This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
CANet99.25 6499.14 6499.59 8499.41 17899.16 12199.35 19999.57 5098.82 4399.51 10099.61 18196.46 14999.95 4399.59 199.98 299.65 112
EI-MVSNet-UG-set99.58 499.57 199.64 7799.78 4499.14 12699.60 7299.45 17999.01 1899.90 399.83 4298.98 2399.93 6999.59 199.95 699.86 11
DELS-MVS99.48 1999.42 1399.65 7299.72 8099.40 9799.05 26699.66 2799.14 699.57 8899.80 7698.46 7999.94 5499.57 399.84 6599.60 129
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EI-MVSNet-Vis-set99.58 499.56 399.64 7799.78 4499.15 12599.61 7199.45 17999.01 1899.89 499.82 4999.01 1699.92 8099.56 499.95 699.85 14
HyFIR lowres test99.11 9098.92 9799.65 7299.90 399.37 9899.02 27599.91 397.67 16099.59 8499.75 11095.90 16999.73 18499.53 599.02 16599.86 11
VNet99.11 9098.90 10099.73 5899.52 14999.56 7399.41 16999.39 21099.01 1899.74 4199.78 9595.56 18099.92 8099.52 698.18 20799.72 86
baseline99.15 7699.02 8299.53 9899.66 11099.14 12699.72 3099.48 13998.35 8099.42 11799.84 3896.07 16099.79 16599.51 799.14 15399.67 105
xiu_mvs_v1_base_debu99.29 5799.27 5099.34 12799.63 12098.97 14599.12 25199.51 10198.86 3999.84 1399.47 23198.18 9799.99 199.50 899.31 14199.08 196
xiu_mvs_v1_base99.29 5799.27 5099.34 12799.63 12098.97 14599.12 25199.51 10198.86 3999.84 1399.47 23198.18 9799.99 199.50 899.31 14199.08 196
xiu_mvs_v1_base_debi99.29 5799.27 5099.34 12799.63 12098.97 14599.12 25199.51 10198.86 3999.84 1399.47 23198.18 9799.99 199.50 899.31 14199.08 196
CHOSEN 1792x268899.19 6999.10 6999.45 11599.89 898.52 19599.39 18199.94 198.73 5299.11 18899.89 1095.50 18299.94 5499.50 899.97 399.89 2
VDD-MVS97.73 24397.35 25998.88 19599.47 16797.12 25699.34 20298.85 31298.19 9899.67 5999.85 2982.98 34999.92 8099.49 1298.32 20199.60 129
hse-mvs397.70 25097.28 26898.97 17599.70 9397.27 25099.36 19399.45 17998.94 3399.66 6499.64 16594.93 19899.99 199.48 1384.36 34699.65 112
PVSNet_Blended_VisFu99.36 4999.28 4899.61 8299.86 2199.07 13499.47 14699.93 297.66 16199.71 4699.86 2397.73 11199.96 1999.47 1499.82 7899.79 53
CHOSEN 280x42099.12 8599.13 6599.08 16099.66 11097.89 23098.43 33599.71 1398.88 3899.62 7599.76 10596.63 14499.70 20099.46 1599.99 199.66 108
Regformer-499.59 399.54 499.73 5899.76 5299.41 9599.58 8599.49 12799.02 1599.88 599.80 7699.00 2299.94 5499.45 1699.92 1199.84 18
casdiffmvs99.13 7998.98 9099.56 9099.65 11599.16 12199.56 9799.50 11998.33 8499.41 12199.86 2395.92 16799.83 14699.45 1699.16 15099.70 95
Regformer-399.57 799.53 599.68 6599.76 5299.29 10799.58 8599.44 18899.01 1899.87 1099.80 7698.97 2499.91 9199.44 1899.92 1199.83 29
DeepC-MVS98.35 299.30 5599.19 6099.64 7799.82 3799.23 11499.62 6599.55 6398.94 3399.63 7199.95 295.82 17299.94 5499.37 1999.97 399.73 80
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
alignmvs98.81 13098.56 14599.58 8799.43 17499.42 9499.51 11998.96 29998.61 5999.35 13998.92 31794.78 20699.77 17199.35 2098.11 21399.54 142
PS-MVSNAJ99.32 5399.32 3099.30 13799.57 13998.94 15498.97 28999.46 16798.92 3699.71 4699.24 28599.01 1699.98 699.35 2099.66 11798.97 210
VPA-MVSNet98.29 16797.95 18999.30 13799.16 24499.54 7799.50 12599.58 4998.27 8999.35 13999.37 25692.53 27399.65 21299.35 2094.46 30798.72 237
mvs_anonymous99.03 10398.99 8799.16 15599.38 18798.52 19599.51 11999.38 21697.79 14599.38 13199.81 6297.30 12299.45 23499.35 2098.99 16799.51 153
xiu_mvs_v2_base99.26 6299.25 5499.29 14099.53 14798.91 15899.02 27599.45 17998.80 4799.71 4699.26 28398.94 3199.98 699.34 2499.23 14698.98 209
nrg03098.64 14698.42 15199.28 14399.05 26499.69 4799.81 1299.46 16798.04 12299.01 20799.82 4996.69 14399.38 24899.34 2494.59 30698.78 223
UGNet98.87 11698.69 12699.40 12299.22 22798.72 17699.44 15499.68 1999.24 399.18 17999.42 24292.74 26399.96 1999.34 2499.94 999.53 146
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
mvs_tets98.40 15998.23 16398.91 18798.67 31298.51 19799.66 4799.53 8298.19 9898.65 26699.81 6292.75 26199.44 23999.31 2797.48 23998.77 227
VDDNet97.55 26297.02 27899.16 15599.49 16098.12 21999.38 18699.30 25795.35 30699.68 5399.90 782.62 35199.93 6999.31 2798.13 21299.42 170
diffmvs99.14 7799.02 8299.51 10599.61 13098.96 14999.28 21499.49 12798.46 6999.72 4599.71 12896.50 14899.88 11999.31 2799.11 15599.67 105
LFMVS97.90 21497.35 25999.54 9299.52 14999.01 14099.39 18198.24 33697.10 21899.65 6899.79 8884.79 34799.91 9199.28 3098.38 19699.69 98
MSLP-MVS++99.46 2499.47 999.44 12099.60 13399.16 12199.41 16999.71 1398.98 2799.45 10999.78 9599.19 799.54 22899.28 3099.84 6599.63 123
canonicalmvs99.02 10498.86 10899.51 10599.42 17599.32 10299.80 1699.48 13998.63 5799.31 14598.81 32097.09 12899.75 17699.27 3297.90 21799.47 163
Anonymous2024052998.09 18697.68 21899.34 12799.66 11098.44 20399.40 17799.43 19693.67 32799.22 16799.89 1090.23 31299.93 6999.26 3398.33 19799.66 108
EPNet98.86 11998.71 12499.30 13797.20 34498.18 21499.62 6598.91 30699.28 298.63 26899.81 6295.96 16399.99 199.24 3499.72 10399.73 80
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
jajsoiax98.43 15498.28 16198.88 19598.60 31998.43 20499.82 1099.53 8298.19 9898.63 26899.80 7693.22 25399.44 23999.22 3597.50 23598.77 227
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2699.56 5599.02 1599.88 599.85 2999.18 899.96 1999.22 3599.92 1199.90 1
RRT_test8_iter0597.72 24597.60 22698.08 27499.23 22396.08 30099.63 5999.49 12797.54 17398.94 22199.81 6287.99 33699.35 25999.21 3796.51 26498.81 220
VPNet97.84 22397.44 24799.01 16999.21 22998.94 15499.48 14199.57 5098.38 7699.28 15199.73 12388.89 32599.39 24699.19 3893.27 32498.71 239
sss99.17 7399.05 7499.53 9899.62 12698.97 14599.36 19399.62 3397.83 13999.67 5999.65 15897.37 12199.95 4399.19 3899.19 14999.68 102
Vis-MVSNetpermissive99.12 8598.97 9199.56 9099.78 4499.10 13199.68 4199.66 2798.49 6699.86 1199.87 2094.77 20999.84 13799.19 3899.41 13599.74 73
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Regformer-199.53 1199.47 999.72 6199.71 8699.44 9299.49 13599.46 16798.95 3299.83 1799.76 10599.01 1699.93 6999.17 4199.87 4099.80 49
ab-mvs98.86 11998.63 13399.54 9299.64 11799.19 11699.44 15499.54 7097.77 14799.30 14699.81 6294.20 23199.93 6999.17 4198.82 17899.49 157
Anonymous20240521198.30 16697.98 18499.26 14599.57 13998.16 21599.41 16998.55 33296.03 29999.19 17699.74 11691.87 28699.92 8099.16 4398.29 20299.70 95
Regformer-299.54 999.47 999.75 5199.71 8699.52 8399.49 13599.49 12798.94 3399.83 1799.76 10599.01 1699.94 5499.15 4499.87 4099.80 49
PS-MVSNAJss98.92 11498.92 9798.90 18998.78 29898.53 19199.78 2099.54 7098.07 11699.00 21299.76 10599.01 1699.37 25199.13 4597.23 24998.81 220
EPP-MVSNet99.13 7998.99 8799.53 9899.65 11599.06 13599.81 1299.33 24297.43 18699.60 8199.88 1597.14 12699.84 13799.13 4598.94 16999.69 98
Effi-MVS+98.81 13098.59 14399.48 10999.46 16899.12 13098.08 34799.50 11997.50 17899.38 13199.41 24596.37 15399.81 15799.11 4798.54 19199.51 153
ETV-MVS99.26 6299.21 5899.40 12299.46 16899.30 10699.56 9799.52 8898.52 6499.44 11399.27 28298.41 8599.86 12699.10 4899.59 12699.04 202
TSAR-MVS + GP.99.36 4999.36 2199.36 12699.67 10198.61 18699.07 26199.33 24299.00 2299.82 2099.81 6299.06 1399.84 13799.09 4999.42 13499.65 112
FIs98.78 13498.63 13399.23 15099.18 23699.54 7799.83 999.59 4398.28 8798.79 24499.81 6296.75 14199.37 25199.08 5096.38 26798.78 223
FC-MVSNet-test98.75 13798.62 13899.15 15799.08 25899.45 9199.86 599.60 4098.23 9498.70 25799.82 4996.80 13799.22 27999.07 5196.38 26798.79 222
HPM-MVS_fast99.51 1499.40 1699.85 2599.91 199.79 3099.76 2599.56 5597.72 15399.76 3799.75 11099.13 1099.92 8099.07 5199.92 1199.85 14
MVSFormer99.17 7399.12 6799.29 14099.51 15198.94 15499.88 199.46 16797.55 17099.80 2499.65 15897.39 11799.28 26999.03 5399.85 5899.65 112
test_djsdf98.67 14398.57 14498.98 17398.70 30998.91 15899.88 199.46 16797.55 17099.22 16799.88 1595.73 17599.28 26999.03 5397.62 22498.75 231
jason99.13 7999.03 7999.45 11599.46 16898.87 16199.12 25199.26 26598.03 12499.79 2699.65 15897.02 13199.85 13299.02 5599.90 2399.65 112
jason: jason.
