This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
UA-Net99.42 4199.29 4999.80 4399.62 13499.55 8099.50 13499.70 1598.79 5699.77 3699.96 197.45 12299.96 2098.92 7499.90 2499.89 2
DeepC-MVS98.35 299.30 5999.19 6599.64 8099.82 3899.23 12199.62 7099.55 6798.94 4099.63 8399.95 295.82 17899.94 5899.37 2799.97 499.73 89
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OurMVSNet-221017-097.88 22297.77 21598.19 27698.71 32196.53 29699.88 299.00 30697.79 15698.78 25799.94 391.68 30099.35 27097.21 25396.99 26898.69 259
test250696.81 29396.65 29197.29 32199.74 7592.21 36199.60 7785.06 38099.13 899.77 3699.93 487.82 35099.85 13599.38 2699.38 14399.80 55
test111198.04 20098.11 17597.83 30199.74 7593.82 34899.58 9295.40 37099.12 1099.65 7899.93 490.73 31599.84 14199.43 2499.38 14399.82 39
ECVR-MVScopyleft98.04 20098.05 18498.00 29099.74 7594.37 34399.59 8494.98 37199.13 899.66 7299.93 490.67 31699.84 14199.40 2599.38 14399.80 55
SixPastTwentyTwo97.50 27597.33 27198.03 28598.65 32696.23 30699.77 2898.68 34097.14 22297.90 31999.93 490.45 31799.18 29997.00 26796.43 27898.67 271
SD-MVS99.41 4699.52 799.05 17099.74 7599.68 5499.46 15899.52 9299.11 1199.88 599.91 899.43 197.70 35898.72 11099.93 1199.77 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMH97.28 898.10 19097.99 19098.44 25599.41 19196.96 28299.60 7799.56 5898.09 12298.15 31099.91 890.87 31499.70 20998.88 7897.45 25298.67 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
patch_mono-299.26 6699.62 198.16 27899.81 4194.59 34099.52 12399.64 3399.33 299.73 4999.90 1099.00 2599.99 199.69 199.98 299.89 2
VDDNet97.55 26997.02 28699.16 16199.49 17298.12 22799.38 19599.30 26695.35 31899.68 6199.90 1082.62 36399.93 7399.31 3598.13 22499.42 180
QAPM98.67 14898.30 16599.80 4399.20 24499.67 5799.77 2899.72 1194.74 32998.73 26199.90 1095.78 17999.98 796.96 27199.88 3799.76 76
3Dnovator97.25 999.24 7099.05 7899.81 4199.12 26299.66 5999.84 1099.74 1099.09 1598.92 23699.90 1095.94 17299.98 798.95 6999.92 1299.79 61
Anonymous2024052998.09 19197.68 22599.34 13399.66 11898.44 21199.40 18699.43 20393.67 33999.22 18099.89 1490.23 32299.93 7399.26 4198.33 20899.66 117
CHOSEN 1792x268899.19 7399.10 7399.45 12299.89 998.52 20399.39 19099.94 198.73 6099.11 20199.89 1495.50 18899.94 5899.50 1299.97 499.89 2
RPSCF98.22 17598.62 14296.99 32699.82 3891.58 36399.72 3699.44 19596.61 26599.66 7299.89 1495.92 17399.82 15997.46 24099.10 16899.57 147
3Dnovator+97.12 1399.18 7598.97 9599.82 3899.17 25599.68 5499.81 1699.51 10599.20 598.72 26299.89 1495.68 18399.97 1298.86 8799.86 5299.81 45
COLMAP_ROBcopyleft97.56 698.86 12398.75 12599.17 16099.88 1298.53 19999.34 21199.59 4497.55 18198.70 26999.89 1495.83 17799.90 11098.10 17999.90 2499.08 207
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_djsdf98.67 14898.57 14998.98 17998.70 32298.91 16699.88 299.46 17497.55 18199.22 18099.88 1995.73 18199.28 28199.03 6197.62 23698.75 243
DP-MVS99.16 7998.95 9999.78 4899.77 5299.53 8599.41 17899.50 12597.03 23699.04 21799.88 1997.39 12399.92 8498.66 12099.90 2499.87 13
TDRefinement95.42 31494.57 32097.97 29289.83 37396.11 30999.48 15098.75 32996.74 25496.68 34299.88 1988.65 33899.71 20398.37 15882.74 36298.09 339
EPP-MVSNet99.13 8398.99 9199.53 10299.65 12399.06 14399.81 1699.33 24997.43 19799.60 9399.88 1997.14 13299.84 14199.13 5398.94 18099.69 107
OpenMVScopyleft96.50 1698.47 15698.12 17499.52 10899.04 27899.53 8599.82 1499.72 1194.56 33298.08 31299.88 1994.73 22099.98 797.47 23999.76 10399.06 213
lessismore_v097.79 30598.69 32395.44 32594.75 37295.71 35199.87 2488.69 33799.32 27695.89 30194.93 31598.62 293
Vis-MVSNetpermissive99.12 8998.97 9599.56 9499.78 4799.10 13899.68 4699.66 2798.49 7699.86 1299.87 2494.77 21799.84 14199.19 4699.41 14299.74 82
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+97.24 1097.92 21997.78 21398.32 26699.46 18196.68 29299.56 10599.54 7598.41 8497.79 32499.87 2490.18 32399.66 21898.05 18897.18 26498.62 293
ACMMP_NAP99.47 2499.34 3199.88 699.87 1699.86 1399.47 15599.48 14698.05 13299.76 4399.86 2798.82 4899.93 7398.82 9999.91 1799.84 21
RRT_MVS98.60 15398.44 15499.05 17098.88 29699.14 13399.49 14499.38 22397.76 15999.29 16299.86 2795.38 19199.36 26698.81 10097.16 26598.64 283
casdiffmvs99.13 8398.98 9499.56 9499.65 12399.16 12899.56 10599.50 12598.33 9599.41 13399.86 2795.92 17399.83 15299.45 2199.16 16099.70 104
PVSNet_Blended_VisFu99.36 5399.28 5399.61 8599.86 2299.07 14299.47 15599.93 297.66 17299.71 5499.86 2797.73 11799.96 2099.47 1999.82 8199.79 61
IS-MVSNet99.05 10498.87 10899.57 9299.73 8399.32 10999.75 3299.20 28598.02 13699.56 10199.86 2796.54 15399.67 21598.09 18099.13 16499.73 89
USDC97.34 28297.20 28097.75 30699.07 27295.20 32998.51 34399.04 30497.99 13798.31 30399.86 2789.02 33399.55 23895.67 30897.36 25998.49 313
TSAR-MVS + MP.99.58 599.50 999.81 4199.91 199.66 5999.63 6499.39 21798.91 4599.78 3499.85 3399.36 299.94 5898.84 9299.88 3799.82 39
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
tmp_tt82.80 33481.52 33786.66 35066.61 38068.44 37892.79 36997.92 35468.96 36880.04 37199.85 3385.77 35596.15 36897.86 19943.89 37395.39 364
AllTest98.87 12098.72 12699.31 13999.86 2298.48 20999.56 10599.61 3697.85 14799.36 14899.85 3395.95 17099.85 13596.66 28899.83 7599.59 142
TestCases99.31 13999.86 2298.48 20999.61 3697.85 14799.36 14899.85 3395.95 17099.85 13596.66 28899.83 7599.59 142
VDD-MVS97.73 25097.35 26698.88 20199.47 18097.12 26499.34 21198.85 32498.19 10899.67 6799.85 3382.98 36199.92 8499.49 1698.32 21299.60 138
APDe-MVS99.66 199.57 299.92 199.77 5299.89 499.75 3299.56 5899.02 2099.88 599.85 3399.18 1099.96 2099.22 4399.92 1299.90 1
DeepPCF-MVS98.18 398.81 13599.37 2497.12 32599.60 14291.75 36298.61 33699.44 19599.35 199.83 1999.85 3398.70 6799.81 16399.02 6399.91 1799.81 45
ACMM97.58 598.37 16698.34 16198.48 24699.41 19197.10 26599.56 10599.45 18698.53 7399.04 21799.85 3393.00 26399.71 20398.74 10697.45 25298.64 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D99.27 6499.12 7199.74 5999.18 24999.75 4399.56 10599.57 5298.45 8099.49 11699.85 3397.77 11699.94 5898.33 16299.84 6699.52 157
DPE-MVScopyleft99.46 2699.32 3599.91 299.78 4799.88 899.36 20299.51 10598.73 6099.88 599.84 4298.72 6599.96 2098.16 17699.87 4199.88 8
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
XVG-OURS98.73 14398.68 13198.88 20199.70 10197.73 24698.92 30899.55 6798.52 7499.45 12199.84 4295.27 19699.91 9598.08 18498.84 18899.00 218
baseline99.15 8099.02 8699.53 10299.66 11899.14 13399.72 3699.48 14698.35 9199.42 12999.84 4296.07 16699.79 17199.51 1199.14 16399.67 114
ACMMPcopyleft99.45 2899.32 3599.82 3899.89 999.67 5799.62 7099.69 1898.12 11799.63 8399.84 4298.73 6499.96 2098.55 14199.83 7599.81 45
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EI-MVSNet-UG-set99.58 599.57 299.64 8099.78 4799.14 13399.60 7799.45 18699.01 2399.90 399.83 4698.98 2799.93 7399.59 599.95 799.86 14
EI-MVSNet98.67 14898.67 13298.68 22899.35 20597.97 23299.50 13499.38 22396.93 24599.20 18699.83 4697.87 11299.36 26698.38 15697.56 24198.71 251
CVMVSNet98.57 15498.67 13298.30 26899.35 20595.59 31899.50 13499.55 6798.60 6899.39 14099.83 4694.48 23199.45 24598.75 10598.56 20199.85 17
LPG-MVS_test98.22 17598.13 17398.49 24499.33 21097.05 27199.58 9299.55 6797.46 19099.24 17599.83 4692.58 27999.72 19798.09 18097.51 24598.68 264
LGP-MVS_train98.49 24499.33 21097.05 27199.55 6797.46 19099.24 17599.83 4692.58 27999.72 19798.09 18097.51 24598.68 264
SteuartSystems-ACMMP99.54 1099.42 1699.87 1299.82 3899.81 2799.59 8499.51 10598.62 6699.79 2999.83 4699.28 499.97 1298.48 14699.90 2499.84 21
Skip Steuart: Steuart Systems R&D Blog.
