This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
UA-Net99.42 4099.29 4799.80 4399.62 13099.55 8099.50 13299.70 1598.79 5499.77 3699.96 197.45 12199.96 1998.92 7299.90 2399.89 2
DeepC-MVS98.35 299.30 5899.19 6499.64 8099.82 3899.23 12099.62 7099.55 6798.94 3899.63 7999.95 295.82 17799.94 5799.37 2599.97 399.73 87
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OurMVSNet-221017-097.88 22197.77 21498.19 27698.71 31996.53 29699.88 199.00 30497.79 15498.78 25599.94 391.68 29999.35 26897.21 25196.99 26598.69 257
ECVR-MVS1198.04 19998.11 17497.83 30099.74 7293.82 34699.58 9195.40 36899.12 899.65 7499.93 490.73 31499.84 13999.43 2299.38 14299.82 38
ECVR-MVScopyleft98.04 19998.05 18398.00 28999.74 7294.37 34199.59 8394.98 36999.13 799.66 6899.93 490.67 31599.84 13999.40 2399.38 14299.80 54
SixPastTwentyTwo97.50 27497.33 27098.03 28498.65 32496.23 30699.77 2798.68 33897.14 22097.90 31799.93 490.45 31699.18 29697.00 26596.43 27598.67 269
SD-MVS99.41 4499.52 699.05 17099.74 7299.68 5499.46 15699.52 9199.11 999.88 599.91 799.43 197.70 35598.72 10899.93 1099.77 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMH97.28 898.10 18997.99 18998.44 25599.41 18996.96 28299.60 7799.56 5798.09 12098.15 30899.91 790.87 31399.70 20798.88 7697.45 24998.67 269
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VDDNet97.55 26897.02 28599.16 16199.49 16898.12 22799.38 19399.30 26595.35 31699.68 5799.90 982.62 36099.93 7299.31 3398.13 22199.42 178
QAPM98.67 14798.30 16499.80 4399.20 24299.67 5799.77 2799.72 1194.74 32798.73 25999.90 995.78 17899.98 696.96 26999.88 3699.76 74
3Dnovator97.25 999.24 6999.05 7799.81 4199.12 26099.66 5999.84 999.74 1099.09 1398.92 23499.90 995.94 17199.98 698.95 6799.92 1199.79 59
Anonymous2024052998.09 19097.68 22499.34 13399.66 11498.44 21199.40 18499.43 20293.67 33799.22 17899.89 1290.23 32199.93 7299.26 3998.33 20699.66 115
CHOSEN 1792x268899.19 7299.10 7299.45 12099.89 998.52 20399.39 18899.94 198.73 5899.11 19999.89 1295.50 18799.94 5799.50 1099.97 399.89 2
RPSCF98.22 17498.62 14196.99 32399.82 3891.58 36099.72 3599.44 19496.61 26399.66 6899.89 1295.92 17299.82 15797.46 23899.10 16699.57 145
3Dnovator+97.12 1399.18 7498.97 9499.82 3899.17 25399.68 5499.81 1599.51 10499.20 498.72 26099.89 1295.68 18299.97 1198.86 8599.86 5199.81 44
COLMAP_ROBcopyleft97.56 698.86 12298.75 12499.17 16099.88 1298.53 19999.34 20999.59 4397.55 17998.70 26799.89 1295.83 17699.90 10998.10 17799.90 2399.08 204
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_djsdf98.67 14798.57 14898.98 17998.70 32098.91 16699.88 199.46 17397.55 17999.22 17899.88 1795.73 18099.28 27899.03 5997.62 23398.75 241
DP-MVS99.16 7898.95 9899.78 4899.77 5199.53 8599.41 17699.50 12497.03 23499.04 21599.88 1797.39 12299.92 8398.66 11899.90 2399.87 12
TDRefinement95.42 31294.57 31897.97 29189.83 37096.11 30899.48 14898.75 32796.74 25296.68 34099.88 1788.65 33799.71 20198.37 15682.74 35998.09 337
EPP-MVSNet99.13 8298.99 9099.53 10299.65 11999.06 14399.81 1599.33 24897.43 19599.60 9099.88 1797.14 13199.84 13999.13 5198.94 17899.69 105
OpenMVScopyleft96.50 1698.47 15598.12 17399.52 10899.04 27699.53 8599.82 1399.72 1194.56 33098.08 31099.88 1794.73 21999.98 697.47 23799.76 10099.06 210
lessismore_v097.79 30498.69 32195.44 32494.75 37095.71 34999.87 2288.69 33699.32 27395.89 29994.93 31298.62 291
Vis-MVSNetpermissive99.12 8898.97 9499.56 9499.78 4699.10 13899.68 4599.66 2798.49 7299.86 1299.87 2294.77 21699.84 13999.19 4499.41 14199.74 80
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+97.24 1097.92 21897.78 21298.32 26699.46 17796.68 29299.56 10499.54 7498.41 8097.79 32299.87 2290.18 32299.66 21698.05 18697.18 26198.62 291
ACMMP_NAP99.47 2399.34 2899.88 699.87 1699.86 1399.47 15399.48 14598.05 13099.76 4099.86 2598.82 4799.93 7298.82 9799.91 1699.84 20
RRT_MVS98.60 15298.44 15399.05 17098.88 29499.14 13399.49 14299.38 22297.76 15799.29 16099.86 2595.38 19099.36 26498.81 9897.16 26298.64 281
casdiffmvs99.13 8298.98 9399.56 9499.65 11999.16 12899.56 10499.50 12498.33 9299.41 13199.86 2595.92 17299.83 15099.45 1999.16 15899.70 102
PVSNet_Blended_VisFu99.36 5199.28 5199.61 8599.86 2299.07 14299.47 15399.93 297.66 17099.71 5099.86 2597.73 11699.96 1999.47 1799.82 8099.79 59
IS-MVSNet99.05 10398.87 10799.57 9299.73 7999.32 10899.75 3199.20 28398.02 13499.56 9899.86 2596.54 15299.67 21398.09 17899.13 16299.73 87
USDC97.34 28197.20 27997.75 30599.07 27095.20 32898.51 34099.04 30297.99 13598.31 30199.86 2589.02 33299.55 23695.67 30697.36 25698.49 311
TSAR-MVS + MP.99.58 599.50 899.81 4199.91 199.66 5999.63 6499.39 21698.91 4399.78 3499.85 3199.36 299.94 5798.84 9099.88 3699.82 38
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
tmp_tt82.80 33281.52 33586.66 34766.61 37768.44 37592.79 36697.92 35268.96 36680.04 36999.85 3185.77 35396.15 36597.86 19743.89 37095.39 361
AllTest98.87 11998.72 12599.31 13999.86 2298.48 20999.56 10499.61 3597.85 14599.36 14699.85 3195.95 16999.85 13496.66 28699.83 7499.59 140
TestCases99.31 13999.86 2298.48 20999.61 3597.85 14599.36 14699.85 3195.95 16999.85 13496.66 28699.83 7499.59 140
VDD-MVS97.73 24997.35 26598.88 20199.47 17697.12 26499.34 20998.85 32298.19 10699.67 6399.85 3182.98 35899.92 8399.49 1498.32 21099.60 136
APDe-MVS99.66 199.57 199.92 199.77 5199.89 499.75 3199.56 5799.02 1899.88 599.85 3199.18 1099.96 1999.22 4199.92 1199.90 1
DeepPCF-MVS98.18 398.81 13499.37 2197.12 32299.60 13891.75 35998.61 33399.44 19499.35 199.83 1999.85 3198.70 6599.81 16199.02 6199.91 1699.81 44
ACMM97.58 598.37 16598.34 16098.48 24699.41 18997.10 26599.56 10499.45 18598.53 6999.04 21599.85 3193.00 26299.71 20198.74 10497.45 24998.64 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D99.27 6499.12 7099.74 5999.18 24799.75 4399.56 10499.57 5198.45 7699.49 11499.85 3197.77 11599.94 5798.33 16099.84 6599.52 155
DPE-MVScopyleft99.46 2599.32 3299.91 299.78 4699.88 899.36 20099.51 10498.73 5899.88 599.84 4098.72 6399.96 1998.16 17499.87 4099.88 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
XVG-OURS98.73 14298.68 13098.88 20199.70 9797.73 24698.92 30599.55 6798.52 7099.45 11999.84 4095.27 19599.91 9498.08 18298.84 18699.00 216
baseline99.15 7999.02 8599.53 10299.66 11499.14 13399.72 3599.48 14598.35 8899.42 12799.84 4096.07 16599.79 16999.51 999.14 16199.67 112
ACMMPcopyleft99.45 2799.32 3299.82 3899.89 999.67 5799.62 7099.69 1898.12 11599.63 7999.84 4098.73 6299.96 1998.55 13999.83 7499.81 44
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EI-MVSNet-UG-set99.58 599.57 199.64 8099.78 4699.14 13399.60 7799.45 18599.01 2199.90 399.83 4498.98 2699.93 7299.59 299.95 699.86 13
EI-MVSNet98.67 14798.67 13198.68 22899.35 20397.97 23299.50 13299.38 22296.93 24399.20 18499.83 4497.87 11199.36 26498.38 15497.56 23898.71 249
CVMVSNet98.57 15398.67 13198.30 26899.35 20395.59 31799.50 13299.55 6798.60 6699.39 13899.83 4494.48 23099.45 24398.75 10398.56 19999.85 16
LPG-MVS_test98.22 17498.13 17298.49 24499.33 20897.05 27199.58 9199.55 6797.46 18899.24 17399.83 4492.58 27899.72 19598.09 17897.51 24298.68 262
LGP-MVS_train98.49 24499.33 20897.05 27199.55 6797.46 18899.24 17399.83 4492.58 27899.72 19598.09 17897.51 24298.68 262
SteuartSystems-ACMMP99.54 1099.42 1499.87 1299.82 3899.81 2799.59 8399.51 10498.62 6499.79 2999.83 4499.28 499.97 1198.48 14499.90 2399.84 20
Skip Steuart: Steuart Systems R&D Blog.