DeepPCF-MVS98.18 398.81 13099.37 1997.12 31399.60 13391.75 34898.61 32599.44 18899.35 199.83 1799.85 2998.70 6299.81 15799.02 5599.91 1699.81 41
CSCG99.32 5399.32 3099.32 13299.85 2598.29 20999.71 3299.66 2798.11 10899.41 12199.80 7698.37 8899.96 1998.99 5799.96 599.72 86
ET-MVSNet_ETH3D96.49 29095.64 30199.05 16499.53 14798.82 16998.84 30597.51 34897.63 16384.77 35199.21 29192.09 28398.91 32398.98 5892.21 33399.41 172
CS-MVS99.21 6699.13 6599.45 11599.54 14699.34 10099.71 3299.54 7098.26 9098.99 21499.24 28598.25 9499.88 11998.98 5899.63 12299.12 190
PVSNet_BlendedMVS98.86 11998.80 11599.03 16799.76 5298.79 17299.28 21499.91 397.42 18899.67 5999.37 25697.53 11499.88 11998.98 5897.29 24898.42 311
PVSNet_Blended99.08 9698.97 9199.42 12199.76 5298.79 17298.78 31199.91 396.74 24299.67 5999.49 22297.53 11499.88 11998.98 5899.85 5899.60 129
3Dnovator97.25 999.24 6599.05 7499.81 3899.12 24999.66 5499.84 699.74 1099.09 1098.92 22499.90 795.94 16699.98 698.95 6299.92 1199.79 53
EIA-MVS99.18 7199.09 7199.45 11599.49 16099.18 11899.67 4399.53 8297.66 16199.40 12699.44 23798.10 10199.81 15798.94 6399.62 12499.35 176
lupinMVS99.13 7999.01 8699.46 11499.51 15198.94 15499.05 26699.16 27897.86 13499.80 2499.56 19797.39 11799.86 12698.94 6399.85 5899.58 137
DVP-MVS99.57 799.47 999.88 699.85 2599.89 399.57 9099.37 22599.10 899.81 2299.80 7698.94 3199.96 1998.93 6599.86 5199.81 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.91 299.84 3299.89 399.57 9099.51 10199.96 1998.93 6599.86 5199.88 5
UA-Net99.42 3899.29 4499.80 4099.62 12699.55 7599.50 12599.70 1598.79 4899.77 3399.96 197.45 11699.96 1998.92 6799.90 2399.89 2
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 7299.48 13999.08 1199.91 199.81 6299.20 599.96 1998.91 6899.85 5899.79 53
test_241102_TWO99.48 13999.08 1199.88 599.81 6298.94 3199.96 1998.91 6899.84 6599.88 5
MVS_111021_HR99.41 4299.32 3099.66 6899.72 8099.47 8998.95 29499.85 698.82 4399.54 9499.73 12398.51 7599.74 17798.91 6899.88 3699.77 63
zzz-MVS99.49 1599.36 2199.89 499.90 399.86 1099.36 19399.47 15798.79 4899.68 5399.81 6298.43 8199.97 1198.88 7199.90 2399.83 29
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 4799.47 15798.79 4899.68 5399.81 6298.43 8199.97 1198.88 7199.90 2399.83 29
XXY-MVS98.38 16098.09 17399.24 14899.26 21799.32 10299.56 9799.55 6397.45 18298.71 25199.83 4293.23 25199.63 21998.88 7196.32 26998.76 229
ACMH97.28 898.10 18597.99 18398.44 24899.41 17896.96 27399.60 7299.56 5598.09 11198.15 29899.91 590.87 30699.70 20098.88 7197.45 24098.67 259
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS_Test99.10 9398.97 9199.48 10999.49 16099.14 12699.67 4399.34 23597.31 19699.58 8699.76 10597.65 11399.82 15398.87 7599.07 16199.46 165
MVSTER98.49 15098.32 15899.00 17199.35 19299.02 13899.54 10999.38 21697.41 18999.20 17399.73 12393.86 24399.36 25598.87 7597.56 22998.62 281
1112_ss98.98 10998.77 11899.59 8499.68 10099.02 13899.25 22999.48 13997.23 20599.13 18499.58 19096.93 13599.90 10698.87 7598.78 18199.84 18
IU-MVS99.84 3299.88 799.32 25098.30 8699.84 1398.86 7899.85 5899.89 2
3Dnovator+97.12 1399.18 7198.97 9199.82 3599.17 24299.68 4999.81 1299.51 10199.20 498.72 25099.89 1095.68 17799.97 1198.86 7899.86 5199.81 41
test_0728_THIRD98.99 2599.81 2299.80 7699.09 1299.96 1998.85 8099.90 2399.88 5
WTY-MVS99.06 9898.88 10399.61 8299.62 12699.16 12199.37 18999.56 5598.04 12299.53 9699.62 17796.84 13699.94 5498.85 8098.49 19499.72 86
TSAR-MVS + MP.99.58 499.50 899.81 3899.91 199.66 5499.63 5999.39 21098.91 3799.78 3199.85 2999.36 299.94 5498.84 8299.88 3699.82 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Anonymous2023121197.88 21597.54 23298.90 18999.71 8698.53 19199.48 14199.57 5094.16 32398.81 24099.68 14593.23 25199.42 24498.84 8294.42 30998.76 229
114514_t98.93 11398.67 12899.72 6199.85 2599.53 8099.62 6599.59 4392.65 33699.71 4699.78 9598.06 10399.90 10698.84 8299.91 1699.74 73
tttt051798.42 15598.14 16799.28 14399.66 11098.38 20799.74 2996.85 35197.68 15799.79 2699.74 11691.39 29999.89 11498.83 8599.56 12799.57 138
MP-MVS-pluss99.37 4899.20 5999.88 699.90 399.87 999.30 20899.52 8897.18 20899.60 8199.79 8898.79 4799.95 4398.83 8599.91 1699.83 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
Test_1112_low_res98.89 11598.66 13199.57 8899.69 9698.95 15199.03 27299.47 15796.98 22699.15 18299.23 28796.77 14099.89 11498.83 8598.78 18199.86 11
MVS_111021_LR99.41 4299.33 2899.65 7299.77 4999.51 8598.94 29699.85 698.82 4399.65 6899.74 11698.51 7599.80 16298.83 8599.89 3399.64 119
ACMMP_NAP99.47 2299.34 2699.88 699.87 1599.86 1099.47 14699.48 13998.05 12199.76 3799.86 2398.82 4499.93 6998.82 8999.91 1699.84 18
RRT_MVS98.60 14898.44 14999.05 16498.88 28399.14 12699.49 13599.38 21697.76 14899.29 14999.86 2395.38 18599.36 25598.81 9097.16 25398.64 271
SMA-MVScopyleft99.44 3099.30 4099.85 2599.73 7599.83 1499.56 9799.47 15797.45 18299.78 3199.82 4999.18 899.91 9198.79 9199.89 3399.81 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3699.68 1998.98 2799.37 13399.74 11698.81 4599.94 5498.79 9199.86 5199.84 18
X-MVStestdata96.55 28895.45 30399.87 1199.85 2599.83 1499.69 3699.68 1998.98 2799.37 13364.01 36398.81 4599.94 5498.79 9199.86 5199.84 18
bset_n11_16_dypcd98.16 17897.97 18598.73 21798.26 32998.28 21197.99 34998.01 34197.68 15799.10 19199.63 17195.68 17799.15 28998.78 9496.55 26298.75 231
CVMVSNet98.57 14998.67 12898.30 26199.35 19295.59 30899.50 12599.55 6398.60 6099.39 12899.83 4294.48 22399.45 23498.75 9598.56 19099.85 14
CP-MVS99.45 2699.32 3099.85 2599.83 3699.75 3899.69 3699.52 8898.07 11699.53 9699.63 17198.93 3599.97 1198.74 9699.91 1699.83 29
ACMM97.58 598.37 16198.34 15698.48 23999.41 17897.10 25799.56 9799.45 17998.53 6399.04 20499.85 2993.00 25599.71 19498.74 9697.45 24098.64 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Effi-MVS+-dtu98.78 13498.89 10298.47 24399.33 19796.91 27599.57 9099.30 25798.47 6799.41 12198.99 31196.78 13899.74 17798.73 9899.38 13698.74 235