XXY-MVS98.38 16598.09 17999.24 15499.26 23099.32 10999.56 10599.55 6797.45 19398.71 26399.83 4693.23 25999.63 23098.88 7896.32 28198.76 241
SR-MVS-dyc-post99.45 2899.31 4299.85 2899.76 5699.82 2399.63 6499.52 9298.38 8699.76 4399.82 5398.53 7799.95 4798.61 12799.81 8499.77 71
RE-MVS-def99.34 3199.76 5699.82 2399.63 6499.52 9298.38 8699.76 4399.82 5398.75 6098.61 12799.81 8499.77 71
test072699.85 2699.89 499.62 7099.50 12599.10 1299.86 1299.82 5398.94 35
SMA-MVScopyleft99.44 3299.30 4599.85 2899.73 8399.83 1799.56 10599.47 16497.45 19399.78 3499.82 5399.18 1099.91 9598.79 10199.89 3499.81 45
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
nrg03098.64 15198.42 15699.28 14999.05 27799.69 5299.81 1699.46 17498.04 13399.01 22099.82 5396.69 14999.38 25999.34 3294.59 31998.78 235
FC-MVSNet-test98.75 14298.62 14299.15 16399.08 27199.45 9799.86 999.60 4198.23 10498.70 26999.82 5396.80 14399.22 29199.07 5996.38 27998.79 234
EI-MVSNet-Vis-set99.58 599.56 499.64 8099.78 4799.15 13299.61 7699.45 18699.01 2399.89 499.82 5399.01 1999.92 8499.56 899.95 799.85 17
APD-MVS_3200maxsize99.48 2199.35 2999.85 2899.76 5699.83 1799.63 6499.54 7598.36 9099.79 2999.82 5398.86 4499.95 4798.62 12499.81 8499.78 69
EU-MVSNet97.98 21198.03 18697.81 30498.72 31996.65 29399.66 5299.66 2798.09 12298.35 30199.82 5395.25 19998.01 35197.41 24595.30 30698.78 235
APD-MVScopyleft99.27 6499.08 7699.84 3599.75 6799.79 3399.50 13499.50 12597.16 22199.77 3699.82 5398.78 5299.94 5897.56 23099.86 5299.80 55
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TAMVS99.12 8999.08 7699.24 15499.46 18198.55 19799.51 12899.46 17498.09 12299.45 12199.82 5398.34 9499.51 24098.70 11298.93 18199.67 114
DeepC-MVS_fast98.69 199.49 1799.39 2099.77 5099.63 12899.59 7399.36 20299.46 17499.07 1899.79 2999.82 5398.85 4599.92 8498.68 11799.87 4199.82 39
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS99.13 8399.02 8699.45 12299.57 14898.63 19199.07 27299.34 24298.99 3099.61 8999.82 5397.98 11199.87 12697.00 26799.80 8899.85 17
DVP-MVS++99.59 399.50 999.88 699.51 16099.88 899.87 699.51 10598.99 3099.88 599.81 6699.27 599.96 2098.85 8999.80 8899.81 45
test_one_060199.81 4199.88 899.49 13398.97 3699.65 7899.81 6699.09 14
SED-MVS99.61 299.52 799.88 699.84 3399.90 299.60 7799.48 14699.08 1699.91 199.81 6699.20 799.96 2098.91 7599.85 5999.79 61
test_241102_TWO99.48 14699.08 1699.88 599.81 6698.94 3599.96 2098.91 7599.84 6699.88 8
OPM-MVS98.19 17998.10 17698.45 25298.88 29697.07 26999.28 22499.38 22398.57 6999.22 18099.81 6692.12 29099.66 21898.08 18497.54 24398.61 302
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
zzz-MVS99.49 1799.36 2699.89 499.90 499.86 1399.36 20299.47 16498.79 5699.68 6199.81 6698.43 8699.97 1298.88 7899.90 2499.83 32
MTAPA99.52 1499.39 2099.89 499.90 499.86 1399.66 5299.47 16498.79 5699.68 6199.81 6698.43 8699.97 1298.88 7899.90 2499.83 32
FIs98.78 13998.63 13799.23 15699.18 24999.54 8299.83 1399.59 4498.28 9898.79 25699.81 6696.75 14799.37 26299.08 5896.38 27998.78 235
mvs_tets98.40 16498.23 16898.91 19398.67 32598.51 20599.66 5299.53 8698.19 10898.65 27899.81 6692.75 26999.44 25099.31 3597.48 25198.77 239
mvs_anonymous99.03 10798.99 9199.16 16199.38 20098.52 20399.51 12899.38 22397.79 15699.38 14399.81 6697.30 12899.45 24599.35 2898.99 17899.51 163
TSAR-MVS + GP.99.36 5399.36 2699.36 13299.67 10998.61 19499.07 27299.33 24999.00 2799.82 2299.81 6699.06 1699.84 14199.09 5799.42 14199.65 121
abl_699.44 3299.31 4299.83 3699.85 2699.75 4399.66 5299.59 4498.13 11599.82 2299.81 6698.60 7499.96 2098.46 15099.88 3799.79 61
RRT_test8_iter0597.72 25297.60 23398.08 28299.23 23696.08 31099.63 6499.49 13397.54 18498.94 23399.81 6687.99 34699.35 27099.21 4596.51 27698.81 232
EPNet98.86 12398.71 12899.30 14397.20 35898.18 22299.62 7098.91 31899.28 398.63 28099.81 6695.96 16999.99 199.24 4299.72 11199.73 89
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ab-mvs98.86 12398.63 13799.54 9699.64 12599.19 12399.44 16399.54 7597.77 15899.30 15999.81 6694.20 23999.93 7399.17 4998.82 18999.49 167
OMC-MVS99.08 10099.04 8199.20 15799.67 10998.22 22199.28 22499.52 9298.07 12799.66 7299.81 6697.79 11599.78 17597.79 20599.81 8499.60 138
xxxxxxxxxxxxxcwj99.43 3699.32 3599.75 5499.76 5699.59 7399.14 26099.53 8699.00 2799.71 5499.80 8298.95 3299.93 7398.19 17199.84 6699.74 82
SF-MVS99.38 5199.24 6099.79 4699.79 4599.68 5499.57 9899.54 7597.82 15599.71 5499.80 8298.95 3299.93 7398.19 17199.84 6699.74 82
DVP-MVScopyleft99.57 899.47 1299.88 699.85 2699.89 499.57 9899.37 23299.10 1299.81 2499.80 8298.94 3599.96 2098.93 7299.86 5299.81 45
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.99 3099.81 2499.80 8299.09 1499.96 2098.85 8999.90 2499.88 8
jajsoiax98.43 15998.28 16698.88 20198.60 33298.43 21299.82 1499.53 8698.19 10898.63 28099.80 8293.22 26199.44 25099.22 4397.50 24798.77 239
Regformer-399.57 899.53 699.68 6899.76 5699.29 11499.58 9299.44 19599.01 2399.87 1199.80 8298.97 2899.91 9599.44 2399.92 1299.83 32
Regformer-499.59 399.54 599.73 6199.76 5699.41 10199.58 9299.49 13399.02 2099.88 599.80 8299.00 2599.94 5899.45 2199.92 1299.84 21
PGM-MVS99.45 2899.31 4299.86 2199.87 1699.78 4099.58 9299.65 3297.84 14999.71 5499.80 8299.12 1399.97 1298.33 16299.87 4199.83 32
TransMVSNet (Re)97.15 28796.58 29298.86 20899.12 26298.85 17299.49 14498.91 31895.48 31697.16 33699.80 8293.38 25799.11 31094.16 33191.73 34798.62 293
K. test v397.10 28996.79 29098.01 28898.72 31996.33 30399.87 697.05 36297.59 17696.16 34799.80 8288.71 33699.04 31696.69 28696.55 27498.65 281
DELS-MVS99.48 2199.42 1699.65 7599.72 8899.40 10399.05 27799.66 2799.14 799.57 10099.80 8298.46 8499.94 5899.57 799.84 6699.60 138
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CSCG99.32 5799.32 3599.32 13899.85 2698.29 21799.71 3899.66 2798.11 11999.41 13399.80 8298.37 9399.96 2098.99 6599.96 699.72 95
test117299.43 3699.29 4999.85 2899.75 6799.82 2399.60 7799.56 5898.28 9899.74 4799.79 9498.53 7799.95 4798.55 14199.78 9599.79 61
SR-MVS99.43 3699.29 4999.86 2199.75 6799.83 1799.59 8499.62 3498.21 10799.73 4999.79 9498.68 6899.96 2098.44 15299.77 10099.79 61
MP-MVS-pluss99.37 5299.20 6499.88 699.90 499.87 1299.30 21899.52 9297.18 21999.60 9399.79 9498.79 5199.95 4798.83 9599.91 1799.83 32
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pm-mvs197.68 26097.28 27598.88 20199.06 27498.62 19299.50 13499.45 18696.32 28697.87 32099.79 9492.47 28399.35 27097.54 23293.54 33498.67 271
LFMVS97.90 22197.35 26699.54 9699.52 15899.01 14899.39 19098.24 34897.10 22999.65 7899.79 9484.79 35899.91 9599.28 3898.38 20799.69 107
TinyColmap97.12 28896.89 28897.83 30199.07 27295.52 32298.57 33998.74 33297.58 17897.81 32399.79 9488.16 34499.56 23695.10 31897.21 26298.39 327
ACMP97.20 1198.06 19497.94 19898.45 25299.37 20297.01 27699.44 16399.49 13397.54 18498.45 29399.79 9491.95 29399.72 19797.91 19597.49 25098.62 293
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GeoE98.85 13198.62 14299.53 10299.61 13899.08 14099.80 2099.51 10597.10 22999.31 15799.78 10195.23 20099.77 17798.21 16999.03 17499.75 77
