This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
APDe-MVS89.15 589.63 587.73 2794.49 1871.69 5593.83 293.96 1475.70 8591.06 1296.03 176.84 1297.03 1289.09 395.65 2894.47 23
SMA-MVScopyleft89.08 689.23 688.61 394.25 2873.73 892.40 2093.63 2074.77 10292.29 695.97 274.28 3197.24 888.58 1096.91 194.87 9
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test072695.27 571.25 5993.60 494.11 677.33 4592.81 395.79 380.98 7
DVP-MVS89.60 290.35 287.33 4295.27 571.25 5993.49 792.73 5877.33 4592.12 895.78 480.98 797.40 489.08 496.41 893.33 75
test_0728_THIRD78.38 3292.12 895.78 481.46 597.40 489.42 296.57 594.67 16
SED-MVS90.08 190.85 187.77 2395.30 270.98 6593.57 594.06 1077.24 4793.10 195.72 682.99 197.44 289.07 696.63 294.88 7
test_241102_TWO94.06 1077.24 4792.78 495.72 681.26 697.44 289.07 696.58 494.26 31
DPE-MVS89.48 489.98 388.01 1294.80 972.69 3091.59 4094.10 875.90 8192.29 695.66 881.67 497.38 687.44 1796.34 1193.95 44
test_241102_ONE95.30 270.98 6594.06 1077.17 5093.10 195.39 982.99 197.27 7
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4572.04 4989.80 8093.50 2475.17 9686.34 3695.29 1070.86 5796.00 5088.78 996.04 1294.58 19
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
xxxxxxxxxxxxxcwj87.88 1887.92 1887.77 2393.80 3972.35 4290.47 6289.69 16274.31 11189.16 1595.10 1175.65 1896.19 4287.07 1896.01 1394.79 11
SF-MVS88.46 1088.74 1087.64 3592.78 6471.95 5092.40 2094.74 275.71 8389.16 1595.10 1175.65 1896.19 4287.07 1896.01 1394.79 11
ACMMP_NAP88.05 1588.08 1687.94 1593.70 4273.05 2190.86 5293.59 2176.27 7788.14 2295.09 1371.06 5696.67 2587.67 1396.37 1094.09 36
zzz-MVS87.53 2387.41 2687.90 1994.18 3274.25 390.23 6992.02 8779.45 1985.88 3894.80 1468.07 8196.21 4086.69 2195.34 3293.23 78
MTAPA87.23 3287.00 3387.90 1994.18 3274.25 386.58 17692.02 8779.45 1985.88 3894.80 1468.07 8196.21 4086.69 2195.34 3293.23 78
SteuartSystems-ACMMP88.72 988.86 988.32 692.14 7572.96 2493.73 393.67 1980.19 1488.10 2394.80 1473.76 3697.11 1087.51 1595.82 2094.90 6
Skip Steuart: Steuart Systems R&D Blog.
9.1488.26 1492.84 6391.52 4394.75 173.93 12188.57 2094.67 1775.57 2095.79 5686.77 2095.76 24
SR-MVS86.73 3886.67 3986.91 4994.11 3572.11 4892.37 2492.56 6674.50 10786.84 3394.65 1867.31 9095.77 5784.80 3492.85 6892.84 94
ETH3D-3000-0.188.09 1288.29 1387.50 3892.76 6571.89 5391.43 4494.70 374.47 10888.86 1894.61 1975.23 2195.84 5486.62 2395.92 1794.78 13
test117286.20 4986.22 4586.12 6793.95 3769.89 9091.79 3992.28 7575.07 9786.40 3594.58 2065.00 11495.56 6284.34 4192.60 7292.90 92
region2R87.42 2787.20 3188.09 1094.63 1273.55 1193.03 1293.12 3876.73 6584.45 6294.52 2169.09 7696.70 2384.37 4094.83 4694.03 39
ACMMPR87.44 2587.23 3088.08 1194.64 1173.59 1093.04 1093.20 3476.78 6284.66 5994.52 2168.81 7996.65 2684.53 3794.90 4194.00 42
APD-MVScopyleft87.44 2587.52 2387.19 4494.24 2972.39 4091.86 3792.83 5473.01 13988.58 1994.52 2173.36 3796.49 3484.26 4295.01 3892.70 96
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
APD-MVS_3200maxsize85.97 5085.88 5186.22 6492.69 6769.53 9791.93 3492.99 4573.54 12985.94 3794.51 2465.80 10695.61 6083.04 5792.51 7493.53 69
CP-MVS87.11 3486.92 3587.68 3494.20 3173.86 693.98 192.82 5776.62 6783.68 7594.46 2567.93 8395.95 5284.20 4494.39 5593.23 78
SR-MVS-dyc-post85.77 5385.61 5486.23 6393.06 5770.63 7691.88 3592.27 7673.53 13085.69 4294.45 2665.00 11495.56 6282.75 6091.87 7792.50 103
RE-MVS-def85.48 5593.06 5770.63 7691.88 3592.27 7673.53 13085.69 4294.45 2663.87 12182.75 6091.87 7792.50 103
HFP-MVS87.58 2287.47 2487.94 1594.58 1473.54 1393.04 1093.24 3276.78 6284.91 5294.44 2870.78 5896.61 2984.53 3794.89 4293.66 57
#test#87.33 3087.13 3287.94 1594.58 1473.54 1392.34 2593.24 3275.23 9384.91 5294.44 2870.78 5896.61 2983.75 4994.89 4293.66 57
testtj87.78 1987.78 2087.77 2394.55 1672.47 3792.23 2993.49 2574.75 10388.33 2194.43 3073.27 3997.02 1384.18 4594.84 4493.82 52
PGM-MVS86.68 4086.27 4487.90 1994.22 3073.38 1790.22 7193.04 3975.53 8783.86 7294.42 3167.87 8596.64 2782.70 6294.57 5193.66 57
MP-MVScopyleft87.71 2087.64 2287.93 1894.36 2673.88 592.71 1992.65 6377.57 3883.84 7394.40 3272.24 4796.28 3885.65 2595.30 3693.62 64
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS87.94 1787.85 1988.20 994.39 2473.33 1893.03 1293.81 1776.81 6085.24 4794.32 3371.76 5196.93 1585.53 2695.79 2194.32 28
ETH3D cwj APD-0.1687.31 3187.27 2787.44 4091.60 8272.45 3990.02 7494.37 471.76 15387.28 3094.27 3475.18 2296.08 4685.16 2795.77 2293.80 55
HPM-MVS++copyleft89.02 789.15 788.63 295.01 876.03 192.38 2392.85 5380.26 1387.78 2694.27 3475.89 1696.81 1987.45 1696.44 793.05 86
mPP-MVS86.67 4186.32 4387.72 2994.41 2273.55 1192.74 1792.22 8076.87 5982.81 8794.25 3666.44 9796.24 3982.88 5994.28 5893.38 72
DeepC-MVS79.81 287.08 3686.88 3787.69 3391.16 8672.32 4490.31 6793.94 1577.12 5282.82 8694.23 3772.13 4997.09 1184.83 3395.37 3193.65 62
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XVS87.18 3386.91 3688.00 1394.42 2073.33 1892.78 1592.99 4579.14 2183.67 7694.17 3867.45 8896.60 3183.06 5594.50 5294.07 37
MSP-MVS89.51 389.91 488.30 794.28 2773.46 1692.90 1494.11 680.27 1291.35 1194.16 3978.35 1096.77 2089.59 194.22 6094.67 16
abl_685.23 6284.95 6686.07 6892.23 7470.48 8090.80 5492.08 8573.51 13285.26 4694.16 3962.75 13795.92 5382.46 6591.30 8691.81 125
DeepPCF-MVS80.84 188.10 1188.56 1186.73 5392.24 7369.03 10589.57 8693.39 3077.53 4289.79 1494.12 4178.98 996.58 3385.66 2495.72 2594.58 19
HPM-MVS_fast85.35 6184.95 6686.57 5893.69 4370.58 7992.15 3291.62 10673.89 12282.67 8994.09 4262.60 13895.54 6580.93 7392.93 6693.57 66
ZD-MVS94.38 2572.22 4592.67 6070.98 16787.75 2794.07 4374.01 3596.70 2384.66 3694.84 44
CNVR-MVS88.93 889.13 888.33 594.77 1073.82 790.51 5993.00 4380.90 988.06 2494.06 4476.43 1396.84 1788.48 1195.99 1594.34 27
OPU-MVS89.06 194.62 1375.42 293.57 594.02 4582.45 396.87 1683.77 4896.48 694.88 7
SD-MVS88.06 1388.50 1286.71 5492.60 7172.71 2891.81 3893.19 3577.87 3390.32 1394.00 4674.83 2493.78 13887.63 1494.27 5993.65 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GST-MVS87.42 2787.26 2887.89 2294.12 3472.97 2392.39 2293.43 2876.89 5884.68 5893.99 4770.67 6196.82 1884.18 4595.01 3893.90 47
