This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
UA-Net99.42 3899.29 4499.80 4099.62 12599.55 7499.50 12399.70 1598.79 4799.77 3399.96 197.45 11699.96 1898.92 6699.90 2399.89 2
DeepC-MVS98.35 299.30 5599.19 6099.64 7799.82 3799.23 11399.62 6399.55 6498.94 3399.63 7099.95 295.82 17299.94 5399.37 1899.97 399.73 80
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OurMVSNet-221017-097.88 21497.77 20798.19 26798.71 30696.53 28599.88 199.00 28897.79 14498.78 24399.94 391.68 28799.35 25797.21 23996.99 25698.69 244
SixPastTwentyTwo97.50 26597.33 26398.03 27598.65 31196.23 29599.77 2198.68 32297.14 20897.90 30399.93 490.45 30299.18 28697.00 25396.43 26598.67 257
SD-MVS99.41 4299.52 699.05 16399.74 7099.68 4999.46 14799.52 8999.11 799.88 599.91 599.43 197.70 33998.72 9899.93 1099.77 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMH97.28 898.10 18497.99 18398.44 24599.41 17696.96 27099.60 7099.56 5698.09 11098.15 29499.91 590.87 30199.70 19998.88 7097.45 24098.67 257
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VDDNet97.55 25997.02 27599.16 15499.49 15898.12 21899.38 18599.30 25495.35 30399.68 5399.90 782.62 34399.93 6899.31 2698.13 21299.42 169
QAPM98.67 14398.30 16099.80 4099.20 22999.67 5299.77 2199.72 1194.74 31098.73 24799.90 795.78 17399.98 596.96 25799.88 3699.76 68
3Dnovator97.25 999.24 6599.05 7499.81 3899.12 24799.66 5499.84 699.74 1099.09 1098.92 22299.90 795.94 16699.98 598.95 6199.92 1199.79 53
Anonymous2024052998.09 18597.68 21799.34 12799.66 10998.44 20399.40 17699.43 19493.67 32099.22 16699.89 1090.23 30799.93 6899.26 3298.33 19799.66 108
CHOSEN 1792x268899.19 6999.10 6999.45 11599.89 898.52 19599.39 18099.94 198.73 5199.11 18799.89 1095.50 18199.94 5399.50 899.97 399.89 2
RPSCF98.22 17098.62 13896.99 30999.82 3791.58 34299.72 2999.44 18796.61 25099.66 6499.89 1095.92 16799.82 15297.46 22699.10 15899.57 137
3Dnovator+97.12 1399.18 7198.97 9199.82 3599.17 24099.68 4999.81 1299.51 10299.20 498.72 24899.89 1095.68 17799.97 1098.86 7799.86 5199.81 41
COLMAP_ROBcopyleft97.56 698.86 11998.75 12199.17 15399.88 1198.53 19199.34 20099.59 4497.55 16898.70 25599.89 1095.83 17199.90 10598.10 16699.90 2399.08 195
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_djsdf98.67 14398.57 14498.98 17298.70 30798.91 15899.88 199.46 16797.55 16899.22 16699.88 1595.73 17599.28 26799.03 5297.62 22498.75 229
DP-MVS99.16 7598.95 9599.78 4599.77 4999.53 7999.41 16899.50 12097.03 22199.04 20299.88 1597.39 11799.92 7998.66 10799.90 2399.87 10
TDRefinement95.42 30194.57 30797.97 28189.83 35196.11 29799.48 13998.75 31196.74 23996.68 32299.88 1588.65 32199.71 19398.37 14582.74 34598.09 323
EPP-MVSNet99.13 7998.99 8799.53 9899.65 11499.06 13499.81 1299.33 23997.43 18399.60 8099.88 1597.14 12699.84 13699.13 4498.94 16999.69 98
OpenMVScopyleft96.50 1698.47 15198.12 16999.52 10399.04 26399.53 7999.82 1099.72 1194.56 31398.08 29699.88 1594.73 21099.98 597.47 22599.76 9599.06 199
lessismore_v097.79 29398.69 30895.44 31194.75 35195.71 33099.87 2088.69 32099.32 26295.89 28794.93 30298.62 279
Vis-MVSNetpermissive99.12 8598.97 9199.56 9099.78 4499.10 13099.68 4099.66 2798.49 6599.86 1199.87 2094.77 20799.84 13699.19 3799.41 13599.74 73
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+97.24 1097.92 21197.78 20598.32 25799.46 16596.68 28199.56 9599.54 7198.41 7397.79 30899.87 2090.18 30899.66 20798.05 17597.18 25298.62 279
ACMMP_NAP99.47 2299.34 2699.88 699.87 1599.86 1099.47 14499.48 13998.05 12099.76 3799.86 2398.82 4499.93 6898.82 8899.91 1699.84 18
RRT_MVS98.60 14898.44 14999.05 16398.88 28199.14 12599.49 13399.38 21497.76 14799.29 14899.86 2395.38 18499.36 25398.81 8997.16 25398.64 269
casdiffmvs99.13 7998.98 9099.56 9099.65 11499.16 12099.56 9599.50 12098.33 8399.41 12099.86 2395.92 16799.83 14599.45 1599.16 15099.70 95
PVSNet_Blended_VisFu99.36 4999.28 4899.61 8299.86 2199.07 13399.47 14499.93 297.66 15999.71 4699.86 2397.73 11199.96 1899.47 1399.82 7899.79 53
IS-MVSNet99.05 10098.87 10499.57 8899.73 7599.32 10199.75 2599.20 26998.02 12499.56 8899.86 2396.54 14799.67 20498.09 16799.13 15499.73 80
USDC97.34 27197.20 27097.75 29499.07 25795.20 31498.51 32999.04 28697.99 12598.31 28799.86 2389.02 31699.55 22595.67 29497.36 24798.49 299
TSAR-MVS + MP.99.58 499.50 899.81 3899.91 199.66 5499.63 5799.39 20898.91 3699.78 3199.85 2999.36 299.94 5398.84 8199.88 3699.82 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
tmp_tt82.80 31781.52 32086.66 33066.61 35868.44 35692.79 35097.92 33568.96 34980.04 35199.85 2985.77 33696.15 34797.86 18643.89 35295.39 343
AllTest98.87 11698.72 12299.31 13399.86 2198.48 20199.56 9599.61 3697.85 13599.36 13599.85 2995.95 16499.85 13196.66 27499.83 7299.59 132
TestCases99.31 13399.86 2198.48 20199.61 3697.85 13599.36 13599.85 2995.95 16499.85 13196.66 27499.83 7299.59 132
VDD-MVS97.73 24197.35 25898.88 19499.47 16497.12 25499.34 20098.85 30698.19 9799.67 5999.85 2982.98 34199.92 7999.49 1298.32 20199.60 128
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2599.56 5699.02 1599.88 599.85 2999.18 899.96 1899.22 3499.92 1199.90 1
DeepPCF-MVS98.18 398.81 13099.37 1997.12 30899.60 13291.75 34198.61 32299.44 18799.35 199.83 1799.85 2998.70 6299.81 15699.02 5499.91 1699.81 41
ACMM97.58 598.37 16198.34 15698.48 23699.41 17697.10 25599.56 9599.45 17998.53 6299.04 20299.85 2993.00 25399.71 19398.74 9497.45 24098.64 269
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D99.27 6099.12 6799.74 5699.18 23499.75 3899.56 9599.57 5198.45 6999.49 10399.85 2997.77 11099.94 5398.33 15099.84 6599.52 146
DPE-MVS99.46 2499.32 3099.91 299.78 4499.88 799.36 19299.51 10298.73 5199.88 599.84 3898.72 6099.96 1898.16 16399.87 4099.88 5
XVG-OURS98.73 13898.68 12798.88 19499.70 9397.73 23798.92 29499.55 6498.52 6399.45 10899.84 3895.27 18999.91 9098.08 17198.84 17799.00 204
baseline99.15 7699.02 8299.53 9899.66 10999.14 12599.72 2999.48 13998.35 7999.42 11699.84 3896.07 16099.79 16499.51 799.14 15399.67 105
ACMMPcopyleft99.45 2699.32 3099.82 3599.89 899.67 5299.62 6399.69 1898.12 10599.63 7099.84 3898.73 5999.96 1898.55 12899.83 7299.81 41
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EI-MVSNet-UG-set99.58 499.57 199.64 7799.78 4499.14 12599.60 7099.45 17999.01 1899.90 399.83 4298.98 2399.93 6899.59 199.95 699.86 11
EI-MVSNet98.67 14398.67 12898.68 22099.35 19097.97 22399.50 12399.38 21496.93 23099.20 17299.83 4297.87 10699.36 25398.38 14397.56 22998.71 236
CVMVSNet98.57 14998.67 12898.30 25999.35 19095.59 30499.50 12399.55 6498.60 5999.39 12799.83 4294.48 22199.45 23198.75 9398.56 19099.85 14
LPG-MVS_test98.22 17098.13 16898.49 23499.33 19597.05 26199.58 8399.55 6497.46 17799.24 16199.83 4292.58 26899.72 18798.09 16797.51 23398.68 249
LGP-MVS_train98.49 23499.33 19597.05 26199.55 6497.46 17799.24 16199.83 4292.58 26899.72 18798.09 16797.51 23398.68 249
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2499.59 7699.51 10298.62 5799.79 2699.83 4299.28 399.97 1098.48 13399.90 2399.84 18
Skip Steuart: Steuart Systems R&D Blog.