mvs-test198.86 11998.84 11098.89 19299.33 19797.77 23699.44 15499.30 25798.47 6799.10 19199.43 23996.78 13899.95 4398.73 9899.02 16598.96 212
ZNCC-MVS99.47 2299.33 2899.87 1199.87 1599.81 2499.64 5799.67 2298.08 11599.55 9399.64 16598.91 3699.96 1998.72 10099.90 2399.82 36
SD-MVS99.41 4299.52 699.05 16499.74 7099.68 4999.46 14999.52 8899.11 799.88 599.91 599.43 197.70 34498.72 10099.93 1099.77 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
D2MVS98.41 15798.50 14798.15 27299.26 21796.62 28599.40 17799.61 3597.71 15498.98 21599.36 25996.04 16199.67 20598.70 10297.41 24498.15 325
CDS-MVSNet99.09 9499.03 7999.25 14699.42 17598.73 17599.45 15099.46 16798.11 10899.46 10899.77 10198.01 10499.37 25198.70 10298.92 17299.66 108
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS99.12 8599.08 7299.24 14899.46 16898.55 18999.51 11999.46 16798.09 11199.45 10999.82 4998.34 8999.51 22998.70 10298.93 17099.67 105
HFP-MVS99.49 1599.37 1999.86 1899.87 1599.80 2699.66 4799.67 2298.15 10299.68 5399.69 13999.06 1399.96 1998.69 10599.87 4099.84 18
ACMMPR99.49 1599.36 2199.86 1899.87 1599.79 3099.66 4799.67 2298.15 10299.67 5999.69 13998.95 2899.96 1998.69 10599.87 4099.84 18
UniMVSNet_ETH3D97.32 27596.81 28198.87 19999.40 18397.46 24599.51 11999.53 8295.86 30198.54 27699.77 10182.44 35299.66 20898.68 10797.52 23299.50 156
test_part197.75 23997.24 27299.29 14099.59 13599.63 6099.65 5499.49 12796.17 28798.44 28299.69 13989.80 31699.47 23198.68 10793.66 31998.78 223
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4799.63 12099.59 6899.36 19399.46 16799.07 1399.79 2699.82 4998.85 4199.92 8098.68 10799.87 4099.82 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
anonymousdsp98.44 15398.28 16198.94 17998.50 32498.96 14999.77 2299.50 11997.07 21998.87 23299.77 10194.76 21099.28 26998.66 11097.60 22598.57 296
DP-MVS99.16 7598.95 9599.78 4599.77 4999.53 8099.41 16999.50 11997.03 22499.04 20499.88 1597.39 11799.92 8098.66 11099.90 2399.87 10
MCST-MVS99.43 3399.30 4099.82 3599.79 4299.74 4199.29 21299.40 20698.79 4899.52 9899.62 17798.91 3699.90 10698.64 11299.75 9699.82 36
CP-MVSNet98.09 18697.78 20699.01 16998.97 27699.24 11399.67 4399.46 16797.25 20298.48 28099.64 16593.79 24499.06 30298.63 11394.10 31498.74 235
thisisatest053098.35 16298.03 17999.31 13399.63 12098.56 18899.54 10996.75 35397.53 17599.73 4399.65 15891.25 30299.89 11498.62 11499.56 12799.48 158
region2R99.48 1999.35 2499.87 1199.88 1199.80 2699.65 5499.66 2798.13 10499.66 6499.68 14598.96 2599.96 1998.62 11499.87 4099.84 18
APD-MVS_3200maxsize99.48 1999.35 2499.85 2599.76 5299.83 1499.63 5999.54 7098.36 7999.79 2699.82 4998.86 4099.95 4398.62 11499.81 8099.78 61
SR-MVS-dyc-post99.45 2699.31 3799.85 2599.76 5299.82 2099.63 5999.52 8898.38 7699.76 3799.82 4998.53 7299.95 4398.61 11799.81 8099.77 63
RE-MVS-def99.34 2699.76 5299.82 2099.63 5999.52 8898.38 7699.76 3799.82 4998.75 5698.61 11799.81 8099.77 63
PHI-MVS99.30 5599.17 6299.70 6499.56 14399.52 8399.58 8599.80 897.12 21499.62 7599.73 12398.58 7099.90 10698.61 11799.91 1699.68 102
test_yl98.86 11998.63 13399.54 9299.49 16099.18 11899.50 12599.07 28998.22 9599.61 7799.51 21695.37 18699.84 13798.60 12098.33 19799.59 133
DCV-MVSNet98.86 11998.63 13399.54 9299.49 16099.18 11899.50 12599.07 28998.22 9599.61 7799.51 21695.37 18699.84 13798.60 12098.33 19799.59 133
CNVR-MVS99.42 3899.30 4099.78 4599.62 12699.71 4499.26 22799.52 8898.82 4399.39 12899.71 12898.96 2599.85 13298.59 12299.80 8499.77 63
WR-MVS98.06 18997.73 21499.06 16298.86 29099.25 11299.19 24099.35 23197.30 19798.66 26099.43 23993.94 24099.21 28498.58 12394.28 31198.71 239
HPM-MVScopyleft99.42 3899.28 4899.83 3399.90 399.72 4299.81 1299.54 7097.59 16599.68 5399.63 17198.91 3699.94 5498.58 12399.91 1699.84 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
UniMVSNet_NR-MVSNet98.22 17097.97 18598.96 17698.92 28098.98 14299.48 14199.53 8297.76 14898.71 25199.46 23596.43 15299.22 27998.57 12592.87 32998.69 247
DU-MVS98.08 18897.79 20398.96 17698.87 28798.98 14299.41 16999.45 17997.87 13398.71 25199.50 21994.82 20399.22 27998.57 12592.87 32998.68 252
mPP-MVS99.44 3099.30 4099.86 1899.88 1199.79 3099.69 3699.48 13998.12 10699.50 10199.75 11098.78 4899.97 1198.57 12599.89 3399.83 29
CANet_DTU98.97 11198.87 10499.25 14699.33 19798.42 20699.08 26099.30 25799.16 599.43 11499.75 11095.27 19099.97 1198.56 12899.95 699.36 175
PMMVS98.80 13398.62 13899.34 12799.27 21598.70 17798.76 31399.31 25397.34 19399.21 17099.07 30397.20 12599.82 15398.56 12898.87 17599.52 147
PVSNet96.02 1798.85 12798.84 11098.89 19299.73 7597.28 24998.32 34199.60 4097.86 13499.50 10199.57 19496.75 14199.86 12698.56 12899.70 10899.54 142
test117299.43 3399.29 4499.85 2599.75 6299.82 2099.60 7299.56 5598.28 8799.74 4199.79 8898.53 7299.95 4398.55 13199.78 8999.79 53
ACMMPcopyleft99.45 2699.32 3099.82 3599.89 899.67 5299.62 6599.69 1898.12 10699.63 7199.84 3898.73 5999.96 1998.55 13199.83 7299.81 41
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
XVG-OURS-SEG-HR98.69 14198.62 13898.89 19299.71 8697.74 23799.12 25199.54 7098.44 7399.42 11799.71 12894.20 23199.92 8098.54 13398.90 17499.00 206
PS-CasMVS97.93 20997.59 22898.95 17898.99 27199.06 13599.68 4199.52 8897.13 21298.31 29199.68 14592.44 27999.05 30398.51 13494.08 31598.75 231
CostFormer97.72 24597.73 21497.71 29899.15 24794.02 33599.54 10999.02 29394.67 31899.04 20499.35 26292.35 28199.77 17198.50 13597.94 21699.34 178
baseline198.31 16497.95 18999.38 12599.50 15898.74 17499.59 7898.93 30198.41 7499.14 18399.60 18494.59 21899.79 16598.48 13693.29 32399.61 127
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2499.59 7899.51 10198.62 5899.79 2699.83 4299.28 399.97 1198.48 13699.90 2399.84 18
Skip Steuart: Steuart Systems R&D Blog.