HPM-MVScopyleft87.11 3486.98 3487.50 3893.88 3872.16 4692.19 3093.33 3176.07 8083.81 7493.95 4869.77 7096.01 4985.15 2894.66 4894.32 28
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + MP.88.02 1688.11 1587.72 2993.68 4472.13 4791.41 4592.35 7374.62 10688.90 1793.85 4975.75 1796.00 5087.80 1294.63 4995.04 3
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMPcopyleft85.89 5285.39 5787.38 4193.59 4672.63 3292.74 1793.18 3676.78 6280.73 11293.82 5064.33 11796.29 3782.67 6390.69 9193.23 78
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_prior386.73 3886.86 3886.33 6092.61 6969.59 9588.85 10492.97 4875.41 8984.91 5293.54 5174.28 3195.48 6683.31 5095.86 1893.91 45
test_prior288.85 10475.41 8984.91 5293.54 5174.28 3183.31 5095.86 18
ETH3 D test640087.50 2487.44 2587.70 3293.71 4171.75 5490.62 5794.05 1370.80 16987.59 2993.51 5377.57 1196.63 2883.31 5095.77 2294.72 15
VDDNet81.52 10880.67 11184.05 12090.44 9864.13 19989.73 8385.91 24171.11 16483.18 8093.48 5450.54 25693.49 15373.40 13988.25 12194.54 22
CDPH-MVS85.76 5485.29 6187.17 4593.49 4871.08 6388.58 11692.42 7168.32 21984.61 6093.48 5472.32 4696.15 4579.00 8695.43 3094.28 30
NCCC88.06 1388.01 1788.24 894.41 2273.62 991.22 4992.83 5481.50 685.79 4193.47 5673.02 4297.00 1484.90 3094.94 4094.10 35
3Dnovator+77.84 485.48 5784.47 7188.51 491.08 8773.49 1593.18 993.78 1880.79 1076.66 17493.37 5760.40 17996.75 2277.20 10593.73 6395.29 2
DeepC-MVS_fast79.65 386.91 3786.62 4087.76 2693.52 4772.37 4191.26 4693.04 3976.62 6784.22 6793.36 5871.44 5496.76 2180.82 7595.33 3494.16 33
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDD-MVS83.01 8882.36 9084.96 8991.02 8966.40 15788.91 10188.11 20477.57 3884.39 6593.29 5952.19 23393.91 13377.05 10788.70 11594.57 21
UA-Net85.08 6684.96 6585.45 7492.07 7668.07 13289.78 8190.86 13082.48 284.60 6193.20 6069.35 7395.22 7971.39 15590.88 9093.07 85
agg_prior186.22 4886.09 5086.62 5692.85 6171.94 5188.59 11591.78 10268.96 20984.41 6393.18 6174.94 2394.93 9184.75 3595.33 3493.01 89
TEST993.26 5172.96 2488.75 10891.89 9668.44 21885.00 5093.10 6274.36 3095.41 71
train_agg86.43 4486.20 4687.13 4693.26 5172.96 2488.75 10891.89 9668.69 21485.00 5093.10 6274.43 2795.41 7184.97 2995.71 2693.02 88
test_893.13 5372.57 3488.68 11391.84 9968.69 21484.87 5693.10 6274.43 2795.16 81
LFMVS81.82 10381.23 10483.57 13391.89 7963.43 21589.84 7781.85 28777.04 5583.21 7993.10 6252.26 23293.43 15671.98 15089.95 10393.85 49
旧先验191.96 7765.79 16886.37 23593.08 6669.31 7592.74 6988.74 231
testdata79.97 22690.90 9164.21 19784.71 24959.27 30485.40 4492.91 6762.02 15189.08 26468.95 17891.37 8486.63 275
MCST-MVS87.37 2987.25 2987.73 2794.53 1772.46 3889.82 7893.82 1673.07 13784.86 5792.89 6876.22 1496.33 3684.89 3295.13 3794.40 24
Vis-MVSNetpermissive83.46 7982.80 8585.43 7590.25 10168.74 11590.30 6890.13 15076.33 7680.87 11192.89 6861.00 16894.20 11872.45 14990.97 8893.35 74
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CPTT-MVS83.73 7483.33 7784.92 9293.28 5070.86 7292.09 3390.38 14068.75 21379.57 11992.83 7060.60 17593.04 17480.92 7491.56 8290.86 150
3Dnovator76.31 583.38 8282.31 9186.59 5787.94 17472.94 2790.64 5692.14 8477.21 4975.47 19892.83 7058.56 18694.72 10373.24 14292.71 7092.13 117
MSLP-MVS++85.43 5985.76 5384.45 10491.93 7870.24 8190.71 5592.86 5277.46 4484.22 6792.81 7267.16 9292.94 17680.36 7994.35 5790.16 175
MG-MVS83.41 8083.45 7583.28 14192.74 6662.28 23388.17 13389.50 16675.22 9481.49 10292.74 7366.75 9395.11 8372.85 14591.58 8192.45 106
casdiffmvs85.11 6585.14 6285.01 8787.20 19765.77 16987.75 14392.83 5477.84 3484.36 6692.38 7472.15 4893.93 13281.27 7190.48 9495.33 1
baseline84.93 6784.98 6484.80 9687.30 19565.39 17687.30 15492.88 5177.62 3684.04 7192.26 7571.81 5093.96 12681.31 7090.30 9695.03 4
QAPM80.88 11779.50 13385.03 8688.01 17368.97 10991.59 4092.00 9066.63 23575.15 21292.16 7657.70 19195.45 6863.52 21788.76 11490.66 156
IS-MVSNet83.15 8482.81 8484.18 11589.94 10863.30 21791.59 4088.46 20179.04 2579.49 12092.16 7665.10 11194.28 11267.71 18591.86 7994.95 5
112180.84 11979.77 12684.05 12093.11 5570.78 7384.66 21985.42 24457.37 31781.76 10192.02 7863.41 12494.12 12267.28 19092.93 6687.26 260
新几何183.42 13693.13 5370.71 7485.48 24357.43 31681.80 9891.98 7963.28 12692.27 19564.60 21492.99 6587.27 259
OpenMVScopyleft72.83 1079.77 14778.33 16084.09 11885.17 22669.91 8890.57 5890.97 12666.70 23172.17 24491.91 8054.70 21493.96 12661.81 23690.95 8988.41 239
PHI-MVS86.43 4486.17 4887.24 4390.88 9270.96 6792.27 2894.07 972.45 14285.22 4891.90 8169.47 7296.42 3583.28 5395.94 1694.35 26
VNet82.21 9582.41 8881.62 19090.82 9360.93 24784.47 22589.78 15876.36 7584.07 7091.88 8264.71 11690.26 24470.68 16088.89 11193.66 57
OPM-MVS83.50 7882.95 8285.14 8388.79 14970.95 6889.13 9791.52 10977.55 4180.96 11091.75 8360.71 17194.50 10879.67 8586.51 14489.97 191
XVG-OURS-SEG-HR80.81 12279.76 12783.96 12785.60 22068.78 11283.54 24890.50 13770.66 17476.71 17291.66 8460.69 17291.26 22576.94 10981.58 19891.83 123
EPNet83.72 7582.92 8386.14 6684.22 24169.48 9891.05 5185.27 24581.30 776.83 16891.65 8566.09 10195.56 6276.00 11793.85 6293.38 72
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OMC-MVS82.69 9081.97 9784.85 9388.75 15167.42 14187.98 13690.87 12974.92 10079.72 11891.65 8562.19 14893.96 12675.26 12486.42 14593.16 83
test22291.50 8368.26 12884.16 23483.20 27454.63 32879.74 11791.63 8758.97 18491.42 8386.77 271
MVS_111021_HR85.14 6484.75 6886.32 6291.65 8172.70 2985.98 19190.33 14476.11 7982.08 9391.61 8871.36 5594.17 12181.02 7292.58 7392.08 118
原ACMM184.35 10993.01 5968.79 11192.44 6863.96 26781.09 10891.57 8966.06 10295.45 6867.19 19394.82 4788.81 228
LPG-MVS_test82.08 9781.27 10384.50 10289.23 13268.76 11390.22 7191.94 9475.37 9176.64 17591.51 9054.29 21794.91 9378.44 9283.78 16989.83 196
LGP-MVS_train84.50 10289.23 13268.76 11391.94 9475.37 9176.64 17591.51 9054.29 21794.91 9378.44 9283.78 16989.83 196
XVG-OURS80.41 13579.23 14083.97 12685.64 21969.02 10683.03 25590.39 13971.09 16577.63 15391.49 9254.62 21691.35 22375.71 11883.47 17691.54 130
alignmvs85.48 5785.32 5985.96 7089.51 11869.47 9989.74 8292.47 6776.17 7887.73 2891.46 9370.32 6493.78 13881.51 6888.95 11094.63 18
