DVP-MVS++ | | | 78.76 3 | 84.44 3 | 72.14 2 | 76.63 8 | 81.93 3 | 82.92 6 | 58.10 5 | 85.86 4 | 66.53 3 | 87.86 5 | 86.16 2 | 66.45 1 | 80.46 3 | 78.53 9 | 82.19 28 | 90.29 4 |
|
SED-MVS | | | 79.21 1 | 84.74 2 | 72.75 1 | 78.66 3 | 81.96 2 | 82.94 5 | 58.16 4 | 86.82 2 | 67.66 1 | 88.29 4 | 86.15 3 | 66.42 2 | 80.41 4 | 78.65 6 | 82.65 17 | 90.92 2 |
|
MSP-MVS | | | 77.82 5 | 83.46 5 | 71.24 9 | 75.26 17 | 80.22 8 | 82.95 4 | 57.85 8 | 85.90 3 | 64.79 6 | 88.54 3 | 83.43 7 | 66.24 3 | 78.21 18 | 78.56 7 | 80.34 49 | 89.39 7 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
APDe-MVS | | | 77.58 6 | 82.93 6 | 71.35 7 | 77.86 5 | 80.55 7 | 83.38 1 | 57.61 10 | 85.57 5 | 61.11 22 | 86.10 7 | 82.98 8 | 64.76 4 | 78.29 15 | 76.78 23 | 83.40 6 | 90.20 5 |
|
DPE-MVS |  | | 78.11 4 | 83.84 4 | 71.42 6 | 77.82 6 | 81.32 4 | 82.92 6 | 57.81 9 | 84.04 8 | 63.19 14 | 88.63 2 | 86.00 4 | 64.52 5 | 78.71 11 | 77.63 16 | 82.26 24 | 90.57 3 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
HPM-MVS++ |  | | 76.01 10 | 80.47 12 | 70.81 10 | 76.60 9 | 74.96 37 | 80.18 18 | 58.36 2 | 81.96 11 | 63.50 13 | 78.80 15 | 82.53 11 | 64.40 6 | 78.74 10 | 78.84 5 | 81.81 34 | 87.46 19 |
|
APD-MVS |  | | 75.80 11 | 80.90 11 | 69.86 17 | 75.42 16 | 78.48 17 | 81.43 14 | 57.44 13 | 80.45 16 | 59.32 28 | 85.28 8 | 80.82 18 | 63.96 7 | 76.89 30 | 76.08 28 | 81.58 40 | 88.30 12 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
SMA-MVS |  | | 77.32 7 | 82.51 7 | 71.26 8 | 75.43 15 | 80.19 9 | 82.22 8 | 58.26 3 | 84.83 7 | 64.36 9 | 78.19 16 | 83.46 6 | 63.61 8 | 81.00 1 | 80.28 1 | 83.66 4 | 89.62 6 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
DeepC-MVS | | 66.32 2 | 73.85 24 | 78.10 23 | 68.90 24 | 67.92 51 | 79.31 12 | 78.16 30 | 59.28 1 | 78.24 23 | 61.13 21 | 67.36 37 | 76.10 34 | 63.40 9 | 79.11 9 | 78.41 11 | 83.52 5 | 88.16 13 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DVP-MVS |  | | 78.77 2 | 84.89 1 | 71.62 5 | 78.04 4 | 82.05 1 | 81.64 11 | 57.96 7 | 87.53 1 | 66.64 2 | 88.77 1 | 86.31 1 | 63.16 10 | 79.99 7 | 78.56 7 | 82.31 23 | 91.03 1 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
CNVR-MVS | | | 75.62 12 | 79.91 14 | 70.61 11 | 75.76 11 | 78.82 15 | 81.66 10 | 57.12 14 | 79.77 18 | 63.04 15 | 70.69 25 | 81.15 16 | 62.99 11 | 80.23 5 | 79.54 3 | 83.11 9 | 89.16 8 |
|
HFP-MVS | | | 74.87 15 | 78.86 20 | 70.21 13 | 73.99 22 | 77.91 19 | 80.36 17 | 56.63 17 | 78.41 21 | 64.27 10 | 74.54 21 | 77.75 29 | 62.96 12 | 78.70 12 | 77.82 13 | 83.02 10 | 86.91 22 |
|
zzz-MVS | | | 74.25 21 | 77.97 24 | 69.91 16 | 73.43 25 | 74.06 45 | 79.69 20 | 56.44 19 | 80.74 15 | 64.98 5 | 68.72 31 | 79.98 21 | 62.92 13 | 78.24 17 | 77.77 15 | 81.99 32 | 86.30 24 |
|
xxxxxxxxxxxxxcwj | | | 74.63 17 | 77.07 28 | 71.79 3 | 79.32 1 | 80.76 5 | 82.96 2 | 57.49 11 | 82.82 9 | 64.79 6 | 83.69 10 | 52.03 122 | 62.83 14 | 77.13 27 | 75.21 32 | 83.35 7 | 87.85 16 |
|
SF-MVS | | | 77.13 8 | 81.70 8 | 71.79 3 | 79.32 1 | 80.76 5 | 82.96 2 | 57.49 11 | 82.82 9 | 64.79 6 | 83.69 10 | 84.46 5 | 62.83 14 | 77.13 27 | 75.21 32 | 83.35 7 | 87.85 16 |
|
