xxxxxxxxxxxxxcwj | | | 77.13 6 | 81.70 6 | 71.79 1 | 79.32 1 | 80.76 3 | 82.96 2 | 57.49 9 | 82.82 7 | 64.79 4 | 83.69 8 | 84.46 3 | 62.83 12 | 77.13 25 | 75.21 30 | 83.35 7 | 87.85 15 |
|
SF-MVS | | | 77.13 6 | 81.70 6 | 71.79 1 | 79.32 1 | 80.76 3 | 82.96 2 | 57.49 9 | 82.82 7 | 64.79 4 | 83.69 8 | 84.46 3 | 62.83 12 | 77.13 25 | 75.21 30 | 83.35 7 | 87.85 15 |
|
MSP-MVS | | | 78.77 1 | 84.89 1 | 71.62 3 | 78.04 3 | 82.05 1 | 81.64 9 | 57.96 5 | 87.53 1 | 66.64 1 | 88.77 1 | 86.31 1 | 63.16 8 | 79.99 5 | 78.56 6 | 82.31 21 | 91.03 1 |
|
APDe-MVS | | | 77.58 4 | 82.93 4 | 71.35 5 | 77.86 4 | 80.55 5 | 83.38 1 | 57.61 8 | 85.57 3 | 61.11 20 | 86.10 5 | 82.98 7 | 64.76 2 | 78.29 13 | 76.78 21 | 83.40 6 | 90.20 4 |
|
DPE-MVS | | | 78.11 2 | 83.84 2 | 71.42 4 | 77.82 5 | 81.32 2 | 82.92 5 | 57.81 7 | 84.04 6 | 63.19 12 | 88.63 2 | 86.00 2 | 64.52 3 | 78.71 9 | 77.63 14 | 82.26 22 | 90.57 3 |
|
SteuartSystems-ACMMP | | | 75.23 12 | 79.60 14 | 70.13 12 | 76.81 6 | 78.92 11 | 81.74 7 | 57.99 4 | 75.30 29 | 59.83 25 | 75.69 17 | 78.45 24 | 60.48 28 | 80.58 2 | 79.77 2 | 83.94 3 | 88.52 9 |
Skip Steuart: Steuart Systems R&D Blog. |
HPM-MVS++ | | | 76.01 9 | 80.47 11 | 70.81 8 | 76.60 7 | 74.96 35 | 80.18 16 | 58.36 2 | 81.96 9 | 63.50 11 | 78.80 13 | 82.53 10 | 64.40 4 | 78.74 8 | 78.84 5 | 81.81 31 | 87.46 18 |
|
MCST-MVS | | | 73.67 24 | 77.39 25 | 69.33 18 | 76.26 8 | 78.19 16 | 78.77 25 | 54.54 30 | 75.33 27 | 59.99 24 | 67.96 31 | 79.23 22 | 62.43 16 | 78.00 17 | 75.71 28 | 84.02 2 | 87.30 19 |
|
CNVR-MVS | | | 75.62 11 | 79.91 13 | 70.61 9 | 75.76 9 | 78.82 13 | 81.66 8 | 57.12 12 | 79.77 16 | 63.04 13 | 70.69 23 | 81.15 15 | 62.99 9 | 80.23 3 | 79.54 3 | 83.11 9 | 89.16 7 |
|
NCCC | | | 74.27 18 | 77.83 24 | 70.13 12 | 75.70 10 | 77.41 22 | 80.51 14 | 57.09 13 | 78.25 20 | 62.28 17 | 65.54 36 | 78.26 25 | 62.18 18 | 79.13 6 | 78.51 8 | 83.01 11 | 87.68 17 |
|
CSCG | | | 74.68 15 | 79.22 15 | 69.40 17 | 75.69 11 | 80.01 8 | 79.12 23 | 52.83 41 | 79.34 17 | 63.99 9 | 70.49 24 | 82.02 11 | 60.35 30 | 77.48 23 | 77.22 18 | 84.38 1 | 87.97 14 |
|
DPM-MVS | | | 72.80 26 | 75.90 29 | 69.19 20 | 75.51 12 | 77.68 19 | 81.62 10 | 54.83 26 | 75.96 25 | 62.06 18 | 63.96 42 | 76.58 30 | 58.55 37 | 76.66 32 | 76.77 22 | 82.60 18 | 83.68 42 |
|
SMA-MVS | | | 77.32 5 | 82.51 5 | 71.26 6 | 75.43 13 | 80.19 7 | 82.22 6 | 58.26 3 | 84.83 5 | 64.36 7 | 78.19 14 | 83.46 5 | 63.61 6 | 81.00 1 | 80.28 1 | 83.66 4 | 89.62 5 |
|
APD-MVS | | | 75.80 10 | 80.90 10 | 69.86 15 | 75.42 14 | 78.48 15 | 81.43 12 | 57.44 11 | 80.45 14 | 59.32 26 | 85.28 6 | 80.82 17 | 63.96 5 | 76.89 28 | 76.08 26 | 81.58 37 | 88.30 11 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
DVP-MVS | | | 77.82 3 | 83.46 3 | 71.24 7 | 75.26 15 | 80.22 6 | 82.95 4 | 57.85 6 | 85.90 2 | 64.79 4 | 88.54 3 | 83.43 6 | 66.24 1 | 78.21 16 | 78.56 6 | 80.34 44 | 89.39 6 |
|
train_agg | | | 73.89 21 | 78.25 21 | 68.80 23 | 75.25 16 | 72.27 51 | 79.75 17 | 56.05 20 | 74.87 32 | 58.97 27 | 81.83 10 | 79.76 21 | 61.05 25 | 77.39 24 | 76.01 27 | 81.71 34 | 85.61 30 |
|
TSAR-MVS + MP. | | | 75.22 13 | 80.06 12 | 69.56 16 | 74.61 17 | 72.74 49 | 80.59 13 | 55.70 23 | 80.80 12 | 62.65 15 | 86.25 4 | 82.92 8 | 62.07 19 | 76.89 28 | 75.66 29 | 81.77 33 | 85.19 33 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
SD-MVS | | | 74.43 16 | 78.87 17 | 69.26 19 | 74.39 18 | 73.70 45 | 79.06 24 | 55.24 25 | 81.04 11 | 62.71 14 | 80.18 11 | 82.61 9 | 61.70 21 | 75.43 40 | 73.92 43 | 82.44 20 | 85.22 32 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
ACMMP_NAP | | | 76.15 8 | 81.17 8 | 70.30 10 | 74.09 19 | 79.47 9 | 81.59 11 | 57.09 13 | 81.38 10 | 63.89 10 | 79.02 12 | 80.48 18 | 62.24 17 | 80.05 4 | 79.12 4 | 82.94 12 | 88.64 8 |
|
HFP-MVS | | | 74.87 14 | 78.86 19 | 70.21 11 | 73.99 20 | 77.91 17 | 80.36 15 | 56.63 15 | 78.41 19 | 64.27 8 | 74.54 19 | 77.75 28 | 62.96 10 | 78.70 10 | 77.82 11 | 83.02 10 | 86.91 21 |
|
AdaColmap | | | 67.89 45 | 68.85 55 | 66.77 29 | 73.73 21 | 74.30 42 | 75.28 39 | 53.58 36 | 70.24 45 | 57.59 34 | 51.19 98 | 59.19 88 | 60.74 27 | 75.33 42 | 73.72 45 | 79.69 52 | 77.96 66 |
|
MP-MVS | | | 74.31 17 | 78.87 17 | 68.99 21 | 73.49 22 | 78.56 14 | 79.25 22 | 56.51 16 | 75.33 27 | 60.69 22 | 75.30 18 | 79.12 23 | 61.81 20 | 77.78 20 | 77.93 10 | 82.18 27 | 88.06 13 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
zzz-MVS | | | 74.25 19 | 77.97 23 | 69.91 14 | 73.43 23 | 74.06 43 | 79.69 18 | 56.44 17 | 80.74 13 | 64.98 3 | 68.72 29 | 79.98 20 | 62.92 11 | 78.24 15 | 77.77 13 | 81.99 29 | 86.30 23 |
|
TSAR-MVS + ACMM | | | 72.56 28 | 79.07 16 | 64.96 40 | 73.24 24 | 73.16 48 | 78.50 26 | 48.80 64 | 79.34 17 | 55.32 40 | 85.04 7 | 81.49 14 | 58.57 36 | 75.06 43 | 73.75 44 | 75.35 100 | 85.61 30 |
|
CDPH-MVS | | | 71.47 31 | 75.82 31 | 66.41 31 | 72.97 25 | 77.15 24 | 78.14 29 | 54.71 27 | 69.88 47 | 53.07 55 | 70.98 22 | 74.83 37 | 56.95 50 | 76.22 33 | 76.57 23 | 82.62 17 | 85.09 34 |
|
PGM-MVS | | | 72.89 25 | 77.13 26 | 67.94 25 | 72.47 26 | 77.25 23 | 79.27 21 | 54.63 29 | 73.71 34 | 57.95 33 | 72.38 21 | 75.33 35 | 60.75 26 | 78.25 14 | 77.36 17 | 82.57 19 | 85.62 29 |
|
ACMMPR | | | 73.79 23 | 78.41 20 | 68.40 24 | 72.35 27 | 77.79 18 | 79.32 20 | 56.38 18 | 77.67 23 | 58.30 31 | 74.16 20 | 76.66 29 | 61.40 22 | 78.32 12 | 77.80 12 | 82.68 16 | 86.51 22 |
|
OPM-MVS | | | 69.33 37 | 71.05 45 | 67.32 27 | 72.34 28 | 75.70 32 | 79.57 19 | 56.34 19 | 55.21 69 | 53.81 53 | 59.51 60 | 68.96 54 | 59.67 32 | 77.61 22 | 76.44 24 | 82.19 26 | 83.88 40 |
|
X-MVS | | | 71.18 32 | 75.66 32 | 65.96 35 | 71.71 29 | 76.96 25 | 77.26 32 | 55.88 22 | 72.75 37 | 54.48 48 | 64.39 40 | 74.47 38 | 54.19 64 | 77.84 19 | 77.37 16 | 82.21 25 | 85.85 27 |
|
