SMA-MVS |  | | 80.28 6 | 80.39 7 | 79.95 3 | 86.60 25 | 61.95 22 | 86.33 13 | 85.75 27 | 62.49 65 | 82.20 15 | 92.28 1 | 56.53 34 | 89.70 15 | 79.85 3 | 91.48 1 | 88.19 14 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
APDe-MVS | | | 80.16 7 | 80.59 6 | 78.86 28 | 86.64 23 | 60.02 53 | 88.12 3 | 86.42 18 | 62.94 54 | 82.40 14 | 92.12 2 | 59.64 18 | 89.76 14 | 78.70 11 | 88.32 36 | 86.79 64 |
|
DVP-MVS |  | | 80.84 4 | 81.64 3 | 78.42 36 | 87.75 7 | 59.07 72 | 87.85 5 | 85.03 39 | 64.26 32 | 83.82 8 | 92.00 3 | 64.82 8 | 90.75 8 | 78.66 13 | 90.61 11 | 85.45 112 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_THIRD | | | | | | | | | | 65.04 20 | 83.82 8 | 92.00 3 | 64.69 10 | 90.75 8 | 79.48 4 | 90.63 10 | 88.09 17 |
|
test0726 | | | | | | 87.75 7 | 59.07 72 | 87.86 4 | 86.83 12 | 64.26 32 | 84.19 7 | 91.92 5 | 64.82 8 | | | | |
|
DVP-MVS++ | | | 81.67 1 | 82.40 1 | 79.47 9 | 87.24 14 | 59.15 68 | 88.18 1 | 87.15 6 | 65.04 20 | 84.26 5 | 91.86 6 | 67.01 1 | 90.84 3 | 79.48 4 | 91.38 2 | 88.42 7 |
|
test_one_0601 | | | | | | 87.58 9 | 59.30 65 | | 86.84 11 | 65.01 23 | 83.80 11 | 91.86 6 | 64.03 11 | | | | |
|
SED-MVS | | | 81.56 2 | 82.30 2 | 79.32 12 | 87.77 4 | 58.90 77 | 87.82 7 | 86.78 14 | 64.18 35 | 85.97 1 | 91.84 8 | 66.87 3 | 90.83 5 | 78.63 15 | 90.87 5 | 88.23 12 |
|
test_241102_TWO | | | | | | | | | 86.73 16 | 64.18 35 | 84.26 5 | 91.84 8 | 65.19 6 | 90.83 5 | 78.63 15 | 90.70 7 | 87.65 34 |
|
DPE-MVS |  | | 80.56 5 | 80.98 5 | 79.29 14 | 87.27 13 | 60.56 48 | 85.71 26 | 86.42 18 | 63.28 47 | 83.27 13 | 91.83 10 | 64.96 7 | 90.47 10 | 76.41 27 | 89.67 22 | 86.84 61 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MP-MVS-pluss | | | 78.35 22 | 78.46 18 | 78.03 43 | 84.96 60 | 59.52 61 | 82.93 65 | 85.39 32 | 62.15 70 | 76.41 36 | 91.51 11 | 52.47 79 | 86.78 71 | 80.66 2 | 89.64 23 | 87.80 28 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
test_241102_ONE | | | | | | 87.77 4 | 58.90 77 | | 86.78 14 | 64.20 34 | 85.97 1 | 91.34 12 | 66.87 3 | 90.78 7 | | | |
|
ACMMP_NAP | | | 78.77 15 | 78.78 15 | 78.74 30 | 85.44 52 | 61.04 36 | 83.84 52 | 85.16 36 | 62.88 56 | 78.10 28 | 91.26 13 | 52.51 77 | 88.39 31 | 79.34 6 | 90.52 13 | 86.78 65 |
|
SteuartSystems-ACMMP | | | 79.48 10 | 79.31 11 | 79.98 2 | 83.01 82 | 62.18 19 | 87.60 9 | 85.83 25 | 66.69 10 | 78.03 31 | 90.98 14 | 54.26 57 | 90.06 12 | 78.42 17 | 89.02 27 | 87.69 32 |
Skip Steuart: Steuart Systems R&D Blog. |
zzz-MVS | | | 77.61 32 | 77.36 32 | 78.35 37 | 86.08 41 | 63.57 2 | 83.37 58 | 80.97 132 | 65.13 18 | 75.77 38 | 90.88 15 | 48.63 119 | 86.66 74 | 77.23 19 | 88.17 38 | 84.81 134 |
|
MTAPA | | | 76.90 39 | 76.42 41 | 78.35 37 | 86.08 41 | 63.57 2 | 74.92 205 | 80.97 132 | 65.13 18 | 75.77 38 | 90.88 15 | 48.63 119 | 86.66 74 | 77.23 19 | 88.17 38 | 84.81 134 |
|
xxxxxxxxxxxxxcwj | | | 78.37 21 | 78.25 23 | 78.76 29 | 86.17 36 | 61.30 31 | 83.98 48 | 79.95 147 | 59.00 129 | 79.16 20 | 90.75 17 | 57.96 25 | 87.09 62 | 77.08 23 | 90.18 15 | 87.87 23 |
|
SF-MVS | | | 78.82 13 | 79.22 12 | 77.60 49 | 82.88 84 | 57.83 93 | 84.99 32 | 88.13 3 | 61.86 78 | 79.16 20 | 90.75 17 | 57.96 25 | 87.09 62 | 77.08 23 | 90.18 15 | 87.87 23 |
|
HPM-MVS++ |  | | 79.88 8 | 80.14 8 | 79.10 20 | 88.17 1 | 64.80 1 | 86.59 12 | 83.70 66 | 65.37 15 | 78.78 25 | 90.64 19 | 58.63 23 | 87.24 55 | 79.00 10 | 90.37 14 | 85.26 122 |
|
MP-MVS |  | | 78.35 22 | 78.26 22 | 78.64 31 | 86.54 27 | 63.47 5 | 86.02 20 | 83.55 70 | 63.89 40 | 73.60 70 | 90.60 20 | 54.85 53 | 86.72 72 | 77.20 21 | 88.06 41 | 85.74 101 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
region2R | | | 77.67 31 | 77.18 34 | 79.15 17 | 86.76 18 | 62.95 8 | 86.29 14 | 84.16 54 | 62.81 60 | 73.30 73 | 90.58 21 | 49.90 104 | 88.21 36 | 73.78 43 | 87.03 52 | 86.29 82 |
|
ACMMPR | | | 77.71 29 | 77.23 33 | 79.16 16 | 86.75 19 | 62.93 9 | 86.29 14 | 84.24 52 | 62.82 58 | 73.55 71 | 90.56 22 | 49.80 106 | 88.24 35 | 74.02 41 | 87.03 52 | 86.32 79 |
|
MSP-MVS | | | 81.06 3 | 81.40 4 | 80.02 1 | 86.21 34 | 62.73 12 | 86.09 17 | 86.83 12 | 65.51 14 | 83.81 10 | 90.51 23 | 63.71 12 | 89.23 20 | 81.51 1 | 88.44 32 | 88.09 17 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
HFP-MVS | | | 78.01 27 | 77.65 28 | 79.10 20 | 86.71 20 | 62.81 10 | 86.29 14 | 84.32 50 | 62.82 58 | 73.96 62 | 90.50 24 | 53.20 72 | 88.35 32 | 74.02 41 | 87.05 50 | 86.13 84 |
|
#test# | | | 77.83 28 | 77.41 31 | 79.10 20 | 86.71 20 | 62.81 10 | 85.69 27 | 84.32 50 | 61.61 81 | 73.96 62 | 90.50 24 | 53.20 72 | 88.35 32 | 73.68 44 | 87.05 50 | 86.13 84 |
|
CP-MVS | | | 77.12 37 | 76.68 38 | 78.43 35 | 86.05 43 | 63.18 7 | 87.55 10 | 83.45 73 | 62.44 67 | 72.68 85 | 90.50 24 | 48.18 125 | 87.34 54 | 73.59 46 | 85.71 65 | 84.76 138 |
|
ZNCC-MVS | | | 78.82 13 | 78.67 17 | 79.30 13 | 86.43 30 | 62.05 21 | 86.62 11 | 86.01 24 | 63.32 46 | 75.08 43 | 90.47 27 | 53.96 61 | 88.68 28 | 76.48 26 | 89.63 24 | 87.16 53 |
|
9.14 | | | | 78.75 16 | | 83.10 78 | | 84.15 43 | 88.26 2 | 59.90 113 | 78.57 27 | 90.36 28 | 57.51 31 | 86.86 68 | 77.39 18 | 89.52 25 | |
|
ETH3D-3000-0.1 | | | 78.58 16 | 78.91 14 | 77.61 48 | 83.06 79 | 57.86 92 | 84.14 45 | 88.31 1 | 60.37 101 | 79.14 22 | 90.35 29 | 57.76 28 | 87.00 65 | 77.16 22 | 89.90 18 | 87.97 20 |
|
SR-MVS | | | 76.13 46 | 75.70 48 | 77.40 54 | 85.87 45 | 61.20 33 | 85.52 28 | 82.19 97 | 59.99 112 | 75.10 42 | 90.35 29 | 47.66 131 | 86.52 81 | 71.64 58 | 82.99 84 | 84.47 144 |
|
PGM-MVS | | | 76.77 41 | 76.06 43 | 78.88 27 | 86.14 39 | 62.73 12 | 82.55 74 | 83.74 65 | 61.71 79 | 72.45 91 | 90.34 31 | 48.48 123 | 88.13 37 | 72.32 52 | 86.85 56 | 85.78 95 |
|
APD-MVS |  | | 78.02 25 | 78.04 26 | 77.98 44 | 86.44 29 | 60.81 43 | 85.52 28 | 84.36 49 | 60.61 93 | 79.05 23 | 90.30 32 | 55.54 45 | 88.32 34 | 73.48 48 | 87.03 52 | 84.83 133 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
testtj | | | 78.47 19 | 78.43 19 | 78.61 32 | 86.82 17 | 60.67 46 | 86.07 18 | 85.38 33 | 62.12 71 | 78.65 26 | 90.29 33 | 55.76 42 | 89.31 19 | 73.55 47 | 87.22 49 | 85.84 93 |
|
mPP-MVS | | | 76.54 42 | 75.93 45 | 78.34 39 | 86.47 28 | 63.50 4 | 85.74 25 | 82.28 96 | 62.90 55 | 71.77 95 | 90.26 34 | 46.61 150 | 86.55 80 | 71.71 57 | 85.66 66 | 84.97 130 |
|
DeepC-MVS | | 69.38 2 | 78.56 18 | 78.14 24 | 79.83 6 | 83.60 72 | 61.62 26 | 84.17 42 | 86.85 10 | 63.23 49 | 73.84 67 | 90.25 35 | 57.68 29 | 89.96 13 | 74.62 35 | 89.03 26 | 87.89 21 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
test1172 | | | 75.36 55 | 74.81 58 | 77.02 58 | 85.47 51 | 60.79 45 | 83.94 51 | 81.63 109 | 59.52 123 | 74.66 55 | 90.18 36 | 44.74 170 | 85.84 97 | 70.63 65 | 82.52 93 | 84.42 145 |
|
APD-MVS_3200maxsize | | | 74.96 56 | 74.39 63 | 76.67 64 | 82.20 88 | 58.24 88 | 83.67 54 | 83.29 80 | 58.41 143 | 73.71 68 | 90.14 37 | 45.62 156 | 85.99 92 | 69.64 69 | 82.85 90 | 85.78 95 |
|
SR-MVS-dyc-post | | | 74.57 65 | 73.90 68 | 76.58 66 | 83.49 74 | 59.87 57 | 84.29 37 | 81.36 116 | 58.07 149 | 73.14 76 | 90.07 38 | 44.74 170 | 85.84 97 | 68.20 78 | 81.76 100 | 84.03 155 |
|
RE-MVS-def | | | | 73.71 72 | | 83.49 74 | 59.87 57 | 84.29 37 | 81.36 116 | 58.07 149 | 73.14 76 | 90.07 38 | 43.06 186 | | 68.20 78 | 81.76 100 | 84.03 155 |
|
ZD-MVS | | | | | | 86.64 23 | 60.38 50 | | 82.70 92 | 57.95 152 | 78.10 28 | 90.06 40 | 56.12 40 | 88.84 26 | 74.05 40 | 87.00 55 | |
|
ETH3D cwj APD-0.16 | | | 78.02 25 | 78.13 25 | 77.71 47 | 82.10 89 | 58.65 82 | 82.72 70 | 87.55 5 | 58.33 146 | 78.05 30 | 90.06 40 | 58.35 24 | 87.65 51 | 76.15 28 | 89.86 19 | 86.82 62 |
|
CNVR-MVS | | | 79.84 9 | 79.97 9 | 79.45 10 | 87.90 2 | 62.17 20 | 84.37 36 | 85.03 39 | 66.96 5 | 77.58 32 | 90.06 40 | 59.47 20 | 89.13 22 | 78.67 12 | 89.73 20 | 87.03 56 |
|
GST-MVS | | | 78.14 24 | 77.85 27 | 78.99 25 | 86.05 43 | 61.82 25 | 85.84 21 | 85.21 35 | 63.56 44 | 74.29 59 | 90.03 43 | 52.56 76 | 88.53 30 | 74.79 34 | 88.34 34 | 86.63 68 |
|
DeepPCF-MVS | | 69.58 1 | 79.03 12 | 79.00 13 | 79.13 18 | 84.92 64 | 60.32 51 | 83.03 62 | 85.33 34 | 62.86 57 | 80.17 17 | 90.03 43 | 61.76 14 | 88.95 24 | 74.21 38 | 88.67 31 | 88.12 16 |
|
XVS | | | 77.17 36 | 76.56 40 | 79.00 23 | 86.32 32 | 62.62 14 | 85.83 22 | 83.92 58 | 64.55 26 | 72.17 92 | 90.01 45 | 47.95 127 | 88.01 41 | 71.55 59 | 86.74 58 | 86.37 74 |
|
HPM-MVS |  | | 77.28 34 | 76.85 36 | 78.54 34 | 85.00 59 | 60.81 43 | 82.91 66 | 85.08 37 | 62.57 63 | 73.09 79 | 89.97 46 | 50.90 100 | 87.48 53 | 75.30 30 | 86.85 56 | 87.33 50 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
OPU-MVS | | | | | 79.83 6 | 87.54 11 | 60.93 40 | 87.82 7 | | | | 89.89 47 | 67.01 1 | 90.33 11 | 73.16 49 | 91.15 4 | 88.23 12 |
|
abl_6 | | | 74.34 67 | 73.50 73 | 76.86 60 | 82.43 86 | 60.16 52 | 83.48 57 | 81.86 103 | 58.81 133 | 73.95 64 | 89.86 48 | 41.87 197 | 86.62 76 | 67.98 82 | 81.23 105 | 83.80 168 |
|
PC_three_1452 | | | | | | | | | | 55.09 206 | 84.46 4 | 89.84 49 | 66.68 5 | 89.41 17 | 74.24 37 | 91.38 2 | 88.42 7 |
|
HPM-MVS_fast | | | 74.30 69 | 73.46 76 | 76.80 61 | 84.45 68 | 59.04 74 | 83.65 55 | 81.05 128 | 60.15 109 | 70.43 104 | 89.84 49 | 41.09 212 | 85.59 102 | 67.61 87 | 82.90 88 | 85.77 98 |
|
TSAR-MVS + MP. | | | 78.44 20 | 78.28 21 | 78.90 26 | 84.96 60 | 61.41 29 | 84.03 46 | 83.82 64 | 59.34 126 | 79.37 19 | 89.76 51 | 59.84 16 | 87.62 52 | 76.69 25 | 86.74 58 | 87.68 33 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
ACMMP |  | | 76.02 47 | 75.33 51 | 78.07 41 | 85.20 56 | 61.91 23 | 85.49 30 | 84.44 47 | 63.04 52 | 69.80 120 | 89.74 52 | 45.43 163 | 87.16 59 | 72.01 55 | 82.87 89 | 85.14 123 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
ETH3 D test6400 | | | 79.14 11 | 79.32 10 | 78.61 32 | 86.34 31 | 58.11 89 | 84.65 34 | 87.66 4 | 58.56 141 | 78.87 24 | 89.54 53 | 63.67 13 | 89.57 16 | 74.60 36 | 89.98 17 | 88.14 15 |
|
