This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
UA-Net99.42 3899.29 4499.80 4099.62 12699.55 7599.50 12599.70 1598.79 4899.77 3399.96 197.45 11699.96 1998.92 6799.90 2399.89 2
DeepC-MVS98.35 299.30 5599.19 6099.64 7799.82 3799.23 11499.62 6599.55 6398.94 3399.63 7199.95 295.82 17299.94 5499.37 1999.97 399.73 80
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OurMVSNet-221017-097.88 21597.77 20898.19 26998.71 30896.53 28799.88 199.00 29497.79 14598.78 24599.94 391.68 29299.35 25997.21 24196.99 25698.69 247
SixPastTwentyTwo97.50 26897.33 26498.03 27798.65 31396.23 29799.77 2298.68 32897.14 21197.90 30799.93 490.45 30799.18 28797.00 25596.43 26698.67 259
SD-MVS99.41 4299.52 699.05 16499.74 7099.68 4999.46 14999.52 8899.11 799.88 599.91 599.43 197.70 34498.72 10099.93 1099.77 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMH97.28 898.10 18597.99 18398.44 24899.41 17896.96 27399.60 7299.56 5598.09 11198.15 29899.91 590.87 30699.70 20098.88 7197.45 24098.67 259
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VDDNet97.55 26297.02 27899.16 15599.49 16098.12 21999.38 18699.30 25795.35 30699.68 5399.90 782.62 35199.93 6999.31 2798.13 21299.42 170
QAPM98.67 14398.30 16099.80 4099.20 23199.67 5299.77 2299.72 1194.74 31798.73 24999.90 795.78 17399.98 696.96 25999.88 3699.76 68
3Dnovator97.25 999.24 6599.05 7499.81 3899.12 24999.66 5499.84 699.74 1099.09 1098.92 22499.90 795.94 16699.98 698.95 6299.92 1199.79 53
Anonymous2024052998.09 18697.68 21899.34 12799.66 11098.44 20399.40 17799.43 19693.67 32799.22 16799.89 1090.23 31299.93 6999.26 3398.33 19799.66 108
CHOSEN 1792x268899.19 6999.10 6999.45 11599.89 898.52 19599.39 18199.94 198.73 5299.11 18899.89 1095.50 18299.94 5499.50 899.97 399.89 2
RPSCF98.22 17098.62 13896.99 31499.82 3791.58 34999.72 3099.44 18896.61 25399.66 6499.89 1095.92 16799.82 15397.46 22899.10 15899.57 138
3Dnovator+97.12 1399.18 7198.97 9199.82 3599.17 24299.68 4999.81 1299.51 10199.20 498.72 25099.89 1095.68 17799.97 1198.86 7899.86 5199.81 41
COLMAP_ROBcopyleft97.56 698.86 11998.75 12199.17 15499.88 1198.53 19199.34 20299.59 4397.55 17098.70 25799.89 1095.83 17199.90 10698.10 16799.90 2399.08 196
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_djsdf98.67 14398.57 14498.98 17398.70 30998.91 15899.88 199.46 16797.55 17099.22 16799.88 1595.73 17599.28 26999.03 5397.62 22498.75 231
DP-MVS99.16 7598.95 9599.78 4599.77 4999.53 8099.41 16999.50 11997.03 22499.04 20499.88 1597.39 11799.92 8098.66 11099.90 2399.87 10
TDRefinement95.42 30594.57 31197.97 28389.83 35896.11 29999.48 14198.75 31796.74 24296.68 33099.88 1588.65 32899.71 19498.37 14882.74 34898.09 326
EPP-MVSNet99.13 7998.99 8799.53 9899.65 11599.06 13599.81 1299.33 24297.43 18699.60 8199.88 1597.14 12699.84 13799.13 4598.94 16999.69 98
OpenMVScopyleft96.50 1698.47 15198.12 16999.52 10399.04 26599.53 8099.82 1099.72 1194.56 32098.08 30099.88 1594.73 21299.98 697.47 22799.76 9599.06 201
lessismore_v097.79 29598.69 31095.44 31594.75 35895.71 33899.87 2088.69 32799.32 26495.89 28994.93 30398.62 281
Vis-MVSNetpermissive99.12 8598.97 9199.56 9099.78 4499.10 13199.68 4199.66 2798.49 6699.86 1199.87 2094.77 20999.84 13799.19 3899.41 13599.74 73
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+97.24 1097.92 21297.78 20698.32 25999.46 16896.68 28399.56 9799.54 7098.41 7497.79 31299.87 2090.18 31399.66 20898.05 17697.18 25298.62 281
ACMMP_NAP99.47 2299.34 2699.88 699.87 1599.86 1099.47 14699.48 13998.05 12199.76 3799.86 2398.82 4499.93 6998.82 8999.91 1699.84 18
RRT_MVS98.60 14898.44 14999.05 16498.88 28399.14 12699.49 13599.38 21697.76 14899.29 14999.86 2395.38 18599.36 25598.81 9097.16 25398.64 271
casdiffmvs99.13 7998.98 9099.56 9099.65 11599.16 12199.56 9799.50 11998.33 8499.41 12199.86 2395.92 16799.83 14699.45 1699.16 15099.70 95
PVSNet_Blended_VisFu99.36 4999.28 4899.61 8299.86 2199.07 13499.47 14699.93 297.66 16199.71 4699.86 2397.73 11199.96 1999.47 1499.82 7899.79 53
IS-MVSNet99.05 10098.87 10499.57 8899.73 7599.32 10299.75 2699.20 27398.02 12599.56 8999.86 2396.54 14799.67 20598.09 16899.13 15499.73 80
USDC97.34 27497.20 27397.75 29699.07 25995.20 31998.51 33299.04 29297.99 12698.31 29199.86 2389.02 32399.55 22795.67 29697.36 24798.49 301
TSAR-MVS + MP.99.58 499.50 899.81 3899.91 199.66 5499.63 5999.39 21098.91 3799.78 3199.85 2999.36 299.94 5498.84 8299.88 3699.82 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
tmp_tt82.80 32481.52 32786.66 33766.61 36568.44 36392.79 35797.92 34268.96 35680.04 35899.85 2985.77 34496.15 35497.86 18743.89 35995.39 350
AllTest98.87 11698.72 12299.31 13399.86 2198.48 20199.56 9799.61 3597.85 13699.36 13699.85 2995.95 16499.85 13296.66 27699.83 7299.59 133
TestCases99.31 13399.86 2198.48 20199.61 3597.85 13699.36 13699.85 2995.95 16499.85 13296.66 27699.83 7299.59 133
VDD-MVS97.73 24397.35 25998.88 19599.47 16797.12 25699.34 20298.85 31298.19 9899.67 5999.85 2982.98 34999.92 8099.49 1298.32 20199.60 129
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2699.56 5599.02 1599.88 599.85 2999.18 899.96 1999.22 3599.92 1199.90 1
DeepPCF-MVS98.18 398.81 13099.37 1997.12 31399.60 13391.75 34898.61 32599.44 18899.35 199.83 1799.85 2998.70 6299.81 15799.02 5599.91 1699.81 41
ACMM97.58 598.37 16198.34 15698.48 23999.41 17897.10 25799.56 9799.45 17998.53 6399.04 20499.85 2993.00 25599.71 19498.74 9697.45 24098.64 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D99.27 6099.12 6799.74 5699.18 23699.75 3899.56 9799.57 5098.45 7099.49 10499.85 2997.77 11099.94 5498.33 15299.84 6599.52 147
DPE-MVScopyleft99.46 2499.32 3099.91 299.78 4499.88 799.36 19399.51 10198.73 5299.88 599.84 3898.72 6099.96 1998.16 16499.87 4099.88 5
XVG-OURS98.73 13898.68 12798.88 19599.70 9397.73 23898.92 29799.55 6398.52 6499.45 10999.84 3895.27 19099.91 9198.08 17298.84 17799.00 206
baseline99.15 7699.02 8299.53 9899.66 11099.14 12699.72 3099.48 13998.35 8099.42 11799.84 3896.07 16099.79 16599.51 799.14 15399.67 105
ACMMPcopyleft99.45 2699.32 3099.82 3599.89 899.67 5299.62 6599.69 1898.12 10699.63 7199.84 3898.73 5999.96 1998.55 13199.83 7299.81 41
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EI-MVSNet-UG-set99.58 499.57 199.64 7799.78 4499.14 12699.60 7299.45 17999.01 1899.90 399.83 4298.98 2399.93 6999.59 199.95 699.86 11
EI-MVSNet98.67 14398.67 12898.68 22299.35 19297.97 22499.50 12599.38 21696.93 23399.20 17399.83 4297.87 10699.36 25598.38 14697.56 22998.71 239
CVMVSNet98.57 14998.67 12898.30 26199.35 19295.59 30899.50 12599.55 6398.60 6099.39 12899.83 4294.48 22399.45 23498.75 9598.56 19099.85 14
LPG-MVS_test98.22 17098.13 16898.49 23799.33 19797.05 26399.58 8599.55 6397.46 17999.24 16299.83 4292.58 27199.72 18898.09 16897.51 23398.68 252
LGP-MVS_train98.49 23799.33 19797.05 26399.55 6397.46 17999.24 16299.83 4292.58 27199.72 18898.09 16897.51 23398.68 252
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2499.59 7899.51 10198.62 5899.79 2699.83 4299.28 399.97 1198.48 13699.90 2399.84 18
Skip Steuart: Steuart Systems R&D Blog.