DeepC-MVS_fast | | 65.08 3 | 72.00 31 | 76.11 30 | 67.21 30 | 68.93 47 | 77.46 22 | 76.54 36 | 54.35 33 | 74.92 33 | 58.64 32 | 65.18 39 | 74.04 44 | 62.62 16 | 77.92 20 | 77.02 22 | 82.16 31 | 86.21 25 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DeepPCF-MVS | | 66.49 1 | 74.25 21 | 80.97 10 | 66.41 33 | 67.75 53 | 78.87 14 | 75.61 40 | 54.16 35 | 84.86 6 | 58.22 34 | 77.94 17 | 81.01 17 | 62.52 17 | 78.34 13 | 77.38 17 | 80.16 52 | 88.40 11 |
|
MCST-MVS | | | 73.67 26 | 77.39 26 | 69.33 20 | 76.26 10 | 78.19 18 | 78.77 27 | 54.54 32 | 75.33 29 | 59.99 26 | 67.96 33 | 79.23 23 | 62.43 18 | 78.00 19 | 75.71 30 | 84.02 2 | 87.30 20 |
|
ACMMP_NAP | | | 76.15 9 | 81.17 9 | 70.30 12 | 74.09 21 | 79.47 11 | 81.59 13 | 57.09 15 | 81.38 12 | 63.89 12 | 79.02 14 | 80.48 19 | 62.24 19 | 80.05 6 | 79.12 4 | 82.94 12 | 88.64 9 |
|
NCCC | | | 74.27 20 | 77.83 25 | 70.13 14 | 75.70 12 | 77.41 24 | 80.51 16 | 57.09 15 | 78.25 22 | 62.28 19 | 65.54 38 | 78.26 26 | 62.18 20 | 79.13 8 | 78.51 10 | 83.01 11 | 87.68 18 |
|
TSAR-MVS + MP. | | | 75.22 14 | 80.06 13 | 69.56 18 | 74.61 19 | 72.74 51 | 80.59 15 | 55.70 25 | 80.80 14 | 62.65 17 | 86.25 6 | 82.92 9 | 62.07 21 | 76.89 30 | 75.66 31 | 81.77 36 | 85.19 34 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
MP-MVS |  | | 74.31 19 | 78.87 18 | 68.99 23 | 73.49 24 | 78.56 16 | 79.25 24 | 56.51 18 | 75.33 29 | 60.69 24 | 75.30 20 | 79.12 24 | 61.81 22 | 77.78 22 | 77.93 12 | 82.18 30 | 88.06 14 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
SD-MVS | | | 74.43 18 | 78.87 18 | 69.26 21 | 74.39 20 | 73.70 47 | 79.06 26 | 55.24 27 | 81.04 13 | 62.71 16 | 80.18 13 | 82.61 10 | 61.70 23 | 75.43 42 | 73.92 45 | 82.44 22 | 85.22 33 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
ACMMPR | | | 73.79 25 | 78.41 21 | 68.40 26 | 72.35 29 | 77.79 20 | 79.32 22 | 56.38 20 | 77.67 25 | 58.30 33 | 74.16 22 | 76.66 30 | 61.40 24 | 78.32 14 | 77.80 14 | 82.68 16 | 86.51 23 |
|
MSLP-MVS++ | | | 68.17 45 | 70.72 50 | 65.19 40 | 69.41 44 | 70.64 57 | 74.99 42 | 45.76 81 | 70.20 48 | 60.17 25 | 56.42 76 | 73.01 45 | 61.14 25 | 72.80 57 | 70.54 62 | 79.70 55 | 81.42 54 |
|
3Dnovator+ | | 62.63 4 | 69.51 37 | 72.62 41 | 65.88 38 | 68.21 50 | 76.47 31 | 73.50 50 | 52.74 44 | 70.85 45 | 58.65 31 | 55.97 78 | 69.95 52 | 61.11 26 | 76.80 32 | 75.09 34 | 81.09 44 | 83.23 46 |
|
train_agg | | | 73.89 23 | 78.25 22 | 68.80 25 | 75.25 18 | 72.27 53 | 79.75 19 | 56.05 22 | 74.87 34 | 58.97 29 | 81.83 12 | 79.76 22 | 61.05 27 | 77.39 26 | 76.01 29 | 81.71 37 | 85.61 31 |
|
PGM-MVS | | | 72.89 27 | 77.13 27 | 67.94 27 | 72.47 28 | 77.25 25 | 79.27 23 | 54.63 31 | 73.71 36 | 57.95 35 | 72.38 23 | 75.33 36 | 60.75 28 | 78.25 16 | 77.36 19 | 82.57 20 | 85.62 30 |
|
AdaColmap |  | | 67.89 47 | 68.85 58 | 66.77 31 | 73.73 23 | 74.30 44 | 75.28 41 | 53.58 38 | 70.24 47 | 57.59 36 | 51.19 103 | 59.19 93 | 60.74 29 | 75.33 44 | 73.72 47 | 79.69 57 | 77.96 72 |
|
SteuartSystems-ACMMP | | | 75.23 13 | 79.60 15 | 70.13 14 | 76.81 7 | 78.92 13 | 81.74 9 | 57.99 6 | 75.30 31 | 59.83 27 | 75.69 19 | 78.45 25 | 60.48 30 | 80.58 2 | 79.77 2 | 83.94 3 | 88.52 10 |
Skip Steuart: Steuart Systems R&D Blog. |
CP-MVS | | | 72.63 29 | 76.95 29 | 67.59 28 | 70.67 37 | 75.53 35 | 77.95 32 | 56.01 23 | 75.65 28 | 58.82 30 | 69.16 30 | 76.48 32 | 60.46 31 | 77.66 23 | 77.20 21 | 81.65 38 | 86.97 21 |
|
CS-MVS-test | | | 65.21 57 | 68.35 61 | 61.55 55 | 62.29 79 | 66.33 93 | 69.01 58 | 46.96 74 | 53.61 81 | 49.35 67 | 63.37 48 | 67.61 65 | 60.37 32 | 74.92 46 | 71.04 57 | 81.34 42 | 81.58 52 |
