This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
CANet99.25 6499.14 6499.59 8499.41 17799.16 12099.35 19899.57 5198.82 4299.51 9999.61 17996.46 14999.95 4299.59 199.98 299.65 112
EI-MVSNet-UG-set99.58 499.57 199.64 7799.78 4499.14 12599.60 7099.45 17999.01 1899.90 399.83 4298.98 2399.93 6899.59 199.95 699.86 11
DELS-MVS99.48 1999.42 1399.65 7299.72 8099.40 9699.05 26599.66 2799.14 699.57 8799.80 7698.46 7999.94 5399.57 399.84 6599.60 128
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EI-MVSNet-Vis-set99.58 499.56 399.64 7799.78 4499.15 12499.61 6999.45 17999.01 1899.89 499.82 4999.01 1699.92 7999.56 499.95 699.85 14
HyFIR lowres test99.11 9098.92 9799.65 7299.90 399.37 9799.02 27499.91 397.67 15899.59 8399.75 11195.90 16999.73 18399.53 599.02 16599.86 11
VNet99.11 9098.90 10099.73 5899.52 14799.56 7299.41 16999.39 20999.01 1899.74 4199.78 9595.56 17999.92 7999.52 698.18 20799.72 86
baseline99.15 7699.02 8299.53 9899.66 10999.14 12599.72 2999.48 13998.35 7999.42 11699.84 3896.07 16099.79 16499.51 799.14 15399.67 105
xiu_mvs_v1_base_debu99.29 5799.27 5099.34 12799.63 11998.97 14599.12 25099.51 10298.86 3899.84 1399.47 22998.18 9799.99 199.50 899.31 14199.08 195
xiu_mvs_v1_base99.29 5799.27 5099.34 12799.63 11998.97 14599.12 25099.51 10298.86 3899.84 1399.47 22998.18 9799.99 199.50 899.31 14199.08 195
xiu_mvs_v1_base_debi99.29 5799.27 5099.34 12799.63 11998.97 14599.12 25099.51 10298.86 3899.84 1399.47 22998.18 9799.99 199.50 899.31 14199.08 195
CHOSEN 1792x268899.19 6999.10 6999.45 11599.89 898.52 19599.39 18199.94 198.73 5199.11 18799.89 1095.50 18199.94 5399.50 899.97 399.89 2
VDD-MVS97.73 24197.35 25898.88 19499.47 16597.12 25499.34 20198.85 30898.19 9799.67 5999.85 2982.98 34399.92 7999.49 1298.32 20199.60 128
PVSNet_Blended_VisFu99.36 4999.28 4899.61 8299.86 2199.07 13399.47 14599.93 297.66 15999.71 4699.86 2397.73 11199.96 1899.47 1399.82 7899.79 53
CHOSEN 280x42099.12 8599.13 6599.08 15999.66 10997.89 22998.43 33499.71 1398.88 3799.62 7499.76 10596.63 14499.70 19999.46 1499.99 199.66 108
Regformer-499.59 399.54 499.73 5899.76 5299.41 9499.58 8399.49 12899.02 1599.88 599.80 7699.00 2299.94 5399.45 1599.92 1199.84 18
casdiffmvs99.13 7998.98 9099.56 9099.65 11499.16 12099.56 9599.50 12098.33 8399.41 12099.86 2395.92 16799.83 14599.45 1599.16 15099.70 95
Regformer-399.57 799.53 599.68 6599.76 5299.29 10699.58 8399.44 18799.01 1899.87 1099.80 7698.97 2499.91 9099.44 1799.92 1199.83 29
DeepC-MVS98.35 299.30 5599.19 6099.64 7799.82 3799.23 11399.62 6399.55 6498.94 3399.63 7099.95 295.82 17299.94 5399.37 1899.97 399.73 80
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
alignmvs98.81 13098.56 14599.58 8799.43 17399.42 9399.51 11898.96 29598.61 5899.35 13898.92 31494.78 20499.77 17099.35 1998.11 21399.54 141
PS-MVSNAJ99.32 5399.32 3099.30 13799.57 13798.94 15498.97 28899.46 16798.92 3599.71 4699.24 28399.01 1699.98 599.35 1999.66 11798.97 209
VPA-MVSNet98.29 16797.95 18899.30 13799.16 24399.54 7699.50 12499.58 5098.27 8899.35 13899.37 25492.53 27099.65 21199.35 1994.46 30698.72 235
mvs_anonymous99.03 10398.99 8799.16 15499.38 18698.52 19599.51 11899.38 21597.79 14499.38 13099.81 6297.30 12299.45 23299.35 1998.99 16799.51 152
xiu_mvs_v2_base99.26 6299.25 5499.29 14099.53 14598.91 15899.02 27499.45 17998.80 4699.71 4699.26 28198.94 3199.98 599.34 2399.23 14698.98 208
nrg03098.64 14698.42 15199.28 14299.05 26399.69 4799.81 1299.46 16798.04 12199.01 20599.82 4996.69 14399.38 24799.34 2394.59 30598.78 223
UGNet98.87 11698.69 12699.40 12299.22 22698.72 17699.44 15399.68 1999.24 399.18 17899.42 24092.74 26199.96 1899.34 2399.94 999.53 145
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
mvs_tets98.40 15998.23 16398.91 18698.67 31198.51 19799.66 4699.53 8398.19 9798.65 26499.81 6292.75 25999.44 23799.31 2697.48 23998.77 226
VDDNet97.55 25997.02 27599.16 15499.49 15898.12 21899.38 18699.30 25595.35 30499.68 5399.90 782.62 34599.93 6899.31 2698.13 21299.42 169
diffmvs99.14 7799.02 8299.51 10599.61 12998.96 14999.28 21399.49 12898.46 6899.72 4599.71 12996.50 14899.88 11899.31 2699.11 15599.67 105
LFMVS97.90 21397.35 25899.54 9299.52 14799.01 13999.39 18198.24 33297.10 21699.65 6799.79 8884.79 34199.91 9099.28 2998.38 19699.69 98
MSLP-MVS++99.46 2499.47 999.44 12099.60 13299.16 12099.41 16999.71 1398.98 2799.45 10899.78 9599.19 799.54 22799.28 2999.84 6599.63 122
canonicalmvs99.02 10498.86 10899.51 10599.42 17499.32 10199.80 1699.48 13998.63 5699.31 14498.81 31797.09 12899.75 17599.27 3197.90 21799.47 162
Anonymous2024052998.09 18597.68 21799.34 12799.66 10998.44 20399.40 17799.43 19593.67 32299.22 16699.89 1090.23 30999.93 6899.26 3298.33 19799.66 108
EPNet98.86 11998.71 12499.30 13797.20 34198.18 21399.62 6398.91 30299.28 298.63 26699.81 6295.96 16399.99 199.24 3399.72 10399.73 80
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
jajsoiax98.43 15498.28 16198.88 19498.60 31898.43 20499.82 1099.53 8398.19 9798.63 26699.80 7693.22 25199.44 23799.22 3497.50 23598.77 226
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2599.56 5699.02 1599.88 599.85 2999.18 899.96 1899.22 3499.92 1199.90 1
RRT_test8_iter0597.72 24397.60 22598.08 27399.23 22296.08 29999.63 5799.49 12897.54 17198.94 21999.81 6287.99 33199.35 25899.21 3696.51 26398.81 220
VPNet97.84 22297.44 24699.01 16899.21 22898.94 15499.48 14099.57 5198.38 7599.28 15099.73 12488.89 32099.39 24599.19 3793.27 32398.71 237
sss99.17 7399.05 7499.53 9899.62 12598.97 14599.36 19399.62 3497.83 13899.67 5999.65 15897.37 12199.95 4299.19 3799.19 14999.68 102
Vis-MVSNetpermissive99.12 8598.97 9199.56 9099.78 4499.10 13099.68 4099.66 2798.49 6599.86 1199.87 2094.77 20799.84 13699.19 3799.41 13599.74 73
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Regformer-199.53 1199.47 999.72 6199.71 8699.44 9199.49 13499.46 16798.95 3299.83 1799.76 10599.01 1699.93 6899.17 4099.87 4099.80 49
ab-mvs98.86 11998.63 13399.54 9299.64 11699.19 11599.44 15399.54 7197.77 14699.30 14599.81 6294.20 22999.93 6899.17 4098.82 17899.49 156
Anonymous20240521198.30 16697.98 18499.26 14499.57 13798.16 21499.41 16998.55 32896.03 29799.19 17599.74 11791.87 28399.92 7999.16 4298.29 20299.70 95
Regformer-299.54 999.47 999.75 5199.71 8699.52 8299.49 13499.49 12898.94 3399.83 1799.76 10599.01 1699.94 5399.15 4399.87 4099.80 49
PS-MVSNAJss98.92 11498.92 9798.90 18898.78 29798.53 19199.78 1999.54 7198.07 11599.00 21099.76 10599.01 1699.37 25099.13 4497.23 24998.81 220
EPP-MVSNet99.13 7998.99 8799.53 9899.65 11499.06 13499.81 1299.33 24097.43 18499.60 8099.88 1597.14 12699.84 13699.13 4498.94 16999.69 98
Effi-MVS+98.81 13098.59 14399.48 10999.46 16699.12 12998.08 34399.50 12097.50 17699.38 13099.41 24396.37 15399.81 15699.11 4698.54 19199.51 152
ETV-MVS99.26 6299.21 5899.40 12299.46 16699.30 10599.56 9599.52 8998.52 6399.44 11299.27 28098.41 8599.86 12599.10 4799.59 12699.04 201
TSAR-MVS + GP.99.36 4999.36 2199.36 12699.67 10098.61 18699.07 26099.33 24099.00 2299.82 2099.81 6299.06 1399.84 13699.09 4899.42 13499.65 112
FIs98.78 13498.63 13399.23 14999.18 23599.54 7699.83 999.59 4498.28 8698.79 24299.81 6296.75 14199.37 25099.08 4996.38 26698.78 223
FC-MVSNet-test98.75 13798.62 13899.15 15699.08 25799.45 9099.86 599.60 4198.23 9398.70 25599.82 4996.80 13799.22 27999.07 5096.38 26698.79 222
HPM-MVS_fast99.51 1499.40 1699.85 2599.91 199.79 3099.76 2499.56 5697.72 15299.76 3799.75 11199.13 1099.92 7999.07 5099.92 1199.85 14
MVSFormer99.17 7399.12 6799.29 14099.51 14998.94 15499.88 199.46 16797.55 16899.80 2499.65 15897.39 11799.28 26899.03 5299.85 5899.65 112
test_djsdf98.67 14398.57 14498.98 17298.70 30898.91 15899.88 199.46 16797.55 16899.22 16699.88 1595.73 17599.28 26899.03 5297.62 22498.75 230
jason99.13 7999.03 7999.45 11599.46 16698.87 16199.12 25099.26 26398.03 12399.79 2699.65 15897.02 13199.85 13199.02 5499.90 2399.65 112
jason: jason.