CANet86.45 4386.10 4987.51 3790.09 10470.94 6989.70 8492.59 6581.78 481.32 10391.43 9470.34 6397.23 984.26 4293.36 6494.37 25
nrg03083.88 7283.53 7484.96 8986.77 20569.28 10490.46 6492.67 6074.79 10182.95 8291.33 9572.70 4393.09 17080.79 7779.28 22792.50 103
canonicalmvs85.91 5185.87 5286.04 6989.84 11069.44 10390.45 6593.00 4376.70 6688.01 2591.23 9673.28 3893.91 13381.50 6988.80 11394.77 14
DPM-MVS84.93 6784.29 7286.84 5090.20 10273.04 2287.12 15893.04 3969.80 18882.85 8591.22 9773.06 4196.02 4876.72 11294.63 4991.46 135
Anonymous20240521178.25 18177.01 18981.99 18491.03 8860.67 25184.77 21783.90 26070.65 17580.00 11691.20 9841.08 31791.43 22165.21 20885.26 15593.85 49
Anonymous2024052980.19 14178.89 14784.10 11790.60 9564.75 18788.95 10090.90 12865.97 24380.59 11391.17 9949.97 26193.73 14469.16 17682.70 18893.81 53
EPP-MVSNet83.40 8183.02 8184.57 10090.13 10364.47 19392.32 2690.73 13174.45 11079.35 12291.10 10069.05 7895.12 8272.78 14687.22 13394.13 34
TAPA-MVS73.13 979.15 16177.94 16782.79 16989.59 11462.99 22688.16 13491.51 11065.77 24477.14 16591.09 10160.91 16993.21 16150.26 30387.05 13592.17 116
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CSCG86.41 4686.19 4787.07 4792.91 6072.48 3690.81 5393.56 2273.95 11983.16 8191.07 10275.94 1595.19 8079.94 8394.38 5693.55 67
FIs82.07 9882.42 8781.04 20888.80 14858.34 27188.26 13093.49 2576.93 5778.47 13691.04 10369.92 6892.34 19469.87 16984.97 15792.44 107
MVS_111021_LR82.61 9282.11 9284.11 11688.82 14671.58 5685.15 20986.16 23874.69 10480.47 11491.04 10362.29 14590.55 24280.33 8090.08 10190.20 174
DP-MVS Recon83.11 8682.09 9386.15 6594.44 1970.92 7188.79 10692.20 8170.53 17679.17 12391.03 10564.12 11996.03 4768.39 18290.14 9991.50 132
HQP_MVS83.64 7683.14 7885.14 8390.08 10568.71 11791.25 4792.44 6879.12 2378.92 12791.00 10660.42 17795.38 7378.71 8986.32 14691.33 137
plane_prior491.00 106
FC-MVSNet-test81.52 10882.02 9580.03 22588.42 16155.97 30787.95 13893.42 2977.10 5377.38 15790.98 10869.96 6791.79 21168.46 18184.50 16292.33 108
Vis-MVSNet (Re-imp)78.36 18078.45 15478.07 25788.64 15351.78 32586.70 17379.63 30874.14 11775.11 21390.83 10961.29 16289.75 25258.10 26891.60 8092.69 98
114514_t80.68 12879.51 13284.20 11494.09 3667.27 14589.64 8591.11 12458.75 30974.08 22690.72 11058.10 18895.04 8869.70 17089.42 10890.30 171
PAPM_NR83.02 8782.41 8884.82 9492.47 7266.37 15887.93 14091.80 10073.82 12377.32 15990.66 11167.90 8494.90 9570.37 16389.48 10793.19 82
LS3D76.95 21074.82 22283.37 13990.45 9767.36 14489.15 9686.94 22761.87 28569.52 27290.61 11251.71 24494.53 10646.38 32386.71 14188.21 241
VPNet78.69 17278.66 15078.76 24688.31 16455.72 30984.45 22886.63 23176.79 6178.26 14090.55 11359.30 18289.70 25466.63 19777.05 24490.88 149
UniMVSNet_ETH3D79.10 16378.24 16281.70 18986.85 20260.24 25787.28 15588.79 19174.25 11476.84 16790.53 11449.48 26791.56 21767.98 18382.15 19293.29 76
ACMP74.13 681.51 11080.57 11284.36 10889.42 12068.69 12089.97 7691.50 11374.46 10975.04 21690.41 11553.82 22294.54 10577.56 10182.91 18389.86 195
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PCF-MVS73.52 780.38 13678.84 14885.01 8787.71 18268.99 10883.65 24391.46 11463.00 27277.77 15190.28 11666.10 10095.09 8761.40 23988.22 12290.94 148
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
NP-MVS89.62 11368.32 12690.24 117
HQP-MVS82.61 9282.02 9584.37 10789.33 12466.98 14989.17 9292.19 8276.41 7077.23 16290.23 11860.17 18095.11 8377.47 10285.99 15191.03 144
PS-MVSNAJss82.07 9881.31 10284.34 11086.51 20967.27 14589.27 9091.51 11071.75 15479.37 12190.22 11963.15 13194.27 11377.69 10082.36 19191.49 133
TSAR-MVS + GP.85.71 5585.33 5886.84 5091.34 8472.50 3589.07 9887.28 22476.41 7085.80 4090.22 11974.15 3495.37 7681.82 6791.88 7692.65 100
Regformer-186.41 4686.33 4286.64 5589.33 12470.93 7088.43 11891.39 11582.14 386.65 3490.09 12174.39 2995.01 8983.97 4790.63 9293.97 43
Regformer-286.63 4286.53 4186.95 4889.33 12471.24 6288.43 11892.05 8682.50 186.88 3290.09 12174.45 2695.61 6084.38 3990.63 9294.01 41
Regformer-385.23 6285.07 6385.70 7288.95 14169.01 10788.29 12889.91 15680.95 885.01 4990.01 12372.45 4594.19 11982.50 6487.57 12593.90 47
Regformer-485.68 5685.45 5686.35 5988.95 14169.67 9488.29 12891.29 11781.73 585.36 4590.01 12372.62 4495.35 7783.28 5387.57 12594.03 39
TranMVSNet+NR-MVSNet80.84 11980.31 11882.42 17787.85 17662.33 23187.74 14491.33 11680.55 1177.99 14789.86 12565.23 11092.62 18367.05 19575.24 27892.30 110
diffmvs82.10 9681.88 9882.76 17283.00 26763.78 20583.68 24289.76 15972.94 14082.02 9489.85 12665.96 10590.79 23882.38 6687.30 13293.71 56
BH-RMVSNet79.61 14978.44 15583.14 14989.38 12365.93 16484.95 21487.15 22573.56 12878.19 14289.79 12756.67 20393.36 15759.53 25386.74 14090.13 177
AdaColmapbinary80.58 13279.42 13484.06 11993.09 5668.91 11089.36 8888.97 18769.27 19875.70 19589.69 12857.20 19995.77 5763.06 22388.41 12087.50 254
ACMM73.20 880.78 12779.84 12583.58 13289.31 12968.37 12589.99 7591.60 10770.28 18077.25 16089.66 12953.37 22593.53 15274.24 13082.85 18488.85 226
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CNLPA78.08 18776.79 19681.97 18590.40 9971.07 6487.59 14784.55 25266.03 24272.38 24289.64 13057.56 19386.04 29359.61 25283.35 17788.79 229
test_yl81.17 11380.47 11583.24 14489.13 13663.62 20686.21 18689.95 15472.43 14581.78 9989.61 13157.50 19493.58 14770.75 15886.90 13792.52 101
DCV-MVSNet81.17 11380.47 11583.24 14489.13 13663.62 20686.21 18689.95 15472.43 14581.78 9989.61 13157.50 19493.58 14770.75 15886.90 13792.52 101
EI-MVSNet-Vis-set84.19 7183.81 7385.31 7788.18 16667.85 13587.66 14589.73 16180.05 1682.95 8289.59 13370.74 6094.82 9980.66 7884.72 16093.28 77
PAPR81.66 10680.89 10983.99 12590.27 10064.00 20086.76 17291.77 10468.84 21277.13 16689.50 13467.63 8694.88 9767.55 18788.52 11893.09 84
jajsoiax79.29 15977.96 16683.27 14284.68 23566.57 15589.25 9190.16 14969.20 20275.46 20089.49 13545.75 29393.13 16876.84 11080.80 20690.11 179
MVSFormer82.85 8982.05 9485.24 8087.35 19070.21 8290.50 6090.38 14068.55 21681.32 10389.47 13661.68 15393.46 15478.98 8790.26 9792.05 119
jason81.39 11180.29 11984.70 9886.63 20869.90 8985.95 19286.77 22963.24 26981.07 10989.47 13661.08 16792.15 20078.33 9590.07 10292.05 119
jason: jason.