|
DROMVSNet | | | 67.01 52 | 70.27 54 | 63.21 50 | 67.21 54 | 70.47 59 | 69.01 58 | 46.96 74 | 59.16 68 | 53.23 57 | 64.01 44 | 69.71 54 | 60.37 32 | 74.92 46 | 71.24 56 | 82.50 21 | 82.41 47 |
|
CSCG | | | 74.68 16 | 79.22 16 | 69.40 19 | 75.69 13 | 80.01 10 | 79.12 25 | 52.83 43 | 79.34 19 | 63.99 11 | 70.49 26 | 82.02 12 | 60.35 34 | 77.48 25 | 77.22 20 | 84.38 1 | 87.97 15 |
|
TSAR-MVS + GP. | | | 69.71 36 | 73.92 38 | 64.80 44 | 68.27 49 | 70.56 58 | 71.90 52 | 50.75 53 | 71.38 43 | 57.46 37 | 68.68 32 | 75.42 35 | 60.10 35 | 73.47 54 | 73.99 44 | 80.32 50 | 83.97 39 |
|
CS-MVS | | | 64.01 61 | 68.64 60 | 58.60 69 | 60.26 93 | 65.23 104 | 65.49 88 | 38.99 160 | 57.42 70 | 46.13 82 | 63.70 47 | 68.62 58 | 59.83 36 | 73.63 52 | 70.66 59 | 80.93 45 | 81.24 55 |
|
OPM-MVS | | | 69.33 39 | 71.05 47 | 67.32 29 | 72.34 30 | 75.70 34 | 79.57 21 | 56.34 21 | 55.21 74 | 53.81 55 | 59.51 65 | 68.96 56 | 59.67 37 | 77.61 24 | 76.44 26 | 82.19 28 | 83.88 41 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
MVS_0304 | | | 69.49 38 | 73.96 37 | 64.28 47 | 67.92 51 | 76.13 33 | 74.90 43 | 47.60 71 | 63.29 59 | 54.09 54 | 67.44 36 | 76.35 33 | 59.53 38 | 75.81 39 | 75.03 35 | 81.62 39 | 83.70 42 |
|
CPTT-MVS | | | 68.76 43 | 73.01 39 | 63.81 49 | 65.42 64 | 73.66 48 | 76.39 38 | 52.08 45 | 72.61 40 | 50.33 64 | 60.73 61 | 72.65 47 | 59.43 39 | 73.32 55 | 72.12 51 | 79.19 62 | 85.99 27 |
|
ACMM | | 60.30 7 | 67.58 49 | 68.82 59 | 66.13 35 | 70.59 38 | 72.01 55 | 76.54 36 | 54.26 34 | 65.64 55 | 54.78 48 | 50.35 106 | 61.72 82 | 58.74 40 | 75.79 40 | 75.03 35 | 81.88 33 | 81.17 56 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
TSAR-MVS + ACMM | | | 72.56 30 | 79.07 17 | 64.96 42 | 73.24 26 | 73.16 50 | 78.50 28 | 48.80 69 | 79.34 19 | 55.32 42 | 85.04 9 | 81.49 15 | 58.57 41 | 75.06 45 | 73.75 46 | 75.35 108 | 85.61 31 |
|
DPM-MVS | | | 72.80 28 | 75.90 31 | 69.19 22 | 75.51 14 | 77.68 21 | 81.62 12 | 54.83 28 | 75.96 27 | 62.06 20 | 63.96 45 | 76.58 31 | 58.55 42 | 76.66 34 | 76.77 24 | 82.60 19 | 83.68 43 |
|
ACMMP |  | | 71.57 32 | 75.84 32 | 66.59 32 | 70.30 41 | 76.85 30 | 78.46 29 | 53.95 36 | 73.52 37 | 55.56 40 | 70.13 27 | 71.36 49 | 58.55 42 | 77.00 29 | 76.23 27 | 82.71 15 | 85.81 29 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
3Dnovator | | 60.86 6 | 66.99 53 | 70.32 52 | 63.11 51 | 66.63 57 | 74.52 40 | 71.56 55 | 45.76 81 | 67.37 53 | 55.00 45 | 54.31 89 | 68.19 61 | 58.49 44 | 73.97 51 | 73.63 48 | 81.22 43 | 80.23 59 |
|
MVS_111021_HR | | | 67.62 48 | 70.39 51 | 64.39 45 | 69.77 43 | 70.45 60 | 71.44 56 | 51.72 49 | 60.77 65 | 55.06 44 | 62.14 57 | 66.40 67 | 58.13 45 | 76.13 36 | 74.79 39 | 80.19 51 | 82.04 51 |
|
CANet | | | 68.77 42 | 73.01 39 | 63.83 48 | 68.30 48 | 75.19 36 | 73.73 49 | 47.90 70 | 63.86 56 | 54.84 47 | 67.51 35 | 74.36 42 | 57.62 46 | 74.22 50 | 73.57 49 | 80.56 47 | 82.36 48 |
|
CNLPA | | | 62.78 68 | 66.31 67 | 58.65 68 | 58.47 104 | 68.41 68 | 65.98 82 | 41.22 145 | 78.02 24 | 56.04 38 | 46.65 127 | 59.50 92 | 57.50 47 | 69.67 82 | 65.27 129 | 72.70 140 | 76.67 81 |
|
ETV-MVS | | | 63.23 64 | 66.08 69 | 59.91 61 | 63.13 78 | 68.13 70 | 67.62 65 | 44.62 95 | 53.39 84 | 46.23 80 | 58.74 67 | 58.19 96 | 57.45 48 | 73.60 53 | 71.38 55 | 80.39 48 | 79.13 63 |