XXY-MVS98.38 16498.09 17899.24 15499.26 22899.32 10899.56 10499.55 6797.45 19198.71 26199.83 4493.23 25899.63 22898.88 7696.32 27898.76 239
SR-MVS-dyc-post99.45 2799.31 3999.85 2899.76 5499.82 2399.63 6499.52 9198.38 8399.76 4099.82 5198.53 7599.95 4698.61 12599.81 8399.77 69
RE-MVS-def99.34 2899.76 5499.82 2399.63 6499.52 9198.38 8399.76 4099.82 5198.75 5998.61 12599.81 8399.77 69
test072699.85 2699.89 499.62 7099.50 12499.10 1099.86 1299.82 5198.94 34
SMA-MVScopyleft99.44 3199.30 4399.85 2899.73 7999.83 1799.56 10499.47 16397.45 19199.78 3499.82 5199.18 1099.91 9498.79 9999.89 3399.81 44
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
nrg03098.64 15098.42 15599.28 14999.05 27599.69 5299.81 1599.46 17398.04 13199.01 21899.82 5196.69 14899.38 25799.34 3094.59 31698.78 233
FC-MVSNet-test98.75 14198.62 14199.15 16399.08 26999.45 9899.86 899.60 4098.23 10298.70 26799.82 5196.80 14299.22 28899.07 5796.38 27698.79 232
EI-MVSNet-Vis-set99.58 599.56 399.64 8099.78 4699.15 13299.61 7699.45 18599.01 2199.89 499.82 5199.01 1999.92 8399.56 599.95 699.85 16
APD-MVS_3200maxsize99.48 2099.35 2699.85 2899.76 5499.83 1799.63 6499.54 7498.36 8799.79 2999.82 5198.86 4399.95 4698.62 12299.81 8399.78 67
EU-MVSNet97.98 21098.03 18597.81 30398.72 31796.65 29399.66 5299.66 2798.09 12098.35 29999.82 5195.25 19898.01 34897.41 24395.30 30398.78 233
APD-MVScopyleft99.27 6499.08 7599.84 3599.75 6499.79 3399.50 13299.50 12497.16 21999.77 3699.82 5198.78 5199.94 5797.56 22899.86 5199.80 54
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TAMVS99.12 8899.08 7599.24 15499.46 17798.55 19799.51 12699.46 17398.09 12099.45 11999.82 5198.34 9399.51 23898.70 11098.93 17999.67 112
DeepC-MVS_fast98.69 199.49 1699.39 1899.77 5099.63 12499.59 7399.36 20099.46 17399.07 1699.79 2999.82 5198.85 4499.92 8398.68 11599.87 4099.82 38
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS99.13 8299.02 8599.45 12099.57 14498.63 19199.07 26999.34 24198.99 2899.61 8699.82 5197.98 11099.87 12597.00 26599.80 8799.85 16
DVP-MVS++.99.59 399.50 899.88 699.51 15699.88 899.87 599.51 10498.99 2899.88 599.81 6499.27 599.96 1998.85 8799.80 8799.81 44
test_one_060199.81 4199.88 899.49 13298.97 3499.65 7499.81 6499.09 14
SED-MVS99.61 299.52 699.88 699.84 3399.90 299.60 7799.48 14599.08 1499.91 199.81 6499.20 799.96 1998.91 7399.85 5899.79 59
test_241102_TWO99.48 14599.08 1499.88 599.81 6498.94 3499.96 1998.91 7399.84 6599.88 7
OPM-MVS98.19 17898.10 17598.45 25298.88 29497.07 26999.28 22199.38 22298.57 6799.22 17899.81 6492.12 28999.66 21698.08 18297.54 24098.61 300
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
zzz-MVS99.49 1699.36 2399.89 499.90 499.86 1399.36 20099.47 16398.79 5499.68 5799.81 6498.43 8499.97 1198.88 7699.90 2399.83 31
MTAPA99.52 1499.39 1899.89 499.90 499.86 1399.66 5299.47 16398.79 5499.68 5799.81 6498.43 8499.97 1198.88 7699.90 2399.83 31
FIs98.78 13898.63 13699.23 15699.18 24799.54 8299.83 1299.59 4398.28 9598.79 25499.81 6496.75 14699.37 26099.08 5696.38 27698.78 233
mvs_tets98.40 16398.23 16798.91 19398.67 32398.51 20599.66 5299.53 8598.19 10698.65 27699.81 6492.75 26899.44 24899.31 3397.48 24898.77 237
mvs_anonymous99.03 10698.99 9099.16 16199.38 19898.52 20399.51 12699.38 22297.79 15499.38 14199.81 6497.30 12799.45 24399.35 2698.99 17699.51 161
TSAR-MVS + GP.99.36 5199.36 2399.36 13299.67 10598.61 19499.07 26999.33 24899.00 2599.82 2299.81 6499.06 1699.84 13999.09 5599.42 14099.65 119
abl_699.44 3199.31 3999.83 3699.85 2699.75 4399.66 5299.59 4398.13 11399.82 2299.81 6498.60 7299.96 1998.46 14899.88 3699.79 59
RRT_test8_iter0597.72 25197.60 23298.08 28199.23 23496.08 30999.63 6499.49 13297.54 18298.94 23199.81 6487.99 34599.35 26899.21 4396.51 27398.81 230
EPNet98.86 12298.71 12799.30 14397.20 35598.18 22299.62 7098.91 31699.28 298.63 27899.81 6495.96 16899.99 199.24 4099.72 10999.73 87
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ab-mvs98.86 12298.63 13699.54 9699.64 12199.19 12399.44 16199.54 7497.77 15699.30 15799.81 6494.20 23899.93 7299.17 4798.82 18799.49 165
OMC-MVS99.08 9999.04 8099.20 15799.67 10598.22 22199.28 22199.52 9198.07 12599.66 6899.81 6497.79 11499.78 17497.79 20399.81 8399.60 136
xxxxxxxxxxxxxcwj99.43 3599.32 3299.75 5499.76 5499.59 7399.14 25799.53 8599.00 2599.71 5099.80 8098.95 3199.93 7298.19 16999.84 6599.74 80
SF-MVS99.38 4999.24 5999.79 4699.79 4499.68 5499.57 9799.54 7497.82 15399.71 5099.80 8098.95 3199.93 7298.19 16999.84 6599.74 80
DVP-MVScopyleft99.57 899.47 1099.88 699.85 2699.89 499.57 9799.37 23199.10 1099.81 2499.80 8098.94 3499.96 1998.93 7099.86 5199.81 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.99 2899.81 2499.80 8099.09 1499.96 1998.85 8799.90 2399.88 7
jajsoiax98.43 15898.28 16598.88 20198.60 33098.43 21299.82 1399.53 8598.19 10698.63 27899.80 8093.22 26099.44 24899.22 4197.50 24498.77 237
Regformer-399.57 899.53 599.68 6899.76 5499.29 11399.58 9199.44 19499.01 2199.87 1199.80 8098.97 2799.91 9499.44 2199.92 1199.83 31
Regformer-499.59 399.54 499.73 6199.76 5499.41 10299.58 9199.49 13299.02 1899.88 599.80 8099.00 2599.94 5799.45 1999.92 1199.84 20
PGM-MVS99.45 2799.31 3999.86 2199.87 1699.78 4099.58 9199.65 3297.84 14799.71 5099.80 8099.12 1399.97 1198.33 16099.87 4099.83 31
TransMVSNet (Re)97.15 28696.58 29098.86 20899.12 26098.85 17299.49 14298.91 31695.48 31497.16 33499.80 8093.38 25699.11 30794.16 32991.73 34498.62 291
K. test v397.10 28896.79 28998.01 28798.72 31796.33 30399.87 597.05 36097.59 17496.16 34599.80 8088.71 33599.04 31396.69 28496.55 27198.65 279
DELS-MVS99.48 2099.42 1499.65 7599.72 8499.40 10499.05 27499.66 2799.14 699.57 9799.80 8098.46 8299.94 5799.57 499.84 6599.60 136
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CSCG99.32 5699.32 3299.32 13899.85 2698.29 21799.71 3799.66 2798.11 11799.41 13199.80 8098.37 9199.96 1998.99 6399.96 599.72 93
test117299.43 3599.29 4799.85 2899.75 6499.82 2399.60 7799.56 5798.28 9599.74 4499.79 9298.53 7599.95 4698.55 13999.78 9499.79 59
SR-MVS99.43 3599.29 4799.86 2199.75 6499.83 1799.59 8399.62 3398.21 10599.73 4699.79 9298.68 6699.96 1998.44 15099.77 9799.79 59
MP-MVS-pluss99.37 5099.20 6399.88 699.90 499.87 1299.30 21599.52 9197.18 21799.60 9099.79 9298.79 5099.95 4698.83 9399.91 1699.83 31
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pm-mvs197.68 25997.28 27498.88 20199.06 27298.62 19299.50 13299.45 18596.32 28497.87 31899.79 9292.47 28299.35 26897.54 23093.54 33198.67 269
LFMVS97.90 22097.35 26599.54 9699.52 15499.01 14899.39 18898.24 34697.10 22799.65 7499.79 9284.79 35699.91 9499.28 3698.38 20599.69 105
TinyColmap97.12 28796.89 28797.83 30099.07 27095.52 32198.57 33698.74 33097.58 17697.81 32199.79 9288.16 34399.56 23495.10 31697.21 25998.39 325
ACMP97.20 1198.06 19397.94 19798.45 25299.37 20097.01 27699.44 16199.49 13297.54 18298.45 29199.79 9291.95 29299.72 19597.91 19397.49 24798.62 291
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GeoE98.85 13098.62 14199.53 10299.61 13499.08 14099.80 1999.51 10497.10 22799.31 15599.78 9995.23 19999.77 17698.21 16799.03 17299.75 75