XXY-MVS98.38 16098.09 17399.24 14799.26 21599.32 10199.56 9599.55 6497.45 18098.71 24999.83 4293.23 24999.63 21798.88 7096.32 26898.76 227
SR-MVS-dyc-post99.45 2699.31 3799.85 2599.76 5299.82 2099.63 5799.52 8998.38 7599.76 3799.82 4998.53 7299.95 4298.61 11499.81 8099.77 63
RE-MVS-def99.34 2699.76 5299.82 2099.63 5799.52 8998.38 7599.76 3799.82 4998.75 5698.61 11499.81 8099.77 63
test072699.85 2599.89 399.62 6399.50 12099.10 899.86 1199.82 4998.94 31
SMA-MVScopyleft99.44 3099.30 4099.85 2599.73 7599.83 1499.56 9599.47 15797.45 18099.78 3199.82 4999.18 899.91 9098.79 9099.89 3399.81 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
nrg03098.64 14698.42 15199.28 14299.05 26299.69 4799.81 1299.46 16798.04 12199.01 20599.82 4996.69 14399.38 24699.34 2394.59 30598.78 222
FC-MVSNet-test98.75 13798.62 13899.15 15699.08 25699.45 9099.86 599.60 4198.23 9398.70 25599.82 4996.80 13799.22 27899.07 5096.38 26698.79 221
EI-MVSNet-Vis-set99.58 499.56 399.64 7799.78 4499.15 12499.61 6999.45 17999.01 1899.89 499.82 4999.01 1699.92 7999.56 499.95 699.85 14
APD-MVS_3200maxsize99.48 1999.35 2499.85 2599.76 5299.83 1499.63 5799.54 7198.36 7899.79 2699.82 4998.86 4099.95 4298.62 11199.81 8099.78 61
EU-MVSNet97.98 20398.03 17997.81 29298.72 30496.65 28299.66 4699.66 2798.09 11098.35 28599.82 4995.25 19298.01 33297.41 23195.30 29398.78 222
APD-MVScopyleft99.27 6099.08 7299.84 3299.75 6299.79 3099.50 12399.50 12097.16 20799.77 3399.82 4998.78 4899.94 5397.56 21699.86 5199.80 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TAMVS99.12 8599.08 7299.24 14799.46 16598.55 18999.51 11799.46 16798.09 11099.45 10899.82 4998.34 8999.51 22798.70 10098.93 17099.67 105
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4799.63 11999.59 6799.36 19299.46 16799.07 1399.79 2699.82 4998.85 4199.92 7998.68 10599.87 4099.82 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS99.13 7999.02 8299.45 11599.57 13798.63 18399.07 25899.34 23298.99 2599.61 7699.82 4997.98 10599.87 12297.00 25399.80 8499.85 14
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 7099.48 13999.08 1199.91 199.81 6299.20 599.96 1898.91 6799.85 5899.79 53
test_241102_TWO99.48 13999.08 1199.88 599.81 6298.94 3199.96 1898.91 6799.84 6599.88 5
OPM-MVS98.19 17498.10 17098.45 24298.88 28197.07 25999.28 21299.38 21498.57 6099.22 16699.81 6292.12 27999.66 20798.08 17197.54 23198.61 288
zzz-MVS99.49 1599.36 2199.89 499.90 399.86 1099.36 19299.47 15798.79 4799.68 5399.81 6298.43 8199.97 1098.88 7099.90 2399.83 29
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 4699.47 15798.79 4799.68 5399.81 6298.43 8199.97 1098.88 7099.90 2399.83 29
FIs98.78 13498.63 13399.23 14999.18 23499.54 7699.83 999.59 4498.28 8698.79 24299.81 6296.75 14199.37 24999.08 4996.38 26698.78 222
mvs_tets98.40 15998.23 16398.91 18698.67 31098.51 19799.66 4699.53 8398.19 9798.65 26499.81 6292.75 25999.44 23699.31 2697.48 23998.77 225
mvs_anonymous99.03 10398.99 8799.16 15499.38 18598.52 19599.51 11799.38 21497.79 14499.38 13099.81 6297.30 12299.45 23199.35 1998.99 16799.51 152
TSAR-MVS + GP.99.36 4999.36 2199.36 12699.67 10098.61 18699.07 25899.33 23999.00 2299.82 2099.81 6299.06 1399.84 13699.09 4899.42 13499.65 112
abl_699.44 3099.31 3799.83 3399.85 2599.75 3899.66 4699.59 4498.13 10399.82 2099.81 6298.60 6999.96 1898.46 13799.88 3699.79 53
RRT_test8_iter0597.72 24397.60 22598.08 27299.23 22196.08 29899.63 5799.49 12897.54 17198.94 21999.81 6287.99 32999.35 25799.21 3696.51 26398.81 219
EPNet98.86 11998.71 12499.30 13797.20 34098.18 21399.62 6398.91 30099.28 298.63 26699.81 6295.96 16399.99 199.24 3399.72 10399.73 80
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ab-mvs98.86 11998.63 13399.54 9299.64 11699.19 11599.44 15299.54 7197.77 14699.30 14599.81 6294.20 22999.93 6899.17 4098.82 17899.49 156
OMC-MVS99.08 9699.04 7799.20 15099.67 10098.22 21299.28 21299.52 8998.07 11599.66 6499.81 6297.79 10999.78 16897.79 19299.81 8099.60 128
xxxxxxxxxxxxxcwj99.43 3399.32 3099.75 5199.76 5299.59 6799.14 24699.53 8399.00 2299.71 4699.80 7698.95 2899.93 6898.19 15899.84 6599.74 73
SF-MVS99.38 4799.24 5599.79 4399.79 4299.68 4999.57 8899.54 7197.82 14399.71 4699.80 7698.95 2899.93 6898.19 15899.84 6599.74 73
DVP-MVS99.57 799.47 999.88 699.85 2599.89 399.57 8899.37 22299.10 899.81 2299.80 7698.94 3199.96 1898.93 6499.86 5199.81 41
test_0728_THIRD98.99 2599.81 2299.80 7699.09 1299.96 1898.85 7999.90 2399.88 5
jajsoiax98.43 15498.28 16198.88 19498.60 31798.43 20499.82 1099.53 8398.19 9798.63 26699.80 7693.22 25199.44 23699.22 3497.50 23598.77 225
Regformer-399.57 799.53 599.68 6599.76 5299.29 10699.58 8399.44 18799.01 1899.87 1099.80 7698.97 2499.91 9099.44 1799.92 1199.83 29
Regformer-499.59 399.54 499.73 5899.76 5299.41 9499.58 8399.49 12899.02 1599.88 599.80 7699.00 2299.94 5399.45 1599.92 1199.84 18
PGM-MVS99.45 2699.31 3799.86 1899.87 1599.78 3799.58 8399.65 3297.84 13799.71 4699.80 7699.12 1199.97 1098.33 15099.87 4099.83 29
TransMVSNet (Re)97.15 27696.58 28098.86 20199.12 24798.85 16499.49 13398.91 30095.48 30197.16 31799.80 7693.38 24799.11 29694.16 31791.73 33398.62 279
K. test v397.10 27896.79 27998.01 27898.72 30496.33 29299.87 497.05 34397.59 16396.16 32799.80 7688.71 31999.04 30296.69 27296.55 26298.65 267
DELS-MVS99.48 1999.42 1399.65 7299.72 8099.40 9699.05 26399.66 2799.14 699.57 8799.80 7698.46 7999.94 5399.57 399.84 6599.60 128
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CSCG99.32 5399.32 3099.32 13299.85 2598.29 20999.71 3199.66 2798.11 10799.41 12099.80 7698.37 8899.96 1898.99 5699.96 599.72 86
test117299.43 3399.29 4499.85 2599.75 6299.82 2099.60 7099.56 5698.28 8699.74 4199.79 8898.53 7299.95 4298.55 12899.78 8999.79 53
SR-MVS99.43 3399.29 4499.86 1899.75 6299.83 1499.59 7699.62 3498.21 9699.73 4399.79 8898.68 6399.96 1898.44 13999.77 9299.79 53
MP-MVS-pluss99.37 4899.20 5999.88 699.90 399.87 999.30 20699.52 8997.18 20599.60 8099.79 8898.79 4799.95 4298.83 8499.91 1699.83 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pm-mvs197.68 25097.28 26798.88 19499.06 25998.62 18499.50 12399.45 17996.32 27297.87 30499.79 8892.47 27299.35 25797.54 21893.54 32098.67 257
LFMVS97.90 21397.35 25899.54 9299.52 14799.01 13999.39 18098.24 33097.10 21599.65 6799.79 8884.79 33999.91 9099.28 2998.38 19699.69 98
TinyColmap97.12 27796.89 27797.83 29099.07 25795.52 30898.57 32598.74 31497.58 16597.81 30799.79 8888.16 32799.56 22395.10 30497.21 25098.39 313
ACMP97.20 1198.06 18897.94 19098.45 24299.37 18797.01 26499.44 15299.49 12897.54 17198.45 27899.79 8891.95 28199.72 18797.91 18297.49 23898.62 279
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