mvs_tets79.13 16277.77 17483.22 14684.70 23466.37 15889.17 9290.19 14869.38 19675.40 20389.46 13844.17 30193.15 16676.78 11180.70 20890.14 176
UGNet80.83 12179.59 13184.54 10188.04 17168.09 13189.42 8788.16 20376.95 5676.22 18489.46 13849.30 27093.94 12968.48 18090.31 9591.60 128
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VPA-MVSNet80.60 13080.55 11380.76 21388.07 17060.80 25086.86 16691.58 10875.67 8680.24 11589.45 14063.34 12590.25 24570.51 16279.22 22891.23 140
MVS_Test83.15 8483.06 8083.41 13886.86 20163.21 21986.11 18992.00 9074.31 11182.87 8489.44 14170.03 6693.21 16177.39 10488.50 11993.81 53
EI-MVSNet-UG-set83.81 7383.38 7685.09 8587.87 17567.53 13987.44 15189.66 16379.74 1882.23 9289.41 14270.24 6594.74 10279.95 8283.92 16892.99 90
RPSCF73.23 25371.46 25478.54 25082.50 27959.85 25982.18 26182.84 27858.96 30671.15 25489.41 14245.48 29584.77 30158.82 26171.83 30391.02 146
RRT_MVS79.88 14678.38 15784.38 10685.42 22370.60 7888.71 11288.75 19672.30 14778.83 12989.14 14444.44 29992.18 19978.50 9179.33 22690.35 169
UniMVSNet_NR-MVSNet81.88 10181.54 10182.92 16088.46 15963.46 21387.13 15792.37 7280.19 1478.38 13789.14 14471.66 5393.05 17270.05 16676.46 25392.25 112
tttt051779.40 15677.91 16883.90 12988.10 16963.84 20388.37 12584.05 25871.45 16176.78 17089.12 14649.93 26494.89 9670.18 16583.18 18092.96 91
DU-MVS81.12 11580.52 11482.90 16187.80 17863.46 21387.02 16191.87 9879.01 2678.38 13789.07 14765.02 11293.05 17270.05 16676.46 25392.20 114
NR-MVSNet80.23 13979.38 13682.78 17087.80 17863.34 21686.31 18391.09 12579.01 2672.17 24489.07 14767.20 9192.81 18266.08 20275.65 26492.20 114
DELS-MVS85.41 6085.30 6085.77 7188.49 15767.93 13485.52 20693.44 2778.70 2883.63 7889.03 14974.57 2595.71 5980.26 8194.04 6193.66 57
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
baseline176.98 20976.75 19977.66 26288.13 16755.66 31085.12 21081.89 28573.04 13876.79 16988.90 15062.43 14387.78 28263.30 22171.18 30789.55 205
DP-MVS76.78 21274.57 22483.42 13693.29 4969.46 10188.55 11783.70 26263.98 26670.20 26088.89 15154.01 22194.80 10046.66 32081.88 19686.01 285
ab-mvs79.51 15178.97 14581.14 20588.46 15960.91 24883.84 24089.24 17570.36 17879.03 12488.87 15263.23 12990.21 24665.12 20982.57 18992.28 111
PEN-MVS77.73 19677.69 17877.84 25987.07 20053.91 31887.91 14191.18 12177.56 4073.14 23388.82 15361.23 16389.17 26259.95 24972.37 29890.43 166
test_djsdf80.30 13879.32 13883.27 14283.98 24665.37 17790.50 6090.38 14068.55 21676.19 18588.70 15456.44 20493.46 15478.98 8780.14 21790.97 147
PAPM77.68 19976.40 20581.51 19387.29 19661.85 23883.78 24189.59 16464.74 25671.23 25288.70 15462.59 13993.66 14652.66 29387.03 13689.01 218
DTE-MVSNet76.99 20876.80 19577.54 26686.24 21153.06 32287.52 14890.66 13277.08 5472.50 23988.67 15660.48 17689.52 25657.33 27570.74 30990.05 186
PS-CasMVS78.01 19178.09 16477.77 26187.71 18254.39 31688.02 13591.22 11977.50 4373.26 23188.64 15760.73 17088.41 27561.88 23473.88 29090.53 163
cdsmvs_eth3d_5k19.96 32226.61 3240.00 3400.00 3610.00 3620.00 35289.26 1740.00 3570.00 35888.61 15861.62 1550.00 3580.00 3560.00 3560.00 354
lupinMVS81.39 11180.27 12084.76 9787.35 19070.21 8285.55 20286.41 23362.85 27581.32 10388.61 15861.68 15392.24 19778.41 9490.26 9791.83 123
F-COLMAP76.38 22074.33 22982.50 17689.28 13066.95 15288.41 12189.03 18264.05 26466.83 29488.61 15846.78 28392.89 17757.48 27278.55 22987.67 249
mvs_anonymous79.42 15579.11 14280.34 22084.45 23857.97 27782.59 25787.62 21767.40 22576.17 18888.56 16168.47 8089.59 25570.65 16186.05 15093.47 70
CP-MVSNet78.22 18278.34 15977.84 25987.83 17754.54 31487.94 13991.17 12277.65 3573.48 22988.49 16262.24 14788.43 27462.19 23074.07 28690.55 162
PVSNet_Blended_VisFu82.62 9181.83 9984.96 8990.80 9469.76 9288.74 11091.70 10569.39 19578.96 12588.46 16365.47 10894.87 9874.42 12788.57 11690.24 173
CANet_DTU80.61 12979.87 12482.83 16485.60 22063.17 22287.36 15288.65 19776.37 7475.88 19288.44 16453.51 22493.07 17173.30 14089.74 10592.25 112
PLCcopyleft70.83 1178.05 18976.37 20683.08 15291.88 8067.80 13688.19 13289.46 16764.33 26269.87 26988.38 16553.66 22393.58 14758.86 26082.73 18687.86 246
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
WR-MVS79.49 15279.22 14180.27 22288.79 14958.35 27085.06 21188.61 19978.56 2977.65 15288.34 16663.81 12390.66 24164.98 21177.22 24291.80 126
XXY-MVS75.41 23375.56 21174.96 28883.59 25257.82 28180.59 27583.87 26166.54 23674.93 21888.31 16763.24 12880.09 31962.16 23176.85 24886.97 267
Effi-MVS+83.62 7783.08 7985.24 8088.38 16267.45 14088.89 10289.15 17875.50 8882.27 9188.28 16869.61 7194.45 10977.81 9987.84 12393.84 51
API-MVS81.99 10081.23 10484.26 11390.94 9070.18 8791.10 5089.32 17071.51 16078.66 13288.28 16865.26 10995.10 8664.74 21391.23 8787.51 253
thisisatest053079.40 15677.76 17584.31 11187.69 18465.10 18387.36 15284.26 25670.04 18377.42 15688.26 17049.94 26294.79 10170.20 16484.70 16193.03 87
xiu_mvs_v1_base_debu80.80 12479.72 12884.03 12287.35 19070.19 8485.56 19988.77 19269.06 20581.83 9588.16 17150.91 25092.85 17878.29 9687.56 12789.06 213
xiu_mvs_v1_base80.80 12479.72 12884.03 12287.35 19070.19 8485.56 19988.77 19269.06 20581.83 9588.16 17150.91 25092.85 17878.29 9687.56 12789.06 213
xiu_mvs_v1_base_debi80.80 12479.72 12884.03 12287.35 19070.19 8485.56 19988.77 19269.06 20581.83 9588.16 17150.91 25092.85 17878.29 9687.56 12789.06 213
UniMVSNet (Re)81.60 10781.11 10683.09 15188.38 16264.41 19487.60 14693.02 4278.42 3178.56 13388.16 17169.78 6993.26 16069.58 17276.49 25291.60 128
Anonymous2023121178.97 16777.69 17882.81 16690.54 9664.29 19690.11 7391.51 11065.01 25476.16 18988.13 17550.56 25593.03 17569.68 17177.56 23991.11 143
pm-mvs177.25 20676.68 20178.93 24484.22 24158.62 26986.41 18088.36 20271.37 16273.31 23088.01 17661.22 16489.15 26364.24 21573.01 29589.03 217
LTVRE_ROB69.57 1376.25 22174.54 22681.41 19588.60 15464.38 19579.24 28789.12 18170.76 17269.79 27187.86 17749.09 27293.20 16356.21 28180.16 21586.65 274
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_part180.58 13278.97 14585.40 7686.75 20669.46 10192.32 2693.13 3766.72 23076.67 17387.81 17856.73 20295.01 8975.34 12375.27 27691.73 127
WTY-MVS75.65 22975.68 21075.57 28386.40 21056.82 29377.92 30182.40 28165.10 25176.18 18687.72 17963.13 13480.90 31660.31 24781.96 19489.00 220
TAMVS78.89 16977.51 18183.03 15587.80 17867.79 13784.72 21885.05 24867.63 22176.75 17187.70 18062.25 14690.82 23758.53 26487.13 13490.49 164
BH-untuned79.47 15378.60 15182.05 18289.19 13465.91 16586.07 19088.52 20072.18 14875.42 20287.69 18161.15 16593.54 15160.38 24686.83 13986.70 273
COLMAP_ROBcopyleft66.92 1773.01 25570.41 26580.81 21287.13 19965.63 17088.30 12784.19 25762.96 27363.80 31587.69 18138.04 32892.56 18646.66 32074.91 28084.24 303
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OurMVSNet-221017-074.26 24072.42 24779.80 23083.76 25059.59 26285.92 19486.64 23066.39 23766.96 29187.58 18339.46 32291.60 21565.76 20569.27 31388.22 240
