This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PGM-MVS98.86 3199.35 2598.29 3599.77 199.63 2499.67 595.63 4698.66 11495.27 4999.11 2799.82 4299.67 499.33 2399.19 2099.73 5299.74 71
SMA-MVScopyleft99.38 599.60 299.12 999.76 299.62 2899.39 2998.23 1999.52 1698.03 1799.45 1099.98 199.64 599.58 899.30 1199.68 9199.76 60
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CSCG98.90 3098.93 5298.85 2599.75 399.72 699.49 2196.58 4399.38 2498.05 1698.97 3697.87 7599.49 1997.78 12398.92 3699.78 2999.90 4
APDe-MVS99.49 199.64 199.32 299.74 499.74 599.75 198.34 499.56 1198.72 799.57 699.97 799.53 1699.65 299.25 1499.84 799.77 54
ACMMP_NAP99.05 2599.45 1398.58 3199.73 599.60 3899.64 898.28 1299.23 4494.57 6099.35 1499.97 799.55 1499.63 398.66 5299.70 7999.74 71
zzz-MVS99.31 899.44 1699.16 699.73 599.65 1699.63 1198.26 1399.27 3898.01 1899.27 1899.97 799.60 799.59 798.58 5799.71 7099.73 75
DVP-MVS99.45 299.54 699.35 199.72 799.76 199.63 1198.37 299.63 699.03 398.95 3899.98 199.60 799.60 699.05 2599.74 4599.79 40
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS99.44 399.58 399.28 399.69 899.76 199.62 1498.35 399.51 1799.05 299.60 599.98 199.28 3799.61 598.83 4599.70 7999.77 54
HFP-MVS99.32 799.53 899.07 1399.69 899.59 4099.63 1198.31 899.56 1197.37 2699.27 1899.97 799.70 399.35 2199.24 1699.71 7099.76 60
HPM-MVS++copyleft99.10 2199.30 2898.86 2499.69 899.48 5899.59 1698.34 499.26 4196.55 3799.10 3099.96 1299.36 2799.25 2698.37 7099.64 11299.66 105
APD-MVScopyleft99.25 1299.38 2099.09 1199.69 899.58 4499.56 1798.32 798.85 9197.87 2098.91 4199.92 2899.30 3599.45 1599.38 899.79 2699.58 118
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MSP-MVS99.34 699.52 999.14 899.68 1299.75 499.64 898.31 899.44 2198.10 1499.28 1799.98 199.30 3599.34 2299.05 2599.81 1799.79 40
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SR-MVS99.67 1398.25 1499.94 25
X-MVS98.93 2999.37 2198.42 3299.67 1399.62 2899.60 1598.15 2499.08 6693.81 7898.46 6099.95 1799.59 1099.49 1399.21 1999.68 9199.75 67
MCST-MVS99.11 2099.27 3198.93 2299.67 1399.33 8499.51 2098.31 899.28 3696.57 3699.10 3099.90 3299.71 299.19 3098.35 7199.82 1199.71 89
ACMMPR99.30 999.54 699.03 1699.66 1699.64 2199.68 498.25 1499.56 1197.12 3099.19 2199.95 1799.72 199.43 1699.25 1499.72 5999.77 54
SteuartSystems-ACMMP99.20 1599.51 1098.83 2799.66 1699.66 1599.71 398.12 2899.14 5696.62 3499.16 2399.98 199.12 4799.63 399.19 2099.78 2999.83 25
Skip Steuart: Steuart Systems R&D Blog.
xxxxxxxxxxxxxcwj98.14 5297.38 10699.03 1699.65 1899.41 6998.87 5398.24 1799.14 5698.73 599.11 2786.38 16598.92 5999.22 2798.84 4399.76 3699.56 124
SF-MVS99.18 1699.32 2799.03 1699.65 1899.41 6998.87 5398.24 1799.14 5698.73 599.11 2799.92 2898.92 5999.22 2798.84 4399.76 3699.56 124
CNVR-MVS99.23 1499.28 3099.17 599.65 1899.34 8199.46 2498.21 2099.28 3698.47 998.89 4399.94 2599.50 1799.42 1798.61 5599.73 5299.52 131
DPE-MVScopyleft99.39 499.55 599.20 499.63 2199.71 999.66 698.33 699.29 3598.40 1299.64 499.98 199.31 3299.56 998.96 3299.85 599.70 91
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVScopyleft99.07 2399.36 2298.74 2899.63 2199.57 4699.66 698.25 1499.00 7895.62 4398.97 3699.94 2599.54 1599.51 1298.79 4999.71 7099.73 75
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
NCCC99.05 2599.08 4099.02 1999.62 2399.38 7299.43 2898.21 2099.36 2897.66 2397.79 7899.90 3299.45 2299.17 3198.43 6599.77 3499.51 135
CP-MVS99.27 1099.44 1699.08 1299.62 2399.58 4499.53 1898.16 2299.21 4797.79 2199.15 2499.96 1299.59 1099.54 1198.86 4199.78 2999.74 71
AdaColmapbinary99.06 2498.98 5099.15 799.60 2599.30 8799.38 3098.16 2299.02 7598.55 898.71 5299.57 5599.58 1399.09 3697.84 10199.64 11299.36 149
CPTT-MVS99.14 1999.20 3599.06 1499.58 2699.53 5199.45 2597.80 3799.19 5098.32 1398.58 5599.95 1799.60 799.28 2598.20 8299.64 11299.69 95
QAPM98.62 4099.04 4698.13 3999.57 2799.48 5899.17 3894.78 5699.57 996.16 3896.73 10299.80 4399.33 2998.79 5799.29 1399.75 4099.64 112
3Dnovator96.92 798.67 3799.05 4398.23 3899.57 2799.45 6299.11 4294.66 5999.69 396.80 3396.55 11199.61 5299.40 2598.87 5399.49 399.85 599.66 105
DeepC-MVS_fast98.34 199.17 1799.45 1398.85 2599.55 2999.37 7599.64 898.05 3299.53 1496.58 3598.93 3999.92 2899.49 1999.46 1499.32 1099.80 2599.64 112
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mPP-MVS99.53 3099.89 34