9.1499.10 6999.72 8099.40 17699.51 10297.53 17399.64 6999.78 9598.84 4299.91 9097.63 20799.82 78
pmmvs696.53 28696.09 28997.82 29198.69 30895.47 30999.37 18899.47 15793.46 32497.41 31299.78 9587.06 33399.33 26196.92 26292.70 33098.65 267
MSLP-MVS++99.46 2499.47 999.44 12099.60 13299.16 12099.41 16899.71 1398.98 2799.45 10899.78 9599.19 799.54 22699.28 2999.84 6599.63 122
VNet99.11 9098.90 10099.73 5899.52 14799.56 7299.41 16899.39 20899.01 1899.74 4199.78 9595.56 17999.92 7999.52 698.18 20799.72 86
114514_t98.93 11398.67 12899.72 6199.85 2599.53 7999.62 6399.59 4492.65 32899.71 4699.78 9598.06 10399.90 10598.84 8199.91 1699.74 73
Vis-MVSNet (Re-imp)98.87 11698.72 12299.31 13399.71 8698.88 16099.80 1699.44 18797.91 13199.36 13599.78 9595.49 18299.43 24197.91 18299.11 15599.62 124
UniMVSNet_ETH3D97.32 27296.81 27898.87 19899.40 18197.46 24499.51 11799.53 8395.86 29898.54 27499.77 10182.44 34499.66 20798.68 10597.52 23299.50 155
anonymousdsp98.44 15398.28 16198.94 17898.50 32298.96 14999.77 2199.50 12097.07 21698.87 23099.77 10194.76 20899.28 26798.66 10797.60 22598.57 294
CDS-MVSNet99.09 9499.03 7999.25 14599.42 17398.73 17599.45 14899.46 16798.11 10799.46 10799.77 10198.01 10499.37 24998.70 10098.92 17299.66 108
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MSDG98.98 10998.80 11599.53 9899.76 5299.19 11598.75 31199.55 6497.25 19999.47 10599.77 10197.82 10899.87 12296.93 26099.90 2399.54 141
test_part196.83 28196.34 28598.33 25499.46 16596.71 27899.52 11299.63 3391.48 33297.75 30999.76 10587.49 33299.44 23698.37 14593.55 31998.82 218
CHOSEN 280x42099.12 8599.13 6599.08 15999.66 10997.89 22998.43 33299.71 1398.88 3799.62 7499.76 10596.63 14499.70 19999.46 1499.99 199.66 108
PS-MVSNAJss98.92 11498.92 9798.90 18898.78 29698.53 19199.78 1999.54 7198.07 11599.00 21099.76 10599.01 1699.37 24999.13 4497.23 24998.81 219
Regformer-199.53 1199.47 999.72 6199.71 8699.44 9199.49 13399.46 16798.95 3299.83 1799.76 10599.01 1699.93 6899.17 4099.87 4099.80 49
Regformer-299.54 999.47 999.75 5199.71 8699.52 8299.49 13399.49 12898.94 3399.83 1799.76 10599.01 1699.94 5399.15 4399.87 4099.80 49
MVS_Test99.10 9398.97 9199.48 10999.49 15899.14 12599.67 4299.34 23297.31 19399.58 8599.76 10597.65 11399.82 15298.87 7499.07 16199.46 164
ETH3D-3000-0.199.21 6699.02 8299.77 4799.73 7599.69 4799.38 18599.51 10297.45 18099.61 7699.75 11198.51 7599.91 9097.45 22899.83 7299.71 93
CANet_DTU98.97 11198.87 10499.25 14599.33 19598.42 20699.08 25799.30 25499.16 599.43 11399.75 11195.27 18999.97 1098.56 12599.95 699.36 174
mPP-MVS99.44 3099.30 4099.86 1899.88 1199.79 3099.69 3599.48 13998.12 10599.50 10099.75 11198.78 4899.97 1098.57 12299.89 3399.83 29
HPM-MVS_fast99.51 1499.40 1699.85 2599.91 199.79 3099.76 2499.56 5697.72 15299.76 3799.75 11199.13 1099.92 7999.07 5099.92 1199.85 14
HyFIR lowres test99.11 9098.92 9799.65 7299.90 399.37 9799.02 27299.91 397.67 15899.59 8399.75 11195.90 16999.73 18399.53 599.02 16599.86 11
ITE_SJBPF98.08 27299.29 20896.37 29098.92 29798.34 8098.83 23699.75 11191.09 29899.62 21895.82 28897.40 24598.25 320
test_241102_ONE99.84 3299.90 199.48 13999.07 1399.91 199.74 11799.20 599.76 173
testtj99.12 8598.87 10499.86 1899.72 8099.79 3099.44 15299.51 10297.29 19599.59 8399.74 11798.15 10099.96 1896.74 26899.69 10999.81 41
Anonymous20240521198.30 16697.98 18499.26 14499.57 13798.16 21499.41 16898.55 32696.03 29699.19 17599.74 11791.87 28299.92 7999.16 4298.29 20299.70 95
tttt051798.42 15598.14 16799.28 14299.66 10998.38 20799.74 2896.85 34497.68 15699.79 2699.74 11791.39 29499.89 11398.83 8499.56 12799.57 137
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 13299.74 11798.81 4599.94 5398.79 9099.86 5199.84 18
MP-MVScopyleft99.33 5299.15 6399.87 1199.88 1199.82 2099.66 4699.46 16798.09 11099.48 10499.74 11798.29 9299.96 1897.93 18199.87 4099.82 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS_111021_LR99.41 4299.33 2899.65 7299.77 4999.51 8498.94 29399.85 698.82 4299.65 6799.74 11798.51 7599.80 16198.83 8499.89 3399.64 118
VPNet97.84 22297.44 24699.01 16899.21 22798.94 15499.48 13999.57 5198.38 7599.28 15099.73 12488.89 31899.39 24499.19 3793.27 32398.71 236
MVSTER98.49 15098.32 15899.00 17099.35 19099.02 13799.54 10699.38 21497.41 18699.20 17299.73 12493.86 24199.36 25398.87 7497.56 22998.62 279
MVS_111021_HR99.41 4299.32 3099.66 6899.72 8099.47 8898.95 29199.85 698.82 4299.54 9399.73 12498.51 7599.74 17698.91 6799.88 3699.77 63
PHI-MVS99.30 5599.17 6299.70 6499.56 14199.52 8299.58 8399.80 897.12 21199.62 7499.73 12498.58 7099.90 10598.61 11499.91 1699.68 102
IterMVS-SCA-FT97.82 22797.75 21198.06 27499.57 13796.36 29199.02 27299.49 12897.18 20598.71 24999.72 12892.72 26299.14 28897.44 22995.86 28098.67 257
diffmvs99.14 7799.02 8299.51 10599.61 12998.96 14999.28 21299.49 12898.46 6899.72 4599.71 12996.50 14899.88 11899.31 2699.11 15599.67 105
XVG-OURS-SEG-HR98.69 14198.62 13898.89 19199.71 8697.74 23699.12 24899.54 7198.44 7299.42 11699.71 12994.20 22999.92 7998.54 13098.90 17499.00 204
EPNet_dtu98.03 19497.96 18698.23 26598.27 32695.54 30799.23 22998.75 31199.02 1597.82 30699.71 12996.11 15999.48 22893.04 32799.65 11999.69 98
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNVR-MVS99.42 3899.30 4099.78 4599.62 12599.71 4499.26 22499.52 8998.82 4299.39 12799.71 12998.96 2599.85 13198.59 11999.80 8499.77 63
OPU-MVS99.64 7799.56 14199.72 4299.60 7099.70 13399.27 499.42 24298.24 15599.80 8499.79 53
tfpnnormal97.84 22297.47 23898.98 17299.20 22999.22 11499.64 5599.61 3696.32 27298.27 29099.70 13393.35 24899.44 23695.69 29295.40 29198.27 318
v7n97.87 21697.52 23298.92 18298.76 30098.58 18799.84 699.46 16796.20 28298.91 22399.70 13394.89 19999.44 23696.03 28593.89 31698.75 229
testdata99.54 9299.75 6298.95 15199.51 10297.07 21699.43 11399.70 13398.87 3999.94 5397.76 19599.64 12099.72 86
IterMVS97.83 22497.77 20798.02 27799.58 13596.27 29499.02 27299.48 13997.22 20398.71 24999.70 13392.75 25999.13 29197.46 22696.00 27498.67 257
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PCF-MVS97.08 1497.66 25497.06 27499.47 11299.61 12999.09 13198.04 34299.25 26491.24 33498.51 27599.70 13394.55 21999.91 9092.76 32999.85 5899.42 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
LTVRE_ROB97.16 1298.02 19697.90 19398.40 24999.23 22196.80 27699.70 3399.60 4197.12 21198.18 29399.70 13391.73 28699.72 18798.39 14197.45 24098.68 249
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
HFP-MVS99.49 1599.37 1999.86 1899.87 1599.80 2699.66 4699.67 2298.15 10199.68 5399.69 14099.06 1399.96 1898.69 10399.87 4099.84 18
#test#99.43 3399.29 4499.86 1899.87 1599.80 2699.55 10399.67 2297.83 13899.68 5399.69 14099.06 1399.96 1898.39 14199.87 4099.84 18