Baseline_NR-MVSNet78.15 18678.33 16077.61 26485.79 21656.21 30586.78 17085.76 24273.60 12777.93 14887.57 18465.02 11288.99 26567.14 19475.33 27387.63 250
WR-MVS_H78.51 17678.49 15378.56 24988.02 17256.38 30288.43 11892.67 6077.14 5173.89 22787.55 18566.25 9989.24 26158.92 25973.55 29390.06 185
EI-MVSNet80.52 13479.98 12282.12 18084.28 23963.19 22186.41 18088.95 18874.18 11678.69 13087.54 18666.62 9492.43 18972.57 14880.57 21090.74 154
CVMVSNet72.99 25672.58 24574.25 29584.28 23950.85 33186.41 18083.45 26944.56 33873.23 23287.54 18649.38 26885.70 29565.90 20378.44 23286.19 280
ACMH+68.96 1476.01 22474.01 23182.03 18388.60 15465.31 17888.86 10387.55 21870.25 18167.75 28387.47 18841.27 31593.19 16458.37 26575.94 26187.60 251
RRT_test8_iter0578.38 17977.40 18281.34 19986.00 21458.86 26686.55 17891.26 11872.13 15175.91 19087.42 18944.97 29693.73 14477.02 10875.30 27491.45 136
TransMVSNet (Re)75.39 23474.56 22577.86 25885.50 22257.10 29086.78 17086.09 24072.17 14971.53 25087.34 19063.01 13589.31 26056.84 27861.83 32987.17 262
GBi-Net78.40 17777.40 18281.40 19687.60 18563.01 22388.39 12289.28 17171.63 15675.34 20587.28 19154.80 21091.11 22862.72 22479.57 22090.09 181
test178.40 17777.40 18281.40 19687.60 18563.01 22388.39 12289.28 17171.63 15675.34 20587.28 19154.80 21091.11 22862.72 22479.57 22090.09 181
FMVSNet278.20 18477.21 18681.20 20387.60 18562.89 22787.47 15089.02 18371.63 15675.29 20987.28 19154.80 21091.10 23162.38 22879.38 22489.61 203
FMVSNet177.44 20276.12 20881.40 19686.81 20463.01 22388.39 12289.28 17170.49 17774.39 22387.28 19149.06 27391.11 22860.91 24378.52 23090.09 181
v2v48280.23 13979.29 13983.05 15483.62 25164.14 19887.04 16089.97 15373.61 12678.18 14387.22 19561.10 16693.82 13676.11 11576.78 25091.18 141
ITE_SJBPF78.22 25481.77 28960.57 25283.30 27069.25 19967.54 28587.20 19636.33 33387.28 28654.34 28674.62 28386.80 270
anonymousdsp78.60 17477.15 18782.98 15880.51 30767.08 14787.24 15689.53 16565.66 24675.16 21187.19 19752.52 22792.25 19677.17 10679.34 22589.61 203
MVSTER79.01 16577.88 17082.38 17883.07 26464.80 18684.08 23988.95 18869.01 20878.69 13087.17 19854.70 21492.43 18974.69 12680.57 21089.89 194
thres100view90076.50 21575.55 21279.33 23889.52 11756.99 29185.83 19683.23 27273.94 12076.32 18287.12 19951.89 24191.95 20648.33 31183.75 17189.07 211
thres600view776.50 21575.44 21379.68 23289.40 12157.16 28885.53 20483.23 27273.79 12476.26 18387.09 20051.89 24191.89 20948.05 31683.72 17490.00 187
XVG-ACMP-BASELINE76.11 22374.27 23081.62 19083.20 26064.67 18883.60 24689.75 16069.75 19071.85 24787.09 20032.78 33892.11 20169.99 16880.43 21388.09 242
HY-MVS69.67 1277.95 19277.15 18780.36 21987.57 18960.21 25883.37 25087.78 21566.11 23975.37 20487.06 20263.27 12790.48 24361.38 24082.43 19090.40 168
CHOSEN 1792x268877.63 20075.69 20983.44 13589.98 10768.58 12378.70 29487.50 22056.38 32275.80 19486.84 20358.67 18591.40 22261.58 23885.75 15490.34 170
v879.97 14579.02 14482.80 16784.09 24364.50 19287.96 13790.29 14774.13 11875.24 21086.81 20462.88 13693.89 13574.39 12875.40 27190.00 187
AllTest70.96 26868.09 28079.58 23585.15 22763.62 20684.58 22479.83 30662.31 28160.32 32586.73 20532.02 33988.96 26850.28 30171.57 30586.15 281
TestCases79.58 23585.15 22763.62 20679.83 30662.31 28160.32 32586.73 20532.02 33988.96 26850.28 30171.57 30586.15 281
mvs-test180.88 11779.40 13585.29 7885.13 22969.75 9389.28 8988.10 20574.99 9876.44 18086.72 20757.27 19794.26 11773.53 13583.18 18091.87 122
LCM-MVSNet-Re77.05 20776.94 19277.36 26787.20 19751.60 32680.06 27980.46 30075.20 9567.69 28486.72 20762.48 14188.98 26663.44 21989.25 10991.51 131
1112_ss77.40 20476.43 20480.32 22189.11 14060.41 25683.65 24387.72 21662.13 28373.05 23486.72 20762.58 14089.97 24962.11 23380.80 20690.59 161
ab-mvs-re7.23 3259.64 3280.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 35886.72 2070.00 3630.00 3580.00 3560.00 3560.00 354
IterMVS-LS80.06 14279.38 13682.11 18185.89 21563.20 22086.79 16989.34 16974.19 11575.45 20186.72 20766.62 9492.39 19172.58 14776.86 24790.75 153
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH67.68 1675.89 22573.93 23281.77 18888.71 15266.61 15488.62 11489.01 18469.81 18766.78 29586.70 21241.95 31491.51 22055.64 28278.14 23587.17 262
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Test_1112_low_res76.40 21975.44 21379.27 23989.28 13058.09 27381.69 26687.07 22659.53 30272.48 24086.67 21361.30 16189.33 25960.81 24580.15 21690.41 167
FMVSNet377.88 19476.85 19480.97 20986.84 20362.36 23086.52 17988.77 19271.13 16375.34 20586.66 21454.07 22091.10 23162.72 22479.57 22089.45 206
pmmvs674.69 23773.39 23778.61 24881.38 29657.48 28686.64 17487.95 21064.99 25570.18 26186.61 21550.43 25789.52 25662.12 23270.18 31188.83 227
ET-MVSNet_ETH3D78.63 17376.63 20284.64 9986.73 20769.47 9985.01 21284.61 25169.54 19366.51 29886.59 21650.16 25991.75 21276.26 11484.24 16692.69 98
testgi66.67 29566.53 29367.08 32175.62 33541.69 34675.93 30876.50 32266.11 23965.20 30886.59 21635.72 33574.71 33943.71 33073.38 29484.84 297
CLD-MVS82.31 9481.65 10084.29 11288.47 15867.73 13885.81 19792.35 7375.78 8278.33 13986.58 21864.01 12094.35 11076.05 11687.48 13090.79 151
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
v1079.74 14878.67 14982.97 15984.06 24464.95 18487.88 14290.62 13373.11 13675.11 21386.56 21961.46 15794.05 12573.68 13375.55 26689.90 193
CDS-MVSNet79.07 16477.70 17783.17 14887.60 18568.23 12984.40 23186.20 23767.49 22476.36 18186.54 22061.54 15690.79 23861.86 23587.33 13190.49 164
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
xiu_mvs_v2_base81.69 10481.05 10783.60 13189.15 13568.03 13384.46 22790.02 15270.67 17381.30 10686.53 22163.17 13094.19 11975.60 12188.54 11788.57 235
TR-MVS77.44 20276.18 20781.20 20388.24 16563.24 21884.61 22386.40 23467.55 22377.81 14986.48 22254.10 21993.15 16657.75 27182.72 18787.20 261
EIA-MVS83.31 8382.80 8584.82 9489.59 11465.59 17188.21 13192.68 5974.66 10578.96 12586.42 22369.06 7795.26 7875.54 12290.09 10093.62 64
tfpn200view976.42 21875.37 21779.55 23789.13 13657.65 28385.17 20783.60 26373.41 13376.45 17786.39 22452.12 23491.95 20648.33 31183.75 17189.07 211
thres40076.50 21575.37 21779.86 22889.13 13657.65 28385.17 20783.60 26373.41 13376.45 17786.39 22452.12 23491.95 20648.33 31183.75 17190.00 187
v7n78.97 16777.58 18083.14 14983.45 25465.51 17288.32 12691.21 12073.69 12572.41 24186.32 22657.93 18993.81 13769.18 17575.65 26490.11 179
MAR-MVS81.84 10280.70 11085.27 7991.32 8571.53 5789.82 7890.92 12769.77 18978.50 13486.21 22762.36 14494.52 10765.36 20792.05 7589.77 199
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
v114480.03 14379.03 14383.01 15683.78 24964.51 19087.11 15990.57 13571.96 15278.08 14686.20 22861.41 15893.94 12974.93 12577.23 24190.60 159
V4279.38 15878.24 16282.83 16481.10 30165.50 17385.55 20289.82 15771.57 15978.21 14186.12 22960.66 17393.18 16575.64 11975.46 26989.81 198