HQP-MVS | | | 70.88 33 | 75.02 33 | 66.05 34 | 71.69 30 | 74.47 40 | 77.51 31 | 53.17 38 | 72.89 36 | 54.88 44 | 70.03 26 | 70.48 50 | 57.26 46 | 76.02 35 | 75.01 35 | 81.78 32 | 86.21 24 |
|
MAR-MVS | | | 68.04 44 | 70.74 47 | 64.90 41 | 71.68 31 | 76.33 30 | 74.63 43 | 50.48 55 | 63.81 55 | 55.52 39 | 54.88 80 | 69.90 52 | 57.39 44 | 75.42 41 | 74.79 37 | 79.71 49 | 80.03 55 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
mPP-MVS | | | | | | 71.67 32 | | | | | | | 74.36 41 | | | | | |
|
SR-MVS | | | | | | 71.46 33 | | | 54.67 28 | | | | 81.54 13 | | | | | |
|
CLD-MVS | | | 67.02 49 | 71.57 42 | 61.71 51 | 71.01 34 | 74.81 37 | 71.62 51 | 38.91 152 | 71.86 40 | 60.70 21 | 64.97 38 | 67.88 61 | 51.88 87 | 76.77 31 | 74.98 36 | 76.11 90 | 69.75 119 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CP-MVS | | | 72.63 27 | 76.95 27 | 67.59 26 | 70.67 35 | 75.53 33 | 77.95 30 | 56.01 21 | 75.65 26 | 58.82 28 | 69.16 28 | 76.48 31 | 60.46 29 | 77.66 21 | 77.20 19 | 81.65 35 | 86.97 20 |
|
ACMM | | 60.30 7 | 67.58 47 | 68.82 56 | 66.13 33 | 70.59 36 | 72.01 53 | 76.54 34 | 54.26 32 | 65.64 53 | 54.78 46 | 50.35 101 | 61.72 76 | 58.74 35 | 75.79 38 | 75.03 33 | 81.88 30 | 81.17 52 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
XVS | | | | | | 70.49 37 | 76.96 25 | 74.36 44 | | | 54.48 48 | | 74.47 38 | | | | 82.24 23 | |
|
X-MVStestdata | | | | | | 70.49 37 | 76.96 25 | 74.36 44 | | | 54.48 48 | | 74.47 38 | | | | 82.24 23 | |
|
ACMMP | | | 71.57 30 | 75.84 30 | 66.59 30 | 70.30 39 | 76.85 28 | 78.46 27 | 53.95 34 | 73.52 35 | 55.56 38 | 70.13 25 | 71.36 48 | 58.55 37 | 77.00 27 | 76.23 25 | 82.71 15 | 85.81 28 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
abl_6 | | | | | 64.36 44 | 70.08 40 | 77.45 21 | 72.88 49 | 50.15 56 | 71.31 42 | 54.77 47 | 62.79 47 | 77.99 27 | 56.80 51 | | | 81.50 38 | 83.91 39 |
|
MVS_111021_HR | | | 67.62 46 | 70.39 49 | 64.39 43 | 69.77 41 | 70.45 57 | 71.44 53 | 51.72 47 | 60.77 63 | 55.06 42 | 62.14 52 | 66.40 63 | 58.13 40 | 76.13 34 | 74.79 37 | 80.19 46 | 82.04 49 |
|
MSLP-MVS++ | | | 68.17 43 | 70.72 48 | 65.19 38 | 69.41 42 | 70.64 55 | 74.99 40 | 45.76 74 | 70.20 46 | 60.17 23 | 56.42 72 | 73.01 44 | 61.14 23 | 72.80 53 | 70.54 56 | 79.70 50 | 81.42 51 |
|
LGP-MVS_train | | | 68.87 39 | 72.03 41 | 65.18 39 | 69.33 43 | 74.03 44 | 76.67 33 | 53.88 35 | 68.46 48 | 52.05 58 | 63.21 44 | 63.89 66 | 56.31 54 | 75.99 36 | 74.43 39 | 82.83 14 | 84.18 36 |
|
ACMP | | 61.42 5 | 68.72 42 | 71.37 43 | 65.64 37 | 69.06 44 | 74.45 41 | 75.88 37 | 53.30 37 | 68.10 49 | 55.74 37 | 61.53 55 | 62.29 72 | 56.97 49 | 74.70 44 | 74.23 41 | 82.88 13 | 84.31 35 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
DeepC-MVS_fast | | 65.08 3 | 72.00 29 | 76.11 28 | 67.21 28 | 68.93 45 | 77.46 20 | 76.54 34 | 54.35 31 | 74.92 31 | 58.64 30 | 65.18 37 | 74.04 43 | 62.62 14 | 77.92 18 | 77.02 20 | 82.16 28 | 86.21 24 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CANet | | | 68.77 40 | 73.01 37 | 63.83 46 | 68.30 46 | 75.19 34 | 73.73 47 | 47.90 65 | 63.86 54 | 54.84 45 | 67.51 33 | 74.36 41 | 57.62 41 | 74.22 46 | 73.57 47 | 80.56 42 | 82.36 46 |
|
TSAR-MVS + GP. | | | 69.71 34 | 73.92 36 | 64.80 42 | 68.27 47 | 70.56 56 | 71.90 50 | 50.75 51 | 71.38 41 | 57.46 35 | 68.68 30 | 75.42 34 | 60.10 31 | 73.47 50 | 73.99 42 | 80.32 45 | 83.97 38 |
|
3Dnovator+ | | 62.63 4 | 69.51 35 | 72.62 39 | 65.88 36 | 68.21 48 | 76.47 29 | 73.50 48 | 52.74 42 | 70.85 43 | 58.65 29 | 55.97 74 | 69.95 51 | 61.11 24 | 76.80 30 | 75.09 32 | 81.09 41 | 83.23 45 |
|
MVS_0304 | | | 69.49 36 | 73.96 35 | 64.28 45 | 67.92 49 | 76.13 31 | 74.90 41 | 47.60 66 | 63.29 57 | 54.09 52 | 67.44 34 | 76.35 32 | 59.53 33 | 75.81 37 | 75.03 33 | 81.62 36 | 83.70 41 |
|
DeepC-MVS | | 66.32 2 | 73.85 22 | 78.10 22 | 68.90 22 | 67.92 49 | 79.31 10 | 78.16 28 | 59.28 1 | 78.24 21 | 61.13 19 | 67.36 35 | 76.10 33 | 63.40 7 | 79.11 7 | 78.41 9 | 83.52 5 | 88.16 12 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DeepPCF-MVS | | 66.49 1 | 74.25 19 | 80.97 9 | 66.41 31 | 67.75 51 | 78.87 12 | 75.61 38 | 54.16 33 | 84.86 4 | 58.22 32 | 77.94 15 | 81.01 16 | 62.52 15 | 78.34 11 | 77.38 15 | 80.16 47 | 88.40 10 |
|
UA-Net | | | 58.50 85 | 64.68 74 | 51.30 113 | 66.97 52 | 67.13 80 | 53.68 152 | 45.65 77 | 49.51 99 | 31.58 141 | 62.91 46 | 68.47 56 | 35.85 162 | 68.20 91 | 67.28 88 | 74.03 110 | 69.24 129 |
|
PHI-MVS | | | 69.27 38 | 74.84 34 | 62.76 50 | 66.83 53 | 74.83 36 | 73.88 46 | 49.32 60 | 70.61 44 | 50.93 59 | 69.62 27 | 74.84 36 | 57.25 47 | 75.53 39 | 74.32 40 | 78.35 63 | 84.17 37 |
|
3Dnovator | | 60.86 6 | 66.99 50 | 70.32 50 | 63.11 48 | 66.63 54 | 74.52 38 | 71.56 52 | 45.76 74 | 67.37 51 | 55.00 43 | 54.31 85 | 68.19 58 | 58.49 39 | 73.97 47 | 73.63 46 | 81.22 40 | 80.23 54 |
|
EPNet | | | 65.14 55 | 69.54 53 | 60.00 56 | 66.61 55 | 67.67 73 | 67.53 61 | 55.32 24 | 62.67 59 | 46.22 76 | 67.74 32 | 65.93 64 | 48.07 105 | 72.17 55 | 72.12 49 | 76.28 86 | 78.47 63 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
OpenMVS | | 57.13 9 | 62.81 62 | 65.75 66 | 59.39 59 | 66.47 56 | 69.52 59 | 64.26 92 | 43.07 122 | 61.34 62 | 50.19 62 | 47.29 118 | 64.41 65 | 54.60 63 | 70.18 71 | 68.62 73 | 77.73 65 | 78.89 60 |
|
ACMH | | 52.42 13 | 58.24 92 | 59.56 109 | 56.70 81 | 66.34 57 | 69.59 58 | 66.71 69 | 49.12 61 | 46.08 132 | 28.90 154 | 42.67 162 | 41.20 179 | 52.60 80 | 71.39 59 | 70.28 58 | 76.51 82 | 75.72 87 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
MSDG | | | 58.46 87 | 58.97 115 | 57.85 73 | 66.27 58 | 66.23 89 | 67.72 59 | 42.33 126 | 53.43 75 | 43.68 87 | 43.39 153 | 45.35 157 | 49.75 94 | 68.66 82 | 67.77 81 | 77.38 71 | 67.96 134 |
|
QAPM | | | 65.27 53 | 69.49 54 | 60.35 54 | 65.43 59 | 72.20 52 | 65.69 81 | 47.23 67 | 63.46 56 | 49.14 65 | 53.56 86 | 71.04 49 | 57.01 48 | 72.60 54 | 71.41 52 | 77.62 67 | 82.14 48 |