|
MAR-MVS | | | 68.04 46 | 70.74 49 | 64.90 43 | 71.68 33 | 76.33 32 | 74.63 45 | 50.48 57 | 63.81 57 | 55.52 41 | 54.88 84 | 69.90 53 | 57.39 49 | 75.42 43 | 74.79 39 | 79.71 54 | 80.03 60 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
HQP-MVS | | | 70.88 35 | 75.02 35 | 66.05 36 | 71.69 32 | 74.47 42 | 77.51 33 | 53.17 40 | 72.89 38 | 54.88 46 | 70.03 28 | 70.48 51 | 57.26 50 | 76.02 37 | 75.01 37 | 81.78 35 | 86.21 25 |
|
PHI-MVS | | | 69.27 40 | 74.84 36 | 62.76 53 | 66.83 56 | 74.83 38 | 73.88 48 | 49.32 63 | 70.61 46 | 50.93 62 | 69.62 29 | 74.84 37 | 57.25 51 | 75.53 41 | 74.32 42 | 78.35 69 | 84.17 38 |
|
QAPM | | | 65.27 56 | 69.49 57 | 60.35 58 | 65.43 63 | 72.20 54 | 65.69 86 | 47.23 72 | 63.46 58 | 49.14 69 | 53.56 90 | 71.04 50 | 57.01 52 | 72.60 58 | 71.41 54 | 77.62 73 | 82.14 50 |
|
ACMP | | 61.42 5 | 68.72 44 | 71.37 45 | 65.64 39 | 69.06 46 | 74.45 43 | 75.88 39 | 53.30 39 | 68.10 51 | 55.74 39 | 61.53 60 | 62.29 78 | 56.97 53 | 74.70 48 | 74.23 43 | 82.88 13 | 84.31 36 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
CDPH-MVS | | | 71.47 33 | 75.82 33 | 66.41 33 | 72.97 27 | 77.15 26 | 78.14 31 | 54.71 29 | 69.88 49 | 53.07 58 | 70.98 24 | 74.83 38 | 56.95 54 | 76.22 35 | 76.57 25 | 82.62 18 | 85.09 35 |
|
abl_6 | | | | | 64.36 46 | 70.08 42 | 77.45 23 | 72.88 51 | 50.15 58 | 71.31 44 | 54.77 49 | 62.79 52 | 77.99 28 | 56.80 55 | | | 81.50 41 | 83.91 40 |
|
ET-MVSNet_ETH3D | | | 58.38 95 | 61.57 90 | 54.67 97 | 42.15 200 | 65.26 101 | 65.70 84 | 43.82 109 | 48.84 116 | 42.34 100 | 59.76 64 | 47.76 141 | 56.68 56 | 67.02 125 | 68.60 82 | 77.33 79 | 73.73 107 |
|
EIA-MVS | | | 61.53 76 | 63.79 84 | 58.89 67 | 63.82 76 | 67.61 77 | 65.35 90 | 42.15 138 | 49.98 103 | 45.66 84 | 57.47 74 | 56.62 103 | 56.59 57 | 70.91 71 | 69.15 73 | 79.78 53 | 74.80 98 |
|
LGP-MVS_train | | | 68.87 41 | 72.03 43 | 65.18 41 | 69.33 45 | 74.03 46 | 76.67 35 | 53.88 37 | 68.46 50 | 52.05 61 | 63.21 49 | 63.89 71 | 56.31 58 | 75.99 38 | 74.43 41 | 82.83 14 | 84.18 37 |
|
Effi-MVS+-dtu | | | 60.34 79 | 62.32 88 | 58.03 74 | 64.31 68 | 67.44 80 | 65.99 81 | 42.26 135 | 49.55 106 | 42.00 103 | 48.92 114 | 59.79 91 | 56.27 59 | 68.07 104 | 67.03 98 | 77.35 78 | 75.45 95 |
|
Fast-Effi-MVS+ | | | 60.36 78 | 63.35 85 | 56.87 85 | 58.70 101 | 65.86 96 | 65.08 92 | 37.11 174 | 53.00 89 | 45.36 86 | 52.12 97 | 56.07 108 | 56.27 59 | 71.28 66 | 69.42 71 | 78.71 63 | 75.69 93 |
|
OMC-MVS | | | 65.16 58 | 71.35 46 | 57.94 75 | 52.95 150 | 68.82 65 | 69.00 60 | 38.28 168 | 79.89 17 | 55.20 43 | 62.76 53 | 68.31 60 | 56.14 61 | 71.30 65 | 68.70 79 | 76.06 100 | 79.67 61 |
|
Effi-MVS+ | | | 63.28 63 | 65.96 70 | 60.17 59 | 64.26 70 | 68.06 71 | 68.78 62 | 45.71 83 | 54.08 77 | 46.64 78 | 55.92 79 | 63.13 75 | 55.94 62 | 70.38 77 | 71.43 53 | 79.68 58 | 78.70 66 |
|
MVS_111021_LR | | | 63.05 66 | 66.43 66 | 59.10 66 | 61.33 85 | 63.77 116 | 65.87 83 | 43.58 117 | 60.20 66 | 53.70 56 | 62.09 58 | 62.38 77 | 55.84 63 | 70.24 78 | 68.08 84 | 74.30 116 | 78.28 71 |
|
PCF-MVS | | 59.98 8 | 67.32 50 | 71.04 48 | 62.97 52 | 64.77 66 | 74.49 41 | 74.78 44 | 49.54 60 | 67.44 52 | 54.39 53 | 58.35 70 | 72.81 46 | 55.79 64 | 71.54 62 | 69.24 72 | 78.57 64 | 83.41 44 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