tpmrst98.33 16398.48 14897.90 28899.16 24494.78 32899.31 20699.11 28397.27 20099.45 10999.59 18795.33 18899.84 13798.48 13698.61 18499.09 195
IB-MVS95.67 1896.22 29495.44 30498.57 22999.21 22996.70 28198.65 32397.74 34696.71 24497.27 32098.54 33086.03 34399.92 8098.47 13986.30 34499.10 191
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MSP-MVS99.42 3899.27 5099.88 699.89 899.80 2699.67 4399.50 11998.70 5499.77 3399.49 22298.21 9699.95 4398.46 14099.77 9299.88 5
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
abl_699.44 3099.31 3799.83 3399.85 2599.75 3899.66 4799.59 4398.13 10499.82 2099.81 6298.60 6999.96 1998.46 14099.88 3699.79 53
SR-MVS99.43 3399.29 4499.86 1899.75 6299.83 1499.59 7899.62 3398.21 9799.73 4399.79 8898.68 6399.96 1998.44 14299.77 9299.79 53
HPM-MVS++copyleft99.39 4699.23 5799.87 1199.75 6299.84 1399.43 16099.51 10198.68 5699.27 15499.53 20998.64 6899.96 1998.44 14299.80 8499.79 53
#test#99.43 3399.29 4499.86 1899.87 1599.80 2699.55 10699.67 2297.83 13999.68 5399.69 13999.06 1399.96 1998.39 14499.87 4099.84 18
LTVRE_ROB97.16 1298.02 19797.90 19498.40 25299.23 22396.80 27999.70 3499.60 4097.12 21498.18 29799.70 13291.73 29199.72 18898.39 14497.45 24098.68 252
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
GST-MVS99.40 4599.24 5599.85 2599.86 2199.79 3099.60 7299.67 2297.97 12799.63 7199.68 14598.52 7499.95 4398.38 14699.86 5199.81 41
EI-MVSNet98.67 14398.67 12898.68 22299.35 19297.97 22499.50 12599.38 21696.93 23399.20 17399.83 4297.87 10699.36 25598.38 14697.56 22998.71 239
HY-MVS97.30 798.85 12798.64 13299.47 11299.42 17599.08 13399.62 6599.36 22697.39 19199.28 15199.68 14596.44 15199.92 8098.37 14898.22 20399.40 173
TDRefinement95.42 30594.57 31197.97 28389.83 35896.11 29999.48 14198.75 31796.74 24296.68 33099.88 1588.65 32899.71 19498.37 14882.74 34898.09 326
UniMVSNet (Re)98.29 16798.00 18299.13 15899.00 27099.36 9999.49 13599.51 10197.95 12898.97 21799.13 29896.30 15599.38 24898.36 15093.34 32298.66 267
WR-MVS_H98.13 18297.87 19998.90 18999.02 26898.84 16599.70 3499.59 4397.27 20098.40 28599.19 29295.53 18199.23 27698.34 15193.78 31898.61 290
PGM-MVS99.45 2699.31 3799.86 1899.87 1599.78 3799.58 8599.65 3297.84 13899.71 4699.80 7699.12 1199.97 1198.33 15299.87 4099.83 29
LS3D99.27 6099.12 6799.74 5699.18 23699.75 3899.56 9799.57 5098.45 7099.49 10499.85 2997.77 11099.94 5498.33 15299.84 6599.52 147
IterMVS-LS98.46 15298.42 15198.58 22899.59 13598.00 22299.37 18999.43 19696.94 23299.07 19899.59 18797.87 10699.03 30698.32 15495.62 28798.71 239
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CLD-MVS98.16 17898.10 17098.33 25799.29 21096.82 27898.75 31499.44 18897.83 13999.13 18499.55 20092.92 25799.67 20598.32 15497.69 22198.48 302
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
NCCC99.34 5199.19 6099.79 4399.61 13099.65 5799.30 20899.48 13998.86 3999.21 17099.63 17198.72 6099.90 10698.25 15699.63 12299.80 49
OPU-MVS99.64 7799.56 14399.72 4299.60 7299.70 13299.27 499.42 24498.24 15799.80 8499.79 53
cl-mvsnet297.85 22097.64 22398.48 23999.09 25697.87 23198.60 32799.33 24297.11 21798.87 23299.22 28892.38 28099.17 28898.21 15895.99 27698.42 311
xxxxxxxxxxxxxcwj99.43 3399.32 3099.75 5199.76 5299.59 6899.14 24999.53 8299.00 2299.71 4699.80 7698.95 2899.93 6998.19 15999.84 6599.74 73
SF-MVS99.38 4799.24 5599.79 4399.79 4299.68 4999.57 9099.54 7097.82 14499.71 4699.80 7698.95 2899.93 6998.19 15999.84 6599.74 73
旧先验298.96 29096.70 24599.47 10699.94 5498.19 159
F-COLMAP99.19 6999.04 7799.64 7799.78 4499.27 11099.42 16799.54 7097.29 19899.41 12199.59 18798.42 8499.93 6998.19 15999.69 10999.73 80
LCM-MVSNet-Re97.83 22598.15 16696.87 31999.30 20692.25 34799.59 7898.26 33597.43 18696.20 33499.13 29896.27 15698.73 32898.17 16398.99 16799.64 119
DPE-MVScopyleft99.46 2499.32 3099.91 299.78 4499.88 799.36 19399.51 10198.73 5299.88 599.84 3898.72 6099.96 1998.16 16499.87 4099.88 5
cascas97.69 25197.43 25098.48 23998.60 31997.30 24898.18 34699.39 21092.96 33598.41 28498.78 32393.77 24599.27 27298.16 16498.61 18498.86 217
DWT-MVSNet_test97.53 26497.40 25397.93 28599.03 26794.86 32799.57 9098.63 32996.59 25798.36 28898.79 32189.32 32199.74 17798.14 16698.16 21199.20 186
COLMAP_ROBcopyleft97.56 698.86 11998.75 12199.17 15499.88 1198.53 19199.34 20299.59 4397.55 17098.70 25799.89 1095.83 17199.90 10698.10 16799.90 2399.08 196
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PEN-MVS97.76 23597.44 24798.72 21998.77 30198.54 19099.78 2099.51 10197.06 22198.29 29399.64 16592.63 27098.89 32598.09 16893.16 32598.72 237
LPG-MVS_test98.22 17098.13 16898.49 23799.33 19797.05 26399.58 8599.55 6397.46 17999.24 16299.83 4292.58 27199.72 18898.09 16897.51 23398.68 252
LGP-MVS_train98.49 23799.33 19797.05 26399.55 6397.46 17999.24 16299.83 4292.58 27199.72 18898.09 16897.51 23398.68 252
IS-MVSNet99.05 10098.87 10499.57 8899.73 7599.32 10299.75 2699.20 27398.02 12599.56 8999.86 2396.54 14799.67 20598.09 16899.13 15499.73 80
thisisatest051598.14 18197.79 20399.19 15299.50 15898.50 19898.61 32596.82 35296.95 23099.54 9499.43 23991.66 29599.86 12698.08 17299.51 13199.22 184
OPM-MVS98.19 17498.10 17098.45 24598.88 28397.07 26199.28 21499.38 21698.57 6199.22 16799.81 6292.12 28299.66 20898.08 17297.54 23198.61 290
XVG-OURS98.73 13898.68 12798.88 19599.70 9397.73 23898.92 29799.55 6398.52 6499.45 10999.84 3895.27 19099.91 9198.08 17298.84 17799.00 206
Baseline_NR-MVSNet97.76 23597.45 24298.68 22299.09 25698.29 20999.41 16998.85 31295.65 30398.63 26899.67 15194.82 20399.10 30098.07 17592.89 32898.64 271
ACMH+97.24 1097.92 21297.78 20698.32 25999.46 16896.68 28399.56 9799.54 7098.41 7497.79 31299.87 2090.18 31399.66 20898.05 17697.18 25298.62 281
TranMVSNet+NR-MVSNet97.93 20997.66 22098.76 21698.78 29898.62 18499.65 5499.49 12797.76 14898.49 27999.60 18494.23 23098.97 32098.00 17792.90 32798.70 243
DP-MVS Recon99.12 8598.95 9599.65 7299.74 7099.70 4699.27 21899.57 5096.40 27299.42 11799.68 14598.75 5699.80 16297.98 17899.72 10399.44 168
test_prior399.21 6699.05 7499.68 6599.67 10199.48 8798.96 29099.56 5598.34 8199.01 20799.52 21298.68 6399.83 14697.96 17999.74 9999.74 73
test_prior298.96 29098.34 8199.01 20799.52 21298.68 6397.96 17999.74 99
Fast-Effi-MVS+-dtu98.77 13698.83 11498.60 22599.41 17896.99 26999.52 11599.49 12798.11 10899.24 16299.34 26596.96 13499.79 16597.95 18199.45 13299.02 205
MP-MVScopyleft99.33 5299.15 6399.87 1199.88 1199.82 2099.66 4799.46 16798.09 11199.48 10599.74 11698.29 9299.96 1997.93 18299.87 4099.82 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Vis-MVSNet (Re-imp)98.87 11698.72 12299.31 13399.71 8698.88 16099.80 1699.44 18897.91 13299.36 13699.78 9595.49 18399.43 24397.91 18399.11 15599.62 125
ACMP97.20 1198.06 18997.94 19198.45 24599.37 18997.01 26799.44 15499.49 12797.54 17398.45 28199.79 8891.95 28599.72 18897.91 18397.49 23898.62 281
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Fast-Effi-MVS+98.70 13998.43 15099.51 10599.51 15199.28 10899.52 11599.47 15796.11 29499.01 20799.34 26596.20 15899.84 13797.88 18598.82 17899.39 174