|
CPTT-MVS | | | 68.76 41 | 73.01 37 | 63.81 47 | 65.42 60 | 73.66 46 | 76.39 36 | 52.08 43 | 72.61 38 | 50.33 61 | 60.73 56 | 72.65 46 | 59.43 34 | 73.32 51 | 72.12 49 | 79.19 56 | 85.99 26 |
|
MS-PatchMatch | | | 58.19 94 | 60.20 98 | 55.85 85 | 65.17 61 | 64.16 105 | 64.82 87 | 41.48 134 | 50.95 89 | 42.17 96 | 45.38 138 | 56.42 99 | 48.08 104 | 68.30 87 | 66.70 96 | 73.39 118 | 69.46 127 |
|
PCF-MVS | | 59.98 8 | 67.32 48 | 71.04 46 | 62.97 49 | 64.77 62 | 74.49 39 | 74.78 42 | 49.54 58 | 67.44 50 | 54.39 51 | 58.35 65 | 72.81 45 | 55.79 60 | 71.54 58 | 69.24 65 | 78.57 58 | 83.41 43 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
EG-PatchMatch MVS | | | 56.98 101 | 58.24 122 | 55.50 87 | 64.66 63 | 68.62 62 | 61.48 101 | 43.63 107 | 38.44 183 | 41.44 98 | 38.05 173 | 46.18 152 | 43.95 123 | 71.71 57 | 70.61 55 | 77.87 64 | 74.08 99 |
|
Effi-MVS+-dtu | | | 60.34 73 | 62.32 82 | 58.03 68 | 64.31 64 | 67.44 77 | 65.99 76 | 42.26 127 | 49.55 97 | 42.00 97 | 48.92 108 | 59.79 86 | 56.27 55 | 68.07 95 | 67.03 89 | 77.35 72 | 75.45 90 |
|
FC-MVSNet-train | | | 58.40 88 | 63.15 80 | 52.85 106 | 64.29 65 | 61.84 116 | 55.98 136 | 46.47 70 | 53.06 79 | 34.96 130 | 61.95 54 | 56.37 101 | 39.49 143 | 68.67 81 | 68.36 75 | 75.92 94 | 71.81 107 |
|
Effi-MVS+ | | | 63.28 59 | 65.96 65 | 60.17 55 | 64.26 66 | 68.06 67 | 68.78 56 | 45.71 76 | 54.08 72 | 46.64 73 | 55.92 75 | 63.13 70 | 55.94 58 | 70.38 69 | 71.43 51 | 79.68 53 | 78.70 61 |
|
CS-MVS | | | 63.45 58 | 65.72 67 | 60.80 52 | 64.20 67 | 67.86 69 | 68.46 58 | 43.50 112 | 53.86 73 | 49.90 63 | 56.44 71 | 60.45 83 | 57.27 45 | 73.56 49 | 70.13 61 | 81.45 39 | 77.73 68 |
|
LS3D | | | 60.20 74 | 61.70 83 | 58.45 64 | 64.18 68 | 67.77 70 | 67.19 63 | 48.84 63 | 61.67 61 | 41.27 101 | 45.89 133 | 51.81 116 | 54.18 65 | 68.78 79 | 66.50 103 | 75.03 102 | 69.48 125 |
|
ACMH+ | | 53.71 12 | 59.26 77 | 60.28 95 | 58.06 66 | 64.17 69 | 68.46 63 | 67.51 62 | 50.93 50 | 52.46 85 | 35.83 127 | 40.83 167 | 45.12 161 | 52.32 83 | 69.88 72 | 69.00 69 | 77.59 69 | 76.21 84 |
|
DELS-MVS | | | 65.87 51 | 70.30 51 | 60.71 53 | 64.05 70 | 72.68 50 | 70.90 54 | 45.43 78 | 57.49 66 | 49.05 67 | 64.43 39 | 68.66 55 | 55.11 62 | 74.31 45 | 73.02 48 | 79.70 50 | 81.51 50 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
canonicalmvs | | | 65.62 52 | 72.06 40 | 58.11 65 | 63.94 71 | 71.05 54 | 64.49 90 | 43.18 120 | 74.08 33 | 47.35 69 | 64.17 41 | 71.97 47 | 51.17 90 | 71.87 56 | 70.74 54 | 78.51 61 | 80.56 53 |
|
EIA-MVS | | | 61.53 70 | 63.79 78 | 58.89 62 | 63.82 72 | 67.61 74 | 65.35 84 | 42.15 130 | 49.98 94 | 45.66 78 | 57.47 69 | 56.62 98 | 56.59 53 | 70.91 64 | 69.15 66 | 79.78 48 | 74.80 93 |
|
Anonymous202405211 | | | | 60.60 91 | | 63.44 73 | 66.71 86 | 61.00 106 | 47.23 67 | 50.62 92 | | 36.85 176 | 60.63 82 | 43.03 131 | 69.17 76 | 67.72 83 | 75.41 97 | 72.54 104 |
|
ETV-MVS | | | 63.23 60 | 66.08 64 | 59.91 57 | 63.13 74 | 68.13 66 | 67.62 60 | 44.62 87 | 53.39 76 | 46.23 75 | 58.74 62 | 58.19 91 | 57.45 43 | 73.60 48 | 71.38 53 | 80.39 43 | 79.13 58 |
|
gg-mvs-nofinetune | | | 49.07 158 | 52.56 158 | 45.00 159 | 61.99 75 | 59.78 135 | 53.55 154 | 41.63 132 | 31.62 199 | 12.08 193 | 29.56 193 | 53.28 111 | 29.57 177 | 66.27 125 | 64.49 130 | 71.19 147 | 62.92 164 |
|
DCV-MVSNet | | | 59.49 75 | 64.00 77 | 54.23 92 | 61.81 76 | 64.33 104 | 61.42 102 | 43.77 101 | 52.85 82 | 38.94 115 | 55.62 77 | 62.15 74 | 43.24 130 | 69.39 75 | 67.66 84 | 76.22 88 | 75.97 85 |
|
casdiffmvs | | | 64.09 56 | 68.13 57 | 59.37 60 | 61.81 76 | 68.32 65 | 68.48 57 | 44.45 90 | 61.95 60 | 49.12 66 | 63.04 45 | 69.67 53 | 53.83 67 | 70.46 66 | 66.06 108 | 78.55 59 | 77.43 69 |
|
Anonymous20231211 | | | 57.71 97 | 60.79 89 | 54.13 94 | 61.68 78 | 65.81 92 | 60.81 107 | 43.70 105 | 51.97 87 | 39.67 110 | 34.82 181 | 63.59 67 | 43.31 128 | 68.55 85 | 66.63 99 | 75.59 95 | 74.13 98 |
|
IS_MVSNet | | | 57.95 95 | 64.26 76 | 50.60 115 | 61.62 79 | 65.25 98 | 57.18 124 | 45.42 79 | 50.79 90 | 26.49 165 | 57.81 67 | 60.05 85 | 34.51 166 | 71.24 62 | 70.20 60 | 78.36 62 | 74.44 95 |
|
NR-MVSNet | | | 55.35 116 | 59.46 110 | 50.56 116 | 61.33 80 | 62.97 110 | 57.91 121 | 51.80 45 | 48.62 114 | 20.59 177 | 51.99 94 | 44.73 167 | 34.10 169 | 68.58 83 | 68.64 72 | 77.66 66 | 70.67 116 |
|
MVS_111021_LR | | | 63.05 61 | 66.43 61 | 59.10 61 | 61.33 80 | 63.77 107 | 65.87 78 | 43.58 108 | 60.20 64 | 53.70 54 | 62.09 53 | 62.38 71 | 55.84 59 | 70.24 70 | 68.08 76 | 74.30 107 | 78.28 65 |
|
EPP-MVSNet | | | 59.39 76 | 65.45 69 | 52.32 110 | 60.96 82 | 67.70 72 | 58.42 118 | 44.75 85 | 49.71 96 | 27.23 162 | 59.03 61 | 62.20 73 | 43.34 127 | 70.71 65 | 69.13 67 | 79.25 55 | 79.63 57 |
|
TransMVSNet (Re) | | | 51.92 140 | 55.38 139 | 47.88 145 | 60.95 83 | 59.90 134 | 53.95 149 | 45.14 81 | 39.47 177 | 24.85 169 | 43.87 148 | 46.51 148 | 29.15 178 | 67.55 105 | 65.23 121 | 73.26 123 | 65.16 155 |
|
gm-plane-assit | | | 44.74 178 | 45.95 186 | 43.33 167 | 60.88 84 | 46.79 192 | 36.97 200 | 32.24 190 | 24.15 205 | 11.79 194 | 29.26 194 | 32.97 200 | 46.64 110 | 65.09 139 | 62.95 143 | 71.45 144 | 60.42 175 |
|
baseline1 | | | 54.48 124 | 58.69 116 | 49.57 121 | 60.63 85 | 58.29 150 | 55.70 138 | 44.95 83 | 49.20 102 | 29.62 150 | 54.77 81 | 54.75 106 | 35.29 163 | 67.15 113 | 64.08 132 | 71.21 146 | 62.58 168 |
|
DI_MVS_plusplus_trai | | | 61.88 66 | 65.17 71 | 58.06 66 | 60.05 86 | 65.26 96 | 66.03 75 | 44.22 91 | 55.75 68 | 46.73 71 | 54.64 83 | 68.12 59 | 54.13 66 | 69.13 77 | 66.66 97 | 77.18 74 | 76.61 77 |
|
PVSNet_Blended_VisFu | | | 63.65 57 | 66.92 58 | 59.83 58 | 60.03 87 | 73.44 47 | 66.33 72 | 48.95 62 | 52.20 86 | 50.81 60 | 56.07 73 | 60.25 84 | 53.56 69 | 73.23 52 | 70.01 62 | 79.30 54 | 83.24 44 |