PLC |  | 52.09 14 | 59.21 84 | 62.47 87 | 55.41 94 | 53.24 148 | 64.84 107 | 64.47 97 | 40.41 154 | 65.92 54 | 44.53 90 | 46.19 135 | 55.69 109 | 55.33 65 | 68.24 99 | 65.30 128 | 74.50 114 | 71.09 115 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
DELS-MVS | | | 65.87 54 | 70.30 53 | 60.71 56 | 64.05 74 | 72.68 52 | 70.90 57 | 45.43 85 | 57.49 69 | 49.05 71 | 64.43 41 | 68.66 57 | 55.11 66 | 74.31 49 | 73.02 50 | 79.70 55 | 81.51 53 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
OpenMVS |  | 57.13 9 | 62.81 67 | 65.75 71 | 59.39 64 | 66.47 59 | 69.52 63 | 64.26 98 | 43.07 130 | 61.34 64 | 50.19 65 | 47.29 124 | 64.41 70 | 54.60 67 | 70.18 79 | 68.62 81 | 77.73 71 | 78.89 65 |
|
X-MVS | | | 71.18 34 | 75.66 34 | 65.96 37 | 71.71 31 | 76.96 27 | 77.26 34 | 55.88 24 | 72.75 39 | 54.48 50 | 64.39 42 | 74.47 39 | 54.19 68 | 77.84 21 | 77.37 18 | 82.21 27 | 85.85 28 |
|
LS3D | | | 60.20 80 | 61.70 89 | 58.45 70 | 64.18 71 | 67.77 73 | 67.19 68 | 48.84 68 | 61.67 63 | 41.27 107 | 45.89 139 | 51.81 124 | 54.18 69 | 68.78 88 | 66.50 112 | 75.03 111 | 69.48 130 |
|
DI_MVS_plusplus_trai | | | 61.88 72 | 65.17 76 | 58.06 72 | 60.05 94 | 65.26 101 | 66.03 80 | 44.22 100 | 55.75 72 | 46.73 76 | 54.64 87 | 68.12 62 | 54.13 70 | 69.13 86 | 66.66 106 | 77.18 80 | 76.61 82 |
|
GeoE | | | 62.43 70 | 64.79 79 | 59.68 63 | 64.15 73 | 67.17 83 | 68.80 61 | 44.42 99 | 55.65 73 | 47.38 73 | 51.54 100 | 62.51 76 | 54.04 71 | 69.99 80 | 68.07 85 | 79.28 60 | 78.57 67 |
|
casdiffmvs | | | 64.09 60 | 68.13 62 | 59.37 65 | 61.81 81 | 68.32 69 | 68.48 63 | 44.45 98 | 61.95 62 | 49.12 70 | 63.04 50 | 69.67 55 | 53.83 72 | 70.46 74 | 66.06 117 | 78.55 65 | 77.43 74 |
|
v10 | | | 59.17 85 | 60.60 98 | 57.50 80 | 57.95 107 | 66.73 87 | 67.09 72 | 44.11 101 | 46.85 134 | 45.42 85 | 48.18 120 | 51.07 126 | 53.63 73 | 67.84 108 | 66.59 110 | 76.79 84 | 76.92 79 |
|
PVSNet_Blended_VisFu | | | 63.65 62 | 66.92 63 | 59.83 62 | 60.03 95 | 73.44 49 | 66.33 77 | 48.95 65 | 52.20 95 | 50.81 63 | 56.07 77 | 60.25 89 | 53.56 74 | 73.23 56 | 70.01 67 | 79.30 59 | 83.24 45 |
|
v1192 | | | 58.51 90 | 59.66 113 | 57.17 82 | 57.82 108 | 67.72 74 | 66.21 79 | 44.83 92 | 44.15 154 | 43.49 94 | 46.68 126 | 47.94 138 | 53.55 75 | 67.39 117 | 66.51 111 | 77.13 82 | 77.20 77 |
|
v1921920 | | | 57.89 102 | 59.02 123 | 56.58 88 | 57.55 110 | 66.66 91 | 64.72 95 | 44.70 94 | 43.55 158 | 42.73 97 | 46.17 136 | 46.93 151 | 53.51 76 | 66.78 127 | 65.75 123 | 76.29 91 | 77.28 76 |
|
MVS_Test | | | 62.40 71 | 66.23 68 | 57.94 75 | 59.77 99 | 64.77 108 | 66.50 76 | 41.76 139 | 57.26 71 | 49.33 68 | 62.68 54 | 67.47 66 | 53.50 77 | 68.57 93 | 66.25 114 | 76.77 85 | 76.58 83 |
|
v144192 | | | 58.23 99 | 59.40 120 | 56.87 85 | 57.56 109 | 66.89 85 | 65.70 84 | 45.01 90 | 44.06 155 | 42.88 96 | 46.61 128 | 48.09 137 | 53.49 78 | 66.94 126 | 65.90 121 | 76.61 86 | 77.29 75 |
|
v1240 | | | 57.55 104 | 58.63 127 | 56.29 89 | 57.30 120 | 66.48 92 | 63.77 100 | 44.56 96 | 42.77 168 | 42.48 99 | 45.64 142 | 46.28 158 | 53.46 79 | 66.32 133 | 65.80 122 | 76.16 95 | 77.13 78 |
|
HyFIR lowres test | | | 56.87 110 | 58.60 128 | 54.84 95 | 56.62 127 | 69.27 64 | 64.77 94 | 42.21 136 | 45.66 144 | 37.50 128 | 33.08 194 | 57.47 101 | 53.33 80 | 65.46 145 | 67.94 86 | 74.60 113 | 71.35 114 |
|