XXY-MVS98.38 16098.09 17399.24 14899.26 21799.32 10299.56 9799.55 6397.45 18298.71 25199.83 4293.23 25199.63 21998.88 7196.32 26998.76 229
SR-MVS-dyc-post99.45 2699.31 3799.85 2599.76 5299.82 2099.63 5999.52 8898.38 7699.76 3799.82 4998.53 7299.95 4398.61 11799.81 8099.77 63
RE-MVS-def99.34 2699.76 5299.82 2099.63 5999.52 8898.38 7699.76 3799.82 4998.75 5698.61 11799.81 8099.77 63
test072699.85 2599.89 399.62 6599.50 11999.10 899.86 1199.82 4998.94 31
SMA-MVScopyleft99.44 3099.30 4099.85 2599.73 7599.83 1499.56 9799.47 15797.45 18299.78 3199.82 4999.18 899.91 9198.79 9199.89 3399.81 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
nrg03098.64 14698.42 15199.28 14399.05 26499.69 4799.81 1299.46 16798.04 12299.01 20799.82 4996.69 14399.38 24899.34 2494.59 30698.78 223
FC-MVSNet-test98.75 13798.62 13899.15 15799.08 25899.45 9199.86 599.60 4098.23 9498.70 25799.82 4996.80 13799.22 27999.07 5196.38 26798.79 222
EI-MVSNet-Vis-set99.58 499.56 399.64 7799.78 4499.15 12599.61 7199.45 17999.01 1899.89 499.82 4999.01 1699.92 8099.56 499.95 699.85 14
APD-MVS_3200maxsize99.48 1999.35 2499.85 2599.76 5299.83 1499.63 5999.54 7098.36 7999.79 2699.82 4998.86 4099.95 4398.62 11499.81 8099.78 61
EU-MVSNet97.98 20498.03 17997.81 29498.72 30696.65 28499.66 4799.66 2798.09 11198.35 28999.82 4995.25 19398.01 33797.41 23395.30 29498.78 223
APD-MVScopyleft99.27 6099.08 7299.84 3299.75 6299.79 3099.50 12599.50 11997.16 21099.77 3399.82 4998.78 4899.94 5497.56 21899.86 5199.80 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TAMVS99.12 8599.08 7299.24 14899.46 16898.55 18999.51 11999.46 16798.09 11199.45 10999.82 4998.34 8999.51 22998.70 10298.93 17099.67 105
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4799.63 12099.59 6899.36 19399.46 16799.07 1399.79 2699.82 4998.85 4199.92 8098.68 10799.87 4099.82 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS99.13 7999.02 8299.45 11599.57 13998.63 18399.07 26199.34 23598.99 2599.61 7799.82 4997.98 10599.87 12397.00 25599.80 8499.85 14
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 7299.48 13999.08 1199.91 199.81 6299.20 599.96 1998.91 6899.85 5899.79 53
test_241102_TWO99.48 13999.08 1199.88 599.81 6298.94 3199.96 1998.91 6899.84 6599.88 5
OPM-MVS98.19 17498.10 17098.45 24598.88 28397.07 26199.28 21499.38 21698.57 6199.22 16799.81 6292.12 28299.66 20898.08 17297.54 23198.61 290
zzz-MVS99.49 1599.36 2199.89 499.90 399.86 1099.36 19399.47 15798.79 4899.68 5399.81 6298.43 8199.97 1198.88 7199.90 2399.83 29
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 4799.47 15798.79 4899.68 5399.81 6298.43 8199.97 1198.88 7199.90 2399.83 29
FIs98.78 13498.63 13399.23 15099.18 23699.54 7799.83 999.59 4398.28 8798.79 24499.81 6296.75 14199.37 25199.08 5096.38 26798.78 223
mvs_tets98.40 15998.23 16398.91 18798.67 31298.51 19799.66 4799.53 8298.19 9898.65 26699.81 6292.75 26199.44 23999.31 2797.48 23998.77 227
mvs_anonymous99.03 10398.99 8799.16 15599.38 18798.52 19599.51 11999.38 21697.79 14599.38 13199.81 6297.30 12299.45 23499.35 2098.99 16799.51 153
TSAR-MVS + GP.99.36 4999.36 2199.36 12699.67 10198.61 18699.07 26199.33 24299.00 2299.82 2099.81 6299.06 1399.84 13799.09 4999.42 13499.65 112
abl_699.44 3099.31 3799.83 3399.85 2599.75 3899.66 4799.59 4398.13 10499.82 2099.81 6298.60 6999.96 1998.46 14099.88 3699.79 53
RRT_test8_iter0597.72 24597.60 22698.08 27499.23 22396.08 30099.63 5999.49 12797.54 17398.94 22199.81 6287.99 33699.35 25999.21 3796.51 26498.81 220
EPNet98.86 11998.71 12499.30 13797.20 34498.18 21499.62 6598.91 30699.28 298.63 26899.81 6295.96 16399.99 199.24 3499.72 10399.73 80
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ab-mvs98.86 11998.63 13399.54 9299.64 11799.19 11699.44 15499.54 7097.77 14799.30 14699.81 6294.20 23199.93 6999.17 4198.82 17899.49 157
OMC-MVS99.08 9699.04 7799.20 15199.67 10198.22 21399.28 21499.52 8898.07 11699.66 6499.81 6297.79 10999.78 16997.79 19399.81 8099.60 129
xxxxxxxxxxxxxcwj99.43 3399.32 3099.75 5199.76 5299.59 6899.14 24999.53 8299.00 2299.71 4699.80 7698.95 2899.93 6998.19 15999.84 6599.74 73
SF-MVS99.38 4799.24 5599.79 4399.79 4299.68 4999.57 9099.54 7097.82 14499.71 4699.80 7698.95 2899.93 6998.19 15999.84 6599.74 73
DVP-MVS99.57 799.47 999.88 699.85 2599.89 399.57 9099.37 22599.10 899.81 2299.80 7698.94 3199.96 1998.93 6599.86 5199.81 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.99 2599.81 2299.80 7699.09 1299.96 1998.85 8099.90 2399.88 5
jajsoiax98.43 15498.28 16198.88 19598.60 31998.43 20499.82 1099.53 8298.19 9898.63 26899.80 7693.22 25399.44 23999.22 3597.50 23598.77 227
Regformer-399.57 799.53 599.68 6599.76 5299.29 10799.58 8599.44 18899.01 1899.87 1099.80 7698.97 2499.91 9199.44 1899.92 1199.83 29
Regformer-499.59 399.54 499.73 5899.76 5299.41 9599.58 8599.49 12799.02 1599.88 599.80 7699.00 2299.94 5499.45 1699.92 1199.84 18
PGM-MVS99.45 2699.31 3799.86 1899.87 1599.78 3799.58 8599.65 3297.84 13899.71 4699.80 7699.12 1199.97 1198.33 15299.87 4099.83 29
TransMVSNet (Re)97.15 27996.58 28398.86 20299.12 24998.85 16499.49 13598.91 30695.48 30497.16 32499.80 7693.38 24999.11 29894.16 31991.73 33498.62 281
K. test v397.10 28196.79 28298.01 28098.72 30696.33 29499.87 497.05 35097.59 16596.16 33599.80 7688.71 32699.04 30496.69 27496.55 26298.65 269
DELS-MVS99.48 1999.42 1399.65 7299.72 8099.40 9799.05 26699.66 2799.14 699.57 8899.80 7698.46 7999.94 5499.57 399.84 6599.60 129
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CSCG99.32 5399.32 3099.32 13299.85 2598.29 20999.71 3299.66 2798.11 10899.41 12199.80 7698.37 8899.96 1998.99 5799.96 599.72 86
test117299.43 3399.29 4499.85 2599.75 6299.82 2099.60 7299.56 5598.28 8799.74 4199.79 8898.53 7299.95 4398.55 13199.78 8999.79 53
SR-MVS99.43 3399.29 4499.86 1899.75 6299.83 1499.59 7899.62 3398.21 9799.73 4399.79 8898.68 6399.96 1998.44 14299.77 9299.79 53
MP-MVS-pluss99.37 4899.20 5999.88 699.90 399.87 999.30 20899.52 8897.18 20899.60 8199.79 8898.79 4799.95 4398.83 8599.91 1699.83 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pm-mvs197.68 25397.28 26898.88 19599.06 26198.62 18499.50 12599.45 17996.32 27497.87 30899.79 8892.47 27599.35 25997.54 22093.54 32198.67 259
LFMVS97.90 21497.35 25999.54 9299.52 14999.01 14099.39 18198.24 33697.10 21899.65 6899.79 8884.79 34799.91 9199.28 3098.38 19699.69 98
TinyColmap97.12 28096.89 28097.83 29299.07 25995.52 31298.57 32898.74 32097.58 16797.81 31199.79 8888.16 33499.56 22595.10 30697.21 25098.39 315
ACMP97.20 1198.06 18997.94 19198.45 24599.37 18997.01 26799.44 15499.49 12797.54 17398.45 28199.79 8891.95 28599.72 18897.91 18397.49 23898.62 281
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
9.1499.10 6999.72 8099.40 17799.51 10197.53 17599.64 7099.78 9598.84 4299.91 9197.63 20999.82 78