DeepPCF-MVS98.18 398.81 13099.37 1997.12 30999.60 13291.75 34398.61 32499.44 18799.35 199.83 1799.85 2998.70 6299.81 15699.02 5499.91 1699.81 41
CSCG99.32 5399.32 3099.32 13299.85 2598.29 20999.71 3199.66 2798.11 10799.41 12099.80 7698.37 8899.96 1898.99 5699.96 599.72 86
ET-MVSNet_ETH3D96.49 28895.64 29899.05 16399.53 14598.82 16998.84 30497.51 34397.63 16184.77 34699.21 28992.09 28098.91 32298.98 5792.21 33299.41 171
CS-MVS99.21 6699.13 6599.45 11599.54 14499.34 9999.71 3199.54 7198.26 8998.99 21299.24 28398.25 9499.88 11898.98 5799.63 12299.12 189
PVSNet_BlendedMVS98.86 11998.80 11599.03 16699.76 5298.79 17299.28 21399.91 397.42 18699.67 5999.37 25497.53 11499.88 11898.98 5797.29 24898.42 310
PVSNet_Blended99.08 9698.97 9199.42 12199.76 5298.79 17298.78 31099.91 396.74 24099.67 5999.49 22097.53 11499.88 11898.98 5799.85 5899.60 128
3Dnovator97.25 999.24 6599.05 7499.81 3899.12 24899.66 5499.84 699.74 1099.09 1098.92 22299.90 795.94 16699.98 598.95 6199.92 1199.79 53
EIA-MVS99.18 7199.09 7199.45 11599.49 15899.18 11799.67 4299.53 8397.66 15999.40 12599.44 23598.10 10199.81 15698.94 6299.62 12499.35 175
lupinMVS99.13 7999.01 8699.46 11499.51 14998.94 15499.05 26599.16 27497.86 13399.80 2499.56 19597.39 11799.86 12598.94 6299.85 5899.58 136
DVP-MVS99.57 799.47 999.88 699.85 2599.89 399.57 8899.37 22399.10 899.81 2299.80 7698.94 3199.96 1898.93 6499.86 5199.81 41
test_0728_SECOND99.91 299.84 3299.89 399.57 8899.51 10299.96 1898.93 6499.86 5199.88 5
UA-Net99.42 3899.29 4499.80 4099.62 12599.55 7499.50 12499.70 1598.79 4799.77 3399.96 197.45 11699.96 1898.92 6699.90 2399.89 2
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 7099.48 13999.08 1199.91 199.81 6299.20 599.96 1898.91 6799.85 5899.79 53
test_241102_TWO99.48 13999.08 1199.88 599.81 6298.94 3199.96 1898.91 6799.84 6599.88 5
MVS_111021_HR99.41 4299.32 3099.66 6899.72 8099.47 8898.95 29399.85 698.82 4299.54 9399.73 12498.51 7599.74 17698.91 6799.88 3699.77 63
zzz-MVS99.49 1599.36 2199.89 499.90 399.86 1099.36 19399.47 15798.79 4799.68 5399.81 6298.43 8199.97 1098.88 7099.90 2399.83 29
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 4699.47 15798.79 4799.68 5399.81 6298.43 8199.97 1098.88 7099.90 2399.83 29
XXY-MVS98.38 16098.09 17399.24 14799.26 21699.32 10199.56 9599.55 6497.45 18098.71 24999.83 4293.23 24999.63 21898.88 7096.32 26898.76 228
ACMH97.28 898.10 18497.99 18398.44 24699.41 17796.96 27199.60 7099.56 5698.09 11098.15 29599.91 590.87 30399.70 19998.88 7097.45 24098.67 258
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS_Test99.10 9398.97 9199.48 10999.49 15899.14 12599.67 4299.34 23397.31 19499.58 8599.76 10597.65 11399.82 15298.87 7499.07 16199.46 164
MVSTER98.49 15098.32 15899.00 17099.35 19199.02 13799.54 10799.38 21597.41 18799.20 17299.73 12493.86 24199.36 25498.87 7497.56 22998.62 280
1112_ss98.98 10998.77 11899.59 8499.68 9999.02 13799.25 22899.48 13997.23 20399.13 18399.58 18896.93 13599.90 10598.87 7498.78 18199.84 18
IU-MVS99.84 3299.88 799.32 24898.30 8599.84 1398.86 7799.85 5899.89 2
3Dnovator+97.12 1399.18 7198.97 9199.82 3599.17 24199.68 4999.81 1299.51 10299.20 498.72 24899.89 1095.68 17799.97 1098.86 7799.86 5199.81 41
test_0728_THIRD98.99 2599.81 2299.80 7699.09 1299.96 1898.85 7999.90 2399.88 5
WTY-MVS99.06 9898.88 10399.61 8299.62 12599.16 12099.37 18999.56 5698.04 12199.53 9599.62 17596.84 13699.94 5398.85 7998.49 19499.72 86
TSAR-MVS + MP.99.58 499.50 899.81 3899.91 199.66 5499.63 5799.39 20998.91 3699.78 3199.85 2999.36 299.94 5398.84 8199.88 3699.82 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Anonymous2023121197.88 21497.54 23198.90 18899.71 8698.53 19199.48 14099.57 5194.16 31898.81 23899.68 14593.23 24999.42 24398.84 8194.42 30898.76 228
114514_t98.93 11398.67 12899.72 6199.85 2599.53 7999.62 6399.59 4492.65 33099.71 4699.78 9598.06 10399.90 10598.84 8199.91 1699.74 73
tttt051798.42 15598.14 16799.28 14299.66 10998.38 20799.74 2896.85 34697.68 15699.79 2699.74 11791.39 29699.89 11398.83 8499.56 12799.57 137
MP-MVS-pluss99.37 4899.20 5999.88 699.90 399.87 999.30 20799.52 8997.18 20699.60 8099.79 8898.79 4799.95 4298.83 8499.91 1699.83 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
Test_1112_low_res98.89 11598.66 13199.57 8899.69 9598.95 15199.03 27199.47 15796.98 22499.15 18199.23 28596.77 14099.89 11398.83 8498.78 18199.86 11
MVS_111021_LR99.41 4299.33 2899.65 7299.77 4999.51 8498.94 29599.85 698.82 4299.65 6799.74 11798.51 7599.80 16198.83 8499.89 3399.64 118
ACMMP_NAP99.47 2299.34 2699.88 699.87 1599.86 1099.47 14599.48 13998.05 12099.76 3799.86 2398.82 4499.93 6898.82 8899.91 1699.84 18
RRT_MVS98.60 14898.44 14999.05 16398.88 28299.14 12599.49 13499.38 21597.76 14799.29 14899.86 2395.38 18499.36 25498.81 8997.16 25398.64 270
SMA-MVScopyleft99.44 3099.30 4099.85 2599.73 7599.83 1499.56 9599.47 15797.45 18099.78 3199.82 4999.18 899.91 9098.79 9099.89 3399.81 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 13299.74 11798.81 4599.94 5398.79 9099.86 5199.84 18
X-MVStestdata96.55 28695.45 30099.87 1199.85 2599.83 1499.69 3599.68 1998.98 2799.37 13264.01 35898.81 4599.94 5398.79 9099.86 5199.84 18
CVMVSNet98.57 14998.67 12898.30 26099.35 19195.59 30599.50 12499.55 6498.60 5999.39 12799.83 4294.48 22199.45 23298.75 9398.56 19099.85 14
CP-MVS99.45 2699.32 3099.85 2599.83 3699.75 3899.69 3599.52 8998.07 11599.53 9599.63 17098.93 3599.97 1098.74 9499.91 1699.83 29
ACMM97.58 598.37 16198.34 15698.48 23799.41 17797.10 25599.56 9599.45 17998.53 6299.04 20299.85 2993.00 25399.71 19398.74 9497.45 24098.64 270
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Effi-MVS+-dtu98.78 13498.89 10298.47 24199.33 19696.91 27399.57 8899.30 25598.47 6699.41 12098.99 30896.78 13899.74 17698.73 9699.38 13698.74 233