PVSNet_BlendedMVS80.60 13080.02 12182.36 17988.85 14365.40 17486.16 18892.00 9069.34 19778.11 14486.09 23066.02 10394.27 11371.52 15282.06 19387.39 255
CS-MVS84.76 7084.61 7085.22 8289.66 11266.43 15690.23 6993.56 2276.52 6982.59 9085.93 23170.41 6295.80 5579.93 8492.68 7193.42 71
v119279.59 15078.43 15683.07 15383.55 25364.52 18986.93 16490.58 13470.83 16877.78 15085.90 23259.15 18393.94 12973.96 13277.19 24390.76 152
SixPastTwentyTwo73.37 24971.26 25879.70 23185.08 23157.89 27985.57 19883.56 26571.03 16665.66 30285.88 23342.10 31292.57 18559.11 25763.34 32888.65 233
EPNet_dtu75.46 23174.86 22177.23 27182.57 27854.60 31386.89 16583.09 27571.64 15566.25 30085.86 23455.99 20588.04 27954.92 28486.55 14389.05 216
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
sss73.60 24773.64 23673.51 29882.80 27255.01 31276.12 30781.69 28862.47 28074.68 22185.85 23557.32 19678.11 32660.86 24480.93 20387.39 255
ETV-MVS84.90 6984.67 6985.59 7389.39 12268.66 12188.74 11092.64 6479.97 1784.10 6985.71 23669.32 7495.38 7380.82 7591.37 8492.72 95
v124078.99 16677.78 17382.64 17383.21 25963.54 21086.62 17590.30 14669.74 19277.33 15885.68 23757.04 20093.76 14173.13 14376.92 24590.62 157
v14419279.47 15378.37 15882.78 17083.35 25563.96 20186.96 16290.36 14369.99 18477.50 15485.67 23860.66 17393.77 14074.27 12976.58 25190.62 157
tfpnnormal74.39 23873.16 24178.08 25686.10 21358.05 27484.65 22287.53 21970.32 17971.22 25385.63 23954.97 20989.86 25043.03 33275.02 27986.32 277
PS-MVSNAJ81.69 10481.02 10883.70 13089.51 11868.21 13084.28 23390.09 15170.79 17081.26 10785.62 24063.15 13194.29 11175.62 12088.87 11288.59 234
v192192079.22 16078.03 16582.80 16783.30 25763.94 20286.80 16890.33 14469.91 18677.48 15585.53 24158.44 18793.75 14273.60 13476.85 24890.71 155
test_040272.79 25870.44 26479.84 22988.13 16765.99 16385.93 19384.29 25465.57 24767.40 28885.49 24246.92 28292.61 18435.88 34174.38 28580.94 325
v14878.72 17177.80 17281.47 19482.73 27461.96 23786.30 18488.08 20773.26 13576.18 18685.47 24362.46 14292.36 19371.92 15173.82 29190.09 181
USDC70.33 27468.37 27576.21 27880.60 30556.23 30479.19 28986.49 23260.89 29061.29 32185.47 24331.78 34189.47 25853.37 29076.21 25982.94 318
MVP-Stereo76.12 22274.46 22881.13 20685.37 22469.79 9184.42 23087.95 21065.03 25367.46 28685.33 24553.28 22691.73 21458.01 26983.27 17881.85 322
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MVS78.19 18576.99 19181.78 18785.66 21866.99 14884.66 21990.47 13855.08 32772.02 24685.27 24663.83 12294.11 12466.10 20189.80 10484.24 303
cl-mvsnet177.72 19776.76 19780.58 21582.48 28160.48 25483.09 25287.86 21369.22 20074.38 22485.24 24762.10 14991.53 21871.09 15675.40 27189.74 200
cl-mvsnet_77.72 19776.76 19780.58 21582.49 28060.48 25483.09 25287.87 21269.22 20074.38 22485.22 24862.10 14991.53 21871.09 15675.41 27089.73 201
HyFIR lowres test77.53 20175.40 21583.94 12889.59 11466.62 15380.36 27688.64 19856.29 32376.45 17785.17 24957.64 19293.28 15961.34 24183.10 18291.91 121
pmmvs474.03 24471.91 25080.39 21881.96 28768.32 12681.45 26982.14 28359.32 30369.87 26985.13 25052.40 23088.13 27860.21 24874.74 28284.73 299
TDRefinement67.49 28964.34 29876.92 27373.47 34061.07 24684.86 21682.98 27659.77 29958.30 33185.13 25026.06 34387.89 28047.92 31760.59 33381.81 323
Fast-Effi-MVS+80.81 12279.92 12383.47 13488.85 14364.51 19085.53 20489.39 16870.79 17078.49 13585.06 25267.54 8793.58 14767.03 19686.58 14292.32 109
PVSNet_Blended80.98 11680.34 11782.90 16188.85 14365.40 17484.43 22992.00 9067.62 22278.11 14485.05 25366.02 10394.27 11371.52 15289.50 10689.01 218
CMPMVSbinary51.72 2170.19 27668.16 27876.28 27773.15 34257.55 28579.47 28583.92 25948.02 33756.48 33684.81 25443.13 30586.42 29162.67 22781.81 19784.89 296
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet68.53 28667.61 28871.31 30878.51 32447.01 34084.47 22584.27 25542.27 33966.44 29984.79 25540.44 32083.76 30458.76 26268.54 31883.17 312
BH-w/o78.21 18377.33 18580.84 21188.81 14765.13 18284.87 21587.85 21469.75 19074.52 22284.74 25661.34 16093.11 16958.24 26785.84 15384.27 302
pmmvs571.55 26470.20 26775.61 28277.83 32556.39 30181.74 26580.89 29257.76 31367.46 28684.49 25749.26 27185.32 29957.08 27775.29 27585.11 295
thres20075.55 23074.47 22778.82 24587.78 18157.85 28083.07 25483.51 26672.44 14475.84 19384.42 25852.08 23691.75 21247.41 31883.64 17586.86 269
eth_miper_zixun_eth77.92 19376.69 20081.61 19283.00 26761.98 23683.15 25189.20 17769.52 19474.86 21984.35 25961.76 15292.56 18671.50 15472.89 29690.28 172
cl_fuxian78.75 17077.91 16881.26 20182.89 27161.56 24284.09 23889.13 18069.97 18575.56 19684.29 26066.36 9892.09 20273.47 13875.48 26890.12 178
Fast-Effi-MVS+-dtu78.02 19076.49 20382.62 17483.16 26366.96 15186.94 16387.45 22272.45 14271.49 25184.17 26154.79 21391.58 21667.61 18680.31 21489.30 209
IterMVS-SCA-FT75.43 23273.87 23480.11 22482.69 27564.85 18581.57 26883.47 26869.16 20370.49 25784.15 26251.95 23988.15 27769.23 17472.14 30187.34 257
131476.53 21475.30 21980.21 22383.93 24762.32 23284.66 21988.81 19060.23 29570.16 26384.07 26355.30 20890.73 24067.37 18983.21 17987.59 252
cl-mvsnet278.07 18877.01 18981.23 20282.37 28361.83 23983.55 24787.98 20968.96 20975.06 21583.87 26461.40 15991.88 21073.53 13576.39 25589.98 190
EG-PatchMatch MVS74.04 24371.82 25280.71 21484.92 23267.42 14185.86 19588.08 20766.04 24164.22 31283.85 26535.10 33692.56 18657.44 27380.83 20582.16 321
thisisatest051577.33 20575.38 21683.18 14785.27 22563.80 20482.11 26283.27 27165.06 25275.91 19083.84 26649.54 26694.27 11367.24 19286.19 14891.48 134
test20.0367.45 29066.95 29168.94 31575.48 33644.84 34277.50 30277.67 31666.66 23263.01 31783.80 26747.02 28178.40 32442.53 33468.86 31783.58 309
miper_ehance_all_eth78.59 17577.76 17581.08 20782.66 27661.56 24283.65 24389.15 17868.87 21175.55 19783.79 26866.49 9692.03 20373.25 14176.39 25589.64 202
MSDG73.36 25170.99 25980.49 21784.51 23765.80 16780.71 27386.13 23965.70 24565.46 30383.74 26944.60 29790.91 23651.13 29876.89 24684.74 298
IterMVS74.29 23972.94 24378.35 25381.53 29363.49 21281.58 26782.49 28068.06 22069.99 26683.69 27051.66 24585.54 29665.85 20471.64 30486.01 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tpm72.37 26271.71 25374.35 29482.19 28552.00 32379.22 28877.29 31964.56 25872.95 23583.68 27151.35 24683.26 30958.33 26675.80 26287.81 247
Effi-MVS+-dtu80.03 14378.57 15284.42 10585.13 22968.74 11588.77 10788.10 20574.99 9874.97 21783.49 27257.27 19793.36 15773.53 13580.88 20491.18 141
baseline275.70 22873.83 23581.30 20083.26 25861.79 24082.57 25880.65 29666.81 22766.88 29283.42 27357.86 19092.19 19863.47 21879.57 22089.91 192
TinyColmap67.30 29264.81 29674.76 29181.92 28856.68 29780.29 27881.49 29060.33 29356.27 33783.22 27424.77 34487.66 28345.52 32669.47 31279.95 329
CostFormer75.24 23573.90 23379.27 23982.65 27758.27 27280.80 27182.73 27961.57 28675.33 20883.13 27555.52 20691.07 23464.98 21178.34 23488.45 237