pmmvs696.53 28996.09 29297.82 29398.69 31095.47 31399.37 18999.47 15793.46 33197.41 31799.78 9587.06 34199.33 26396.92 26492.70 33198.65 269
MSLP-MVS++99.46 2499.47 999.44 12099.60 13399.16 12199.41 16999.71 1398.98 2799.45 10999.78 9599.19 799.54 22899.28 3099.84 6599.63 123
VNet99.11 9098.90 10099.73 5899.52 14999.56 7399.41 16999.39 21099.01 1899.74 4199.78 9595.56 18099.92 8099.52 698.18 20799.72 86
114514_t98.93 11398.67 12899.72 6199.85 2599.53 8099.62 6599.59 4392.65 33699.71 4699.78 9598.06 10399.90 10698.84 8299.91 1699.74 73
Vis-MVSNet (Re-imp)98.87 11698.72 12299.31 13399.71 8698.88 16099.80 1699.44 18897.91 13299.36 13699.78 9595.49 18399.43 24397.91 18399.11 15599.62 125
UniMVSNet_ETH3D97.32 27596.81 28198.87 19999.40 18397.46 24599.51 11999.53 8295.86 30198.54 27699.77 10182.44 35299.66 20898.68 10797.52 23299.50 156
anonymousdsp98.44 15398.28 16198.94 17998.50 32498.96 14999.77 2299.50 11997.07 21998.87 23299.77 10194.76 21099.28 26998.66 11097.60 22598.57 296
CDS-MVSNet99.09 9499.03 7999.25 14699.42 17598.73 17599.45 15099.46 16798.11 10899.46 10899.77 10198.01 10499.37 25198.70 10298.92 17299.66 108
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MSDG98.98 10998.80 11599.53 9899.76 5299.19 11698.75 31499.55 6397.25 20299.47 10699.77 10197.82 10899.87 12396.93 26299.90 2399.54 142
CHOSEN 280x42099.12 8599.13 6599.08 16099.66 11097.89 23098.43 33599.71 1398.88 3899.62 7599.76 10596.63 14499.70 20099.46 1599.99 199.66 108
PS-MVSNAJss98.92 11498.92 9798.90 18998.78 29898.53 19199.78 2099.54 7098.07 11699.00 21299.76 10599.01 1699.37 25199.13 4597.23 24998.81 220
Regformer-199.53 1199.47 999.72 6199.71 8699.44 9299.49 13599.46 16798.95 3299.83 1799.76 10599.01 1699.93 6999.17 4199.87 4099.80 49
Regformer-299.54 999.47 999.75 5199.71 8699.52 8399.49 13599.49 12798.94 3399.83 1799.76 10599.01 1699.94 5499.15 4499.87 4099.80 49
MVS_Test99.10 9398.97 9199.48 10999.49 16099.14 12699.67 4399.34 23597.31 19699.58 8699.76 10597.65 11399.82 15398.87 7599.07 16199.46 165
ETH3D-3000-0.199.21 6699.02 8299.77 4799.73 7599.69 4799.38 18699.51 10197.45 18299.61 7799.75 11098.51 7599.91 9197.45 23099.83 7299.71 93
CANet_DTU98.97 11198.87 10499.25 14699.33 19798.42 20699.08 26099.30 25799.16 599.43 11499.75 11095.27 19099.97 1198.56 12899.95 699.36 175
mPP-MVS99.44 3099.30 4099.86 1899.88 1199.79 3099.69 3699.48 13998.12 10699.50 10199.75 11098.78 4899.97 1198.57 12599.89 3399.83 29
HPM-MVS_fast99.51 1499.40 1699.85 2599.91 199.79 3099.76 2599.56 5597.72 15399.76 3799.75 11099.13 1099.92 8099.07 5199.92 1199.85 14
HyFIR lowres test99.11 9098.92 9799.65 7299.90 399.37 9899.02 27599.91 397.67 16099.59 8499.75 11095.90 16999.73 18499.53 599.02 16599.86 11
ITE_SJBPF98.08 27499.29 21096.37 29298.92 30398.34 8198.83 23899.75 11091.09 30399.62 22095.82 29097.40 24598.25 322
test_241102_ONE99.84 3299.90 199.48 13999.07 1399.91 199.74 11699.20 599.76 174
testtj99.12 8598.87 10499.86 1899.72 8099.79 3099.44 15499.51 10197.29 19899.59 8499.74 11698.15 10099.96 1996.74 27099.69 10999.81 41
Anonymous20240521198.30 16697.98 18499.26 14599.57 13998.16 21599.41 16998.55 33296.03 29999.19 17699.74 11691.87 28699.92 8099.16 4398.29 20299.70 95
tttt051798.42 15598.14 16799.28 14399.66 11098.38 20799.74 2996.85 35197.68 15799.79 2699.74 11691.39 29999.89 11498.83 8599.56 12799.57 138
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3699.68 1998.98 2799.37 13399.74 11698.81 4599.94 5498.79 9199.86 5199.84 18
MP-MVScopyleft99.33 5299.15 6399.87 1199.88 1199.82 2099.66 4799.46 16798.09 11199.48 10599.74 11698.29 9299.96 1997.93 18299.87 4099.82 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS_111021_LR99.41 4299.33 2899.65 7299.77 4999.51 8598.94 29699.85 698.82 4399.65 6899.74 11698.51 7599.80 16298.83 8599.89 3399.64 119
VPNet97.84 22397.44 24799.01 16999.21 22998.94 15499.48 14199.57 5098.38 7699.28 15199.73 12388.89 32599.39 24699.19 3893.27 32498.71 239
MVSTER98.49 15098.32 15899.00 17199.35 19299.02 13899.54 10999.38 21697.41 18999.20 17399.73 12393.86 24399.36 25598.87 7597.56 22998.62 281
MVS_111021_HR99.41 4299.32 3099.66 6899.72 8099.47 8998.95 29499.85 698.82 4399.54 9499.73 12398.51 7599.74 17798.91 6899.88 3699.77 63
PHI-MVS99.30 5599.17 6299.70 6499.56 14399.52 8399.58 8599.80 897.12 21499.62 7599.73 12398.58 7099.90 10698.61 11799.91 1699.68 102
IterMVS-SCA-FT97.82 22897.75 21298.06 27699.57 13996.36 29399.02 27599.49 12797.18 20898.71 25199.72 12792.72 26499.14 29097.44 23195.86 28198.67 259
diffmvs99.14 7799.02 8299.51 10599.61 13098.96 14999.28 21499.49 12798.46 6999.72 4599.71 12896.50 14899.88 11999.31 2799.11 15599.67 105
XVG-OURS-SEG-HR98.69 14198.62 13898.89 19299.71 8697.74 23799.12 25199.54 7098.44 7399.42 11799.71 12894.20 23199.92 8098.54 13398.90 17499.00 206
EPNet_dtu98.03 19597.96 18798.23 26798.27 32895.54 31199.23 23298.75 31799.02 1597.82 31099.71 12896.11 15999.48 23093.04 32999.65 11999.69 98
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNVR-MVS99.42 3899.30 4099.78 4599.62 12699.71 4499.26 22799.52 8898.82 4399.39 12899.71 12898.96 2599.85 13298.59 12299.80 8499.77 63
OPU-MVS99.64 7799.56 14399.72 4299.60 7299.70 13299.27 499.42 24498.24 15799.80 8499.79 53
tfpnnormal97.84 22397.47 23998.98 17399.20 23199.22 11599.64 5799.61 3596.32 27498.27 29499.70 13293.35 25099.44 23995.69 29495.40 29298.27 320
v7n97.87 21797.52 23398.92 18398.76 30298.58 18799.84 699.46 16796.20 28498.91 22599.70 13294.89 20199.44 23996.03 28793.89 31798.75 231
testdata99.54 9299.75 6298.95 15199.51 10197.07 21999.43 11499.70 13298.87 3999.94 5497.76 19699.64 12099.72 86
IterMVS97.83 22597.77 20898.02 27999.58 13796.27 29699.02 27599.48 13997.22 20698.71 25199.70 13292.75 26199.13 29397.46 22896.00 27598.67 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PCF-MVS97.08 1497.66 25797.06 27799.47 11299.61 13099.09 13298.04 34899.25 26791.24 34198.51 27799.70 13294.55 22199.91 9192.76 33399.85 5899.42 170
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
LTVRE_ROB97.16 1298.02 19797.90 19498.40 25299.23 22396.80 27999.70 3499.60 4097.12 21498.18 29799.70 13291.73 29199.72 18898.39 14497.45 24098.68 252
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_part197.75 23997.24 27299.29 14099.59 13599.63 6099.65 5499.49 12796.17 28798.44 28299.69 13989.80 31699.47 23198.68 10793.66 31998.78 223
HFP-MVS99.49 1599.37 1999.86 1899.87 1599.80 2699.66 4799.67 2298.15 10299.68 5399.69 13999.06 1399.96 1998.69 10599.87 4099.84 18
#test#99.43 3399.29 4499.86 1899.87 1599.80 2699.55 10699.67 2297.83 13999.68 5399.69 13999.06 1399.96 1998.39 14499.87 4099.84 18
旧先验199.74 7099.59 6899.54 7099.69 13998.47 7899.68 11499.73 80
ACMMPR99.49 1599.36 2199.86 1899.87 1599.79 3099.66 4799.67 2298.15 10299.67 5999.69 13998.95 2899.96 1998.69 10599.87 4099.84 18
CPTT-MVS99.11 9098.90 10099.74 5699.80 4199.46 9099.59 7899.49 12797.03 22499.63 7199.69 13997.27 12499.96 1997.82 19199.84 6599.81 41