UA-Net | | | 73.13 80 | 72.93 80 | 73.76 123 | 83.58 73 | 51.66 184 | 78.75 127 | 77.66 193 | 67.75 4 | 72.61 87 | 89.42 54 | 49.82 105 | 83.29 152 | 53.61 194 | 83.14 81 | 86.32 79 |
|
VDDNet | | | 71.81 98 | 71.33 97 | 73.26 145 | 82.80 85 | 47.60 240 | 78.74 128 | 75.27 226 | 59.59 122 | 72.94 81 | 89.40 55 | 41.51 206 | 83.91 141 | 58.75 159 | 82.99 84 | 88.26 10 |
|
SD-MVS | | | 77.70 30 | 77.62 29 | 77.93 45 | 84.47 67 | 61.88 24 | 84.55 35 | 83.87 62 | 60.37 101 | 79.89 18 | 89.38 56 | 54.97 50 | 85.58 103 | 76.12 29 | 84.94 69 | 86.33 77 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
NCCC | | | 78.58 16 | 78.31 20 | 79.39 11 | 87.51 12 | 62.61 16 | 85.20 31 | 84.42 48 | 66.73 9 | 74.67 54 | 89.38 56 | 55.30 46 | 89.18 21 | 74.19 39 | 87.34 48 | 86.38 71 |
|
3Dnovator+ | | 66.72 4 | 75.84 50 | 74.57 60 | 79.66 8 | 82.40 87 | 59.92 56 | 85.83 22 | 86.32 20 | 66.92 8 | 67.80 157 | 89.24 58 | 42.03 194 | 89.38 18 | 64.07 115 | 86.50 61 | 89.69 1 |
|
test_prior3 | | | 76.89 40 | 76.96 35 | 76.69 62 | 84.20 69 | 57.27 101 | 81.75 85 | 84.88 42 | 60.37 101 | 75.01 44 | 89.06 59 | 56.22 38 | 86.43 84 | 72.19 53 | 88.96 28 | 86.38 71 |
|
test_prior2 | | | | | | | | 81.75 85 | | 60.37 101 | 75.01 44 | 89.06 59 | 56.22 38 | | 72.19 53 | 88.96 28 | |
|
VDD-MVS | | | 72.50 87 | 72.09 86 | 73.75 125 | 81.58 97 | 49.69 213 | 77.76 145 | 77.63 194 | 63.21 50 | 73.21 74 | 89.02 61 | 42.14 193 | 83.32 151 | 61.72 138 | 82.50 94 | 88.25 11 |
|
CDPH-MVS | | | 76.31 44 | 75.67 49 | 78.22 40 | 85.35 55 | 59.14 70 | 81.31 94 | 84.02 55 | 56.32 178 | 74.05 60 | 88.98 62 | 53.34 71 | 87.92 45 | 69.23 73 | 88.42 33 | 87.59 37 |
|
agg_prior1 | | | 75.94 48 | 76.01 44 | 75.72 79 | 85.04 57 | 59.96 54 | 81.44 92 | 81.04 129 | 56.14 184 | 74.68 52 | 88.90 63 | 53.91 63 | 84.04 136 | 75.01 33 | 87.92 45 | 83.16 192 |
|
DeepC-MVS_fast | | 68.24 3 | 77.25 35 | 76.63 39 | 79.12 19 | 86.15 38 | 60.86 41 | 84.71 33 | 84.85 44 | 61.98 77 | 73.06 80 | 88.88 64 | 53.72 66 | 89.06 23 | 68.27 77 | 88.04 42 | 87.42 44 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TEST9 | | | | | | 85.58 49 | 61.59 27 | 81.62 88 | 81.26 123 | 55.65 196 | 74.93 46 | 88.81 65 | 53.70 67 | 84.68 124 | | | |
|
train_agg | | | 76.27 45 | 76.15 42 | 76.64 65 | 85.58 49 | 61.59 27 | 81.62 88 | 81.26 123 | 55.86 188 | 74.93 46 | 88.81 65 | 53.70 67 | 84.68 124 | 75.24 32 | 88.33 35 | 83.65 176 |
|
test_8 | | | | | | 85.40 53 | 60.96 39 | 81.54 91 | 81.18 126 | 55.86 188 | 74.81 49 | 88.80 67 | 53.70 67 | 84.45 129 | | | |
|
LFMVS | | | 71.78 99 | 71.59 90 | 72.32 163 | 83.40 76 | 46.38 249 | 79.75 115 | 71.08 265 | 64.18 35 | 72.80 83 | 88.64 68 | 42.58 189 | 83.72 144 | 57.41 164 | 84.49 72 | 86.86 60 |
|
MCST-MVS | | | 77.48 33 | 77.45 30 | 77.54 50 | 86.67 22 | 58.36 86 | 83.22 60 | 86.93 9 | 56.91 165 | 74.91 48 | 88.19 69 | 59.15 21 | 87.68 50 | 73.67 45 | 87.45 47 | 86.57 69 |
|
MG-MVS | | | 73.96 73 | 73.89 69 | 74.16 115 | 85.65 47 | 49.69 213 | 81.59 90 | 81.29 122 | 61.45 82 | 71.05 101 | 88.11 70 | 51.77 88 | 87.73 49 | 61.05 143 | 83.09 82 | 85.05 127 |
|
Vis-MVSNet |  | | 72.18 93 | 71.37 96 | 74.61 104 | 81.29 104 | 55.41 137 | 80.90 97 | 78.28 185 | 60.73 92 | 69.23 131 | 88.09 71 | 44.36 176 | 82.65 172 | 57.68 162 | 81.75 102 | 85.77 98 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
CPTT-MVS | | | 72.78 83 | 72.08 87 | 74.87 97 | 84.88 65 | 61.41 29 | 84.15 43 | 77.86 189 | 55.27 201 | 67.51 162 | 88.08 72 | 41.93 196 | 81.85 185 | 69.04 76 | 80.01 120 | 81.35 221 |
|
test2506 | | | 65.33 218 | 64.61 211 | 67.50 240 | 79.46 139 | 34.19 346 | 74.43 215 | 51.92 354 | 58.72 135 | 66.75 174 | 88.05 73 | 25.99 336 | 80.92 208 | 51.94 207 | 84.25 74 | 87.39 45 |
|
ECVR-MVS |  | | 67.72 177 | 67.51 157 | 68.35 233 | 79.46 139 | 36.29 337 | 74.79 208 | 66.93 296 | 58.72 135 | 67.19 166 | 88.05 73 | 36.10 254 | 81.38 195 | 52.07 205 | 84.25 74 | 87.39 45 |
|
test1111 | | | 67.21 184 | 67.14 173 | 67.42 242 | 79.24 145 | 34.76 342 | 73.89 227 | 65.65 303 | 58.71 137 | 66.96 170 | 87.95 75 | 36.09 255 | 80.53 216 | 52.03 206 | 83.79 79 | 86.97 57 |
|
casdiffmvs | | | 74.80 59 | 74.89 56 | 74.53 108 | 75.59 229 | 50.37 201 | 78.17 139 | 85.06 38 | 62.80 61 | 74.40 57 | 87.86 76 | 57.88 27 | 83.61 147 | 69.46 72 | 82.79 91 | 89.59 2 |
|
旧先验1 | | | | | | 83.04 80 | 53.15 160 | | 67.52 290 | | | 87.85 77 | 44.08 177 | | | 80.76 107 | 78.03 268 |
|
baseline | | | 74.61 64 | 74.70 59 | 74.34 112 | 75.70 225 | 49.99 208 | 77.54 150 | 84.63 46 | 62.73 62 | 73.98 61 | 87.79 78 | 57.67 30 | 83.82 143 | 69.49 70 | 82.74 92 | 89.20 3 |
|
OPM-MVS | | | 74.73 62 | 74.25 64 | 76.19 71 | 80.81 112 | 59.01 75 | 82.60 73 | 83.64 67 | 63.74 42 | 72.52 88 | 87.49 79 | 47.18 141 | 85.88 96 | 69.47 71 | 80.78 106 | 83.66 175 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
testdata | | | | | 64.66 274 | 81.52 98 | 52.93 163 | | 65.29 307 | 46.09 300 | 73.88 66 | 87.46 80 | 38.08 237 | 66.26 319 | 53.31 197 | 78.48 145 | 74.78 303 |
|
IS-MVSNet | | | 71.57 102 | 71.00 102 | 73.27 144 | 78.86 153 | 45.63 262 | 80.22 106 | 78.69 169 | 64.14 38 | 66.46 180 | 87.36 81 | 49.30 110 | 85.60 101 | 50.26 219 | 83.71 80 | 88.59 5 |
|
LPG-MVS_test | | | 72.74 84 | 71.74 89 | 75.76 76 | 80.22 122 | 57.51 99 | 82.55 74 | 83.40 75 | 61.32 83 | 66.67 176 | 87.33 82 | 39.15 225 | 86.59 77 | 67.70 85 | 77.30 156 | 83.19 189 |
|
LGP-MVS_train | | | | | 75.76 76 | 80.22 122 | 57.51 99 | | 83.40 75 | 61.32 83 | 66.67 176 | 87.33 82 | 39.15 225 | 86.59 77 | 67.70 85 | 77.30 156 | 83.19 189 |
|
DROMVSNet | | | 75.84 50 | 75.87 47 | 75.74 78 | 78.86 153 | 52.65 166 | 83.73 53 | 86.08 23 | 63.47 45 | 72.77 84 | 87.25 84 | 53.13 74 | 87.93 44 | 71.97 56 | 85.57 67 | 86.66 67 |
|
EPNet | | | 73.09 81 | 72.16 85 | 75.90 74 | 75.95 221 | 56.28 118 | 83.05 61 | 72.39 258 | 66.53 12 | 65.27 201 | 87.00 85 | 50.40 102 | 85.47 109 | 62.48 131 | 86.32 62 | 85.94 89 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MSLP-MVS++ | | | 73.77 76 | 73.47 75 | 74.66 101 | 83.02 81 | 59.29 66 | 82.30 81 | 81.88 102 | 59.34 126 | 71.59 99 | 86.83 86 | 45.94 154 | 83.65 146 | 65.09 109 | 85.22 68 | 81.06 228 |
|
DPM-MVS | | | 75.47 53 | 75.00 52 | 76.88 59 | 81.38 103 | 59.16 67 | 79.94 110 | 85.71 28 | 56.59 173 | 72.46 89 | 86.76 87 | 56.89 32 | 87.86 47 | 66.36 96 | 88.91 30 | 83.64 177 |
|
Anonymous20240529 | | | 69.91 130 | 69.02 131 | 72.56 157 | 80.19 125 | 47.65 238 | 77.56 149 | 80.99 131 | 55.45 200 | 69.88 118 | 86.76 87 | 39.24 224 | 82.18 181 | 54.04 188 | 77.10 158 | 87.85 25 |
|
nrg030 | | | 72.96 82 | 73.01 79 | 72.84 151 | 75.41 232 | 50.24 202 | 80.02 108 | 82.89 90 | 58.36 145 | 74.44 56 | 86.73 89 | 58.90 22 | 80.83 210 | 65.84 101 | 74.46 176 | 87.44 43 |
|
FIs | | | 70.82 112 | 71.43 93 | 68.98 225 | 78.33 168 | 38.14 318 | 76.96 164 | 83.59 69 | 61.02 87 | 67.33 164 | 86.73 89 | 55.07 49 | 81.64 189 | 54.61 186 | 79.22 132 | 87.14 54 |
|
alignmvs | | | 73.86 75 | 73.99 67 | 73.45 137 | 78.20 171 | 50.50 200 | 78.57 132 | 82.43 94 | 59.40 124 | 76.57 34 | 86.71 91 | 56.42 37 | 81.23 200 | 65.84 101 | 81.79 98 | 88.62 4 |
|
1121 | | | 68.53 161 | 67.16 172 | 72.63 156 | 85.64 48 | 61.14 34 | 73.95 222 | 66.46 299 | 44.61 311 | 70.28 107 | 86.68 92 | 41.42 207 | 80.78 212 | 53.62 192 | 81.79 98 | 75.97 286 |
|
æ–°å‡ ä½•1 | | | | | 70.76 195 | 85.66 46 | 61.13 35 | | 66.43 300 | 44.68 310 | 70.29 106 | 86.64 93 | 41.29 209 | 75.23 279 | 49.72 223 | 81.75 102 | 75.93 288 |
|
VNet | | | 69.68 135 | 70.19 113 | 68.16 235 | 79.73 134 | 41.63 297 | 70.53 273 | 77.38 199 | 60.37 101 | 70.69 102 | 86.63 94 | 51.08 96 | 77.09 267 | 53.61 194 | 81.69 104 | 85.75 100 |
|
原ACMM1 | | | | | 74.69 99 | 85.39 54 | 59.40 62 | | 83.42 74 | 51.47 247 | 70.27 108 | 86.61 95 | 48.61 121 | 86.51 82 | 53.85 191 | 87.96 43 | 78.16 263 |
|
3Dnovator | | 64.47 5 | 72.49 88 | 71.39 95 | 75.79 75 | 77.70 184 | 58.99 76 | 80.66 101 | 83.15 84 | 62.24 69 | 65.46 198 | 86.59 96 | 42.38 192 | 85.52 105 | 59.59 155 | 84.72 70 | 82.85 198 |
|
PHI-MVS | | | 75.87 49 | 75.36 50 | 77.41 52 | 80.62 116 | 55.91 127 | 84.28 39 | 85.78 26 | 56.08 186 | 73.41 72 | 86.58 97 | 50.94 99 | 88.54 29 | 70.79 63 | 89.71 21 | 87.79 29 |
|
canonicalmvs | | | 74.67 63 | 74.98 54 | 73.71 127 | 78.94 152 | 50.56 199 | 80.23 105 | 83.87 62 | 60.30 107 | 77.15 33 | 86.56 98 | 59.65 17 | 82.00 183 | 66.01 99 | 82.12 96 | 88.58 6 |
|
FC-MVSNet-test | | | 69.80 131 | 70.58 108 | 67.46 241 | 77.61 192 | 34.73 343 | 76.05 184 | 83.19 83 | 60.84 89 | 65.88 192 | 86.46 99 | 54.52 56 | 80.76 214 | 52.52 201 | 78.12 147 | 86.91 58 |
|
OMC-MVS | | | 71.40 106 | 70.60 106 | 73.78 121 | 76.60 210 | 53.15 160 | 79.74 116 | 79.78 149 | 58.37 144 | 68.75 135 | 86.45 100 | 45.43 163 | 80.60 215 | 62.58 129 | 77.73 150 | 87.58 38 |
|
Anonymous202405211 | | | 66.84 196 | 65.99 195 | 69.40 220 | 80.19 125 | 42.21 289 | 71.11 266 | 71.31 264 | 58.80 134 | 67.90 150 | 86.39 101 | 29.83 310 | 79.65 227 | 49.60 226 | 78.78 140 | 86.33 77 |
|
CANet | | | 76.46 43 | 75.93 45 | 78.06 42 | 81.29 104 | 57.53 98 | 82.35 76 | 83.31 79 | 67.78 3 | 70.09 109 | 86.34 102 | 54.92 51 | 88.90 25 | 72.68 51 | 84.55 71 | 87.76 31 |
|
QAPM | | | 70.05 126 | 68.81 134 | 73.78 121 | 76.54 212 | 53.43 156 | 83.23 59 | 83.48 71 | 52.89 232 | 65.90 191 | 86.29 103 | 41.55 205 | 86.49 83 | 51.01 214 | 78.40 146 | 81.42 217 |
|
test_part1 | | | 74.74 61 | 74.42 62 | 75.70 81 | 81.69 96 | 51.26 186 | 83.98 48 | 87.05 8 | 65.31 16 | 73.10 78 | 86.20 104 | 53.94 62 | 88.06 39 | 65.32 106 | 73.17 197 | 87.77 30 |
|
ACMP | | 63.53 6 | 72.30 91 | 71.20 100 | 75.59 86 | 80.28 120 | 57.54 97 | 82.74 69 | 82.84 91 | 60.58 94 | 65.24 205 | 86.18 105 | 39.25 223 | 86.03 91 | 66.95 94 | 76.79 163 | 83.22 187 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
test222 | | | | | | 83.14 77 | 58.68 81 | 72.57 244 | 63.45 317 | 41.78 331 | 67.56 161 | 86.12 106 | 37.13 247 | | | 78.73 142 | 74.98 299 |