9.1499.10 7299.72 8499.40 18499.51 10497.53 18499.64 7899.78 9998.84 4599.91 9497.63 21999.82 80
pmmvs696.53 29696.09 29997.82 30298.69 32195.47 32299.37 19699.47 16393.46 34197.41 32799.78 9987.06 35099.33 27296.92 27492.70 34198.65 279
MSLP-MVS++99.46 2599.47 1099.44 12599.60 13899.16 12899.41 17699.71 1398.98 3199.45 11999.78 9999.19 999.54 23799.28 3699.84 6599.63 130
VNet99.11 9398.90 10399.73 6199.52 15499.56 7899.41 17699.39 21699.01 2199.74 4499.78 9995.56 18599.92 8399.52 798.18 21699.72 93
114514_t98.93 11698.67 13199.72 6499.85 2699.53 8599.62 7099.59 4392.65 34699.71 5099.78 9998.06 10899.90 10998.84 9099.91 1699.74 80
Vis-MVSNet (Re-imp)98.87 11998.72 12599.31 13999.71 9098.88 16899.80 1999.44 19497.91 14199.36 14699.78 9995.49 18899.43 25297.91 19399.11 16399.62 132
UniMVSNet_ETH3D97.32 28296.81 28898.87 20599.40 19497.46 25399.51 12699.53 8595.86 31198.54 28699.77 10682.44 36199.66 21698.68 11597.52 24199.50 164
anonymousdsp98.44 15798.28 16598.94 18598.50 33598.96 15799.77 2799.50 12497.07 22998.87 24299.77 10694.76 21799.28 27898.66 11897.60 23498.57 306
CDS-MVSNet99.09 9799.03 8299.25 15299.42 18698.73 18399.45 15799.46 17398.11 11799.46 11899.77 10698.01 10999.37 26098.70 11098.92 18199.66 115
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MSDG98.98 11298.80 11899.53 10299.76 5499.19 12398.75 32299.55 6797.25 21199.47 11699.77 10697.82 11399.87 12596.93 27299.90 2399.54 149
CHOSEN 280x42099.12 8899.13 6999.08 16699.66 11497.89 23898.43 34399.71 1398.88 4499.62 8399.76 11096.63 14999.70 20799.46 1899.99 199.66 115
PS-MVSNAJss98.92 11798.92 10098.90 19598.78 30998.53 19999.78 2599.54 7498.07 12599.00 22399.76 11099.01 1999.37 26099.13 5197.23 25898.81 230
Regformer-199.53 1299.47 1099.72 6499.71 9099.44 9999.49 14299.46 17398.95 3799.83 1999.76 11099.01 1999.93 7299.17 4799.87 4099.80 54
Regformer-299.54 1099.47 1099.75 5499.71 9099.52 8899.49 14299.49 13298.94 3899.83 1999.76 11099.01 1999.94 5799.15 5099.87 4099.80 54
MVS_Test99.10 9698.97 9499.48 11499.49 16899.14 13399.67 4899.34 24197.31 20599.58 9599.76 11097.65 11899.82 15798.87 8099.07 16999.46 173
ETH3D-3000-0.199.21 7099.02 8599.77 5099.73 7999.69 5299.38 19399.51 10497.45 19199.61 8699.75 11598.51 7899.91 9497.45 24099.83 7499.71 100
CANet_DTU98.97 11498.87 10799.25 15299.33 20898.42 21499.08 26899.30 26599.16 599.43 12499.75 11595.27 19599.97 1198.56 13699.95 699.36 183
mPP-MVS99.44 3199.30 4399.86 2199.88 1299.79 3399.69 4099.48 14598.12 11599.50 11199.75 11598.78 5199.97 1198.57 13399.89 3399.83 31
HPM-MVS_fast99.51 1599.40 1799.85 2899.91 199.79 3399.76 3099.56 5797.72 16299.76 4099.75 11599.13 1299.92 8399.07 5799.92 1199.85 16
HyFIR lowres test99.11 9398.92 10099.65 7599.90 499.37 10599.02 28399.91 397.67 16999.59 9399.75 11595.90 17499.73 19199.53 699.02 17499.86 13
ITE_SJBPF98.08 28199.29 22196.37 30198.92 31398.34 8998.83 24899.75 11591.09 31099.62 22995.82 30097.40 25498.25 332
test_241102_ONE99.84 3399.90 299.48 14599.07 1699.91 199.74 12199.20 799.76 180
testtj99.12 8898.87 10799.86 2199.72 8499.79 3399.44 16199.51 10497.29 20799.59 9399.74 12198.15 10599.96 1996.74 28099.69 11599.81 44
Anonymous20240521198.30 17097.98 19099.26 15199.57 14498.16 22399.41 17698.55 34296.03 30999.19 18799.74 12191.87 29399.92 8399.16 4998.29 21199.70 102
tttt051798.42 15998.14 17199.28 14999.66 11498.38 21599.74 3496.85 36197.68 16699.79 2999.74 12191.39 30699.89 11798.83 9399.56 13399.57 145
XVS99.53 1299.42 1499.87 1299.85 2699.83 1799.69 4099.68 1998.98 3199.37 14399.74 12198.81 4899.94 5798.79 9999.86 5199.84 20
MP-MVScopyleft99.33 5599.15 6799.87 1299.88 1299.82 2399.66 5299.46 17398.09 12099.48 11599.74 12198.29 9699.96 1997.93 19299.87 4099.82 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS_111021_LR99.41 4499.33 3099.65 7599.77 5199.51 9098.94 30499.85 698.82 4999.65 7499.74 12198.51 7899.80 16698.83 9399.89 3399.64 126
VPNet97.84 22997.44 25399.01 17599.21 24098.94 16299.48 14899.57 5198.38 8399.28 16299.73 12888.89 33499.39 25599.19 4493.27 33498.71 249
MVSTER98.49 15498.32 16299.00 17799.35 20399.02 14699.54 11699.38 22297.41 19899.20 18499.73 12893.86 25099.36 26498.87 8097.56 23898.62 291
MVS_111021_HR99.41 4499.32 3299.66 7199.72 8499.47 9598.95 30299.85 698.82 4999.54 10399.73 12898.51 7899.74 18498.91 7399.88 3699.77 69
PHI-MVS99.30 5899.17 6699.70 6799.56 14899.52 8899.58 9199.80 897.12 22399.62 8399.73 12898.58 7399.90 10998.61 12599.91 1699.68 109
IterMVS-SCA-FT97.82 23497.75 21898.06 28399.57 14496.36 30299.02 28399.49 13297.18 21798.71 26199.72 13292.72 27199.14 29997.44 24195.86 29098.67 269
diffmvs99.14 8099.02 8599.51 11099.61 13498.96 15799.28 22199.49 13298.46 7599.72 4999.71 13396.50 15399.88 12299.31 3399.11 16399.67 112
XVG-OURS-SEG-HR98.69 14598.62 14198.89 19899.71 9097.74 24599.12 25999.54 7498.44 7999.42 12799.71 13394.20 23899.92 8398.54 14198.90 18399.00 216
EPNet_dtu98.03 20197.96 19398.23 27498.27 33995.54 32099.23 24098.75 32799.02 1897.82 32099.71 13396.11 16499.48 23993.04 34099.65 12599.69 105
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNVR-MVS99.42 4099.30 4399.78 4899.62 13099.71 4999.26 23599.52 9198.82 4999.39 13899.71 13398.96 2899.85 13498.59 13099.80 8799.77 69
PC_three_145298.18 10999.84 1499.70 13799.31 398.52 34098.30 16499.80 8799.81 44
OPU-MVS99.64 8099.56 14899.72 4799.60 7799.70 13799.27 599.42 25398.24 16699.80 8799.79 59
tfpnnormal97.84 22997.47 24598.98 17999.20 24299.22 12299.64 6299.61 3596.32 28498.27 30499.70 13793.35 25799.44 24895.69 30495.40 30198.27 330
v7n97.87 22397.52 23998.92 18998.76 31398.58 19599.84 999.46 17396.20 29498.91 23599.70 13794.89 20899.44 24896.03 29793.89 32798.75 241
testdata99.54 9699.75 6498.95 15999.51 10497.07 22999.43 12499.70 13798.87 4299.94 5797.76 20699.64 12699.72 93
IterMVS97.83 23197.77 21498.02 28699.58 14296.27 30599.02 28399.48 14597.22 21598.71 26199.70 13792.75 26899.13 30297.46 23896.00 28498.67 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PCF-MVS97.08 1497.66 26397.06 28499.47 11799.61 13499.09 13998.04 35699.25 27591.24 35198.51 28799.70 13794.55 22899.91 9492.76 34499.85 5899.42 178
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
LTVRE_ROB97.16 1298.02 20397.90 20098.40 25999.23 23496.80 28899.70 3899.60 4097.12 22398.18 30799.70 13791.73 29899.72 19598.39 15297.45 24998.68 262
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_part197.75 24597.24 27899.29 14699.59 14099.63 6599.65 5999.49 13296.17 29798.44 29299.69 14589.80 32599.47 24098.68 11593.66 32998.78 233
HFP-MVS99.49 1699.37 2199.86 2199.87 1699.80 2999.66 5299.67 2298.15 11199.68 5799.69 14599.06 1699.96 1998.69 11399.87 4099.84 20
#test#99.43 3599.29 4799.86 2199.87 1699.80 2999.55 11399.67 2297.83 14899.68 5799.69 14599.06 1699.96 1998.39 15299.87 4099.84 20
旧先验199.74 7299.59 7399.54 7499.69 14598.47 8199.68 12099.73 87
ACMMPR99.49 1699.36 2399.86 2199.87 1699.79 3399.66 5299.67 2298.15 11199.67 6399.69 14598.95 3199.96 1998.69 11399.87 4099.84 20