GST-MVS99.40 4599.24 5599.85 2599.86 2199.79 3099.60 7299.67 2297.97 12799.63 7199.68 14598.52 7499.95 4398.38 14699.86 5199.81 41
Anonymous2023121197.88 21597.54 23298.90 18999.71 8698.53 19199.48 14199.57 5094.16 32398.81 24099.68 14593.23 25199.42 24498.84 8294.42 30998.76 229
region2R99.48 1999.35 2499.87 1199.88 1199.80 2699.65 5499.66 2798.13 10499.66 6499.68 14598.96 2599.96 1998.62 11499.87 4099.84 18
PS-CasMVS97.93 20997.59 22898.95 17898.99 27199.06 13599.68 4199.52 8897.13 21298.31 29199.68 14592.44 27999.05 30398.51 13494.08 31598.75 231
HY-MVS97.30 798.85 12798.64 13299.47 11299.42 17599.08 13399.62 6599.36 22697.39 19199.28 15199.68 14596.44 15199.92 8098.37 14898.22 20399.40 173
DP-MVS Recon99.12 8598.95 9599.65 7299.74 7099.70 4699.27 21899.57 5096.40 27299.42 11799.68 14598.75 5699.80 16297.98 17899.72 10399.44 168
ETH3D cwj APD-0.1699.06 9898.84 11099.72 6199.51 15199.60 6599.23 23299.44 18897.04 22299.39 12899.67 15198.30 9199.92 8097.27 23799.69 10999.64 119
ADS-MVSNet298.02 19798.07 17797.87 28999.33 19795.19 32099.23 23299.08 28796.24 28199.10 19199.67 15194.11 23598.93 32296.81 26799.05 16299.48 158
ADS-MVSNet98.20 17398.08 17498.56 23199.33 19796.48 28999.23 23299.15 27996.24 28199.10 19199.67 15194.11 23599.71 19496.81 26799.05 16299.48 158
DTE-MVSNet97.51 26797.19 27498.46 24498.63 31598.13 21899.84 699.48 13996.68 24697.97 30699.67 15192.92 25798.56 32996.88 26692.60 33298.70 243
Baseline_NR-MVSNet97.76 23597.45 24298.68 22299.09 25698.29 20999.41 16998.85 31295.65 30398.63 26899.67 15194.82 20399.10 30098.07 17592.89 32898.64 271
CMPMVSbinary69.68 2394.13 31694.90 30891.84 33497.24 34380.01 35798.52 33199.48 13989.01 34591.99 34899.67 15185.67 34599.13 29395.44 29997.03 25596.39 348
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
原ACMM199.65 7299.73 7599.33 10199.47 15797.46 17999.12 18699.66 15798.67 6699.91 9197.70 20599.69 10999.71 93
thisisatest053098.35 16298.03 17999.31 13399.63 12098.56 18899.54 10996.75 35397.53 17599.73 4399.65 15891.25 30299.89 11498.62 11499.56 12799.48 158
test22299.75 6299.49 8698.91 29999.49 12796.42 27099.34 14299.65 15898.28 9399.69 10999.72 86
112199.09 9498.87 10499.75 5199.74 7099.60 6599.27 21899.48 13996.82 24099.25 16199.65 15898.38 8699.93 6997.53 22199.67 11699.73 80
MVSFormer99.17 7399.12 6799.29 14099.51 15198.94 15499.88 199.46 16797.55 17099.80 2499.65 15897.39 11799.28 26999.03 5399.85 5899.65 112
jason99.13 7999.03 7999.45 11599.46 16898.87 16199.12 25199.26 26598.03 12499.79 2699.65 15897.02 13199.85 13299.02 5599.90 2399.65 112
jason: jason.
BH-RMVSNet98.41 15798.08 17499.40 12299.41 17898.83 16899.30 20898.77 31697.70 15598.94 22199.65 15892.91 25999.74 17796.52 27899.55 12999.64 119
sss99.17 7399.05 7499.53 9899.62 12698.97 14599.36 19399.62 3397.83 13999.67 5999.65 15897.37 12199.95 4399.19 3899.19 14999.68 102
hse-mvs397.70 25097.28 26898.97 17599.70 9397.27 25099.36 19399.45 17998.94 3399.66 6499.64 16594.93 19899.99 199.48 1384.36 34699.65 112
ZNCC-MVS99.47 2299.33 2899.87 1199.87 1599.81 2499.64 5799.67 2298.08 11599.55 9399.64 16598.91 3699.96 1998.72 10099.90 2399.82 36
新几何199.75 5199.75 6299.59 6899.54 7096.76 24199.29 14999.64 16598.43 8199.94 5496.92 26499.66 11799.72 86
PEN-MVS97.76 23597.44 24798.72 21998.77 30198.54 19099.78 2099.51 10197.06 22198.29 29399.64 16592.63 27098.89 32598.09 16893.16 32598.72 237
CP-MVSNet98.09 18697.78 20699.01 16998.97 27699.24 11399.67 4399.46 16797.25 20298.48 28099.64 16593.79 24499.06 30298.63 11394.10 31498.74 235
LF4IMVS97.52 26597.46 24197.70 29998.98 27495.55 30999.29 21298.82 31598.07 11698.66 26099.64 16589.97 31499.61 22197.01 25496.68 25797.94 337
bset_n11_16_dypcd98.16 17897.97 18598.73 21798.26 32998.28 21197.99 34998.01 34197.68 15799.10 19199.63 17195.68 17799.15 28998.78 9496.55 26298.75 231
HPM-MVScopyleft99.42 3899.28 4899.83 3399.90 399.72 4299.81 1299.54 7097.59 16599.68 5399.63 17198.91 3699.94 5498.58 12399.91 1699.84 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
NCCC99.34 5199.19 6099.79 4399.61 13099.65 5799.30 20899.48 13998.86 3999.21 17099.63 17198.72 6099.90 10698.25 15699.63 12299.80 49
CP-MVS99.45 2699.32 3099.85 2599.83 3699.75 3899.69 3699.52 8898.07 11699.53 9699.63 17198.93 3599.97 1198.74 9699.91 1699.83 29
AdaColmapbinary99.01 10798.80 11599.66 6899.56 14399.54 7799.18 24199.70 1598.18 10199.35 13999.63 17196.32 15499.90 10697.48 22599.77 9299.55 140
TAPA-MVS97.07 1597.74 24297.34 26298.94 17999.70 9397.53 24399.25 22999.51 10191.90 33899.30 14699.63 17198.78 4899.64 21488.09 34899.87 4099.65 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ppachtmachnet_test97.49 27097.45 24297.61 30098.62 31695.24 31898.80 30999.46 16796.11 29498.22 29599.62 17796.45 15098.97 32093.77 32195.97 27998.61 290
MCST-MVS99.43 3399.30 4099.82 3599.79 4299.74 4199.29 21299.40 20698.79 4899.52 9899.62 17798.91 3699.90 10698.64 11299.75 9699.82 36
WTY-MVS99.06 9898.88 10399.61 8299.62 12699.16 12199.37 18999.56 5598.04 12299.53 9699.62 17796.84 13699.94 5498.85 8098.49 19499.72 86
MDTV_nov1_ep1398.32 15899.11 25194.44 33199.27 21898.74 32097.51 17799.40 12699.62 17794.78 20699.76 17497.59 21298.81 180
CANet99.25 6499.14 6499.59 8499.41 17899.16 12199.35 19999.57 5098.82 4399.51 10099.61 18196.46 14999.95 4399.59 199.98 299.65 112
HQP_MVS98.27 16998.22 16498.44 24899.29 21096.97 27199.39 18199.47 15798.97 3099.11 18899.61 18192.71 26699.69 20397.78 19497.63 22298.67 259
plane_prior499.61 181
ETH3 D test640098.70 13998.35 15599.73 5899.69 9699.60 6599.16 24399.45 17995.42 30599.27 15499.60 18497.39 11799.91 9195.36 30399.83 7299.70 95
baseline198.31 16497.95 18999.38 12599.50 15898.74 17499.59 7898.93 30198.41 7499.14 18399.60 18494.59 21899.79 16598.48 13693.29 32399.61 127
TranMVSNet+NR-MVSNet97.93 20997.66 22098.76 21698.78 29898.62 18499.65 5499.49 12797.76 14898.49 27999.60 18494.23 23098.97 32098.00 17792.90 32798.70 243
tpmrst98.33 16398.48 14897.90 28899.16 24494.78 32899.31 20699.11 28397.27 20099.45 10999.59 18795.33 18899.84 13798.48 13698.61 18499.09 195
IterMVS-LS98.46 15298.42 15198.58 22899.59 13598.00 22299.37 18999.43 19696.94 23299.07 19899.59 18797.87 10699.03 30698.32 15495.62 28798.71 239
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
F-COLMAP99.19 6999.04 7799.64 7799.78 4499.27 11099.42 16799.54 7097.29 19899.41 12199.59 18798.42 8499.93 6998.19 15999.69 10999.73 80
pmmvs498.13 18297.90 19498.81 21098.61 31898.87 16198.99 28299.21 27296.44 26899.06 20299.58 19095.90 16999.11 29897.18 24796.11 27398.46 308
1112_ss98.98 10998.77 11899.59 8499.68 10099.02 13899.25 22999.48 13997.23 20599.13 18499.58 19096.93 13599.90 10698.87 7598.78 18199.84 18
ab-mvs-re8.30 33411.06 3370.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 36599.58 1900.00 3700.00 3650.00 3630.00 3630.00 361