mvs-test198.86 11998.84 11098.89 19199.33 19697.77 23599.44 15399.30 25598.47 6699.10 19099.43 23796.78 13899.95 4298.73 9699.02 16598.96 211
ZNCC-MVS99.47 2299.33 2899.87 1199.87 1599.81 2499.64 5599.67 2298.08 11499.55 9299.64 16598.91 3699.96 1898.72 9899.90 2399.82 36
SD-MVS99.41 4299.52 699.05 16399.74 7099.68 4999.46 14899.52 8999.11 799.88 599.91 599.43 197.70 34098.72 9899.93 1099.77 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
D2MVS98.41 15798.50 14798.15 27199.26 21696.62 28499.40 17799.61 3697.71 15398.98 21399.36 25796.04 16199.67 20498.70 10097.41 24498.15 324
CDS-MVSNet99.09 9499.03 7999.25 14599.42 17498.73 17599.45 14999.46 16798.11 10799.46 10799.77 10198.01 10499.37 25098.70 10098.92 17299.66 108
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS99.12 8599.08 7299.24 14799.46 16698.55 18999.51 11899.46 16798.09 11099.45 10899.82 4998.34 8999.51 22898.70 10098.93 17099.67 105
HFP-MVS99.49 1599.37 1999.86 1899.87 1599.80 2699.66 4699.67 2298.15 10199.68 5399.69 14099.06 1399.96 1898.69 10399.87 4099.84 18
ACMMPR99.49 1599.36 2199.86 1899.87 1599.79 3099.66 4699.67 2298.15 10199.67 5999.69 14098.95 2899.96 1898.69 10399.87 4099.84 18
UniMVSNet_ETH3D97.32 27296.81 27898.87 19899.40 18297.46 24499.51 11899.53 8395.86 29998.54 27499.77 10182.44 34699.66 20798.68 10597.52 23299.50 155
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4799.63 11999.59 6799.36 19399.46 16799.07 1399.79 2699.82 4998.85 4199.92 7998.68 10599.87 4099.82 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
anonymousdsp98.44 15398.28 16198.94 17898.50 32398.96 14999.77 2199.50 12097.07 21798.87 23099.77 10194.76 20899.28 26898.66 10797.60 22598.57 295
DP-MVS99.16 7598.95 9599.78 4599.77 4999.53 7999.41 16999.50 12097.03 22299.04 20299.88 1597.39 11799.92 7998.66 10799.90 2399.87 10
MCST-MVS99.43 3399.30 4099.82 3599.79 4299.74 4199.29 21199.40 20598.79 4799.52 9799.62 17598.91 3699.90 10598.64 10999.75 9699.82 36
CP-MVSNet98.09 18597.78 20599.01 16898.97 27599.24 11299.67 4299.46 16797.25 20098.48 27899.64 16593.79 24299.06 30198.63 11094.10 31398.74 233
thisisatest053098.35 16298.03 17999.31 13399.63 11998.56 18899.54 10796.75 34897.53 17399.73 4399.65 15891.25 29999.89 11398.62 11199.56 12799.48 157
region2R99.48 1999.35 2499.87 1199.88 1199.80 2699.65 5399.66 2798.13 10399.66 6499.68 14598.96 2599.96 1898.62 11199.87 4099.84 18
APD-MVS_3200maxsize99.48 1999.35 2499.85 2599.76 5299.83 1499.63 5799.54 7198.36 7899.79 2699.82 4998.86 4099.95 4298.62 11199.81 8099.78 61
SR-MVS-dyc-post99.45 2699.31 3799.85 2599.76 5299.82 2099.63 5799.52 8998.38 7599.76 3799.82 4998.53 7299.95 4298.61 11499.81 8099.77 63
RE-MVS-def99.34 2699.76 5299.82 2099.63 5799.52 8998.38 7599.76 3799.82 4998.75 5698.61 11499.81 8099.77 63
PHI-MVS99.30 5599.17 6299.70 6499.56 14199.52 8299.58 8399.80 897.12 21299.62 7499.73 12498.58 7099.90 10598.61 11499.91 1699.68 102
test_yl98.86 11998.63 13399.54 9299.49 15899.18 11799.50 12499.07 28598.22 9499.61 7699.51 21495.37 18599.84 13698.60 11798.33 19799.59 132
DCV-MVSNet98.86 11998.63 13399.54 9299.49 15899.18 11799.50 12499.07 28598.22 9499.61 7699.51 21495.37 18599.84 13698.60 11798.33 19799.59 132
CNVR-MVS99.42 3899.30 4099.78 4599.62 12599.71 4499.26 22699.52 8998.82 4299.39 12799.71 12998.96 2599.85 13198.59 11999.80 8499.77 63
WR-MVS98.06 18897.73 21399.06 16198.86 28999.25 11199.19 23999.35 22997.30 19598.66 25899.43 23793.94 23899.21 28498.58 12094.28 31098.71 237
HPM-MVScopyleft99.42 3899.28 4899.83 3399.90 399.72 4299.81 1299.54 7197.59 16399.68 5399.63 17098.91 3699.94 5398.58 12099.91 1699.84 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
UniMVSNet_NR-MVSNet98.22 17097.97 18598.96 17598.92 27998.98 14299.48 14099.53 8397.76 14798.71 24999.46 23396.43 15299.22 27998.57 12292.87 32898.69 245
DU-MVS98.08 18797.79 20298.96 17598.87 28698.98 14299.41 16999.45 17997.87 13298.71 24999.50 21794.82 20199.22 27998.57 12292.87 32898.68 250
mPP-MVS99.44 3099.30 4099.86 1899.88 1199.79 3099.69 3599.48 13998.12 10599.50 10099.75 11198.78 4899.97 1098.57 12299.89 3399.83 29
CANet_DTU98.97 11198.87 10499.25 14599.33 19698.42 20699.08 25999.30 25599.16 599.43 11399.75 11195.27 18999.97 1098.56 12599.95 699.36 174
PMMVS98.80 13398.62 13899.34 12799.27 21498.70 17798.76 31299.31 25197.34 19199.21 16999.07 30197.20 12599.82 15298.56 12598.87 17599.52 146
PVSNet96.02 1798.85 12798.84 11098.89 19199.73 7597.28 24898.32 33799.60 4197.86 13399.50 10099.57 19296.75 14199.86 12598.56 12599.70 10899.54 141
test117299.43 3399.29 4499.85 2599.75 6299.82 2099.60 7099.56 5698.28 8699.74 4199.79 8898.53 7299.95 4298.55 12899.78 8999.79 53
ACMMPcopyleft99.45 2699.32 3099.82 3599.89 899.67 5299.62 6399.69 1898.12 10599.63 7099.84 3898.73 5999.96 1898.55 12899.83 7299.81 41
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
XVG-OURS-SEG-HR98.69 14198.62 13898.89 19199.71 8697.74 23699.12 25099.54 7198.44 7299.42 11699.71 12994.20 22999.92 7998.54 13098.90 17499.00 205
PS-CasMVS97.93 20897.59 22798.95 17798.99 27099.06 13499.68 4099.52 8997.13 21098.31 28899.68 14592.44 27699.05 30298.51 13194.08 31498.75 230
CostFormer97.72 24397.73 21397.71 29799.15 24694.02 33199.54 10799.02 28994.67 31399.04 20299.35 26092.35 27899.77 17098.50 13297.94 21699.34 177
baseline198.31 16497.95 18899.38 12599.50 15698.74 17499.59 7698.93 29798.41 7399.14 18299.60 18294.59 21699.79 16498.48 13393.29 32299.61 126
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2499.59 7699.51 10298.62 5799.79 2699.83 4299.28 399.97 1098.48 13399.90 2399.84 18
Skip Steuart: Steuart Systems R&D Blog.