旧先验199.74 7099.59 6799.54 7199.69 14098.47 7899.68 11499.73 80
ACMMPR99.49 1599.36 2199.86 1899.87 1599.79 3099.66 4699.67 2298.15 10199.67 5999.69 14098.95 2899.96 1898.69 10399.87 4099.84 18
CPTT-MVS99.11 9098.90 10099.74 5699.80 4199.46 8999.59 7699.49 12897.03 22199.63 7099.69 14097.27 12499.96 1897.82 19099.84 6599.81 41
GST-MVS99.40 4599.24 5599.85 2599.86 2199.79 3099.60 7099.67 2297.97 12699.63 7099.68 14598.52 7499.95 4298.38 14399.86 5199.81 41
Anonymous2023121197.88 21497.54 23198.90 18899.71 8698.53 19199.48 13999.57 5194.16 31698.81 23899.68 14593.23 24999.42 24298.84 8194.42 30898.76 227
region2R99.48 1999.35 2499.87 1199.88 1199.80 2699.65 5399.66 2798.13 10399.66 6499.68 14598.96 2599.96 1898.62 11199.87 4099.84 18
PS-CasMVS97.93 20897.59 22798.95 17798.99 26999.06 13499.68 4099.52 8997.13 20998.31 28799.68 14592.44 27699.05 30198.51 13194.08 31498.75 229
HY-MVS97.30 798.85 12798.64 13299.47 11299.42 17399.08 13299.62 6399.36 22397.39 18899.28 15099.68 14596.44 15199.92 7998.37 14598.22 20399.40 172
DP-MVS Recon99.12 8598.95 9599.65 7299.74 7099.70 4699.27 21699.57 5196.40 27099.42 11699.68 14598.75 5699.80 16197.98 17799.72 10399.44 167
ETH3D cwj APD-0.1699.06 9898.84 11099.72 6199.51 14999.60 6499.23 22999.44 18797.04 21999.39 12799.67 15198.30 9199.92 7997.27 23599.69 10999.64 118
ADS-MVSNet298.02 19698.07 17797.87 28799.33 19595.19 31599.23 22999.08 28196.24 27999.10 19099.67 15194.11 23398.93 32096.81 26599.05 16299.48 157
ADS-MVSNet98.20 17398.08 17498.56 22899.33 19596.48 28799.23 22999.15 27396.24 27999.10 19099.67 15194.11 23399.71 19396.81 26599.05 16299.48 157
DTE-MVSNet97.51 26497.19 27198.46 24198.63 31398.13 21799.84 699.48 13996.68 24397.97 30299.67 15192.92 25598.56 32796.88 26492.60 33198.70 240
Baseline_NR-MVSNet97.76 23497.45 24198.68 22099.09 25498.29 20999.41 16898.85 30695.65 30098.63 26699.67 15194.82 20199.10 29898.07 17492.89 32798.64 269
CMPMVSbinary69.68 2394.13 30994.90 30491.84 32797.24 33980.01 35098.52 32899.48 13989.01 33891.99 34099.67 15185.67 33799.13 29195.44 29797.03 25596.39 341
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
原ACMM199.65 7299.73 7599.33 10099.47 15797.46 17799.12 18599.66 15798.67 6699.91 9097.70 20399.69 10999.71 93
thisisatest053098.35 16298.03 17999.31 13399.63 11998.56 18899.54 10696.75 34697.53 17399.73 4399.65 15891.25 29799.89 11398.62 11199.56 12799.48 157
test22299.75 6299.49 8598.91 29699.49 12896.42 26899.34 14199.65 15898.28 9399.69 10999.72 86
112199.09 9498.87 10499.75 5199.74 7099.60 6499.27 21699.48 13996.82 23799.25 16099.65 15898.38 8699.93 6897.53 21999.67 11699.73 80
MVSFormer99.17 7399.12 6799.29 14099.51 14998.94 15499.88 199.46 16797.55 16899.80 2499.65 15897.39 11799.28 26799.03 5299.85 5899.65 112
jason99.13 7999.03 7999.45 11599.46 16598.87 16199.12 24899.26 26298.03 12399.79 2699.65 15897.02 13199.85 13199.02 5499.90 2399.65 112
jason: jason.
BH-RMVSNet98.41 15798.08 17499.40 12299.41 17698.83 16899.30 20698.77 31097.70 15498.94 21999.65 15892.91 25799.74 17696.52 27699.55 12999.64 118
sss99.17 7399.05 7499.53 9899.62 12598.97 14599.36 19299.62 3497.83 13899.67 5999.65 15897.37 12199.95 4299.19 3799.19 14999.68 102
ZNCC-MVS99.47 2299.33 2899.87 1199.87 1599.81 2499.64 5599.67 2298.08 11499.55 9299.64 16598.91 3699.96 1898.72 9899.90 2399.82 36
新几何199.75 5199.75 6299.59 6799.54 7196.76 23899.29 14899.64 16598.43 8199.94 5396.92 26299.66 11799.72 86
PEN-MVS97.76 23497.44 24698.72 21798.77 29998.54 19099.78 1999.51 10297.06 21898.29 28999.64 16592.63 26798.89 32398.09 16793.16 32498.72 234
CP-MVSNet98.09 18597.78 20599.01 16898.97 27499.24 11299.67 4299.46 16797.25 19998.48 27799.64 16593.79 24299.06 30098.63 11094.10 31398.74 232
LF4IMVS97.52 26297.46 24097.70 29798.98 27295.55 30599.29 21098.82 30998.07 11598.66 25899.64 16589.97 30999.61 21997.01 25296.68 25797.94 330
HPM-MVScopyleft99.42 3899.28 4899.83 3399.90 399.72 4299.81 1299.54 7197.59 16399.68 5399.63 17098.91 3699.94 5398.58 12099.91 1699.84 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
NCCC99.34 5199.19 6099.79 4399.61 12999.65 5799.30 20699.48 13998.86 3899.21 16999.63 17098.72 6099.90 10598.25 15499.63 12299.80 49
CP-MVS99.45 2699.32 3099.85 2599.83 3699.75 3899.69 3599.52 8998.07 11599.53 9599.63 17098.93 3599.97 1098.74 9499.91 1699.83 29
AdaColmapbinary99.01 10798.80 11599.66 6899.56 14199.54 7699.18 23899.70 1598.18 10099.35 13899.63 17096.32 15499.90 10597.48 22399.77 9299.55 139
TAPA-MVS97.07 1597.74 24097.34 26198.94 17899.70 9397.53 24299.25 22699.51 10291.90 33099.30 14599.63 17098.78 4899.64 21288.09 34199.87 4099.65 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ppachtmachnet_test97.49 26797.45 24197.61 29898.62 31495.24 31398.80 30699.46 16796.11 29198.22 29199.62 17596.45 15098.97 31893.77 31995.97 27898.61 288
MCST-MVS99.43 3399.30 4099.82 3599.79 4299.74 4199.29 21099.40 20498.79 4799.52 9799.62 17598.91 3699.90 10598.64 10999.75 9699.82 36
WTY-MVS99.06 9898.88 10399.61 8299.62 12599.16 12099.37 18899.56 5698.04 12199.53 9599.62 17596.84 13699.94 5398.85 7998.49 19499.72 86
MDTV_nov1_ep1398.32 15899.11 24994.44 32599.27 21698.74 31497.51 17599.40 12599.62 17594.78 20499.76 17397.59 21098.81 180
CANet99.25 6499.14 6499.59 8499.41 17699.16 12099.35 19799.57 5198.82 4299.51 9999.61 17996.46 14999.95 4299.59 199.98 299.65 112
HQP_MVS98.27 16998.22 16498.44 24599.29 20896.97 26899.39 18099.47 15798.97 3099.11 18799.61 17992.71 26499.69 20297.78 19397.63 22298.67 257
plane_prior499.61 179
ETH3 D test640098.70 13998.35 15599.73 5899.69 9599.60 6499.16 24099.45 17995.42 30299.27 15399.60 18297.39 11799.91 9095.36 30199.83 7299.70 95
baseline198.31 16497.95 18899.38 12599.50 15698.74 17499.59 7698.93 29598.41 7399.14 18299.60 18294.59 21699.79 16498.48 13393.29 32299.61 126
TranMVSNet+NR-MVSNet97.93 20897.66 21998.76 21598.78 29698.62 18499.65 5399.49 12897.76 14798.49 27699.60 18294.23 22898.97 31898.00 17692.90 32698.70 240
tpmrst98.33 16398.48 14897.90 28699.16 24294.78 32299.31 20499.11 27797.27 19799.45 10899.59 18595.33 18799.84 13698.48 13398.61 18499.09 194
IterMVS-LS98.46 15298.42 15198.58 22599.59 13498.00 22199.37 18899.43 19496.94 22999.07 19699.59 18597.87 10699.03 30498.32 15295.62 28698.71 236
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
F-COLMAP99.19 6999.04 7799.64 7799.78 4499.27 10999.42 16599.54 7197.29 19599.41 12099.59 18598.42 8499.93 6898.19 15899.69 10999.73 80
pmmvs498.13 18197.90 19398.81 20998.61 31698.87 16198.99 27999.21 26896.44 26699.06 20099.58 18895.90 16999.11 29697.18 24596.11 27198.46 306