PatchmatchNetpermissive98.31 16498.36 15398.19 26999.16 24495.32 31799.27 21898.92 30397.37 19299.37 13399.58 19094.90 20099.70 20097.43 23299.21 14799.54 142
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA98.19 17498.16 16598.27 26699.30 20695.55 30999.07 26198.97 29797.57 16899.43 11499.57 19492.72 26499.74 17797.58 21399.20 14899.52 147
Patchmatch-test97.93 20997.65 22198.77 21599.18 23697.07 26199.03 27299.14 28196.16 28998.74 24899.57 19494.56 22099.72 18893.36 32599.11 15599.52 147
PVSNet96.02 1798.85 12798.84 11098.89 19299.73 7597.28 24998.32 34199.60 4097.86 13499.50 10199.57 19496.75 14199.86 12698.56 12899.70 10899.54 142
cdsmvs_eth3d_5k24.64 33332.85 3360.00 3470.00 3680.00 3690.00 35999.51 1010.00 3640.00 36599.56 19796.58 1450.00 3650.00 3630.00 3630.00 361
131498.68 14298.54 14699.11 15998.89 28298.65 18199.27 21899.49 12796.89 23497.99 30599.56 19797.72 11299.83 14697.74 19999.27 14498.84 219
lupinMVS99.13 7999.01 8699.46 11499.51 15198.94 15499.05 26699.16 27897.86 13499.80 2499.56 19797.39 11799.86 12698.94 6399.85 5899.58 137
miper_lstm_enhance98.00 20297.91 19398.28 26599.34 19697.43 24698.88 30199.36 22696.48 26598.80 24299.55 20095.98 16298.91 32397.27 23795.50 29198.51 300
DPM-MVS98.95 11298.71 12499.66 6899.63 12099.55 7598.64 32499.10 28497.93 13099.42 11799.55 20098.67 6699.80 16295.80 29299.68 11499.61 127
CDPH-MVS99.13 7998.91 9999.80 4099.75 6299.71 4499.15 24799.41 20096.60 25599.60 8199.55 20098.83 4399.90 10697.48 22599.83 7299.78 61
dp97.75 23997.80 20297.59 30199.10 25493.71 33899.32 20498.88 31096.48 26599.08 19799.55 20092.67 26999.82 15396.52 27898.58 18799.24 183
CLD-MVS98.16 17898.10 17098.33 25799.29 21096.82 27898.75 31499.44 18897.83 13999.13 18499.55 20092.92 25799.67 20598.32 15497.69 22198.48 302
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ZD-MVS99.71 8699.79 3099.61 3596.84 23799.56 8999.54 20598.58 7099.96 1996.93 26299.75 96
cl-mvsnet_98.01 20097.84 20198.55 23399.25 22197.97 22498.71 31899.34 23596.47 26798.59 27499.54 20595.65 17999.21 28497.21 24195.77 28298.46 308
cl-mvsnet198.01 20097.85 20098.48 23999.24 22297.95 22898.71 31899.35 23196.50 26098.60 27399.54 20595.72 17699.03 30697.21 24195.77 28298.46 308
MVS97.28 27696.55 28499.48 10998.78 29898.95 15199.27 21899.39 21083.53 35198.08 30099.54 20596.97 13399.87 12394.23 31799.16 15099.63 123
pmmvs597.52 26597.30 26798.16 27198.57 32196.73 28099.27 21898.90 30896.14 29298.37 28799.53 20991.54 29899.14 29097.51 22395.87 28098.63 279
HPM-MVS++copyleft99.39 4699.23 5799.87 1199.75 6299.84 1399.43 16099.51 10198.68 5699.27 15499.53 20998.64 6899.96 1998.44 14299.80 8499.79 53
PatchMatch-RL98.84 12998.62 13899.52 10399.71 8699.28 10899.06 26499.77 997.74 15299.50 10199.53 20995.41 18499.84 13797.17 24899.64 12099.44 168
eth_miper_zixun_eth98.05 19497.96 18798.33 25799.26 21797.38 24798.56 33099.31 25396.65 24998.88 23099.52 21296.58 14599.12 29797.39 23495.53 29098.47 304
test_prior399.21 6699.05 7499.68 6599.67 10199.48 8798.96 29099.56 5598.34 8199.01 20799.52 21298.68 6399.83 14697.96 17999.74 9999.74 73
test_prior298.96 29098.34 8199.01 20799.52 21298.68 6397.96 17999.74 99
test_040296.64 28796.24 28997.85 29098.85 29196.43 29199.44 15499.26 26593.52 32996.98 32899.52 21288.52 33099.20 28692.58 33597.50 23597.93 338
test_yl98.86 11998.63 13399.54 9299.49 16099.18 11899.50 12599.07 28998.22 9599.61 7799.51 21695.37 18699.84 13798.60 12098.33 19799.59 133
DCV-MVSNet98.86 11998.63 13399.54 9299.49 16099.18 11899.50 12599.07 28998.22 9599.61 7799.51 21695.37 18699.84 13798.60 12098.33 19799.59 133
v14897.79 23397.55 22998.50 23698.74 30397.72 23999.54 10999.33 24296.26 27998.90 22799.51 21694.68 21499.14 29097.83 19093.15 32698.63 279
DU-MVS98.08 18897.79 20398.96 17698.87 28798.98 14299.41 16999.45 17997.87 13398.71 25199.50 21994.82 20399.22 27998.57 12592.87 32998.68 252
NR-MVSNet97.97 20797.61 22599.02 16898.87 28799.26 11199.47 14699.42 19897.63 16397.08 32699.50 21995.07 19699.13 29397.86 18793.59 32098.68 252
XVG-ACMP-BASELINE97.83 22597.71 21698.20 26899.11 25196.33 29499.41 16999.52 8898.06 12099.05 20399.50 21989.64 31999.73 18497.73 20097.38 24698.53 298
MSP-MVS99.42 3899.27 5099.88 699.89 899.80 2699.67 4399.50 11998.70 5499.77 3399.49 22298.21 9699.95 4398.46 14099.77 9299.88 5
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TEST999.67 10199.65 5799.05 26699.41 20096.22 28398.95 21999.49 22298.77 5199.91 91
train_agg99.02 10498.77 11899.77 4799.67 10199.65 5799.05 26699.41 20096.28 27698.95 21999.49 22298.76 5399.91 9197.63 20999.72 10399.75 69
agg_prior199.01 10798.76 12099.76 5099.67 10199.62 6198.99 28299.40 20696.26 27998.87 23299.49 22298.77 5199.91 9197.69 20699.72 10399.75 69
PVSNet_Blended99.08 9698.97 9199.42 12199.76 5298.79 17298.78 31199.91 396.74 24299.67 5999.49 22297.53 11499.88 11998.98 5899.85 5899.60 129
CNLPA99.14 7798.99 8799.59 8499.58 13799.41 9599.16 24399.44 18898.45 7099.19 17699.49 22298.08 10299.89 11497.73 20099.75 9699.48 158
test_899.67 10199.61 6399.03 27299.41 20096.28 27698.93 22399.48 22898.76 5399.91 91
EPMVS97.82 22897.65 22198.35 25698.88 28395.98 30199.49 13594.71 35997.57 16899.26 15999.48 22892.46 27899.71 19497.87 18699.08 16099.35 176
PLCcopyleft97.94 499.02 10498.85 10999.53 9899.66 11099.01 14099.24 23199.52 8896.85 23699.27 15499.48 22898.25 9499.91 9197.76 19699.62 12499.65 112
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
xiu_mvs_v1_base_debu99.29 5799.27 5099.34 12799.63 12098.97 14599.12 25199.51 10198.86 3999.84 1399.47 23198.18 9799.99 199.50 899.31 14199.08 196
xiu_mvs_v1_base99.29 5799.27 5099.34 12799.63 12098.97 14599.12 25199.51 10198.86 3999.84 1399.47 23198.18 9799.99 199.50 899.31 14199.08 196
xiu_mvs_v1_base_debi99.29 5799.27 5099.34 12799.63 12098.97 14599.12 25199.51 10198.86 3999.84 1399.47 23198.18 9799.99 199.50 899.31 14199.08 196
v192192097.80 23297.45 24298.84 20698.80 29498.53 19199.52 11599.34 23596.15 29199.24 16299.47 23193.98 23999.29 26895.40 30195.13 29898.69 247
UniMVSNet_NR-MVSNet98.22 17097.97 18598.96 17698.92 28098.98 14299.48 14199.53 8297.76 14898.71 25199.46 23596.43 15299.22 27998.57 12592.87 32998.69 247
testgi97.65 25897.50 23698.13 27399.36 19196.45 29099.42 16799.48 13997.76 14897.87 30899.45 23691.09 30398.81 32694.53 31398.52 19299.13 189
EIA-MVS99.18 7199.09 7199.45 11599.49 16099.18 11899.67 4399.53 8297.66 16199.40 12699.44 23798.10 10199.81 15798.94 6399.62 12499.35 176
tpm297.44 27297.34 26297.74 29799.15 24794.36 33299.45 15098.94 30093.45 33298.90 22799.44 23791.35 30099.59 22397.31 23598.07 21499.29 181
thisisatest051598.14 18197.79 20399.19 15299.50 15898.50 19898.61 32596.82 35296.95 23099.54 9499.43 23991.66 29599.86 12698.08 17299.51 13199.22 184