3Dnovator+96.92 798.71 3699.05 4398.32 3499.53 3099.34 8199.06 4694.61 6099.65 497.49 2496.75 10199.86 3799.44 2398.78 5899.30 1199.81 1799.67 101
MSLP-MVS++99.15 1899.24 3399.04 1599.52 3299.49 5799.09 4498.07 3099.37 2698.47 997.79 7899.89 3499.50 1798.93 4699.45 499.61 11999.76 60
OpenMVScopyleft96.23 1197.95 5798.45 6697.35 5299.52 3299.42 6798.91 5294.61 6098.87 8892.24 10594.61 13799.05 6299.10 4998.64 6899.05 2599.74 4599.51 135
PLCcopyleft97.93 299.02 2898.94 5199.11 1099.46 3499.24 9299.06 4697.96 3499.31 3299.16 197.90 7699.79 4599.36 2798.71 6498.12 8699.65 10899.52 131
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVS_111021_HR98.59 4199.36 2297.68 4899.42 3599.61 3398.14 8594.81 5599.31 3295.00 5499.51 899.79 4599.00 5698.94 4598.83 4599.69 8299.57 123
OMC-MVS98.84 3299.01 4998.65 3099.39 3699.23 9399.22 3596.70 4299.40 2397.77 2297.89 7799.80 4399.21 3899.02 4098.65 5399.57 14199.07 166
TSAR-MVS + ACMM98.77 3399.45 1397.98 4499.37 3799.46 6099.44 2798.13 2799.65 492.30 10398.91 4199.95 1799.05 5299.42 1798.95 3399.58 13799.82 26
MVS_111021_LR98.67 3799.41 1997.81 4799.37 3799.53 5198.51 6795.52 4899.27 3894.85 5699.56 799.69 5099.04 5399.36 2098.88 3999.60 12799.58 118
train_agg98.73 3599.11 3898.28 3699.36 3999.35 7999.48 2397.96 3498.83 9693.86 7798.70 5399.86 3799.44 2399.08 3898.38 6899.61 11999.58 118
ACMMPcopyleft98.74 3499.03 4798.40 3399.36 3999.64 2199.20 3697.75 3898.82 9895.24 5098.85 4499.87 3699.17 4498.74 6397.50 11499.71 7099.76 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MAR-MVS97.71 6498.04 8397.32 5399.35 4198.91 11097.65 10291.68 10698.00 14597.01 3197.72 8294.83 11098.85 6698.44 8698.86 4199.41 16699.52 131
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
abl_698.09 4099.33 4299.22 9498.79 5994.96 5498.52 12497.00 3297.30 8899.86 3798.76 6799.69 8299.41 144
CDPH-MVS98.41 4399.10 3997.61 5099.32 4399.36 7699.49 2196.15 4598.82 9891.82 10798.41 6199.66 5199.10 4998.93 4698.97 3199.75 4099.58 118
CNLPA99.03 2799.05 4399.01 2099.27 4499.22 9499.03 4897.98 3399.34 3099.00 498.25 6799.71 4999.31 3298.80 5698.82 4799.48 15699.17 159
MSDG98.27 4898.29 7098.24 3799.20 4599.22 9499.20 3697.82 3699.37 2694.43 6695.90 12297.31 8199.12 4798.76 6098.35 7199.67 9999.14 163
PHI-MVS99.08 2299.43 1898.67 2999.15 4699.59 4099.11 4297.35 4099.14 5697.30 2799.44 1199.96 1299.32 3198.89 5199.39 799.79 2699.58 118
PatchMatch-RL97.77 6298.25 7197.21 5899.11 4799.25 9097.06 12694.09 6898.72 11295.14 5298.47 5996.29 9298.43 8398.65 6797.44 12099.45 16098.94 169
TAPA-MVS97.53 598.41 4398.84 5697.91 4599.08 4899.33 8499.15 3997.13 4199.34 3093.20 8797.75 8099.19 6099.20 3998.66 6698.13 8599.66 10499.48 139
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
EPNet98.05 5498.86 5497.10 6099.02 4999.43 6698.47 6894.73 5799.05 7295.62 4398.93 3997.62 7995.48 16398.59 7798.55 5899.29 17599.84 21
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPNet_dtu96.30 10698.53 6393.70 13098.97 5098.24 15497.36 10994.23 6798.85 9179.18 18199.19 2198.47 6894.09 18597.89 11898.21 8198.39 19198.85 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
COLMAP_ROBcopyleft96.15 1297.78 6198.17 7797.32 5398.84 5199.45 6299.28 3395.43 4999.48 1991.80 10894.83 13698.36 7098.90 6298.09 10197.85 10099.68 9199.15 160
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepPCF-MVS97.74 398.34 4599.46 1297.04 6398.82 5299.33 8496.28 14297.47 3999.58 894.70 5998.99 3599.85 4097.24 11699.55 1099.34 997.73 20099.56 124
SD-MVS99.25 1299.50 1198.96 2198.79 5399.55 4999.33 3298.29 1199.75 197.96 1999.15 2499.95 1799.61 699.17 3199.06 2499.81 1799.84 21
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.99.27 1099.57 498.92 2398.78 5499.53 5199.72 298.11 2999.73 297.43 2599.15 2499.96 1299.59 1099.73 199.07 2399.88 299.82 26
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPM-MVS98.31 4798.53 6398.05 4198.76 5598.77 11799.13 4098.07 3099.10 6394.27 7196.70 10399.84 4198.70 7097.90 11798.11 8799.40 16899.28 152
PCF-MVS97.50 698.18 5198.35 6997.99 4398.65 5699.36 7698.94 5198.14 2698.59 11693.62 8296.61 10799.76 4899.03 5497.77 12497.45 11999.57 14198.89 174
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DeepC-MVS97.63 498.33 4698.57 6198.04 4298.62 5799.65 1699.45 2598.15 2499.51 1792.80 9595.74 12696.44 9099.46 2199.37 1999.50 299.78 2999.81 31