CPTT-MVS99.11 9398.90 10399.74 5999.80 4399.46 9799.59 8399.49 13297.03 23499.63 7999.69 14597.27 12999.96 1997.82 20199.84 6599.81 44
DROMVSNet99.44 3199.39 1899.58 9099.56 14899.49 9199.88 199.58 4998.38 8399.73 4699.69 14598.20 10099.70 20799.64 199.82 8099.54 149
GST-MVS99.40 4799.24 5999.85 2899.86 2299.79 3399.60 7799.67 2297.97 13699.63 7999.68 15298.52 7799.95 4698.38 15499.86 5199.81 44
Anonymous2023121197.88 22197.54 23898.90 19599.71 9098.53 19999.48 14899.57 5194.16 33398.81 25099.68 15293.23 25899.42 25398.84 9094.42 31998.76 239
region2R99.48 2099.35 2699.87 1299.88 1299.80 2999.65 5999.66 2798.13 11399.66 6899.68 15298.96 2899.96 1998.62 12299.87 4099.84 20
PS-CasMVS97.93 21597.59 23498.95 18498.99 28299.06 14399.68 4599.52 9197.13 22198.31 30199.68 15292.44 28699.05 31298.51 14294.08 32598.75 241
HY-MVS97.30 798.85 13098.64 13599.47 11799.42 18699.08 14099.62 7099.36 23297.39 20099.28 16299.68 15296.44 15699.92 8398.37 15698.22 21299.40 181
DP-MVS Recon99.12 8898.95 9899.65 7599.74 7299.70 5199.27 22699.57 5196.40 28299.42 12799.68 15298.75 5999.80 16697.98 18899.72 10999.44 176
ETH3D cwj APD-0.1699.06 10198.84 11399.72 6499.51 15699.60 7099.23 24099.44 19497.04 23299.39 13899.67 15898.30 9599.92 8397.27 24799.69 11599.64 126
ADS-MVSNet298.02 20398.07 18297.87 29799.33 20895.19 32999.23 24099.08 29796.24 29199.10 20299.67 15894.11 24298.93 33296.81 27799.05 17099.48 166
ADS-MVSNet98.20 17798.08 17998.56 23899.33 20896.48 29899.23 24099.15 28996.24 29199.10 20299.67 15894.11 24299.71 20196.81 27799.05 17099.48 166
DTE-MVSNet97.51 27397.19 28098.46 25198.63 32698.13 22699.84 999.48 14596.68 25697.97 31699.67 15892.92 26498.56 33996.88 27692.60 34298.70 253
Baseline_NR-MVSNet97.76 24197.45 24898.68 22899.09 26798.29 21799.41 17698.85 32295.65 31398.63 27899.67 15894.82 21099.10 30998.07 18592.89 33898.64 281
CMPMVSbinary69.68 2394.13 32394.90 31591.84 34397.24 35480.01 36898.52 33999.48 14589.01 35591.99 35999.67 15885.67 35499.13 30295.44 30997.03 26496.39 359
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
原ACMM199.65 7599.73 7999.33 10799.47 16397.46 18899.12 19799.66 16498.67 6999.91 9497.70 21599.69 11599.71 100
thisisatest053098.35 16698.03 18599.31 13999.63 12498.56 19699.54 11696.75 36397.53 18499.73 4699.65 16591.25 30999.89 11798.62 12299.56 13399.48 166
test22299.75 6499.49 9198.91 30799.49 13296.42 28099.34 15299.65 16598.28 9799.69 11599.72 93
112199.09 9798.87 10799.75 5499.74 7299.60 7099.27 22699.48 14596.82 25099.25 17299.65 16598.38 8999.93 7297.53 23199.67 12299.73 87
MVSFormer99.17 7699.12 7099.29 14699.51 15698.94 16299.88 199.46 17397.55 17999.80 2799.65 16597.39 12299.28 27899.03 5999.85 5899.65 119
jason99.13 8299.03 8299.45 12099.46 17798.87 16999.12 25999.26 27398.03 13399.79 2999.65 16597.02 13699.85 13499.02 6199.90 2399.65 119
jason: jason.
BH-RMVSNet98.41 16198.08 17999.40 12899.41 18998.83 17699.30 21598.77 32697.70 16498.94 23199.65 16592.91 26699.74 18496.52 28899.55 13599.64 126
sss99.17 7699.05 7799.53 10299.62 13098.97 15399.36 20099.62 3397.83 14899.67 6399.65 16597.37 12699.95 4699.19 4499.19 15799.68 109
h-mvs3397.70 25697.28 27498.97 18199.70 9797.27 25899.36 20099.45 18598.94 3899.66 6899.64 17294.93 20499.99 199.48 1584.36 35699.65 119
ZNCC-MVS99.47 2399.33 3099.87 1299.87 1699.81 2799.64 6299.67 2298.08 12499.55 10299.64 17298.91 3999.96 1998.72 10899.90 2399.82 38
新几何199.75 5499.75 6499.59 7399.54 7496.76 25199.29 16099.64 17298.43 8499.94 5796.92 27499.66 12399.72 93
PEN-MVS97.76 24197.44 25398.72 22598.77 31298.54 19899.78 2599.51 10497.06 23198.29 30399.64 17292.63 27798.89 33598.09 17893.16 33598.72 247
CP-MVSNet98.09 19097.78 21299.01 17598.97 28799.24 11999.67 4899.46 17397.25 21198.48 29099.64 17293.79 25199.06 31198.63 12194.10 32498.74 245
LF4IMVS97.52 27197.46 24797.70 30898.98 28595.55 31899.29 21998.82 32598.07 12598.66 27099.64 17289.97 32399.61 23097.01 26496.68 26697.94 348
bset_n11_16_dypcd98.16 18297.97 19198.73 22398.26 34098.28 21997.99 35798.01 35197.68 16699.10 20299.63 17895.68 18299.15 29898.78 10296.55 27198.75 241
HPM-MVScopyleft99.42 4099.28 5199.83 3699.90 499.72 4799.81 1599.54 7497.59 17499.68 5799.63 17898.91 3999.94 5798.58 13199.91 1699.84 20
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
NCCC99.34 5399.19 6499.79 4699.61 13499.65 6299.30 21599.48 14598.86 4599.21 18199.63 17898.72 6399.90 10998.25 16599.63 12899.80 54
CP-MVS99.45 2799.32 3299.85 2899.83 3799.75 4399.69 4099.52 9198.07 12599.53 10599.63 17898.93 3899.97 1198.74 10499.91 1699.83 31
AdaColmapbinary99.01 11098.80 11899.66 7199.56 14899.54 8299.18 24999.70 1598.18 10999.35 14999.63 17896.32 15999.90 10997.48 23599.77 9799.55 147
TAPA-MVS97.07 1597.74 24897.34 26898.94 18599.70 9797.53 25199.25 23799.51 10491.90 34899.30 15799.63 17898.78 5199.64 22388.09 35999.87 4099.65 119
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ppachtmachnet_test97.49 27797.45 24897.61 30998.62 32795.24 32798.80 31799.46 17396.11 30498.22 30599.62 18496.45 15598.97 32993.77 33195.97 28898.61 300
MCST-MVS99.43 3599.30 4399.82 3899.79 4499.74 4699.29 21999.40 21298.79 5499.52 10899.62 18498.91 3999.90 10998.64 12099.75 10299.82 38
WTY-MVS99.06 10198.88 10699.61 8599.62 13099.16 12899.37 19699.56 5798.04 13199.53 10599.62 18496.84 14199.94 5798.85 8798.49 20399.72 93
MDTV_nov1_ep1398.32 16299.11 26294.44 34099.27 22698.74 33097.51 18699.40 13699.62 18494.78 21399.76 18097.59 22298.81 189
CANet99.25 6899.14 6899.59 8799.41 18999.16 12899.35 20699.57 5198.82 4999.51 11099.61 18896.46 15499.95 4699.59 299.98 299.65 119
HQP_MVS98.27 17398.22 16898.44 25599.29 22196.97 28099.39 18899.47 16398.97 3499.11 19999.61 18892.71 27399.69 21197.78 20497.63 23198.67 269
plane_prior499.61 188
ETH3 D test640098.70 14398.35 15999.73 6199.69 10099.60 7099.16 25199.45 18595.42 31599.27 16599.60 19197.39 12299.91 9495.36 31399.83 7499.70 102
baseline198.31 16897.95 19599.38 13199.50 16698.74 18299.59 8398.93 31198.41 8099.14 19499.60 19194.59 22599.79 16998.48 14493.29 33399.61 134
TranMVSNet+NR-MVSNet97.93 21597.66 22698.76 22298.78 30998.62 19299.65 5999.49 13297.76 15798.49 28999.60 19194.23 23798.97 32998.00 18792.90 33798.70 253
tpmrst98.33 16798.48 15297.90 29699.16 25594.78 33799.31 21399.11 29397.27 20999.45 11999.59 19495.33 19399.84 13998.48 14498.61 19399.09 203
IterMVS-LS98.46 15698.42 15598.58 23599.59 14098.00 23099.37 19699.43 20296.94 24299.07 20999.59 19497.87 11199.03 31598.32 16295.62 29698.71 249
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
F-COLMAP99.19 7299.04 8099.64 8099.78 4699.27 11699.42 17499.54 7497.29 20799.41 13199.59 19498.42 8799.93 7298.19 16999.69 11599.73 87
pmmvs498.13 18697.90 20098.81 21698.61 32998.87 16998.99 29099.21 28296.44 27899.06 21399.58 19795.90 17499.11 30797.18 25796.11 28298.46 318
1112_ss98.98 11298.77 12199.59 8799.68 10499.02 14699.25 23799.48 14597.23 21499.13 19599.58 19796.93 14099.90 10998.87 8098.78 19099.84 20
ab-mvs-re8.30 34211.06 3450.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 37699.58 1970.00 3800.00 3760.00 3740.00 3740.00 372