TAPA-MVS | | 54.74 10 | 60.85 77 | 66.61 64 | 54.12 101 | 47.38 183 | 65.33 99 | 65.35 90 | 36.51 177 | 75.16 32 | 48.82 72 | 54.70 86 | 63.51 73 | 53.31 81 | 68.36 95 | 64.97 135 | 73.37 128 | 74.27 101 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
TSAR-MVS + COLMAP | | | 62.65 69 | 69.90 55 | 54.19 99 | 46.31 187 | 66.73 87 | 65.49 88 | 41.36 143 | 76.57 26 | 46.31 79 | 76.80 18 | 56.68 102 | 53.27 82 | 69.50 83 | 66.65 107 | 72.40 145 | 76.36 88 |
|
v1144 | | | 58.88 86 | 60.16 106 | 57.39 81 | 58.03 106 | 67.26 81 | 67.14 70 | 44.46 97 | 45.17 146 | 44.33 91 | 47.81 121 | 49.92 134 | 53.20 83 | 67.77 110 | 66.62 109 | 77.15 81 | 76.58 83 |
|
v8 | | | 58.88 86 | 60.57 100 | 56.92 84 | 57.35 117 | 65.69 98 | 66.69 75 | 42.64 132 | 47.89 129 | 45.77 83 | 49.04 111 | 52.98 118 | 52.77 84 | 67.51 115 | 65.57 124 | 76.26 93 | 75.30 97 |
|
ACMH | | 52.42 13 | 58.24 98 | 59.56 118 | 56.70 87 | 66.34 60 | 69.59 62 | 66.71 74 | 49.12 64 | 46.08 141 | 28.90 161 | 42.67 171 | 41.20 188 | 52.60 85 | 71.39 63 | 70.28 64 | 76.51 88 | 75.72 92 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
v2v482 | | | 58.69 89 | 60.12 109 | 57.03 83 | 57.16 124 | 66.05 95 | 67.17 69 | 43.52 119 | 46.33 138 | 45.19 87 | 49.46 110 | 51.02 127 | 52.51 86 | 67.30 118 | 66.03 118 | 76.61 86 | 74.62 99 |
|
CHOSEN 1792x2688 | | | 55.85 118 | 58.01 132 | 53.33 105 | 57.26 121 | 62.82 121 | 63.29 104 | 41.55 141 | 46.65 136 | 38.34 122 | 34.55 192 | 53.50 114 | 52.43 87 | 67.10 123 | 67.56 95 | 67.13 170 | 73.92 106 |
|
ACMH+ | | 53.71 12 | 59.26 83 | 60.28 102 | 58.06 72 | 64.17 72 | 68.46 67 | 67.51 67 | 50.93 52 | 52.46 93 | 35.83 133 | 40.83 176 | 45.12 169 | 52.32 88 | 69.88 81 | 69.00 77 | 77.59 75 | 76.21 89 |
|
PatchMatch-RL | | | 50.11 160 | 51.56 174 | 48.43 146 | 46.23 188 | 51.94 181 | 50.21 171 | 38.62 167 | 46.62 137 | 37.51 127 | 42.43 173 | 39.38 196 | 52.24 89 | 60.98 164 | 59.56 170 | 65.76 174 | 60.01 186 |
|
IterMVS-LS | | | 58.30 97 | 61.39 91 | 54.71 96 | 59.92 97 | 58.40 156 | 59.42 118 | 43.64 115 | 48.71 120 | 40.25 114 | 57.53 73 | 58.55 95 | 52.15 90 | 65.42 146 | 65.34 127 | 72.85 134 | 75.77 91 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
V42 | | | 56.97 108 | 60.14 107 | 53.28 106 | 48.16 179 | 62.78 122 | 66.30 78 | 37.93 170 | 47.44 131 | 42.68 98 | 48.19 119 | 52.59 120 | 51.90 91 | 67.46 116 | 65.94 120 | 72.72 138 | 76.55 85 |
|
CLD-MVS | | | 67.02 51 | 71.57 44 | 61.71 54 | 71.01 36 | 74.81 39 | 71.62 54 | 38.91 161 | 71.86 42 | 60.70 23 | 64.97 40 | 67.88 64 | 51.88 92 | 76.77 33 | 74.98 38 | 76.11 96 | 69.75 124 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
PVSNet_BlendedMVS | | | 61.63 74 | 64.82 77 | 57.91 77 | 57.21 122 | 67.55 78 | 63.47 102 | 46.08 79 | 54.72 75 | 52.46 59 | 58.59 68 | 60.73 85 | 51.82 93 | 70.46 74 | 65.20 131 | 76.44 89 | 76.50 86 |
|
PVSNet_Blended | | | 61.63 74 | 64.82 77 | 57.91 77 | 57.21 122 | 67.55 78 | 63.47 102 | 46.08 79 | 54.72 75 | 52.46 59 | 58.59 68 | 60.73 85 | 51.82 93 | 70.46 74 | 65.20 131 | 76.44 89 | 76.50 86 |
|
canonicalmvs | | | 65.62 55 | 72.06 42 | 58.11 71 | 63.94 75 | 71.05 56 | 64.49 96 | 43.18 128 | 74.08 35 | 47.35 74 | 64.17 43 | 71.97 48 | 51.17 95 | 71.87 60 | 70.74 58 | 78.51 67 | 80.56 58 |
|
diffmvs | | | 61.64 73 | 66.55 65 | 55.90 90 | 56.63 126 | 63.71 117 | 67.13 71 | 41.27 144 | 59.49 67 | 46.70 77 | 63.93 46 | 68.01 63 | 50.46 96 | 67.30 118 | 65.51 125 | 73.24 133 | 77.87 73 |
