90 28250.41 31584.50 17181.45 339
Patchmatch-RL test70.24 28567.78 29677.61 27577.43 34259.57 27471.16 33870.33 35362.94 29068.65 29272.77 34950.62 26485.49 30969.58 18266.58 33587.77 260
FPMVS53.68 32651.64 32959.81 34265.08 36551.03 34769.48 34569.58 35741.46 35740.67 36172.32 35016.46 36770.00 36224.24 36465.42 33858.40 361
UnsupCasMVSNet_bld63.70 31961.53 32370.21 32873.69 35651.39 34672.82 33481.89 30155.63 34257.81 34971.80 35138.67 33878.61 34049.26 32552.21 35780.63 343
PVSNet_057.27 2061.67 32159.27 32468.85 33379.61 33257.44 29868.01 35073.44 35055.93 34158.54 34770.41 35244.58 31177.55 34647.01 33635.91 36271.55 356
pmmvs357.79 32354.26 32768.37 33564.02 36656.72 30675.12 32965.17 36340.20 35852.93 35769.86 35320.36 36375.48 35445.45 34455.25 35472.90 355
new_pmnet50.91 32850.29 33052.78 34568.58 36334.94 36963.71 35656.63 36839.73 35944.95 36065.47 35421.93 36258.48 36534.98 35956.62 35264.92 358
gg-mvs-nofinetune69.95 28867.96 29175.94 29083.07 27754.51 32777.23 31770.29 35463.11 28670.32 27362.33 35543.62 31688.69 28353.88 30287.76 13284.62 316
JIA-IIPM66.32 31062.82 32076.82 28577.09 34461.72 25265.34 35475.38 34258.04 32964.51 32662.32 35642.05 32786.51 30251.45 31269.22 32782.21 335
LCM-MVSNet54.25 32549.68 33167.97 33653.73 36945.28 35966.85 35380.78 31035.96 36239.45 36262.23 3578.70 37378.06 34448.24 33151.20 35880.57 344
PMMVS240.82 33238.86 33546.69 34753.84 36816.45 37548.61 36249.92 37037.49 36131.67 36360.97 3588.14 37456.42 36628.42 36130.72 36467.19 357
MVS-HIRNet59.14 32257.67 32563.57 33981.65 30343.50 36271.73 33765.06 36439.59 36051.43 35857.73 35938.34 34082.58 32839.53 35573.95 29864.62 359
ANet_high50.57 32946.10 33263.99 33848.67 37239.13 36570.99 34080.85 30961.39 30431.18 36457.70 36017.02 36673.65 36031.22 36015.89 36979.18 348
PMVScopyleft37.38 2244.16 33140.28 33455.82 34340.82 37442.54 36365.12 35563.99 36634.43 36324.48 36657.12 3613.92 37576.17 35117.10 36755.52 35348.75 362
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_method31.52 33429.28 33838.23 34927.03 3766.50 37820.94 36762.21 3674.05 37122.35 36952.50 36213.33 36847.58 36927.04 36334.04 36360.62 360
DeepMVS_CXcopyleft27.40 35240.17 37526.90 37224.59 37617.44 36923.95 36748.61 3639.77 37126.48 37118.06 36624.47 36528.83 365
MVEpermissive26.22 2330.37 33625.89 34043.81 34844.55 37335.46 36828.87 36639.07 37318.20 36818.58 37040.18 3642.68 37647.37 37017.07 36823.78 36648.60 363
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft45.18 33041.86 33355.16 34477.03 34551.52 34432.50 36580.52 31432.46 36427.12 36535.02 3659.52 37275.50 35322.31 36560.21 34938.45 364
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN31.77 33330.64 33635.15 35052.87 37027.67 37157.09 36047.86 37124.64 36616.40 37133.05 36611.23 37054.90 36714.46 36918.15 36722.87 366
EMVS30.81 33529.65 33734.27 35150.96 37125.95 37356.58 36146.80 37224.01 36715.53 37230.68 36712.47 36954.43 36812.81 37017.05 36822.43 367
tmp_tt18.61 33821.40 34110.23 3544.82 37710.11 37634.70 36430.74 3751.48 37223.91 36826.07 36828.42 35813.41 37327.12 36215.35 3707.17 368
X-MVStestdata80.37 14377.83 17988.00 1594.42 2273.33 2092.78 1792.99 4979.14 2283.67 8312.47 36967.45 9396.60 3483.06 6094.50 5694.07 43
test_post5.46 37050.36 26884.24 317