9.1499.10 7399.72 8899.40 18699.51 10597.53 18699.64 8299.78 10198.84 4699.91 9597.63 22199.82 81
pmmvs696.53 29896.09 30197.82 30398.69 32395.47 32399.37 19899.47 16493.46 34397.41 32999.78 10187.06 35299.33 27496.92 27692.70 34498.65 281
MSLP-MVS++99.46 2699.47 1299.44 12699.60 14299.16 12899.41 17899.71 1398.98 3399.45 12199.78 10199.19 999.54 23999.28 3899.84 6699.63 132
VNet99.11 9498.90 10499.73 6199.52 15899.56 7899.41 17899.39 21799.01 2399.74 4799.78 10195.56 18699.92 8499.52 1098.18 21999.72 95
114514_t98.93 11798.67 13299.72 6499.85 2699.53 8599.62 7099.59 4492.65 34899.71 5499.78 10198.06 10999.90 11098.84 9299.91 1799.74 82
Vis-MVSNet (Re-imp)98.87 12098.72 12699.31 13999.71 9498.88 16899.80 2099.44 19597.91 14399.36 14899.78 10195.49 18999.43 25497.91 19599.11 16599.62 134
UniMVSNet_ETH3D97.32 28396.81 28998.87 20599.40 19697.46 25399.51 12899.53 8695.86 31398.54 28899.77 10882.44 36499.66 21898.68 11797.52 24499.50 166
anonymousdsp98.44 15898.28 16698.94 18598.50 33798.96 15799.77 2899.50 12597.07 23198.87 24499.77 10894.76 21899.28 28198.66 12097.60 23798.57 308
CDS-MVSNet99.09 9899.03 8399.25 15299.42 18898.73 18399.45 15999.46 17498.11 11999.46 12099.77 10898.01 11099.37 26298.70 11298.92 18399.66 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MSDG98.98 11398.80 11999.53 10299.76 5699.19 12398.75 32599.55 6797.25 21399.47 11899.77 10897.82 11499.87 12696.93 27499.90 2499.54 151
CHOSEN 280x42099.12 8999.13 7099.08 16699.66 11897.89 23898.43 34699.71 1398.88 4699.62 8799.76 11296.63 15099.70 20999.46 2099.99 199.66 117
PS-MVSNAJss98.92 11898.92 10198.90 19598.78 31198.53 19999.78 2699.54 7598.07 12799.00 22599.76 11299.01 1999.37 26299.13 5397.23 26198.81 232
Regformer-199.53 1299.47 1299.72 6499.71 9499.44 9899.49 14499.46 17498.95 3999.83 1999.76 11299.01 1999.93 7399.17 4999.87 4199.80 55
Regformer-299.54 1099.47 1299.75 5499.71 9499.52 8899.49 14499.49 13398.94 4099.83 1999.76 11299.01 1999.94 5899.15 5299.87 4199.80 55
MVS_Test99.10 9798.97 9599.48 11699.49 17299.14 13399.67 4899.34 24297.31 20799.58 9899.76 11297.65 11999.82 15998.87 8299.07 17199.46 175
ETH3D-3000-0.199.21 7199.02 8699.77 5099.73 8399.69 5299.38 19599.51 10597.45 19399.61 8999.75 11798.51 8099.91 9597.45 24299.83 7599.71 102
CANet_DTU98.97 11598.87 10899.25 15299.33 21098.42 21499.08 27199.30 26699.16 699.43 12699.75 11795.27 19699.97 1298.56 13899.95 799.36 187
mPP-MVS99.44 3299.30 4599.86 2199.88 1299.79 3399.69 4199.48 14698.12 11799.50 11399.75 11798.78 5299.97 1298.57 13599.89 3499.83 32
HPM-MVS_fast99.51 1599.40 1999.85 2899.91 199.79 3399.76 3199.56 5897.72 16499.76 4399.75 11799.13 1299.92 8499.07 5999.92 1299.85 17
HyFIR lowres test99.11 9498.92 10199.65 7599.90 499.37 10499.02 28699.91 397.67 17199.59 9699.75 11795.90 17599.73 19399.53 999.02 17699.86 14
ITE_SJBPF98.08 28299.29 22396.37 30198.92 31598.34 9298.83 25099.75 11791.09 31199.62 23195.82 30297.40 25798.25 334
test_241102_ONE99.84 3399.90 299.48 14699.07 1899.91 199.74 12399.20 799.76 183
testtj99.12 8998.87 10899.86 2199.72 8899.79 3399.44 16399.51 10597.29 20999.59 9699.74 12398.15 10699.96 2096.74 28299.69 11799.81 45
Anonymous20240521198.30 17197.98 19199.26 15199.57 14898.16 22399.41 17898.55 34496.03 31199.19 18999.74 12391.87 29499.92 8499.16 5198.29 21399.70 104
tttt051798.42 16098.14 17299.28 14999.66 11898.38 21599.74 3596.85 36397.68 16899.79 2999.74 12391.39 30799.89 11898.83 9599.56 13499.57 147
XVS99.53 1299.42 1699.87 1299.85 2699.83 1799.69 4199.68 1998.98 3399.37 14599.74 12398.81 4999.94 5898.79 10199.86 5299.84 21
MP-MVScopyleft99.33 5699.15 6899.87 1299.88 1299.82 2399.66 5299.46 17498.09 12299.48 11799.74 12398.29 9799.96 2097.93 19499.87 4199.82 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS_111021_LR99.41 4699.33 3399.65 7599.77 5299.51 9098.94 30799.85 698.82 5199.65 7899.74 12398.51 8099.80 16898.83 9599.89 3499.64 128
VPNet97.84 23097.44 25499.01 17599.21 24298.94 16299.48 15099.57 5298.38 8699.28 16499.73 13088.89 33599.39 25799.19 4693.27 33798.71 251
MVSTER98.49 15598.32 16399.00 17799.35 20599.02 14699.54 11799.38 22397.41 20099.20 18699.73 13093.86 25199.36 26698.87 8297.56 24198.62 293
MVS_111021_HR99.41 4699.32 3599.66 7199.72 8899.47 9598.95 30599.85 698.82 5199.54 10699.73 13098.51 8099.74 18698.91 7599.88 3799.77 71
PHI-MVS99.30 5999.17 6799.70 6799.56 15299.52 8899.58 9299.80 897.12 22599.62 8799.73 13098.58 7599.90 11098.61 12799.91 1799.68 111
IterMVS-SCA-FT97.82 23597.75 21998.06 28499.57 14896.36 30299.02 28699.49 13397.18 21998.71 26399.72 13492.72 27299.14 30297.44 24395.86 29398.67 271
diffmvs99.14 8199.02 8699.51 11299.61 13898.96 15799.28 22499.49 13398.46 7999.72 5399.71 13596.50 15499.88 12399.31 3599.11 16599.67 114
XVG-OURS-SEG-HR98.69 14698.62 14298.89 19899.71 9497.74 24599.12 26299.54 7598.44 8399.42 12999.71 13594.20 23999.92 8498.54 14398.90 18599.00 218
EPNet_dtu98.03 20297.96 19498.23 27498.27 34195.54 32199.23 24398.75 32999.02 2097.82 32299.71 13596.11 16599.48 24193.04 34299.65 12799.69 107
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNVR-MVS99.42 4199.30 4599.78 4899.62 13499.71 4999.26 23899.52 9298.82 5199.39 14099.71 13598.96 2999.85 13598.59 13299.80 8899.77 71
PC_three_145298.18 11199.84 1499.70 13999.31 398.52 34398.30 16699.80 8899.81 45
OPU-MVS99.64 8099.56 15299.72 4799.60 7799.70 13999.27 599.42 25598.24 16899.80 8899.79 61
CS-MVS99.50 1699.49 1199.52 10899.76 5699.35 10699.90 199.55 6798.56 7099.77 3699.70 13998.75 6099.77 17799.64 299.78 9599.42 180
tfpnnormal97.84 23097.47 24698.98 17999.20 24499.22 12299.64 6299.61 3696.32 28698.27 30699.70 13993.35 25899.44 25095.69 30695.40 30498.27 332
v7n97.87 22497.52 24098.92 18998.76 31598.58 19599.84 1099.46 17496.20 29698.91 23799.70 13994.89 20999.44 25096.03 29993.89 33098.75 243
testdata99.54 9699.75 6798.95 15999.51 10597.07 23199.43 12699.70 13998.87 4399.94 5897.76 20899.64 12899.72 95
IterMVS97.83 23297.77 21598.02 28799.58 14696.27 30599.02 28699.48 14697.22 21798.71 26399.70 13992.75 26999.13 30597.46 24096.00 28798.67 271
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PCF-MVS97.08 1497.66 26497.06 28599.47 11999.61 13899.09 13998.04 35999.25 27791.24 35398.51 28999.70 13994.55 22999.91 9592.76 34699.85 5999.42 180
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
LTVRE_ROB97.16 1298.02 20497.90 20198.40 25999.23 23696.80 28899.70 3999.60 4197.12 22598.18 30999.70 13991.73 29999.72 19798.39 15497.45 25298.68 264
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_part197.75 24697.24 27999.29 14699.59 14499.63 6599.65 5999.49 13396.17 29998.44 29499.69 14889.80 32699.47 24298.68 11793.66 33298.78 235
HFP-MVS99.49 1799.37 2499.86 2199.87 1699.80 2999.66 5299.67 2298.15 11399.68 6199.69 14899.06 1699.96 2098.69 11599.87 4199.84 21
#test#99.43 3699.29 4999.86 2199.87 1699.80 2999.55 11499.67 2297.83 15099.68 6199.69 14899.06 1699.96 2098.39 15499.87 4199.84 21
旧先验199.74 7599.59 7399.54 7599.69 14898.47 8399.68 12299.73 89