EPMVS97.82 22897.65 22198.35 25698.88 28395.98 30199.49 13594.71 35997.57 16899.26 15999.48 22892.46 27899.71 19497.87 18699.08 16099.35 176
miper_enhance_ethall98.16 17898.08 17498.41 25098.96 27797.72 23998.45 33499.32 25096.95 23098.97 21799.17 29397.06 13099.22 27997.86 18795.99 27698.29 319
tmp_tt82.80 32481.52 32786.66 33766.61 36568.44 36392.79 35797.92 34268.96 35680.04 35899.85 2985.77 34496.15 35497.86 18743.89 35995.39 350
NR-MVSNet97.97 20797.61 22599.02 16898.87 28799.26 11199.47 14699.42 19897.63 16397.08 32699.50 21995.07 19699.13 29397.86 18793.59 32098.68 252
v14897.79 23397.55 22998.50 23698.74 30397.72 23999.54 10999.33 24296.26 27998.90 22799.51 21694.68 21499.14 29097.83 19093.15 32698.63 279
CPTT-MVS99.11 9098.90 10099.74 5699.80 4199.46 9099.59 7899.49 12797.03 22499.63 7199.69 13997.27 12499.96 1997.82 19199.84 6599.81 41
MDTV_nov1_ep13_2view95.18 32199.35 19996.84 23799.58 8695.19 19497.82 19199.46 165
OMC-MVS99.08 9699.04 7799.20 15199.67 10198.22 21399.28 21499.52 8898.07 11699.66 6499.81 6297.79 10999.78 16997.79 19399.81 8099.60 129
HQP_MVS98.27 16998.22 16498.44 24899.29 21096.97 27199.39 18199.47 15798.97 3099.11 18899.61 18192.71 26699.69 20397.78 19497.63 22298.67 259
plane_prior599.47 15799.69 20397.78 19497.63 22298.67 259
testdata99.54 9299.75 6298.95 15199.51 10197.07 21999.43 11499.70 13298.87 3999.94 5497.76 19699.64 12099.72 86
PLCcopyleft97.94 499.02 10498.85 10999.53 9899.66 11099.01 14099.24 23199.52 8896.85 23699.27 15499.48 22898.25 9499.91 9197.76 19699.62 12499.65 112
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpm97.67 25697.55 22998.03 27799.02 26895.01 32399.43 16098.54 33396.44 26899.12 18699.34 26591.83 28899.60 22297.75 19896.46 26599.48 158
131498.68 14298.54 14699.11 15998.89 28298.65 18199.27 21899.49 12796.89 23497.99 30599.56 19797.72 11299.83 14697.74 19999.27 14498.84 219
XVG-ACMP-BASELINE97.83 22597.71 21698.20 26899.11 25196.33 29499.41 16999.52 8898.06 12099.05 20399.50 21989.64 31999.73 18497.73 20097.38 24698.53 298
CNLPA99.14 7798.99 8799.59 8499.58 13799.41 9599.16 24399.44 18898.45 7099.19 17699.49 22298.08 10299.89 11497.73 20099.75 9699.48 158
v2v48298.06 18997.77 20898.92 18398.90 28198.82 16999.57 9099.36 22696.65 24999.19 17699.35 26294.20 23199.25 27497.72 20294.97 30198.69 247
AUN-MVS96.88 28396.31 28898.59 22699.48 16697.04 26599.27 21899.22 27097.44 18598.51 27799.41 24591.97 28499.66 20897.71 20383.83 34799.07 200
baseline297.87 21797.55 22998.82 20899.18 23698.02 22199.41 16996.58 35596.97 22796.51 33199.17 29393.43 24899.57 22497.71 20399.03 16498.86 217
原ACMM199.65 7299.73 7599.33 10199.47 15797.46 17999.12 18699.66 15798.67 6699.91 9197.70 20599.69 10999.71 93
agg_prior199.01 10798.76 12099.76 5099.67 10199.62 6198.99 28299.40 20696.26 27998.87 23299.49 22298.77 5199.91 9197.69 20699.72 10399.75 69
PVSNet_094.43 1996.09 29995.47 30297.94 28499.31 20594.34 33397.81 35099.70 1597.12 21497.46 31698.75 32489.71 31799.79 16597.69 20681.69 34999.68 102
MAR-MVS98.86 11998.63 13399.54 9299.37 18999.66 5499.45 15099.54 7096.61 25399.01 20799.40 24897.09 12899.86 12697.68 20899.53 13099.10 191
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
9.1499.10 6999.72 8099.40 17799.51 10197.53 17599.64 7099.78 9598.84 4299.91 9197.63 20999.82 78
train_agg99.02 10498.77 11899.77 4799.67 10199.65 5799.05 26699.41 20096.28 27698.95 21999.49 22298.76 5399.91 9197.63 20999.72 10399.75 69
miper_ehance_all_eth98.18 17698.10 17098.41 25099.23 22397.72 23998.72 31799.31 25396.60 25598.88 23099.29 27797.29 12399.13 29397.60 21195.99 27698.38 316
MDTV_nov1_ep1398.32 15899.11 25194.44 33199.27 21898.74 32097.51 17799.40 12699.62 17794.78 20699.76 17497.59 21298.81 180
cl_fuxian98.12 18498.04 17898.38 25499.30 20697.69 24298.81 30899.33 24296.67 24798.83 23899.34 26597.11 12798.99 31297.58 21395.34 29398.48 302
test_post199.23 23265.14 36294.18 23499.71 19497.58 213
SCA98.19 17498.16 16598.27 26699.30 20695.55 30999.07 26198.97 29797.57 16899.43 11499.57 19492.72 26499.74 17797.58 21399.20 14899.52 147
JIA-IIPM97.50 26897.02 27898.93 18198.73 30497.80 23599.30 20898.97 29791.73 33998.91 22594.86 35195.10 19599.71 19497.58 21397.98 21599.28 182
V4298.06 18997.79 20398.86 20298.98 27498.84 16599.69 3699.34 23596.53 25999.30 14699.37 25694.67 21599.32 26497.57 21794.66 30498.42 311
gm-plane-assit98.54 32392.96 34494.65 31999.15 29699.64 21497.56 218
APD-MVScopyleft99.27 6099.08 7299.84 3299.75 6299.79 3099.50 12599.50 11997.16 21099.77 3399.82 4998.78 4899.94 5497.56 21899.86 5199.80 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
pm-mvs197.68 25397.28 26898.88 19599.06 26198.62 18499.50 12599.45 17996.32 27497.87 30899.79 8892.47 27599.35 25997.54 22093.54 32198.67 259
无先验98.99 28299.51 10196.89 23499.93 6997.53 22199.72 86
112199.09 9498.87 10499.75 5199.74 7099.60 6599.27 21899.48 13996.82 24099.25 16199.65 15898.38 8699.93 6997.53 22199.67 11699.73 80
pmmvs597.52 26597.30 26798.16 27198.57 32196.73 28099.27 21898.90 30896.14 29298.37 28799.53 20991.54 29899.14 29097.51 22395.87 28098.63 279
test9_res97.49 22499.72 10399.75 69
CDPH-MVS99.13 7998.91 9999.80 4099.75 6299.71 4499.15 24799.41 20096.60 25599.60 8199.55 20098.83 4399.90 10697.48 22599.83 7299.78 61
AdaColmapbinary99.01 10798.80 11599.66 6899.56 14399.54 7799.18 24199.70 1598.18 10199.35 13999.63 17196.32 15499.90 10697.48 22599.77 9299.55 140
OpenMVScopyleft96.50 1698.47 15198.12 16999.52 10399.04 26599.53 8099.82 1099.72 1194.56 32098.08 30099.88 1594.73 21299.98 697.47 22799.76 9599.06 201
IterMVS97.83 22597.77 20898.02 27999.58 13796.27 29699.02 27599.48 13997.22 20698.71 25199.70 13292.75 26199.13 29397.46 22896.00 27598.67 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
RPSCF98.22 17098.62 13896.99 31499.82 3791.58 34999.72 3099.44 18896.61 25399.66 6499.89 1095.92 16799.82 15397.46 22899.10 15899.57 138
ETH3D-3000-0.199.21 6699.02 8299.77 4799.73 7599.69 4799.38 18699.51 10197.45 18299.61 7799.75 11098.51 7599.91 9197.45 23099.83 7299.71 93
IterMVS-SCA-FT97.82 22897.75 21298.06 27699.57 13996.36 29399.02 27599.49 12797.18 20898.71 25199.72 12792.72 26499.14 29097.44 23195.86 28198.67 259
PatchmatchNetpermissive98.31 16498.36 15398.19 26999.16 24495.32 31799.27 21898.92 30397.37 19299.37 13399.58 19094.90 20099.70 20097.43 23299.21 14799.54 142
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EU-MVSNet97.98 20498.03 17997.81 29498.72 30696.65 28499.66 4799.66 2798.09 11198.35 28999.82 4995.25 19398.01 33797.41 23395.30 29498.78 223
eth_miper_zixun_eth98.05 19497.96 18798.33 25799.26 21797.38 24798.56 33099.31 25396.65 24998.88 23099.52 21296.58 14599.12 29797.39 23495.53 29098.47 304
tpm297.44 27297.34 26297.74 29799.15 24794.36 33299.45 15098.94 30093.45 33298.90 22799.44 23791.35 30099.59 22397.31 23598.07 21499.29 181
TESTMET0.1,197.55 26297.27 27198.40 25298.93 27996.53 28798.67 32097.61 34796.96 22898.64 26799.28 27988.63 32999.45 23497.30 23699.38 13699.21 185