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet98.46 4299.16 3697.64 4998.48 5899.64 2199.35 3194.71 5899.53 1495.17 5197.63 8499.59 5398.38 8498.88 5298.99 3099.74 4599.86 17
LS3D97.79 6098.25 7197.26 5798.40 5999.63 2499.53 1898.63 199.25 4388.13 12496.93 9894.14 12099.19 4099.14 3399.23 1799.69 8299.42 143
CHOSEN 280x42097.99 5699.24 3396.53 8098.34 6099.61 3398.36 7589.80 14199.27 3895.08 5399.81 198.58 6698.64 7499.02 4098.92 3698.93 18599.48 139
DELS-MVS98.19 5098.77 5897.52 5198.29 6199.71 999.12 4194.58 6398.80 10195.38 4896.24 11698.24 7297.92 9899.06 3999.52 199.82 1199.79 40
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
RPSCF97.61 6798.16 7896.96 7198.10 6299.00 10398.84 5793.76 7599.45 2094.78 5899.39 1299.31 5898.53 8196.61 15995.43 16997.74 19897.93 192
PVSNet_BlendedMVS97.51 7197.71 9397.28 5598.06 6399.61 3397.31 11195.02 5299.08 6695.51 4598.05 7190.11 14198.07 9298.91 4998.40 6699.72 5999.78 46
PVSNet_Blended97.51 7197.71 9397.28 5598.06 6399.61 3397.31 11195.02 5299.08 6695.51 4598.05 7190.11 14198.07 9298.91 4998.40 6699.72 5999.78 46
MVS_030498.14 5299.03 4797.10 6098.05 6599.63 2499.27 3494.33 6599.63 693.06 9097.32 8799.05 6298.09 9198.82 5598.87 4099.81 1799.89 7
CHOSEN 1792x268896.41 10396.99 12195.74 10098.01 6699.72 697.70 10190.78 12599.13 6190.03 11787.35 19395.36 10498.33 8598.59 7798.91 3899.59 13399.87 13
HyFIR lowres test95.99 11396.56 12995.32 10597.99 6799.65 1696.54 13588.86 15098.44 12789.77 12084.14 20397.05 8599.03 5498.55 7998.19 8399.73 5299.86 17
OPM-MVS96.22 10895.85 15096.65 7697.75 6898.54 13699.00 5095.53 4796.88 17989.88 11895.95 12186.46 16498.07 9297.65 13296.63 13899.67 9998.83 176
tmp_tt82.25 20797.73 6988.71 21580.18 21568.65 21899.15 5386.98 13499.47 985.31 17468.35 21687.51 21083.81 21291.64 215
TSAR-MVS + COLMAP96.79 9096.55 13097.06 6297.70 7098.46 14199.07 4596.23 4499.38 2491.32 11198.80 4585.61 17198.69 7297.64 13396.92 13199.37 17099.06 167
PVSNet_Blended_VisFu97.41 7498.49 6596.15 8997.49 7199.76 196.02 14693.75 7799.26 4193.38 8693.73 14699.35 5796.47 13898.96 4398.46 6299.77 3499.90 4
MS-PatchMatch95.99 11397.26 11494.51 11497.46 7298.76 12097.27 11386.97 16999.09 6489.83 11993.51 14997.78 7696.18 14497.53 13795.71 16699.35 17198.41 182
XVS97.42 7399.62 2898.59 6593.81 7899.95 1799.69 82
X-MVStestdata97.42 7399.62 2898.59 6593.81 7899.95 1799.69 82
LGP-MVS_train96.23 10796.89 12395.46 10497.32 7598.77 11798.81 5893.60 8098.58 11785.52 14399.08 3286.67 16197.83 10597.87 11997.51 11399.69 8299.73 75
CMPMVSbinary70.31 1890.74 19491.06 20290.36 18697.32 7597.43 19192.97 19087.82 16593.50 20975.34 19783.27 20584.90 17792.19 20092.64 20491.21 20896.50 21194.46 209
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
HQP-MVS96.37 10496.58 12896.13 9097.31 7798.44 14398.45 6995.22 5098.86 8988.58 12298.33 6587.00 15697.67 10797.23 14796.56 14199.56 14499.62 115
ACMM96.26 996.67 9896.69 12796.66 7597.29 7898.46 14196.48 13895.09 5199.21 4793.19 8898.78 4786.73 16098.17 8697.84 12196.32 14799.74 4599.49 138
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UA-Net97.13 8199.14 3794.78 11097.21 7999.38 7297.56 10492.04 9898.48 12588.03 12598.39 6399.91 3194.03 18699.33 2399.23 1799.81 1799.25 155
UGNet97.66 6699.07 4296.01 9497.19 8099.65 1697.09 12493.39 8399.35 2994.40 6898.79 4699.59 5394.24 18398.04 10998.29 7899.73 5299.80 33
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TSAR-MVS + GP.98.66 3999.36 2297.85 4697.16 8199.46 6099.03 4894.59 6299.09 6497.19 2999.73 399.95 1799.39 2698.95 4498.69 5199.75 4099.65 108
CANet_DTU96.64 9999.08 4093.81 12697.10 8299.42 6798.85 5590.01 13599.31 3279.98 17799.78 299.10 6197.42 11398.35 8898.05 9099.47 15899.53 128
IB-MVS93.96 1595.02 13396.44 14093.36 14097.05 8399.28 8890.43 20093.39 8398.02 14496.02 3994.92 13592.07 13483.52 20995.38 18695.82 16399.72 5999.59 117
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ACMP96.25 1096.62 10196.72 12696.50 8396.96 8498.75 12197.80 9694.30 6698.85 9193.12 8998.78 4786.61 16297.23 11797.73 12796.61 13999.62 11799.71 89
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH95.42 1495.27 13095.96 14694.45 11696.83 8598.78 11694.72 17391.67 10798.95 8186.82 13696.42 11383.67 18297.00 12097.48 13996.68 13699.69 8299.76 60
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CLD-MVS96.74 9396.51 13497.01 6896.71 8698.62 13098.73 6094.38 6498.94 8394.46 6597.33 8687.03 15598.07 9297.20 14996.87 13299.72 5999.54 127