tpmrst98.33 16398.48 14897.90 28799.16 24394.78 32499.31 20599.11 27997.27 19899.45 10899.59 18595.33 18799.84 13698.48 13398.61 18499.09 194
IB-MVS95.67 1896.22 29295.44 30198.57 22799.21 22896.70 28098.65 32297.74 34196.71 24297.27 31598.54 32786.03 33799.92 7998.47 13686.30 34399.10 190
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MSP-MVS99.42 3899.27 5099.88 699.89 899.80 2699.67 4299.50 12098.70 5399.77 3399.49 22098.21 9699.95 4298.46 13799.77 9299.88 5
abl_699.44 3099.31 3799.83 3399.85 2599.75 3899.66 4699.59 4498.13 10399.82 2099.81 6298.60 6999.96 1898.46 13799.88 3699.79 53
SR-MVS99.43 3399.29 4499.86 1899.75 6299.83 1499.59 7699.62 3498.21 9699.73 4399.79 8898.68 6399.96 1898.44 13999.77 9299.79 53
HPM-MVS++copyleft99.39 4699.23 5799.87 1199.75 6299.84 1399.43 15999.51 10298.68 5599.27 15399.53 20798.64 6899.96 1898.44 13999.80 8499.79 53
#test#99.43 3399.29 4499.86 1899.87 1599.80 2699.55 10499.67 2297.83 13899.68 5399.69 14099.06 1399.96 1898.39 14199.87 4099.84 18
LTVRE_ROB97.16 1298.02 19697.90 19398.40 25099.23 22296.80 27799.70 3399.60 4197.12 21298.18 29499.70 13391.73 28899.72 18798.39 14197.45 24098.68 250
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
GST-MVS99.40 4599.24 5599.85 2599.86 2199.79 3099.60 7099.67 2297.97 12699.63 7099.68 14598.52 7499.95 4298.38 14399.86 5199.81 41
EI-MVSNet98.67 14398.67 12898.68 22099.35 19197.97 22399.50 12499.38 21596.93 23199.20 17299.83 4297.87 10699.36 25498.38 14397.56 22998.71 237
test_part196.83 28296.34 28598.33 25599.46 16696.71 27999.52 11399.63 3391.48 33497.75 31099.76 10587.49 33499.44 23798.37 14593.55 31998.82 219
HY-MVS97.30 798.85 12798.64 13299.47 11299.42 17499.08 13299.62 6399.36 22497.39 18999.28 15099.68 14596.44 15199.92 7998.37 14598.22 20399.40 172
TDRefinement95.42 30294.57 30897.97 28289.83 35396.11 29899.48 14098.75 31396.74 24096.68 32499.88 1588.65 32399.71 19398.37 14582.74 34698.09 325
UniMVSNet (Re)98.29 16798.00 18299.13 15799.00 26999.36 9899.49 13499.51 10297.95 12798.97 21599.13 29696.30 15599.38 24798.36 14893.34 32198.66 266
WR-MVS_H98.13 18197.87 19898.90 18899.02 26798.84 16599.70 3399.59 4497.27 19898.40 28299.19 29095.53 18099.23 27698.34 14993.78 31798.61 289
PGM-MVS99.45 2699.31 3799.86 1899.87 1599.78 3799.58 8399.65 3297.84 13799.71 4699.80 7699.12 1199.97 1098.33 15099.87 4099.83 29
LS3D99.27 6099.12 6799.74 5699.18 23599.75 3899.56 9599.57 5198.45 6999.49 10399.85 2997.77 11099.94 5398.33 15099.84 6599.52 146
IterMVS-LS98.46 15298.42 15198.58 22699.59 13498.00 22199.37 18999.43 19596.94 23099.07 19699.59 18597.87 10699.03 30598.32 15295.62 28698.71 237
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CLD-MVS98.16 17898.10 17098.33 25599.29 20996.82 27698.75 31399.44 18797.83 13899.13 18399.55 19892.92 25599.67 20498.32 15297.69 22198.48 301
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
NCCC99.34 5199.19 6099.79 4399.61 12999.65 5799.30 20799.48 13998.86 3899.21 16999.63 17098.72 6099.90 10598.25 15499.63 12299.80 49
OPU-MVS99.64 7799.56 14199.72 4299.60 7099.70 13399.27 499.42 24398.24 15599.80 8499.79 53
testing_294.44 30992.93 31598.98 17294.16 34899.00 14199.42 16699.28 26196.60 25384.86 34596.84 34170.91 35099.27 27198.23 15696.08 27298.68 250
cl-mvsnet297.85 21997.64 22298.48 23799.09 25597.87 23098.60 32699.33 24097.11 21598.87 23099.22 28692.38 27799.17 28898.21 15795.99 27598.42 310
xxxxxxxxxxxxxcwj99.43 3399.32 3099.75 5199.76 5299.59 6799.14 24899.53 8399.00 2299.71 4699.80 7698.95 2899.93 6898.19 15899.84 6599.74 73
SF-MVS99.38 4799.24 5599.79 4399.79 4299.68 4999.57 8899.54 7197.82 14399.71 4699.80 7698.95 2899.93 6898.19 15899.84 6599.74 73
旧先验298.96 28996.70 24399.47 10599.94 5398.19 158
F-COLMAP99.19 6999.04 7799.64 7799.78 4499.27 10999.42 16699.54 7197.29 19699.41 12099.59 18598.42 8499.93 6898.19 15899.69 10999.73 80
LCM-MVSNet-Re97.83 22498.15 16696.87 31599.30 20592.25 34299.59 7698.26 33197.43 18496.20 32899.13 29696.27 15698.73 32798.17 16298.99 16799.64 118
DPE-MVS99.46 2499.32 3099.91 299.78 4499.88 799.36 19399.51 10298.73 5199.88 599.84 3898.72 6099.96 1898.16 16399.87 4099.88 5
cascas97.69 24897.43 24998.48 23798.60 31897.30 24798.18 34299.39 20992.96 32998.41 28198.78 32093.77 24399.27 27198.16 16398.61 18498.86 216
DWT-MVSNet_test97.53 26197.40 25297.93 28499.03 26694.86 32399.57 8898.63 32596.59 25698.36 28598.79 31889.32 31699.74 17698.14 16598.16 21199.20 185
COLMAP_ROBcopyleft97.56 698.86 11998.75 12199.17 15399.88 1198.53 19199.34 20199.59 4497.55 16898.70 25599.89 1095.83 17199.90 10598.10 16699.90 2399.08 195
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PEN-MVS97.76 23497.44 24698.72 21798.77 30098.54 19099.78 1999.51 10297.06 21998.29 29099.64 16592.63 26798.89 32498.09 16793.16 32498.72 235
LPG-MVS_test98.22 17098.13 16898.49 23599.33 19697.05 26199.58 8399.55 6497.46 17799.24 16199.83 4292.58 26899.72 18798.09 16797.51 23398.68 250
LGP-MVS_train98.49 23599.33 19697.05 26199.55 6497.46 17799.24 16199.83 4292.58 26899.72 18798.09 16797.51 23398.68 250
IS-MVSNet99.05 10098.87 10499.57 8899.73 7599.32 10199.75 2599.20 27198.02 12499.56 8899.86 2396.54 14799.67 20498.09 16799.13 15499.73 80
thisisatest051598.14 18097.79 20299.19 15199.50 15698.50 19898.61 32496.82 34796.95 22899.54 9399.43 23791.66 29299.86 12598.08 17199.51 13199.22 183
OPM-MVS98.19 17498.10 17098.45 24398.88 28297.07 25999.28 21399.38 21598.57 6099.22 16699.81 6292.12 27999.66 20798.08 17197.54 23198.61 289
XVG-OURS98.73 13898.68 12798.88 19499.70 9397.73 23798.92 29699.55 6498.52 6399.45 10899.84 3895.27 18999.91 9098.08 17198.84 17799.00 205
Baseline_NR-MVSNet97.76 23497.45 24198.68 22099.09 25598.29 20999.41 16998.85 30895.65 30198.63 26699.67 15194.82 20199.10 29998.07 17492.89 32798.64 270
ACMH+97.24 1097.92 21197.78 20598.32 25899.46 16696.68 28299.56 9599.54 7198.41 7397.79 30999.87 2090.18 31099.66 20798.05 17597.18 25298.62 280
TranMVSNet+NR-MVSNet97.93 20897.66 21998.76 21598.78 29798.62 18499.65 5399.49 12897.76 14798.49 27799.60 18294.23 22898.97 31998.00 17692.90 32698.70 241
DP-MVS Recon99.12 8598.95 9599.65 7299.74 7099.70 4699.27 21799.57 5196.40 27199.42 11699.68 14598.75 5699.80 16197.98 17799.72 10399.44 167
test_prior399.21 6699.05 7499.68 6599.67 10099.48 8698.96 28999.56 5698.34 8099.01 20599.52 21098.68 6399.83 14597.96 17899.74 9999.74 73
test_prior298.96 28998.34 8099.01 20599.52 21098.68 6397.96 17899.74 99
Fast-Effi-MVS+-dtu98.77 13698.83 11498.60 22399.41 17796.99 26799.52 11399.49 12898.11 10799.24 16199.34 26396.96 13499.79 16497.95 18099.45 13299.02 204
MP-MVScopyleft99.33 5299.15 6399.87 1199.88 1199.82 2099.66 4699.46 16798.09 11099.48 10499.74 11798.29 9299.96 1897.93 18199.87 4099.82 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Vis-MVSNet (Re-imp)98.87 11698.72 12299.31 13399.71 8698.88 16099.80 1699.44 18797.91 13199.36 13599.78 9595.49 18299.43 24297.91 18299.11 15599.62 124