|
HQP_MVS | | | 74.31 68 | 73.73 71 | 76.06 72 | 81.41 101 | 56.31 116 | 84.22 40 | 84.01 56 | 64.52 28 | 69.27 128 | 86.10 107 | 45.26 167 | 87.21 57 | 68.16 80 | 80.58 110 | 84.65 139 |
|
plane_prior4 | | | | | | | | | | | | 86.10 107 | | | | | |
|
UniMVSNet_ETH3D | | | 67.60 179 | 67.07 174 | 69.18 224 | 77.39 196 | 42.29 288 | 74.18 218 | 75.59 222 | 60.37 101 | 66.77 173 | 86.06 109 | 37.64 239 | 78.93 247 | 52.16 204 | 73.49 189 | 86.32 79 |
|
XVG-OURS-SEG-HR | | | 68.81 150 | 67.47 159 | 72.82 153 | 74.40 248 | 56.87 113 | 70.59 272 | 79.04 161 | 54.77 214 | 66.99 169 | 86.01 110 | 39.57 220 | 78.21 252 | 62.54 130 | 73.33 192 | 83.37 182 |
|
MVS_111021_HR | | | 74.02 71 | 73.46 76 | 75.69 82 | 83.01 82 | 60.63 47 | 77.29 157 | 78.40 183 | 61.18 86 | 70.58 103 | 85.97 111 | 54.18 59 | 84.00 140 | 67.52 88 | 82.98 86 | 82.45 204 |
|
h-mvs33 | | | 72.71 85 | 71.49 92 | 76.40 68 | 81.99 92 | 59.58 60 | 76.92 166 | 76.74 209 | 60.40 98 | 74.81 49 | 85.95 112 | 45.54 159 | 85.76 100 | 70.41 66 | 70.61 227 | 83.86 163 |
|
PAPM_NR | | | 72.63 86 | 71.80 88 | 75.13 93 | 81.72 95 | 53.42 157 | 79.91 112 | 83.28 81 | 59.14 128 | 66.31 184 | 85.90 113 | 51.86 87 | 86.06 89 | 57.45 163 | 80.62 108 | 85.91 91 |
|
EPP-MVSNet | | | 72.16 95 | 71.31 98 | 74.71 98 | 78.68 159 | 49.70 211 | 82.10 82 | 81.65 108 | 60.40 98 | 65.94 189 | 85.84 114 | 51.74 89 | 86.37 86 | 55.93 171 | 79.55 127 | 88.07 19 |
|
VPNet | | | 67.52 180 | 68.11 147 | 65.74 265 | 79.18 147 | 36.80 329 | 72.17 250 | 72.83 255 | 62.04 75 | 67.79 158 | 85.83 115 | 48.88 118 | 76.60 272 | 51.30 213 | 72.97 200 | 83.81 164 |
|
114514_t | | | 70.83 111 | 69.56 121 | 74.64 103 | 86.21 34 | 54.63 144 | 82.34 77 | 81.81 105 | 48.22 278 | 63.01 231 | 85.83 115 | 40.92 213 | 87.10 61 | 57.91 161 | 79.79 121 | 82.18 207 |
|
XVG-OURS | | | 68.76 154 | 67.37 162 | 72.90 150 | 74.32 249 | 57.22 103 | 70.09 278 | 78.81 165 | 55.24 202 | 67.79 158 | 85.81 117 | 36.54 253 | 78.28 251 | 62.04 135 | 75.74 170 | 83.19 189 |
|
PS-MVSNAJss | | | 72.24 92 | 71.21 99 | 75.31 90 | 78.50 162 | 55.93 126 | 81.63 87 | 82.12 99 | 56.24 181 | 70.02 114 | 85.68 118 | 47.05 143 | 84.34 131 | 65.27 107 | 74.41 178 | 85.67 102 |
|
DP-MVS Recon | | | 72.15 96 | 70.73 105 | 76.40 68 | 86.57 26 | 57.99 91 | 81.15 96 | 82.96 86 | 57.03 162 | 66.78 172 | 85.56 119 | 44.50 174 | 88.11 38 | 51.77 210 | 80.23 119 | 83.10 193 |
|
OpenMVS |  | 61.03 9 | 68.85 149 | 67.56 153 | 72.70 155 | 74.26 250 | 53.99 148 | 81.21 95 | 81.34 120 | 52.70 233 | 62.75 234 | 85.55 120 | 38.86 228 | 84.14 134 | 48.41 234 | 83.01 83 | 79.97 244 |
|
NP-MVS | | | | | | 80.98 111 | 56.05 124 | | | | | 85.54 121 | | | | | |
|
HQP-MVS | | | 73.45 77 | 72.80 81 | 75.40 87 | 80.66 113 | 54.94 140 | 82.31 78 | 83.90 60 | 62.10 72 | 67.85 152 | 85.54 121 | 45.46 161 | 86.93 66 | 67.04 92 | 80.35 116 | 84.32 147 |
|
TranMVSNet+NR-MVSNet | | | 70.36 121 | 70.10 116 | 71.17 188 | 78.64 160 | 42.97 284 | 76.53 172 | 81.16 127 | 66.95 6 | 68.53 139 | 85.42 123 | 51.61 90 | 83.07 156 | 52.32 202 | 69.70 246 | 87.46 42 |
|
PCF-MVS | | 61.88 8 | 70.95 110 | 69.49 123 | 75.35 89 | 77.63 187 | 55.71 129 | 76.04 185 | 81.81 105 | 50.30 259 | 69.66 121 | 85.40 124 | 52.51 77 | 84.89 120 | 51.82 209 | 80.24 118 | 85.45 112 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
Vis-MVSNet (Re-imp) | | | 63.69 232 | 63.88 216 | 63.14 284 | 74.75 240 | 31.04 357 | 71.16 264 | 63.64 316 | 56.32 178 | 59.80 265 | 84.99 125 | 44.51 173 | 75.46 278 | 39.12 300 | 80.62 108 | 82.92 195 |
|
TAPA-MVS | | 59.36 10 | 66.60 201 | 65.20 207 | 70.81 194 | 76.63 209 | 48.75 225 | 76.52 173 | 80.04 146 | 50.64 257 | 65.24 205 | 84.93 126 | 39.15 225 | 78.54 248 | 36.77 311 | 76.88 160 | 85.14 123 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CSCG | | | 76.92 38 | 76.75 37 | 77.41 52 | 83.96 71 | 59.60 59 | 82.95 63 | 86.50 17 | 60.78 91 | 75.27 41 | 84.83 127 | 60.76 15 | 86.56 79 | 67.86 84 | 87.87 46 | 86.06 87 |
|
VPA-MVSNet | | | 69.02 147 | 69.47 124 | 67.69 239 | 77.42 195 | 41.00 301 | 74.04 219 | 79.68 151 | 60.06 110 | 69.26 130 | 84.81 128 | 51.06 97 | 77.58 261 | 54.44 187 | 74.43 177 | 84.48 143 |
|
MVS_Test | | | 72.45 89 | 72.46 84 | 72.42 162 | 74.88 237 | 48.50 228 | 76.28 178 | 83.14 85 | 59.40 124 | 72.46 89 | 84.68 129 | 55.66 44 | 81.12 201 | 65.98 100 | 79.66 124 | 87.63 35 |
|
MVS_111021_LR | | | 69.50 140 | 68.78 135 | 71.65 173 | 78.38 165 | 59.33 64 | 74.82 207 | 70.11 273 | 58.08 148 | 67.83 156 | 84.68 129 | 41.96 195 | 76.34 275 | 65.62 104 | 77.54 151 | 79.30 255 |
|
LS3D | | | 64.71 224 | 62.50 234 | 71.34 183 | 79.72 135 | 55.71 129 | 79.82 113 | 74.72 237 | 48.50 275 | 56.62 290 | 84.62 131 | 33.59 278 | 82.34 179 | 29.65 349 | 75.23 174 | 75.97 286 |
|
PAPR | | | 71.72 101 | 70.82 104 | 74.41 111 | 81.20 108 | 51.17 187 | 79.55 119 | 83.33 78 | 55.81 191 | 66.93 171 | 84.61 132 | 50.95 98 | 86.06 89 | 55.79 174 | 79.20 133 | 86.00 88 |
|
UniMVSNet_NR-MVSNet | | | 71.11 107 | 71.00 102 | 71.44 177 | 79.20 146 | 44.13 273 | 76.02 186 | 82.60 93 | 66.48 13 | 68.20 143 | 84.60 133 | 56.82 33 | 82.82 168 | 54.62 184 | 70.43 229 | 87.36 49 |
|
DU-MVS | | | 70.01 127 | 69.53 122 | 71.44 177 | 78.05 177 | 44.13 273 | 75.01 202 | 81.51 112 | 64.37 31 | 68.20 143 | 84.52 134 | 49.12 116 | 82.82 168 | 54.62 184 | 70.43 229 | 87.37 47 |
|
NR-MVSNet | | | 69.54 139 | 68.85 133 | 71.59 175 | 78.05 177 | 43.81 277 | 74.20 217 | 80.86 135 | 65.18 17 | 62.76 233 | 84.52 134 | 52.35 82 | 83.59 148 | 50.96 215 | 70.78 224 | 87.37 47 |
|
TSAR-MVS + GP. | | | 74.90 58 | 74.15 66 | 77.17 56 | 82.00 91 | 58.77 80 | 81.80 84 | 78.57 172 | 58.58 139 | 74.32 58 | 84.51 136 | 55.94 41 | 87.22 56 | 67.11 91 | 84.48 73 | 85.52 108 |
|
CS-MVS-test | | | 74.96 56 | 74.82 57 | 75.40 87 | 79.45 141 | 52.03 181 | 82.95 63 | 86.18 21 | 63.24 48 | 70.07 110 | 84.50 137 | 55.21 47 | 88.77 27 | 67.89 83 | 83.85 78 | 85.40 117 |
|
UGNet | | | 68.81 150 | 67.39 161 | 73.06 147 | 78.33 168 | 54.47 145 | 79.77 114 | 75.40 225 | 60.45 97 | 63.22 228 | 84.40 138 | 32.71 290 | 80.91 209 | 51.71 211 | 80.56 112 | 83.81 164 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
ACMM | | 61.98 7 | 70.80 113 | 69.73 119 | 74.02 116 | 80.59 117 | 58.59 83 | 82.68 71 | 82.02 101 | 55.46 199 | 67.18 167 | 84.39 139 | 38.51 230 | 83.17 155 | 60.65 145 | 76.10 167 | 80.30 238 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
BH-RMVSNet | | | 68.81 150 | 67.42 160 | 72.97 148 | 80.11 127 | 52.53 170 | 74.26 216 | 76.29 212 | 58.48 142 | 68.38 141 | 84.20 140 | 42.59 188 | 83.83 142 | 46.53 245 | 75.91 168 | 82.56 200 |
|
AdaColmap |  | | 69.99 128 | 68.66 137 | 73.97 118 | 84.94 62 | 57.83 93 | 82.63 72 | 78.71 168 | 56.28 180 | 64.34 218 | 84.14 141 | 41.57 202 | 87.06 64 | 46.45 246 | 78.88 137 | 77.02 278 |
|
jajsoiax | | | 68.25 166 | 66.45 181 | 73.66 129 | 75.62 227 | 55.49 135 | 80.82 98 | 78.51 175 | 52.33 237 | 64.33 219 | 84.11 142 | 28.28 320 | 81.81 187 | 63.48 124 | 70.62 226 | 83.67 173 |
|
mvs_tets | | | 68.18 168 | 66.36 187 | 73.63 132 | 75.61 228 | 55.35 138 | 80.77 99 | 78.56 173 | 52.48 236 | 64.27 221 | 84.10 143 | 27.45 326 | 81.84 186 | 63.45 125 | 70.56 228 | 83.69 172 |
|
PEN-MVS | | | 66.60 201 | 66.45 181 | 67.04 246 | 77.11 200 | 36.56 331 | 77.03 163 | 80.42 141 | 62.95 53 | 62.51 241 | 84.03 144 | 46.69 149 | 79.07 241 | 44.22 264 | 63.08 305 | 85.51 109 |
|
Anonymous20231211 | | | 69.28 143 | 68.47 140 | 71.73 170 | 80.28 120 | 47.18 244 | 79.98 109 | 82.37 95 | 54.61 215 | 67.24 165 | 84.01 145 | 39.43 221 | 82.41 178 | 55.45 178 | 72.83 201 | 85.62 106 |
|
PAPM | | | 67.92 174 | 66.69 178 | 71.63 174 | 78.09 175 | 49.02 221 | 77.09 161 | 81.24 125 | 51.04 253 | 60.91 255 | 83.98 146 | 47.71 130 | 84.99 115 | 40.81 292 | 79.32 131 | 80.90 230 |
|
diffmvs | | | 70.69 114 | 70.43 109 | 71.46 176 | 69.45 312 | 48.95 223 | 72.93 238 | 78.46 178 | 57.27 159 | 71.69 96 | 83.97 147 | 51.48 91 | 77.92 256 | 70.70 64 | 77.95 149 | 87.53 39 |
|
GeoE | | | 71.01 109 | 70.15 114 | 73.60 133 | 79.57 137 | 52.17 176 | 78.93 126 | 78.12 186 | 58.02 151 | 67.76 160 | 83.87 148 | 52.36 81 | 82.72 170 | 56.90 166 | 75.79 169 | 85.92 90 |
|
test_yl | | | 69.69 133 | 69.13 128 | 71.36 181 | 78.37 166 | 45.74 258 | 74.71 209 | 80.20 144 | 57.91 154 | 70.01 115 | 83.83 149 | 42.44 190 | 82.87 164 | 54.97 180 | 79.72 122 | 85.48 110 |
|
DCV-MVSNet | | | 69.69 133 | 69.13 128 | 71.36 181 | 78.37 166 | 45.74 258 | 74.71 209 | 80.20 144 | 57.91 154 | 70.01 115 | 83.83 149 | 42.44 190 | 82.87 164 | 54.97 180 | 79.72 122 | 85.48 110 |
|
DTE-MVSNet | | | 65.58 212 | 65.34 204 | 66.31 253 | 76.06 220 | 34.79 340 | 76.43 174 | 79.38 158 | 62.55 64 | 61.66 250 | 83.83 149 | 45.60 157 | 79.15 239 | 41.64 291 | 60.88 319 | 85.00 128 |
|
RRT_MVS | | | 68.77 153 | 66.71 177 | 74.95 94 | 75.93 222 | 58.55 84 | 80.50 103 | 75.84 218 | 56.09 185 | 68.17 145 | 83.74 152 | 28.50 318 | 82.98 158 | 65.67 103 | 65.91 283 | 83.33 183 |
|
CS-MVS | | | 74.01 72 | 74.24 65 | 73.32 143 | 76.47 214 | 48.51 227 | 79.19 124 | 86.17 22 | 60.56 95 | 71.62 98 | 83.71 153 | 55.16 48 | 87.94 43 | 69.21 74 | 86.11 63 | 83.51 180 |
|
PS-CasMVS | | | 66.42 205 | 66.32 189 | 66.70 250 | 77.60 193 | 36.30 336 | 76.94 165 | 79.61 153 | 62.36 68 | 62.43 243 | 83.66 154 | 45.69 155 | 78.37 249 | 45.35 261 | 63.26 303 | 85.42 115 |
|
WR-MVS | | | 68.47 162 | 68.47 140 | 68.44 232 | 80.20 124 | 39.84 304 | 73.75 230 | 76.07 215 | 64.68 25 | 68.11 148 | 83.63 155 | 50.39 103 | 79.14 240 | 49.78 220 | 69.66 247 | 86.34 76 |
|
UniMVSNet (Re) | | | 70.63 115 | 70.20 112 | 71.89 166 | 78.55 161 | 45.29 264 | 75.94 187 | 82.92 87 | 63.68 43 | 68.16 146 | 83.59 156 | 53.89 64 | 83.49 150 | 53.97 189 | 71.12 222 | 86.89 59 |
|