ACMMPR99.49 1799.36 2699.86 2199.87 1699.79 3399.66 5299.67 2298.15 11399.67 6799.69 14898.95 3299.96 2098.69 11599.87 4199.84 21
CPTT-MVS99.11 9498.90 10499.74 5999.80 4499.46 9699.59 8499.49 13397.03 23699.63 8399.69 14897.27 13099.96 2097.82 20399.84 6699.81 45
DROMVSNet99.44 3299.39 2099.58 9099.56 15299.49 9199.88 299.58 5098.38 8699.73 4999.69 14898.20 10199.70 20999.64 299.82 8199.54 151
GST-MVS99.40 4999.24 6099.85 2899.86 2299.79 3399.60 7799.67 2297.97 13899.63 8399.68 15598.52 7999.95 4798.38 15699.86 5299.81 45
Anonymous2023121197.88 22297.54 23998.90 19599.71 9498.53 19999.48 15099.57 5294.16 33598.81 25299.68 15593.23 25999.42 25598.84 9294.42 32298.76 241
region2R99.48 2199.35 2999.87 1299.88 1299.80 2999.65 5999.66 2798.13 11599.66 7299.68 15598.96 2999.96 2098.62 12499.87 4199.84 21
PS-CasMVS97.93 21697.59 23598.95 18498.99 28499.06 14399.68 4699.52 9297.13 22398.31 30399.68 15592.44 28799.05 31598.51 14494.08 32898.75 243
HY-MVS97.30 798.85 13198.64 13699.47 11999.42 18899.08 14099.62 7099.36 23397.39 20299.28 16499.68 15596.44 15799.92 8498.37 15898.22 21499.40 185
DP-MVS Recon99.12 8998.95 9999.65 7599.74 7599.70 5199.27 22999.57 5296.40 28499.42 12999.68 15598.75 6099.80 16897.98 19099.72 11199.44 178
ETH3D cwj APD-0.1699.06 10298.84 11499.72 6499.51 16099.60 7099.23 24399.44 19597.04 23499.39 14099.67 16198.30 9699.92 8497.27 24999.69 11799.64 128
ADS-MVSNet298.02 20498.07 18397.87 29899.33 21095.19 33099.23 24399.08 29996.24 29399.10 20499.67 16194.11 24398.93 33596.81 27999.05 17299.48 168
ADS-MVSNet98.20 17898.08 18098.56 23899.33 21096.48 29899.23 24399.15 29196.24 29399.10 20499.67 16194.11 24399.71 20396.81 27999.05 17299.48 168
DTE-MVSNet97.51 27497.19 28198.46 25198.63 32898.13 22699.84 1099.48 14696.68 25897.97 31899.67 16192.92 26598.56 34296.88 27892.60 34598.70 255
Baseline_NR-MVSNet97.76 24297.45 24998.68 22899.09 26998.29 21799.41 17898.85 32495.65 31598.63 28099.67 16194.82 21199.10 31298.07 18792.89 34198.64 283
CMPMVSbinary69.68 2394.13 32594.90 31791.84 34697.24 35780.01 37198.52 34299.48 14689.01 35791.99 36199.67 16185.67 35699.13 30595.44 31197.03 26796.39 362
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
原ACMM199.65 7599.73 8399.33 10899.47 16497.46 19099.12 19999.66 16798.67 7199.91 9597.70 21799.69 11799.71 102
thisisatest053098.35 16798.03 18699.31 13999.63 12898.56 19699.54 11796.75 36597.53 18699.73 4999.65 16891.25 31099.89 11898.62 12499.56 13499.48 168
test22299.75 6799.49 9198.91 31099.49 13396.42 28299.34 15499.65 16898.28 9899.69 11799.72 95
112199.09 9898.87 10899.75 5499.74 7599.60 7099.27 22999.48 14696.82 25299.25 17499.65 16898.38 9199.93 7397.53 23399.67 12499.73 89
MVSFormer99.17 7799.12 7199.29 14699.51 16098.94 16299.88 299.46 17497.55 18199.80 2799.65 16897.39 12399.28 28199.03 6199.85 5999.65 121
jason99.13 8399.03 8399.45 12299.46 18198.87 16999.12 26299.26 27598.03 13599.79 2999.65 16897.02 13799.85 13599.02 6399.90 2499.65 121
jason: jason.
BH-RMVSNet98.41 16298.08 18099.40 12899.41 19198.83 17699.30 21898.77 32897.70 16698.94 23399.65 16892.91 26799.74 18696.52 29099.55 13699.64 128
sss99.17 7799.05 7899.53 10299.62 13498.97 15399.36 20299.62 3497.83 15099.67 6799.65 16897.37 12799.95 4799.19 4699.19 15999.68 111
h-mvs3397.70 25797.28 27598.97 18199.70 10197.27 25899.36 20299.45 18698.94 4099.66 7299.64 17594.93 20599.99 199.48 1784.36 35999.65 121
ZNCC-MVS99.47 2499.33 3399.87 1299.87 1699.81 2799.64 6299.67 2298.08 12699.55 10599.64 17598.91 4099.96 2098.72 11099.90 2499.82 39
新几何199.75 5499.75 6799.59 7399.54 7596.76 25399.29 16299.64 17598.43 8699.94 5896.92 27699.66 12599.72 95
PEN-MVS97.76 24297.44 25498.72 22598.77 31498.54 19899.78 2699.51 10597.06 23398.29 30599.64 17592.63 27898.89 33898.09 18093.16 33898.72 249
CP-MVSNet98.09 19197.78 21399.01 17598.97 28999.24 12099.67 4899.46 17497.25 21398.48 29299.64 17593.79 25299.06 31498.63 12394.10 32798.74 247
LF4IMVS97.52 27297.46 24897.70 30998.98 28795.55 31999.29 22298.82 32798.07 12798.66 27299.64 17589.97 32499.61 23297.01 26696.68 26997.94 350
bset_n11_16_dypcd98.16 18397.97 19298.73 22398.26 34298.28 21997.99 36098.01 35397.68 16899.10 20499.63 18195.68 18399.15 30198.78 10496.55 27498.75 243
HPM-MVScopyleft99.42 4199.28 5399.83 3699.90 499.72 4799.81 1699.54 7597.59 17699.68 6199.63 18198.91 4099.94 5898.58 13399.91 1799.84 21
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
NCCC99.34 5599.19 6599.79 4699.61 13899.65 6299.30 21899.48 14698.86 4799.21 18399.63 18198.72 6599.90 11098.25 16799.63 13099.80 55
CP-MVS99.45 2899.32 3599.85 2899.83 3799.75 4399.69 4199.52 9298.07 12799.53 10899.63 18198.93 3999.97 1298.74 10699.91 1799.83 32
AdaColmapbinary99.01 11198.80 11999.66 7199.56 15299.54 8299.18 25299.70 1598.18 11199.35 15199.63 18196.32 16099.90 11097.48 23799.77 10099.55 149
TAPA-MVS97.07 1597.74 24997.34 26998.94 18599.70 10197.53 25199.25 24099.51 10591.90 35099.30 15999.63 18198.78 5299.64 22588.09 36299.87 4199.65 121
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ppachtmachnet_test97.49 27897.45 24997.61 31198.62 32995.24 32898.80 32099.46 17496.11 30698.22 30799.62 18796.45 15698.97 33293.77 33395.97 29198.61 302
MCST-MVS99.43 3699.30 4599.82 3899.79 4599.74 4699.29 22299.40 21398.79 5699.52 11099.62 18798.91 4099.90 11098.64 12299.75 10499.82 39
WTY-MVS99.06 10298.88 10799.61 8599.62 13499.16 12899.37 19899.56 5898.04 13399.53 10899.62 18796.84 14299.94 5898.85 8998.49 20599.72 95
MDTV_nov1_ep1398.32 16399.11 26494.44 34299.27 22998.74 33297.51 18899.40 13899.62 18794.78 21499.76 18397.59 22498.81 191
CANet99.25 6999.14 6999.59 8799.41 19199.16 12899.35 20899.57 5298.82 5199.51 11299.61 19196.46 15599.95 4799.59 599.98 299.65 121
HQP_MVS98.27 17498.22 16998.44 25599.29 22396.97 28099.39 19099.47 16498.97 3699.11 20199.61 19192.71 27499.69 21397.78 20697.63 23498.67 271
plane_prior499.61 191
ETH3 D test640098.70 14498.35 16099.73 6199.69 10499.60 7099.16 25499.45 18695.42 31799.27 16799.60 19497.39 12399.91 9595.36 31599.83 7599.70 104
baseline198.31 16997.95 19699.38 13199.50 17098.74 18299.59 8498.93 31398.41 8499.14 19699.60 19494.59 22699.79 17198.48 14693.29 33699.61 136
TranMVSNet+NR-MVSNet97.93 21697.66 22798.76 22298.78 31198.62 19299.65 5999.49 13397.76 15998.49 29199.60 19494.23 23898.97 33298.00 18992.90 34098.70 255
tpmrst98.33 16898.48 15397.90 29799.16 25794.78 33899.31 21699.11 29597.27 21199.45 12199.59 19795.33 19499.84 14198.48 14698.61 19599.09 206
IterMVS-LS98.46 15798.42 15698.58 23599.59 14498.00 23099.37 19899.43 20396.94 24499.07 21199.59 19797.87 11299.03 31898.32 16495.62 29998.71 251
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
F-COLMAP99.19 7399.04 8199.64 8099.78 4799.27 11799.42 17699.54 7597.29 20999.41 13399.59 19798.42 8999.93 7398.19 17199.69 11799.73 89
pmmvs498.13 18797.90 20198.81 21698.61 33198.87 16998.99 29399.21 28496.44 28099.06 21599.58 20095.90 17599.11 31097.18 25996.11 28598.46 320
1112_ss98.98 11398.77 12299.59 8799.68 10899.02 14699.25 24099.48 14697.23 21699.13 19799.58 20096.93 14199.90 11098.87 8298.78 19299.84 21