|
thisisatest0530 | | | 56.68 111 | 59.68 112 | 53.19 108 | 52.97 149 | 60.96 135 | 59.41 119 | 40.51 150 | 48.26 126 | 41.06 109 | 52.67 93 | 46.30 157 | 49.78 97 | 67.66 113 | 67.83 88 | 75.39 106 | 74.07 105 |
|
tttt0517 | | | 56.53 113 | 59.59 114 | 52.95 111 | 52.66 152 | 60.99 134 | 59.21 121 | 40.51 150 | 47.89 129 | 40.40 112 | 52.50 96 | 46.04 161 | 49.78 97 | 67.75 111 | 67.83 88 | 75.15 109 | 74.17 102 |
|
MSDG | | | 58.46 93 | 58.97 124 | 57.85 79 | 66.27 61 | 66.23 94 | 67.72 64 | 42.33 134 | 53.43 83 | 43.68 93 | 43.39 162 | 45.35 165 | 49.75 99 | 68.66 91 | 67.77 90 | 77.38 77 | 67.96 139 |
|
Fast-Effi-MVS+-dtu | | | 56.30 115 | 59.29 121 | 52.82 113 | 58.64 103 | 64.89 106 | 65.56 87 | 32.89 197 | 45.80 143 | 35.04 135 | 45.89 139 | 54.14 113 | 49.41 100 | 67.16 121 | 66.45 113 | 75.37 107 | 70.69 119 |
|
tpm cat1 | | | 53.30 138 | 53.41 160 | 53.17 109 | 58.16 105 | 59.15 150 | 63.73 101 | 38.27 169 | 50.73 100 | 46.98 75 | 45.57 143 | 44.00 181 | 49.20 101 | 55.90 194 | 54.02 193 | 62.65 185 | 64.50 167 |
|
test_part1 | | | 63.06 65 | 65.27 74 | 60.47 57 | 66.24 62 | 70.17 61 | 71.86 53 | 45.36 87 | 53.75 80 | 49.61 66 | 44.85 150 | 65.53 69 | 48.93 102 | 71.39 63 | 70.65 60 | 80.82 46 | 80.59 57 |
|
IterMVS-SCA-FT | | | 52.18 145 | 57.75 136 | 45.68 164 | 51.01 168 | 62.06 123 | 55.10 154 | 34.75 183 | 44.85 147 | 32.86 142 | 51.13 104 | 51.22 125 | 48.74 103 | 62.47 157 | 61.51 161 | 51.61 209 | 71.02 116 |
|
v148 | | | 55.58 122 | 57.61 138 | 53.20 107 | 54.59 140 | 61.86 124 | 61.18 109 | 38.70 166 | 44.30 153 | 42.25 101 | 47.53 122 | 50.24 133 | 48.73 104 | 65.15 147 | 62.61 157 | 73.79 121 | 71.61 113 |
|
IB-MVS | | 54.11 11 | 58.36 96 | 60.70 97 | 55.62 92 | 58.67 102 | 68.02 72 | 61.56 105 | 43.15 129 | 46.09 140 | 44.06 92 | 44.24 154 | 50.99 129 | 48.71 105 | 66.70 128 | 70.33 63 | 77.60 74 | 78.50 68 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
MVSTER | | | 57.19 105 | 61.11 93 | 52.62 114 | 50.82 170 | 58.79 152 | 61.55 106 | 37.86 171 | 48.81 118 | 41.31 106 | 57.43 75 | 52.10 121 | 48.60 106 | 68.19 101 | 66.75 104 | 75.56 104 | 75.68 94 |
|
IterMVS | | | 53.45 137 | 57.12 140 | 49.17 135 | 49.23 176 | 60.93 136 | 59.05 122 | 34.63 185 | 44.53 149 | 33.22 138 | 51.09 105 | 51.01 128 | 48.38 107 | 62.43 158 | 60.79 165 | 70.54 159 | 69.05 135 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CostFormer | | | 56.57 112 | 59.13 122 | 53.60 103 | 57.52 112 | 61.12 132 | 66.94 73 | 35.95 179 | 53.44 82 | 44.68 89 | 55.87 80 | 54.44 112 | 48.21 108 | 60.37 167 | 58.33 174 | 68.27 166 | 70.33 122 |
|
baseline2 | | | 55.89 116 | 57.82 134 | 53.64 102 | 57.36 116 | 61.09 133 | 59.75 117 | 40.45 152 | 47.38 132 | 41.26 108 | 51.23 102 | 46.90 152 | 48.11 109 | 65.63 143 | 64.38 140 | 74.90 112 | 68.16 138 |
|
MS-PatchMatch | | | 58.19 100 | 60.20 105 | 55.85 91 | 65.17 65 | 64.16 113 | 64.82 93 | 41.48 142 | 50.95 98 | 42.17 102 | 45.38 145 | 56.42 104 | 48.08 110 | 68.30 96 | 66.70 105 | 73.39 127 | 69.46 132 |
|
EPNet | | | 65.14 59 | 69.54 56 | 60.00 60 | 66.61 58 | 67.67 76 | 67.53 66 | 55.32 26 | 62.67 61 | 46.22 81 | 67.74 34 | 65.93 68 | 48.07 111 | 72.17 59 | 72.12 51 | 76.28 92 | 78.47 69 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