ACMP97.20 1198.06 18897.94 19098.45 24399.37 18897.01 26599.44 15399.49 12897.54 17198.45 27999.79 8891.95 28299.72 18797.91 18297.49 23898.62 280
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Fast-Effi-MVS+98.70 13998.43 15099.51 10599.51 14999.28 10799.52 11399.47 15796.11 29299.01 20599.34 26396.20 15899.84 13697.88 18498.82 17899.39 173
EPMVS97.82 22797.65 22098.35 25498.88 28295.98 30099.49 13494.71 35497.57 16699.26 15899.48 22692.46 27599.71 19397.87 18599.08 16099.35 175
miper_enhance_ethall98.16 17898.08 17498.41 24898.96 27697.72 23898.45 33399.32 24896.95 22898.97 21599.17 29197.06 13099.22 27997.86 18695.99 27598.29 318
tmp_tt82.80 31981.52 32286.66 33266.61 36068.44 35892.79 35297.92 33768.96 35180.04 35399.85 2985.77 33896.15 34997.86 18643.89 35495.39 345
NR-MVSNet97.97 20697.61 22499.02 16798.87 28699.26 11099.47 14599.42 19797.63 16197.08 32099.50 21795.07 19599.13 29297.86 18693.59 31898.68 250
v14897.79 23297.55 22898.50 23498.74 30297.72 23899.54 10799.33 24096.26 27898.90 22599.51 21494.68 21299.14 28997.83 18993.15 32598.63 278
CPTT-MVS99.11 9098.90 10099.74 5699.80 4199.46 8999.59 7699.49 12897.03 22299.63 7099.69 14097.27 12499.96 1897.82 19099.84 6599.81 41
MDTV_nov1_ep13_2view95.18 31899.35 19896.84 23599.58 8595.19 19397.82 19099.46 164
OMC-MVS99.08 9699.04 7799.20 15099.67 10098.22 21299.28 21399.52 8998.07 11599.66 6499.81 6297.79 10999.78 16897.79 19299.81 8099.60 128
HQP_MVS98.27 16998.22 16498.44 24699.29 20996.97 26999.39 18199.47 15798.97 3099.11 18799.61 17992.71 26499.69 20297.78 19397.63 22298.67 258
plane_prior599.47 15799.69 20297.78 19397.63 22298.67 258
testdata99.54 9299.75 6298.95 15199.51 10297.07 21799.43 11399.70 13398.87 3999.94 5397.76 19599.64 12099.72 86
PLCcopyleft97.94 499.02 10498.85 10999.53 9899.66 10999.01 13999.24 23099.52 8996.85 23499.27 15399.48 22698.25 9499.91 9097.76 19599.62 12499.65 112
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpm97.67 25397.55 22898.03 27699.02 26795.01 32099.43 15998.54 32996.44 26799.12 18599.34 26391.83 28599.60 22197.75 19796.46 26499.48 157
131498.68 14298.54 14699.11 15898.89 28198.65 18199.27 21799.49 12896.89 23297.99 30299.56 19597.72 11299.83 14597.74 19899.27 14498.84 218
XVG-ACMP-BASELINE97.83 22497.71 21598.20 26799.11 25096.33 29399.41 16999.52 8998.06 11999.05 20199.50 21789.64 31499.73 18397.73 19997.38 24698.53 297
CNLPA99.14 7798.99 8799.59 8499.58 13599.41 9499.16 24299.44 18798.45 6999.19 17599.49 22098.08 10299.89 11397.73 19999.75 9699.48 157
v2v48298.06 18897.77 20798.92 18298.90 28098.82 16999.57 8899.36 22496.65 24799.19 17599.35 26094.20 22999.25 27497.72 20194.97 30098.69 245
AUN-MVS96.88 28096.31 28698.59 22499.48 16497.04 26399.27 21799.22 26897.44 18398.51 27599.41 24391.97 28199.66 20797.71 20283.83 34599.07 199
baseline297.87 21697.55 22898.82 20799.18 23598.02 22099.41 16996.58 35096.97 22596.51 32599.17 29193.43 24699.57 22397.71 20299.03 16498.86 216
原ACMM199.65 7299.73 7599.33 10099.47 15797.46 17799.12 18599.66 15798.67 6699.91 9097.70 20499.69 10999.71 93
agg_prior199.01 10798.76 12099.76 5099.67 10099.62 6098.99 28199.40 20596.26 27898.87 23099.49 22098.77 5199.91 9097.69 20599.72 10399.75 69
PVSNet_094.43 1996.09 29695.47 29997.94 28399.31 20494.34 32997.81 34599.70 1597.12 21297.46 31298.75 32189.71 31399.79 16497.69 20581.69 34799.68 102
MAR-MVS98.86 11998.63 13399.54 9299.37 18899.66 5499.45 14999.54 7196.61 25199.01 20599.40 24697.09 12899.86 12597.68 20799.53 13099.10 190
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
9.1499.10 6999.72 8099.40 17799.51 10297.53 17399.64 6999.78 9598.84 4299.91 9097.63 20899.82 78
train_agg99.02 10498.77 11899.77 4799.67 10099.65 5799.05 26599.41 19996.28 27598.95 21799.49 22098.76 5399.91 9097.63 20899.72 10399.75 69
miper_ehance_all_eth98.18 17698.10 17098.41 24899.23 22297.72 23898.72 31699.31 25196.60 25398.88 22899.29 27597.29 12399.13 29297.60 21095.99 27598.38 315
MDTV_nov1_ep1398.32 15899.11 25094.44 32799.27 21798.74 31697.51 17599.40 12599.62 17594.78 20499.76 17397.59 21198.81 180
cl_fuxian98.12 18398.04 17898.38 25299.30 20597.69 24198.81 30799.33 24096.67 24598.83 23699.34 26397.11 12798.99 31197.58 21295.34 29298.48 301
test_post199.23 23165.14 35794.18 23299.71 19397.58 212
SCA98.19 17498.16 16598.27 26599.30 20595.55 30699.07 26098.97 29397.57 16699.43 11399.57 19292.72 26299.74 17697.58 21299.20 14899.52 146
JIA-IIPM97.50 26597.02 27598.93 18098.73 30397.80 23499.30 20798.97 29391.73 33398.91 22394.86 34695.10 19499.71 19397.58 21297.98 21599.28 181
V4298.06 18897.79 20298.86 20198.98 27398.84 16599.69 3599.34 23396.53 25899.30 14599.37 25494.67 21399.32 26397.57 21694.66 30398.42 310
gm-plane-assit98.54 32292.96 33994.65 31499.15 29499.64 21397.56 217
APD-MVScopyleft99.27 6099.08 7299.84 3299.75 6299.79 3099.50 12499.50 12097.16 20899.77 3399.82 4998.78 4899.94 5397.56 21799.86 5199.80 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
pm-mvs197.68 25097.28 26798.88 19499.06 26098.62 18499.50 12499.45 17996.32 27397.87 30599.79 8892.47 27299.35 25897.54 21993.54 32098.67 258
无先验98.99 28199.51 10296.89 23299.93 6897.53 22099.72 86
112199.09 9498.87 10499.75 5199.74 7099.60 6499.27 21799.48 13996.82 23899.25 16099.65 15898.38 8699.93 6897.53 22099.67 11699.73 80
pmmvs597.52 26297.30 26698.16 27098.57 32096.73 27899.27 21798.90 30496.14 29098.37 28499.53 20791.54 29599.14 28997.51 22295.87 27998.63 278
test9_res97.49 22399.72 10399.75 69
CDPH-MVS99.13 7998.91 9999.80 4099.75 6299.71 4499.15 24699.41 19996.60 25399.60 8099.55 19898.83 4399.90 10597.48 22499.83 7299.78 61
AdaColmapbinary99.01 10798.80 11599.66 6899.56 14199.54 7699.18 24099.70 1598.18 10099.35 13899.63 17096.32 15499.90 10597.48 22499.77 9299.55 139
OpenMVScopyleft96.50 1698.47 15198.12 16999.52 10399.04 26499.53 7999.82 1099.72 1194.56 31598.08 29799.88 1594.73 21099.98 597.47 22699.76 9599.06 200
IterMVS97.83 22497.77 20798.02 27899.58 13596.27 29599.02 27499.48 13997.22 20498.71 24999.70 13392.75 25999.13 29297.46 22796.00 27498.67 258
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
RPSCF98.22 17098.62 13896.99 31099.82 3791.58 34499.72 2999.44 18796.61 25199.66 6499.89 1095.92 16799.82 15297.46 22799.10 15899.57 137
ETH3D-3000-0.199.21 6699.02 8299.77 4799.73 7599.69 4799.38 18699.51 10297.45 18099.61 7699.75 11198.51 7599.91 9097.45 22999.83 7299.71 93
IterMVS-SCA-FT97.82 22797.75 21198.06 27599.57 13796.36 29299.02 27499.49 12897.18 20698.71 24999.72 12892.72 26299.14 28997.44 23095.86 28098.67 258
PatchmatchNetpermissive98.31 16498.36 15398.19 26899.16 24395.32 31499.27 21798.92 29997.37 19099.37 13299.58 18894.90 19899.70 19997.43 23199.21 14799.54 141
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EU-MVSNet97.98 20398.03 17997.81 29398.72 30596.65 28399.66 4699.66 2798.09 11098.35 28699.82 4995.25 19298.01 33397.41 23295.30 29398.78 223