mvs-test198.86 11998.84 11098.89 19299.33 19797.77 23699.44 15499.30 25798.47 6799.10 19199.43 23996.78 13899.95 4398.73 9899.02 16598.96 212
WR-MVS98.06 18997.73 21499.06 16298.86 29099.25 11299.19 24099.35 23197.30 19798.66 26099.43 23993.94 24099.21 28498.58 12394.28 31198.71 239
v897.95 20897.63 22498.93 18198.95 27898.81 17199.80 1699.41 20096.03 29999.10 19199.42 24294.92 19999.30 26796.94 26194.08 31598.66 267
tpmvs97.98 20498.02 18197.84 29199.04 26594.73 32999.31 20699.20 27396.10 29898.76 24799.42 24294.94 19799.81 15796.97 25898.45 19598.97 210
UGNet98.87 11698.69 12699.40 12299.22 22798.72 17699.44 15499.68 1999.24 399.18 17999.42 24292.74 26399.96 1999.34 2499.94 999.53 146
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
AUN-MVS96.88 28396.31 28898.59 22699.48 16697.04 26599.27 21899.22 27097.44 18598.51 27799.41 24591.97 28499.66 20897.71 20383.83 34799.07 200
Effi-MVS+98.81 13098.59 14399.48 10999.46 16899.12 13098.08 34799.50 11997.50 17899.38 13199.41 24596.37 15399.81 15799.11 4798.54 19199.51 153
v1097.85 22097.52 23398.86 20298.99 27198.67 17999.75 2699.41 20095.70 30298.98 21599.41 24594.75 21199.23 27696.01 28894.63 30598.67 259
v14419297.92 21297.60 22698.87 19998.83 29398.65 18199.55 10699.34 23596.20 28499.32 14499.40 24894.36 22699.26 27396.37 28395.03 30098.70 243
NP-MVS99.23 22396.92 27499.40 248
HQP-MVS98.02 19797.90 19498.37 25599.19 23396.83 27698.98 28699.39 21098.24 9198.66 26099.40 24892.47 27599.64 21497.19 24597.58 22798.64 271
MAR-MVS98.86 11998.63 13399.54 9299.37 18999.66 5499.45 15099.54 7096.61 25399.01 20799.40 24897.09 12899.86 12697.68 20899.53 13099.10 191
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS99.04 10199.03 7999.06 16299.40 18399.31 10599.55 10699.56 5598.54 6299.33 14399.39 25298.76 5399.78 16996.98 25799.78 8998.07 327
CR-MVSNet98.17 17797.93 19298.87 19999.18 23698.49 19999.22 23799.33 24296.96 22899.56 8999.38 25394.33 22799.00 31194.83 31198.58 18799.14 187
Patchmtry97.75 23997.40 25398.81 21099.10 25498.87 16199.11 25799.33 24294.83 31598.81 24099.38 25394.33 22799.02 30896.10 28595.57 28898.53 298
BH-untuned98.42 15598.36 15398.59 22699.49 16096.70 28199.27 21899.13 28297.24 20498.80 24299.38 25395.75 17499.74 17797.07 25399.16 15099.33 179
V4298.06 18997.79 20398.86 20298.98 27498.84 16599.69 3699.34 23596.53 25999.30 14699.37 25694.67 21599.32 26497.57 21794.66 30498.42 311
VPA-MVSNet98.29 16797.95 18999.30 13799.16 24499.54 7799.50 12599.58 4998.27 8999.35 13999.37 25692.53 27399.65 21299.35 2094.46 30798.72 237
PVSNet_BlendedMVS98.86 11998.80 11599.03 16799.76 5298.79 17299.28 21499.91 397.42 18899.67 5999.37 25697.53 11499.88 11998.98 5897.29 24898.42 311
D2MVS98.41 15798.50 14798.15 27299.26 21796.62 28599.40 17799.61 3597.71 15498.98 21599.36 25996.04 16199.67 20598.70 10297.41 24498.15 325
MVP-Stereo97.81 23097.75 21297.99 28297.53 33796.60 28698.96 29098.85 31297.22 20697.23 32199.36 25995.28 18999.46 23395.51 29899.78 8997.92 339
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v124097.69 25197.32 26598.79 21398.85 29198.43 20499.48 14199.36 22696.11 29499.27 15499.36 25993.76 24699.24 27594.46 31495.23 29598.70 243
v114497.98 20497.69 21798.85 20598.87 28798.66 18099.54 10999.35 23196.27 27899.23 16699.35 26294.67 21599.23 27696.73 27195.16 29798.68 252
v2v48298.06 18997.77 20898.92 18398.90 28198.82 16999.57 9099.36 22696.65 24999.19 17699.35 26294.20 23199.25 27497.72 20294.97 30198.69 247
CostFormer97.72 24597.73 21497.71 29899.15 24794.02 33599.54 10999.02 29394.67 31899.04 20499.35 26292.35 28199.77 17198.50 13597.94 21699.34 178
our_test_397.65 25897.68 21897.55 30398.62 31694.97 32498.84 30599.30 25796.83 23998.19 29699.34 26597.01 13299.02 30895.00 30996.01 27498.64 271
cl_fuxian98.12 18498.04 17898.38 25499.30 20697.69 24298.81 30899.33 24296.67 24798.83 23899.34 26597.11 12798.99 31297.58 21395.34 29398.48 302
Fast-Effi-MVS+-dtu98.77 13698.83 11498.60 22599.41 17896.99 26999.52 11599.49 12798.11 10899.24 16299.34 26596.96 13499.79 16597.95 18199.45 13299.02 205
Fast-Effi-MVS+98.70 13998.43 15099.51 10599.51 15199.28 10899.52 11599.47 15796.11 29499.01 20799.34 26596.20 15899.84 13797.88 18598.82 17899.39 174
v119297.81 23097.44 24798.91 18798.88 28398.68 17899.51 11999.34 23596.18 28699.20 17399.34 26594.03 23899.36 25595.32 30495.18 29698.69 247
tpm97.67 25697.55 22998.03 27799.02 26895.01 32399.43 16098.54 33396.44 26899.12 18699.34 26591.83 28899.60 22297.75 19896.46 26599.48 158
PAPM97.59 26197.09 27699.07 16199.06 26198.26 21298.30 34299.10 28494.88 31498.08 30099.34 26596.27 15699.64 21489.87 34298.92 17299.31 180
GBi-Net97.68 25397.48 23798.29 26299.51 15197.26 25299.43 16099.48 13996.49 26199.07 19899.32 27290.26 30998.98 31397.10 25096.65 25898.62 281
test197.68 25397.48 23798.29 26299.51 15197.26 25299.43 16099.48 13996.49 26199.07 19899.32 27290.26 30998.98 31397.10 25096.65 25898.62 281
FMVSNet196.84 28496.36 28798.29 26299.32 20497.26 25299.43 16099.48 13995.11 30998.55 27599.32 27283.95 34898.98 31395.81 29196.26 27098.62 281
MS-PatchMatch97.24 27897.32 26596.99 31498.45 32693.51 34298.82 30799.32 25097.41 18998.13 29999.30 27588.99 32499.56 22595.68 29599.80 8497.90 340
GA-MVS97.85 22097.47 23999.00 17199.38 18797.99 22398.57 32899.15 27997.04 22298.90 22799.30 27589.83 31599.38 24896.70 27398.33 19799.62 125
miper_ehance_all_eth98.18 17698.10 17098.41 25099.23 22397.72 23998.72 31799.31 25396.60 25598.88 23099.29 27797.29 12399.13 29397.60 21195.99 27698.38 316
FMVSNet297.72 24597.36 25798.80 21299.51 15198.84 16599.45 15099.42 19896.49 26198.86 23799.29 27790.26 30998.98 31396.44 28096.56 26198.58 295
TESTMET0.1,197.55 26297.27 27198.40 25298.93 27996.53 28798.67 32097.61 34796.96 22898.64 26799.28 27988.63 32999.45 23497.30 23699.38 13699.21 185
FMVSNet398.03 19597.76 21198.84 20699.39 18698.98 14299.40 17799.38 21696.67 24799.07 19899.28 27992.93 25698.98 31397.10 25096.65 25898.56 297
PAPM_NR99.04 10198.84 11099.66 6899.74 7099.44 9299.39 18199.38 21697.70 15599.28 15199.28 27998.34 8999.85 13296.96 25999.45 13299.69 98
ETV-MVS99.26 6299.21 5899.40 12299.46 16899.30 10699.56 9799.52 8898.52 6499.44 11399.27 28298.41 8599.86 12699.10 4899.59 12699.04 202
xiu_mvs_v2_base99.26 6299.25 5499.29 14099.53 14798.91 15899.02 27599.45 17998.80 4799.71 4699.26 28398.94 3199.98 699.34 2499.23 14698.98 209
test20.0396.12 29895.96 29596.63 32297.44 33895.45 31499.51 11999.38 21696.55 25896.16 33599.25 28493.76 24696.17 35387.35 35094.22 31298.27 320
CS-MVS99.21 6699.13 6599.45 11599.54 14699.34 10099.71 3299.54 7098.26 9098.99 21499.24 28598.25 9499.88 11998.98 5899.63 12299.12 190
PS-MVSNAJ99.32 5399.32 3099.30 13799.57 13998.94 15498.97 28999.46 16798.92 3699.71 4699.24 28599.01 1699.98 699.35 2099.66 11798.97 210