PatchmatchNetpermissive98.31 16898.36 15798.19 27699.16 25595.32 32699.27 22698.92 31397.37 20199.37 14399.58 19794.90 20799.70 20797.43 24299.21 15599.54 149
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA98.19 17898.16 16998.27 27399.30 21795.55 31899.07 26998.97 30797.57 17799.43 12499.57 20192.72 27199.74 18497.58 22399.20 15699.52 155
Patchmatch-test97.93 21597.65 22798.77 22199.18 24797.07 26999.03 28099.14 29196.16 29998.74 25899.57 20194.56 22799.72 19593.36 33699.11 16399.52 155
PVSNet96.02 1798.85 13098.84 11398.89 19899.73 7997.28 25798.32 34999.60 4097.86 14399.50 11199.57 20196.75 14699.86 12898.56 13699.70 11499.54 149
cdsmvs_eth3d_5k24.64 34132.85 3440.00 3570.00 3800.00 3810.00 36899.51 1040.00 3750.00 37699.56 20496.58 1500.00 3760.00 3740.00 3740.00 372
131498.68 14698.54 15099.11 16598.89 29398.65 18999.27 22699.49 13296.89 24497.99 31599.56 20497.72 11799.83 15097.74 20999.27 15298.84 229
lupinMVS99.13 8299.01 8999.46 11999.51 15698.94 16299.05 27499.16 28897.86 14399.80 2799.56 20497.39 12299.86 12898.94 6899.85 5899.58 144
miper_lstm_enhance98.00 20897.91 19998.28 27299.34 20797.43 25498.88 30999.36 23296.48 27598.80 25299.55 20795.98 16798.91 33397.27 24795.50 30098.51 310
DPM-MVS98.95 11598.71 12799.66 7199.63 12499.55 8098.64 33299.10 29497.93 13999.42 12799.55 20798.67 6999.80 16695.80 30299.68 12099.61 134
CDPH-MVS99.13 8298.91 10299.80 4399.75 6499.71 4999.15 25599.41 20696.60 26599.60 9099.55 20798.83 4699.90 10997.48 23599.83 7499.78 67
dp97.75 24597.80 20897.59 31099.10 26593.71 34999.32 21198.88 32096.48 27599.08 20899.55 20792.67 27699.82 15796.52 28898.58 19699.24 192
CLD-MVS98.16 18298.10 17598.33 26499.29 22196.82 28798.75 32299.44 19497.83 14899.13 19599.55 20792.92 26499.67 21398.32 16297.69 23098.48 312
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ZD-MVS99.71 9099.79 3399.61 3596.84 24799.56 9899.54 21298.58 7399.96 1996.93 27299.75 102
cl____98.01 20697.84 20798.55 24099.25 23297.97 23298.71 32699.34 24196.47 27798.59 28499.54 21295.65 18499.21 29397.21 25195.77 29198.46 318
DIV-MVS_self_test98.01 20697.85 20698.48 24699.24 23397.95 23698.71 32699.35 23796.50 27098.60 28399.54 21295.72 18199.03 31597.21 25195.77 29198.46 318
MVS97.28 28396.55 29199.48 11498.78 30998.95 15999.27 22699.39 21683.53 36198.08 31099.54 21296.97 13899.87 12594.23 32799.16 15899.63 130
pmmvs597.52 27197.30 27398.16 27898.57 33296.73 28999.27 22698.90 31896.14 30298.37 29799.53 21691.54 30599.14 29997.51 23395.87 28998.63 289
HPM-MVS++copyleft99.39 4899.23 6199.87 1299.75 6499.84 1699.43 16799.51 10498.68 6299.27 16599.53 21698.64 7199.96 1998.44 15099.80 8799.79 59
PatchMatch-RL98.84 13398.62 14199.52 10899.71 9099.28 11499.06 27299.77 997.74 16199.50 11199.53 21695.41 18999.84 13997.17 25899.64 12699.44 176
eth_miper_zixun_eth98.05 19897.96 19398.33 26499.26 22897.38 25598.56 33899.31 26196.65 25998.88 24099.52 21996.58 15099.12 30697.39 24495.53 29998.47 314
test_prior399.21 7099.05 7799.68 6899.67 10599.48 9398.96 29899.56 5798.34 8999.01 21899.52 21998.68 6699.83 15097.96 18999.74 10599.74 80
test_prior298.96 29898.34 8999.01 21899.52 21998.68 6697.96 18999.74 105
test_040296.64 29496.24 29697.85 29898.85 30296.43 30099.44 16199.26 27393.52 33996.98 33899.52 21988.52 33999.20 29592.58 34697.50 24497.93 349
test_yl98.86 12298.63 13699.54 9699.49 16899.18 12599.50 13299.07 29998.22 10399.61 8699.51 22395.37 19199.84 13998.60 12898.33 20699.59 140
DCV-MVSNet98.86 12298.63 13699.54 9699.49 16899.18 12599.50 13299.07 29998.22 10399.61 8699.51 22395.37 19199.84 13998.60 12898.33 20699.59 140
v14897.79 23997.55 23598.50 24398.74 31497.72 24799.54 11699.33 24896.26 28998.90 23799.51 22394.68 22199.14 29997.83 20093.15 33698.63 289
DU-MVS98.08 19297.79 20998.96 18298.87 29898.98 15099.41 17699.45 18597.87 14298.71 26199.50 22694.82 21099.22 28898.57 13392.87 33998.68 262
NR-MVSNet97.97 21397.61 23199.02 17498.87 29899.26 11799.47 15399.42 20497.63 17297.08 33699.50 22695.07 20299.13 30297.86 19793.59 33098.68 262
XVG-ACMP-BASELINE97.83 23197.71 22298.20 27599.11 26296.33 30399.41 17699.52 9198.06 12999.05 21499.50 22689.64 32899.73 19197.73 21097.38 25598.53 308
MSP-MVS99.42 4099.27 5399.88 699.89 999.80 2999.67 4899.50 12498.70 6099.77 3699.49 22998.21 9999.95 4698.46 14899.77 9799.88 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TEST999.67 10599.65 6299.05 27499.41 20696.22 29398.95 22999.49 22998.77 5499.91 94
train_agg99.02 10798.77 12199.77 5099.67 10599.65 6299.05 27499.41 20696.28 28698.95 22999.49 22998.76 5699.91 9497.63 21999.72 10999.75 75
agg_prior199.01 11098.76 12399.76 5399.67 10599.62 6698.99 29099.40 21296.26 28998.87 24299.49 22998.77 5499.91 9497.69 21699.72 10999.75 75
PVSNet_Blended99.08 9998.97 9499.42 12799.76 5498.79 18098.78 31999.91 396.74 25299.67 6399.49 22997.53 11999.88 12298.98 6499.85 5899.60 136
CNLPA99.14 8098.99 9099.59 8799.58 14299.41 10299.16 25199.44 19498.45 7699.19 18799.49 22998.08 10799.89 11797.73 21099.75 10299.48 166
test_899.67 10599.61 6899.03 28099.41 20696.28 28698.93 23399.48 23598.76 5699.91 94
EPMVS97.82 23497.65 22798.35 26398.88 29495.98 31099.49 14294.71 37197.57 17799.26 17099.48 23592.46 28599.71 20197.87 19699.08 16899.35 184
PLCcopyleft97.94 499.02 10798.85 11299.53 10299.66 11499.01 14899.24 23999.52 9196.85 24699.27 16599.48 23598.25 9899.91 9497.76 20699.62 12999.65 119
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
xiu_mvs_v1_base_debu99.29 6199.27 5399.34 13399.63 12498.97 15399.12 25999.51 10498.86 4599.84 1499.47 23898.18 10199.99 199.50 1099.31 14999.08 204
xiu_mvs_v1_base99.29 6199.27 5399.34 13399.63 12498.97 15399.12 25999.51 10498.86 4599.84 1499.47 23898.18 10199.99 199.50 1099.31 14999.08 204
xiu_mvs_v1_base_debi99.29 6199.27 5399.34 13399.63 12498.97 15399.12 25999.51 10498.86 4599.84 1499.47 23898.18 10199.99 199.50 1099.31 14999.08 204
v192192097.80 23897.45 24898.84 21298.80 30598.53 19999.52 12299.34 24196.15 30199.24 17399.47 23893.98 24699.29 27795.40 31195.13 30798.69 257
UniMVSNet_NR-MVSNet98.22 17497.97 19198.96 18298.92 29198.98 15099.48 14899.53 8597.76 15798.71 26199.46 24296.43 15799.22 28898.57 13392.87 33998.69 257
testgi97.65 26497.50 24298.13 28099.36 20296.45 29999.42 17499.48 14597.76 15797.87 31899.45 24391.09 31098.81 33694.53 32398.52 20199.13 198
EIA-MVS99.18 7499.09 7499.45 12099.49 16899.18 12599.67 4899.53 8597.66 17099.40 13699.44 24498.10 10699.81 16198.94 6899.62 12999.35 184
CS-MVS-test99.30 5899.25 5799.45 12099.46 17799.23 12099.80 1999.57 5198.28 9599.53 10599.44 24498.16 10499.79 16999.38 2499.61 13199.34 186
tpm297.44 27997.34 26897.74 30699.15 25894.36 34299.45 15798.94 31093.45 34298.90 23799.44 24491.35 30799.59 23297.31 24598.07 22399.29 190
thisisatest051598.14 18597.79 20999.19 15899.50 16698.50 20698.61 33396.82 36296.95 24099.54 10399.43 24791.66 30299.86 12898.08 18299.51 13799.22 193