miper_lstm_enhance74.11 24273.11 24277.13 27280.11 31059.62 26172.23 32386.92 22866.76 22970.40 25882.92 27656.93 20182.92 31069.06 17772.63 29788.87 225
GA-MVS76.87 21175.17 22081.97 18582.75 27362.58 22881.44 27086.35 23672.16 15074.74 22082.89 27746.20 28892.02 20468.85 17981.09 20291.30 139
K. test v371.19 26668.51 27479.21 24183.04 26657.78 28284.35 23276.91 32172.90 14162.99 31882.86 27839.27 32391.09 23361.65 23752.66 34188.75 230
MS-PatchMatch73.83 24572.67 24477.30 26983.87 24866.02 16281.82 26384.66 25061.37 28968.61 27982.82 27947.29 27988.21 27659.27 25484.32 16577.68 334
lessismore_v078.97 24381.01 30257.15 28965.99 34461.16 32282.82 27939.12 32491.34 22459.67 25146.92 34488.43 238
D2MVS74.82 23673.21 24079.64 23479.81 31462.56 22980.34 27787.35 22364.37 26168.86 27682.66 28146.37 28590.10 24867.91 18481.24 20186.25 278
Anonymous2023120668.60 28467.80 28571.02 30980.23 30950.75 33278.30 29880.47 29956.79 32066.11 30182.63 28246.35 28678.95 32243.62 33175.70 26383.36 311
MIMVSNet70.69 27069.30 26974.88 28984.52 23656.35 30375.87 31179.42 30964.59 25767.76 28282.41 28341.10 31681.54 31546.64 32281.34 19986.75 272
OpenMVS_ROBcopyleft64.09 1970.56 27268.19 27777.65 26380.26 30859.41 26485.01 21282.96 27758.76 30865.43 30482.33 28437.63 33091.23 22745.34 32876.03 26082.32 319
miper_enhance_ethall77.87 19576.86 19380.92 21081.65 29061.38 24482.68 25688.98 18565.52 24875.47 19882.30 28565.76 10792.00 20572.95 14476.39 25589.39 207
test0.0.03 168.00 28867.69 28768.90 31677.55 32647.43 33875.70 31272.95 33366.66 23266.56 29682.29 28648.06 27675.87 33544.97 32974.51 28483.41 310
PVSNet64.34 1872.08 26370.87 26275.69 28186.21 21256.44 30074.37 31980.73 29562.06 28470.17 26282.23 28742.86 30783.31 30854.77 28584.45 16487.32 258
MIMVSNet168.58 28566.78 29273.98 29780.07 31151.82 32480.77 27284.37 25364.40 26059.75 32882.16 28836.47 33283.63 30642.73 33370.33 31086.48 276
tpm273.26 25271.46 25478.63 24783.34 25656.71 29680.65 27480.40 30156.63 32173.55 22882.02 28951.80 24391.24 22656.35 28078.42 23387.95 243
PatchMatch-RL72.38 26170.90 26076.80 27588.60 15467.38 14379.53 28476.17 32362.75 27769.36 27482.00 29045.51 29484.89 30053.62 28980.58 20978.12 333
FMVSNet569.50 28067.96 28174.15 29682.97 26955.35 31180.01 28082.12 28462.56 27963.02 31681.53 29136.92 33181.92 31348.42 31074.06 28785.17 294
CR-MVSNet73.37 24971.27 25779.67 23381.32 29965.19 18075.92 30980.30 30259.92 29872.73 23781.19 29252.50 22886.69 28859.84 25077.71 23687.11 265
Patchmtry70.74 26969.16 27175.49 28580.72 30354.07 31774.94 31880.30 30258.34 31070.01 26481.19 29252.50 22886.54 28953.37 29071.09 30885.87 288
testing_275.73 22773.34 23982.89 16377.37 32865.22 17984.10 23790.54 13669.09 20460.46 32481.15 29440.48 31992.84 18176.36 11380.54 21290.60 159
IB-MVS68.01 1575.85 22673.36 23883.31 14084.76 23366.03 16183.38 24985.06 24770.21 18269.40 27381.05 29545.76 29294.66 10465.10 21075.49 26789.25 210
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cascas76.72 21374.64 22382.99 15785.78 21765.88 16682.33 26089.21 17660.85 29172.74 23681.02 29647.28 28093.75 14267.48 18885.02 15689.34 208
LF4IMVS64.02 30462.19 30769.50 31470.90 34453.29 32176.13 30677.18 32052.65 33258.59 32980.98 29723.55 34576.52 33253.06 29266.66 32178.68 332
gm-plane-assit81.40 29553.83 31962.72 27880.94 29892.39 19163.40 220
UnsupCasMVSNet_eth67.33 29165.99 29471.37 30573.48 33951.47 32875.16 31485.19 24665.20 25060.78 32380.93 29942.35 30977.20 33057.12 27653.69 34085.44 290
MVS_030472.48 25970.89 26177.24 27082.20 28459.68 26084.11 23683.49 26767.10 22666.87 29380.59 30035.00 33787.40 28459.07 25879.58 21984.63 300
MDTV_nov1_ep1369.97 26883.18 26153.48 32077.10 30580.18 30560.45 29269.33 27580.44 30148.89 27486.90 28751.60 29678.51 231
pmmvs-eth3d70.50 27367.83 28478.52 25177.37 32866.18 16081.82 26381.51 28958.90 30763.90 31480.42 30242.69 30886.28 29258.56 26365.30 32583.11 314
PM-MVS66.41 29764.14 29973.20 29973.92 33756.45 29978.97 29164.96 34763.88 26864.72 30980.24 30319.84 34883.44 30766.24 19864.52 32779.71 330
SCA74.22 24172.33 24879.91 22784.05 24562.17 23479.96 28179.29 31066.30 23872.38 24280.13 30451.95 23988.60 27259.25 25577.67 23888.96 222
Patchmatch-test64.82 30263.24 30269.57 31379.42 32049.82 33563.49 34269.05 34151.98 33459.95 32780.13 30450.91 25070.98 34440.66 33773.57 29287.90 245
tpmrst72.39 26072.13 24973.18 30080.54 30649.91 33479.91 28279.08 31163.11 27071.69 24979.95 30655.32 20782.77 31165.66 20673.89 28986.87 268
DSMNet-mixed57.77 31056.90 31260.38 32567.70 34635.61 34969.18 33153.97 35032.30 34857.49 33379.88 30740.39 32168.57 34638.78 33972.37 29876.97 335
MDA-MVSNet-bldmvs66.68 29463.66 30075.75 28079.28 32160.56 25373.92 32078.35 31364.43 25950.13 34279.87 30844.02 30283.67 30546.10 32456.86 33683.03 316
PatchmatchNetpermissive73.12 25471.33 25678.49 25283.18 26160.85 24979.63 28378.57 31264.13 26371.73 24879.81 30951.20 24885.97 29457.40 27476.36 25888.66 232
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ppachtmachnet_test70.04 27767.34 28978.14 25579.80 31561.13 24579.19 28980.59 29759.16 30565.27 30579.29 31046.75 28487.29 28549.33 30766.72 32086.00 287
EPMVS69.02 28368.16 27871.59 30379.61 31849.80 33677.40 30366.93 34362.82 27670.01 26479.05 31145.79 29177.86 32856.58 27975.26 27787.13 264
PMMVS69.34 28168.67 27371.35 30775.67 33462.03 23575.17 31373.46 33150.00 33668.68 27779.05 31152.07 23778.13 32561.16 24282.77 18573.90 337
test-LLR72.94 25772.43 24674.48 29281.35 29758.04 27578.38 29577.46 31766.66 23269.95 26779.00 31348.06 27679.24 32066.13 19984.83 15886.15 281
test-mter71.41 26570.39 26674.48 29281.35 29758.04 27578.38 29577.46 31760.32 29469.95 26779.00 31336.08 33479.24 32066.13 19984.83 15886.15 281
DWT-MVSNet_test73.70 24671.86 25179.21 24182.91 27058.94 26582.34 25982.17 28265.21 24971.05 25578.31 31544.21 30090.17 24763.29 22277.28 24088.53 236
tpmvs71.09 26769.29 27076.49 27682.04 28656.04 30678.92 29281.37 29164.05 26467.18 29078.28 31649.74 26589.77 25149.67 30672.37 29883.67 308
our_test_369.14 28267.00 29075.57 28379.80 31558.80 26777.96 30077.81 31559.55 30162.90 31978.25 31747.43 27883.97 30351.71 29567.58 31983.93 307
MDA-MVSNet_test_wron65.03 30062.92 30371.37 30575.93 33256.73 29469.09 33474.73 32857.28 31854.03 33977.89 31845.88 28974.39 34149.89 30561.55 33082.99 317
YYNet165.03 30062.91 30471.38 30475.85 33356.60 29869.12 33374.66 33057.28 31854.12 33877.87 31945.85 29074.48 34049.95 30461.52 33183.05 315
ambc75.24 28773.16 34150.51 33363.05 34387.47 22164.28 31177.81 32017.80 34989.73 25357.88 27060.64 33285.49 289
tpm cat170.57 27168.31 27677.35 26882.41 28257.95 27878.08 29980.22 30452.04 33368.54 28077.66 32152.00 23887.84 28151.77 29472.07 30286.25 278
dp66.80 29365.43 29570.90 31079.74 31748.82 33775.12 31674.77 32759.61 30064.08 31377.23 32242.89 30680.72 31748.86 30966.58 32283.16 313