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TDRefinement93.04 16993.57 18692.41 14996.58 8798.77 11797.78 9891.96 10298.12 14180.84 17089.13 17979.87 20587.78 20596.44 16494.50 19199.54 15098.15 187
Anonymous20240521197.40 10596.45 8899.54 5098.08 9093.79 7498.24 13793.55 14794.41 11698.88 6598.04 10998.24 8099.75 4099.76 60
DCV-MVSNet97.56 6998.36 6896.62 7996.44 8998.36 15098.37 7391.73 10599.11 6294.80 5798.36 6496.28 9398.60 7798.12 9898.44 6399.76 3699.87 13
ACMH+95.51 1395.40 12596.00 14494.70 11196.33 9098.79 11496.79 13091.32 11598.77 10787.18 13395.60 13085.46 17296.97 12197.15 15096.59 14099.59 13399.65 108
Anonymous2023121197.10 8297.06 11997.14 5996.32 9199.52 5498.16 8493.76 7598.84 9595.98 4090.92 16594.58 11598.90 6297.72 12898.10 8899.71 7099.75 67
thres100view90096.72 9496.47 13797.00 6996.31 9299.52 5498.28 7994.01 6997.35 16694.52 6195.90 12286.93 15799.09 5198.07 10497.87 9999.81 1799.63 114
tfpn200view996.75 9296.51 13497.03 6496.31 9299.67 1298.41 7093.99 7197.35 16694.52 6195.90 12286.93 15799.14 4698.26 9197.80 10399.82 1199.70 91
thres20096.76 9196.53 13197.03 6496.31 9299.67 1298.37 7393.99 7197.68 16194.49 6395.83 12586.77 15999.18 4298.26 9197.82 10299.82 1199.66 105
thres600view796.69 9696.43 14197.00 6996.28 9599.67 1298.41 7093.99 7197.85 15594.29 7095.96 12085.91 16999.19 4098.26 9197.63 10899.82 1199.73 75
thres40096.71 9596.45 13997.02 6696.28 9599.63 2498.41 7094.00 7097.82 15694.42 6795.74 12686.26 16699.18 4298.20 9597.79 10499.81 1799.70 91
baseline197.58 6898.05 8297.02 6696.21 9799.45 6297.71 10093.71 7998.47 12695.75 4298.78 4793.20 13098.91 6198.52 8198.44 6399.81 1799.53 128
canonicalmvs97.31 7697.81 9296.72 7396.20 9899.45 6298.21 8291.60 10899.22 4595.39 4798.48 5890.95 13899.16 4597.66 13099.05 2599.76 3699.90 4
test_part195.56 12195.38 15495.78 9796.07 9998.16 15797.57 10390.78 12597.43 16593.04 9189.12 18089.41 14797.93 9796.38 16797.38 12399.29 17599.78 46
IS_MVSNet97.86 5998.86 5496.68 7496.02 10099.72 698.35 7693.37 8598.75 11194.01 7296.88 10098.40 6998.48 8299.09 3699.42 599.83 1099.80 33
USDC94.26 14994.83 16193.59 13296.02 10098.44 14397.84 9488.65 15498.86 8982.73 16294.02 14380.56 19896.76 12797.28 14696.15 15499.55 14698.50 180
FC-MVSNet-train97.04 8397.91 8996.03 9396.00 10298.41 14696.53 13793.42 8299.04 7493.02 9298.03 7394.32 11897.47 11297.93 11597.77 10599.75 4099.88 11
Vis-MVSNet (Re-imp)97.40 7598.89 5395.66 10295.99 10399.62 2897.82 9593.22 8998.82 9891.40 11096.94 9798.56 6795.70 15599.14 3399.41 699.79 2699.75 67
MVSTER97.16 8097.71 9396.52 8195.97 10498.48 13998.63 6392.10 9798.68 11395.96 4199.23 2091.79 13596.87 12498.76 6097.37 12499.57 14199.68 100
baseline97.45 7398.70 6095.99 9595.89 10599.36 7698.29 7891.37 11499.21 4792.99 9398.40 6296.87 8797.96 9698.60 7498.60 5699.42 16599.86 17
TinyColmap94.00 15394.35 17093.60 13195.89 10598.26 15297.49 10688.82 15198.56 11983.21 15691.28 16480.48 20096.68 13097.34 14396.26 15099.53 15298.24 186
EPMVS95.05 13296.86 12592.94 14695.84 10798.96 10896.68 13179.87 19899.05 7290.15 11597.12 9495.99 9997.49 11195.17 19094.75 18897.59 20296.96 202
PMMVS97.52 7098.39 6796.51 8295.82 10898.73 12497.80 9693.05 9398.76 10894.39 6999.07 3397.03 8698.55 7998.31 9097.61 10999.43 16399.21 158
diffmvs96.83 8997.33 10996.25 8795.76 10999.34 8198.06 9193.22 8999.43 2292.30 10396.90 9989.83 14698.55 7998.00 11298.14 8499.64 11299.70 91
MVS_Test97.30 7798.54 6295.87 9695.74 11099.28 8898.19 8391.40 11399.18 5191.59 10998.17 6996.18 9598.63 7598.61 7198.55 5899.66 10499.78 46
EIA-MVS97.70 6598.78 5796.44 8495.72 11199.65 1698.14 8593.72 7898.30 13392.31 10198.63 5497.90 7498.97 5798.92 4898.30 7799.78 2999.80 33
casdiffmvs96.93 8797.43 10496.34 8595.70 11299.50 5697.75 9993.22 8998.98 8092.64 9694.97 13391.71 13698.93 5898.62 7098.52 6199.82 1199.72 86
tpmrst93.86 15895.88 14891.50 16895.69 11398.62 13095.64 15279.41 20198.80 10183.76 15295.63 12996.13 9697.25 11592.92 20292.31 20197.27 20596.74 203
ADS-MVSNet94.65 14197.04 12091.88 16495.68 11498.99 10595.89 14779.03 20599.15 5385.81 14196.96 9698.21 7397.10 11894.48 19894.24 19297.74 19897.21 198
EPP-MVSNet97.75 6398.71 5996.63 7895.68 11499.56 4797.51 10593.10 9299.22 4594.99 5597.18 9397.30 8298.65 7398.83 5498.93 3499.84 799.92 2