1112_ss98.98 10998.77 11899.59 8499.68 9999.02 13799.25 22699.48 13997.23 20299.13 18399.58 18896.93 13599.90 10598.87 7498.78 18199.84 18
ab-mvs-re8.30 32711.06 3300.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 35899.58 1880.00 3630.00 3580.00 3560.00 3560.00 354
PatchmatchNetpermissive98.31 16498.36 15398.19 26799.16 24295.32 31299.27 21698.92 29797.37 18999.37 13299.58 18894.90 19899.70 19997.43 23099.21 14799.54 141
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA98.19 17498.16 16598.27 26499.30 20495.55 30599.07 25898.97 29197.57 16699.43 11399.57 19292.72 26299.74 17697.58 21199.20 14899.52 146
Patchmatch-test97.93 20897.65 22098.77 21499.18 23497.07 25999.03 26999.14 27596.16 28698.74 24699.57 19294.56 21899.72 18793.36 32399.11 15599.52 146
PVSNet96.02 1798.85 12798.84 11098.89 19199.73 7597.28 24898.32 33599.60 4197.86 13399.50 10099.57 19296.75 14199.86 12598.56 12599.70 10899.54 141
cdsmvs_eth3d_5k24.64 32632.85 3290.00 3400.00 3610.00 3620.00 35299.51 1020.00 3570.00 35899.56 19596.58 1450.00 3580.00 3560.00 3560.00 354
131498.68 14298.54 14699.11 15898.89 28098.65 18199.27 21699.49 12896.89 23197.99 30199.56 19597.72 11299.83 14597.74 19899.27 14498.84 217
lupinMVS99.13 7999.01 8699.46 11499.51 14998.94 15499.05 26399.16 27297.86 13399.80 2499.56 19597.39 11799.86 12598.94 6299.85 5899.58 136
miper_lstm_enhance98.00 20197.91 19298.28 26399.34 19497.43 24598.88 29899.36 22396.48 26398.80 24099.55 19895.98 16298.91 32197.27 23595.50 29098.51 298
DPM-MVS98.95 11298.71 12499.66 6899.63 11999.55 7498.64 32199.10 27897.93 12999.42 11699.55 19898.67 6699.80 16195.80 29099.68 11499.61 126
CDPH-MVS99.13 7998.91 9999.80 4099.75 6299.71 4499.15 24499.41 19896.60 25299.60 8099.55 19898.83 4399.90 10597.48 22399.83 7299.78 61
dp97.75 23897.80 20197.59 29999.10 25293.71 33299.32 20298.88 30496.48 26399.08 19599.55 19892.67 26699.82 15296.52 27698.58 18799.24 182
CLD-MVS98.16 17898.10 17098.33 25499.29 20896.82 27598.75 31199.44 18797.83 13899.13 18399.55 19892.92 25599.67 20498.32 15297.69 22198.48 300
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ZD-MVS99.71 8699.79 3099.61 3696.84 23499.56 8899.54 20398.58 7099.96 1896.93 26099.75 96
cl-mvsnet_98.01 19997.84 20098.55 23099.25 21997.97 22398.71 31599.34 23296.47 26598.59 27299.54 20395.65 17899.21 28397.21 23995.77 28198.46 306
cl-mvsnet198.01 19997.85 19998.48 23699.24 22097.95 22798.71 31599.35 22896.50 25898.60 27199.54 20395.72 17699.03 30497.21 23995.77 28198.46 306
MVS97.28 27396.55 28199.48 10998.78 29698.95 15199.27 21699.39 20883.53 34498.08 29699.54 20396.97 13399.87 12294.23 31599.16 15099.63 122
pmmvs597.52 26297.30 26698.16 26998.57 31996.73 27799.27 21698.90 30296.14 28998.37 28399.53 20791.54 29399.14 28897.51 22195.87 27998.63 277
HPM-MVS++copyleft99.39 4699.23 5799.87 1199.75 6299.84 1399.43 15899.51 10298.68 5599.27 15399.53 20798.64 6899.96 1898.44 13999.80 8499.79 53
PatchMatch-RL98.84 12998.62 13899.52 10399.71 8699.28 10799.06 26199.77 997.74 15199.50 10099.53 20795.41 18399.84 13697.17 24699.64 12099.44 167
eth_miper_zixun_eth98.05 19397.96 18698.33 25499.26 21597.38 24698.56 32799.31 25096.65 24698.88 22899.52 21096.58 14599.12 29597.39 23295.53 28998.47 302
test_prior399.21 6699.05 7499.68 6599.67 10099.48 8698.96 28799.56 5698.34 8099.01 20599.52 21098.68 6399.83 14597.96 17899.74 9999.74 73
test_prior298.96 28798.34 8099.01 20599.52 21098.68 6397.96 17899.74 99
test_040296.64 28496.24 28697.85 28898.85 28996.43 28999.44 15299.26 26293.52 32296.98 32099.52 21088.52 32399.20 28592.58 33197.50 23597.93 331
test_yl98.86 11998.63 13399.54 9299.49 15899.18 11799.50 12399.07 28398.22 9499.61 7699.51 21495.37 18599.84 13698.60 11798.33 19799.59 132
DCV-MVSNet98.86 11998.63 13399.54 9299.49 15899.18 11799.50 12399.07 28398.22 9499.61 7699.51 21495.37 18599.84 13698.60 11798.33 19799.59 132
v14897.79 23297.55 22898.50 23398.74 30197.72 23899.54 10699.33 23996.26 27798.90 22599.51 21494.68 21299.14 28897.83 18993.15 32598.63 277
DU-MVS98.08 18797.79 20298.96 17598.87 28598.98 14299.41 16899.45 17997.87 13298.71 24999.50 21794.82 20199.22 27898.57 12292.87 32898.68 249
NR-MVSNet97.97 20697.61 22499.02 16798.87 28599.26 11099.47 14499.42 19697.63 16197.08 31899.50 21795.07 19599.13 29197.86 18693.59 31898.68 249
XVG-ACMP-BASELINE97.83 22497.71 21598.20 26699.11 24996.33 29299.41 16899.52 8998.06 11999.05 20199.50 21789.64 31299.73 18397.73 19997.38 24698.53 296
MSP-MVS99.42 3899.27 5099.88 699.89 899.80 2699.67 4299.50 12098.70 5399.77 3399.49 22098.21 9699.95 4298.46 13799.77 9299.88 5
TEST999.67 10099.65 5799.05 26399.41 19896.22 28198.95 21799.49 22098.77 5199.91 90
train_agg99.02 10498.77 11899.77 4799.67 10099.65 5799.05 26399.41 19896.28 27498.95 21799.49 22098.76 5399.91 9097.63 20799.72 10399.75 69
agg_prior199.01 10798.76 12099.76 5099.67 10099.62 6098.99 27999.40 20496.26 27798.87 23099.49 22098.77 5199.91 9097.69 20499.72 10399.75 69
PVSNet_Blended99.08 9698.97 9199.42 12199.76 5298.79 17298.78 30899.91 396.74 23999.67 5999.49 22097.53 11499.88 11898.98 5799.85 5899.60 128
CNLPA99.14 7798.99 8799.59 8499.58 13599.41 9499.16 24099.44 18798.45 6999.19 17599.49 22098.08 10299.89 11397.73 19999.75 9699.48 157
test_899.67 10099.61 6299.03 26999.41 19896.28 27498.93 22199.48 22698.76 5399.91 90
EPMVS97.82 22797.65 22098.35 25398.88 28195.98 29999.49 13394.71 35297.57 16699.26 15899.48 22692.46 27599.71 19397.87 18599.08 16099.35 175
PLCcopyleft97.94 499.02 10498.85 10999.53 9899.66 10999.01 13999.24 22899.52 8996.85 23399.27 15399.48 22698.25 9499.91 9097.76 19599.62 12499.65 112
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
xiu_mvs_v1_base_debu99.29 5799.27 5099.34 12799.63 11998.97 14599.12 24899.51 10298.86 3899.84 1399.47 22998.18 9799.99 199.50 899.31 14199.08 195
xiu_mvs_v1_base99.29 5799.27 5099.34 12799.63 11998.97 14599.12 24899.51 10298.86 3899.84 1399.47 22998.18 9799.99 199.50 899.31 14199.08 195
xiu_mvs_v1_base_debi99.29 5799.27 5099.34 12799.63 11998.97 14599.12 24899.51 10298.86 3899.84 1399.47 22998.18 9799.99 199.50 899.31 14199.08 195
v192192097.80 23197.45 24198.84 20598.80 29298.53 19199.52 11299.34 23296.15 28899.24 16199.47 22993.98 23799.29 26695.40 29995.13 29798.69 244
UniMVSNet_NR-MVSNet98.22 17097.97 18598.96 17598.92 27898.98 14299.48 13999.53 8397.76 14798.71 24999.46 23396.43 15299.22 27898.57 12292.87 32898.69 244
testgi97.65 25597.50 23598.13 27199.36 18996.45 28899.42 16599.48 13997.76 14797.87 30499.45 23491.09 29898.81 32494.53 31198.52 19299.13 188
EIA-MVS99.18 7199.09 7199.45 11599.49 15899.18 11799.67 4299.53 8397.66 15999.40 12599.44 23598.10 10199.81 15698.94 6299.62 12499.35 175