ab-mvs-re8.30 34511.06 3480.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 37999.58 2000.00 3830.00 3790.00 3770.00 3770.00 375
PatchmatchNetpermissive98.31 16998.36 15898.19 27699.16 25795.32 32799.27 22998.92 31597.37 20399.37 14599.58 20094.90 20899.70 20997.43 24499.21 15799.54 151
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA98.19 17998.16 17098.27 27399.30 21995.55 31999.07 27298.97 30997.57 17999.43 12699.57 20492.72 27299.74 18697.58 22599.20 15899.52 157
Patchmatch-test97.93 21697.65 22898.77 22199.18 24997.07 26999.03 28399.14 29396.16 30198.74 26099.57 20494.56 22899.72 19793.36 33899.11 16599.52 157
PVSNet96.02 1798.85 13198.84 11498.89 19899.73 8397.28 25798.32 35299.60 4197.86 14599.50 11399.57 20496.75 14799.86 12998.56 13899.70 11699.54 151
cdsmvs_eth3d_5k24.64 34432.85 3470.00 3600.00 3830.00 3840.00 37199.51 1050.00 3780.00 37999.56 20796.58 1510.00 3790.00 3770.00 3770.00 375
131498.68 14798.54 15199.11 16598.89 29598.65 18999.27 22999.49 13396.89 24697.99 31799.56 20797.72 11899.83 15297.74 21199.27 15498.84 231
lupinMVS99.13 8399.01 9099.46 12199.51 16098.94 16299.05 27799.16 29097.86 14599.80 2799.56 20797.39 12399.86 12998.94 7099.85 5999.58 146
miper_lstm_enhance98.00 20997.91 20098.28 27299.34 20997.43 25498.88 31299.36 23396.48 27798.80 25499.55 21095.98 16898.91 33697.27 24995.50 30398.51 312
DPM-MVS98.95 11698.71 12899.66 7199.63 12899.55 8098.64 33599.10 29697.93 14199.42 12999.55 21098.67 7199.80 16895.80 30499.68 12299.61 136
CDPH-MVS99.13 8398.91 10399.80 4399.75 6799.71 4999.15 25899.41 20796.60 26799.60 9399.55 21098.83 4799.90 11097.48 23799.83 7599.78 69
dp97.75 24697.80 20997.59 31299.10 26793.71 35199.32 21498.88 32296.48 27799.08 21099.55 21092.67 27799.82 15996.52 29098.58 19899.24 195
CLD-MVS98.16 18398.10 17698.33 26499.29 22396.82 28798.75 32599.44 19597.83 15099.13 19799.55 21092.92 26599.67 21598.32 16497.69 23398.48 314
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ZD-MVS99.71 9499.79 3399.61 3696.84 24999.56 10199.54 21598.58 7599.96 2096.93 27499.75 104
cl____98.01 20797.84 20898.55 24099.25 23497.97 23298.71 32999.34 24296.47 27998.59 28699.54 21595.65 18599.21 29697.21 25395.77 29498.46 320
DIV-MVS_self_test98.01 20797.85 20798.48 24699.24 23597.95 23698.71 32999.35 23896.50 27298.60 28599.54 21595.72 18299.03 31897.21 25395.77 29498.46 320
MVS97.28 28496.55 29399.48 11698.78 31198.95 15999.27 22999.39 21783.53 36398.08 31299.54 21596.97 13999.87 12694.23 32999.16 16099.63 132
pmmvs597.52 27297.30 27498.16 27898.57 33496.73 28999.27 22998.90 32096.14 30498.37 29999.53 21991.54 30699.14 30297.51 23595.87 29298.63 291
HPM-MVS++copyleft99.39 5099.23 6299.87 1299.75 6799.84 1699.43 16999.51 10598.68 6499.27 16799.53 21998.64 7399.96 2098.44 15299.80 8899.79 61
PatchMatch-RL98.84 13498.62 14299.52 10899.71 9499.28 11599.06 27599.77 997.74 16399.50 11399.53 21995.41 19099.84 14197.17 26099.64 12899.44 178
eth_miper_zixun_eth98.05 19997.96 19498.33 26499.26 23097.38 25598.56 34199.31 26296.65 26198.88 24299.52 22296.58 15199.12 30997.39 24695.53 30298.47 316
test_prior399.21 7199.05 7899.68 6899.67 10999.48 9398.96 30199.56 5898.34 9299.01 22099.52 22298.68 6899.83 15297.96 19199.74 10799.74 82
test_prior298.96 30198.34 9299.01 22099.52 22298.68 6897.96 19199.74 107
test_040296.64 29696.24 29897.85 29998.85 30496.43 30099.44 16399.26 27593.52 34196.98 34099.52 22288.52 34099.20 29892.58 34897.50 24797.93 351
test_yl98.86 12398.63 13799.54 9699.49 17299.18 12599.50 13499.07 30198.22 10599.61 8999.51 22695.37 19299.84 14198.60 13098.33 20899.59 142
DCV-MVSNet98.86 12398.63 13799.54 9699.49 17299.18 12599.50 13499.07 30198.22 10599.61 8999.51 22695.37 19299.84 14198.60 13098.33 20899.59 142
v14897.79 24097.55 23698.50 24398.74 31697.72 24799.54 11799.33 24996.26 29198.90 23999.51 22694.68 22299.14 30297.83 20293.15 33998.63 291
DU-MVS98.08 19397.79 21098.96 18298.87 30098.98 15099.41 17899.45 18697.87 14498.71 26399.50 22994.82 21199.22 29198.57 13592.87 34298.68 264
NR-MVSNet97.97 21497.61 23299.02 17498.87 30099.26 11899.47 15599.42 20597.63 17497.08 33899.50 22995.07 20399.13 30597.86 19993.59 33398.68 264
XVG-ACMP-BASELINE97.83 23297.71 22398.20 27599.11 26496.33 30399.41 17899.52 9298.06 13199.05 21699.50 22989.64 32999.73 19397.73 21297.38 25898.53 310
MSP-MVS99.42 4199.27 5599.88 699.89 999.80 2999.67 4899.50 12598.70 6299.77 3699.49 23298.21 10099.95 4798.46 15099.77 10099.88 8
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TEST999.67 10999.65 6299.05 27799.41 20796.22 29598.95 23199.49 23298.77 5599.91 95
train_agg99.02 10898.77 12299.77 5099.67 10999.65 6299.05 27799.41 20796.28 28898.95 23199.49 23298.76 5799.91 9597.63 22199.72 11199.75 77
agg_prior199.01 11198.76 12499.76 5399.67 10999.62 6698.99 29399.40 21396.26 29198.87 24499.49 23298.77 5599.91 9597.69 21899.72 11199.75 77
PVSNet_Blended99.08 10098.97 9599.42 12799.76 5698.79 18098.78 32299.91 396.74 25499.67 6799.49 23297.53 12099.88 12398.98 6699.85 5999.60 138
CNLPA99.14 8198.99 9199.59 8799.58 14699.41 10199.16 25499.44 19598.45 8099.19 18999.49 23298.08 10899.89 11897.73 21299.75 10499.48 168
test_899.67 10999.61 6899.03 28399.41 20796.28 28898.93 23599.48 23898.76 5799.91 95
EPMVS97.82 23597.65 22898.35 26398.88 29695.98 31199.49 14494.71 37397.57 17999.26 17299.48 23892.46 28699.71 20397.87 19899.08 17099.35 188
PLCcopyleft97.94 499.02 10898.85 11399.53 10299.66 11899.01 14899.24 24299.52 9296.85 24899.27 16799.48 23898.25 9999.91 9597.76 20899.62 13199.65 121
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
xiu_mvs_v1_base_debu99.29 6199.27 5599.34 13399.63 12898.97 15399.12 26299.51 10598.86 4799.84 1499.47 24198.18 10299.99 199.50 1299.31 15199.08 207
xiu_mvs_v1_base99.29 6199.27 5599.34 13399.63 12898.97 15399.12 26299.51 10598.86 4799.84 1499.47 24198.18 10299.99 199.50 1299.31 15199.08 207
xiu_mvs_v1_base_debi99.29 6199.27 5599.34 13399.63 12898.97 15399.12 26299.51 10598.86 4799.84 1499.47 24198.18 10299.99 199.50 1299.31 15199.08 207
v192192097.80 23997.45 24998.84 21298.80 30798.53 19999.52 12399.34 24296.15 30399.24 17599.47 24193.98 24799.29 28095.40 31395.13 31098.69 259
UniMVSNet_NR-MVSNet98.22 17597.97 19298.96 18298.92 29398.98 15099.48 15099.53 8697.76 15998.71 26399.46 24596.43 15899.22 29198.57 13592.87 34298.69 259
testgi97.65 26597.50 24398.13 28199.36 20496.45 29999.42 17699.48 14697.76 15997.87 32099.45 24691.09 31198.81 33994.53 32598.52 20399.13 201
EIA-MVS99.18 7599.09 7599.45 12299.49 17299.18 12599.67 4899.53 8697.66 17299.40 13899.44 24798.10 10799.81 16398.94 7099.62 13199.35 188
CS-MVS-test99.42 4199.39 2099.52 10899.77 5299.35 10699.80 2099.57 5298.56 7099.77 3699.44 24798.16 10599.77 17799.64 299.78 9599.42 180
tpm297.44 28097.34 26997.74 30799.15 26094.36 34499.45 15998.94 31293.45 34498.90 23999.44 24791.35 30899.59 23497.31 24798.07 22699.29 193
thisisatest051598.14 18697.79 21099.19 15899.50 17098.50 20698.61 33696.82 36496.95 24299.54 10699.43 25091.66 30399.86 12998.08 18499.51 13899.22 196