eth_miper_zixun_eth98.05 19397.96 18698.33 25599.26 21697.38 24698.56 32999.31 25196.65 24798.88 22899.52 21096.58 14599.12 29697.39 23395.53 28998.47 303
tpm297.44 26997.34 26197.74 29699.15 24694.36 32899.45 14998.94 29693.45 32798.90 22599.44 23591.35 29799.59 22297.31 23498.07 21499.29 180
TESTMET0.1,197.55 25997.27 26998.40 25098.93 27896.53 28698.67 31997.61 34296.96 22698.64 26599.28 27788.63 32499.45 23297.30 23599.38 13699.21 184
ETH3D cwj APD-0.1699.06 9898.84 11099.72 6199.51 14999.60 6499.23 23199.44 18797.04 22099.39 12799.67 15198.30 9199.92 7997.27 23699.69 10999.64 118
miper_lstm_enhance98.00 20197.91 19298.28 26499.34 19597.43 24598.88 30099.36 22496.48 26498.80 24099.55 19895.98 16298.91 32297.27 23695.50 29098.51 299
test-LLR98.06 18897.90 19398.55 23198.79 29497.10 25598.67 31997.75 33997.34 19198.61 26998.85 31594.45 22299.45 23297.25 23899.38 13699.10 190
test-mter97.49 26797.13 27298.55 23198.79 29497.10 25598.67 31997.75 33996.65 24798.61 26998.85 31588.23 32899.45 23297.25 23899.38 13699.10 190
cl-mvsnet_98.01 19997.84 20098.55 23199.25 22097.97 22398.71 31799.34 23396.47 26698.59 27299.54 20395.65 17899.21 28497.21 24095.77 28198.46 307
cl-mvsnet198.01 19997.85 19998.48 23799.24 22197.95 22798.71 31799.35 22996.50 25998.60 27199.54 20395.72 17699.03 30597.21 24095.77 28198.46 307
agg_prior297.21 24099.73 10299.75 69
OurMVSNet-221017-097.88 21497.77 20798.19 26898.71 30796.53 28699.88 199.00 29097.79 14498.78 24399.94 391.68 28999.35 25897.21 24096.99 25698.69 245
BP-MVS97.19 244
HQP-MVS98.02 19697.90 19398.37 25399.19 23296.83 27498.98 28599.39 20998.24 9098.66 25899.40 24692.47 27299.64 21397.19 24497.58 22798.64 270
pmmvs498.13 18197.90 19398.81 20998.61 31798.87 16198.99 28199.21 27096.44 26799.06 20099.58 18895.90 16999.11 29797.18 24696.11 27198.46 307
PatchMatch-RL98.84 12998.62 13899.52 10399.71 8699.28 10799.06 26399.77 997.74 15199.50 10099.53 20795.41 18399.84 13697.17 24799.64 12099.44 167
MVS_030496.79 28396.52 28297.59 30099.22 22694.92 32299.04 27099.59 4496.49 26098.43 28098.99 30880.48 34899.39 24597.15 24899.27 14498.47 303
GBi-Net97.68 25097.48 23698.29 26199.51 14997.26 25099.43 15999.48 13996.49 26099.07 19699.32 27090.26 30698.98 31297.10 24996.65 25898.62 280
test197.68 25097.48 23698.29 26199.51 14997.26 25099.43 15999.48 13996.49 26099.07 19699.32 27090.26 30698.98 31297.10 24996.65 25898.62 280
FMVSNet398.03 19497.76 21098.84 20599.39 18598.98 14299.40 17799.38 21596.67 24599.07 19699.28 27792.93 25498.98 31297.10 24996.65 25898.56 296
BH-untuned98.42 15598.36 15398.59 22499.49 15896.70 28099.27 21799.13 27897.24 20298.80 24099.38 25195.75 17499.74 17697.07 25299.16 15099.33 178
LF4IMVS97.52 26297.46 24097.70 29898.98 27395.55 30699.29 21198.82 31198.07 11598.66 25899.64 16589.97 31199.61 22097.01 25396.68 25797.94 332
SixPastTwentyTwo97.50 26597.33 26398.03 27698.65 31296.23 29699.77 2198.68 32497.14 20997.90 30499.93 490.45 30499.18 28797.00 25496.43 26598.67 258
MG-MVS99.13 7999.02 8299.45 11599.57 13798.63 18399.07 26099.34 23398.99 2599.61 7699.82 4997.98 10599.87 12297.00 25499.80 8499.85 14
API-MVS99.04 10199.03 7999.06 16199.40 18299.31 10499.55 10499.56 5698.54 6199.33 14299.39 25098.76 5399.78 16896.98 25699.78 8998.07 326
tpmvs97.98 20398.02 18197.84 29099.04 26494.73 32599.31 20599.20 27196.10 29698.76 24599.42 24094.94 19699.81 15696.97 25798.45 19598.97 209
QAPM98.67 14398.30 16099.80 4099.20 23099.67 5299.77 2199.72 1194.74 31298.73 24799.90 795.78 17399.98 596.96 25899.88 3699.76 68
PAPM_NR99.04 10198.84 11099.66 6899.74 7099.44 9199.39 18199.38 21597.70 15499.28 15099.28 27798.34 8999.85 13196.96 25899.45 13299.69 98
v897.95 20797.63 22398.93 18098.95 27798.81 17199.80 1699.41 19996.03 29799.10 19099.42 24094.92 19799.30 26696.94 26094.08 31498.66 266
ZD-MVS99.71 8699.79 3099.61 3696.84 23599.56 8899.54 20398.58 7099.96 1896.93 26199.75 96
MSDG98.98 10998.80 11599.53 9899.76 5299.19 11598.75 31399.55 6497.25 20099.47 10599.77 10197.82 10899.87 12296.93 26199.90 2399.54 141
pmmvs696.53 28796.09 29097.82 29298.69 30995.47 31099.37 18999.47 15793.46 32697.41 31399.78 9587.06 33599.33 26296.92 26392.70 33098.65 268
新几何199.75 5199.75 6299.59 6799.54 7196.76 23999.29 14899.64 16598.43 8199.94 5396.92 26399.66 11799.72 86
DTE-MVSNet97.51 26497.19 27198.46 24298.63 31498.13 21799.84 699.48 13996.68 24497.97 30399.67 15192.92 25598.56 32896.88 26592.60 33198.70 241
ADS-MVSNet298.02 19698.07 17797.87 28899.33 19695.19 31799.23 23199.08 28396.24 28099.10 19099.67 15194.11 23398.93 32196.81 26699.05 16299.48 157
ADS-MVSNet98.20 17398.08 17498.56 22999.33 19696.48 28899.23 23199.15 27596.24 28099.10 19099.67 15194.11 23399.71 19396.81 26699.05 16299.48 157
gg-mvs-nofinetune96.17 29495.32 30298.73 21698.79 29498.14 21699.38 18694.09 35591.07 33898.07 30091.04 35189.62 31599.35 25896.75 26899.09 15998.68 250
testtj99.12 8598.87 10499.86 1899.72 8099.79 3099.44 15399.51 10297.29 19699.59 8399.74 11798.15 10099.96 1896.74 26999.69 10999.81 41
v114497.98 20397.69 21698.85 20498.87 28698.66 18099.54 10799.35 22996.27 27799.23 16599.35 26094.67 21399.23 27696.73 27095.16 29698.68 250
UnsupCasMVSNet_eth96.44 28996.12 28997.40 30698.65 31295.65 30399.36 19399.51 10297.13 21096.04 33198.99 30888.40 32698.17 33196.71 27190.27 33698.40 313
GA-MVS97.85 21997.47 23899.00 17099.38 18697.99 22298.57 32799.15 27597.04 22098.90 22599.30 27389.83 31299.38 24796.70 27298.33 19799.62 124
K. test v397.10 27896.79 27998.01 27998.72 30596.33 29399.87 497.05 34597.59 16396.16 32999.80 7688.71 32199.04 30396.69 27396.55 26298.65 268
testdata299.95 4296.67 274
AllTest98.87 11698.72 12299.31 13399.86 2198.48 20199.56 9599.61 3697.85 13599.36 13599.85 2995.95 16499.85 13196.66 27599.83 7299.59 132
TestCases99.31 13399.86 2198.48 20199.61 3697.85 13599.36 13599.85 2995.95 16499.85 13196.66 27599.83 7299.59 132
dp97.75 23897.80 20197.59 30099.10 25393.71 33499.32 20398.88 30696.48 26499.08 19599.55 19892.67 26699.82 15296.52 27798.58 18799.24 182
BH-RMVSNet98.41 15798.08 17499.40 12299.41 17798.83 16899.30 20798.77 31297.70 15498.94 21999.65 15892.91 25799.74 17696.52 27799.55 12999.64 118
FMVSNet297.72 24397.36 25698.80 21199.51 14998.84 16599.45 14999.42 19796.49 26098.86 23599.29 27590.26 30698.98 31296.44 27996.56 26198.58 294
ambc93.06 32792.68 34982.36 34998.47 33298.73 32195.09 33497.41 33655.55 35599.10 29996.42 28091.32 33497.71 336
tpm cat197.39 27097.36 25697.50 30499.17 24193.73 33399.43 15999.31 25191.27 33598.71 24999.08 30094.31 22799.77 17096.41 28198.50 19399.00 205
v14419297.92 21197.60 22598.87 19898.83 29298.65 18199.55 10499.34 23396.20 28399.32 14399.40 24694.36 22499.26 27396.37 28295.03 29998.70 241
Patchmatch-RL test95.84 29895.81 29695.95 32295.61 34390.57 34598.24 33998.39 33095.10 30895.20 33398.67 32394.78 20497.77 33896.28 28390.02 33799.51 152
Patchmtry97.75 23897.40 25298.81 20999.10 25398.87 16199.11 25699.33 24094.83 31098.81 23899.38 25194.33 22599.02 30796.10 28495.57 28798.53 297