Test_1112_low_res98.89 11598.66 13199.57 8899.69 9698.95 15199.03 27299.47 15796.98 22699.15 18299.23 28796.77 14099.89 11498.83 8598.78 18199.86 11
cl-mvsnet297.85 22097.64 22398.48 23999.09 25697.87 23198.60 32799.33 24297.11 21798.87 23299.22 28892.38 28099.17 28898.21 15895.99 27698.42 311
EG-PatchMatch MVS95.97 30095.69 30096.81 32097.78 33592.79 34599.16 24398.93 30196.16 28994.08 34399.22 28882.72 35099.47 23195.67 29697.50 23598.17 324
TR-MVS97.76 23597.41 25298.82 20899.06 26197.87 23198.87 30398.56 33196.63 25298.68 25999.22 28892.49 27499.65 21295.40 30197.79 21998.95 215
ET-MVSNet_ETH3D96.49 29095.64 30199.05 16499.53 14798.82 16998.84 30597.51 34897.63 16384.77 35199.21 29192.09 28398.91 32398.98 5892.21 33399.41 172
WR-MVS_H98.13 18297.87 19998.90 18999.02 26898.84 16599.70 3499.59 4397.27 20098.40 28599.19 29295.53 18199.23 27698.34 15193.78 31898.61 290
miper_enhance_ethall98.16 17898.08 17498.41 25098.96 27797.72 23998.45 33499.32 25096.95 23098.97 21799.17 29397.06 13099.22 27997.86 18795.99 27698.29 319
baseline297.87 21797.55 22998.82 20899.18 23698.02 22199.41 16996.58 35596.97 22796.51 33199.17 29393.43 24899.57 22497.71 20399.03 16498.86 217
MIMVSNet195.51 30395.04 30796.92 31897.38 33995.60 30799.52 11599.50 11993.65 32896.97 32999.17 29385.28 34696.56 35288.36 34795.55 28998.60 293
gm-plane-assit98.54 32392.96 34494.65 31999.15 29699.64 21497.56 218
MIMVSNet97.73 24397.45 24298.57 22999.45 17397.50 24499.02 27598.98 29696.11 29499.41 12199.14 29790.28 30898.74 32795.74 29398.93 17099.47 163
LCM-MVSNet-Re97.83 22598.15 16696.87 31999.30 20692.25 34799.59 7898.26 33597.43 18696.20 33499.13 29896.27 15698.73 32898.17 16398.99 16799.64 119
UniMVSNet (Re)98.29 16798.00 18299.13 15899.00 27099.36 9999.49 13599.51 10197.95 12898.97 21799.13 29896.30 15599.38 24898.36 15093.34 32298.66 267
N_pmnet94.95 31095.83 29892.31 33398.47 32579.33 35899.12 25192.81 36493.87 32597.68 31399.13 29893.87 24299.01 31091.38 33796.19 27198.59 294
PAPR98.63 14798.34 15699.51 10599.40 18399.03 13798.80 30999.36 22696.33 27399.00 21299.12 30198.46 7999.84 13795.23 30599.37 14099.66 108
tpm cat197.39 27397.36 25797.50 30599.17 24293.73 33799.43 16099.31 25391.27 34098.71 25199.08 30294.31 22999.77 17196.41 28298.50 19399.00 206
FMVSNet596.43 29296.19 29097.15 31099.11 25195.89 30399.32 20499.52 8894.47 32298.34 29099.07 30387.54 34097.07 34892.61 33495.72 28598.47 304
PMMVS98.80 13398.62 13899.34 12799.27 21598.70 17798.76 31399.31 25397.34 19399.21 17099.07 30397.20 12599.82 15398.56 12898.87 17599.52 147
Anonymous2023120696.22 29496.03 29396.79 32197.31 34294.14 33499.63 5999.08 28796.17 28797.04 32799.06 30593.94 24097.76 34386.96 35195.06 29998.47 304
DeepMVS_CXcopyleft93.34 33199.29 21082.27 35599.22 27085.15 34996.33 33399.05 30690.97 30599.73 18493.57 32397.77 22098.01 331
YYNet195.36 30694.51 31297.92 28697.89 33397.10 25799.10 25999.23 26993.26 33380.77 35599.04 30792.81 26098.02 33694.30 31594.18 31398.64 271
Anonymous2024052196.20 29695.89 29797.13 31297.72 33694.96 32599.79 1999.29 26293.01 33497.20 32399.03 30889.69 31898.36 33191.16 33896.13 27298.07 327
MDA-MVSNet-bldmvs94.96 30993.98 31597.92 28698.24 33097.27 25099.15 24799.33 24293.80 32680.09 35799.03 30888.31 33297.86 34193.49 32494.36 31098.62 281
BH-w/o98.00 20297.89 19898.32 25999.35 19296.20 29899.01 28098.90 30896.42 27098.38 28699.00 31095.26 19299.72 18896.06 28698.61 18499.03 203
Effi-MVS+-dtu98.78 13498.89 10298.47 24399.33 19796.91 27599.57 9099.30 25798.47 6799.41 12198.99 31196.78 13899.74 17798.73 9899.38 13698.74 235
MVS_030496.79 28596.52 28597.59 30199.22 22794.92 32699.04 27199.59 4396.49 26198.43 28398.99 31180.48 35499.39 24697.15 24999.27 14498.47 304
UnsupCasMVSNet_eth96.44 29196.12 29197.40 30798.65 31395.65 30699.36 19399.51 10197.13 21296.04 33798.99 31188.40 33198.17 33396.71 27290.27 33798.40 314
test0.0.03 197.71 24997.42 25198.56 23198.41 32797.82 23498.78 31198.63 32997.34 19398.05 30498.98 31494.45 22498.98 31395.04 30897.15 25498.89 216
MDA-MVSNet_test_wron95.45 30494.60 31098.01 28098.16 33197.21 25599.11 25799.24 26893.49 33080.73 35698.98 31493.02 25498.18 33294.22 31894.45 30898.64 271
FPMVS84.93 32385.65 32482.75 34186.77 36063.39 36498.35 33798.92 30374.11 35483.39 35398.98 31450.85 36192.40 35784.54 35494.97 30192.46 351
alignmvs98.81 13098.56 14599.58 8799.43 17499.42 9499.51 11998.96 29998.61 5999.35 13998.92 31794.78 20699.77 17199.35 2098.11 21399.54 142
test-LLR98.06 18997.90 19498.55 23398.79 29597.10 25798.67 32097.75 34497.34 19398.61 27198.85 31894.45 22499.45 23497.25 23999.38 13699.10 191
test-mter97.49 27097.13 27598.55 23398.79 29597.10 25798.67 32097.75 34496.65 24998.61 27198.85 31888.23 33399.45 23497.25 23999.38 13699.10 191
canonicalmvs99.02 10498.86 10899.51 10599.42 17599.32 10299.80 1699.48 13998.63 5799.31 14598.81 32097.09 12899.75 17699.27 3297.90 21799.47 163
DWT-MVSNet_test97.53 26497.40 25397.93 28599.03 26794.86 32799.57 9098.63 32996.59 25798.36 28898.79 32189.32 32199.74 17798.14 16698.16 21199.20 186
new_pmnet96.38 29396.03 29397.41 30698.13 33295.16 32299.05 26699.20 27393.94 32497.39 31898.79 32191.61 29799.04 30490.43 34095.77 28298.05 329
cascas97.69 25197.43 25098.48 23998.60 31997.30 24898.18 34699.39 21092.96 33598.41 28498.78 32393.77 24599.27 27298.16 16498.61 18498.86 217
PVSNet_094.43 1996.09 29995.47 30297.94 28499.31 20594.34 33397.81 35099.70 1597.12 21497.46 31698.75 32489.71 31799.79 16597.69 20681.69 34999.68 102
patchmatchnet-post98.70 32594.79 20599.74 177
Patchmatch-RL test95.84 30195.81 29995.95 32795.61 34990.57 35098.24 34398.39 33495.10 31195.20 33998.67 32694.78 20697.77 34296.28 28490.02 33899.51 153
thres100view90097.76 23597.45 24298.69 22199.72 8097.86 23399.59 7898.74 32097.93 13099.26 15998.62 32791.75 28999.83 14693.22 32698.18 20798.37 317
thres600view797.86 21997.51 23598.92 18399.72 8097.95 22899.59 7898.74 32097.94 12999.27 15498.62 32791.75 28999.86 12693.73 32298.19 20698.96 212
DSMNet-mixed97.25 27797.35 25996.95 31797.84 33493.61 34199.57 9096.63 35496.13 29398.87 23298.61 32994.59 21897.70 34495.08 30798.86 17699.55 140
IB-MVS95.67 1896.22 29495.44 30498.57 22999.21 22996.70 28198.65 32397.74 34696.71 24497.27 32098.54 33086.03 34399.92 8098.47 13986.30 34499.10 191
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND98.45 24598.55 32298.16 21599.43 16093.68 36197.23 32198.46 33189.30 32299.22 27995.43 30098.22 20397.98 335
tfpn200view997.72 24597.38 25598.72 21999.69 9697.96 22699.50 12598.73 32597.83 13999.17 18098.45 33291.67 29399.83 14693.22 32698.18 20798.37 317
thres40097.77 23497.38 25598.92 18399.69 9697.96 22699.50 12598.73 32597.83 13999.17 18098.45 33291.67 29399.83 14693.22 32698.18 20798.96 212
KD-MVS_2432*160094.62 31193.72 31797.31 30897.19 34595.82 30498.34 33899.20 27395.00 31297.57 31498.35 33487.95 33798.10 33492.87 33177.00 35398.01 331