TESTMET0.1,169.89 27969.00 27272.55 30179.27 32256.85 29278.38 29574.71 32957.64 31468.09 28177.19 32337.75 32976.70 33163.92 21684.09 16784.10 306
CHOSEN 280x42066.51 29664.71 29771.90 30281.45 29463.52 21157.98 34468.95 34253.57 32962.59 32076.70 32446.22 28775.29 33855.25 28379.68 21876.88 336
PatchT68.46 28767.85 28370.29 31180.70 30443.93 34372.47 32274.88 32660.15 29670.55 25676.57 32549.94 26281.59 31450.58 29974.83 28185.34 291
RPMNet73.51 24870.49 26382.58 17581.32 29965.19 18075.92 30992.27 7657.60 31572.73 23776.45 32652.30 23195.43 7048.14 31577.71 23687.11 265
ADS-MVSNet266.20 29963.33 30174.82 29079.92 31258.75 26867.55 33675.19 32553.37 33065.25 30675.86 32742.32 31080.53 31841.57 33568.91 31585.18 292
ADS-MVSNet64.36 30362.88 30568.78 31879.92 31247.17 33967.55 33671.18 33453.37 33065.25 30675.86 32742.32 31073.99 34241.57 33568.91 31585.18 292
new-patchmatchnet61.73 30661.73 30861.70 32472.74 34324.50 35669.16 33278.03 31461.40 28756.72 33575.53 32938.42 32676.48 33345.95 32557.67 33584.13 305
N_pmnet52.79 31353.26 31451.40 33078.99 3237.68 35969.52 3293.89 35851.63 33557.01 33474.98 33040.83 31865.96 34737.78 34064.67 32680.56 328
patchmatchnet-post74.00 33151.12 24988.60 272
GG-mvs-BLEND75.38 28681.59 29255.80 30879.32 28669.63 33867.19 28973.67 33243.24 30488.90 27050.41 30084.50 16281.45 324
Patchmatch-RL test70.24 27567.78 28677.61 26477.43 32759.57 26371.16 32570.33 33562.94 27468.65 27872.77 33350.62 25485.49 29769.58 17266.58 32287.77 248
FPMVS53.68 31251.64 31559.81 32665.08 34751.03 33069.48 33069.58 33941.46 34040.67 34472.32 33416.46 35170.00 34524.24 34665.42 32458.40 343
UnsupCasMVSNet_bld63.70 30561.53 30970.21 31273.69 33851.39 32972.82 32181.89 28555.63 32557.81 33271.80 33538.67 32578.61 32349.26 30852.21 34280.63 326
PVSNet_057.27 2061.67 30759.27 31068.85 31779.61 31857.44 28768.01 33573.44 33255.93 32458.54 33070.41 33644.58 29877.55 32947.01 31935.91 34571.55 339
pmmvs357.79 30954.26 31368.37 31964.02 34856.72 29575.12 31665.17 34540.20 34152.93 34069.86 33720.36 34775.48 33745.45 32755.25 33972.90 338
new_pmnet50.91 31450.29 31652.78 32968.58 34534.94 35163.71 34156.63 34939.73 34244.95 34365.47 33821.93 34658.48 34834.98 34256.62 33764.92 341
gg-mvs-nofinetune69.95 27867.96 28175.94 27983.07 26454.51 31577.23 30470.29 33663.11 27070.32 25962.33 33943.62 30388.69 27153.88 28887.76 12484.62 301
JIA-IIPM66.32 29862.82 30676.82 27477.09 33061.72 24165.34 33975.38 32458.04 31264.51 31062.32 34042.05 31386.51 29051.45 29769.22 31482.21 320
LCM-MVSNet54.25 31149.68 31767.97 32053.73 35145.28 34166.85 33880.78 29435.96 34539.45 34562.23 3418.70 35678.06 32748.24 31451.20 34380.57 327
PMMVS240.82 31838.86 32146.69 33153.84 35016.45 35748.61 34749.92 35137.49 34431.67 34660.97 3428.14 35756.42 34928.42 34430.72 34667.19 340
MVS-HIRNet59.14 30857.67 31163.57 32381.65 29043.50 34471.73 32465.06 34639.59 34351.43 34157.73 34338.34 32782.58 31239.53 33873.95 28864.62 342
ANet_high50.57 31546.10 31863.99 32248.67 35439.13 34770.99 32780.85 29361.39 28831.18 34757.70 34417.02 35073.65 34331.22 34315.89 35179.18 331
PMVScopyleft37.38 2244.16 31740.28 32055.82 32740.82 35642.54 34565.12 34063.99 34834.43 34624.48 34957.12 3453.92 35876.17 33417.10 34955.52 33848.75 344
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepMVS_CXcopyleft27.40 33540.17 35726.90 35424.59 35717.44 35223.95 35048.61 3469.77 35426.48 35318.06 34824.47 34728.83 347
MVEpermissive26.22 2330.37 32125.89 32543.81 33244.55 35535.46 35028.87 35139.07 35418.20 35118.58 35240.18 3472.68 35947.37 35217.07 35023.78 34848.60 345
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft45.18 31641.86 31955.16 32877.03 33151.52 32732.50 35080.52 29832.46 34727.12 34835.02 3489.52 35575.50 33622.31 34760.21 33438.45 346
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN31.77 31930.64 32235.15 33352.87 35227.67 35357.09 34547.86 35224.64 34916.40 35333.05 34911.23 35354.90 35014.46 35118.15 34922.87 348
EMVS30.81 32029.65 32334.27 33450.96 35325.95 35556.58 34646.80 35324.01 35015.53 35430.68 35012.47 35254.43 35112.81 35217.05 35022.43 349
tmp_tt18.61 32321.40 32610.23 3374.82 35810.11 35834.70 34930.74 3561.48 35423.91 35126.07 35128.42 34213.41 35527.12 34515.35 3527.17 350
X-MVStestdata80.37 13777.83 17188.00 1394.42 2073.33 1892.78 1592.99 4579.14 2183.67 7612.47 35267.45 8896.60 3183.06 5594.50 5294.07 37
test_post5.46 35350.36 25884.24 302
test_post178.90 2935.43 35448.81 27585.44 29859.25 255
wuyk23d16.82 32415.94 32719.46 33658.74 34931.45 35239.22 3483.74 3596.84 3536.04 3552.70 3551.27 36024.29 35410.54 35314.40 3532.63 351
testmvs6.04 3278.02 3300.10 3390.08 3590.03 36169.74 3280.04 3600.05 3550.31 3561.68 3560.02 3620.04 3560.24 3540.02 3540.25 353
test1236.12 3268.11 3290.14 3380.06 3600.09 36071.05 3260.03 3610.04 3560.25 3571.30 3570.05 3610.03 3570.21 3550.01 3550.29 352
uanet_test0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
pcd_1.5k_mvsjas5.26 3287.02 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 35863.15 1310.00 3580.00 3560.00 3560.00 354
sosnet-low-res0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
uncertanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
Regformer0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
uanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
IU-MVS95.30 271.25 5992.95 5066.81 22792.39 588.94 896.63 294.85 10
save fliter93.80 3972.35 4290.47 6291.17 12274.31 111
test_0728_SECOND87.71 3195.34 171.43 5893.49 794.23 597.49 189.08 496.41 894.21 32
GSMVS88.96 222
test_part295.06 772.65 3191.80 10
sam_mvs151.32 24788.96 222
sam_mvs50.01 260
MTGPAbinary92.02 87
MTMP92.18 3132.83 355
test9_res84.90 3095.70 2792.87 93
agg_prior282.91 5895.45 2992.70 96
agg_prior92.85 6171.94 5191.78 10284.41 6394.93 91
test_prior472.60 3389.01 99
test_prior86.33 6092.61 6969.59 9592.97 4895.48 6693.91 45
旧先验286.56 17758.10 31187.04 3188.98 26674.07 131
新几何286.29 185
无先验87.48 14988.98 18560.00 29794.12 12267.28 19088.97 221
原ACMM286.86 166
testdata291.01 23562.37 229
segment_acmp73.08 40
testdata184.14 23575.71 83
test1286.80 5292.63 6870.70 7591.79 10182.71 8871.67 5296.16 4494.50 5293.54 68
plane_prior790.08 10568.51 124
plane_prior689.84 11068.70 11960.42 177
plane_prior592.44 6895.38 7378.71 8986.32 14691.33 137
plane_prior368.60 12278.44 3078.92 127
plane_prior291.25 4779.12 23
plane_prior189.90 109
plane_prior68.71 11790.38 6677.62 3686.16 149
n20.00 362
nn0.00 362
door-mid69.98 337
test1192.23 79
door69.44 340
HQP5-MVS66.98 149
HQP-NCC89.33 12489.17 9276.41 7077.23 162
ACMP_Plane89.33 12489.17 9276.41 7077.23 162
BP-MVS77.47 102
HQP4-MVS77.24 16195.11 8391.03 144
HQP3-MVS92.19 8285.99 151
HQP2-MVS60.17 180
MDTV_nov1_ep13_2view37.79 34875.16 31455.10 32666.53 29749.34 26953.98 28787.94 244
ACMMP++_ref81.95 195
ACMMP++81.25 200
Test By Simon64.33 117