CNLPA | | | 65.43 215 | 64.02 214 | 69.68 214 | 78.73 158 | 58.07 90 | 77.82 144 | 70.71 269 | 51.49 246 | 61.57 252 | 83.58 157 | 38.23 235 | 70.82 296 | 43.90 269 | 70.10 237 | 80.16 240 |
|
ab-mvs | | | 66.65 200 | 66.42 184 | 67.37 243 | 76.17 217 | 41.73 294 | 70.41 276 | 76.14 214 | 53.99 222 | 65.98 188 | 83.51 158 | 49.48 108 | 76.24 276 | 48.60 232 | 73.46 190 | 84.14 153 |
|
test_djsdf | | | 69.45 142 | 67.74 149 | 74.58 106 | 74.57 244 | 54.92 142 | 82.79 67 | 78.48 176 | 51.26 251 | 65.41 199 | 83.49 159 | 38.37 232 | 83.24 153 | 66.06 97 | 69.25 253 | 85.56 107 |
|
CP-MVSNet | | | 66.49 204 | 66.41 185 | 66.72 248 | 77.67 186 | 36.33 334 | 76.83 169 | 79.52 155 | 62.45 66 | 62.54 239 | 83.47 160 | 46.32 151 | 78.37 249 | 45.47 259 | 63.43 302 | 85.45 112 |
|
MVSFormer | | | 71.50 104 | 70.38 111 | 74.88 96 | 78.76 156 | 57.15 108 | 82.79 67 | 78.48 176 | 51.26 251 | 69.49 123 | 83.22 161 | 43.99 179 | 83.24 153 | 66.06 97 | 79.37 128 | 84.23 150 |
|
jason | | | 69.65 136 | 68.39 143 | 73.43 139 | 78.27 170 | 56.88 112 | 77.12 160 | 73.71 249 | 46.53 296 | 69.34 127 | 83.22 161 | 43.37 183 | 79.18 235 | 64.77 111 | 79.20 133 | 84.23 150 |
jason: jason. |
pm-mvs1 | | | 65.24 219 | 64.97 209 | 66.04 260 | 72.38 272 | 39.40 309 | 72.62 243 | 75.63 221 | 55.53 198 | 62.35 245 | 83.18 163 | 47.45 136 | 76.47 273 | 49.06 229 | 66.54 279 | 82.24 206 |
|
Baseline_NR-MVSNet | | | 67.05 191 | 67.56 153 | 65.50 267 | 75.65 226 | 37.70 322 | 75.42 192 | 74.65 238 | 59.90 113 | 68.14 147 | 83.15 164 | 49.12 116 | 77.20 265 | 52.23 203 | 69.78 243 | 81.60 215 |
|
baseline1 | | | 63.81 231 | 63.87 217 | 63.62 279 | 76.29 215 | 36.36 332 | 71.78 255 | 67.29 293 | 56.05 187 | 64.23 222 | 82.95 165 | 47.11 142 | 74.41 283 | 47.30 239 | 61.85 313 | 80.10 242 |
|
DELS-MVS | | | 74.76 60 | 74.46 61 | 75.65 83 | 77.84 182 | 52.25 175 | 75.59 190 | 84.17 53 | 63.76 41 | 73.15 75 | 82.79 166 | 59.58 19 | 86.80 69 | 67.24 90 | 86.04 64 | 87.89 21 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
GBi-Net | | | 67.21 184 | 66.55 179 | 69.19 221 | 77.63 187 | 43.33 280 | 77.31 154 | 77.83 190 | 56.62 170 | 65.04 209 | 82.70 167 | 41.85 198 | 80.33 221 | 47.18 240 | 72.76 203 | 83.92 159 |
|
test1 | | | 67.21 184 | 66.55 179 | 69.19 221 | 77.63 187 | 43.33 280 | 77.31 154 | 77.83 190 | 56.62 170 | 65.04 209 | 82.70 167 | 41.85 198 | 80.33 221 | 47.18 240 | 72.76 203 | 83.92 159 |
|
FMVSNet1 | | | 66.70 199 | 65.87 196 | 69.19 221 | 77.49 194 | 43.33 280 | 77.31 154 | 77.83 190 | 56.45 175 | 64.60 217 | 82.70 167 | 38.08 237 | 80.33 221 | 46.08 249 | 72.31 211 | 83.92 159 |
|
TransMVSNet (Re) | | | 64.72 223 | 64.33 212 | 65.87 264 | 75.22 234 | 38.56 315 | 74.66 211 | 75.08 235 | 58.90 132 | 61.79 249 | 82.63 170 | 51.18 94 | 78.07 254 | 43.63 272 | 55.87 335 | 80.99 229 |
|
Effi-MVS+ | | | 73.31 79 | 72.54 83 | 75.62 84 | 77.87 181 | 53.64 151 | 79.62 118 | 79.61 153 | 61.63 80 | 72.02 94 | 82.61 171 | 56.44 36 | 85.97 94 | 63.99 118 | 79.07 136 | 87.25 51 |
|
mvs_anonymous | | | 68.03 171 | 67.51 157 | 69.59 216 | 72.08 276 | 44.57 271 | 71.99 252 | 75.23 228 | 51.67 241 | 67.06 168 | 82.57 172 | 54.68 54 | 77.94 255 | 56.56 167 | 75.71 171 | 86.26 83 |
|
ACMH+ | | 57.40 11 | 66.12 207 | 64.06 213 | 72.30 164 | 77.79 183 | 52.83 164 | 80.39 104 | 78.03 187 | 57.30 158 | 57.47 286 | 82.55 173 | 27.68 324 | 84.17 133 | 45.54 256 | 69.78 243 | 79.90 245 |
|
tttt0517 | | | 67.83 176 | 65.66 200 | 74.33 113 | 76.69 207 | 50.82 193 | 77.86 142 | 73.99 246 | 54.54 218 | 64.64 216 | 82.53 174 | 35.06 262 | 85.50 107 | 55.71 175 | 69.91 240 | 86.67 66 |
|
WR-MVS_H | | | 67.02 192 | 66.92 175 | 67.33 245 | 77.95 180 | 37.75 321 | 77.57 148 | 82.11 100 | 62.03 76 | 62.65 236 | 82.48 175 | 50.57 101 | 79.46 230 | 42.91 279 | 64.01 296 | 84.79 136 |
|
LTVRE_ROB | | 55.42 16 | 63.15 240 | 61.23 249 | 68.92 226 | 76.57 211 | 47.80 235 | 59.92 328 | 76.39 211 | 54.35 221 | 58.67 276 | 82.46 176 | 29.44 313 | 81.49 193 | 42.12 285 | 71.14 221 | 77.46 271 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
DP-MVS | | | 65.68 210 | 63.66 221 | 71.75 169 | 84.93 63 | 56.87 113 | 80.74 100 | 73.16 253 | 53.06 229 | 59.09 272 | 82.35 177 | 36.79 252 | 85.94 95 | 32.82 331 | 69.96 239 | 72.45 323 |
|
API-MVS | | | 72.17 94 | 71.41 94 | 74.45 110 | 81.95 93 | 57.22 103 | 84.03 46 | 80.38 142 | 59.89 116 | 68.40 140 | 82.33 178 | 49.64 107 | 87.83 48 | 51.87 208 | 84.16 77 | 78.30 261 |
|
pmmvs6 | | | 63.69 232 | 62.82 231 | 66.27 255 | 70.63 294 | 39.27 310 | 73.13 236 | 75.47 224 | 52.69 234 | 59.75 266 | 82.30 179 | 39.71 219 | 77.03 268 | 47.40 238 | 64.35 295 | 82.53 201 |
|
RPSCF | | | 55.80 291 | 54.22 299 | 60.53 299 | 65.13 339 | 42.91 285 | 64.30 311 | 57.62 340 | 36.84 349 | 58.05 283 | 82.28 180 | 28.01 321 | 56.24 352 | 37.14 309 | 58.61 327 | 82.44 205 |
|
cdsmvs_eth3d_5k | | | 17.50 338 | 23.34 337 | 0.00 358 | 0.00 381 | 0.00 381 | 0.00 369 | 78.63 171 | 0.00 376 | 0.00 377 | 82.18 181 | 49.25 112 | 0.00 375 | 0.00 375 | 0.00 373 | 0.00 373 |
|
lupinMVS | | | 69.57 138 | 68.28 144 | 73.44 138 | 78.76 156 | 57.15 108 | 76.57 171 | 73.29 252 | 46.19 299 | 69.49 123 | 82.18 181 | 43.99 179 | 79.23 234 | 64.66 112 | 79.37 128 | 83.93 158 |
|
FMVSNet2 | | | 66.93 194 | 66.31 190 | 68.79 228 | 77.63 187 | 42.98 283 | 76.11 181 | 77.47 196 | 56.62 170 | 65.22 207 | 82.17 183 | 41.85 198 | 80.18 224 | 47.05 243 | 72.72 206 | 83.20 188 |
|
PVSNet_Blended_VisFu | | | 71.45 105 | 70.39 110 | 74.65 102 | 82.01 90 | 58.82 79 | 79.93 111 | 80.35 143 | 55.09 206 | 65.82 194 | 82.16 184 | 49.17 113 | 82.64 173 | 60.34 148 | 78.62 144 | 82.50 203 |
|
v2v482 | | | 70.50 118 | 69.45 125 | 73.66 129 | 72.62 268 | 50.03 207 | 77.58 147 | 80.51 140 | 59.90 113 | 69.52 122 | 82.14 185 | 47.53 134 | 84.88 122 | 65.07 110 | 70.17 235 | 86.09 86 |
|
v8 | | | 70.33 122 | 69.28 127 | 73.49 135 | 73.15 258 | 50.22 203 | 78.62 131 | 80.78 136 | 60.79 90 | 66.45 181 | 82.11 186 | 49.35 109 | 84.98 117 | 63.58 123 | 68.71 261 | 85.28 120 |
|
CANet_DTU | | | 68.18 168 | 67.71 152 | 69.59 216 | 74.83 238 | 46.24 252 | 78.66 130 | 76.85 206 | 59.60 119 | 63.45 227 | 82.09 187 | 35.25 260 | 77.41 263 | 59.88 152 | 78.76 141 | 85.14 123 |
|
hse-mvs2 | | | 71.04 108 | 69.86 117 | 74.60 105 | 79.58 136 | 57.12 110 | 73.96 221 | 75.25 227 | 60.40 98 | 74.81 49 | 81.95 188 | 45.54 159 | 82.90 161 | 70.41 66 | 66.83 277 | 83.77 169 |
|
PLC |  | 56.13 14 | 65.09 221 | 63.21 226 | 70.72 197 | 81.04 110 | 54.87 143 | 78.57 132 | 77.47 196 | 48.51 274 | 55.71 295 | 81.89 189 | 33.71 275 | 79.71 226 | 41.66 289 | 70.37 231 | 77.58 270 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
AUN-MVS | | | 68.45 163 | 66.41 185 | 74.57 107 | 79.53 138 | 57.08 111 | 73.93 225 | 75.23 228 | 54.44 220 | 66.69 175 | 81.85 190 | 37.10 248 | 82.89 162 | 62.07 134 | 66.84 276 | 83.75 170 |
|
v10 | | | 70.21 124 | 69.02 131 | 73.81 120 | 73.51 255 | 50.92 191 | 78.74 128 | 81.39 115 | 60.05 111 | 66.39 182 | 81.83 191 | 47.58 133 | 85.41 112 | 62.80 128 | 68.86 260 | 85.09 126 |
|
thisisatest0530 | | | 67.92 174 | 65.78 198 | 74.33 113 | 76.29 215 | 51.03 188 | 76.89 167 | 74.25 243 | 53.67 225 | 65.59 196 | 81.76 192 | 35.15 261 | 85.50 107 | 55.94 170 | 72.47 207 | 86.47 70 |
|
TAMVS | | | 66.78 198 | 65.27 206 | 71.33 184 | 79.16 149 | 53.67 150 | 73.84 229 | 69.59 278 | 52.32 238 | 65.28 200 | 81.72 193 | 44.49 175 | 77.40 264 | 42.32 283 | 78.66 143 | 82.92 195 |
|
v7n | | | 69.01 148 | 67.36 163 | 73.98 117 | 72.51 271 | 52.65 166 | 78.54 134 | 81.30 121 | 60.26 108 | 62.67 235 | 81.62 194 | 43.61 181 | 84.49 128 | 57.01 165 | 68.70 262 | 84.79 136 |
|
BH-untuned | | | 68.27 165 | 67.29 165 | 71.21 185 | 79.74 133 | 53.22 159 | 76.06 183 | 77.46 198 | 57.19 160 | 66.10 186 | 81.61 195 | 45.37 165 | 83.50 149 | 45.42 260 | 76.68 165 | 76.91 282 |
|
F-COLMAP | | | 63.05 241 | 60.87 254 | 69.58 218 | 76.99 204 | 53.63 152 | 78.12 140 | 76.16 213 | 47.97 282 | 52.41 325 | 81.61 195 | 27.87 322 | 78.11 253 | 40.07 295 | 66.66 278 | 77.00 279 |
|
IterMVS-LS | | | 69.22 146 | 68.48 139 | 71.43 179 | 74.44 247 | 49.40 217 | 76.23 179 | 77.55 195 | 59.60 119 | 65.85 193 | 81.59 197 | 51.28 93 | 81.58 192 | 59.87 153 | 69.90 241 | 83.30 184 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
COLMAP_ROB |  | 52.97 17 | 61.27 260 | 58.81 262 | 68.64 229 | 74.63 242 | 52.51 171 | 78.42 137 | 73.30 251 | 49.92 264 | 50.96 330 | 81.51 198 | 23.06 345 | 79.40 231 | 31.63 339 | 65.85 284 | 74.01 311 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
xiu_mvs_v1_base_debu | | | 68.58 157 | 67.28 166 | 72.48 159 | 78.19 172 | 57.19 105 | 75.28 194 | 75.09 232 | 51.61 242 | 70.04 111 | 81.41 199 | 32.79 286 | 79.02 242 | 63.81 119 | 77.31 153 | 81.22 223 |
|
xiu_mvs_v1_base | | | 68.58 157 | 67.28 166 | 72.48 159 | 78.19 172 | 57.19 105 | 75.28 194 | 75.09 232 | 51.61 242 | 70.04 111 | 81.41 199 | 32.79 286 | 79.02 242 | 63.81 119 | 77.31 153 | 81.22 223 |
|
xiu_mvs_v1_base_debi | | | 68.58 157 | 67.28 166 | 72.48 159 | 78.19 172 | 57.19 105 | 75.28 194 | 75.09 232 | 51.61 242 | 70.04 111 | 81.41 199 | 32.79 286 | 79.02 242 | 63.81 119 | 77.31 153 | 81.22 223 |
|
RRT_test8_iter05 | | | 68.17 170 | 66.86 176 | 72.07 165 | 75.81 223 | 46.33 250 | 76.41 175 | 81.81 105 | 56.43 176 | 66.52 178 | 81.30 202 | 31.90 298 | 84.25 132 | 63.77 122 | 67.83 269 | 85.64 105 |
|
v1144 | | | 70.42 120 | 69.31 126 | 73.76 123 | 73.22 256 | 50.64 196 | 77.83 143 | 81.43 114 | 58.58 139 | 69.40 126 | 81.16 203 | 47.53 134 | 85.29 114 | 64.01 117 | 70.64 225 | 85.34 118 |
|
FMVSNet3 | | | 66.32 206 | 65.61 201 | 68.46 231 | 76.48 213 | 42.34 287 | 74.98 204 | 77.15 203 | 55.83 190 | 65.04 209 | 81.16 203 | 39.91 216 | 80.14 225 | 47.18 240 | 72.76 203 | 82.90 197 |
|
XVG-ACMP-BASELINE | | | 64.36 228 | 62.23 237 | 70.74 196 | 72.35 273 | 52.45 173 | 70.80 271 | 78.45 179 | 53.84 224 | 59.87 263 | 81.10 205 | 16.24 357 | 79.32 233 | 55.64 177 | 71.76 215 | 80.47 235 |