miper_refine_blended94.62 31193.72 31797.31 30897.19 34595.82 30498.34 33899.20 27395.00 31297.57 31498.35 33487.95 33798.10 33492.87 33177.00 35398.01 331
thres20097.61 26097.28 26898.62 22499.64 11798.03 22099.26 22798.74 32097.68 15799.09 19698.32 33691.66 29599.81 15792.88 33098.22 20398.03 330
OpenMVS_ROBcopyleft92.34 2094.38 31593.70 31996.41 32597.38 33993.17 34399.06 26498.75 31786.58 34894.84 34298.26 33781.53 35399.32 26489.01 34497.87 21896.76 346
CL-MVSNet_2432*160094.49 31393.97 31696.08 32696.16 34893.67 34098.33 34099.38 21695.13 30797.33 31998.15 33892.69 26896.57 35188.67 34579.87 35197.99 334
pmmvs394.09 31793.25 32096.60 32394.76 35394.49 33098.92 29798.18 33989.66 34496.48 33298.06 33986.28 34297.33 34689.68 34387.20 34397.97 336
PM-MVS92.96 31992.23 32295.14 32995.61 34989.98 35299.37 18998.21 33794.80 31695.04 34197.69 34065.06 35797.90 34094.30 31589.98 33997.54 345
pmmvs-eth3d95.34 30794.73 30997.15 31095.53 35195.94 30299.35 19999.10 28495.13 30793.55 34497.54 34188.15 33597.91 33994.58 31289.69 34097.61 342
ambc93.06 33292.68 35482.36 35498.47 33398.73 32595.09 34097.41 34255.55 36099.10 30096.42 28191.32 33597.71 341
RPMNet96.72 28695.90 29699.19 15299.18 23698.49 19999.22 23799.52 8888.72 34799.56 8997.38 34394.08 23799.95 4386.87 35298.58 18799.14 187
new-patchmatchnet94.48 31494.08 31495.67 32895.08 35292.41 34699.18 24199.28 26494.55 32193.49 34597.37 34487.86 33997.01 34991.57 33688.36 34197.61 342
DIV-MVS_2432*160095.00 30894.34 31396.96 31697.07 34795.39 31699.56 9799.44 18895.11 30997.13 32597.32 34591.86 28797.27 34790.35 34181.23 35098.23 323
PatchT97.03 28296.44 28698.79 21398.99 27198.34 20899.16 24399.07 28992.13 33799.52 9897.31 34694.54 22298.98 31388.54 34698.73 18399.03 203
UnsupCasMVSNet_bld93.53 31892.51 32196.58 32497.38 33993.82 33698.24 34399.48 13991.10 34293.10 34696.66 34774.89 35598.37 33094.03 32087.71 34297.56 344
LCM-MVSNet86.80 32285.22 32691.53 33587.81 35980.96 35698.23 34598.99 29571.05 35590.13 35096.51 34848.45 36396.88 35090.51 33985.30 34596.76 346
PMMVS286.87 32185.37 32591.35 33690.21 35783.80 35398.89 30097.45 34983.13 35291.67 34995.03 34948.49 36294.70 35585.86 35377.62 35295.54 349
Gipumacopyleft90.99 32090.15 32393.51 33098.73 30490.12 35193.98 35599.45 17979.32 35392.28 34794.91 35069.61 35697.98 33887.42 34995.67 28692.45 352
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
JIA-IIPM97.50 26897.02 27898.93 18198.73 30497.80 23599.30 20898.97 29791.73 33998.91 22594.86 35195.10 19599.71 19497.58 21397.98 21599.28 182
PMVScopyleft70.75 2275.98 32974.97 33079.01 34370.98 36455.18 36593.37 35698.21 33765.08 36061.78 36193.83 35221.74 36892.53 35678.59 35591.12 33689.34 355
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS-HIRNet95.75 30295.16 30697.51 30499.30 20693.69 33998.88 30195.78 35685.09 35098.78 24592.65 35391.29 30199.37 25194.85 31099.85 5899.46 165
E-PMN80.61 32579.88 32882.81 34090.75 35676.38 36197.69 35195.76 35766.44 35883.52 35292.25 35462.54 35987.16 35968.53 35861.40 35684.89 357
EMVS80.02 32679.22 32982.43 34291.19 35576.40 36097.55 35392.49 36566.36 35983.01 35491.27 35564.63 35885.79 36065.82 35960.65 35785.08 356
gg-mvs-nofinetune96.17 29795.32 30598.73 21798.79 29598.14 21799.38 18694.09 36091.07 34398.07 30391.04 35689.62 32099.35 25996.75 26999.09 15998.68 252
ANet_high77.30 32774.86 33184.62 33975.88 36377.61 35997.63 35293.15 36388.81 34664.27 36089.29 35736.51 36483.93 36175.89 35652.31 35892.33 353
MVEpermissive76.82 2176.91 32874.31 33284.70 33885.38 36276.05 36296.88 35493.17 36267.39 35771.28 35989.01 35821.66 36987.69 35871.74 35772.29 35590.35 354
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs39.17 33143.78 33325.37 34636.04 36716.84 36898.36 33626.56 36620.06 36238.51 36367.32 35929.64 36615.30 36437.59 36139.90 36043.98 359
test12339.01 33242.50 33428.53 34539.17 36620.91 36798.75 31419.17 36819.83 36338.57 36266.67 36033.16 36515.42 36337.50 36229.66 36149.26 358
test_post65.99 36194.65 21799.73 184
test_post199.23 23265.14 36294.18 23499.71 19497.58 213
X-MVStestdata96.55 28895.45 30399.87 1199.85 2599.83 1499.69 3699.68 1998.98 2799.37 13364.01 36398.81 4599.94 5498.79 9199.86 5199.84 18
wuyk23d40.18 33041.29 33536.84 34486.18 36149.12 36679.73 35822.81 36727.64 36125.46 36428.45 36421.98 36748.89 36255.80 36023.56 36212.51 360
uanet_test0.02 3360.03 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 3650.00 3700.00 3650.00 3630.00 3630.00 361
pcd_1.5k_mvsjas8.27 33511.03 3380.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 36599.01 160.00 3650.00 3630.00 3630.00 361
sosnet-low-res0.02 3360.03 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 3650.00 3700.00 3650.00 3630.00 3630.00 361
sosnet0.02 3360.03 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 3650.00 3700.00 3650.00 3630.00 3630.00 361
uncertanet0.02 3360.03 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 3650.00 3700.00 3650.00 3630.00 3630.00 361
Regformer0.02 3360.03 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 3650.00 3700.00 3650.00 3630.00 3630.00 361
uanet0.02 3360.03 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 3650.00 3700.00 3650.00 3630.00 3630.00 361
IU-MVS99.84 3299.88 799.32 25098.30 8699.84 1398.86 7899.85 5899.89 2
save fliter99.76 5299.59 6899.14 24999.40 20699.00 22
test_0728_SECOND99.91 299.84 3299.89 399.57 9099.51 10199.96 1998.93 6599.86 5199.88 5
GSMVS99.52 147
test_part299.81 4099.83 1499.77 33
sam_mvs194.86 20299.52 147
sam_mvs94.72 213
MTGPAbinary99.47 157
MTMP99.54 10998.88 310
test9_res97.49 22499.72 10399.75 69
agg_prior297.21 24199.73 10299.75 69
agg_prior99.67 10199.62 6199.40 20698.87 23299.91 91
test_prior499.56 7398.99 282
test_prior99.68 6599.67 10199.48 8799.56 5599.83 14699.74 73
旧先验298.96 29096.70 24599.47 10699.94 5498.19 159
新几何299.01 280
无先验98.99 28299.51 10196.89 23499.93 6997.53 22199.72 86
原ACMM298.95 294
testdata299.95 4396.67 275
segment_acmp98.96 25
testdata198.85 30498.32 85
test1299.75 5199.64 11799.61 6399.29 26299.21 17098.38 8699.89 11499.74 9999.74 73
plane_prior799.29 21097.03 266
plane_prior699.27 21596.98 27092.71 266
plane_prior599.47 15799.69 20397.78 19497.63 22298.67 259
plane_prior397.00 26898.69 5599.11 188
plane_prior299.39 18198.97 30
plane_prior199.26 217
plane_prior96.97 27199.21 23998.45 7097.60 225
n20.00 369
nn0.00 369
door-mid98.05 340
test1199.35 231
door97.92 342
HQP5-MVS96.83 276
HQP-NCC99.19 23398.98 28698.24 9198.66 260
ACMP_Plane99.19 23398.98 28698.24 9198.66 260
BP-MVS97.19 245
HQP4-MVS98.66 26099.64 21498.64 271
HQP3-MVS99.39 21097.58 227
HQP2-MVS92.47 275
MDTV_nov1_ep13_2view95.18 32199.35 19996.84 23799.58 8695.19 19497.82 19199.46 165
ACMMP++_ref97.19 251
ACMMP++97.43 243
Test By Simon98.75 56