ETV-MVS98.05 5499.25 3296.65 7695.61 11699.61 3398.26 8193.52 8198.90 8793.74 8199.32 1599.20 5998.90 6299.21 2998.72 5099.87 399.79 40
DI_MVS_plusplus_trai96.90 8897.49 9996.21 8895.61 11699.40 7198.72 6192.11 9699.14 5692.98 9493.08 15795.14 10698.13 9098.05 10897.91 9799.74 4599.73 75
thisisatest053097.23 7898.25 7196.05 9195.60 11899.59 4096.96 12893.23 8799.17 5292.60 9898.75 5096.19 9498.17 8698.19 9696.10 15599.72 5999.77 54
tttt051797.23 7898.24 7496.04 9295.60 11899.60 3896.94 12993.23 8799.15 5392.56 9998.74 5196.12 9798.17 8698.21 9496.10 15599.73 5299.78 46
SCA94.95 13497.44 10392.04 15695.55 12099.16 9796.26 14379.30 20299.02 7585.73 14298.18 6897.13 8497.69 10696.03 17994.91 18397.69 20197.65 194
dps94.63 14295.31 15793.84 12595.53 12198.71 12596.54 13580.12 19797.81 15897.21 2896.98 9592.37 13196.34 14192.46 20591.77 20597.26 20697.08 200
PatchmatchNetpermissive94.70 13997.08 11891.92 16195.53 12198.85 11295.77 14979.54 20098.95 8185.98 13998.52 5696.45 8897.39 11495.32 18794.09 19397.32 20497.38 197
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CS-MVS98.21 4999.34 2696.89 7295.51 12399.56 4798.85 5593.31 8699.01 7794.48 6499.31 1699.46 5699.31 3299.02 4099.19 2099.90 199.87 13
test-LLR95.50 12397.32 11093.37 13995.49 12498.74 12296.44 14090.82 12398.18 13882.75 16096.60 10894.67 11395.54 16198.09 10196.00 15799.20 17998.93 170
test0.0.03 196.69 9698.12 8095.01 10895.49 12498.99 10595.86 14890.82 12398.38 12992.54 10096.66 10597.33 8095.75 15397.75 12698.34 7399.60 12799.40 147
CS-MVS-test97.90 5899.30 2896.26 8695.44 12699.59 4098.63 6391.99 10099.57 992.31 10199.37 1398.60 6499.33 2999.11 3598.93 3499.87 399.93 1
CostFormer94.25 15094.88 16093.51 13695.43 12798.34 15196.21 14480.64 19597.94 15094.01 7298.30 6686.20 16897.52 10992.71 20392.69 19997.23 20798.02 190
MDTV_nov1_ep1395.57 12097.48 10093.35 14195.43 12798.97 10797.19 11983.72 19198.92 8687.91 12797.75 8096.12 9797.88 10296.84 15895.64 16797.96 19698.10 188
tpm cat194.06 15194.90 15993.06 14495.42 12998.52 13896.64 13380.67 19497.82 15692.63 9793.39 15195.00 10896.06 14891.36 20891.58 20796.98 20896.66 205
Vis-MVSNetpermissive96.16 11098.22 7593.75 12795.33 13099.70 1197.27 11390.85 12298.30 13385.51 14495.72 12896.45 8893.69 19298.70 6599.00 2999.84 799.69 95
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CVMVSNet95.33 12997.09 11793.27 14295.23 13198.39 14895.49 15592.58 9597.71 16083.00 15994.44 14193.28 12893.92 18997.79 12298.54 6099.41 16699.45 141
IterMVS-LS96.12 11197.48 10094.53 11395.19 13297.56 18597.15 12089.19 14899.08 6688.23 12394.97 13394.73 11297.84 10497.86 12098.26 7999.60 12799.88 11
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+95.81 11697.31 11394.06 12195.09 13399.35 7997.24 11588.22 15998.54 12085.38 14598.52 5688.68 14898.70 7098.32 8997.93 9499.74 4599.84 21
testgi95.67 11997.48 10093.56 13395.07 13499.00 10395.33 15988.47 15698.80 10186.90 13597.30 8892.33 13295.97 15097.66 13097.91 9799.60 12799.38 148
GeoE95.98 11597.24 11594.51 11495.02 13599.38 7298.02 9287.86 16498.37 13087.86 12892.99 15993.54 12598.56 7898.61 7197.92 9599.73 5299.85 20
RPMNet94.66 14097.16 11691.75 16594.98 13698.59 13397.00 12778.37 20997.98 14683.78 15096.27 11594.09 12396.91 12397.36 14296.73 13499.48 15699.09 165
CR-MVSNet94.57 14697.34 10891.33 17294.90 13798.59 13397.15 12079.14 20397.98 14680.42 17396.59 11093.50 12796.85 12598.10 9997.49 11599.50 15599.15 160
gg-mvs-nofinetune90.85 19394.14 17287.02 19994.89 13899.25 9098.64 6276.29 21388.24 21457.50 21879.93 20995.45 10395.18 17298.77 5998.07 8999.62 11799.24 156
IterMVS-SCA-FT94.89 13697.87 9091.42 16994.86 13997.70 17197.24 11584.88 18598.93 8475.74 19394.26 14298.25 7196.69 12998.52 8197.68 10799.10 18399.73 75
IterMVS94.81 13897.71 9391.42 16994.83 14097.63 17897.38 10885.08 18298.93 8475.67 19494.02 14397.64 7796.66 13298.45 8497.60 11098.90 18699.72 86
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PatchT93.96 15597.36 10790.00 18894.76 14198.65 12890.11 20378.57 20897.96 14980.42 17396.07 11894.10 12296.85 12598.10 9997.49 11599.26 17799.15 160
baseline296.36 10597.82 9194.65 11294.60 14299.09 10196.45 13989.63 14398.36 13191.29 11297.60 8594.13 12196.37 13998.45 8497.70 10699.54 15099.41 144
CDS-MVSNet96.59 10298.02 8594.92 10994.45 14398.96 10897.46 10791.75 10497.86 15490.07 11696.02 11997.25 8396.21 14298.04 10998.38 6899.60 12799.65 108