|
CLD-MVS | | | 73.33 78 | 72.68 82 | 75.29 92 | 78.82 155 | 53.33 158 | 78.23 138 | 84.79 45 | 61.30 85 | 70.41 105 | 81.04 206 | 52.41 80 | 87.12 60 | 64.61 114 | 82.49 95 | 85.41 116 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
thres100view900 | | | 63.28 237 | 62.41 235 | 65.89 263 | 77.31 197 | 38.66 314 | 72.65 241 | 69.11 284 | 57.07 161 | 62.45 242 | 81.03 207 | 37.01 250 | 79.17 236 | 31.84 335 | 73.25 194 | 79.83 247 |
|
ACMH | | 55.70 15 | 65.20 220 | 63.57 222 | 70.07 207 | 78.07 176 | 52.01 182 | 79.48 122 | 79.69 150 | 55.75 193 | 56.59 291 | 80.98 208 | 27.12 328 | 80.94 206 | 42.90 280 | 71.58 218 | 77.25 276 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
thres600view7 | | | 63.30 236 | 62.27 236 | 66.41 252 | 77.18 199 | 38.87 312 | 72.35 247 | 69.11 284 | 56.98 163 | 62.37 244 | 80.96 209 | 37.01 250 | 79.00 245 | 31.43 342 | 73.05 199 | 81.36 219 |
|
OurMVSNet-221017-0 | | | 61.37 259 | 58.63 265 | 69.61 215 | 72.05 277 | 48.06 233 | 73.93 225 | 72.51 257 | 47.23 292 | 54.74 307 | 80.92 210 | 21.49 352 | 81.24 199 | 48.57 233 | 56.22 334 | 79.53 252 |
|
HY-MVS | | 56.14 13 | 64.55 227 | 63.89 215 | 66.55 251 | 74.73 241 | 41.02 299 | 69.96 279 | 74.43 239 | 49.29 267 | 61.66 250 | 80.92 210 | 47.43 137 | 76.68 271 | 44.91 263 | 71.69 216 | 81.94 211 |
|
XXY-MVS | | | 60.68 261 | 61.67 242 | 57.70 315 | 70.43 297 | 38.45 316 | 64.19 312 | 66.47 298 | 48.05 281 | 63.22 228 | 80.86 212 | 49.28 111 | 60.47 335 | 45.25 262 | 67.28 274 | 74.19 309 |
|
v1192 | | | 69.97 129 | 68.68 136 | 73.85 119 | 73.19 257 | 50.94 189 | 77.68 146 | 81.36 116 | 57.51 157 | 68.95 134 | 80.85 213 | 45.28 166 | 85.33 113 | 62.97 127 | 70.37 231 | 85.27 121 |
|
anonymousdsp | | | 67.00 193 | 64.82 210 | 73.57 134 | 70.09 303 | 56.13 121 | 76.35 176 | 77.35 200 | 48.43 276 | 64.99 212 | 80.84 214 | 33.01 283 | 80.34 220 | 64.66 112 | 67.64 272 | 84.23 150 |
|
test_0402 | | | 63.25 238 | 61.01 251 | 69.96 208 | 80.00 128 | 54.37 146 | 76.86 168 | 72.02 260 | 54.58 217 | 58.71 275 | 80.79 215 | 35.00 263 | 84.36 130 | 26.41 357 | 64.71 292 | 71.15 335 |
|
Regformer-1 | | | 75.47 53 | 74.93 55 | 77.09 57 | 80.43 118 | 57.70 96 | 79.50 120 | 82.13 98 | 67.84 1 | 75.73 40 | 80.75 216 | 56.50 35 | 86.07 88 | 71.07 62 | 80.38 114 | 87.50 40 |
|
Regformer-2 | | | 75.63 52 | 74.99 53 | 77.54 50 | 80.43 118 | 58.32 87 | 79.50 120 | 82.92 87 | 67.84 1 | 75.94 37 | 80.75 216 | 55.73 43 | 86.80 69 | 71.44 61 | 80.38 114 | 87.50 40 |
|
v144192 | | | 69.71 132 | 68.51 138 | 73.33 142 | 73.10 259 | 50.13 205 | 77.54 150 | 80.64 137 | 56.65 167 | 68.57 138 | 80.55 218 | 46.87 148 | 84.96 119 | 62.98 126 | 69.66 247 | 84.89 132 |
|
v1240 | | | 69.24 145 | 67.91 148 | 73.25 146 | 73.02 262 | 49.82 209 | 77.21 159 | 80.54 139 | 56.43 176 | 68.34 142 | 80.51 219 | 43.33 184 | 84.99 115 | 62.03 136 | 69.77 245 | 84.95 131 |
|
v1921920 | | | 69.47 141 | 68.17 146 | 73.36 141 | 73.06 260 | 50.10 206 | 77.39 153 | 80.56 138 | 56.58 174 | 68.59 136 | 80.37 220 | 44.72 172 | 84.98 117 | 62.47 132 | 69.82 242 | 85.00 128 |
|
MVSTER | | | 67.16 189 | 65.58 202 | 71.88 167 | 70.37 299 | 49.70 211 | 70.25 277 | 78.45 179 | 51.52 245 | 69.16 132 | 80.37 220 | 38.45 231 | 82.50 175 | 60.19 149 | 71.46 219 | 83.44 181 |
|
ITE_SJBPF | | | | | 62.09 291 | 66.16 334 | 44.55 272 | | 64.32 313 | 47.36 289 | 55.31 300 | 80.34 222 | 19.27 353 | 62.68 329 | 36.29 319 | 62.39 310 | 79.04 256 |
|
TR-MVS | | | 66.59 203 | 65.07 208 | 71.17 188 | 79.18 147 | 49.63 215 | 73.48 232 | 75.20 230 | 52.95 230 | 67.90 150 | 80.33 223 | 39.81 218 | 83.68 145 | 43.20 276 | 73.56 188 | 80.20 239 |
|
Regformer-3 | | | 73.89 74 | 73.28 78 | 75.71 80 | 79.75 131 | 55.48 136 | 78.54 134 | 79.93 148 | 66.58 11 | 73.62 69 | 80.30 224 | 54.87 52 | 84.54 127 | 69.09 75 | 76.84 161 | 87.10 55 |
|
Regformer-4 | | | 74.25 70 | 73.48 74 | 76.57 67 | 79.75 131 | 56.54 115 | 78.54 134 | 81.49 113 | 66.93 7 | 73.90 65 | 80.30 224 | 53.84 65 | 85.98 93 | 69.76 68 | 76.84 161 | 87.17 52 |
|
V42 | | | 68.65 155 | 67.35 164 | 72.56 157 | 68.93 317 | 50.18 204 | 72.90 239 | 79.47 156 | 56.92 164 | 69.45 125 | 80.26 226 | 46.29 152 | 82.99 157 | 64.07 115 | 67.82 270 | 84.53 141 |
|
CDS-MVSNet | | | 66.80 197 | 65.37 203 | 71.10 190 | 78.98 151 | 53.13 162 | 73.27 235 | 71.07 266 | 52.15 239 | 64.72 214 | 80.23 227 | 43.56 182 | 77.10 266 | 45.48 258 | 78.88 137 | 83.05 194 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
ET-MVSNet_ETH3D | | | 67.96 173 | 65.72 199 | 74.68 100 | 76.67 208 | 55.62 133 | 75.11 199 | 74.74 236 | 52.91 231 | 60.03 260 | 80.12 228 | 33.68 276 | 82.64 173 | 61.86 137 | 76.34 166 | 85.78 95 |
|
v148 | | | 68.24 167 | 67.19 171 | 71.40 180 | 70.43 297 | 47.77 237 | 75.76 189 | 77.03 204 | 58.91 131 | 67.36 163 | 80.10 229 | 48.60 122 | 81.89 184 | 60.01 151 | 66.52 280 | 84.53 141 |
|
tfpnnormal | | | 62.47 244 | 61.63 243 | 64.99 273 | 74.81 239 | 39.01 311 | 71.22 262 | 73.72 248 | 55.22 203 | 60.21 258 | 80.09 230 | 41.26 211 | 76.98 269 | 30.02 347 | 68.09 266 | 78.97 258 |
|
Test_1112_low_res | | | 62.32 246 | 61.77 241 | 64.00 278 | 79.08 150 | 39.53 308 | 68.17 288 | 70.17 272 | 43.25 324 | 59.03 273 | 79.90 231 | 44.08 177 | 71.24 295 | 43.79 271 | 68.42 264 | 81.25 222 |
|
mvs-test1 | | | 70.44 119 | 68.19 145 | 77.18 55 | 76.10 218 | 63.22 6 | 80.59 102 | 76.06 216 | 59.83 117 | 66.32 183 | 79.87 232 | 41.56 203 | 85.53 104 | 60.60 146 | 72.77 202 | 82.80 199 |
|
tfpn200view9 | | | 63.18 239 | 62.18 238 | 66.21 256 | 76.85 205 | 39.62 306 | 71.96 253 | 69.44 280 | 56.63 168 | 62.61 237 | 79.83 233 | 37.18 244 | 79.17 236 | 31.84 335 | 73.25 194 | 79.83 247 |
|
thres400 | | | 63.31 235 | 62.18 238 | 66.72 248 | 76.85 205 | 39.62 306 | 71.96 253 | 69.44 280 | 56.63 168 | 62.61 237 | 79.83 233 | 37.18 244 | 79.17 236 | 31.84 335 | 73.25 194 | 81.36 219 |
|
AllTest | | | 57.08 283 | 54.65 292 | 64.39 276 | 71.44 285 | 49.03 219 | 69.92 280 | 67.30 291 | 45.97 302 | 47.16 343 | 79.77 235 | 17.47 354 | 67.56 312 | 33.65 328 | 59.16 325 | 76.57 283 |
|
TestCases | | | | | 64.39 276 | 71.44 285 | 49.03 219 | | 67.30 291 | 45.97 302 | 47.16 343 | 79.77 235 | 17.47 354 | 67.56 312 | 33.65 328 | 59.16 325 | 76.57 283 |
|
PVSNet_BlendedMVS | | | 68.56 160 | 67.72 150 | 71.07 191 | 77.03 202 | 50.57 197 | 74.50 213 | 81.52 110 | 53.66 226 | 64.22 223 | 79.72 237 | 49.13 114 | 82.87 164 | 55.82 172 | 73.92 182 | 79.77 250 |
|
xiu_mvs_v2_base | | | 70.52 116 | 69.75 118 | 72.84 151 | 81.21 107 | 55.63 132 | 75.11 199 | 78.92 163 | 54.92 212 | 69.96 117 | 79.68 238 | 47.00 147 | 82.09 182 | 61.60 140 | 79.37 128 | 80.81 232 |
|
DIV-MVS_self_test | | | 67.18 187 | 66.26 192 | 69.94 209 | 70.20 300 | 45.74 258 | 73.29 234 | 76.83 207 | 55.10 204 | 65.27 201 | 79.58 239 | 47.38 139 | 80.53 216 | 59.43 157 | 69.22 254 | 83.54 178 |
|
cl____ | | | 67.18 187 | 66.26 192 | 69.94 209 | 70.20 300 | 45.74 258 | 73.30 233 | 76.83 207 | 55.10 204 | 65.27 201 | 79.57 240 | 47.39 138 | 80.53 216 | 59.41 158 | 69.22 254 | 83.53 179 |
|
Fast-Effi-MVS+ | | | 70.28 123 | 69.12 130 | 73.73 126 | 78.50 162 | 51.50 185 | 75.01 202 | 79.46 157 | 56.16 183 | 68.59 136 | 79.55 241 | 53.97 60 | 84.05 135 | 53.34 196 | 77.53 152 | 85.65 104 |
|
LCM-MVSNet-Re | | | 61.88 253 | 61.35 246 | 63.46 280 | 74.58 243 | 31.48 356 | 61.42 322 | 58.14 337 | 58.71 137 | 53.02 324 | 79.55 241 | 43.07 185 | 76.80 270 | 45.69 253 | 77.96 148 | 82.11 210 |
|
ETV-MVS | | | 74.46 66 | 73.84 70 | 76.33 70 | 79.27 144 | 55.24 139 | 79.22 123 | 85.00 41 | 64.97 24 | 72.65 86 | 79.46 243 | 53.65 70 | 87.87 46 | 67.45 89 | 82.91 87 | 85.89 92 |
|
EIA-MVS | | | 71.78 99 | 70.60 106 | 75.30 91 | 79.85 130 | 53.54 154 | 77.27 158 | 83.26 82 | 57.92 153 | 66.49 179 | 79.39 244 | 52.07 85 | 86.69 73 | 60.05 150 | 79.14 135 | 85.66 103 |
|
EPNet_dtu | | | 61.90 251 | 61.97 240 | 61.68 293 | 72.89 264 | 39.78 305 | 75.85 188 | 65.62 304 | 55.09 206 | 54.56 310 | 79.36 245 | 37.59 240 | 67.02 315 | 39.80 298 | 76.95 159 | 78.25 262 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
EI-MVSNet-Vis-set | | | 72.42 90 | 71.59 90 | 74.91 95 | 78.47 164 | 54.02 147 | 77.05 162 | 79.33 159 | 65.03 22 | 71.68 97 | 79.35 246 | 52.75 75 | 84.89 120 | 66.46 95 | 74.23 179 | 85.83 94 |
|
SixPastTwentyTwo | | | 61.65 255 | 58.80 263 | 70.20 205 | 75.80 224 | 47.22 243 | 75.59 190 | 69.68 276 | 54.61 215 | 54.11 314 | 79.26 247 | 27.07 329 | 82.96 159 | 43.27 274 | 49.79 349 | 80.41 237 |
|
testgi | | | 51.90 310 | 52.37 307 | 50.51 338 | 60.39 359 | 23.55 369 | 58.42 332 | 58.15 336 | 49.03 270 | 51.83 327 | 79.21 248 | 22.39 347 | 55.59 354 | 29.24 350 | 62.64 307 | 72.40 327 |
|
WTY-MVS | | | 59.75 267 | 60.39 255 | 57.85 313 | 72.32 274 | 37.83 320 | 61.05 326 | 64.18 314 | 45.95 304 | 61.91 247 | 79.11 249 | 47.01 146 | 60.88 334 | 42.50 282 | 69.49 249 | 74.83 301 |
|
EI-MVSNet-UG-set | | | 71.92 97 | 71.06 101 | 74.52 109 | 77.98 179 | 53.56 153 | 76.62 170 | 79.16 160 | 64.40 30 | 71.18 100 | 78.95 250 | 52.19 83 | 84.66 126 | 65.47 105 | 73.57 187 | 85.32 119 |
|
MAR-MVS | | | 71.51 103 | 70.15 114 | 75.60 85 | 81.84 94 | 59.39 63 | 81.38 93 | 82.90 89 | 54.90 213 | 68.08 149 | 78.70 251 | 47.73 129 | 85.51 106 | 51.68 212 | 84.17 76 | 81.88 213 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PS-MVSNAJ | | | 70.51 117 | 69.70 120 | 72.93 149 | 81.52 98 | 55.79 128 | 74.92 205 | 79.00 162 | 55.04 211 | 69.88 118 | 78.66 252 | 47.05 143 | 82.19 180 | 61.61 139 | 79.58 125 | 80.83 231 |
|
MVP-Stereo | | | 65.41 216 | 63.80 218 | 70.22 203 | 77.62 191 | 55.53 134 | 76.30 177 | 78.53 174 | 50.59 258 | 56.47 292 | 78.65 253 | 39.84 217 | 82.68 171 | 44.10 268 | 72.12 213 | 72.44 324 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