|
UniMVSNet_NR-MVSNet | | | 56.94 103 | 61.14 86 | 52.05 112 | 60.02 88 | 65.21 99 | 57.44 122 | 52.93 40 | 49.37 100 | 24.31 172 | 54.62 84 | 50.54 122 | 39.04 145 | 68.69 80 | 68.84 70 | 78.53 60 | 70.72 112 |
|
IterMVS-LS | | | 58.30 91 | 61.39 85 | 54.71 90 | 59.92 89 | 58.40 147 | 59.42 112 | 43.64 106 | 48.71 111 | 40.25 108 | 57.53 68 | 58.55 90 | 52.15 85 | 65.42 137 | 65.34 118 | 72.85 125 | 75.77 86 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MVS_Test | | | 62.40 65 | 66.23 63 | 57.94 69 | 59.77 90 | 64.77 102 | 66.50 71 | 41.76 131 | 57.26 67 | 49.33 64 | 62.68 49 | 67.47 62 | 53.50 72 | 68.57 84 | 66.25 105 | 76.77 79 | 76.58 78 |
|
TranMVSNet+NR-MVSNet | | | 55.87 110 | 60.14 100 | 50.88 114 | 59.46 91 | 63.82 106 | 57.93 120 | 52.98 39 | 48.94 106 | 20.52 178 | 52.87 88 | 47.33 139 | 36.81 159 | 69.12 78 | 69.03 68 | 77.56 70 | 69.89 118 |
|
Fast-Effi-MVS+ | | | 60.36 72 | 63.35 79 | 56.87 79 | 58.70 92 | 65.86 91 | 65.08 86 | 37.11 165 | 53.00 81 | 45.36 80 | 52.12 93 | 56.07 103 | 56.27 55 | 71.28 61 | 69.42 64 | 78.71 57 | 75.69 88 |
|
IB-MVS | | 54.11 11 | 58.36 90 | 60.70 90 | 55.62 86 | 58.67 93 | 68.02 68 | 61.56 99 | 43.15 121 | 46.09 131 | 44.06 86 | 44.24 145 | 50.99 121 | 48.71 99 | 66.70 119 | 70.33 57 | 77.60 68 | 78.50 62 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
Fast-Effi-MVS+-dtu | | | 56.30 108 | 59.29 112 | 52.82 107 | 58.64 94 | 64.89 100 | 65.56 82 | 32.89 187 | 45.80 134 | 35.04 129 | 45.89 133 | 54.14 108 | 49.41 95 | 67.16 112 | 66.45 104 | 75.37 99 | 70.69 114 |
|
CNLPA | | | 62.78 63 | 66.31 62 | 58.65 63 | 58.47 95 | 68.41 64 | 65.98 77 | 41.22 137 | 78.02 22 | 56.04 36 | 46.65 121 | 59.50 87 | 57.50 42 | 69.67 73 | 65.27 120 | 72.70 131 | 76.67 76 |
|
tpm cat1 | | | 53.30 129 | 53.41 151 | 53.17 103 | 58.16 96 | 59.15 141 | 63.73 95 | 38.27 160 | 50.73 91 | 46.98 70 | 45.57 137 | 44.00 173 | 49.20 96 | 55.90 185 | 54.02 184 | 62.65 176 | 64.50 159 |
|
v1144 | | | 58.88 80 | 60.16 99 | 57.39 75 | 58.03 97 | 67.26 78 | 67.14 65 | 44.46 89 | 45.17 137 | 44.33 85 | 47.81 115 | 49.92 126 | 53.20 78 | 67.77 101 | 66.62 100 | 77.15 75 | 76.58 78 |
|
v10 | | | 59.17 79 | 60.60 91 | 57.50 74 | 57.95 98 | 66.73 83 | 67.09 67 | 44.11 92 | 46.85 125 | 45.42 79 | 48.18 114 | 51.07 118 | 53.63 68 | 67.84 99 | 66.59 101 | 76.79 78 | 76.92 74 |
|
v1192 | | | 58.51 84 | 59.66 105 | 57.17 76 | 57.82 99 | 67.72 71 | 66.21 74 | 44.83 84 | 44.15 145 | 43.49 88 | 46.68 120 | 47.94 130 | 53.55 70 | 67.39 108 | 66.51 102 | 77.13 76 | 77.20 72 |
|
v144192 | | | 58.23 93 | 59.40 111 | 56.87 79 | 57.56 100 | 66.89 81 | 65.70 79 | 45.01 82 | 44.06 146 | 42.88 90 | 46.61 122 | 48.09 129 | 53.49 73 | 66.94 117 | 65.90 112 | 76.61 80 | 77.29 70 |
|
v1921920 | | | 57.89 96 | 59.02 114 | 56.58 82 | 57.55 101 | 66.66 87 | 64.72 89 | 44.70 86 | 43.55 149 | 42.73 91 | 46.17 130 | 46.93 143 | 53.51 71 | 66.78 118 | 65.75 114 | 76.29 85 | 77.28 71 |
|
Vis-MVSNet (Re-imp) | | | 50.37 148 | 57.73 128 | 41.80 174 | 57.53 102 | 54.35 164 | 45.70 182 | 45.24 80 | 49.80 95 | 13.43 191 | 58.23 66 | 56.42 99 | 20.11 193 | 62.96 145 | 63.36 139 | 68.76 155 | 58.96 180 |
|
CostFormer | | | 56.57 106 | 59.13 113 | 53.60 97 | 57.52 103 | 61.12 123 | 66.94 68 | 35.95 170 | 53.44 74 | 44.68 83 | 55.87 76 | 54.44 107 | 48.21 102 | 60.37 158 | 58.33 165 | 68.27 157 | 70.33 117 |
|
thres400 | | | 52.38 135 | 55.51 137 | 48.74 132 | 57.49 104 | 60.10 133 | 55.45 141 | 43.54 109 | 42.90 156 | 26.72 164 | 43.34 155 | 45.03 165 | 36.61 160 | 66.20 127 | 64.53 129 | 72.66 132 | 66.43 141 |
|
thres600view7 | | | 51.91 141 | 55.14 141 | 48.14 141 | 57.43 105 | 60.18 131 | 54.60 147 | 43.73 103 | 42.61 160 | 25.20 168 | 43.10 158 | 44.47 170 | 35.19 164 | 66.36 122 | 63.28 140 | 72.66 132 | 66.01 148 |
|
thres200 | | | 52.39 134 | 55.37 140 | 48.90 130 | 57.39 106 | 60.18 131 | 55.60 139 | 43.73 103 | 42.93 155 | 27.41 160 | 43.35 154 | 45.09 162 | 36.61 160 | 66.36 122 | 63.92 135 | 72.66 132 | 65.78 150 |
|
baseline2 | | | 55.89 109 | 57.82 125 | 53.64 96 | 57.36 107 | 61.09 124 | 59.75 111 | 40.45 144 | 47.38 123 | 41.26 102 | 51.23 97 | 46.90 144 | 48.11 103 | 65.63 134 | 64.38 131 | 74.90 103 | 68.16 133 |
|
v8 | | | 58.88 80 | 60.57 93 | 56.92 78 | 57.35 108 | 65.69 93 | 66.69 70 | 42.64 124 | 47.89 120 | 45.77 77 | 49.04 106 | 52.98 112 | 52.77 79 | 67.51 106 | 65.57 115 | 76.26 87 | 75.30 92 |
|
thres100view900 | | | 52.04 138 | 54.81 144 | 48.80 131 | 57.31 109 | 59.33 138 | 55.30 143 | 42.92 123 | 42.85 157 | 27.81 158 | 43.00 159 | 45.06 163 | 36.99 157 | 64.74 140 | 63.51 137 | 72.47 135 | 65.21 154 |
|
tfpn200view9 | | | 52.53 132 | 55.51 137 | 49.06 128 | 57.31 109 | 60.24 130 | 55.42 142 | 43.77 101 | 42.85 157 | 27.81 158 | 43.00 159 | 45.06 163 | 37.32 155 | 66.38 121 | 64.54 128 | 72.71 130 | 66.54 140 |
|
v1240 | | | 57.55 98 | 58.63 118 | 56.29 83 | 57.30 111 | 66.48 88 | 63.77 94 | 44.56 88 | 42.77 159 | 42.48 93 | 45.64 136 | 46.28 150 | 53.46 74 | 66.32 124 | 65.80 113 | 76.16 89 | 77.13 73 |
|
CHOSEN 1792x2688 | | | 55.85 111 | 58.01 123 | 53.33 99 | 57.26 112 | 62.82 112 | 63.29 98 | 41.55 133 | 46.65 127 | 38.34 116 | 34.55 182 | 53.50 109 | 52.43 82 | 67.10 114 | 67.56 86 | 67.13 161 | 73.92 101 |
|
PVSNet_BlendedMVS | | | 61.63 68 | 64.82 72 | 57.91 71 | 57.21 113 | 67.55 75 | 63.47 96 | 46.08 72 | 54.72 70 | 52.46 56 | 58.59 63 | 60.73 79 | 51.82 88 | 70.46 66 | 65.20 122 | 76.44 83 | 76.50 81 |
|
PVSNet_Blended | | | 61.63 68 | 64.82 72 | 57.91 71 | 57.21 113 | 67.55 75 | 63.47 96 | 46.08 72 | 54.72 70 | 52.46 56 | 58.59 63 | 60.73 79 | 51.82 88 | 70.46 66 | 65.20 122 | 76.44 83 | 76.50 81 |
|