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tpm92.38 18594.79 16289.56 19294.30 14497.50 18894.24 18578.97 20697.72 15974.93 19897.97 7582.91 18796.60 13493.65 20194.81 18798.33 19298.98 168
Fast-Effi-MVS+95.38 12696.52 13294.05 12294.15 14599.14 9997.24 11586.79 17098.53 12187.62 13094.51 13887.06 15398.76 6798.60 7498.04 9199.72 5999.77 54
DROMVSNet95.38 12696.52 13294.05 12294.15 14599.14 9997.24 11586.79 17098.53 12187.62 13094.51 13887.06 15398.76 6798.60 7498.04 9199.72 5999.77 54
Effi-MVS+-dtu95.74 11898.04 8393.06 14493.92 14799.16 9797.90 9388.16 16199.07 7182.02 16598.02 7494.32 11896.74 12898.53 8097.56 11199.61 11999.62 115
UniMVSNet_ETH3D93.15 16692.33 19994.11 12093.91 14898.61 13294.81 17090.98 12097.06 17587.51 13282.27 20776.33 21397.87 10394.79 19697.47 11899.56 14499.81 31
Fast-Effi-MVS+-dtu95.38 12698.20 7692.09 15593.91 14898.87 11197.35 11085.01 18499.08 6681.09 16998.10 7096.36 9195.62 15898.43 8797.03 12899.55 14699.50 137
TAMVS95.53 12296.50 13694.39 11793.86 15099.03 10296.67 13289.55 14597.33 16890.64 11493.02 15891.58 13796.21 14297.72 12897.43 12199.43 16399.36 149
GBi-Net96.98 8598.00 8695.78 9793.81 15197.98 16098.09 8791.32 11598.80 10193.92 7497.21 9095.94 10097.89 9998.07 10498.34 7399.68 9199.67 101
test196.98 8598.00 8695.78 9793.81 15197.98 16098.09 8791.32 11598.80 10193.92 7497.21 9095.94 10097.89 9998.07 10498.34 7399.68 9199.67 101
FMVSNet296.64 9997.50 9895.63 10393.81 15197.98 16098.09 8790.87 12198.99 7993.48 8493.17 15495.25 10597.89 9998.63 6998.80 4899.68 9199.67 101
MVS-HIRNet92.51 17995.97 14588.48 19693.73 15498.37 14990.33 20175.36 21598.32 13277.78 18789.15 17894.87 10995.14 17397.62 13496.39 14598.51 18897.11 199
GA-MVS93.93 15696.31 14391.16 17693.61 15598.79 11495.39 15890.69 12998.25 13673.28 20296.15 11788.42 14994.39 18197.76 12595.35 17199.58 13799.45 141
FC-MVSNet-test96.07 11297.94 8893.89 12493.60 15698.67 12796.62 13490.30 13498.76 10888.62 12195.57 13197.63 7894.48 17997.97 11397.48 11799.71 7099.52 131
FMVSNet397.02 8498.12 8095.73 10193.59 15797.98 16098.34 7791.32 11598.80 10193.92 7497.21 9095.94 10097.63 10898.61 7198.62 5499.61 11999.65 108
FMVSNet195.77 11796.41 14295.03 10793.42 15897.86 16797.11 12389.89 13898.53 12192.00 10689.17 17793.23 12998.15 8998.07 10498.34 7399.61 11999.69 95
tfpnnormal93.85 15994.12 17493.54 13593.22 15998.24 15495.45 15691.96 10294.61 20583.91 14890.74 16781.75 19597.04 11997.49 13896.16 15399.68 9199.84 21
TransMVSNet (Re)93.45 16294.08 17592.72 14892.83 16097.62 18194.94 16491.54 11195.65 20283.06 15888.93 18183.53 18394.25 18297.41 14097.03 12899.67 9998.40 185
LTVRE_ROB93.20 1692.84 17194.92 15890.43 18592.83 16098.63 12997.08 12587.87 16397.91 15168.42 21193.54 14879.46 20796.62 13397.55 13697.40 12299.74 4599.92 2
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TESTMET0.1,194.95 13497.32 11092.20 15392.62 16298.74 12296.44 14086.67 17398.18 13882.75 16096.60 10894.67 11395.54 16198.09 10196.00 15799.20 17998.93 170
pm-mvs194.27 14895.57 15292.75 14792.58 16398.13 15894.87 16890.71 12896.70 18583.78 15089.94 17389.85 14594.96 17697.58 13597.07 12799.61 11999.72 86
NR-MVSNet94.01 15294.51 16793.44 13792.56 16497.77 16895.67 15091.57 10997.17 17285.84 14093.13 15580.53 19995.29 16997.01 15496.17 15299.69 8299.75 67
EG-PatchMatch MVS92.45 18093.92 18190.72 18292.56 16498.43 14594.88 16784.54 18797.18 17179.55 17986.12 20083.23 18693.15 19697.22 14896.00 15799.67 9999.27 154
pmnet_mix0292.44 18194.68 16489.83 19192.46 16697.65 17789.92 20590.49 13198.76 10873.05 20491.78 16090.08 14394.86 17794.53 19791.94 20498.21 19498.01 191
test-mter94.86 13797.32 11092.00 15892.41 16798.82 11396.18 14586.35 17798.05 14382.28 16396.48 11294.39 11795.46 16598.17 9796.20 15199.32 17399.13 164
our_test_392.30 16897.58 18390.09 204
pmmvs495.09 13195.90 14794.14 11992.29 16997.70 17195.45 15690.31 13298.60 11590.70 11393.25 15289.90 14496.67 13197.13 15195.42 17099.44 16299.28 152
FMVSNet595.42 12496.47 13794.20 11892.26 17095.99 20695.66 15187.15 16897.87 15393.46 8596.68 10493.79 12497.52 10997.10 15397.21 12699.11 18296.62 206
UniMVSNet (Re)94.58 14595.34 15593.71 12992.25 17198.08 15994.97 16391.29 11997.03 17787.94 12693.97 14586.25 16796.07 14796.27 17395.97 16099.72 5999.79 40