CHOSEN 1792x2688 | | | 65.08 222 | 62.84 230 | 71.82 168 | 81.49 100 | 56.26 119 | 66.32 297 | 74.20 244 | 40.53 340 | 63.16 230 | 78.65 253 | 41.30 208 | 77.80 258 | 45.80 252 | 74.09 180 | 81.40 218 |
|
eth_miper_zixun_eth | | | 67.63 178 | 66.28 191 | 71.67 172 | 71.60 283 | 48.33 230 | 73.68 231 | 77.88 188 | 55.80 192 | 65.91 190 | 78.62 255 | 47.35 140 | 82.88 163 | 59.45 156 | 66.25 281 | 83.81 164 |
|
MVS | | | 67.37 182 | 66.33 188 | 70.51 201 | 75.46 231 | 50.94 189 | 73.95 222 | 81.85 104 | 41.57 335 | 62.54 239 | 78.57 256 | 47.98 126 | 85.47 109 | 52.97 199 | 82.05 97 | 75.14 295 |
|
c3_l | | | 68.33 164 | 67.56 153 | 70.62 198 | 70.87 291 | 46.21 253 | 74.47 214 | 78.80 166 | 56.22 182 | 66.19 185 | 78.53 257 | 51.88 86 | 81.40 194 | 62.08 133 | 69.04 256 | 84.25 149 |
|
BH-w/o | | | 66.85 195 | 65.83 197 | 69.90 212 | 79.29 142 | 52.46 172 | 74.66 211 | 76.65 210 | 54.51 219 | 64.85 213 | 78.12 258 | 45.59 158 | 82.95 160 | 43.26 275 | 75.54 172 | 74.27 308 |
|
TDRefinement | | | 53.44 305 | 50.72 313 | 61.60 294 | 64.31 343 | 46.96 245 | 70.89 270 | 65.27 308 | 41.78 331 | 44.61 351 | 77.98 259 | 11.52 363 | 66.36 318 | 28.57 352 | 51.59 345 | 71.49 332 |
|
HyFIR lowres test | | | 65.67 211 | 63.01 228 | 73.67 128 | 79.97 129 | 55.65 131 | 69.07 286 | 75.52 223 | 42.68 329 | 63.53 226 | 77.95 260 | 40.43 214 | 81.64 189 | 46.01 250 | 71.91 214 | 83.73 171 |
|
IterMVS-SCA-FT | | | 62.49 243 | 61.52 244 | 65.40 269 | 71.99 278 | 50.80 194 | 71.15 265 | 69.63 277 | 45.71 305 | 60.61 256 | 77.93 261 | 37.45 241 | 65.99 320 | 55.67 176 | 63.50 301 | 79.42 253 |
|
cl22 | | | 67.47 181 | 66.45 181 | 70.54 200 | 69.85 308 | 46.49 248 | 73.85 228 | 77.35 200 | 55.07 209 | 65.51 197 | 77.92 262 | 47.64 132 | 81.10 202 | 61.58 141 | 69.32 250 | 84.01 157 |
|
pmmvs4 | | | 61.48 258 | 59.39 259 | 67.76 238 | 71.57 284 | 53.86 149 | 71.42 257 | 65.34 306 | 44.20 316 | 59.46 267 | 77.92 262 | 35.90 256 | 74.71 281 | 43.87 270 | 64.87 291 | 74.71 304 |
|
1112_ss | | | 64.00 230 | 63.36 225 | 65.93 262 | 79.28 143 | 42.58 286 | 71.35 259 | 72.36 259 | 46.41 297 | 60.55 257 | 77.89 264 | 46.27 153 | 73.28 286 | 46.18 248 | 69.97 238 | 81.92 212 |
|
ab-mvs-re | | | 6.49 341 | 8.65 344 | 0.00 358 | 0.00 381 | 0.00 381 | 0.00 369 | 0.00 380 | 0.00 376 | 0.00 377 | 77.89 264 | 0.00 380 | 0.00 375 | 0.00 375 | 0.00 373 | 0.00 373 |
|
miper_ehance_all_eth | | | 68.03 171 | 67.24 170 | 70.40 202 | 70.54 295 | 46.21 253 | 73.98 220 | 78.68 170 | 55.07 209 | 66.05 187 | 77.80 266 | 52.16 84 | 81.31 197 | 61.53 142 | 69.32 250 | 83.67 173 |
|
CMPMVS |  | 42.80 21 | 57.81 279 | 55.97 284 | 63.32 281 | 60.98 356 | 47.38 242 | 64.66 310 | 69.50 279 | 32.06 354 | 46.83 345 | 77.80 266 | 29.50 312 | 71.36 294 | 48.68 231 | 73.75 183 | 71.21 334 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
PVSNet_Blended | | | 68.59 156 | 67.72 150 | 71.19 186 | 77.03 202 | 50.57 197 | 72.51 245 | 81.52 110 | 51.91 240 | 64.22 223 | 77.77 268 | 49.13 114 | 82.87 164 | 55.82 172 | 79.58 125 | 80.14 241 |
|
USDC | | | 56.35 287 | 54.24 298 | 62.69 287 | 64.74 340 | 40.31 302 | 65.05 308 | 73.83 247 | 43.93 320 | 47.58 341 | 77.71 269 | 15.36 359 | 75.05 280 | 38.19 305 | 61.81 314 | 72.70 319 |
|
test20.03 | | | 53.87 301 | 54.02 300 | 53.41 329 | 61.47 352 | 28.11 362 | 61.30 323 | 59.21 333 | 51.34 250 | 52.09 326 | 77.43 270 | 33.29 281 | 58.55 342 | 29.76 348 | 60.27 322 | 73.58 314 |
|
EG-PatchMatch MVS | | | 64.71 224 | 62.87 229 | 70.22 203 | 77.68 185 | 53.48 155 | 77.99 141 | 78.82 164 | 53.37 227 | 56.03 294 | 77.41 271 | 24.75 343 | 84.04 136 | 46.37 247 | 73.42 191 | 73.14 315 |
|
Effi-MVS+-dtu | | | 69.64 137 | 67.53 156 | 75.95 73 | 76.10 218 | 62.29 18 | 80.20 107 | 76.06 216 | 59.83 117 | 65.26 204 | 77.09 272 | 41.56 203 | 84.02 139 | 60.60 146 | 71.09 223 | 81.53 216 |
|
thres200 | | | 62.20 248 | 61.16 250 | 65.34 270 | 75.38 233 | 39.99 303 | 69.60 281 | 69.29 282 | 55.64 197 | 61.87 248 | 76.99 273 | 37.07 249 | 78.96 246 | 31.28 343 | 73.28 193 | 77.06 277 |
|
tpm | | | 57.34 281 | 58.16 269 | 54.86 323 | 71.80 282 | 34.77 341 | 67.47 293 | 56.04 347 | 48.20 279 | 60.10 259 | 76.92 274 | 37.17 246 | 53.41 358 | 40.76 293 | 65.01 290 | 76.40 285 |
|
IterMVS | | | 62.79 242 | 61.27 247 | 67.35 244 | 69.37 313 | 52.04 180 | 71.17 263 | 68.24 289 | 52.63 235 | 59.82 264 | 76.91 275 | 37.32 243 | 72.36 289 | 52.80 200 | 63.19 304 | 77.66 269 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Fast-Effi-MVS+-dtu | | | 67.37 182 | 65.33 205 | 73.48 136 | 72.94 263 | 57.78 95 | 77.47 152 | 76.88 205 | 57.60 156 | 61.97 246 | 76.85 276 | 39.31 222 | 80.49 219 | 54.72 183 | 70.28 234 | 82.17 209 |
|
GA-MVS | | | 65.53 214 | 63.70 219 | 71.02 192 | 70.87 291 | 48.10 232 | 70.48 274 | 74.40 240 | 56.69 166 | 64.70 215 | 76.77 277 | 33.66 277 | 81.10 202 | 55.42 179 | 70.32 233 | 83.87 162 |
|
CL-MVSNet_self_test | | | 61.53 256 | 60.94 252 | 63.30 282 | 68.95 316 | 36.93 328 | 67.60 292 | 72.80 256 | 55.67 195 | 59.95 262 | 76.63 278 | 45.01 169 | 72.22 292 | 39.74 299 | 62.09 312 | 80.74 233 |
|
pmmvs5 | | | 56.47 285 | 55.68 286 | 58.86 306 | 61.41 353 | 36.71 330 | 66.37 296 | 62.75 322 | 40.38 341 | 53.70 317 | 76.62 279 | 34.56 266 | 67.05 314 | 40.02 297 | 65.27 288 | 72.83 318 |
|
CostFormer | | | 64.04 229 | 62.51 233 | 68.61 230 | 71.88 280 | 45.77 257 | 71.30 261 | 70.60 270 | 47.55 286 | 64.31 220 | 76.61 280 | 41.63 201 | 79.62 229 | 49.74 222 | 69.00 258 | 80.42 236 |
|
1314 | | | 64.61 226 | 63.21 226 | 68.80 227 | 71.87 281 | 47.46 241 | 73.95 222 | 78.39 184 | 42.88 328 | 59.97 261 | 76.60 281 | 38.11 236 | 79.39 232 | 54.84 182 | 72.32 210 | 79.55 251 |
|
EI-MVSNet | | | 69.27 144 | 68.44 142 | 71.73 170 | 74.47 245 | 49.39 218 | 75.20 197 | 78.45 179 | 59.60 119 | 69.16 132 | 76.51 282 | 51.29 92 | 82.50 175 | 59.86 154 | 71.45 220 | 83.30 184 |
|
CVMVSNet | | | 59.63 268 | 59.14 261 | 61.08 298 | 74.47 245 | 38.84 313 | 75.20 197 | 68.74 286 | 31.15 355 | 58.24 281 | 76.51 282 | 32.39 295 | 68.58 308 | 49.77 221 | 65.84 285 | 75.81 289 |
|
thisisatest0515 | | | 65.83 209 | 63.50 223 | 72.82 153 | 73.75 253 | 49.50 216 | 71.32 260 | 73.12 254 | 49.39 266 | 63.82 225 | 76.50 284 | 34.95 264 | 84.84 123 | 53.20 198 | 75.49 173 | 84.13 154 |
|
bset_n11_16_dypcd | | | 65.57 213 | 63.69 220 | 71.19 186 | 70.84 293 | 51.79 183 | 71.37 258 | 70.48 271 | 53.33 228 | 65.19 208 | 76.41 285 | 31.46 300 | 81.76 188 | 65.12 108 | 69.04 256 | 80.01 243 |
|
K. test v3 | | | 60.47 263 | 57.11 275 | 70.56 199 | 73.74 254 | 48.22 231 | 75.10 201 | 62.55 323 | 58.27 147 | 53.62 319 | 76.31 286 | 27.81 323 | 81.59 191 | 47.42 237 | 39.18 360 | 81.88 213 |
|
MSDG | | | 61.81 254 | 59.23 260 | 69.55 219 | 72.64 267 | 52.63 168 | 70.45 275 | 75.81 219 | 51.38 248 | 53.70 317 | 76.11 287 | 29.52 311 | 81.08 204 | 37.70 306 | 65.79 286 | 74.93 300 |
|
MIMVSNet1 | | | 55.17 296 | 54.31 297 | 57.77 314 | 70.03 305 | 32.01 354 | 65.68 301 | 64.81 309 | 49.19 268 | 46.75 346 | 76.00 288 | 25.53 339 | 64.04 325 | 28.65 351 | 62.13 311 | 77.26 275 |
|
OpenMVS_ROB |  | 52.78 18 | 60.03 264 | 58.14 270 | 65.69 266 | 70.47 296 | 44.82 266 | 75.33 193 | 70.86 268 | 45.04 307 | 56.06 293 | 76.00 288 | 26.89 331 | 79.65 227 | 35.36 323 | 67.29 273 | 72.60 320 |
|
MIMVSNet | | | 57.35 280 | 57.07 276 | 58.22 309 | 74.21 251 | 37.18 323 | 62.46 317 | 60.88 330 | 48.88 271 | 55.29 301 | 75.99 290 | 31.68 299 | 62.04 331 | 31.87 334 | 72.35 209 | 75.43 294 |
|
miper_enhance_ethall | | | 67.11 190 | 66.09 194 | 70.17 206 | 69.21 314 | 45.98 256 | 72.85 240 | 78.41 182 | 51.38 248 | 65.65 195 | 75.98 291 | 51.17 95 | 81.25 198 | 60.82 144 | 69.32 250 | 83.29 186 |
|
TinyColmap | | | 54.14 298 | 51.72 308 | 61.40 296 | 66.84 329 | 41.97 290 | 66.52 295 | 68.51 287 | 44.81 308 | 42.69 355 | 75.77 292 | 11.66 362 | 72.94 287 | 31.96 333 | 56.77 332 | 69.27 344 |
|
Anonymous20231206 | | | 55.10 297 | 55.30 289 | 54.48 325 | 69.81 309 | 33.94 348 | 62.91 316 | 62.13 326 | 41.08 337 | 55.18 302 | 75.65 293 | 32.75 289 | 56.59 350 | 30.32 346 | 67.86 268 | 72.91 316 |
|
lessismore_v0 | | | | | 69.91 211 | 71.42 287 | 47.80 235 | | 50.90 356 | | 50.39 336 | 75.56 294 | 27.43 327 | 81.33 196 | 45.91 251 | 34.10 362 | 80.59 234 |
|
baseline2 | | | 63.42 234 | 61.26 248 | 69.89 213 | 72.55 270 | 47.62 239 | 71.54 256 | 68.38 288 | 50.11 260 | 54.82 306 | 75.55 295 | 43.06 186 | 80.96 205 | 48.13 235 | 67.16 275 | 81.11 226 |
|
miper_lstm_enhance | | | 62.03 250 | 60.88 253 | 65.49 268 | 66.71 330 | 46.25 251 | 56.29 340 | 75.70 220 | 50.68 255 | 61.27 253 | 75.48 296 | 40.21 215 | 68.03 310 | 56.31 169 | 65.25 289 | 82.18 207 |
|
tpm2 | | | 62.07 249 | 60.10 257 | 67.99 236 | 72.79 265 | 43.86 276 | 71.05 268 | 66.85 297 | 43.14 326 | 62.77 232 | 75.39 297 | 38.32 233 | 80.80 211 | 41.69 288 | 68.88 259 | 79.32 254 |
|
sss | | | 56.17 289 | 56.57 280 | 54.96 322 | 66.93 328 | 36.32 335 | 57.94 334 | 61.69 327 | 41.67 333 | 58.64 277 | 75.32 298 | 38.72 229 | 56.25 351 | 42.04 286 | 66.19 282 | 72.31 328 |
|
D2MVS | | | 62.30 247 | 60.29 256 | 68.34 234 | 66.46 332 | 48.42 229 | 65.70 300 | 73.42 250 | 47.71 284 | 58.16 282 | 75.02 299 | 30.51 303 | 77.71 259 | 53.96 190 | 71.68 217 | 78.90 259 |
|
CR-MVSNet | | | 59.91 265 | 57.90 272 | 65.96 261 | 69.96 306 | 52.07 178 | 65.31 306 | 63.15 320 | 42.48 330 | 59.36 268 | 74.84 300 | 35.83 257 | 70.75 297 | 45.50 257 | 64.65 293 | 75.06 296 |
|
Patchmtry | | | 57.16 282 | 56.47 281 | 59.23 302 | 69.17 315 | 34.58 344 | 62.98 315 | 63.15 320 | 44.53 312 | 56.83 289 | 74.84 300 | 35.83 257 | 68.71 307 | 40.03 296 | 60.91 318 | 74.39 307 |
|
FMVSNet5 | | | 55.86 290 | 54.93 290 | 58.66 308 | 71.05 290 | 36.35 333 | 64.18 313 | 62.48 324 | 46.76 295 | 50.66 335 | 74.73 302 | 25.80 337 | 64.04 325 | 33.11 330 | 65.57 287 | 75.59 292 |