tpm297.44 26997.34 26197.74 29599.15 24594.36 32699.45 14898.94 29493.45 32598.90 22599.44 23591.35 29599.59 22197.31 23398.07 21499.29 180
thisisatest051598.14 18097.79 20299.19 15199.50 15698.50 19898.61 32296.82 34596.95 22799.54 9399.43 23791.66 29099.86 12598.08 17199.51 13199.22 183
mvs-test198.86 11998.84 11098.89 19199.33 19597.77 23599.44 15299.30 25498.47 6699.10 19099.43 23796.78 13899.95 4298.73 9699.02 16598.96 210
WR-MVS98.06 18897.73 21399.06 16198.86 28899.25 11199.19 23799.35 22897.30 19498.66 25899.43 23793.94 23899.21 28398.58 12094.28 31098.71 236
v897.95 20797.63 22398.93 18098.95 27698.81 17199.80 1699.41 19896.03 29699.10 19099.42 24094.92 19799.30 26596.94 25994.08 31498.66 265
tpmvs97.98 20398.02 18197.84 28999.04 26394.73 32399.31 20499.20 26996.10 29598.76 24599.42 24094.94 19699.81 15696.97 25698.45 19598.97 208
UGNet98.87 11698.69 12699.40 12299.22 22598.72 17699.44 15299.68 1999.24 399.18 17899.42 24092.74 26199.96 1899.34 2399.94 999.53 145
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Effi-MVS+98.81 13098.59 14399.48 10999.46 16599.12 12998.08 34199.50 12097.50 17699.38 13099.41 24396.37 15399.81 15699.11 4698.54 19199.51 152
v1097.85 21997.52 23298.86 20198.99 26998.67 17999.75 2599.41 19895.70 29998.98 21399.41 24394.75 20999.23 27596.01 28694.63 30498.67 257
v14419297.92 21197.60 22598.87 19898.83 29198.65 18199.55 10399.34 23296.20 28299.32 14399.40 24594.36 22499.26 27296.37 28195.03 29998.70 240
NP-MVS99.23 22196.92 27199.40 245
HQP-MVS98.02 19697.90 19398.37 25299.19 23196.83 27398.98 28399.39 20898.24 9098.66 25899.40 24592.47 27299.64 21297.19 24397.58 22798.64 269
MAR-MVS98.86 11998.63 13399.54 9299.37 18799.66 5499.45 14899.54 7196.61 25099.01 20599.40 24597.09 12899.86 12597.68 20699.53 13099.10 190
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS99.04 10199.03 7999.06 16199.40 18199.31 10499.55 10399.56 5698.54 6199.33 14299.39 24998.76 5399.78 16896.98 25599.78 8998.07 324
CR-MVSNet98.17 17797.93 19198.87 19899.18 23498.49 19999.22 23499.33 23996.96 22599.56 8899.38 25094.33 22599.00 30994.83 30998.58 18799.14 186
Patchmtry97.75 23897.40 25298.81 20999.10 25298.87 16199.11 25499.33 23994.83 30898.81 23899.38 25094.33 22599.02 30696.10 28395.57 28798.53 296
BH-untuned98.42 15598.36 15398.59 22499.49 15896.70 27999.27 21699.13 27697.24 20198.80 24099.38 25095.75 17499.74 17697.07 25199.16 15099.33 178
V4298.06 18897.79 20298.86 20198.98 27298.84 16599.69 3599.34 23296.53 25799.30 14599.37 25394.67 21399.32 26297.57 21594.66 30398.42 309
VPA-MVSNet98.29 16797.95 18899.30 13799.16 24299.54 7699.50 12399.58 5098.27 8899.35 13899.37 25392.53 27099.65 21099.35 1994.46 30698.72 234
PVSNet_BlendedMVS98.86 11998.80 11599.03 16699.76 5298.79 17299.28 21299.91 397.42 18599.67 5999.37 25397.53 11499.88 11898.98 5797.29 24898.42 309
D2MVS98.41 15798.50 14798.15 27099.26 21596.62 28399.40 17699.61 3697.71 15398.98 21399.36 25696.04 16199.67 20498.70 10097.41 24498.15 322
MVP-Stereo97.81 22997.75 21197.99 28097.53 33396.60 28498.96 28798.85 30697.22 20397.23 31599.36 25695.28 18899.46 23095.51 29699.78 8997.92 332
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v124097.69 24897.32 26498.79 21298.85 28998.43 20499.48 13999.36 22396.11 29199.27 15399.36 25693.76 24499.24 27494.46 31295.23 29498.70 240
v114497.98 20397.69 21698.85 20498.87 28598.66 18099.54 10699.35 22896.27 27699.23 16599.35 25994.67 21399.23 27596.73 26995.16 29698.68 249
v2v48298.06 18897.77 20798.92 18298.90 27998.82 16999.57 8899.36 22396.65 24699.19 17599.35 25994.20 22999.25 27397.72 20194.97 30098.69 244
CostFormer97.72 24397.73 21397.71 29699.15 24594.02 32999.54 10699.02 28794.67 31199.04 20299.35 25992.35 27899.77 17098.50 13297.94 21699.34 177
our_test_397.65 25597.68 21797.55 30198.62 31494.97 31998.84 30299.30 25496.83 23698.19 29299.34 26297.01 13299.02 30695.00 30796.01 27398.64 269
cl_fuxian98.12 18398.04 17898.38 25199.30 20497.69 24198.81 30599.33 23996.67 24498.83 23699.34 26297.11 12798.99 31097.58 21195.34 29298.48 300
Fast-Effi-MVS+-dtu98.77 13698.83 11498.60 22399.41 17696.99 26699.52 11299.49 12898.11 10799.24 16199.34 26296.96 13499.79 16497.95 18099.45 13299.02 203
Fast-Effi-MVS+98.70 13998.43 15099.51 10599.51 14999.28 10799.52 11299.47 15796.11 29199.01 20599.34 26296.20 15899.84 13697.88 18498.82 17899.39 173
v119297.81 22997.44 24698.91 18698.88 28198.68 17899.51 11799.34 23296.18 28499.20 17299.34 26294.03 23699.36 25395.32 30295.18 29598.69 244
tpm97.67 25397.55 22898.03 27599.02 26695.01 31899.43 15898.54 32796.44 26699.12 18599.34 26291.83 28399.60 22097.75 19796.46 26499.48 157
PAPM97.59 25897.09 27399.07 16099.06 25998.26 21198.30 33699.10 27894.88 30798.08 29699.34 26296.27 15699.64 21289.87 33698.92 17299.31 179
GBi-Net97.68 25097.48 23698.29 26099.51 14997.26 25099.43 15899.48 13996.49 25999.07 19699.32 26990.26 30498.98 31197.10 24896.65 25898.62 279
test197.68 25097.48 23698.29 26099.51 14997.26 25099.43 15899.48 13996.49 25999.07 19699.32 26990.26 30498.98 31197.10 24896.65 25898.62 279
FMVSNet196.84 28096.36 28498.29 26099.32 20297.26 25099.43 15899.48 13995.11 30598.55 27399.32 26983.95 34098.98 31195.81 28996.26 26998.62 279
MS-PatchMatch97.24 27597.32 26496.99 30998.45 32493.51 33598.82 30499.32 24797.41 18698.13 29599.30 27288.99 31799.56 22395.68 29399.80 8497.90 333
GA-MVS97.85 21997.47 23899.00 17099.38 18597.99 22298.57 32599.15 27397.04 21998.90 22599.30 27289.83 31099.38 24696.70 27198.33 19799.62 124
miper_ehance_all_eth98.18 17698.10 17098.41 24799.23 22197.72 23898.72 31499.31 25096.60 25298.88 22899.29 27497.29 12399.13 29197.60 20995.99 27598.38 314
FMVSNet297.72 24397.36 25698.80 21199.51 14998.84 16599.45 14899.42 19696.49 25998.86 23599.29 27490.26 30498.98 31196.44 27896.56 26198.58 293
TESTMET0.1,197.55 25997.27 26998.40 24998.93 27796.53 28598.67 31797.61 34096.96 22598.64 26599.28 27688.63 32299.45 23197.30 23499.38 13699.21 184
FMVSNet398.03 19497.76 21098.84 20599.39 18498.98 14299.40 17699.38 21496.67 24499.07 19699.28 27692.93 25498.98 31197.10 24896.65 25898.56 295
PAPM_NR99.04 10198.84 11099.66 6899.74 7099.44 9199.39 18099.38 21497.70 15499.28 15099.28 27698.34 8999.85 13196.96 25799.45 13299.69 98
ETV-MVS99.26 6299.21 5899.40 12299.46 16599.30 10599.56 9599.52 8998.52 6399.44 11299.27 27998.41 8599.86 12599.10 4799.59 12699.04 200
xiu_mvs_v2_base99.26 6299.25 5499.29 14099.53 14598.91 15899.02 27299.45 17998.80 4699.71 4699.26 28098.94 3199.98 599.34 2399.23 14698.98 207
test20.0396.12 29495.96 29296.63 31697.44 33495.45 31099.51 11799.38 21496.55 25696.16 32799.25 28193.76 24496.17 34687.35 34394.22 31198.27 318