ETH3D cwj APD-0.1699.06 9898.84 11099.72 6199.51 15199.60 6599.23 23299.44 18897.04 22299.39 12899.67 15198.30 9199.92 8097.27 23799.69 10999.64 119
miper_lstm_enhance98.00 20297.91 19398.28 26599.34 19697.43 24698.88 30199.36 22696.48 26598.80 24299.55 20095.98 16298.91 32397.27 23795.50 29198.51 300
test-LLR98.06 18997.90 19498.55 23398.79 29597.10 25798.67 32097.75 34497.34 19398.61 27198.85 31894.45 22499.45 23497.25 23999.38 13699.10 191
test-mter97.49 27097.13 27598.55 23398.79 29597.10 25798.67 32097.75 34496.65 24998.61 27198.85 31888.23 33399.45 23497.25 23999.38 13699.10 191
cl-mvsnet_98.01 20097.84 20198.55 23399.25 22197.97 22498.71 31899.34 23596.47 26798.59 27499.54 20595.65 17999.21 28497.21 24195.77 28298.46 308
cl-mvsnet198.01 20097.85 20098.48 23999.24 22297.95 22898.71 31899.35 23196.50 26098.60 27399.54 20595.72 17699.03 30697.21 24195.77 28298.46 308
agg_prior297.21 24199.73 10299.75 69
OurMVSNet-221017-097.88 21597.77 20898.19 26998.71 30896.53 28799.88 199.00 29497.79 14598.78 24599.94 391.68 29299.35 25997.21 24196.99 25698.69 247
BP-MVS97.19 245
HQP-MVS98.02 19797.90 19498.37 25599.19 23396.83 27698.98 28699.39 21098.24 9198.66 26099.40 24892.47 27599.64 21497.19 24597.58 22798.64 271
pmmvs498.13 18297.90 19498.81 21098.61 31898.87 16198.99 28299.21 27296.44 26899.06 20299.58 19095.90 16999.11 29897.18 24796.11 27398.46 308
PatchMatch-RL98.84 12998.62 13899.52 10399.71 8699.28 10899.06 26499.77 997.74 15299.50 10199.53 20995.41 18499.84 13797.17 24899.64 12099.44 168
MVS_030496.79 28596.52 28597.59 30199.22 22794.92 32699.04 27199.59 4396.49 26198.43 28398.99 31180.48 35499.39 24697.15 24999.27 14498.47 304
GBi-Net97.68 25397.48 23798.29 26299.51 15197.26 25299.43 16099.48 13996.49 26199.07 19899.32 27290.26 30998.98 31397.10 25096.65 25898.62 281
test197.68 25397.48 23798.29 26299.51 15197.26 25299.43 16099.48 13996.49 26199.07 19899.32 27290.26 30998.98 31397.10 25096.65 25898.62 281
FMVSNet398.03 19597.76 21198.84 20699.39 18698.98 14299.40 17799.38 21696.67 24799.07 19899.28 27992.93 25698.98 31397.10 25096.65 25898.56 297
BH-untuned98.42 15598.36 15398.59 22699.49 16096.70 28199.27 21899.13 28297.24 20498.80 24299.38 25395.75 17499.74 17797.07 25399.16 15099.33 179
LF4IMVS97.52 26597.46 24197.70 29998.98 27495.55 30999.29 21298.82 31598.07 11698.66 26099.64 16589.97 31499.61 22197.01 25496.68 25797.94 337
SixPastTwentyTwo97.50 26897.33 26498.03 27798.65 31396.23 29799.77 2298.68 32897.14 21197.90 30799.93 490.45 30799.18 28797.00 25596.43 26698.67 259
MG-MVS99.13 7999.02 8299.45 11599.57 13998.63 18399.07 26199.34 23598.99 2599.61 7799.82 4997.98 10599.87 12397.00 25599.80 8499.85 14
API-MVS99.04 10199.03 7999.06 16299.40 18399.31 10599.55 10699.56 5598.54 6299.33 14399.39 25298.76 5399.78 16996.98 25799.78 8998.07 327
tpmvs97.98 20498.02 18197.84 29199.04 26594.73 32999.31 20699.20 27396.10 29898.76 24799.42 24294.94 19799.81 15796.97 25898.45 19598.97 210
QAPM98.67 14398.30 16099.80 4099.20 23199.67 5299.77 2299.72 1194.74 31798.73 24999.90 795.78 17399.98 696.96 25999.88 3699.76 68
PAPM_NR99.04 10198.84 11099.66 6899.74 7099.44 9299.39 18199.38 21697.70 15599.28 15199.28 27998.34 8999.85 13296.96 25999.45 13299.69 98
v897.95 20897.63 22498.93 18198.95 27898.81 17199.80 1699.41 20096.03 29999.10 19199.42 24294.92 19999.30 26796.94 26194.08 31598.66 267
ZD-MVS99.71 8699.79 3099.61 3596.84 23799.56 8999.54 20598.58 7099.96 1996.93 26299.75 96
MSDG98.98 10998.80 11599.53 9899.76 5299.19 11698.75 31499.55 6397.25 20299.47 10699.77 10197.82 10899.87 12396.93 26299.90 2399.54 142
pmmvs696.53 28996.09 29297.82 29398.69 31095.47 31399.37 18999.47 15793.46 33197.41 31799.78 9587.06 34199.33 26396.92 26492.70 33198.65 269
新几何199.75 5199.75 6299.59 6899.54 7096.76 24199.29 14999.64 16598.43 8199.94 5496.92 26499.66 11799.72 86
DTE-MVSNet97.51 26797.19 27498.46 24498.63 31598.13 21899.84 699.48 13996.68 24697.97 30699.67 15192.92 25798.56 32996.88 26692.60 33298.70 243
ADS-MVSNet298.02 19798.07 17797.87 28999.33 19795.19 32099.23 23299.08 28796.24 28199.10 19199.67 15194.11 23598.93 32296.81 26799.05 16299.48 158
ADS-MVSNet98.20 17398.08 17498.56 23199.33 19796.48 28999.23 23299.15 27996.24 28199.10 19199.67 15194.11 23599.71 19496.81 26799.05 16299.48 158
gg-mvs-nofinetune96.17 29795.32 30598.73 21798.79 29598.14 21799.38 18694.09 36091.07 34398.07 30391.04 35689.62 32099.35 25996.75 26999.09 15998.68 252
testtj99.12 8598.87 10499.86 1899.72 8099.79 3099.44 15499.51 10197.29 19899.59 8499.74 11698.15 10099.96 1996.74 27099.69 10999.81 41
v114497.98 20497.69 21798.85 20598.87 28798.66 18099.54 10999.35 23196.27 27899.23 16699.35 26294.67 21599.23 27696.73 27195.16 29798.68 252
UnsupCasMVSNet_eth96.44 29196.12 29197.40 30798.65 31395.65 30699.36 19399.51 10197.13 21296.04 33798.99 31188.40 33198.17 33396.71 27290.27 33798.40 314
GA-MVS97.85 22097.47 23999.00 17199.38 18797.99 22398.57 32899.15 27997.04 22298.90 22799.30 27589.83 31599.38 24896.70 27398.33 19799.62 125
K. test v397.10 28196.79 28298.01 28098.72 30696.33 29499.87 497.05 35097.59 16596.16 33599.80 7688.71 32699.04 30496.69 27496.55 26298.65 269
testdata299.95 4396.67 275
AllTest98.87 11698.72 12299.31 13399.86 2198.48 20199.56 9799.61 3597.85 13699.36 13699.85 2995.95 16499.85 13296.66 27699.83 7299.59 133
TestCases99.31 13399.86 2198.48 20199.61 3597.85 13699.36 13699.85 2995.95 16499.85 13296.66 27699.83 7299.59 133
dp97.75 23997.80 20297.59 30199.10 25493.71 33899.32 20498.88 31096.48 26599.08 19799.55 20092.67 26999.82 15396.52 27898.58 18799.24 183
BH-RMVSNet98.41 15798.08 17499.40 12299.41 17898.83 16899.30 20898.77 31697.70 15598.94 22199.65 15892.91 25999.74 17796.52 27899.55 12999.64 119
FMVSNet297.72 24597.36 25798.80 21299.51 15198.84 16599.45 15099.42 19896.49 26198.86 23799.29 27790.26 30998.98 31396.44 28096.56 26198.58 295
ambc93.06 33292.68 35482.36 35498.47 33398.73 32595.09 34097.41 34255.55 36099.10 30096.42 28191.32 33597.71 341
tpm cat197.39 27397.36 25797.50 30599.17 24293.73 33799.43 16099.31 25391.27 34098.71 25199.08 30294.31 22999.77 17196.41 28298.50 19399.00 206
v14419297.92 21297.60 22698.87 19998.83 29398.65 18199.55 10699.34 23596.20 28499.32 14499.40 24894.36 22699.26 27396.37 28395.03 30098.70 243
Patchmatch-RL test95.84 30195.81 29995.95 32795.61 34990.57 35098.24 34398.39 33495.10 31195.20 33998.67 32694.78 20697.77 34296.28 28490.02 33899.51 153
Patchmtry97.75 23997.40 25398.81 21099.10 25498.87 16199.11 25799.33 24294.83 31598.81 24099.38 25394.33 22799.02 30896.10 28595.57 28898.53 298
BH-w/o98.00 20297.89 19898.32 25999.35 19296.20 29899.01 28098.90 30896.42 27098.38 28699.00 31095.26 19299.72 18896.06 28698.61 18499.03 203
v7n97.87 21797.52 23398.92 18398.76 30298.58 18799.84 699.46 16796.20 28498.91 22599.70 13294.89 20199.44 23996.03 28793.89 31798.75 231
v1097.85 22097.52 23398.86 20298.99 27198.67 17999.75 2699.41 20095.70 30298.98 21599.41 24594.75 21199.23 27696.01 28894.63 30598.67 259