v2v482 | | | 58.69 83 | 60.12 102 | 57.03 77 | 57.16 115 | 66.05 90 | 67.17 64 | 43.52 110 | 46.33 129 | 45.19 81 | 49.46 105 | 51.02 119 | 52.51 81 | 67.30 109 | 66.03 109 | 76.61 80 | 74.62 94 |
|
tfpnnormal | | | 50.16 150 | 52.19 162 | 47.78 147 | 56.86 116 | 58.37 148 | 54.15 148 | 44.01 98 | 38.35 185 | 25.94 166 | 36.10 177 | 37.89 192 | 34.50 167 | 65.93 129 | 63.42 138 | 71.26 145 | 65.28 153 |
|
diffmvs | | | 61.64 67 | 66.55 60 | 55.90 84 | 56.63 117 | 63.71 108 | 67.13 66 | 41.27 136 | 59.49 65 | 46.70 72 | 63.93 43 | 68.01 60 | 50.46 91 | 67.30 109 | 65.51 116 | 73.24 124 | 77.87 67 |
|
HyFIR lowres test | | | 56.87 104 | 58.60 119 | 54.84 89 | 56.62 118 | 69.27 60 | 64.77 88 | 42.21 128 | 45.66 135 | 37.50 122 | 33.08 184 | 57.47 96 | 53.33 75 | 65.46 136 | 67.94 77 | 74.60 104 | 71.35 109 |
|
v7n | | | 55.67 112 | 57.46 130 | 53.59 98 | 56.06 119 | 65.29 95 | 61.06 105 | 43.26 119 | 40.17 174 | 37.99 119 | 40.79 168 | 45.27 160 | 47.09 109 | 67.67 103 | 66.21 106 | 76.08 91 | 76.82 75 |
|
dps | | | 50.42 147 | 51.20 168 | 49.51 122 | 55.88 120 | 56.07 160 | 53.73 150 | 38.89 153 | 43.66 147 | 40.36 107 | 45.66 135 | 37.63 194 | 45.23 118 | 59.05 161 | 56.18 169 | 62.94 175 | 60.16 176 |
|
CANet_DTU | | | 58.88 80 | 64.68 74 | 52.12 111 | 55.77 121 | 66.75 82 | 63.92 93 | 37.04 166 | 53.32 77 | 37.45 123 | 59.81 58 | 61.81 75 | 44.43 122 | 68.25 88 | 67.47 87 | 74.12 109 | 75.33 91 |
|
WR-MVS | | | 48.78 160 | 55.06 142 | 41.45 175 | 55.50 122 | 60.40 129 | 43.77 190 | 49.99 57 | 41.92 163 | 8.10 203 | 45.24 141 | 45.56 155 | 17.47 194 | 61.57 153 | 64.60 127 | 73.85 111 | 66.14 147 |
|
UniMVSNet (Re) | | | 55.15 120 | 60.39 94 | 49.03 129 | 55.31 123 | 64.59 103 | 55.77 137 | 50.63 52 | 48.66 113 | 20.95 176 | 51.47 96 | 50.40 123 | 34.41 168 | 67.81 100 | 67.89 78 | 77.11 77 | 71.88 106 |
|
test-LLR | | | 49.28 154 | 50.29 172 | 48.10 142 | 55.26 124 | 47.16 187 | 49.52 163 | 43.48 114 | 39.22 178 | 31.98 137 | 43.65 151 | 47.93 131 | 41.29 138 | 56.80 176 | 55.36 175 | 67.08 162 | 61.94 169 |
|
test0.0.03 1 | | | 43.15 183 | 46.95 185 | 38.72 183 | 55.26 124 | 50.56 176 | 42.48 193 | 43.48 114 | 38.16 187 | 15.11 187 | 35.07 180 | 44.69 168 | 16.47 196 | 55.95 184 | 54.34 183 | 59.54 183 | 49.87 197 |
|
GA-MVS | | | 55.67 112 | 58.33 120 | 52.58 109 | 55.23 126 | 63.09 109 | 61.08 104 | 40.15 148 | 42.95 154 | 37.02 125 | 52.61 90 | 47.68 134 | 47.51 107 | 65.92 130 | 65.35 117 | 74.49 106 | 70.68 115 |
|
DTE-MVSNet | | | 48.03 166 | 53.28 153 | 41.91 173 | 54.64 127 | 57.50 156 | 44.63 189 | 51.66 48 | 41.02 169 | 7.97 204 | 46.26 127 | 40.90 180 | 20.24 192 | 60.45 157 | 62.89 144 | 72.33 138 | 63.97 160 |
|
pmmvs4 | | | 54.66 123 | 56.07 134 | 53.00 104 | 54.63 128 | 57.08 158 | 60.43 109 | 44.10 93 | 51.69 88 | 40.55 105 | 46.55 125 | 44.79 166 | 45.95 115 | 62.54 147 | 63.66 136 | 72.36 137 | 66.20 145 |
|
DU-MVS | | | 55.41 115 | 59.59 106 | 50.54 117 | 54.60 129 | 62.97 110 | 57.44 122 | 51.80 45 | 48.62 114 | 24.31 172 | 51.99 94 | 47.00 142 | 39.04 145 | 68.11 93 | 67.75 82 | 76.03 93 | 70.72 112 |
|
Baseline_NR-MVSNet | | | 53.50 127 | 57.89 124 | 48.37 139 | 54.60 129 | 59.25 140 | 56.10 132 | 51.84 44 | 49.32 101 | 17.92 185 | 45.38 138 | 47.68 134 | 36.93 158 | 68.11 93 | 65.95 110 | 72.84 126 | 69.57 123 |
|
v148 | | | 55.58 114 | 57.61 129 | 53.20 101 | 54.59 131 | 61.86 115 | 61.18 103 | 38.70 157 | 44.30 144 | 42.25 95 | 47.53 116 | 50.24 125 | 48.73 98 | 65.15 138 | 62.61 148 | 73.79 112 | 71.61 108 |
|
PEN-MVS | | | 49.21 156 | 54.32 146 | 43.24 169 | 54.33 132 | 59.26 139 | 47.04 176 | 51.37 49 | 41.67 165 | 9.97 198 | 46.22 128 | 41.80 178 | 22.97 190 | 60.52 156 | 64.03 133 | 73.73 113 | 66.75 139 |
|
pm-mvs1 | | | 51.02 144 | 55.55 136 | 45.73 154 | 54.16 133 | 58.52 145 | 50.92 159 | 42.56 125 | 40.32 173 | 25.67 167 | 43.66 150 | 50.34 124 | 30.06 176 | 65.85 131 | 63.97 134 | 70.99 148 | 66.21 144 |
|
EPNet_dtu | | | 52.05 137 | 58.26 121 | 44.81 160 | 54.10 134 | 50.09 179 | 52.01 157 | 40.82 140 | 53.03 80 | 27.41 160 | 54.90 79 | 57.96 95 | 26.72 183 | 62.97 144 | 62.70 147 | 67.78 159 | 66.19 146 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
tpm | | | 48.82 159 | 51.27 167 | 45.96 153 | 54.10 134 | 47.35 186 | 56.05 133 | 30.23 191 | 46.70 126 | 43.21 89 | 52.54 91 | 47.55 137 | 37.28 156 | 54.11 190 | 50.50 193 | 54.90 193 | 60.12 177 |
|
CDS-MVSNet | | | 52.42 133 | 57.06 132 | 47.02 150 | 53.92 136 | 58.30 149 | 55.50 140 | 46.47 70 | 42.52 161 | 29.38 152 | 49.50 104 | 52.85 113 | 28.49 181 | 66.70 119 | 66.89 93 | 68.34 156 | 62.63 167 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
test20.03 | | | 40.38 191 | 44.20 192 | 35.92 190 | 53.73 137 | 49.05 180 | 38.54 198 | 43.49 113 | 32.55 196 | 9.54 199 | 27.88 196 | 39.12 188 | 12.24 201 | 56.28 181 | 54.69 180 | 57.96 188 | 49.83 198 |
|
Vis-MVSNet | | | 58.48 86 | 65.70 68 | 50.06 120 | 53.40 138 | 67.20 79 | 60.24 110 | 43.32 117 | 48.83 108 | 30.23 147 | 62.38 51 | 61.61 77 | 40.35 141 | 71.03 63 | 69.77 63 | 72.82 127 | 79.11 59 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
PLC | | 52.09 14 | 59.21 78 | 62.47 81 | 55.41 88 | 53.24 139 | 64.84 101 | 64.47 91 | 40.41 146 | 65.92 52 | 44.53 84 | 46.19 129 | 55.69 104 | 55.33 61 | 68.24 90 | 65.30 119 | 74.50 105 | 71.09 110 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
thisisatest0530 | | | 56.68 105 | 59.68 104 | 53.19 102 | 52.97 140 | 60.96 126 | 59.41 113 | 40.51 142 | 48.26 117 | 41.06 103 | 52.67 89 | 46.30 149 | 49.78 92 | 67.66 104 | 67.83 79 | 75.39 98 | 74.07 100 |
|
OMC-MVS | | | 65.16 54 | 71.35 44 | 57.94 69 | 52.95 141 | 68.82 61 | 69.00 55 | 38.28 159 | 79.89 15 | 55.20 41 | 62.76 48 | 68.31 57 | 56.14 57 | 71.30 60 | 68.70 71 | 76.06 92 | 79.67 56 |
|