BH-w/o98.00 20197.89 19798.32 25899.35 19196.20 29799.01 27998.90 30496.42 26998.38 28399.00 30795.26 19199.72 18796.06 28598.61 18499.03 202
v7n97.87 21697.52 23298.92 18298.76 30198.58 18799.84 699.46 16796.20 28398.91 22399.70 13394.89 19999.44 23796.03 28693.89 31698.75 230
v1097.85 21997.52 23298.86 20198.99 27098.67 17999.75 2599.41 19995.70 30098.98 21399.41 24394.75 20999.23 27696.01 28794.63 30498.67 258
lessismore_v097.79 29498.69 30995.44 31294.75 35395.71 33299.87 2088.69 32299.32 26395.89 28894.93 30298.62 280
ITE_SJBPF98.08 27399.29 20996.37 29198.92 29998.34 8098.83 23699.75 11191.09 30099.62 21995.82 28997.40 24598.25 321
FMVSNet196.84 28196.36 28498.29 26199.32 20397.26 25099.43 15999.48 13995.11 30698.55 27399.32 27083.95 34298.98 31295.81 29096.26 26998.62 280
DPM-MVS98.95 11298.71 12499.66 6899.63 11999.55 7498.64 32399.10 28097.93 12999.42 11699.55 19898.67 6699.80 16195.80 29199.68 11499.61 126
MIMVSNet97.73 24197.45 24198.57 22799.45 17297.50 24399.02 27498.98 29296.11 29299.41 12099.14 29590.28 30598.74 32695.74 29298.93 17099.47 162
tfpnnormal97.84 22297.47 23898.98 17299.20 23099.22 11499.64 5599.61 3696.32 27398.27 29199.70 13393.35 24899.44 23795.69 29395.40 29198.27 319
MS-PatchMatch97.24 27597.32 26496.99 31098.45 32593.51 33798.82 30699.32 24897.41 18798.13 29699.30 27388.99 31999.56 22495.68 29499.80 8497.90 335
EG-PatchMatch MVS95.97 29795.69 29796.81 31697.78 33392.79 34099.16 24298.93 29796.16 28794.08 33799.22 28682.72 34499.47 23095.67 29597.50 23598.17 323
USDC97.34 27197.20 27097.75 29599.07 25895.20 31698.51 33199.04 28897.99 12598.31 28899.86 2389.02 31899.55 22695.67 29597.36 24798.49 300
MVP-Stereo97.81 22997.75 21197.99 28197.53 33496.60 28598.96 28998.85 30897.22 20497.23 31699.36 25795.28 18899.46 23195.51 29799.78 8997.92 334
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CMPMVSbinary69.68 2394.13 31194.90 30591.84 32997.24 34080.01 35298.52 33099.48 13989.01 34091.99 34299.67 15185.67 33999.13 29295.44 29897.03 25596.39 343
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
GG-mvs-BLEND98.45 24398.55 32198.16 21499.43 15993.68 35697.23 31698.46 32889.30 31799.22 27995.43 29998.22 20397.98 330
v192192097.80 23197.45 24198.84 20598.80 29398.53 19199.52 11399.34 23396.15 28999.24 16199.47 22993.98 23799.29 26795.40 30095.13 29798.69 245
TR-MVS97.76 23497.41 25198.82 20799.06 26097.87 23098.87 30298.56 32796.63 25098.68 25799.22 28692.49 27199.65 21195.40 30097.79 21998.95 214
ETH3 D test640098.70 13998.35 15599.73 5899.69 9599.60 6499.16 24299.45 17995.42 30399.27 15399.60 18297.39 11799.91 9095.36 30299.83 7299.70 95
v119297.81 22997.44 24698.91 18698.88 28298.68 17899.51 11899.34 23396.18 28599.20 17299.34 26394.03 23699.36 25495.32 30395.18 29598.69 245
PAPR98.63 14798.34 15699.51 10599.40 18299.03 13698.80 30899.36 22496.33 27299.00 21099.12 29998.46 7999.84 13695.23 30499.37 14099.66 108
TinyColmap97.12 27796.89 27797.83 29199.07 25895.52 30998.57 32798.74 31697.58 16597.81 30899.79 8888.16 32999.56 22495.10 30597.21 25098.39 314
DSMNet-mixed97.25 27497.35 25896.95 31397.84 33293.61 33699.57 8896.63 34996.13 29198.87 23098.61 32694.59 21697.70 34095.08 30698.86 17699.55 139
test0.0.03 197.71 24797.42 25098.56 22998.41 32697.82 23398.78 31098.63 32597.34 19198.05 30198.98 31194.45 22298.98 31295.04 30797.15 25498.89 215
our_test_397.65 25597.68 21797.55 30298.62 31594.97 32198.84 30499.30 25596.83 23798.19 29399.34 26397.01 13299.02 30795.00 30896.01 27398.64 270
MVS-HIRNet95.75 29995.16 30397.51 30399.30 20593.69 33598.88 30095.78 35185.09 34598.78 24392.65 34891.29 29899.37 25094.85 30999.85 5899.46 164
CR-MVSNet98.17 17797.93 19198.87 19899.18 23598.49 19999.22 23699.33 24096.96 22699.56 8899.38 25194.33 22599.00 31094.83 31098.58 18799.14 186
pmmvs-eth3d95.34 30494.73 30697.15 30795.53 34595.94 30199.35 19899.10 28095.13 30593.55 33897.54 33588.15 33097.91 33594.58 31189.69 33997.61 337
testgi97.65 25597.50 23598.13 27299.36 19096.45 28999.42 16699.48 13997.76 14797.87 30599.45 23491.09 30098.81 32594.53 31298.52 19299.13 188
v124097.69 24897.32 26498.79 21298.85 29098.43 20499.48 14099.36 22496.11 29299.27 15399.36 25793.76 24499.24 27594.46 31395.23 29498.70 241
YYNet195.36 30394.51 30997.92 28597.89 33197.10 25599.10 25899.23 26793.26 32880.77 35099.04 30592.81 25898.02 33294.30 31494.18 31298.64 270
PM-MVS92.96 31492.23 31795.14 32495.61 34389.98 34799.37 18998.21 33394.80 31195.04 33597.69 33465.06 35297.90 33694.30 31489.98 33897.54 340
MVS97.28 27396.55 28199.48 10998.78 29798.95 15199.27 21799.39 20983.53 34698.08 29799.54 20396.97 13399.87 12294.23 31699.16 15099.63 122
MDA-MVSNet_test_wron95.45 30194.60 30798.01 27998.16 32997.21 25399.11 25699.24 26693.49 32580.73 35198.98 31193.02 25298.18 33094.22 31794.45 30798.64 270
TransMVSNet (Re)97.15 27696.58 28098.86 20199.12 24898.85 16499.49 13498.91 30295.48 30297.16 31899.80 7693.38 24799.11 29794.16 31891.73 33398.62 280
UnsupCasMVSNet_bld93.53 31392.51 31696.58 32097.38 33693.82 33298.24 33999.48 13991.10 33793.10 34096.66 34274.89 34998.37 32994.03 31987.71 34197.56 339
ppachtmachnet_test97.49 26797.45 24197.61 29998.62 31595.24 31598.80 30899.46 16796.11 29298.22 29299.62 17596.45 15098.97 31993.77 32095.97 27898.61 289
thres600view797.86 21897.51 23498.92 18299.72 8097.95 22799.59 7698.74 31697.94 12899.27 15398.62 32491.75 28699.86 12593.73 32198.19 20698.96 211
DeepMVS_CXcopyleft93.34 32699.29 20982.27 35099.22 26885.15 34496.33 32799.05 30490.97 30299.73 18393.57 32297.77 22098.01 329
MDA-MVSNet-bldmvs94.96 30693.98 31297.92 28598.24 32897.27 24999.15 24699.33 24093.80 32180.09 35299.03 30688.31 32797.86 33793.49 32394.36 30998.62 280
Patchmatch-test97.93 20897.65 22098.77 21499.18 23597.07 25999.03 27199.14 27796.16 28798.74 24699.57 19294.56 21899.72 18793.36 32499.11 15599.52 146
thres100view90097.76 23497.45 24198.69 21999.72 8097.86 23299.59 7698.74 31697.93 12999.26 15898.62 32491.75 28699.83 14593.22 32598.18 20798.37 316
tfpn200view997.72 24397.38 25498.72 21799.69 9597.96 22599.50 12498.73 32197.83 13899.17 17998.45 32991.67 29099.83 14593.22 32598.18 20798.37 316
thres40097.77 23397.38 25498.92 18299.69 9597.96 22599.50 12498.73 32197.83 13899.17 17998.45 32991.67 29099.83 14593.22 32598.18 20798.96 211
EPNet_dtu98.03 19497.96 18698.23 26698.27 32795.54 30899.23 23198.75 31399.02 1597.82 30799.71 12996.11 15999.48 22993.04 32899.65 11999.69 98
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres20097.61 25797.28 26798.62 22299.64 11698.03 21999.26 22698.74 31697.68 15699.09 19498.32 33191.66 29299.81 15692.88 32998.22 20398.03 328
PCF-MVS97.08 1497.66 25497.06 27499.47 11299.61 12999.09 13198.04 34499.25 26591.24 33698.51 27599.70 13394.55 21999.91 9092.76 33099.85 5899.42 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