lessismore_v097.79 29598.69 31095.44 31594.75 35895.71 33899.87 2088.69 32799.32 26495.89 28994.93 30398.62 281
ITE_SJBPF98.08 27499.29 21096.37 29298.92 30398.34 8198.83 23899.75 11091.09 30399.62 22095.82 29097.40 24598.25 322
FMVSNet196.84 28496.36 28798.29 26299.32 20497.26 25299.43 16099.48 13995.11 30998.55 27599.32 27283.95 34898.98 31395.81 29196.26 27098.62 281
DPM-MVS98.95 11298.71 12499.66 6899.63 12099.55 7598.64 32499.10 28497.93 13099.42 11799.55 20098.67 6699.80 16295.80 29299.68 11499.61 127
MIMVSNet97.73 24397.45 24298.57 22999.45 17397.50 24499.02 27598.98 29696.11 29499.41 12199.14 29790.28 30898.74 32795.74 29398.93 17099.47 163
tfpnnormal97.84 22397.47 23998.98 17399.20 23199.22 11599.64 5799.61 3596.32 27498.27 29499.70 13293.35 25099.44 23995.69 29495.40 29298.27 320
MS-PatchMatch97.24 27897.32 26596.99 31498.45 32693.51 34298.82 30799.32 25097.41 18998.13 29999.30 27588.99 32499.56 22595.68 29599.80 8497.90 340
EG-PatchMatch MVS95.97 30095.69 30096.81 32097.78 33592.79 34599.16 24398.93 30196.16 28994.08 34399.22 28882.72 35099.47 23195.67 29697.50 23598.17 324
USDC97.34 27497.20 27397.75 29699.07 25995.20 31998.51 33299.04 29297.99 12698.31 29199.86 2389.02 32399.55 22795.67 29697.36 24798.49 301
MVP-Stereo97.81 23097.75 21297.99 28297.53 33796.60 28698.96 29098.85 31297.22 20697.23 32199.36 25995.28 18999.46 23395.51 29899.78 8997.92 339
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CMPMVSbinary69.68 2394.13 31694.90 30891.84 33497.24 34380.01 35798.52 33199.48 13989.01 34591.99 34899.67 15185.67 34599.13 29395.44 29997.03 25596.39 348
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
GG-mvs-BLEND98.45 24598.55 32298.16 21599.43 16093.68 36197.23 32198.46 33189.30 32299.22 27995.43 30098.22 20397.98 335
v192192097.80 23297.45 24298.84 20698.80 29498.53 19199.52 11599.34 23596.15 29199.24 16299.47 23193.98 23999.29 26895.40 30195.13 29898.69 247
TR-MVS97.76 23597.41 25298.82 20899.06 26197.87 23198.87 30398.56 33196.63 25298.68 25999.22 28892.49 27499.65 21295.40 30197.79 21998.95 215
ETH3 D test640098.70 13998.35 15599.73 5899.69 9699.60 6599.16 24399.45 17995.42 30599.27 15499.60 18497.39 11799.91 9195.36 30399.83 7299.70 95
v119297.81 23097.44 24798.91 18798.88 28398.68 17899.51 11999.34 23596.18 28699.20 17399.34 26594.03 23899.36 25595.32 30495.18 29698.69 247
PAPR98.63 14798.34 15699.51 10599.40 18399.03 13798.80 30999.36 22696.33 27399.00 21299.12 30198.46 7999.84 13795.23 30599.37 14099.66 108
TinyColmap97.12 28096.89 28097.83 29299.07 25995.52 31298.57 32898.74 32097.58 16797.81 31199.79 8888.16 33499.56 22595.10 30697.21 25098.39 315
DSMNet-mixed97.25 27797.35 25996.95 31797.84 33493.61 34199.57 9096.63 35496.13 29398.87 23298.61 32994.59 21897.70 34495.08 30798.86 17699.55 140
test0.0.03 197.71 24997.42 25198.56 23198.41 32797.82 23498.78 31198.63 32997.34 19398.05 30498.98 31494.45 22498.98 31395.04 30897.15 25498.89 216
our_test_397.65 25897.68 21897.55 30398.62 31694.97 32498.84 30599.30 25796.83 23998.19 29699.34 26597.01 13299.02 30895.00 30996.01 27498.64 271
MVS-HIRNet95.75 30295.16 30697.51 30499.30 20693.69 33998.88 30195.78 35685.09 35098.78 24592.65 35391.29 30199.37 25194.85 31099.85 5899.46 165
CR-MVSNet98.17 17797.93 19298.87 19999.18 23698.49 19999.22 23799.33 24296.96 22899.56 8999.38 25394.33 22799.00 31194.83 31198.58 18799.14 187
pmmvs-eth3d95.34 30794.73 30997.15 31095.53 35195.94 30299.35 19999.10 28495.13 30793.55 34497.54 34188.15 33597.91 33994.58 31289.69 34097.61 342
testgi97.65 25897.50 23698.13 27399.36 19196.45 29099.42 16799.48 13997.76 14897.87 30899.45 23691.09 30398.81 32694.53 31398.52 19299.13 189
v124097.69 25197.32 26598.79 21398.85 29198.43 20499.48 14199.36 22696.11 29499.27 15499.36 25993.76 24699.24 27594.46 31495.23 29598.70 243
YYNet195.36 30694.51 31297.92 28697.89 33397.10 25799.10 25999.23 26993.26 33380.77 35599.04 30792.81 26098.02 33694.30 31594.18 31398.64 271
PM-MVS92.96 31992.23 32295.14 32995.61 34989.98 35299.37 18998.21 33794.80 31695.04 34197.69 34065.06 35797.90 34094.30 31589.98 33997.54 345
MVS97.28 27696.55 28499.48 10998.78 29898.95 15199.27 21899.39 21083.53 35198.08 30099.54 20596.97 13399.87 12394.23 31799.16 15099.63 123
MDA-MVSNet_test_wron95.45 30494.60 31098.01 28098.16 33197.21 25599.11 25799.24 26893.49 33080.73 35698.98 31493.02 25498.18 33294.22 31894.45 30898.64 271
TransMVSNet (Re)97.15 27996.58 28398.86 20299.12 24998.85 16499.49 13598.91 30695.48 30497.16 32499.80 7693.38 24999.11 29894.16 31991.73 33498.62 281
UnsupCasMVSNet_bld93.53 31892.51 32196.58 32497.38 33993.82 33698.24 34399.48 13991.10 34293.10 34696.66 34774.89 35598.37 33094.03 32087.71 34297.56 344
ppachtmachnet_test97.49 27097.45 24297.61 30098.62 31695.24 31898.80 30999.46 16796.11 29498.22 29599.62 17796.45 15098.97 32093.77 32195.97 27998.61 290
thres600view797.86 21997.51 23598.92 18399.72 8097.95 22899.59 7898.74 32097.94 12999.27 15498.62 32791.75 28999.86 12693.73 32298.19 20698.96 212
DeepMVS_CXcopyleft93.34 33199.29 21082.27 35599.22 27085.15 34996.33 33399.05 30690.97 30599.73 18493.57 32397.77 22098.01 331
MDA-MVSNet-bldmvs94.96 30993.98 31597.92 28698.24 33097.27 25099.15 24799.33 24293.80 32680.09 35799.03 30888.31 33297.86 34193.49 32494.36 31098.62 281
Patchmatch-test97.93 20997.65 22198.77 21599.18 23697.07 26199.03 27299.14 28196.16 28998.74 24899.57 19494.56 22099.72 18893.36 32599.11 15599.52 147
thres100view90097.76 23597.45 24298.69 22199.72 8097.86 23399.59 7898.74 32097.93 13099.26 15998.62 32791.75 28999.83 14693.22 32698.18 20798.37 317
tfpn200view997.72 24597.38 25598.72 21999.69 9697.96 22699.50 12598.73 32597.83 13999.17 18098.45 33291.67 29399.83 14693.22 32698.18 20798.37 317
thres40097.77 23497.38 25598.92 18399.69 9697.96 22699.50 12598.73 32597.83 13999.17 18098.45 33291.67 29399.83 14693.22 32698.18 20798.96 212
EPNet_dtu98.03 19597.96 18798.23 26798.27 32895.54 31199.23 23298.75 31799.02 1597.82 31099.71 12896.11 15999.48 23093.04 32999.65 11999.69 98
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres20097.61 26097.28 26898.62 22499.64 11798.03 22099.26 22798.74 32097.68 15799.09 19698.32 33691.66 29599.81 15792.88 33098.22 20398.03 330
KD-MVS_2432*160094.62 31193.72 31797.31 30897.19 34595.82 30498.34 33899.20 27395.00 31297.57 31498.35 33487.95 33798.10 33492.87 33177.00 35398.01 331
miper_refine_blended94.62 31193.72 31797.31 30897.19 34595.82 30498.34 33899.20 27395.00 31297.57 31498.35 33487.95 33798.10 33492.87 33177.00 35398.01 331
PCF-MVS97.08 1497.66 25797.06 27799.47 11299.61 13099.09 13298.04 34899.25 26791.24 34198.51 27799.70 13294.55 22199.91 9192.76 33399.85 5899.42 170
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
FMVSNet596.43 29296.19 29097.15 31099.11 25195.89 30399.32 20499.52 8894.47 32298.34 29099.07 30387.54 34097.07 34892.61 33495.72 28598.47 304
test_040296.64 28796.24 28997.85 29098.85 29196.43 29199.44 15499.26 26593.52 32996.98 32899.52 21288.52 33099.20 28692.58 33597.50 23597.93 338