tpmrst | | | 48.08 164 | 49.88 176 | 45.98 152 | 52.71 142 | 48.11 184 | 53.62 153 | 33.70 183 | 48.70 112 | 39.74 109 | 48.96 107 | 46.23 151 | 40.29 142 | 50.14 198 | 49.28 195 | 55.80 190 | 57.71 183 |
|
tttt0517 | | | 56.53 107 | 59.59 106 | 52.95 105 | 52.66 143 | 60.99 125 | 59.21 115 | 40.51 142 | 47.89 120 | 40.40 106 | 52.50 92 | 46.04 153 | 49.78 92 | 67.75 102 | 67.83 79 | 75.15 101 | 74.17 97 |
|
GBi-Net | | | 55.20 117 | 60.25 96 | 49.31 123 | 52.42 144 | 61.44 118 | 57.03 125 | 44.04 95 | 49.18 103 | 30.47 143 | 48.28 110 | 58.19 91 | 38.22 148 | 68.05 96 | 66.96 90 | 73.69 114 | 69.65 120 |
|
test1 | | | 55.20 117 | 60.25 96 | 49.31 123 | 52.42 144 | 61.44 118 | 57.03 125 | 44.04 95 | 49.18 103 | 30.47 143 | 48.28 110 | 58.19 91 | 38.22 148 | 68.05 96 | 66.96 90 | 73.69 114 | 69.65 120 |
|
FMVSNet2 | | | 55.04 121 | 59.95 103 | 49.31 123 | 52.42 144 | 61.44 118 | 57.03 125 | 44.08 94 | 49.55 97 | 30.40 146 | 46.89 119 | 58.84 89 | 38.22 148 | 67.07 115 | 66.21 106 | 73.69 114 | 69.65 120 |
|
FMVSNet3 | | | 54.78 122 | 59.58 108 | 49.17 126 | 52.37 147 | 61.31 122 | 56.72 130 | 44.04 95 | 49.18 103 | 30.47 143 | 48.28 110 | 58.19 91 | 38.09 151 | 65.48 135 | 65.20 122 | 73.31 121 | 69.45 128 |
|
testgi | | | 38.71 193 | 43.64 193 | 32.95 194 | 52.30 148 | 48.63 183 | 35.59 203 | 35.05 173 | 31.58 200 | 9.03 202 | 30.29 189 | 40.75 182 | 11.19 206 | 55.30 186 | 53.47 189 | 54.53 195 | 45.48 201 |
|
Anonymous20231206 | | | 42.28 184 | 45.89 187 | 38.07 185 | 51.96 149 | 48.98 181 | 43.66 191 | 38.81 156 | 38.74 182 | 14.32 190 | 26.74 197 | 40.90 180 | 20.94 191 | 56.64 179 | 54.67 181 | 58.71 184 | 54.59 187 |
|
pmmvs6 | | | 48.35 162 | 51.64 164 | 44.51 162 | 51.92 150 | 57.94 154 | 49.44 165 | 42.17 129 | 34.45 192 | 24.62 171 | 28.87 195 | 46.90 144 | 29.07 180 | 64.60 141 | 63.08 141 | 69.83 152 | 65.68 151 |
|
PatchmatchNet | | | 49.92 152 | 51.29 166 | 48.32 140 | 51.83 151 | 51.86 173 | 53.38 155 | 37.63 164 | 47.90 119 | 40.83 104 | 48.54 109 | 45.30 158 | 45.19 119 | 56.86 175 | 53.99 186 | 61.08 181 | 54.57 188 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
WR-MVS_H | | | 47.65 167 | 53.67 149 | 40.63 178 | 51.45 152 | 59.74 136 | 44.71 188 | 49.37 59 | 40.69 171 | 7.61 205 | 46.04 131 | 44.34 172 | 17.32 195 | 57.79 172 | 61.18 153 | 73.30 122 | 65.86 149 |
|
LTVRE_ROB | | 44.17 16 | 47.06 172 | 50.15 175 | 43.44 166 | 51.39 153 | 58.42 146 | 42.90 192 | 43.51 111 | 22.27 206 | 14.85 189 | 41.94 166 | 34.57 197 | 45.43 116 | 62.28 150 | 62.77 146 | 62.56 178 | 68.83 131 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
CP-MVSNet | | | 48.37 161 | 53.53 150 | 42.34 171 | 51.35 154 | 58.01 153 | 46.56 177 | 50.54 53 | 41.62 166 | 10.61 195 | 46.53 126 | 40.68 183 | 23.18 188 | 58.71 166 | 61.83 150 | 71.81 141 | 67.36 138 |
|
PS-CasMVS | | | 48.18 163 | 53.25 154 | 42.27 172 | 51.26 155 | 57.94 154 | 46.51 178 | 50.52 54 | 41.30 167 | 10.56 196 | 45.35 140 | 40.34 185 | 23.04 189 | 58.66 167 | 61.79 151 | 71.74 143 | 67.38 137 |
|
our_test_3 | | | | | | 51.15 156 | 57.31 157 | 55.12 144 | | | | | | | | | | |
|
SCA | | | 50.99 145 | 53.22 155 | 48.40 138 | 51.07 157 | 56.78 159 | 50.25 161 | 39.05 151 | 48.31 116 | 41.38 99 | 49.54 103 | 46.70 147 | 46.00 114 | 58.31 168 | 56.28 168 | 62.65 176 | 56.60 185 |
|
UniMVSNet_ETH3D | | | 52.62 131 | 55.98 135 | 48.70 134 | 51.04 158 | 60.71 128 | 56.87 128 | 46.74 69 | 42.52 161 | 26.96 163 | 42.50 163 | 45.95 154 | 37.87 152 | 66.22 126 | 65.15 125 | 72.74 128 | 68.78 132 |
|
IterMVS-SCA-FT | | | 52.18 136 | 57.75 127 | 45.68 155 | 51.01 159 | 62.06 114 | 55.10 145 | 34.75 174 | 44.85 138 | 32.86 135 | 51.13 99 | 51.22 117 | 48.74 97 | 62.47 148 | 61.51 152 | 51.61 200 | 71.02 111 |
|
FMVSNet1 | | | 54.08 125 | 58.68 117 | 48.71 133 | 50.90 160 | 61.35 121 | 56.73 129 | 43.94 99 | 45.91 133 | 29.32 153 | 42.72 161 | 56.26 102 | 37.70 153 | 68.05 96 | 66.96 90 | 73.69 114 | 69.50 124 |
|
pmmvs-eth3d | | | 51.33 142 | 52.25 161 | 50.26 119 | 50.82 161 | 54.65 163 | 56.03 134 | 43.45 116 | 43.51 150 | 37.20 124 | 39.20 171 | 39.04 189 | 42.28 133 | 61.85 152 | 62.78 145 | 71.78 142 | 64.72 157 |
|
MVSTER | | | 57.19 99 | 61.11 87 | 52.62 108 | 50.82 161 | 58.79 143 | 61.55 100 | 37.86 162 | 48.81 109 | 41.31 100 | 57.43 70 | 52.10 115 | 48.60 100 | 68.19 92 | 66.75 95 | 75.56 96 | 75.68 89 |
|
ambc | | | | 45.54 190 | | 50.66 163 | 52.63 171 | 40.99 195 | | 38.36 184 | 24.67 170 | 22.62 202 | 13.94 211 | 29.14 179 | 65.71 133 | 58.06 166 | 58.60 186 | 67.43 136 |
|
thisisatest0515 | | | 53.85 126 | 56.84 133 | 50.37 118 | 50.25 164 | 58.17 151 | 55.99 135 | 39.90 149 | 41.88 164 | 38.16 118 | 45.91 132 | 45.30 158 | 44.58 121 | 66.15 128 | 66.89 93 | 73.36 120 | 73.57 103 |
|
baseline | | | 55.19 119 | 60.88 88 | 48.55 136 | 49.87 165 | 58.10 152 | 58.70 117 | 34.75 174 | 52.82 83 | 39.48 114 | 60.18 57 | 60.86 78 | 45.41 117 | 61.05 154 | 60.74 157 | 63.10 174 | 72.41 105 |
|
MDTV_nov1_ep13 | | | 50.32 149 | 52.43 160 | 47.86 146 | 49.87 165 | 54.70 162 | 58.10 119 | 34.29 178 | 45.59 136 | 37.71 120 | 47.44 117 | 47.42 138 | 41.86 135 | 58.07 171 | 55.21 177 | 65.34 168 | 58.56 181 |
|
IterMVS | | | 53.45 128 | 57.12 131 | 49.17 126 | 49.23 167 | 60.93 127 | 59.05 116 | 34.63 176 | 44.53 140 | 33.22 132 | 51.09 100 | 51.01 120 | 48.38 101 | 62.43 149 | 60.79 156 | 70.54 150 | 69.05 130 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
COLMAP_ROB | | 46.52 15 | 51.99 139 | 54.86 143 | 48.63 135 | 49.13 168 | 61.73 117 | 60.53 108 | 36.57 167 | 53.14 78 | 32.95 134 | 37.10 174 | 38.68 190 | 40.49 140 | 65.72 132 | 63.08 141 | 72.11 140 | 64.60 158 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
CR-MVSNet | | | 50.47 146 | 52.61 157 | 47.98 144 | 49.03 169 | 52.94 168 | 48.27 168 | 38.86 154 | 44.41 141 | 39.59 111 | 44.34 144 | 44.65 169 | 46.63 111 | 58.97 163 | 60.31 158 | 65.48 166 | 62.66 165 |