mvs-test198.86 12398.84 11498.89 19899.33 21097.77 24499.44 16399.30 26698.47 7799.10 20499.43 25096.78 14499.95 4798.73 10899.02 17698.96 224
WR-MVS98.06 19497.73 22199.06 16898.86 30399.25 11999.19 25199.35 23897.30 20898.66 27299.43 25093.94 24899.21 29698.58 13394.28 32498.71 251
hse-mvs297.50 27597.14 28298.59 23299.49 17297.05 27199.28 22499.22 28198.94 4099.66 7299.42 25394.93 20599.65 22299.48 1783.80 36199.08 207
v897.95 21597.63 23198.93 18798.95 29198.81 17999.80 2099.41 20796.03 31199.10 20499.42 25394.92 20799.30 27996.94 27394.08 32898.66 279
tpmvs97.98 21198.02 18897.84 30099.04 27894.73 33999.31 21699.20 28596.10 31098.76 25999.42 25394.94 20499.81 16396.97 27098.45 20698.97 222
UGNet98.87 12098.69 13099.40 12899.22 24098.72 18499.44 16399.68 1999.24 499.18 19299.42 25392.74 27199.96 2099.34 3299.94 1099.53 156
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
AUN-MVS96.88 29196.31 29798.59 23299.48 17997.04 27499.27 22999.22 28197.44 19698.51 28999.41 25791.97 29299.66 21897.71 21583.83 36099.07 212
Effi-MVS+98.81 13598.59 14899.48 11699.46 18199.12 13798.08 35899.50 12597.50 18999.38 14399.41 25796.37 15999.81 16399.11 5598.54 20299.51 163
v1097.85 22797.52 24098.86 20898.99 28498.67 18799.75 3299.41 20795.70 31498.98 22799.41 25794.75 21999.23 28896.01 30094.63 31898.67 271
v14419297.92 21997.60 23398.87 20598.83 30698.65 18999.55 11499.34 24296.20 29699.32 15699.40 26094.36 23499.26 28596.37 29595.03 31298.70 255
NP-MVS99.23 23696.92 28399.40 260
HQP-MVS98.02 20497.90 20198.37 26299.19 24696.83 28598.98 29799.39 21798.24 10198.66 27299.40 26092.47 28399.64 22597.19 25797.58 23998.64 283
MAR-MVS98.86 12398.63 13799.54 9699.37 20299.66 5999.45 15999.54 7596.61 26599.01 22099.40 26097.09 13499.86 12997.68 22099.53 13799.10 202
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS99.04 10599.03 8399.06 16899.40 19699.31 11299.55 11499.56 5898.54 7299.33 15599.39 26498.76 5799.78 17596.98 26999.78 9598.07 340
CR-MVSNet98.17 18297.93 19998.87 20599.18 24998.49 20799.22 24899.33 24996.96 24099.56 10199.38 26594.33 23599.00 32394.83 32398.58 19899.14 199
Patchmtry97.75 24697.40 26098.81 21699.10 26798.87 16999.11 26899.33 24994.83 32798.81 25299.38 26594.33 23599.02 32096.10 29795.57 30098.53 310
BH-untuned98.42 16098.36 15898.59 23299.49 17296.70 29099.27 22999.13 29497.24 21598.80 25499.38 26595.75 18099.74 18697.07 26599.16 16099.33 191
V4298.06 19497.79 21098.86 20898.98 28798.84 17399.69 4199.34 24296.53 27199.30 15999.37 26894.67 22399.32 27697.57 22994.66 31798.42 323
VPA-MVSNet98.29 17297.95 19699.30 14399.16 25799.54 8299.50 13499.58 5098.27 10099.35 15199.37 26892.53 28199.65 22299.35 2894.46 32098.72 249
PVSNet_BlendedMVS98.86 12398.80 11999.03 17399.76 5698.79 18099.28 22499.91 397.42 19999.67 6799.37 26897.53 12099.88 12398.98 6697.29 26098.42 323
D2MVS98.41 16298.50 15298.15 28099.26 23096.62 29499.40 18699.61 3697.71 16598.98 22799.36 27196.04 16799.67 21598.70 11297.41 25698.15 338
MVP-Stereo97.81 23797.75 21997.99 29197.53 35196.60 29598.96 30198.85 32497.22 21797.23 33399.36 27195.28 19599.46 24495.51 31099.78 9597.92 352
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v124097.69 25897.32 27298.79 21998.85 30498.43 21299.48 15099.36 23396.11 30699.27 16799.36 27193.76 25499.24 28794.46 32695.23 30798.70 255
v114497.98 21197.69 22498.85 21198.87 30098.66 18899.54 11799.35 23896.27 29099.23 17999.35 27494.67 22399.23 28896.73 28395.16 30998.68 264
v2v48298.06 19497.77 21598.92 18998.90 29498.82 17799.57 9899.36 23396.65 26199.19 18999.35 27494.20 23999.25 28697.72 21494.97 31398.69 259
CostFormer97.72 25297.73 22197.71 30899.15 26094.02 34799.54 11799.02 30594.67 33099.04 21799.35 27492.35 28999.77 17798.50 14597.94 22899.34 190
our_test_397.65 26597.68 22597.55 31498.62 32994.97 33498.84 31699.30 26696.83 25198.19 30899.34 27797.01 13899.02 32095.00 32196.01 28698.64 283
c3_l98.12 18998.04 18598.38 26199.30 21997.69 25098.81 31999.33 24996.67 25998.83 25099.34 27797.11 13398.99 32497.58 22595.34 30598.48 314
Fast-Effi-MVS+-dtu98.77 14198.83 11898.60 23199.41 19196.99 27899.52 12399.49 13398.11 11999.24 17599.34 27796.96 14099.79 17197.95 19399.45 13999.02 217
Fast-Effi-MVS+98.70 14498.43 15599.51 11299.51 16099.28 11599.52 12399.47 16496.11 30699.01 22099.34 27796.20 16499.84 14197.88 19798.82 18999.39 186
v119297.81 23797.44 25498.91 19398.88 29698.68 18699.51 12899.34 24296.18 29899.20 18699.34 27794.03 24699.36 26695.32 31695.18 30898.69 259
tpm97.67 26397.55 23698.03 28599.02 28195.01 33399.43 16998.54 34596.44 28099.12 19999.34 27791.83 29699.60 23397.75 21096.46 27799.48 168
PAPM97.59 26897.09 28499.07 16799.06 27498.26 22098.30 35399.10 29694.88 32698.08 31299.34 27796.27 16299.64 22589.87 35598.92 18399.31 192
GBi-Net97.68 26097.48 24498.29 26999.51 16097.26 26099.43 16999.48 14696.49 27399.07 21199.32 28490.26 31998.98 32597.10 26296.65 27098.62 293
test197.68 26097.48 24498.29 26999.51 16097.26 26099.43 16999.48 14696.49 27399.07 21199.32 28490.26 31998.98 32597.10 26296.65 27098.62 293
FMVSNet196.84 29296.36 29698.29 26999.32 21797.26 26099.43 16999.48 14695.11 32198.55 28799.32 28483.95 36098.98 32595.81 30396.26 28298.62 293
MS-PatchMatch97.24 28697.32 27296.99 32698.45 33993.51 35598.82 31899.32 25997.41 20098.13 31199.30 28788.99 33499.56 23695.68 30799.80 8897.90 353
GA-MVS97.85 22797.47 24699.00 17799.38 20097.99 23198.57 33999.15 29197.04 23498.90 23999.30 28789.83 32599.38 25996.70 28598.33 20899.62 134
miper_ehance_all_eth98.18 18198.10 17698.41 25799.23 23697.72 24798.72 32899.31 26296.60 26798.88 24299.29 28997.29 12999.13 30597.60 22395.99 28898.38 328
FMVSNet297.72 25297.36 26498.80 21899.51 16098.84 17399.45 15999.42 20596.49 27398.86 24999.29 28990.26 31998.98 32596.44 29296.56 27398.58 307
TESTMET0.1,197.55 26997.27 27898.40 25998.93 29296.53 29698.67 33197.61 35996.96 24098.64 27999.28 29188.63 33999.45 24597.30 24899.38 14399.21 197
FMVSNet398.03 20297.76 21898.84 21299.39 19998.98 15099.40 18699.38 22396.67 25999.07 21199.28 29192.93 26498.98 32597.10 26296.65 27098.56 309
PAPM_NR99.04 10598.84 11499.66 7199.74 7599.44 9899.39 19099.38 22397.70 16699.28 16499.28 29198.34 9499.85 13596.96 27199.45 13999.69 107
EGC-MVSNET82.80 33477.86 34097.62 31097.91 34696.12 30899.33 21399.28 2738.40 37725.05 37899.27 29484.11 35999.33 27489.20 35798.22 21497.42 359
ETV-MVS99.26 6699.21 6399.40 12899.46 18199.30 11399.56 10599.52 9298.52 7499.44 12599.27 29498.41 9099.86 12999.10 5699.59 13399.04 214
xiu_mvs_v2_base99.26 6699.25 5999.29 14699.53 15698.91 16699.02 28699.45 18698.80 5599.71 5499.26 29698.94 3599.98 799.34 3299.23 15698.98 221
test20.0396.12 30795.96 30496.63 33497.44 35295.45 32499.51 12899.38 22396.55 27096.16 34799.25 29793.76 25496.17 36787.35 36494.22 32598.27 332
PS-MVSNAJ99.32 5799.32 3599.30 14399.57 14898.94 16298.97 30099.46 17498.92 4499.71 5499.24 29899.01 1999.98 799.35 2899.66 12598.97 222
Test_1112_low_res98.89 11998.66 13599.57 9299.69 10498.95 15999.03 28399.47 16496.98 23899.15 19599.23 29996.77 14699.89 11898.83 9598.78 19299.86 14