new-patchmatchnet94.48 31494.08 31495.67 32895.08 35292.41 34699.18 24199.28 26494.55 32193.49 34597.37 34487.86 33997.01 34991.57 33688.36 34197.61 342
N_pmnet94.95 31095.83 29892.31 33398.47 32579.33 35899.12 25192.81 36493.87 32597.68 31399.13 29893.87 24299.01 31091.38 33796.19 27198.59 294
Anonymous2024052196.20 29695.89 29797.13 31297.72 33694.96 32599.79 1999.29 26293.01 33497.20 32399.03 30889.69 31898.36 33191.16 33896.13 27298.07 327
LCM-MVSNet86.80 32285.22 32691.53 33587.81 35980.96 35698.23 34598.99 29571.05 35590.13 35096.51 34848.45 36396.88 35090.51 33985.30 34596.76 346
new_pmnet96.38 29396.03 29397.41 30698.13 33295.16 32299.05 26699.20 27393.94 32497.39 31898.79 32191.61 29799.04 30490.43 34095.77 28298.05 329
DIV-MVS_2432*160095.00 30894.34 31396.96 31697.07 34795.39 31699.56 9799.44 18895.11 30997.13 32597.32 34591.86 28797.27 34790.35 34181.23 35098.23 323
PAPM97.59 26197.09 27699.07 16199.06 26198.26 21298.30 34299.10 28494.88 31498.08 30099.34 26596.27 15699.64 21489.87 34298.92 17299.31 180
pmmvs394.09 31793.25 32096.60 32394.76 35394.49 33098.92 29798.18 33989.66 34496.48 33298.06 33986.28 34297.33 34689.68 34387.20 34397.97 336
OpenMVS_ROBcopyleft92.34 2094.38 31593.70 31996.41 32597.38 33993.17 34399.06 26498.75 31786.58 34894.84 34298.26 33781.53 35399.32 26489.01 34497.87 21896.76 346
CL-MVSNet_2432*160094.49 31393.97 31696.08 32696.16 34893.67 34098.33 34099.38 21695.13 30797.33 31998.15 33892.69 26896.57 35188.67 34579.87 35197.99 334
PatchT97.03 28296.44 28698.79 21398.99 27198.34 20899.16 24399.07 28992.13 33799.52 9897.31 34694.54 22298.98 31388.54 34698.73 18399.03 203
MIMVSNet195.51 30395.04 30796.92 31897.38 33995.60 30799.52 11599.50 11993.65 32896.97 32999.17 29385.28 34696.56 35288.36 34795.55 28998.60 293
TAPA-MVS97.07 1597.74 24297.34 26298.94 17999.70 9397.53 24399.25 22999.51 10191.90 33899.30 14699.63 17198.78 4899.64 21488.09 34899.87 4099.65 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Gipumacopyleft90.99 32090.15 32393.51 33098.73 30490.12 35193.98 35599.45 17979.32 35392.28 34794.91 35069.61 35697.98 33887.42 34995.67 28692.45 352
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test20.0396.12 29895.96 29596.63 32297.44 33895.45 31499.51 11999.38 21696.55 25896.16 33599.25 28493.76 24696.17 35387.35 35094.22 31298.27 320
Anonymous2023120696.22 29496.03 29396.79 32197.31 34294.14 33499.63 5999.08 28796.17 28797.04 32799.06 30593.94 24097.76 34386.96 35195.06 29998.47 304
RPMNet96.72 28695.90 29699.19 15299.18 23698.49 19999.22 23799.52 8888.72 34799.56 8997.38 34394.08 23799.95 4386.87 35298.58 18799.14 187
PMMVS286.87 32185.37 32591.35 33690.21 35783.80 35398.89 30097.45 34983.13 35291.67 34995.03 34948.49 36294.70 35585.86 35377.62 35295.54 349
FPMVS84.93 32385.65 32482.75 34186.77 36063.39 36498.35 33798.92 30374.11 35483.39 35398.98 31450.85 36192.40 35784.54 35494.97 30192.46 351
PMVScopyleft70.75 2275.98 32974.97 33079.01 34370.98 36455.18 36593.37 35698.21 33765.08 36061.78 36193.83 35221.74 36892.53 35678.59 35591.12 33689.34 355
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ANet_high77.30 32774.86 33184.62 33975.88 36377.61 35997.63 35293.15 36388.81 34664.27 36089.29 35736.51 36483.93 36175.89 35652.31 35892.33 353
MVEpermissive76.82 2176.91 32874.31 33284.70 33885.38 36276.05 36296.88 35493.17 36267.39 35771.28 35989.01 35821.66 36987.69 35871.74 35772.29 35590.35 354
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 32579.88 32882.81 34090.75 35676.38 36197.69 35195.76 35766.44 35883.52 35292.25 35462.54 35987.16 35968.53 35861.40 35684.89 357
EMVS80.02 32679.22 32982.43 34291.19 35576.40 36097.55 35392.49 36566.36 35983.01 35491.27 35564.63 35885.79 36065.82 35960.65 35785.08 356
wuyk23d40.18 33041.29 33536.84 34486.18 36149.12 36679.73 35822.81 36727.64 36125.46 36428.45 36421.98 36748.89 36255.80 36023.56 36212.51 360
testmvs39.17 33143.78 33325.37 34636.04 36716.84 36898.36 33626.56 36620.06 36238.51 36367.32 35929.64 36615.30 36437.59 36139.90 36043.98 359
test12339.01 33242.50 33428.53 34539.17 36620.91 36798.75 31419.17 36819.83 36338.57 36266.67 36033.16 36515.42 36337.50 36229.66 36149.26 358
uanet_test0.02 3360.03 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 3650.00 3700.00 3650.00 3630.00 3630.00 361
cdsmvs_eth3d_5k24.64 33332.85 3360.00 3470.00 3680.00 3690.00 35999.51 1010.00 3640.00 36599.56 19796.58 1450.00 3650.00 3630.00 3630.00 361
pcd_1.5k_mvsjas8.27 33511.03 3380.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 36599.01 160.00 3650.00 3630.00 3630.00 361
sosnet-low-res0.02 3360.03 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 3650.00 3700.00 3650.00 3630.00 3630.00 361
sosnet0.02 3360.03 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 3650.00 3700.00 3650.00 3630.00 3630.00 361
uncertanet0.02 3360.03 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 3650.00 3700.00 3650.00 3630.00 3630.00 361
Regformer0.02 3360.03 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 3650.00 3700.00 3650.00 3630.00 3630.00 361
ab-mvs-re8.30 33411.06 3370.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 36599.58 1900.00 3700.00 3650.00 3630.00 3630.00 361
uanet0.02 3360.03 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 3650.00 3700.00 3650.00 3630.00 3630.00 361
test_241102_ONE99.84 3299.90 199.48 13999.07 1399.91 199.74 11699.20 599.76 174
save fliter99.76 5299.59 6899.14 24999.40 20699.00 22
test072699.85 2599.89 399.62 6599.50 11999.10 899.86 1199.82 4998.94 31
GSMVS99.52 147
test_part299.81 4099.83 1499.77 33
sam_mvs194.86 20299.52 147
sam_mvs94.72 213
MTGPAbinary99.47 157
test_post65.99 36194.65 21799.73 184
patchmatchnet-post98.70 32594.79 20599.74 177
MTMP99.54 10998.88 310
TEST999.67 10199.65 5799.05 26699.41 20096.22 28398.95 21999.49 22298.77 5199.91 91
test_899.67 10199.61 6399.03 27299.41 20096.28 27698.93 22399.48 22898.76 5399.91 91
agg_prior99.67 10199.62 6199.40 20698.87 23299.91 91
test_prior499.56 7398.99 282
test_prior99.68 6599.67 10199.48 8799.56 5599.83 14699.74 73
新几何299.01 280
旧先验199.74 7099.59 6899.54 7099.69 13998.47 7899.68 11499.73 80
原ACMM298.95 294
test22299.75 6299.49 8698.91 29999.49 12796.42 27099.34 14299.65 15898.28 9399.69 10999.72 86
segment_acmp98.96 25
testdata198.85 30498.32 85
test1299.75 5199.64 11799.61 6399.29 26299.21 17098.38 8699.89 11499.74 9999.74 73
plane_prior799.29 21097.03 266
plane_prior699.27 21596.98 27092.71 266
plane_prior499.61 181
plane_prior397.00 26898.69 5599.11 188
plane_prior299.39 18198.97 30
plane_prior199.26 217
plane_prior96.97 27199.21 23998.45 7097.60 225
n20.00 369
nn0.00 369
door-mid98.05 340
test1199.35 231
door97.92 342
HQP5-MVS96.83 276
HQP-NCC99.19 23398.98 28698.24 9198.66 260
ACMP_Plane99.19 23398.98 28698.24 9198.66 260
HQP4-MVS98.66 26099.64 21498.64 271
HQP3-MVS99.39 21097.58 227
HQP2-MVS92.47 275
NP-MVS99.23 22396.92 27499.40 248
ACMMP++_ref97.19 251
ACMMP++97.43 243
Test By Simon98.75 56