|
cascas | | | 65.98 208 | 63.42 224 | 73.64 131 | 77.26 198 | 52.58 169 | 72.26 249 | 77.21 202 | 48.56 273 | 61.21 254 | 74.60 303 | 32.57 294 | 85.82 99 | 50.38 218 | 76.75 164 | 82.52 202 |
|
MS-PatchMatch | | | 62.42 245 | 61.46 245 | 65.31 271 | 75.21 235 | 52.10 177 | 72.05 251 | 74.05 245 | 46.41 297 | 57.42 287 | 74.36 304 | 34.35 270 | 77.57 262 | 45.62 255 | 73.67 184 | 66.26 348 |
|
test0.0.03 1 | | | 53.32 306 | 53.59 303 | 52.50 333 | 62.81 348 | 29.45 360 | 59.51 329 | 54.11 351 | 50.08 262 | 54.40 312 | 74.31 305 | 32.62 291 | 55.92 353 | 30.50 345 | 63.95 298 | 72.15 330 |
|
pmmvs-eth3d | | | 58.81 270 | 56.31 283 | 66.30 254 | 67.61 324 | 52.42 174 | 72.30 248 | 64.76 310 | 43.55 322 | 54.94 305 | 74.19 306 | 28.95 315 | 72.60 288 | 43.31 273 | 57.21 330 | 73.88 312 |
|
MVS_0304 | | | 58.51 271 | 57.36 274 | 61.96 292 | 70.04 304 | 41.83 292 | 69.40 284 | 65.46 305 | 50.73 254 | 53.30 323 | 74.06 307 | 22.65 346 | 70.18 303 | 42.16 284 | 68.44 263 | 73.86 313 |
|
EU-MVSNet | | | 55.61 292 | 54.41 295 | 59.19 304 | 65.41 338 | 33.42 350 | 72.44 246 | 71.91 261 | 28.81 357 | 51.27 328 | 73.87 308 | 24.76 342 | 69.08 306 | 43.04 277 | 58.20 328 | 75.06 296 |
|
IB-MVS | | 56.42 12 | 65.40 217 | 62.73 232 | 73.40 140 | 74.89 236 | 52.78 165 | 73.09 237 | 75.13 231 | 55.69 194 | 58.48 280 | 73.73 309 | 32.86 285 | 86.32 87 | 50.63 216 | 70.11 236 | 81.10 227 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
PVSNet | | 50.76 19 | 58.40 273 | 57.39 273 | 61.42 295 | 75.53 230 | 44.04 275 | 61.43 321 | 63.45 317 | 47.04 294 | 56.91 288 | 73.61 310 | 27.00 330 | 64.76 323 | 39.12 300 | 72.40 208 | 75.47 293 |
|
Anonymous20240521 | | | 55.30 293 | 54.41 295 | 57.96 312 | 60.92 358 | 41.73 294 | 71.09 267 | 71.06 267 | 41.18 336 | 48.65 339 | 73.31 311 | 16.93 356 | 59.25 340 | 42.54 281 | 64.01 296 | 72.90 317 |
|
gm-plane-assit | | | | | | 71.40 288 | 41.72 296 | | | 48.85 272 | | 73.31 311 | | 82.48 177 | 48.90 230 | | |
|
PM-MVS | | | 52.33 309 | 50.19 314 | 58.75 307 | 62.10 350 | 45.14 265 | 65.75 299 | 40.38 368 | 43.60 321 | 53.52 320 | 72.65 313 | 9.16 368 | 65.87 321 | 50.41 217 | 54.18 340 | 65.24 350 |
|
MDTV_nov1_ep13 | | | | 57.00 277 | | 72.73 266 | 38.26 317 | 65.02 309 | 64.73 311 | 44.74 309 | 55.46 297 | 72.48 314 | 32.61 293 | 70.47 298 | 37.47 307 | 67.75 271 | |
|
UnsupCasMVSNet_eth | | | 53.16 308 | 52.47 306 | 55.23 321 | 59.45 360 | 33.39 351 | 59.43 330 | 69.13 283 | 45.98 301 | 50.35 337 | 72.32 315 | 29.30 314 | 58.26 343 | 42.02 287 | 44.30 355 | 74.05 310 |
|
SCA | | | 60.49 262 | 58.38 267 | 66.80 247 | 74.14 252 | 48.06 233 | 63.35 314 | 63.23 319 | 49.13 269 | 59.33 271 | 72.10 316 | 37.45 241 | 74.27 284 | 44.17 265 | 62.57 308 | 78.05 265 |
|
Patchmatch-test | | | 49.08 317 | 48.28 319 | 51.50 336 | 64.40 342 | 30.85 358 | 45.68 356 | 48.46 361 | 35.60 350 | 46.10 348 | 72.10 316 | 34.47 269 | 46.37 362 | 27.08 355 | 60.65 321 | 77.27 274 |
|
PatchmatchNet |  | | 59.84 266 | 58.24 268 | 64.65 275 | 73.05 261 | 46.70 247 | 69.42 283 | 62.18 325 | 47.55 286 | 58.88 274 | 71.96 318 | 34.49 268 | 69.16 305 | 42.99 278 | 63.60 300 | 78.07 264 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
tpmrst | | | 58.24 274 | 58.70 264 | 56.84 316 | 66.97 327 | 34.32 345 | 69.57 282 | 61.14 329 | 47.17 293 | 58.58 278 | 71.60 319 | 41.28 210 | 60.41 336 | 49.20 228 | 62.84 306 | 75.78 290 |
|
ambc | | | | | 65.13 272 | 63.72 345 | 37.07 326 | 47.66 355 | 78.78 167 | | 54.37 313 | 71.42 320 | 11.24 364 | 80.94 206 | 45.64 254 | 53.85 342 | 77.38 272 |
|
EPMVS | | | 53.96 299 | 53.69 302 | 54.79 324 | 66.12 335 | 31.96 355 | 62.34 319 | 49.05 358 | 44.42 315 | 55.54 296 | 71.33 321 | 30.22 306 | 56.70 348 | 41.65 290 | 62.54 309 | 75.71 291 |
|
PatchMatch-RL | | | 56.25 288 | 54.55 293 | 61.32 297 | 77.06 201 | 56.07 123 | 65.57 302 | 54.10 352 | 44.13 318 | 53.49 322 | 71.27 322 | 25.20 340 | 66.78 316 | 36.52 317 | 63.66 299 | 61.12 351 |
|
tpmvs | | | 58.47 272 | 56.95 278 | 63.03 286 | 70.20 300 | 41.21 298 | 67.90 291 | 67.23 294 | 49.62 265 | 54.73 308 | 70.84 323 | 34.14 271 | 76.24 276 | 36.64 315 | 61.29 317 | 71.64 331 |
|
ppachtmachnet_test | | | 58.06 277 | 55.38 288 | 66.10 259 | 69.51 310 | 48.99 222 | 68.01 290 | 66.13 301 | 44.50 313 | 54.05 315 | 70.74 324 | 32.09 297 | 72.34 290 | 36.68 314 | 56.71 333 | 76.99 281 |
|
DWT-MVSNet_test | | | 61.90 251 | 59.93 258 | 67.83 237 | 71.98 279 | 46.09 255 | 71.03 269 | 69.71 274 | 50.09 261 | 58.51 279 | 70.62 325 | 30.21 307 | 77.63 260 | 49.28 227 | 67.91 267 | 79.78 249 |
|
tpm cat1 | | | 59.25 269 | 56.95 278 | 66.15 257 | 72.19 275 | 46.96 245 | 68.09 289 | 65.76 302 | 40.03 343 | 57.81 284 | 70.56 326 | 38.32 233 | 74.51 282 | 38.26 304 | 61.50 316 | 77.00 279 |
|
KD-MVS_2432*1600 | | | 53.45 303 | 51.50 310 | 59.30 300 | 62.82 346 | 37.14 324 | 55.33 341 | 71.79 262 | 47.34 290 | 55.09 303 | 70.52 327 | 21.91 350 | 70.45 299 | 35.72 321 | 42.97 357 | 70.31 338 |
|
miper_refine_blended | | | 53.45 303 | 51.50 310 | 59.30 300 | 62.82 346 | 37.14 324 | 55.33 341 | 71.79 262 | 47.34 290 | 55.09 303 | 70.52 327 | 21.91 350 | 70.45 299 | 35.72 321 | 42.97 357 | 70.31 338 |
|
MDA-MVSNet-bldmvs | | | 53.87 301 | 50.81 312 | 63.05 285 | 66.25 333 | 48.58 226 | 56.93 338 | 63.82 315 | 48.09 280 | 41.22 356 | 70.48 329 | 30.34 305 | 68.00 311 | 34.24 326 | 45.92 354 | 72.57 321 |
|
LF4IMVS | | | 42.95 324 | 42.26 326 | 45.04 342 | 48.30 367 | 32.50 352 | 54.80 343 | 48.49 360 | 28.03 358 | 40.51 358 | 70.16 330 | 9.24 367 | 43.89 364 | 31.63 339 | 49.18 351 | 58.72 353 |
|
RPMNet | | | 61.53 256 | 58.42 266 | 70.86 193 | 69.96 306 | 52.07 178 | 65.31 306 | 81.36 116 | 43.20 325 | 59.36 268 | 70.15 331 | 35.37 259 | 85.47 109 | 36.42 318 | 64.65 293 | 75.06 296 |
|
KD-MVS_self_test | | | 55.22 295 | 53.89 301 | 59.21 303 | 57.80 363 | 27.47 363 | 57.75 335 | 74.32 241 | 47.38 288 | 50.90 331 | 70.00 332 | 28.45 319 | 70.30 301 | 40.44 294 | 57.92 329 | 79.87 246 |
|
test-LLR | | | 58.15 276 | 58.13 271 | 58.22 309 | 68.57 318 | 44.80 267 | 65.46 303 | 57.92 338 | 50.08 262 | 55.44 298 | 69.82 333 | 32.62 291 | 57.44 345 | 49.66 224 | 73.62 185 | 72.41 325 |
|
test-mter | | | 56.42 286 | 55.82 285 | 58.22 309 | 68.57 318 | 44.80 267 | 65.46 303 | 57.92 338 | 39.94 344 | 55.44 298 | 69.82 333 | 21.92 349 | 57.44 345 | 49.66 224 | 73.62 185 | 72.41 325 |
|
our_test_3 | | | 56.49 284 | 54.42 294 | 62.68 288 | 69.51 310 | 45.48 263 | 66.08 298 | 61.49 328 | 44.11 319 | 50.73 334 | 69.60 335 | 33.05 282 | 68.15 309 | 38.38 303 | 56.86 331 | 74.40 306 |
|
PatchT | | | 53.17 307 | 53.44 304 | 52.33 334 | 68.29 322 | 25.34 367 | 58.21 333 | 54.41 350 | 44.46 314 | 54.56 310 | 69.05 336 | 33.32 280 | 60.94 333 | 36.93 310 | 61.76 315 | 70.73 337 |
|
new-patchmatchnet | | | 47.56 320 | 47.73 321 | 47.06 340 | 58.81 361 | 9.37 375 | 48.78 353 | 59.21 333 | 43.28 323 | 44.22 352 | 68.66 337 | 25.67 338 | 57.20 347 | 31.57 341 | 49.35 350 | 74.62 305 |
|
dp | | | 51.89 311 | 51.60 309 | 52.77 332 | 68.44 321 | 32.45 353 | 62.36 318 | 54.57 349 | 44.16 317 | 49.31 338 | 67.91 338 | 28.87 317 | 56.61 349 | 33.89 327 | 54.89 337 | 69.24 345 |
|
MDA-MVSNet_test_wron | | | 50.71 315 | 48.95 316 | 56.00 320 | 61.17 354 | 41.84 291 | 51.90 348 | 56.45 342 | 40.96 338 | 44.79 350 | 67.84 339 | 30.04 309 | 55.07 357 | 36.71 313 | 50.69 348 | 71.11 336 |
|
YYNet1 | | | 50.73 314 | 48.96 315 | 56.03 319 | 61.10 355 | 41.78 293 | 51.94 347 | 56.44 343 | 40.94 339 | 44.84 349 | 67.80 340 | 30.08 308 | 55.08 356 | 36.77 311 | 50.71 347 | 71.22 333 |
|
TESTMET0.1,1 | | | 55.28 294 | 54.90 291 | 56.42 317 | 66.56 331 | 43.67 278 | 65.46 303 | 56.27 345 | 39.18 346 | 53.83 316 | 67.44 341 | 24.21 344 | 55.46 355 | 48.04 236 | 73.11 198 | 70.13 340 |
|
DSMNet-mixed | | | 39.30 329 | 38.72 330 | 41.03 345 | 51.22 366 | 19.66 371 | 45.53 357 | 31.35 372 | 15.83 368 | 39.80 359 | 67.42 342 | 22.19 348 | 45.13 363 | 22.43 359 | 52.69 343 | 58.31 354 |
|
PMMVS | | | 53.96 299 | 53.26 305 | 56.04 318 | 62.60 349 | 50.92 191 | 61.17 325 | 56.09 346 | 32.81 353 | 53.51 321 | 66.84 343 | 34.04 272 | 59.93 338 | 44.14 267 | 68.18 265 | 57.27 356 |
|
N_pmnet | | | 39.35 328 | 40.28 329 | 36.54 346 | 63.76 344 | 1.62 379 | 49.37 352 | 0.76 379 | 34.62 352 | 43.61 353 | 66.38 344 | 26.25 334 | 42.57 365 | 26.02 358 | 51.77 344 | 65.44 349 |
|
ADS-MVSNet2 | | | 51.33 313 | 48.76 318 | 59.07 305 | 66.02 336 | 44.60 270 | 50.90 349 | 59.76 332 | 36.90 347 | 50.74 332 | 66.18 345 | 26.38 332 | 63.11 327 | 27.17 353 | 54.76 338 | 69.50 342 |
|
ADS-MVSNet | | | 48.48 318 | 47.77 320 | 50.63 337 | 66.02 336 | 29.92 359 | 50.90 349 | 50.87 357 | 36.90 347 | 50.74 332 | 66.18 345 | 26.38 332 | 52.47 359 | 27.17 353 | 54.76 338 | 69.50 342 |
|
GG-mvs-BLEND | | | | | 62.34 289 | 71.36 289 | 37.04 327 | 69.20 285 | 57.33 341 | | 54.73 308 | 65.48 347 | 30.37 304 | 77.82 257 | 34.82 324 | 74.93 175 | 72.17 329 |
|
patchmatchnet-post | | | | | | | | | | | | 64.03 348 | 34.50 267 | 74.27 284 | | | |
|
FPMVS | | | 42.18 325 | 41.11 328 | 45.39 341 | 58.03 362 | 41.01 300 | 49.50 351 | 53.81 353 | 30.07 356 | 33.71 361 | 64.03 348 | 11.69 361 | 52.08 360 | 14.01 365 | 55.11 336 | 43.09 361 |
|
UnsupCasMVSNet_bld | | | 50.07 316 | 48.87 317 | 53.66 327 | 60.97 357 | 33.67 349 | 57.62 336 | 64.56 312 | 39.47 345 | 47.38 342 | 64.02 350 | 27.47 325 | 59.32 339 | 34.69 325 | 43.68 356 | 67.98 347 |
|
CHOSEN 280x420 | | | 47.83 319 | 46.36 323 | 52.24 335 | 67.37 326 | 49.78 210 | 38.91 362 | 43.11 366 | 35.00 351 | 43.27 354 | 63.30 351 | 28.95 315 | 49.19 361 | 36.53 316 | 60.80 320 | 57.76 355 |
|
Patchmatch-RL test | | | 58.16 275 | 55.49 287 | 66.15 257 | 67.92 323 | 48.89 224 | 60.66 327 | 51.07 355 | 47.86 283 | 59.36 268 | 62.71 352 | 34.02 273 | 72.27 291 | 56.41 168 | 59.40 324 | 77.30 273 |