cl2297.85 22797.64 23098.48 24699.09 26997.87 23998.60 33899.33 24997.11 22898.87 24499.22 30092.38 28899.17 30098.21 16995.99 28898.42 323
EG-PatchMatch MVS95.97 30995.69 30996.81 33297.78 34992.79 35899.16 25498.93 31396.16 30194.08 35699.22 30082.72 36299.47 24295.67 30897.50 24798.17 337
TR-MVS97.76 24297.41 25998.82 21499.06 27497.87 23998.87 31498.56 34396.63 26498.68 27199.22 30092.49 28299.65 22295.40 31397.79 23198.95 227
ET-MVSNet_ETH3D96.49 29995.64 31099.05 17099.53 15698.82 17798.84 31697.51 36097.63 17484.77 36499.21 30392.09 29198.91 33698.98 6692.21 34699.41 184
WR-MVS_H98.13 18797.87 20698.90 19599.02 28198.84 17399.70 3999.59 4497.27 21198.40 29799.19 30495.53 18799.23 28898.34 16193.78 33198.61 302
miper_enhance_ethall98.16 18398.08 18098.41 25798.96 29097.72 24798.45 34599.32 25996.95 24298.97 22999.17 30597.06 13699.22 29197.86 19995.99 28898.29 331
baseline297.87 22497.55 23698.82 21499.18 24998.02 22999.41 17896.58 36796.97 23996.51 34399.17 30593.43 25699.57 23597.71 21599.03 17498.86 229
MIMVSNet195.51 31295.04 31696.92 33097.38 35395.60 31799.52 12399.50 12593.65 34096.97 34199.17 30585.28 35796.56 36688.36 36195.55 30198.60 305
gm-plane-assit98.54 33692.96 35794.65 33199.15 30899.64 22597.56 230
MIMVSNet97.73 25097.45 24998.57 23699.45 18697.50 25299.02 28698.98 30896.11 30699.41 13399.14 30990.28 31898.74 34095.74 30598.93 18199.47 173
LCM-MVSNet-Re97.83 23298.15 17196.87 33199.30 21992.25 36099.59 8498.26 34797.43 19796.20 34699.13 31096.27 16298.73 34198.17 17598.99 17899.64 128
UniMVSNet (Re)98.29 17298.00 18999.13 16499.00 28399.36 10599.49 14499.51 10597.95 13998.97 22999.13 31096.30 16199.38 25998.36 16093.34 33598.66 279
N_pmnet94.95 31995.83 30792.31 34598.47 33879.33 37299.12 26292.81 37893.87 33797.68 32599.13 31093.87 25099.01 32291.38 35096.19 28398.59 306
PAPR98.63 15298.34 16199.51 11299.40 19699.03 14598.80 32099.36 23396.33 28599.00 22599.12 31398.46 8499.84 14195.23 31799.37 15099.66 117
tpm cat197.39 28197.36 26497.50 31699.17 25593.73 35099.43 16999.31 26291.27 35298.71 26399.08 31494.31 23799.77 17796.41 29498.50 20499.00 218
FMVSNet596.43 30196.19 29997.15 32299.11 26495.89 31399.32 21499.52 9294.47 33498.34 30299.07 31587.54 35197.07 36292.61 34795.72 29798.47 316
PMMVS98.80 13898.62 14299.34 13399.27 22898.70 18598.76 32499.31 26297.34 20499.21 18399.07 31597.20 13199.82 15998.56 13898.87 18699.52 157
Anonymous2023120696.22 30396.03 30296.79 33397.31 35694.14 34699.63 6499.08 29996.17 29997.04 33999.06 31793.94 24897.76 35786.96 36595.06 31198.47 316
DeepMVS_CXcopyleft93.34 34399.29 22382.27 36999.22 28185.15 36196.33 34599.05 31890.97 31399.73 19393.57 33697.77 23298.01 344
YYNet195.36 31594.51 32197.92 29597.89 34797.10 26599.10 27099.23 28093.26 34580.77 36899.04 31992.81 26898.02 35094.30 32794.18 32698.64 283
Anonymous2024052196.20 30595.89 30697.13 32497.72 35094.96 33599.79 2599.29 27193.01 34697.20 33599.03 32089.69 32898.36 34591.16 35196.13 28498.07 340
MDA-MVSNet-bldmvs94.96 31893.98 32497.92 29598.24 34397.27 25899.15 25899.33 24993.80 33880.09 37099.03 32088.31 34297.86 35593.49 33794.36 32398.62 293
test_method91.10 32991.36 33290.31 34995.85 36373.72 37794.89 36699.25 27768.39 36995.82 35099.02 32280.50 36698.95 33493.64 33594.89 31698.25 334
BH-w/o98.00 20997.89 20598.32 26699.35 20596.20 30799.01 29198.90 32096.42 28298.38 29899.00 32395.26 19899.72 19796.06 29898.61 19599.03 215
Effi-MVS+-dtu98.78 13998.89 10698.47 25099.33 21096.91 28499.57 9899.30 26698.47 7799.41 13398.99 32496.78 14499.74 18698.73 10899.38 14398.74 247
MVS_030496.79 29496.52 29497.59 31299.22 24094.92 33699.04 28299.59 4496.49 27398.43 29598.99 32480.48 36799.39 25797.15 26199.27 15498.47 316
UnsupCasMVSNet_eth96.44 30096.12 30097.40 31898.65 32695.65 31699.36 20299.51 10597.13 22396.04 34998.99 32488.40 34198.17 34796.71 28490.27 35098.40 326
test0.0.03 197.71 25697.42 25898.56 23898.41 34097.82 24298.78 32298.63 34197.34 20498.05 31698.98 32794.45 23298.98 32595.04 32097.15 26698.89 228
MDA-MVSNet_test_wron95.45 31394.60 31998.01 28898.16 34497.21 26399.11 26899.24 27993.49 34280.73 36998.98 32793.02 26298.18 34694.22 33094.45 32198.64 283
FPMVS84.93 33385.65 33482.75 35486.77 37563.39 37998.35 34898.92 31574.11 36683.39 36698.98 32750.85 37492.40 37184.54 36894.97 31392.46 365
alignmvs98.81 13598.56 15099.58 9099.43 18799.42 10099.51 12898.96 31198.61 6799.35 15198.92 33094.78 21499.77 17799.35 2898.11 22599.54 151
test-LLR98.06 19497.90 20198.55 24098.79 30897.10 26598.67 33197.75 35697.34 20498.61 28398.85 33194.45 23299.45 24597.25 25199.38 14399.10 202
test-mter97.49 27897.13 28398.55 24098.79 30897.10 26598.67 33197.75 35696.65 26198.61 28398.85 33188.23 34399.45 24597.25 25199.38 14399.10 202
canonicalmvs99.02 10898.86 11299.51 11299.42 18899.32 10999.80 2099.48 14698.63 6599.31 15798.81 33397.09 13499.75 18599.27 4097.90 22999.47 173
DWT-MVSNet_test97.53 27197.40 26097.93 29499.03 28094.86 33799.57 9898.63 34196.59 26998.36 30098.79 33489.32 33199.74 18698.14 17898.16 22399.20 198
new_pmnet96.38 30296.03 30297.41 31798.13 34595.16 33299.05 27799.20 28593.94 33697.39 33098.79 33491.61 30599.04 31690.43 35395.77 29498.05 342
cascas97.69 25897.43 25798.48 24698.60 33297.30 25698.18 35799.39 21792.96 34798.41 29698.78 33693.77 25399.27 28498.16 17698.61 19598.86 229
PVSNet_094.43 1996.09 30895.47 31197.94 29399.31 21894.34 34597.81 36199.70 1597.12 22597.46 32898.75 33789.71 32799.79 17197.69 21881.69 36399.68 111
patchmatchnet-post98.70 33894.79 21399.74 186
Patchmatch-RL test95.84 31095.81 30895.95 33995.61 36490.57 36498.24 35498.39 34695.10 32395.20 35298.67 33994.78 21497.77 35696.28 29690.02 35199.51 163
thres100view90097.76 24297.45 24998.69 22799.72 8897.86 24199.59 8498.74 33297.93 14199.26 17298.62 34091.75 29799.83 15293.22 33998.18 21998.37 329
thres600view797.86 22697.51 24298.92 18999.72 8897.95 23699.59 8498.74 33297.94 14099.27 16798.62 34091.75 29799.86 12993.73 33498.19 21898.96 224
DSMNet-mixed97.25 28597.35 26696.95 32997.84 34893.61 35499.57 9896.63 36696.13 30598.87 24498.61 34294.59 22697.70 35895.08 31998.86 18799.55 149
IB-MVS95.67 1896.22 30395.44 31398.57 23699.21 24296.70 29098.65 33497.74 35896.71 25697.27 33298.54 34386.03 35499.92 8498.47 14986.30 35799.10 202
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND98.45 25298.55 33598.16 22399.43 16993.68 37597.23 33398.46 34489.30 33299.22 29195.43 31298.22 21497.98 348
tfpn200view997.72 25297.38 26298.72 22599.69 10497.96 23499.50 13498.73 33797.83 15099.17 19398.45 34591.67 30199.83 15293.22 33998.18 21998.37 329
thres40097.77 24197.38 26298.92 18999.69 10497.96 23499.50 13498.73 33797.83 15099.17 19398.45 34591.67 30199.83 15293.22 33998.18 21998.96 224
KD-MVS_2432*160094.62 32093.72 32697.31 31997.19 35995.82 31498.34 34999.20 28595.00 32497.57 32698.35 34787.95 34798.10 34892.87 34477.00 36798.01 344
miper_refine_blended94.62 32093.72 32697.31 31997.19 35995.82 31498.34 34999.20 28595.00 32497.57 32698.35 34787.95 34798.10 34892.87 34477.00 36798.01 344