SixPastTwentyTwo93.44 16395.32 15691.24 17492.11 17298.40 14792.77 19188.64 15598.09 14277.83 18693.51 14985.74 17096.52 13796.91 15694.89 18699.59 13399.73 75
v892.87 17093.87 18391.72 16792.05 17397.50 18894.79 17188.20 16096.85 18180.11 17690.01 17282.86 18995.48 16395.15 19194.90 18499.66 10499.80 33
thisisatest051594.61 14396.89 12391.95 16092.00 17498.47 14092.01 19590.73 12798.18 13883.96 14794.51 13895.13 10793.38 19397.38 14194.74 18999.61 11999.79 40
WR-MVS_H93.54 16194.67 16592.22 15191.95 17597.91 16594.58 17988.75 15296.64 18683.88 14990.66 16985.13 17594.40 18096.54 16395.91 16299.73 5299.89 7
V4293.05 16893.90 18292.04 15691.91 17697.66 17594.91 16589.91 13796.85 18180.58 17289.66 17483.43 18595.37 16795.03 19494.90 18499.59 13399.78 46
EU-MVSNet92.80 17394.76 16390.51 18391.88 17796.74 20392.48 19388.69 15396.21 19179.00 18291.51 16187.82 15091.83 20195.87 18396.27 14899.21 17898.92 173
N_pmnet92.21 18994.60 16689.42 19391.88 17797.38 19489.15 20789.74 14297.89 15273.75 20087.94 19092.23 13393.85 19096.10 17793.20 19898.15 19597.43 196
UniMVSNet_NR-MVSNet94.59 14495.47 15393.55 13491.85 17997.89 16695.03 16192.00 9997.33 16886.12 13793.19 15387.29 15296.60 13496.12 17696.70 13599.72 5999.80 33
pmmvs691.90 19192.53 19891.17 17591.81 18097.63 17893.23 18888.37 15893.43 21080.61 17177.32 21187.47 15194.12 18496.58 16195.72 16598.88 18799.53 128
v1092.79 17494.06 17691.31 17391.78 18197.29 19794.87 16886.10 17896.97 17879.82 17888.16 18784.56 17995.63 15796.33 17195.31 17299.65 10899.80 33
MIMVSNet94.49 14797.59 9790.87 18191.74 18298.70 12694.68 17578.73 20797.98 14683.71 15397.71 8394.81 11196.96 12297.97 11397.92 9599.40 16898.04 189
v114492.81 17294.03 17791.40 17191.68 18397.60 18294.73 17288.40 15796.71 18478.48 18488.14 18884.46 18095.45 16696.31 17295.22 17599.65 10899.76 60
DU-MVS93.98 15494.44 16993.44 13791.66 18497.77 16895.03 16191.57 10997.17 17286.12 13793.13 15581.13 19796.60 13495.10 19297.01 13099.67 9999.80 33
Baseline_NR-MVSNet93.87 15793.98 17993.75 12791.66 18497.02 19895.53 15491.52 11297.16 17487.77 12987.93 19183.69 18196.35 14095.10 19297.23 12599.68 9199.73 75
CP-MVSNet93.25 16594.00 17892.38 15091.65 18697.56 18594.38 18289.20 14796.05 19683.16 15789.51 17581.97 19396.16 14696.43 16596.56 14199.71 7099.89 7
v14892.36 18792.88 19491.75 16591.63 18797.66 17592.64 19290.55 13096.09 19483.34 15588.19 18680.00 20292.74 19793.98 20094.58 19099.58 13799.69 95
PS-CasMVS92.72 17693.36 19091.98 15991.62 18897.52 18794.13 18688.98 14995.94 19981.51 16887.35 19379.95 20495.91 15196.37 16896.49 14399.70 7999.89 7
v2v48292.77 17593.52 18991.90 16391.59 18997.63 17894.57 18090.31 13296.80 18379.22 18088.74 18381.55 19696.04 14995.26 18894.97 18299.66 10499.69 95
v119292.43 18393.61 18591.05 17791.53 19097.43 19194.61 17887.99 16296.60 18776.72 18987.11 19582.74 19095.85 15296.35 17095.30 17399.60 12799.74 71
WR-MVS93.43 16494.48 16892.21 15291.52 19197.69 17394.66 17789.98 13696.86 18083.43 15490.12 17185.03 17693.94 18896.02 18095.82 16399.71 7099.82 26
v14419292.38 18593.55 18891.00 17891.44 19297.47 19094.27 18387.41 16796.52 18978.03 18587.50 19282.65 19195.32 16895.82 18495.15 17799.55 14699.78 46
pmmvs592.71 17894.27 17190.90 18091.42 19397.74 17093.23 18886.66 17495.99 19878.96 18391.45 16283.44 18495.55 16097.30 14595.05 18099.58 13798.93 170
v192192092.36 18793.57 18690.94 17991.39 19497.39 19394.70 17487.63 16696.60 18776.63 19086.98 19682.89 18895.75 15396.26 17495.14 17899.55 14699.73 75
gm-plane-assit89.44 20092.82 19785.49 20391.37 19595.34 20979.55 21782.12 19291.68 21364.79 21587.98 18980.26 20195.66 15698.51 8397.56 11199.45 16098.41 182
v124091.99 19093.33 19190.44 18491.29 19697.30 19694.25 18486.79 17096.43 19075.49 19686.34 19981.85 19495.29 16996.42 16695.22 17599.52 15399.73 75
PEN-MVS92.72 17693.20 19292.15 15491.29 19697.31 19594.67 17689.81 13996.19 19281.83 16688.58 18479.06 20895.61 15995.21 18996.27 14899.72 5999.82 26
TranMVSNet+NR-MVSNet93.67 16094.14 17293.13 14391.28 19897.58 18395.60 15391.97 10197.06 17584.05 14690.64 17082.22 19296.17 14594.94 19596.78 13399.69 8299.78 46
anonymousdsp93.12 16795.86 14989.93 19091.09 19998.25 15395.12 16085.08 18297.44 16473.30 20190.89 16690.78 13995.25 17197.91 11695.96 16199.71 7099.82 26
MDTV_nov1_ep13_2view92.44 18195.66 15188.68 19491.05 20097.92 16492.17 19479.64 19998.83 9676.20 19191.45 16293.51 12695.04 17495.68 18593.70 19697.96 19698.53 179