mvs-test198.86 12298.84 11398.89 19899.33 20897.77 24499.44 16199.30 26598.47 7399.10 20299.43 24796.78 14399.95 4698.73 10699.02 17498.96 222
WR-MVS98.06 19397.73 22099.06 16898.86 30199.25 11899.19 24899.35 23797.30 20698.66 27099.43 24793.94 24799.21 29398.58 13194.28 32198.71 249
hse-mvs297.50 27497.14 28198.59 23299.49 16897.05 27199.28 22199.22 27998.94 3899.66 6899.42 25094.93 20499.65 22099.48 1583.80 35899.08 204
v897.95 21497.63 23098.93 18798.95 28998.81 17999.80 1999.41 20696.03 30999.10 20299.42 25094.92 20699.30 27696.94 27194.08 32598.66 277
tpmvs97.98 21098.02 18797.84 29999.04 27694.73 33899.31 21399.20 28396.10 30898.76 25799.42 25094.94 20399.81 16196.97 26898.45 20498.97 220
UGNet98.87 11998.69 12999.40 12899.22 23898.72 18499.44 16199.68 1999.24 399.18 19099.42 25092.74 27099.96 1999.34 3099.94 999.53 154
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
AUN-MVS96.88 29096.31 29598.59 23299.48 17597.04 27499.27 22699.22 27997.44 19498.51 28799.41 25491.97 29199.66 21697.71 21383.83 35799.07 209
CS-MVS99.34 5399.31 3999.43 12699.44 18499.47 9599.68 4599.56 5798.41 8099.62 8399.41 25498.35 9299.76 18099.52 799.76 10099.05 211
Effi-MVS+98.81 13498.59 14799.48 11499.46 17799.12 13798.08 35599.50 12497.50 18799.38 14199.41 25496.37 15899.81 16199.11 5398.54 20099.51 161
v1097.85 22697.52 23998.86 20898.99 28298.67 18799.75 3199.41 20695.70 31298.98 22599.41 25494.75 21899.23 28596.01 29894.63 31598.67 269
v14419297.92 21897.60 23298.87 20598.83 30498.65 18999.55 11399.34 24196.20 29499.32 15499.40 25894.36 23399.26 28296.37 29395.03 30998.70 253
NP-MVS99.23 23496.92 28399.40 258
HQP-MVS98.02 20397.90 20098.37 26299.19 24496.83 28598.98 29499.39 21698.24 9998.66 27099.40 25892.47 28299.64 22397.19 25597.58 23698.64 281
MAR-MVS98.86 12298.63 13699.54 9699.37 20099.66 5999.45 15799.54 7496.61 26399.01 21899.40 25897.09 13399.86 12897.68 21899.53 13699.10 199
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS99.04 10499.03 8299.06 16899.40 19499.31 11199.55 11399.56 5798.54 6899.33 15399.39 26298.76 5699.78 17496.98 26799.78 9498.07 338
CR-MVSNet98.17 18197.93 19898.87 20599.18 24798.49 20799.22 24599.33 24896.96 23899.56 9899.38 26394.33 23499.00 32094.83 32198.58 19699.14 196
Patchmtry97.75 24597.40 25998.81 21699.10 26598.87 16999.11 26599.33 24894.83 32598.81 25099.38 26394.33 23499.02 31796.10 29595.57 29798.53 308
BH-untuned98.42 15998.36 15798.59 23299.49 16896.70 29099.27 22699.13 29297.24 21398.80 25299.38 26395.75 17999.74 18497.07 26399.16 15899.33 188
V4298.06 19397.79 20998.86 20898.98 28598.84 17399.69 4099.34 24196.53 26999.30 15799.37 26694.67 22299.32 27397.57 22794.66 31498.42 321
VPA-MVSNet98.29 17197.95 19599.30 14399.16 25599.54 8299.50 13299.58 4998.27 9899.35 14999.37 26692.53 28099.65 22099.35 2694.46 31798.72 247
PVSNet_BlendedMVS98.86 12298.80 11899.03 17399.76 5498.79 18099.28 22199.91 397.42 19799.67 6399.37 26697.53 11999.88 12298.98 6497.29 25798.42 321
D2MVS98.41 16198.50 15198.15 27999.26 22896.62 29499.40 18499.61 3597.71 16398.98 22599.36 26996.04 16699.67 21398.70 11097.41 25398.15 336
MVP-Stereo97.81 23697.75 21897.99 29097.53 34896.60 29598.96 29898.85 32297.22 21597.23 33199.36 26995.28 19499.46 24295.51 30899.78 9497.92 350
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v124097.69 25797.32 27198.79 21998.85 30298.43 21299.48 14899.36 23296.11 30499.27 16599.36 26993.76 25399.24 28494.46 32495.23 30498.70 253
v114497.98 21097.69 22398.85 21198.87 29898.66 18899.54 11699.35 23796.27 28899.23 17799.35 27294.67 22299.23 28596.73 28195.16 30698.68 262
v2v48298.06 19397.77 21498.92 18998.90 29298.82 17799.57 9799.36 23296.65 25999.19 18799.35 27294.20 23899.25 28397.72 21294.97 31098.69 257
CostFormer97.72 25197.73 22097.71 30799.15 25894.02 34599.54 11699.02 30394.67 32899.04 21599.35 27292.35 28899.77 17698.50 14397.94 22599.34 186
our_test_397.65 26497.68 22497.55 31298.62 32794.97 33398.84 31399.30 26596.83 24998.19 30699.34 27597.01 13799.02 31795.00 31996.01 28398.64 281
c3_l98.12 18898.04 18498.38 26199.30 21797.69 25098.81 31699.33 24896.67 25798.83 24899.34 27597.11 13298.99 32197.58 22395.34 30298.48 312
Fast-Effi-MVS+-dtu98.77 14098.83 11798.60 23199.41 18996.99 27899.52 12299.49 13298.11 11799.24 17399.34 27596.96 13999.79 16997.95 19199.45 13899.02 215
Fast-Effi-MVS+98.70 14398.43 15499.51 11099.51 15699.28 11499.52 12299.47 16396.11 30499.01 21899.34 27596.20 16399.84 13997.88 19598.82 18799.39 182
v119297.81 23697.44 25398.91 19398.88 29498.68 18699.51 12699.34 24196.18 29699.20 18499.34 27594.03 24599.36 26495.32 31495.18 30598.69 257
tpm97.67 26297.55 23598.03 28499.02 27995.01 33299.43 16798.54 34396.44 27899.12 19799.34 27591.83 29599.60 23197.75 20896.46 27499.48 166
PAPM97.59 26797.09 28399.07 16799.06 27298.26 22098.30 35099.10 29494.88 32498.08 31099.34 27596.27 16199.64 22389.87 35398.92 18199.31 189
GBi-Net97.68 25997.48 24398.29 26999.51 15697.26 26099.43 16799.48 14596.49 27199.07 20999.32 28290.26 31898.98 32297.10 26096.65 26798.62 291
test197.68 25997.48 24398.29 26999.51 15697.26 26099.43 16799.48 14596.49 27199.07 20999.32 28290.26 31898.98 32297.10 26096.65 26798.62 291
FMVSNet196.84 29196.36 29498.29 26999.32 21597.26 26099.43 16799.48 14595.11 31998.55 28599.32 28283.95 35798.98 32295.81 30196.26 27998.62 291
MS-PatchMatch97.24 28597.32 27196.99 32398.45 33793.51 35398.82 31599.32 25897.41 19898.13 30999.30 28588.99 33399.56 23495.68 30599.80 8797.90 351
GA-MVS97.85 22697.47 24599.00 17799.38 19897.99 23198.57 33699.15 28997.04 23298.90 23799.30 28589.83 32499.38 25796.70 28398.33 20699.62 132
miper_ehance_all_eth98.18 18098.10 17598.41 25799.23 23497.72 24798.72 32599.31 26196.60 26598.88 24099.29 28797.29 12899.13 30297.60 22195.99 28598.38 326
FMVSNet297.72 25197.36 26398.80 21899.51 15698.84 17399.45 15799.42 20496.49 27198.86 24799.29 28790.26 31898.98 32296.44 29096.56 27098.58 305
TESTMET0.1,197.55 26897.27 27798.40 25998.93 29096.53 29698.67 32897.61 35796.96 23898.64 27799.28 28988.63 33899.45 24397.30 24699.38 14299.21 194
FMVSNet398.03 20197.76 21798.84 21299.39 19798.98 15099.40 18499.38 22296.67 25799.07 20999.28 28992.93 26398.98 32297.10 26096.65 26798.56 307
PAPM_NR99.04 10498.84 11399.66 7199.74 7299.44 9999.39 18899.38 22297.70 16499.28 16299.28 28998.34 9399.85 13496.96 26999.45 13899.69 105
ETV-MVS99.26 6699.21 6299.40 12899.46 17799.30 11299.56 10499.52 9198.52 7099.44 12399.27 29298.41 8899.86 12899.10 5499.59 13299.04 212
xiu_mvs_v2_base99.26 6699.25 5799.29 14699.53 15298.91 16699.02 28399.45 18598.80 5399.71 5099.26 29398.94 3499.98 699.34 3099.23 15498.98 219
test20.0396.12 30595.96 30296.63 33197.44 34995.45 32399.51 12699.38 22296.55 26896.16 34599.25 29493.76 25396.17 36487.35 36194.22 32298.27 330
PS-MVSNAJ99.32 5699.32 3299.30 14399.57 14498.94 16298.97 29799.46 17398.92 4299.71 5099.24 29599.01 1999.98 699.35 2699.66 12398.97 220
Test_1112_low_res98.89 11898.66 13499.57 9299.69 10098.95 15999.03 28099.47 16396.98 23699.15 19399.23 29696.77 14599.89 11798.83 9398.78 19099.86 13