CS-MVS99.21 6699.13 6599.45 11599.54 14499.34 9999.71 3199.54 7198.26 8998.99 21299.24 28298.25 9499.88 11898.98 5799.63 12299.12 189
PS-MVSNAJ99.32 5399.32 3099.30 13799.57 13798.94 15498.97 28699.46 16798.92 3599.71 4699.24 28299.01 1699.98 599.35 1999.66 11798.97 208
Test_1112_low_res98.89 11598.66 13199.57 8899.69 9598.95 15199.03 26999.47 15796.98 22399.15 18199.23 28496.77 14099.89 11398.83 8498.78 18199.86 11
cl-mvsnet297.85 21997.64 22298.48 23699.09 25497.87 23098.60 32499.33 23997.11 21498.87 23099.22 28592.38 27799.17 28798.21 15795.99 27598.42 309
EG-PatchMatch MVS95.97 29695.69 29696.81 31497.78 33292.79 33899.16 24098.93 29596.16 28694.08 33599.22 28582.72 34299.47 22995.67 29497.50 23598.17 321
TR-MVS97.76 23497.41 25198.82 20799.06 25997.87 23098.87 30098.56 32596.63 24998.68 25799.22 28592.49 27199.65 21095.40 29997.79 21998.95 213
ET-MVSNet_ETH3D96.49 28795.64 29799.05 16399.53 14598.82 16998.84 30297.51 34197.63 16184.77 34499.21 28892.09 28098.91 32198.98 5792.21 33299.41 171
WR-MVS_H98.13 18197.87 19898.90 18899.02 26698.84 16599.70 3399.59 4497.27 19798.40 28199.19 28995.53 18099.23 27598.34 14993.78 31798.61 288
miper_enhance_ethall98.16 17898.08 17498.41 24798.96 27597.72 23898.45 33199.32 24796.95 22798.97 21599.17 29097.06 13099.22 27897.86 18695.99 27598.29 317
baseline297.87 21697.55 22898.82 20799.18 23498.02 22099.41 16896.58 34896.97 22496.51 32399.17 29093.43 24699.57 22297.71 20299.03 16498.86 215
MIMVSNet195.51 29995.04 30396.92 31297.38 33595.60 30399.52 11299.50 12093.65 32196.97 32199.17 29085.28 33896.56 34588.36 34095.55 28898.60 291
gm-plane-assit98.54 32192.96 33794.65 31299.15 29399.64 21297.56 216
MIMVSNet97.73 24197.45 24198.57 22699.45 17197.50 24399.02 27298.98 29096.11 29199.41 12099.14 29490.28 30398.74 32595.74 29198.93 17099.47 162
LCM-MVSNet-Re97.83 22498.15 16696.87 31399.30 20492.25 34099.59 7698.26 32997.43 18396.20 32699.13 29596.27 15698.73 32698.17 16298.99 16799.64 118
UniMVSNet (Re)98.29 16798.00 18299.13 15799.00 26899.36 9899.49 13399.51 10297.95 12798.97 21599.13 29596.30 15599.38 24698.36 14893.34 32198.66 265
N_pmnet94.95 30595.83 29492.31 32698.47 32379.33 35199.12 24892.81 35793.87 31897.68 31099.13 29593.87 24099.01 30891.38 33396.19 27098.59 292
PAPR98.63 14798.34 15699.51 10599.40 18199.03 13698.80 30699.36 22396.33 27199.00 21099.12 29898.46 7999.84 13695.23 30399.37 14099.66 108
tpm cat197.39 27097.36 25697.50 30399.17 24093.73 33199.43 15899.31 25091.27 33398.71 24999.08 29994.31 22799.77 17096.41 28098.50 19399.00 204
FMVSNet596.43 28996.19 28797.15 30699.11 24995.89 30199.32 20299.52 8994.47 31598.34 28699.07 30087.54 33197.07 34292.61 33095.72 28498.47 302
PMMVS98.80 13398.62 13899.34 12799.27 21398.70 17798.76 31099.31 25097.34 19099.21 16999.07 30097.20 12599.82 15298.56 12598.87 17599.52 146
Anonymous2023120696.22 29196.03 29096.79 31597.31 33894.14 32899.63 5799.08 28196.17 28597.04 31999.06 30293.94 23897.76 33886.96 34495.06 29898.47 302
DeepMVS_CXcopyleft93.34 32499.29 20882.27 34899.22 26785.15 34296.33 32599.05 30390.97 30099.73 18393.57 32197.77 22098.01 327
YYNet195.36 30294.51 30897.92 28497.89 33097.10 25599.10 25699.23 26693.26 32680.77 34899.04 30492.81 25898.02 33194.30 31394.18 31298.64 269
MDA-MVSNet-bldmvs94.96 30493.98 31097.92 28498.24 32797.27 24999.15 24499.33 23993.80 31980.09 35099.03 30588.31 32597.86 33693.49 32294.36 30998.62 279
BH-w/o98.00 20197.89 19798.32 25799.35 19096.20 29699.01 27798.90 30296.42 26898.38 28299.00 30695.26 19199.72 18796.06 28498.61 18499.03 201
Effi-MVS+-dtu98.78 13498.89 10298.47 24099.33 19596.91 27299.57 8899.30 25498.47 6699.41 12098.99 30796.78 13899.74 17698.73 9699.38 13698.74 232
MVS_030496.79 28296.52 28297.59 29999.22 22594.92 32099.04 26899.59 4496.49 25998.43 27998.99 30780.48 34699.39 24497.15 24799.27 14498.47 302
UnsupCasMVSNet_eth96.44 28896.12 28897.40 30598.65 31195.65 30299.36 19299.51 10297.13 20996.04 32998.99 30788.40 32498.17 33096.71 27090.27 33698.40 312
test0.0.03 197.71 24797.42 25098.56 22898.41 32597.82 23398.78 30898.63 32397.34 19098.05 30098.98 31094.45 22298.98 31195.04 30697.15 25498.89 214
MDA-MVSNet_test_wron95.45 30094.60 30698.01 27898.16 32897.21 25399.11 25499.24 26593.49 32380.73 34998.98 31093.02 25298.18 32994.22 31694.45 30798.64 269
FPMVS84.93 31685.65 31782.75 33486.77 35363.39 35798.35 33498.92 29774.11 34783.39 34698.98 31050.85 35492.40 35084.54 34794.97 30092.46 344
alignmvs98.81 13098.56 14599.58 8799.43 17299.42 9399.51 11798.96 29398.61 5899.35 13898.92 31394.78 20499.77 17099.35 1998.11 21399.54 141
test-LLR98.06 18897.90 19398.55 23098.79 29397.10 25598.67 31797.75 33797.34 19098.61 26998.85 31494.45 22299.45 23197.25 23799.38 13699.10 190
test-mter97.49 26797.13 27298.55 23098.79 29397.10 25598.67 31797.75 33796.65 24698.61 26998.85 31488.23 32699.45 23197.25 23799.38 13699.10 190
canonicalmvs99.02 10498.86 10899.51 10599.42 17399.32 10199.80 1699.48 13998.63 5699.31 14498.81 31697.09 12899.75 17599.27 3197.90 21799.47 162
DWT-MVSNet_test97.53 26197.40 25297.93 28399.03 26594.86 32199.57 8898.63 32396.59 25598.36 28498.79 31789.32 31499.74 17698.14 16598.16 21199.20 185
new_pmnet96.38 29096.03 29097.41 30498.13 32995.16 31799.05 26399.20 26993.94 31797.39 31398.79 31791.61 29299.04 30290.43 33595.77 28198.05 325
cascas97.69 24897.43 24998.48 23698.60 31797.30 24798.18 34099.39 20892.96 32798.41 28098.78 31993.77 24399.27 27098.16 16398.61 18498.86 215
PVSNet_094.43 1996.09 29595.47 29897.94 28299.31 20394.34 32797.81 34399.70 1597.12 21197.46 31198.75 32089.71 31199.79 16497.69 20481.69 34699.68 102
patchmatchnet-post98.70 32194.79 20399.74 176
Patchmatch-RL test95.84 29795.81 29595.95 32095.61 34190.57 34398.24 33798.39 32895.10 30695.20 33198.67 32294.78 20497.77 33796.28 28290.02 33799.51 152
thres100view90097.76 23497.45 24198.69 21999.72 8097.86 23299.59 7698.74 31497.93 12999.26 15898.62 32391.75 28499.83 14593.22 32498.18 20798.37 315
thres600view797.86 21897.51 23498.92 18299.72 8097.95 22799.59 7698.74 31497.94 12899.27 15398.62 32391.75 28499.86 12593.73 32098.19 20698.96 210
DSMNet-mixed97.25 27497.35 25896.95 31197.84 33193.61 33499.57 8896.63 34796.13 29098.87 23098.61 32594.59 21697.70 33995.08 30598.86 17699.55 139
IB-MVS95.67 1896.22 29195.44 30098.57 22699.21 22796.70 27998.65 32097.74 33996.71 24197.27 31498.54 32686.03 33599.92 7998.47 13686.30 34399.10 190
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND98.45 24298.55 32098.16 21499.43 15893.68 35497.23 31598.46 32789.30 31599.22 27895.43 29898.22 20397.98 328