FMVSNet596.43 29096.19 28897.15 30799.11 25095.89 30299.32 20399.52 8994.47 31798.34 28799.07 30187.54 33397.07 34492.61 33195.72 28498.47 303
test_040296.64 28596.24 28797.85 28998.85 29096.43 29099.44 15399.26 26393.52 32496.98 32299.52 21088.52 32599.20 28692.58 33297.50 23597.93 333
new-patchmatchnet94.48 30894.08 31195.67 32395.08 34692.41 34199.18 24099.28 26194.55 31693.49 33997.37 33887.86 33297.01 34591.57 33388.36 34097.61 337
N_pmnet94.95 30795.83 29592.31 32898.47 32479.33 35399.12 25092.81 35993.87 32097.68 31199.13 29693.87 24099.01 30991.38 33496.19 27098.59 293
LCM-MVSNet86.80 31785.22 32191.53 33087.81 35480.96 35198.23 34198.99 29171.05 35090.13 34496.51 34348.45 35896.88 34690.51 33585.30 34496.76 341
new_pmnet96.38 29196.03 29197.41 30598.13 33095.16 31999.05 26599.20 27193.94 31997.39 31498.79 31891.61 29499.04 30390.43 33695.77 28198.05 327
CL-MVSNet_2432*160095.00 30594.34 31096.96 31297.07 34295.39 31399.56 9599.44 18795.11 30697.13 31997.32 33991.86 28497.27 34390.35 33781.23 34898.23 322
PAPM97.59 25897.09 27399.07 16099.06 26098.26 21198.30 33899.10 28094.88 30998.08 29799.34 26396.27 15699.64 21389.87 33898.92 17299.31 179
pmmvs394.09 31293.25 31496.60 31994.76 34794.49 32698.92 29698.18 33589.66 33996.48 32698.06 33386.28 33697.33 34289.68 33987.20 34297.97 331
OpenMVS_ROBcopyleft92.34 2094.38 31093.70 31396.41 32197.38 33693.17 33899.06 26398.75 31386.58 34394.84 33698.26 33281.53 34799.32 26389.01 34097.87 21896.76 341
PatchT97.03 27996.44 28398.79 21298.99 27098.34 20899.16 24299.07 28592.13 33199.52 9797.31 34094.54 22098.98 31288.54 34198.73 18399.03 202
MIMVSNet195.51 30095.04 30496.92 31497.38 33695.60 30499.52 11399.50 12093.65 32396.97 32399.17 29185.28 34096.56 34788.36 34295.55 28898.60 292
TAPA-MVS97.07 1597.74 24097.34 26198.94 17899.70 9397.53 24299.25 22899.51 10291.90 33299.30 14599.63 17098.78 4899.64 21388.09 34399.87 4099.65 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Gipumacopyleft90.99 31590.15 31893.51 32598.73 30390.12 34693.98 35099.45 17979.32 34892.28 34194.91 34569.61 35197.98 33487.42 34495.67 28592.45 347
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test20.0396.12 29595.96 29396.63 31897.44 33595.45 31199.51 11899.38 21596.55 25796.16 32999.25 28293.76 24496.17 34887.35 34594.22 31198.27 319
Anonymous2023120696.22 29296.03 29196.79 31797.31 33994.14 33099.63 5799.08 28396.17 28697.04 32199.06 30393.94 23897.76 33986.96 34695.06 29898.47 303
RPMNet96.72 28495.90 29499.19 15199.18 23598.49 19999.22 23699.52 8988.72 34299.56 8897.38 33794.08 23599.95 4286.87 34798.58 18799.14 186
PMMVS286.87 31685.37 32091.35 33190.21 35283.80 34898.89 29997.45 34483.13 34791.67 34395.03 34448.49 35794.70 35085.86 34877.62 34995.54 344
FPMVS84.93 31885.65 31982.75 33686.77 35563.39 35998.35 33698.92 29974.11 34983.39 34898.98 31150.85 35692.40 35284.54 34994.97 30092.46 346
PMVScopyleft70.75 2275.98 32474.97 32579.01 33870.98 35955.18 36093.37 35198.21 33365.08 35561.78 35693.83 34721.74 36392.53 35178.59 35091.12 33589.34 350
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ANet_high77.30 32274.86 32684.62 33475.88 35877.61 35497.63 34793.15 35888.81 34164.27 35589.29 35236.51 35983.93 35675.89 35152.31 35392.33 348
MVEpermissive76.82 2176.91 32374.31 32784.70 33385.38 35776.05 35796.88 34993.17 35767.39 35271.28 35489.01 35321.66 36487.69 35371.74 35272.29 35090.35 349
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 32079.88 32382.81 33590.75 35176.38 35697.69 34695.76 35266.44 35383.52 34792.25 34962.54 35487.16 35468.53 35361.40 35184.89 352
EMVS80.02 32179.22 32482.43 33791.19 35076.40 35597.55 34892.49 36066.36 35483.01 34991.27 35064.63 35385.79 35565.82 35460.65 35285.08 351
wuyk23d40.18 32541.29 33036.84 33986.18 35649.12 36179.73 35322.81 36227.64 35625.46 35928.45 35921.98 36248.89 35755.80 35523.56 35712.51 355
testmvs39.17 32643.78 32825.37 34136.04 36216.84 36398.36 33526.56 36120.06 35738.51 35867.32 35429.64 36115.30 35937.59 35639.90 35543.98 354
test12339.01 32742.50 32928.53 34039.17 36120.91 36298.75 31319.17 36319.83 35838.57 35766.67 35533.16 36015.42 35837.50 35729.66 35649.26 353
uanet_test0.02 3310.03 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.27 3600.00 3650.00 3600.00 3580.00 3580.00 356
cdsmvs_eth3d_5k24.64 32832.85 3310.00 3420.00 3630.00 3640.00 35499.51 1020.00 3590.00 36099.56 19596.58 1450.00 3600.00 3580.00 3580.00 356
pcd_1.5k_mvsjas8.27 33011.03 3330.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.27 36099.01 160.00 3600.00 3580.00 3580.00 356
sosnet-low-res0.02 3310.03 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.27 3600.00 3650.00 3600.00 3580.00 3580.00 356
sosnet0.02 3310.03 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.27 3600.00 3650.00 3600.00 3580.00 3580.00 356
uncertanet0.02 3310.03 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.27 3600.00 3650.00 3600.00 3580.00 3580.00 356
Regformer0.02 3310.03 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.27 3600.00 3650.00 3600.00 3580.00 3580.00 356
ab-mvs-re8.30 32911.06 3320.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 36099.58 1880.00 3650.00 3600.00 3580.00 3580.00 356
uanet0.02 3310.03 3340.00 3420.00 3630.00 3640.00 3540.00 3640.00 3590.00 3600.27 3600.00 3650.00 3600.00 3580.00 3580.00 356
test_241102_ONE99.84 3299.90 199.48 13999.07 1399.91 199.74 11799.20 599.76 173
save fliter99.76 5299.59 6799.14 24899.40 20599.00 22
test072699.85 2599.89 399.62 6399.50 12099.10 899.86 1199.82 4998.94 31
GSMVS99.52 146
test_part299.81 4099.83 1499.77 33
sam_mvs194.86 20099.52 146
sam_mvs94.72 211
MTGPAbinary99.47 157
test_post65.99 35694.65 21599.73 183
patchmatchnet-post98.70 32294.79 20399.74 176
MTMP99.54 10798.88 306
TEST999.67 10099.65 5799.05 26599.41 19996.22 28298.95 21799.49 22098.77 5199.91 90
test_899.67 10099.61 6299.03 27199.41 19996.28 27598.93 22199.48 22698.76 5399.91 90
agg_prior99.67 10099.62 6099.40 20598.87 23099.91 90
test_prior499.56 7298.99 281
test_prior99.68 6599.67 10099.48 8699.56 5699.83 14599.74 73
新几何299.01 279
旧先验199.74 7099.59 6799.54 7199.69 14098.47 7899.68 11499.73 80
原ACMM298.95 293
test22299.75 6299.49 8598.91 29899.49 12896.42 26999.34 14199.65 15898.28 9399.69 10999.72 86
segment_acmp98.96 25
testdata198.85 30398.32 84
test1299.75 5199.64 11699.61 6299.29 26099.21 16998.38 8699.89 11399.74 9999.74 73
plane_prior799.29 20997.03 264
plane_prior699.27 21496.98 26892.71 264
plane_prior499.61 179
plane_prior397.00 26698.69 5499.11 187
plane_prior299.39 18198.97 30
plane_prior199.26 216
plane_prior96.97 26999.21 23898.45 6997.60 225
n20.00 364
nn0.00 364
door-mid98.05 336
test1199.35 229
door97.92 337
HQP5-MVS96.83 274
HQP-NCC99.19 23298.98 28598.24 9098.66 258
ACMP_Plane99.19 23298.98 28598.24 9098.66 258
HQP4-MVS98.66 25899.64 21398.64 270
HQP3-MVS99.39 20997.58 227
HQP2-MVS92.47 272
NP-MVS99.23 22296.92 27299.40 246
ACMMP++_ref97.19 251
ACMMP++97.43 243
Test By Simon98.75 56