cl2297.85 22697.64 22998.48 24699.09 26797.87 23998.60 33599.33 24897.11 22698.87 24299.22 29792.38 28799.17 29798.21 16795.99 28598.42 321
EG-PatchMatch MVS95.97 30795.69 30796.81 32997.78 34692.79 35699.16 25198.93 31196.16 29994.08 35499.22 29782.72 35999.47 24095.67 30697.50 24498.17 335
TR-MVS97.76 24197.41 25898.82 21499.06 27297.87 23998.87 31198.56 34196.63 26298.68 26999.22 29792.49 28199.65 22095.40 31197.79 22898.95 225
ET-MVSNet_ETH3D96.49 29795.64 30899.05 17099.53 15298.82 17798.84 31397.51 35897.63 17284.77 36299.21 30092.09 29098.91 33398.98 6492.21 34399.41 180
WR-MVS_H98.13 18697.87 20598.90 19599.02 27998.84 17399.70 3899.59 4397.27 20998.40 29599.19 30195.53 18699.23 28598.34 15993.78 32898.61 300
miper_enhance_ethall98.16 18298.08 17998.41 25798.96 28897.72 24798.45 34299.32 25896.95 24098.97 22799.17 30297.06 13599.22 28897.86 19795.99 28598.29 329
baseline297.87 22397.55 23598.82 21499.18 24798.02 22999.41 17696.58 36596.97 23796.51 34199.17 30293.43 25599.57 23397.71 21399.03 17298.86 227
MIMVSNet195.51 31095.04 31496.92 32797.38 35095.60 31699.52 12299.50 12493.65 33896.97 33999.17 30285.28 35596.56 36388.36 35895.55 29898.60 303
gm-plane-assit98.54 33492.96 35594.65 32999.15 30599.64 22397.56 228
MIMVSNet97.73 24997.45 24898.57 23699.45 18397.50 25299.02 28398.98 30696.11 30499.41 13199.14 30690.28 31798.74 33795.74 30398.93 17999.47 171
LCM-MVSNet-Re97.83 23198.15 17096.87 32899.30 21792.25 35899.59 8398.26 34597.43 19596.20 34499.13 30796.27 16198.73 33898.17 17398.99 17699.64 126
UniMVSNet (Re)98.29 17198.00 18899.13 16499.00 28199.36 10699.49 14299.51 10497.95 13798.97 22799.13 30796.30 16099.38 25798.36 15893.34 33298.66 277
N_pmnet94.95 31795.83 30592.31 34298.47 33679.33 36999.12 25992.81 37693.87 33597.68 32399.13 30793.87 24999.01 31991.38 34896.19 28098.59 304
PAPR98.63 15198.34 16099.51 11099.40 19499.03 14598.80 31799.36 23296.33 28399.00 22399.12 31098.46 8299.84 13995.23 31599.37 14899.66 115
tpm cat197.39 28097.36 26397.50 31499.17 25393.73 34899.43 16799.31 26191.27 35098.71 26199.08 31194.31 23699.77 17696.41 29298.50 20299.00 216
FMVSNet596.43 29996.19 29797.15 31999.11 26295.89 31299.32 21199.52 9194.47 33298.34 30099.07 31287.54 34997.07 35992.61 34595.72 29498.47 314
PMMVS98.80 13798.62 14199.34 13399.27 22698.70 18598.76 32199.31 26197.34 20299.21 18199.07 31297.20 13099.82 15798.56 13698.87 18499.52 155
Anonymous2023120696.22 30196.03 30096.79 33097.31 35394.14 34499.63 6499.08 29796.17 29797.04 33799.06 31493.94 24797.76 35486.96 36295.06 30898.47 314
DeepMVS_CXcopyleft93.34 34099.29 22182.27 36699.22 27985.15 35996.33 34399.05 31590.97 31299.73 19193.57 33497.77 22998.01 342
YYNet195.36 31394.51 31997.92 29497.89 34497.10 26599.10 26799.23 27893.26 34380.77 36699.04 31692.81 26798.02 34794.30 32594.18 32398.64 281
Anonymous2024052196.20 30395.89 30497.13 32197.72 34794.96 33499.79 2499.29 27093.01 34497.20 33399.03 31789.69 32798.36 34291.16 34996.13 28198.07 338
MDA-MVSNet-bldmvs94.96 31693.98 32297.92 29498.24 34197.27 25899.15 25599.33 24893.80 33680.09 36899.03 31788.31 34197.86 35293.49 33594.36 32098.62 291
test_method91.10 32791.36 33090.31 34695.85 36073.72 37494.89 36399.25 27568.39 36795.82 34899.02 31980.50 36398.95 33193.64 33394.89 31398.25 332
BH-w/o98.00 20897.89 20498.32 26699.35 20396.20 30799.01 28898.90 31896.42 28098.38 29699.00 32095.26 19799.72 19596.06 29698.61 19399.03 213
Effi-MVS+-dtu98.78 13898.89 10598.47 25099.33 20896.91 28499.57 9799.30 26598.47 7399.41 13198.99 32196.78 14399.74 18498.73 10699.38 14298.74 245
MVS_030496.79 29296.52 29297.59 31099.22 23894.92 33599.04 27999.59 4396.49 27198.43 29398.99 32180.48 36499.39 25597.15 25999.27 15298.47 314
UnsupCasMVSNet_eth96.44 29896.12 29897.40 31698.65 32495.65 31599.36 20099.51 10497.13 22196.04 34798.99 32188.40 34098.17 34496.71 28290.27 34798.40 324
test0.0.03 197.71 25597.42 25798.56 23898.41 33897.82 24298.78 31998.63 33997.34 20298.05 31498.98 32494.45 23198.98 32295.04 31897.15 26398.89 226
MDA-MVSNet_test_wron95.45 31194.60 31798.01 28798.16 34297.21 26399.11 26599.24 27793.49 34080.73 36798.98 32493.02 26198.18 34394.22 32894.45 31898.64 281
FPMVS84.93 33185.65 33282.75 35186.77 37263.39 37698.35 34598.92 31374.11 36483.39 36498.98 32450.85 37192.40 36884.54 36594.97 31092.46 362
alignmvs98.81 13498.56 14999.58 9099.43 18599.42 10199.51 12698.96 30998.61 6599.35 14998.92 32794.78 21399.77 17699.35 2698.11 22299.54 149
test-LLR98.06 19397.90 20098.55 24098.79 30697.10 26598.67 32897.75 35497.34 20298.61 28198.85 32894.45 23199.45 24397.25 24999.38 14299.10 199
test-mter97.49 27797.13 28298.55 24098.79 30697.10 26598.67 32897.75 35496.65 25998.61 28198.85 32888.23 34299.45 24397.25 24999.38 14299.10 199
canonicalmvs99.02 10798.86 11199.51 11099.42 18699.32 10899.80 1999.48 14598.63 6399.31 15598.81 33097.09 13399.75 18399.27 3897.90 22699.47 171
DWT-MVSNet_test97.53 27097.40 25997.93 29399.03 27894.86 33699.57 9798.63 33996.59 26798.36 29898.79 33189.32 33099.74 18498.14 17698.16 22099.20 195
new_pmnet96.38 30096.03 30097.41 31598.13 34395.16 33199.05 27499.20 28393.94 33497.39 32898.79 33191.61 30499.04 31390.43 35195.77 29198.05 340
cascas97.69 25797.43 25698.48 24698.60 33097.30 25698.18 35499.39 21692.96 34598.41 29498.78 33393.77 25299.27 28198.16 17498.61 19398.86 227
PVSNet_094.43 1996.09 30695.47 30997.94 29299.31 21694.34 34397.81 35899.70 1597.12 22397.46 32698.75 33489.71 32699.79 16997.69 21681.69 36099.68 109
patchmatchnet-post98.70 33594.79 21299.74 184
Patchmatch-RL test95.84 30895.81 30695.95 33695.61 36190.57 36198.24 35198.39 34495.10 32195.20 35098.67 33694.78 21397.77 35396.28 29490.02 34899.51 161
thres100view90097.76 24197.45 24898.69 22799.72 8497.86 24199.59 8398.74 33097.93 13999.26 17098.62 33791.75 29699.83 15093.22 33798.18 21698.37 327
thres600view797.86 22597.51 24198.92 18999.72 8497.95 23699.59 8398.74 33097.94 13899.27 16598.62 33791.75 29699.86 12893.73 33298.19 21598.96 222
DSMNet-mixed97.25 28497.35 26596.95 32697.84 34593.61 35299.57 9796.63 36496.13 30398.87 24298.61 33994.59 22597.70 35595.08 31798.86 18599.55 147
IB-MVS95.67 1896.22 30195.44 31198.57 23699.21 24096.70 29098.65 33197.74 35696.71 25497.27 33098.54 34086.03 35299.92 8398.47 14786.30 35499.10 199
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND98.45 25298.55 33398.16 22399.43 16793.68 37397.23 33198.46 34189.30 33199.22 28895.43 31098.22 21297.98 346
tfpn200view997.72 25197.38 26198.72 22599.69 10097.96 23499.50 13298.73 33597.83 14899.17 19198.45 34291.67 30099.83 15093.22 33798.18 21698.37 327
thres40097.77 24097.38 26198.92 18999.69 10097.96 23499.50 13298.73 33597.83 14899.17 19198.45 34291.67 30099.83 15093.22 33798.18 21698.96 222
KD-MVS_2432*160094.62 31893.72 32497.31 31797.19 35695.82 31398.34 34699.20 28395.00 32297.57 32498.35 34487.95 34698.10 34592.87 34277.00 36498.01 342
miper_refine_blended94.62 31893.72 32497.31 31797.19 35695.82 31398.34 34699.20 28395.00 32297.57 32498.35 34487.95 34698.10 34592.87 34277.00 36498.01 342