tfpn200view997.72 24397.38 25498.72 21799.69 9597.96 22599.50 12398.73 31997.83 13899.17 17998.45 32891.67 28899.83 14593.22 32498.18 20798.37 315
thres40097.77 23397.38 25498.92 18299.69 9597.96 22599.50 12398.73 31997.83 13899.17 17998.45 32891.67 28899.83 14593.22 32498.18 20798.96 210
thres20097.61 25797.28 26798.62 22299.64 11698.03 21999.26 22498.74 31497.68 15699.09 19498.32 33091.66 29099.81 15692.88 32898.22 20398.03 326
OpenMVS_ROBcopyleft92.34 2094.38 30893.70 31196.41 31997.38 33593.17 33699.06 26198.75 31186.58 34194.84 33498.26 33181.53 34599.32 26289.01 33897.87 21896.76 339
pmmvs394.09 31093.25 31296.60 31794.76 34594.49 32498.92 29498.18 33389.66 33796.48 32498.06 33286.28 33497.33 34189.68 33787.20 34297.97 329
PM-MVS92.96 31292.23 31595.14 32295.61 34189.98 34599.37 18898.21 33194.80 30995.04 33397.69 33365.06 35097.90 33594.30 31389.98 33897.54 338
pmmvs-eth3d95.34 30394.73 30597.15 30695.53 34395.94 30099.35 19799.10 27895.13 30493.55 33697.54 33488.15 32897.91 33494.58 31089.69 33997.61 335
ambc93.06 32592.68 34782.36 34798.47 33098.73 31995.09 33297.41 33555.55 35399.10 29896.42 27991.32 33497.71 334
RPMNet96.72 28395.90 29399.19 15199.18 23498.49 19999.22 23499.52 8988.72 34099.56 8897.38 33694.08 23599.95 4286.87 34598.58 18799.14 186
new-patchmatchnet94.48 30694.08 30995.67 32195.08 34492.41 33999.18 23899.28 26094.55 31493.49 33797.37 33787.86 33097.01 34391.57 33288.36 34097.61 335
PatchT97.03 27996.44 28398.79 21298.99 26998.34 20899.16 24099.07 28392.13 32999.52 9797.31 33894.54 22098.98 31188.54 33998.73 18399.03 201
testing_294.44 30792.93 31398.98 17294.16 34699.00 14199.42 16599.28 26096.60 25284.86 34396.84 33970.91 34899.27 27098.23 15696.08 27298.68 249
UnsupCasMVSNet_bld93.53 31192.51 31496.58 31897.38 33593.82 33098.24 33799.48 13991.10 33593.10 33896.66 34074.89 34798.37 32894.03 31887.71 34197.56 337
LCM-MVSNet86.80 31585.22 31991.53 32887.81 35280.96 34998.23 33998.99 28971.05 34890.13 34296.51 34148.45 35696.88 34490.51 33485.30 34496.76 339
PMMVS286.87 31485.37 31891.35 32990.21 35083.80 34698.89 29797.45 34283.13 34591.67 34195.03 34248.49 35594.70 34885.86 34677.62 34795.54 342
Gipumacopyleft90.99 31390.15 31693.51 32398.73 30290.12 34493.98 34899.45 17979.32 34692.28 33994.91 34369.61 34997.98 33387.42 34295.67 28592.45 345
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
JIA-IIPM97.50 26597.02 27598.93 18098.73 30297.80 23499.30 20698.97 29191.73 33198.91 22394.86 34495.10 19499.71 19397.58 21197.98 21599.28 181
PMVScopyleft70.75 2275.98 32274.97 32379.01 33670.98 35755.18 35893.37 34998.21 33165.08 35361.78 35493.83 34521.74 36192.53 34978.59 34891.12 33589.34 348
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS-HIRNet95.75 29895.16 30297.51 30299.30 20493.69 33398.88 29895.78 34985.09 34398.78 24392.65 34691.29 29699.37 24994.85 30899.85 5899.46 164
E-PMN80.61 31879.88 32182.81 33390.75 34976.38 35497.69 34495.76 35066.44 35183.52 34592.25 34762.54 35287.16 35268.53 35161.40 34984.89 350
EMVS80.02 31979.22 32282.43 33591.19 34876.40 35397.55 34692.49 35866.36 35283.01 34791.27 34864.63 35185.79 35365.82 35260.65 35085.08 349
gg-mvs-nofinetune96.17 29395.32 30198.73 21698.79 29398.14 21699.38 18594.09 35391.07 33698.07 29991.04 34989.62 31399.35 25796.75 26799.09 15998.68 249
ANet_high77.30 32074.86 32484.62 33275.88 35677.61 35297.63 34593.15 35688.81 33964.27 35389.29 35036.51 35783.93 35475.89 34952.31 35192.33 346
MVEpermissive76.82 2176.91 32174.31 32584.70 33185.38 35576.05 35596.88 34793.17 35567.39 35071.28 35289.01 35121.66 36287.69 35171.74 35072.29 34890.35 347
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs39.17 32443.78 32625.37 33936.04 36016.84 36198.36 33326.56 35920.06 35538.51 35667.32 35229.64 35915.30 35737.59 35439.90 35343.98 352
test12339.01 32542.50 32728.53 33839.17 35920.91 36098.75 31119.17 36119.83 35638.57 35566.67 35333.16 35815.42 35637.50 35529.66 35449.26 351
test_post65.99 35494.65 21599.73 183
test_post199.23 22965.14 35594.18 23299.71 19397.58 211
X-MVStestdata96.55 28595.45 29999.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 13264.01 35698.81 4599.94 5398.79 9099.86 5199.84 18
wuyk23d40.18 32341.29 32836.84 33786.18 35449.12 35979.73 35122.81 36027.64 35425.46 35728.45 35721.98 36048.89 35555.80 35323.56 35512.51 353
uanet_test0.02 3290.03 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 3580.00 3630.00 3580.00 3560.00 3560.00 354
pcd_1.5k_mvsjas8.27 32811.03 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 35899.01 160.00 3580.00 3560.00 3560.00 354
sosnet-low-res0.02 3290.03 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet0.02 3290.03 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 3580.00 3630.00 3580.00 3560.00 3560.00 354
uncertanet0.02 3290.03 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 3580.00 3630.00 3580.00 3560.00 3560.00 354
Regformer0.02 3290.03 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 3580.00 3630.00 3580.00 3560.00 3560.00 354
uanet0.02 3290.03 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.27 3580.00 3630.00 3580.00 3560.00 3560.00 354
IU-MVS99.84 3299.88 799.32 24798.30 8599.84 1398.86 7799.85 5899.89 2
save fliter99.76 5299.59 6799.14 24699.40 20499.00 22
test_0728_SECOND99.91 299.84 3299.89 399.57 8899.51 10299.96 1898.93 6499.86 5199.88 5
GSMVS99.52 146
test_part299.81 4099.83 1499.77 33
sam_mvs194.86 20099.52 146
sam_mvs94.72 211
MTGPAbinary99.47 157
MTMP99.54 10698.88 304
test9_res97.49 22299.72 10399.75 69
agg_prior297.21 23999.73 10299.75 69
agg_prior99.67 10099.62 6099.40 20498.87 23099.91 90
test_prior499.56 7298.99 279
test_prior99.68 6599.67 10099.48 8699.56 5699.83 14599.74 73
旧先验298.96 28796.70 24299.47 10599.94 5398.19 158
新几何299.01 277
无先验98.99 27999.51 10296.89 23199.93 6897.53 21999.72 86
原ACMM298.95 291
testdata299.95 4296.67 273
segment_acmp98.96 25
testdata198.85 30198.32 84
test1299.75 5199.64 11699.61 6299.29 25999.21 16998.38 8699.89 11399.74 9999.74 73
plane_prior799.29 20897.03 263
plane_prior699.27 21396.98 26792.71 264
plane_prior599.47 15799.69 20297.78 19397.63 22298.67 257
plane_prior397.00 26598.69 5499.11 187
plane_prior299.39 18098.97 30
plane_prior199.26 215
plane_prior96.97 26899.21 23698.45 6997.60 225
n20.00 362
nn0.00 362
door-mid98.05 334
test1199.35 228
door97.92 335
HQP5-MVS96.83 273
HQP-NCC99.19 23198.98 28398.24 9098.66 258
ACMP_Plane99.19 23198.98 28398.24 9098.66 258
BP-MVS97.19 243
HQP4-MVS98.66 25899.64 21298.64 269
HQP3-MVS99.39 20897.58 227
HQP2-MVS92.47 272
MDTV_nov1_ep13_2view95.18 31699.35 19796.84 23499.58 8595.19 19397.82 19099.46 164
ACMMP++_ref97.19 251
ACMMP++97.43 243
Test By Simon98.75 56