|
V42 | | | 56.97 102 | 60.14 100 | 53.28 100 | 48.16 170 | 62.78 113 | 66.30 73 | 37.93 161 | 47.44 122 | 42.68 92 | 48.19 113 | 52.59 114 | 51.90 86 | 67.46 107 | 65.94 111 | 72.72 129 | 76.55 80 |
|
MDTV_nov1_ep13_2view | | | 47.62 168 | 49.72 177 | 45.18 158 | 48.05 171 | 53.70 166 | 54.90 146 | 33.80 182 | 39.90 176 | 29.79 149 | 38.85 172 | 41.89 177 | 39.17 144 | 58.99 162 | 55.55 174 | 65.34 168 | 59.17 179 |
|
EPMVS | | | 44.66 179 | 47.86 183 | 40.92 177 | 47.97 172 | 44.70 196 | 47.58 173 | 33.27 185 | 48.11 118 | 29.58 151 | 49.65 102 | 44.38 171 | 34.65 165 | 51.71 193 | 47.90 197 | 52.49 198 | 48.57 199 |
|
RPMNet | | | 46.41 173 | 48.72 179 | 43.72 164 | 47.77 173 | 52.94 168 | 46.02 181 | 33.92 180 | 44.41 141 | 31.82 140 | 36.89 175 | 37.42 195 | 37.41 154 | 53.88 191 | 54.02 184 | 65.37 167 | 61.47 171 |
|
TAPA-MVS | | 54.74 10 | 60.85 71 | 66.61 59 | 54.12 95 | 47.38 174 | 65.33 94 | 65.35 84 | 36.51 168 | 75.16 30 | 48.82 68 | 54.70 82 | 63.51 68 | 53.31 76 | 68.36 86 | 64.97 126 | 73.37 119 | 74.27 96 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
SixPastTwentyTwo | | | 47.55 169 | 50.25 174 | 44.41 163 | 47.30 175 | 54.31 165 | 47.81 171 | 40.36 147 | 33.76 193 | 19.93 180 | 43.75 149 | 32.77 201 | 42.07 134 | 59.82 159 | 60.94 155 | 68.98 153 | 66.37 143 |
|
TAMVS | | | 44.02 181 | 49.18 178 | 37.99 186 | 47.03 176 | 45.97 193 | 45.04 185 | 28.47 195 | 39.11 180 | 20.23 179 | 43.22 157 | 48.52 127 | 28.49 181 | 58.15 170 | 57.95 167 | 58.71 184 | 51.36 191 |
|
UGNet | | | 57.03 100 | 65.25 70 | 47.44 148 | 46.54 177 | 66.73 83 | 56.30 131 | 43.28 118 | 50.06 93 | 32.99 133 | 62.57 50 | 63.26 69 | 33.31 171 | 68.25 88 | 67.58 85 | 72.20 139 | 78.29 64 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
TSAR-MVS + COLMAP | | | 62.65 64 | 69.90 52 | 54.19 93 | 46.31 178 | 66.73 83 | 65.49 83 | 41.36 135 | 76.57 24 | 46.31 74 | 76.80 16 | 56.68 97 | 53.27 77 | 69.50 74 | 66.65 98 | 72.40 136 | 76.36 83 |
|
PatchMatch-RL | | | 50.11 151 | 51.56 165 | 48.43 137 | 46.23 179 | 51.94 172 | 50.21 162 | 38.62 158 | 46.62 128 | 37.51 121 | 42.43 164 | 39.38 187 | 52.24 84 | 60.98 155 | 59.56 161 | 65.76 165 | 60.01 178 |
|
CMPMVS | | 37.70 17 | 49.24 155 | 52.71 156 | 45.19 157 | 45.97 180 | 51.23 175 | 47.44 174 | 29.31 192 | 43.04 153 | 44.69 82 | 34.45 183 | 48.35 128 | 43.64 124 | 62.59 146 | 59.82 160 | 60.08 182 | 69.48 125 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
pmmvs5 | | | 47.07 171 | 51.02 170 | 42.46 170 | 45.18 181 | 51.47 174 | 48.23 170 | 33.09 186 | 38.17 186 | 28.62 156 | 46.60 123 | 43.48 174 | 30.74 174 | 58.28 169 | 58.63 164 | 68.92 154 | 60.48 174 |
|
USDC | | | 51.11 143 | 53.71 148 | 48.08 143 | 44.76 182 | 55.99 161 | 53.01 156 | 40.90 138 | 52.49 84 | 36.14 126 | 44.67 143 | 33.66 199 | 43.27 129 | 63.23 143 | 61.10 154 | 70.39 151 | 64.82 156 |
|
FC-MVSNet-test | | | 39.65 192 | 48.35 181 | 29.49 197 | 44.43 183 | 39.28 203 | 30.23 206 | 40.44 145 | 43.59 148 | 3.12 211 | 53.00 87 | 42.03 176 | 10.02 208 | 55.09 187 | 54.77 179 | 48.66 201 | 50.71 193 |
|
ADS-MVSNet | | | 40.67 189 | 43.38 194 | 37.50 187 | 44.36 184 | 39.79 202 | 42.09 194 | 32.67 189 | 44.34 143 | 28.87 155 | 40.76 169 | 40.37 184 | 30.22 175 | 48.34 202 | 45.87 201 | 46.81 203 | 44.21 203 |
|
new-patchmatchnet | | | 33.24 199 | 37.20 200 | 28.62 199 | 44.32 185 | 38.26 204 | 29.68 207 | 36.05 169 | 31.97 198 | 6.33 207 | 26.59 198 | 27.33 204 | 11.12 207 | 50.08 199 | 41.05 203 | 44.23 204 | 45.15 202 |
|
MVS-HIRNet | | | 42.24 185 | 41.15 197 | 43.51 165 | 44.06 186 | 40.74 199 | 35.77 202 | 35.35 171 | 35.38 191 | 38.34 116 | 25.63 199 | 38.55 191 | 43.48 126 | 50.77 195 | 47.03 199 | 64.07 170 | 49.98 195 |
|
PatchT | | | 48.08 164 | 51.03 169 | 44.64 161 | 42.96 187 | 50.12 178 | 40.36 196 | 35.09 172 | 43.17 152 | 39.59 111 | 42.00 165 | 39.96 186 | 46.63 111 | 58.97 163 | 60.31 158 | 63.21 173 | 62.66 165 |
|
CVMVSNet | | | 46.38 175 | 52.01 163 | 39.81 180 | 42.40 188 | 50.26 177 | 46.15 179 | 37.68 163 | 40.03 175 | 15.09 188 | 46.56 124 | 47.56 136 | 33.72 170 | 56.50 180 | 55.65 173 | 63.80 172 | 67.53 135 |
|
TinyColmap | | | 47.08 170 | 47.56 184 | 46.52 151 | 42.35 189 | 53.44 167 | 51.77 158 | 40.70 141 | 43.44 151 | 31.92 139 | 29.78 192 | 23.72 208 | 45.04 120 | 61.99 151 | 59.54 162 | 67.35 160 | 61.03 172 |
|
ET-MVSNet_ETH3D | | | 58.38 89 | 61.57 84 | 54.67 91 | 42.15 190 | 65.26 96 | 65.70 79 | 43.82 100 | 48.84 107 | 42.34 94 | 59.76 59 | 47.76 133 | 56.68 52 | 67.02 116 | 68.60 74 | 77.33 73 | 73.73 102 |
|
MIMVSNet | | | 43.79 182 | 48.53 180 | 38.27 184 | 41.46 191 | 48.97 182 | 50.81 160 | 32.88 188 | 44.55 139 | 22.07 174 | 32.05 185 | 47.15 140 | 24.76 186 | 58.73 165 | 56.09 171 | 57.63 189 | 52.14 189 |
|
N_pmnet | | | 32.67 200 | 36.85 201 | 27.79 200 | 40.55 192 | 32.13 205 | 35.80 201 | 26.79 198 | 37.24 189 | 9.10 200 | 32.02 186 | 30.94 202 | 16.30 197 | 47.22 203 | 41.21 202 | 38.21 206 | 37.21 204 |
|
anonymousdsp | | | 52.84 130 | 57.78 126 | 47.06 149 | 40.24 193 | 58.95 142 | 53.70 151 | 33.54 184 | 36.51 190 | 32.69 136 | 43.88 147 | 45.40 156 | 47.97 106 | 67.17 111 | 70.28 58 | 74.22 108 | 82.29 47 |
|
EU-MVSNet | | | 40.63 190 | 45.65 189 | 34.78 193 | 39.11 194 | 46.94 190 | 40.02 197 | 34.03 179 | 33.50 194 | 10.37 197 | 35.57 179 | 37.80 193 | 23.65 187 | 51.90 192 | 50.21 194 | 61.49 180 | 63.62 163 |
|
FPMVS | | | 38.36 194 | 40.41 198 | 35.97 189 | 38.92 195 | 39.85 201 | 45.50 183 | 25.79 201 | 41.13 168 | 18.70 182 | 30.10 190 | 24.56 206 | 31.86 173 | 49.42 200 | 46.80 200 | 55.04 191 | 51.03 192 |
|
TESTMET0.1,1 | | | 46.09 176 | 50.29 172 | 41.18 176 | 36.91 196 | 47.16 187 | 49.52 163 | 20.32 205 | 39.22 178 | 31.98 137 | 43.65 151 | 47.93 131 | 41.29 138 | 56.80 176 | 55.36 175 | 67.08 162 | 61.94 169 |