test_post178.90 3055.43 37148.81 28785.44 31059.25 267
wuyk23d16.82 33915.94 34219.46 35358.74 36731.45 37039.22 3633.74 3786.84 3706.04 3732.70 3721.27 37724.29 37210.54 37114.40 3712.63 369
testmvs6.04 3428.02 3450.10 3560.08 3780.03 38069.74 3430.04 3790.05 3730.31 3741.68 3730.02 3790.04 3740.24 3720.02 3720.25 371
test1236.12 3418.11 3440.14 3550.06 3790.09 37971.05 3390.03 3800.04 3740.25 3751.30 3740.05 3780.03 3750.21 3730.01 3730.29 370
test_blank0.00 3440.00 3470.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.00 3750.00 3800.00 3760.00 3740.00 3740.00 372
uanet_test0.00 3440.00 3470.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.00 3750.00 3800.00 3760.00 3740.00 3740.00 372
pcd_1.5k_mvsjas5.26 3437.02 3460.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.00 37563.15 1380.00 3760.00 3740.00 3740.00 372
sosnet-low-res0.00 3440.00 3470.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.00 3750.00 3800.00 3760.00 3740.00 3740.00 372
sosnet0.00 3440.00 3470.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.00 3750.00 3800.00 3760.00 3740.00 3740.00 372
uncertanet0.00 3440.00 3470.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.00 3750.00 3800.00 3760.00 3740.00 3740.00 372
Regformer0.00 3440.00 3470.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.00 3750.00 3800.00 3760.00 3740.00 3740.00 372
uanet0.00 3440.00 3470.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.00 3750.00 3800.00 3760.00 3740.00 3740.00 372
FOURS195.00 1072.39 4295.06 193.84 1874.49 11791.30 15
MSC_two_6792asdad89.16 194.34 2975.53 292.99 4997.53 189.67 196.44 994.41 28
No_MVS89.16 194.34 2975.53 292.99 4997.53 189.67 196.44 994.41 28
eth-test20.00 380
eth-test0.00 380
IU-MVS95.30 271.25 6392.95 5666.81 24192.39 688.94 1196.63 494.85 13
save fliter93.80 4472.35 4590.47 6691.17 12974.31 121
test_0728_SECOND87.71 3495.34 171.43 6293.49 994.23 597.49 389.08 796.41 1294.21 38
GSMVS88.96 233
test_part295.06 872.65 3391.80 13
sam_mvs151.32 25788.96 233
sam_mvs50.01 270
MTGPAbinary92.02 94
MTMP92.18 3332.83 374
test9_res84.90 3395.70 3192.87 100
agg_prior282.91 6395.45 3392.70 103
agg_prior92.85 6671.94 5491.78 10984.41 6994.93 98
test_prior472.60 3589.01 102
test_prior86.33 6392.61 7469.59 10192.97 5495.48 7193.91 51
旧先验286.56 18558.10 32887.04 3588.98 27874.07 140
新几何286.29 193
无先验87.48 15688.98 19260.00 31394.12 12967.28 20288.97 232
原ACMM286.86 174
testdata291.01 24762.37 241
segment_acmp73.08 43
testdata184.14 24575.71 90
test1286.80 5592.63 7370.70 8191.79 10882.71 9671.67 5596.16 4794.50 5693.54 75
plane_prior790.08 11268.51 129
plane_prior689.84 11968.70 12460.42 186
plane_prior592.44 7595.38 8078.71 9786.32 15491.33 146
plane_prior368.60 12778.44 3178.92 138
plane_prior291.25 4979.12 24
plane_prior189.90 118
plane_prior68.71 12290.38 7077.62 4086.16 157
n20.00 381
nn0.00 381
door-mid69.98 355
test1192.23 86
door69.44 358
HQP5-MVS66.98 156
HQP-NCC89.33 13389.17 9576.41 7477.23 174
ACMP_Plane89.33 13389.17 9576.41 7477.23 174
BP-MVS77.47 111
HQP4-MVS77.24 17395.11 9191.03 156
HQP3-MVS92.19 8985.99 160
HQP2-MVS60.17 189
MDTV_nov1_ep13_2view37.79 36675.16 32755.10 34366.53 31149.34 27953.98 30187.94 256
ACMMP++_ref81.95 204
ACMMP++81.25 209
Test By Simon64.33 123