thres20097.61 26797.28 27598.62 23099.64 12598.03 22899.26 23898.74 33297.68 16899.09 20998.32 34991.66 30399.81 16392.88 34398.22 21498.03 343
OpenMVS_ROBcopyleft92.34 2094.38 32493.70 32896.41 33797.38 35393.17 35699.06 27598.75 32986.58 36094.84 35598.26 35081.53 36599.32 27689.01 35897.87 23096.76 360
CL-MVSNet_self_test94.49 32293.97 32596.08 33896.16 36293.67 35398.33 35199.38 22395.13 31997.33 33198.15 35192.69 27696.57 36588.67 35979.87 36597.99 347
pmmvs394.09 32693.25 32996.60 33594.76 36894.49 34198.92 30898.18 35189.66 35696.48 34498.06 35286.28 35397.33 36089.68 35687.20 35697.97 349
PM-MVS92.96 32892.23 33195.14 34195.61 36489.98 36699.37 19898.21 34994.80 32895.04 35497.69 35365.06 37097.90 35494.30 32789.98 35297.54 358
pmmvs-eth3d95.34 31694.73 31897.15 32295.53 36695.94 31299.35 20899.10 29695.13 31993.55 35797.54 35488.15 34597.91 35394.58 32489.69 35397.61 355
ambc93.06 34492.68 36982.36 36898.47 34498.73 33795.09 35397.41 35555.55 37399.10 31296.42 29391.32 34897.71 354
RPMNet96.72 29595.90 30599.19 15899.18 24998.49 20799.22 24899.52 9288.72 35999.56 10197.38 35694.08 24599.95 4786.87 36698.58 19899.14 199
new-patchmatchnet94.48 32394.08 32395.67 34095.08 36792.41 35999.18 25299.28 27394.55 33393.49 35897.37 35787.86 34997.01 36391.57 34988.36 35497.61 355
KD-MVS_self_test95.00 31794.34 32296.96 32897.07 36195.39 32699.56 10599.44 19595.11 32197.13 33797.32 35891.86 29597.27 36190.35 35481.23 36498.23 336
PatchT97.03 29096.44 29598.79 21998.99 28498.34 21699.16 25499.07 30192.13 34999.52 11097.31 35994.54 23098.98 32588.54 36098.73 19499.03 215
UnsupCasMVSNet_bld93.53 32792.51 33096.58 33697.38 35393.82 34898.24 35499.48 14691.10 35493.10 35996.66 36074.89 36898.37 34494.03 33287.71 35597.56 357
LCM-MVSNet86.80 33285.22 33691.53 34787.81 37480.96 37098.23 35698.99 30771.05 36790.13 36396.51 36148.45 37696.88 36490.51 35285.30 35896.76 360
PMMVS286.87 33185.37 33591.35 34890.21 37283.80 36798.89 31197.45 36183.13 36491.67 36295.03 36248.49 37594.70 36985.86 36777.62 36695.54 363
Gipumacopyleft90.99 33090.15 33393.51 34298.73 31790.12 36593.98 36799.45 18679.32 36592.28 36094.91 36369.61 36997.98 35287.42 36395.67 29892.45 366
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
JIA-IIPM97.50 27597.02 28698.93 18798.73 31797.80 24399.30 21898.97 30991.73 35198.91 23794.86 36495.10 20299.71 20397.58 22597.98 22799.28 194
PMVScopyleft70.75 2275.98 34074.97 34179.01 35670.98 37955.18 38093.37 36898.21 34965.08 37361.78 37493.83 36521.74 38192.53 37078.59 36991.12 34989.34 369
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS-HIRNet95.75 31195.16 31597.51 31599.30 21993.69 35298.88 31295.78 36885.09 36298.78 25792.65 36691.29 30999.37 26294.85 32299.85 5999.46 175
E-PMN80.61 33679.88 33882.81 35390.75 37176.38 37597.69 36295.76 36966.44 37183.52 36592.25 36762.54 37287.16 37368.53 37261.40 37084.89 371
EMVS80.02 33779.22 33982.43 35591.19 37076.40 37497.55 36492.49 37966.36 37283.01 36791.27 36864.63 37185.79 37465.82 37360.65 37185.08 370
gg-mvs-nofinetune96.17 30695.32 31498.73 22398.79 30898.14 22599.38 19594.09 37491.07 35598.07 31591.04 36989.62 33099.35 27096.75 28199.09 16998.68 264
ANet_high77.30 33874.86 34284.62 35275.88 37877.61 37397.63 36393.15 37788.81 35864.27 37389.29 37036.51 37783.93 37575.89 37052.31 37292.33 367
MVEpermissive76.82 2176.91 33974.31 34384.70 35185.38 37776.05 37696.88 36593.17 37667.39 37071.28 37289.01 37121.66 38287.69 37271.74 37172.29 36990.35 368
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs39.17 34243.78 34425.37 35936.04 38216.84 38398.36 34726.56 38120.06 37538.51 37667.32 37229.64 37915.30 37837.59 37539.90 37443.98 373
test12339.01 34342.50 34528.53 35839.17 38120.91 38298.75 32519.17 38319.83 37638.57 37566.67 37333.16 37815.42 37737.50 37629.66 37549.26 372
test_post65.99 37494.65 22599.73 193
test_post199.23 24365.14 37594.18 24299.71 20397.58 225
X-MVStestdata96.55 29795.45 31299.87 1299.85 2699.83 1799.69 4199.68 1998.98 3399.37 14564.01 37698.81 4999.94 5898.79 10199.86 5299.84 21
wuyk23d40.18 34141.29 34636.84 35786.18 37649.12 38179.73 37022.81 38227.64 37425.46 37728.45 37721.98 38048.89 37655.80 37423.56 37612.51 374
test_blank0.13 3470.17 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3791.57 3780.00 3830.00 3790.00 3770.00 3770.00 375
uanet_test0.02 3480.03 3510.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.27 3790.00 3830.00 3790.00 3770.00 3770.00 375
pcd_1.5k_mvsjas8.27 34611.03 3490.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.27 37999.01 190.00 3790.00 3770.00 3770.00 375
sosnet-low-res0.02 3480.03 3510.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.27 3790.00 3830.00 3790.00 3770.00 3770.00 375
sosnet0.02 3480.03 3510.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.27 3790.00 3830.00 3790.00 3770.00 3770.00 375
uncertanet0.02 3480.03 3510.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.27 3790.00 3830.00 3790.00 3770.00 3770.00 375
Regformer0.02 3480.03 3510.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.27 3790.00 3830.00 3790.00 3770.00 3770.00 375
uanet0.02 3480.03 3510.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.27 3790.00 3830.00 3790.00 3770.00 3770.00 375
FOURS199.91 199.93 199.87 699.56 5899.10 1299.81 24
MSC_two_6792asdad99.87 1299.51 16099.76 4199.33 24999.96 2098.87 8299.84 6699.89 2
No_MVS99.87 1299.51 16099.76 4199.33 24999.96 2098.87 8299.84 6699.89 2
eth-test20.00 383
eth-test0.00 383
IU-MVS99.84 3399.88 899.32 25998.30 9799.84 1498.86 8799.85 5999.89 2
save fliter99.76 5699.59 7399.14 26099.40 21399.00 27
test_0728_SECOND99.91 299.84 3399.89 499.57 9899.51 10599.96 2098.93 7299.86 5299.88 8
GSMVS99.52 157
test_part299.81 4199.83 1799.77 36
sam_mvs194.86 21099.52 157
sam_mvs94.72 221
MTGPAbinary99.47 164
MTMP99.54 11798.88 322
test9_res97.49 23699.72 11199.75 77
agg_prior297.21 25399.73 11099.75 77
agg_prior99.67 10999.62 6699.40 21398.87 24499.91 95
test_prior499.56 7898.99 293
test_prior99.68 6899.67 10999.48 9399.56 5899.83 15299.74 82
旧先验298.96 30196.70 25799.47 11899.94 5898.19 171
新几何299.01 291
无先验98.99 29399.51 10596.89 24699.93 7397.53 23399.72 95
原ACMM298.95 305
testdata299.95 4796.67 287
segment_acmp98.96 29
testdata198.85 31598.32 96
test1299.75 5499.64 12599.61 6899.29 27199.21 18398.38 9199.89 11899.74 10799.74 82
plane_prior799.29 22397.03 275
plane_prior699.27 22896.98 27992.71 274
plane_prior599.47 16499.69 21397.78 20697.63 23498.67 271
plane_prior397.00 27798.69 6399.11 201
plane_prior299.39 19098.97 36
plane_prior199.26 230
plane_prior96.97 28099.21 25098.45 8097.60 237
n20.00 384
nn0.00 384
door-mid98.05 352
test1199.35 238
door97.92 354
HQP5-MVS96.83 285
HQP-NCC99.19 24698.98 29798.24 10198.66 272
ACMP_Plane99.19 24698.98 29798.24 10198.66 272
BP-MVS97.19 257
HQP4-MVS98.66 27299.64 22598.64 283
HQP3-MVS99.39 21797.58 239
HQP2-MVS92.47 283
MDTV_nov1_ep13_2view95.18 33199.35 20896.84 24999.58 9895.19 20197.82 20399.46 175
ACMMP++_ref97.19 263
ACMMP++97.43 255
Test By Simon98.75 60