|
FMVSNet5 | | | 40.96 187 | 45.81 188 | 35.29 192 | 34.30 197 | 44.55 197 | 47.28 175 | 28.84 194 | 40.76 170 | 21.62 175 | 29.85 191 | 42.44 175 | 24.77 185 | 57.53 173 | 55.00 178 | 54.93 192 | 50.56 194 |
|
PMMVS | | | 49.20 157 | 54.28 147 | 43.28 168 | 34.13 198 | 45.70 194 | 48.98 166 | 26.09 200 | 46.31 130 | 34.92 131 | 55.22 78 | 53.47 110 | 47.48 108 | 59.43 160 | 59.04 163 | 68.05 158 | 60.77 173 |
|
PMVS | | 27.84 18 | 33.81 198 | 35.28 202 | 32.09 195 | 34.13 198 | 24.81 208 | 32.51 205 | 26.48 199 | 26.41 203 | 19.37 181 | 23.76 200 | 24.02 207 | 25.18 184 | 50.78 194 | 47.24 198 | 54.89 194 | 49.95 196 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
test-mter | | | 45.30 177 | 50.37 171 | 39.38 181 | 33.65 200 | 46.99 189 | 47.59 172 | 18.59 206 | 38.75 181 | 28.00 157 | 43.28 156 | 46.82 146 | 41.50 137 | 57.28 174 | 55.78 172 | 66.93 164 | 63.70 162 |
|
CHOSEN 280x420 | | | 40.80 188 | 45.05 191 | 35.84 191 | 32.95 201 | 29.57 206 | 44.98 186 | 23.71 203 | 37.54 188 | 18.42 183 | 31.36 188 | 47.07 141 | 46.41 113 | 56.71 178 | 54.65 182 | 48.55 202 | 58.47 182 |
|
PM-MVS | | | 44.55 180 | 48.13 182 | 40.37 179 | 32.85 202 | 46.82 191 | 46.11 180 | 29.28 193 | 40.48 172 | 29.99 148 | 39.98 170 | 34.39 198 | 41.80 136 | 56.08 183 | 53.88 188 | 62.19 179 | 65.31 152 |
|
TDRefinement | | | 49.31 153 | 52.44 159 | 45.67 156 | 30.44 203 | 59.42 137 | 59.24 114 | 39.78 150 | 48.76 110 | 31.20 142 | 35.73 178 | 29.90 203 | 42.81 132 | 64.24 142 | 62.59 149 | 70.55 149 | 66.43 141 |
|
Gipuma | | | 25.87 201 | 26.91 204 | 24.66 201 | 28.98 204 | 20.17 209 | 20.46 208 | 34.62 177 | 29.55 201 | 9.10 200 | 4.91 211 | 5.31 215 | 15.76 198 | 49.37 201 | 49.10 196 | 39.03 205 | 29.95 206 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MDA-MVSNet-bldmvs | | | 41.36 186 | 43.15 195 | 39.27 182 | 28.74 205 | 52.68 170 | 44.95 187 | 40.84 139 | 32.89 195 | 18.13 184 | 31.61 187 | 22.09 209 | 38.97 147 | 50.45 197 | 56.11 170 | 64.01 171 | 56.23 186 |
|
E-PMN | | | 15.09 204 | 13.19 207 | 17.30 203 | 27.80 206 | 12.62 212 | 7.81 212 | 27.54 196 | 14.62 210 | 3.19 209 | 6.89 208 | 2.52 218 | 15.09 199 | 15.93 207 | 20.22 207 | 22.38 208 | 19.53 209 |
|
MIMVSNet1 | | | 35.51 196 | 41.41 196 | 28.63 198 | 27.53 207 | 43.36 198 | 38.09 199 | 33.82 181 | 32.01 197 | 6.77 206 | 21.63 203 | 35.43 196 | 11.97 203 | 55.05 188 | 53.99 186 | 53.59 197 | 48.36 200 |
|
EMVS | | | 14.49 205 | 12.45 208 | 16.87 205 | 27.02 208 | 12.56 213 | 8.13 211 | 27.19 197 | 15.05 209 | 3.14 210 | 6.69 209 | 2.67 217 | 15.08 200 | 14.60 209 | 18.05 208 | 20.67 209 | 17.56 211 |
|
pmmvs3 | | | 35.10 197 | 38.47 199 | 31.17 196 | 26.37 209 | 40.47 200 | 34.51 204 | 18.09 207 | 24.75 204 | 16.88 186 | 23.05 201 | 26.69 205 | 32.69 172 | 50.73 196 | 51.60 191 | 58.46 187 | 51.98 190 |
|
RPSCF | | | 46.41 173 | 54.42 145 | 37.06 188 | 25.70 210 | 45.14 195 | 45.39 184 | 20.81 204 | 62.79 58 | 35.10 128 | 44.92 142 | 55.60 105 | 43.56 125 | 56.12 182 | 52.45 190 | 51.80 199 | 63.91 161 |
|
new_pmnet | | | 23.19 202 | 28.17 203 | 17.37 202 | 17.03 211 | 24.92 207 | 19.66 209 | 16.16 209 | 27.05 202 | 4.42 208 | 20.77 204 | 19.20 210 | 12.19 202 | 37.71 204 | 36.38 204 | 34.77 207 | 31.17 205 |
|
PMMVS2 | | | 15.84 203 | 19.68 205 | 11.35 206 | 15.74 212 | 16.95 210 | 13.31 210 | 17.64 208 | 16.08 208 | 0.36 214 | 13.12 205 | 11.47 212 | 1.69 210 | 28.82 205 | 27.24 206 | 19.38 210 | 24.09 208 |
|
MVE | | 12.28 19 | 13.53 206 | 15.72 206 | 10.96 207 | 7.39 213 | 15.71 211 | 6.05 213 | 23.73 202 | 10.29 212 | 3.01 212 | 5.77 210 | 3.41 216 | 11.91 204 | 20.11 206 | 29.79 205 | 13.67 211 | 24.98 207 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
tmp_tt | | | | | 5.40 208 | 3.97 214 | 2.35 215 | 3.26 215 | 0.44 211 | 17.56 207 | 12.09 192 | 11.48 207 | 7.14 213 | 1.98 209 | 15.68 208 | 15.49 209 | 10.69 212 | |
|
GG-mvs-BLEND | | | 36.62 195 | 53.39 152 | 17.06 204 | 0.01 215 | 58.61 144 | 48.63 167 | 0.01 212 | 47.13 124 | 0.02 215 | 43.98 146 | 60.64 81 | 0.03 211 | 54.92 189 | 51.47 192 | 53.64 196 | 56.99 184 |
|
uanet_test | | | 0.00 209 | 0.00 211 | 0.00 209 | 0.00 216 | 0.00 216 | 0.00 218 | 0.00 213 | 0.00 215 | 0.00 216 | 0.00 214 | 0.00 219 | 0.00 214 | 0.00 212 | 0.00 212 | 0.00 214 | 0.00 214 |
|
sosnet-low-res | | | 0.00 209 | 0.00 211 | 0.00 209 | 0.00 216 | 0.00 216 | 0.00 218 | 0.00 213 | 0.00 215 | 0.00 216 | 0.00 214 | 0.00 219 | 0.00 214 | 0.00 212 | 0.00 212 | 0.00 214 | 0.00 214 |
|
sosnet | | | 0.00 209 | 0.00 211 | 0.00 209 | 0.00 216 | 0.00 216 | 0.00 218 | 0.00 213 | 0.00 215 | 0.00 216 | 0.00 214 | 0.00 219 | 0.00 214 | 0.00 212 | 0.00 212 | 0.00 214 | 0.00 214 |
|
testmvs | | | 0.01 207 | 0.02 209 | 0.00 209 | 0.00 216 | 0.00 216 | 0.01 217 | 0.00 213 | 0.01 213 | 0.00 216 | 0.03 213 | 0.00 219 | 0.01 212 | 0.01 211 | 0.01 210 | 0.00 214 | 0.06 213 |
|
test123 | | | 0.01 207 | 0.02 209 | 0.00 209 | 0.00 216 | 0.00 216 | 0.00 218 | 0.00 213 | 0.01 213 | 0.00 216 | 0.04 212 | 0.00 219 | 0.01 212 | 0.00 212 | 0.01 210 | 0.00 214 | 0.07 212 |
|
9.14 | | | | | | | | | | | | | 81.81 12 | | | | | |
|
test_part1 | | | | | | | | | | | | | | | | | | 90.62 2 |
|
MTAPA | | | | | | | | | | | 65.14 2 | | 80.20 19 | | | | | |
|
MTMP | | | | | | | | | | | 62.63 16 | | 78.04 26 | | | | | |
|
Patchmatch-RL test | | | | | | | | 1.04 216 | | | | | | | | | | |
|
NP-MVS | | | | | | | | | | 72.00 39 | | | | | | | | |
|
Patchmtry | | | | | | | 47.61 185 | 48.27 168 | 38.86 154 | | 39.59 111 | | | | | | | |
|
DeepMVS_CX | | | | | | | 6.95 214 | 5.98 214 | 2.25 210 | 11.73 211 | 2.07 213 | 11.85 206 | 5.43 214 | 11.75 205 | 11.40 210 | | 8.10 213 | 18.38 210 |
|