thres20097.61 26697.28 27498.62 23099.64 12198.03 22899.26 23598.74 33097.68 16699.09 20798.32 34691.66 30299.81 16192.88 34198.22 21298.03 341
OpenMVS_ROBcopyleft92.34 2094.38 32293.70 32696.41 33497.38 35093.17 35499.06 27298.75 32786.58 35894.84 35398.26 34781.53 36299.32 27389.01 35597.87 22796.76 357
CL-MVSNet_self_test94.49 32093.97 32396.08 33596.16 35993.67 35198.33 34899.38 22295.13 31797.33 32998.15 34892.69 27596.57 36288.67 35679.87 36297.99 345
pmmvs394.09 32493.25 32796.60 33294.76 36594.49 33998.92 30598.18 34989.66 35496.48 34298.06 34986.28 35197.33 35789.68 35487.20 35397.97 347
PM-MVS92.96 32692.23 32995.14 33895.61 36189.98 36399.37 19698.21 34794.80 32695.04 35297.69 35065.06 36797.90 35194.30 32589.98 34997.54 356
pmmvs-eth3d95.34 31494.73 31697.15 31995.53 36395.94 31199.35 20699.10 29495.13 31793.55 35597.54 35188.15 34497.91 35094.58 32289.69 35097.61 353
ambc93.06 34192.68 36682.36 36598.47 34198.73 33595.09 35197.41 35255.55 37099.10 30996.42 29191.32 34597.71 352
RPMNet96.72 29395.90 30399.19 15899.18 24798.49 20799.22 24599.52 9188.72 35799.56 9897.38 35394.08 24499.95 4686.87 36398.58 19699.14 196
new-patchmatchnet94.48 32194.08 32195.67 33795.08 36492.41 35799.18 24999.28 27294.55 33193.49 35697.37 35487.86 34897.01 36091.57 34788.36 35197.61 353
KD-MVS_self_test95.00 31594.34 32096.96 32597.07 35895.39 32599.56 10499.44 19495.11 31997.13 33597.32 35591.86 29497.27 35890.35 35281.23 36198.23 334
PatchT97.03 28996.44 29398.79 21998.99 28298.34 21699.16 25199.07 29992.13 34799.52 10897.31 35694.54 22998.98 32288.54 35798.73 19299.03 213
UnsupCasMVSNet_bld93.53 32592.51 32896.58 33397.38 35093.82 34698.24 35199.48 14591.10 35293.10 35796.66 35774.89 36598.37 34194.03 33087.71 35297.56 355
LCM-MVSNet86.80 33085.22 33491.53 34487.81 37180.96 36798.23 35398.99 30571.05 36590.13 36196.51 35848.45 37396.88 36190.51 35085.30 35596.76 357
PMMVS286.87 32985.37 33391.35 34590.21 36983.80 36498.89 30897.45 35983.13 36291.67 36095.03 35948.49 37294.70 36685.86 36477.62 36395.54 360
Gipumacopyleft90.99 32890.15 33193.51 33998.73 31590.12 36293.98 36499.45 18579.32 36392.28 35894.91 36069.61 36697.98 34987.42 36095.67 29592.45 363
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
JIA-IIPM97.50 27497.02 28598.93 18798.73 31597.80 24399.30 21598.97 30791.73 34998.91 23594.86 36195.10 20199.71 20197.58 22397.98 22499.28 191
PMVScopyleft70.75 2275.98 33774.97 33879.01 35370.98 37655.18 37793.37 36598.21 34765.08 37161.78 37293.83 36221.74 37892.53 36778.59 36691.12 34689.34 366
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS-HIRNet95.75 30995.16 31397.51 31399.30 21793.69 35098.88 30995.78 36685.09 36098.78 25592.65 36391.29 30899.37 26094.85 32099.85 5899.46 173
E-PMN80.61 33379.88 33682.81 35090.75 36876.38 37297.69 35995.76 36766.44 36983.52 36392.25 36462.54 36987.16 37068.53 36961.40 36784.89 368
EMVS80.02 33479.22 33782.43 35291.19 36776.40 37197.55 36192.49 37766.36 37083.01 36591.27 36564.63 36885.79 37165.82 37060.65 36885.08 367
gg-mvs-nofinetune96.17 30495.32 31298.73 22398.79 30698.14 22599.38 19394.09 37291.07 35398.07 31391.04 36689.62 32999.35 26896.75 27999.09 16798.68 262
ANet_high77.30 33574.86 33984.62 34975.88 37577.61 37097.63 36093.15 37588.81 35664.27 37189.29 36736.51 37483.93 37275.89 36752.31 36992.33 364
MVEpermissive76.82 2176.91 33674.31 34084.70 34885.38 37476.05 37396.88 36293.17 37467.39 36871.28 37089.01 36821.66 37987.69 36971.74 36872.29 36690.35 365
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs39.17 33943.78 34125.37 35636.04 37916.84 38098.36 34426.56 37820.06 37338.51 37467.32 36929.64 37615.30 37537.59 37239.90 37143.98 370
test12339.01 34042.50 34228.53 35539.17 37820.91 37998.75 32219.17 38019.83 37438.57 37366.67 37033.16 37515.42 37437.50 37329.66 37249.26 369
test_post65.99 37194.65 22499.73 191
test_post199.23 24065.14 37294.18 24199.71 20197.58 223
X-MVStestdata96.55 29595.45 31099.87 1299.85 2699.83 1799.69 4099.68 1998.98 3199.37 14364.01 37398.81 4899.94 5798.79 9999.86 5199.84 20
wuyk23d40.18 33841.29 34336.84 35486.18 37349.12 37879.73 36722.81 37927.64 37225.46 37528.45 37421.98 37748.89 37355.80 37123.56 37312.51 371
test_blank0.13 3440.17 3470.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3761.57 3750.00 3800.00 3760.00 3740.00 3740.00 372
uanet_test0.02 3450.03 3480.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.27 3760.00 3800.00 3760.00 3740.00 3740.00 372
pcd_1.5k_mvsjas8.27 34311.03 3460.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.27 37699.01 190.00 3760.00 3740.00 3740.00 372
sosnet-low-res0.02 3450.03 3480.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.27 3760.00 3800.00 3760.00 3740.00 3740.00 372
sosnet0.02 3450.03 3480.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.27 3760.00 3800.00 3760.00 3740.00 3740.00 372
uncertanet0.02 3450.03 3480.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.27 3760.00 3800.00 3760.00 3740.00 3740.00 372
Regformer0.02 3450.03 3480.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.27 3760.00 3800.00 3760.00 3740.00 3740.00 372
uanet0.02 3450.03 3480.00 3570.00 3800.00 3810.00 3680.00 3810.00 3750.00 3760.27 3760.00 3800.00 3760.00 3740.00 3740.00 372
FOURS199.91 199.93 199.87 599.56 5799.10 1099.81 24
MSC_two_6792asdad99.87 1299.51 15699.76 4199.33 24899.96 1998.87 8099.84 6599.89 2
No_MVS99.87 1299.51 15699.76 4199.33 24899.96 1998.87 8099.84 6599.89 2
eth-test20.00 380
eth-test0.00 380
IU-MVS99.84 3399.88 899.32 25898.30 9499.84 1498.86 8599.85 5899.89 2
save fliter99.76 5499.59 7399.14 25799.40 21299.00 25
test_0728_SECOND99.91 299.84 3399.89 499.57 9799.51 10499.96 1998.93 7099.86 5199.88 7
GSMVS99.52 155
test_part299.81 4199.83 1799.77 36
sam_mvs194.86 20999.52 155
sam_mvs94.72 220
MTGPAbinary99.47 163
MTMP99.54 11698.88 320
test9_res97.49 23499.72 10999.75 75
agg_prior297.21 25199.73 10899.75 75
agg_prior99.67 10599.62 6699.40 21298.87 24299.91 94
test_prior499.56 7898.99 290
test_prior99.68 6899.67 10599.48 9399.56 5799.83 15099.74 80
旧先验298.96 29896.70 25599.47 11699.94 5798.19 169
新几何299.01 288
无先验98.99 29099.51 10496.89 24499.93 7297.53 23199.72 93
原ACMM298.95 302
testdata299.95 4696.67 285
segment_acmp98.96 28
testdata198.85 31298.32 93
test1299.75 5499.64 12199.61 6899.29 27099.21 18198.38 8999.89 11799.74 10599.74 80
plane_prior799.29 22197.03 275
plane_prior699.27 22696.98 27992.71 273
plane_prior599.47 16399.69 21197.78 20497.63 23198.67 269
plane_prior397.00 27798.69 6199.11 199
plane_prior299.39 18898.97 34
plane_prior199.26 228
plane_prior96.97 28099.21 24798.45 7697.60 234
n20.00 381
nn0.00 381
door-mid98.05 350
test1199.35 237
door97.92 352
HQP5-MVS96.83 285
HQP-NCC99.19 24498.98 29498.24 9998.66 270
ACMP_Plane99.19 24498.98 29498.24 9998.66 270
BP-MVS97.19 255
HQP4-MVS98.66 27099.64 22398.64 281
HQP3-MVS99.39 21697.58 236
HQP2-MVS92.47 282
MDTV_nov1_ep13_2view95.18 33099.35 20696.84 24799.58 9595.19 20097.82 20199.46 173
ACMMP++_ref97.19 260
ACMMP++97.43 252
Test By Simon98.75 59