DTE-MVSNet92.42 18492.85 19591.91 16290.87 20196.97 19994.53 18189.81 13995.86 20181.59 16788.83 18277.88 21195.01 17594.34 19996.35 14699.64 11299.73 75
v7n91.61 19292.95 19390.04 18790.56 20297.69 17393.74 18785.59 18095.89 20076.95 18886.60 19878.60 21093.76 19197.01 15494.99 18199.65 10899.87 13
test20.0390.65 19693.71 18487.09 19890.44 20396.24 20489.74 20685.46 18195.59 20372.99 20590.68 16885.33 17384.41 20895.94 18295.10 17999.52 15397.06 201
FPMVS83.82 20684.61 20882.90 20690.39 20490.71 21490.85 19984.10 19095.47 20465.15 21383.44 20474.46 21475.48 21181.63 21279.42 21491.42 21687.14 214
Anonymous2023120690.70 19593.93 18086.92 20090.21 20596.79 20190.30 20286.61 17596.05 19669.25 20988.46 18584.86 17885.86 20797.11 15296.47 14499.30 17497.80 193
new_pmnet90.45 19792.84 19687.66 19788.96 20696.16 20588.71 20884.66 18697.56 16271.91 20885.60 20186.58 16393.28 19496.07 17893.54 19798.46 18994.39 210
ET-MVSNet_ETH3D96.17 10996.99 12195.21 10688.53 20798.54 13698.28 7992.61 9498.85 9193.60 8399.06 3490.39 14098.63 7595.98 18196.68 13699.61 11999.41 144
PM-MVS89.55 19990.30 20488.67 19587.06 20895.60 20790.88 19884.51 18896.14 19375.75 19286.89 19763.47 21994.64 17896.85 15793.89 19499.17 18199.29 151
pmmvs-eth3d89.81 19889.65 20590.00 18886.94 20995.38 20891.08 19686.39 17694.57 20682.27 16483.03 20664.94 21693.96 18796.57 16293.82 19599.35 17199.24 156
new-patchmatchnet86.12 20587.30 20784.74 20486.92 21095.19 21183.57 21484.42 18992.67 21165.66 21280.32 20864.72 21789.41 20392.33 20789.21 20998.43 19096.69 204
pmmvs388.19 20291.27 20184.60 20585.60 21193.66 21285.68 21281.13 19392.36 21263.66 21789.51 17577.10 21293.22 19596.37 16892.40 20098.30 19397.46 195
Gipumacopyleft81.40 20781.78 20980.96 20983.21 21285.61 21879.73 21676.25 21497.33 16864.21 21655.32 21555.55 22086.04 20692.43 20692.20 20396.32 21293.99 211
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MDA-MVSNet-bldmvs87.84 20389.22 20686.23 20181.74 21396.77 20283.74 21389.57 14494.50 20772.83 20696.64 10664.47 21892.71 19881.43 21392.28 20296.81 20998.47 181
MIMVSNet188.61 20190.68 20386.19 20281.56 21495.30 21087.78 20985.98 17994.19 20872.30 20778.84 21078.90 20990.06 20296.59 16095.47 16899.46 15995.49 208
PMVScopyleft72.60 1776.39 20977.66 21274.92 21081.04 21569.37 22268.47 21980.54 19685.39 21565.07 21473.52 21272.91 21565.67 21780.35 21476.81 21588.71 21785.25 217
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ambc80.99 21080.04 21690.84 21390.91 19796.09 19474.18 19962.81 21430.59 22582.44 21096.25 17591.77 20595.91 21398.56 178
PMMVS277.26 20879.47 21174.70 21176.00 21788.37 21674.22 21876.34 21278.31 21654.13 21969.96 21352.50 22170.14 21584.83 21188.71 21097.35 20393.58 212
test_method87.27 20491.58 20082.25 20775.65 21887.52 21786.81 21172.60 21697.51 16373.20 20385.07 20279.97 20388.69 20497.31 14495.24 17496.53 21098.41 182
EMVS68.12 21268.11 21468.14 21375.51 21971.76 22055.38 22277.20 21177.78 21737.79 22253.59 21643.61 22274.72 21267.05 21776.70 21688.27 21986.24 215
E-PMN68.30 21168.43 21368.15 21274.70 22071.56 22155.64 22177.24 21077.48 21839.46 22151.95 21841.68 22373.28 21370.65 21679.51 21388.61 21886.20 216
MVEpermissive67.97 1965.53 21367.43 21563.31 21459.33 22174.20 21953.09 22370.43 21766.27 21943.13 22045.98 21930.62 22470.65 21479.34 21586.30 21183.25 22089.33 213
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs31.24 21440.15 21620.86 21612.61 22217.99 22325.16 22413.30 21948.42 22024.82 22353.07 21730.13 22628.47 21842.73 21837.65 21720.79 22151.04 218
test12326.75 21534.25 21718.01 2177.93 22317.18 22424.85 22512.36 22044.83 22116.52 22441.80 22018.10 22728.29 21933.08 21934.79 21818.10 22249.95 219
GG-mvs-BLEND69.11 21098.13 7935.26 2153.49 22498.20 15694.89 1662.38 22198.42 1285.82 22596.37 11498.60 645.97 22098.75 6297.98 9399.01 18498.61 177
uanet_test0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
sosnet-low-res0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
sosnet0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
RE-MVS-def69.05 210
9.1499.79 45
MTAPA98.09 1599.97 7
MTMP98.46 1199.96 12
Patchmatch-RL test66.86 220
NP-MVS98.57 118
Patchmtry98.59 13397.15 12079.14 20380.42 173
DeepMVS_CXcopyleft96.85 20087.43 21089.27 14698.30 13375.55 19595.05 13279.47 20692.62 19989.48 20995.18 21495.96 207