|
pmmvs3 | | | 44.92 323 | 41.95 327 | 53.86 326 | 52.58 365 | 43.55 279 | 62.11 320 | 46.90 364 | 26.05 361 | 40.63 357 | 60.19 353 | 11.08 365 | 57.91 344 | 31.83 338 | 46.15 353 | 60.11 352 |
|
PVSNet_0 | | 43.31 20 | 47.46 321 | 45.64 324 | 52.92 331 | 67.60 325 | 44.65 269 | 54.06 345 | 54.64 348 | 41.59 334 | 46.15 347 | 58.75 354 | 30.99 301 | 58.66 341 | 32.18 332 | 24.81 363 | 55.46 357 |
|
gg-mvs-nofinetune | | | 57.86 278 | 56.43 282 | 62.18 290 | 72.62 268 | 35.35 339 | 66.57 294 | 56.33 344 | 50.65 256 | 57.64 285 | 57.10 355 | 30.65 302 | 76.36 274 | 37.38 308 | 78.88 137 | 74.82 302 |
|
new_pmnet | | | 34.13 332 | 34.29 333 | 33.64 347 | 52.63 364 | 18.23 373 | 44.43 359 | 33.90 371 | 22.81 364 | 30.89 362 | 53.18 356 | 10.48 366 | 35.72 369 | 20.77 361 | 39.51 359 | 46.98 360 |
|
ANet_high | | | 41.38 326 | 37.47 331 | 53.11 330 | 39.73 372 | 24.45 368 | 56.94 337 | 69.69 275 | 47.65 285 | 26.04 364 | 52.32 357 | 12.44 360 | 62.38 330 | 21.80 360 | 10.61 370 | 72.49 322 |
|
JIA-IIPM | | | 51.56 312 | 47.68 322 | 63.21 283 | 64.61 341 | 50.73 195 | 47.71 354 | 58.77 335 | 42.90 327 | 48.46 340 | 51.72 358 | 24.97 341 | 70.24 302 | 36.06 320 | 53.89 341 | 68.64 346 |
|
PMVS |  | 28.69 22 | 36.22 330 | 33.29 334 | 45.02 343 | 36.82 374 | 35.98 338 | 54.68 344 | 48.74 359 | 26.31 360 | 21.02 365 | 51.61 359 | 2.88 376 | 60.10 337 | 9.99 369 | 47.58 352 | 38.99 364 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
LCM-MVSNet | | | 40.30 327 | 35.88 332 | 53.57 328 | 42.24 369 | 29.15 361 | 45.21 358 | 60.53 331 | 22.23 365 | 28.02 363 | 50.98 360 | 3.72 374 | 61.78 332 | 31.22 344 | 38.76 361 | 69.78 341 |
|
MVS-HIRNet | | | 45.52 322 | 44.48 325 | 48.65 339 | 68.49 320 | 34.05 347 | 59.41 331 | 44.50 365 | 27.03 359 | 37.96 360 | 50.47 361 | 26.16 335 | 64.10 324 | 26.74 356 | 59.52 323 | 47.82 359 |
|
PMMVS2 | | | 27.40 333 | 25.91 336 | 31.87 349 | 39.46 373 | 6.57 376 | 31.17 363 | 28.52 373 | 23.96 362 | 20.45 366 | 48.94 362 | 4.20 373 | 37.94 368 | 16.51 362 | 19.97 365 | 51.09 358 |
|
test_method | | | 19.68 337 | 18.10 340 | 24.41 352 | 13.68 377 | 3.11 378 | 12.06 368 | 42.37 367 | 2.00 372 | 11.97 370 | 36.38 363 | 5.77 371 | 29.35 371 | 15.06 363 | 23.65 364 | 40.76 362 |
|
MVE |  | 17.77 23 | 21.41 336 | 17.77 341 | 32.34 348 | 34.34 375 | 25.44 366 | 16.11 366 | 24.11 374 | 11.19 369 | 13.22 369 | 31.92 364 | 1.58 377 | 30.95 370 | 10.47 367 | 17.03 366 | 40.62 363 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
DeepMVS_CX |  | | | | 12.03 354 | 17.97 376 | 10.91 374 | | 10.60 377 | 7.46 370 | 11.07 371 | 28.36 365 | 3.28 375 | 11.29 373 | 8.01 371 | 9.74 372 | 13.89 368 |
|
Gipuma |  | | 34.77 331 | 31.91 335 | 43.33 344 | 62.05 351 | 37.87 319 | 20.39 365 | 67.03 295 | 23.23 363 | 18.41 367 | 25.84 366 | 4.24 372 | 62.73 328 | 14.71 364 | 51.32 346 | 29.38 365 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
E-PMN | | | 23.77 334 | 22.73 338 | 26.90 350 | 42.02 370 | 20.67 370 | 42.66 360 | 35.70 369 | 17.43 366 | 10.28 372 | 25.05 367 | 6.42 370 | 42.39 366 | 10.28 368 | 14.71 367 | 17.63 366 |
|
EMVS | | | 22.97 335 | 21.84 339 | 26.36 351 | 40.20 371 | 19.53 372 | 41.95 361 | 34.64 370 | 17.09 367 | 9.73 373 | 22.83 368 | 7.29 369 | 42.22 367 | 9.18 370 | 13.66 368 | 17.32 367 |
|
tmp_tt | | | 9.43 340 | 11.14 343 | 4.30 355 | 2.38 378 | 4.40 377 | 13.62 367 | 16.08 376 | 0.39 373 | 15.89 368 | 13.06 369 | 15.80 358 | 5.54 374 | 12.63 366 | 10.46 371 | 2.95 369 |
|
X-MVStestdata | | | 70.21 124 | 67.28 166 | 79.00 23 | 86.32 32 | 62.62 14 | 85.83 22 | 83.92 58 | 64.55 26 | 72.17 92 | 6.49 370 | 47.95 127 | 88.01 41 | 71.55 59 | 86.74 58 | 86.37 74 |
|
test_post1 | | | | | | | | 68.67 287 | | | | 3.64 371 | 32.39 295 | 69.49 304 | 44.17 265 | | |
|
test_post | | | | | | | | | | | | 3.55 372 | 33.90 274 | 66.52 317 | | | |
|
wuyk23d | | | 13.32 339 | 12.52 342 | 15.71 353 | 47.54 368 | 26.27 364 | 31.06 364 | 1.98 378 | 4.93 371 | 5.18 374 | 1.94 373 | 0.45 378 | 18.54 372 | 6.81 372 | 12.83 369 | 2.33 370 |
|
testmvs | | | 4.52 343 | 6.03 346 | 0.01 357 | 0.01 379 | 0.00 381 | 53.86 346 | 0.00 380 | 0.01 374 | 0.04 375 | 0.27 374 | 0.00 380 | 0.00 375 | 0.04 373 | 0.00 373 | 0.03 372 |
|
test123 | | | 4.73 342 | 6.30 345 | 0.02 356 | 0.01 379 | 0.01 380 | 56.36 339 | 0.00 380 | 0.01 374 | 0.04 375 | 0.21 375 | 0.01 379 | 0.00 375 | 0.03 374 | 0.00 373 | 0.04 371 |
|
test_blank | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 381 | 0.00 369 | 0.00 380 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 380 | 0.00 375 | 0.00 375 | 0.00 373 | 0.00 373 |
|
uanet_test | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 381 | 0.00 369 | 0.00 380 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 380 | 0.00 375 | 0.00 375 | 0.00 373 | 0.00 373 |
|
pcd_1.5k_mvsjas | | | 3.92 344 | 5.23 347 | 0.00 358 | 0.00 381 | 0.00 381 | 0.00 369 | 0.00 380 | 0.00 376 | 0.00 377 | 0.00 376 | 47.05 143 | 0.00 375 | 0.00 375 | 0.00 373 | 0.00 373 |
|
sosnet-low-res | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 381 | 0.00 369 | 0.00 380 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 380 | 0.00 375 | 0.00 375 | 0.00 373 | 0.00 373 |
|
sosnet | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 381 | 0.00 369 | 0.00 380 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 380 | 0.00 375 | 0.00 375 | 0.00 373 | 0.00 373 |
|
uncertanet | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 381 | 0.00 369 | 0.00 380 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 380 | 0.00 375 | 0.00 375 | 0.00 373 | 0.00 373 |
|
Regformer | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 381 | 0.00 369 | 0.00 380 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 380 | 0.00 375 | 0.00 375 | 0.00 373 | 0.00 373 |
|
uanet | | | 0.00 345 | 0.00 348 | 0.00 358 | 0.00 381 | 0.00 381 | 0.00 369 | 0.00 380 | 0.00 376 | 0.00 377 | 0.00 376 | 0.00 380 | 0.00 375 | 0.00 375 | 0.00 373 | 0.00 373 |
|
FOURS1 | | | | | | 86.12 40 | 60.82 42 | 88.18 1 | 83.61 68 | 60.87 88 | 81.50 16 | | | | | | |
|
MSC_two_6792asdad | | | | | 79.95 3 | 87.24 14 | 61.04 36 | | 85.62 29 | | | | | 90.96 1 | 79.31 7 | 90.65 8 | 87.85 25 |
|
No_MVS | | | | | 79.95 3 | 87.24 14 | 61.04 36 | | 85.62 29 | | | | | 90.96 1 | 79.31 7 | 90.65 8 | 87.85 25 |
|
eth-test2 | | | | | | 0.00 381 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 381 | | | | | | | | | | | |
|
IU-MVS | | | | | | 87.77 4 | 59.15 68 | | 85.53 31 | 53.93 223 | 84.64 3 | | | | 79.07 9 | 90.87 5 | 88.37 9 |
|
save fliter | | | | | | 86.17 36 | 61.30 31 | 83.98 48 | 79.66 152 | 59.00 129 | | | | | | | |
|
test_0728_SECOND | | | | | 79.19 15 | 87.82 3 | 59.11 71 | 87.85 5 | 87.15 6 | | | | | 90.84 3 | 78.66 13 | 90.61 11 | 87.62 36 |
|
GSMVS | | | | | | | | | | | | | | | | | 78.05 265 |
|
test_part2 | | | | | | 87.58 9 | 60.47 49 | | | | 83.42 12 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 34.74 265 | | | | 78.05 265 |
|
sam_mvs | | | | | | | | | | | | | 33.43 279 | | | | |
|
MTGPA |  | | | | | | | | 80.97 132 | | | | | | | | |
|
MTMP | | | | | | | | 86.03 19 | 17.08 375 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 75.28 31 | 88.31 37 | 83.81 164 |
|
agg_prior2 | | | | | | | | | | | | | | | 73.09 50 | 87.93 44 | 84.33 146 |
|
agg_prior | | | | | | 85.04 57 | 59.96 54 | | 81.04 129 | | 74.68 52 | | | 84.04 136 | | | |
|
test_prior4 | | | | | | | 62.51 17 | 82.08 83 | | | | | | | | | |
|
test_prior | | | | | 76.69 62 | 84.20 69 | 57.27 101 | | 84.88 42 | | | | | 86.43 84 | | | 86.38 71 |
|
旧先验2 | | | | | | | | 76.08 182 | | 45.32 306 | 76.55 35 | | | 65.56 322 | 58.75 159 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 76.12 180 | | | | | | | | | |
|
æ— å…ˆéªŒ | | | | | | | | 79.66 117 | 74.30 242 | 48.40 277 | | | | 80.78 212 | 53.62 192 | | 79.03 257 |
|
原ACMM2 | | | | | | | | 79.02 125 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 72.18 293 | 46.95 244 | | |
|
segment_acmp | | | | | | | | | | | | | 54.23 58 | | | | |
|
testdata1 | | | | | | | | 72.65 241 | | 60.50 96 | | | | | | | |
|
test12 | | | | | 77.76 46 | 84.52 66 | 58.41 85 | | 83.36 77 | | 72.93 82 | | 54.61 55 | 88.05 40 | | 88.12 40 | 86.81 63 |
|
plane_prior7 | | | | | | 81.41 101 | 55.96 125 | | | | | | | | | | |
|
plane_prior6 | | | | | | 81.20 108 | 56.24 120 | | | | | | 45.26 167 | | | | |
|
plane_prior5 | | | | | | | | | 84.01 56 | | | | | 87.21 57 | 68.16 80 | 80.58 110 | 84.65 139 |
|
plane_prior3 | | | | | | | 56.09 122 | | | 63.92 39 | 69.27 128 | | | | | | |
|
plane_prior2 | | | | | | | | 84.22 40 | | 64.52 28 | | | | | | | |
|
plane_prior1 | | | | | | 81.27 106 | | | | | | | | | | | |
|
plane_prior | | | | | | | 56.31 116 | 83.58 56 | | 63.19 51 | | | | | | 80.48 113 | |
|
n2 | | | | | | | | | 0.00 380 | | | | | | | | |
|
nn | | | | | | | | | 0.00 380 | | | | | | | | |
|
door-mid | | | | | | | | | 47.19 363 | | | | | | | | |
|
test11 | | | | | | | | | 83.47 72 | | | | | | | | |
|
door | | | | | | | | | 47.60 362 | | | | | | | | |
|
HQP5-MVS | | | | | | | 54.94 140 | | | | | | | | | | |
|
HQP-NCC | | | | | | 80.66 113 | | 82.31 78 | | 62.10 72 | 67.85 152 | | | | | | |
|
ACMP_Plane | | | | | | 80.66 113 | | 82.31 78 | | 62.10 72 | 67.85 152 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 67.04 92 | | |
|
HQP4-MVS | | | | | | | | | | | 67.85 152 | | | 86.93 66 | | | 84.32 147 |
|
HQP3-MVS | | | | | | | | | 83.90 60 | | | | | | | 80.35 116 | |
|
HQP2-MVS | | | | | | | | | | | | | 45.46 161 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 25.89 365 | 61.22 324 | | 40.10 342 | 51.10 329 | | 32.97 284 | | 38.49 302 | | 78.61 260 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 74.07 181 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 72.16 212 | |
|
Test By Simon | | | | | | | | | | | | | 48.33 124 | | | | |
|