anonymousdsp | | | 52.84 139 | 57.78 135 | 47.06 158 | 40.24 203 | 58.95 151 | 53.70 160 | 33.54 193 | 36.51 200 | 32.69 143 | 43.88 156 | 45.40 164 | 47.97 112 | 67.17 120 | 70.28 64 | 74.22 117 | 82.29 49 |
|
GA-MVS | | | 55.67 120 | 58.33 129 | 52.58 115 | 55.23 135 | 63.09 118 | 61.08 110 | 40.15 156 | 42.95 163 | 37.02 131 | 52.61 94 | 47.68 142 | 47.51 113 | 65.92 139 | 65.35 126 | 74.49 115 | 70.68 120 |
|
PMMVS | | | 49.20 166 | 54.28 156 | 43.28 177 | 34.13 208 | 45.70 203 | 48.98 175 | 26.09 210 | 46.31 139 | 34.92 137 | 55.22 82 | 53.47 115 | 47.48 114 | 59.43 169 | 59.04 172 | 68.05 167 | 60.77 181 |
|
v7n | | | 55.67 120 | 57.46 139 | 53.59 104 | 56.06 128 | 65.29 100 | 61.06 111 | 43.26 127 | 40.17 184 | 37.99 125 | 40.79 177 | 45.27 168 | 47.09 115 | 67.67 112 | 66.21 115 | 76.08 97 | 76.82 80 |
|
gm-plane-assit | | | 44.74 187 | 45.95 195 | 43.33 176 | 60.88 89 | 46.79 201 | 36.97 210 | 32.24 200 | 24.15 215 | 11.79 205 | 29.26 204 | 32.97 210 | 46.64 116 | 65.09 148 | 62.95 152 | 71.45 153 | 60.42 183 |
|
CR-MVSNet | | | 50.47 155 | 52.61 166 | 47.98 153 | 49.03 178 | 52.94 177 | 48.27 177 | 38.86 163 | 44.41 150 | 39.59 117 | 44.34 153 | 44.65 177 | 46.63 117 | 58.97 172 | 60.31 167 | 65.48 175 | 62.66 173 |
|
PatchT | | | 48.08 173 | 51.03 178 | 44.64 170 | 42.96 197 | 50.12 187 | 40.36 206 | 35.09 181 | 43.17 161 | 39.59 117 | 42.00 174 | 39.96 195 | 46.63 117 | 58.97 172 | 60.31 167 | 63.21 182 | 62.66 173 |
|
CHOSEN 280x420 | | | 40.80 197 | 45.05 200 | 35.84 201 | 32.95 211 | 29.57 216 | 44.98 195 | 23.71 213 | 37.54 198 | 18.42 194 | 31.36 198 | 47.07 149 | 46.41 119 | 56.71 187 | 54.65 191 | 48.55 212 | 58.47 190 |
|
SCA | | | 50.99 154 | 53.22 164 | 48.40 147 | 51.07 166 | 56.78 168 | 50.25 170 | 39.05 159 | 48.31 125 | 41.38 105 | 49.54 108 | 46.70 155 | 46.00 120 | 58.31 177 | 56.28 177 | 62.65 185 | 56.60 193 |
|
pmmvs4 | | | 54.66 132 | 56.07 143 | 53.00 110 | 54.63 137 | 57.08 167 | 60.43 115 | 44.10 102 | 51.69 97 | 40.55 111 | 46.55 131 | 44.79 174 | 45.95 121 | 62.54 156 | 63.66 145 | 72.36 146 | 66.20 153 |
|
LTVRE_ROB | | 44.17 16 | 47.06 181 | 50.15 184 | 43.44 175 | 51.39 162 | 58.42 155 | 42.90 201 | 43.51 120 | 22.27 217 | 14.85 200 | 41.94 175 | 34.57 207 | 45.43 122 | 62.28 159 | 62.77 155 | 62.56 187 | 68.83 136 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
baseline | | | 55.19 128 | 60.88 94 | 48.55 145 | 49.87 174 | 58.10 161 | 58.70 123 | 34.75 183 | 52.82 91 | 39.48 120 | 60.18 62 | 60.86 84 | 45.41 123 | 61.05 163 | 60.74 166 | 63.10 183 | 72.41 110 |
|
dps | | | 50.42 156 | 51.20 177 | 49.51 131 | 55.88 129 | 56.07 169 | 53.73 159 | 38.89 162 | 43.66 156 | 40.36 113 | 45.66 141 | 37.63 203 | 45.23 124 | 59.05 170 | 56.18 178 | 62.94 184 | 60.16 184 |
|
PatchmatchNet |  | | 49.92 161 | 51.29 175 | 48.32 149 | 51.83 160 | 51.86 182 | 53.38 164 | 37.63 173 | 47.90 128 | 40.83 110 | 48.54 115 | 45.30 166 | 45.19 125 | 56.86 184 | 53.99 195 | 61.08 190 | 54.57 196 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
TinyColmap | | | 47.08 179 | 47.56 193 | 46.52 160 | 42.35 199 | 53.44 176 | 51.77 167 | 40.70 149 | 43.44 160 | 31.92 146 | 29.78 202 | 23.72 219 | 45.04 126 | 61.99 160 | 59.54 171 | 67.35 169 | 61.03 180 |
|
thisisatest0515 | | | 53.85 135 | 56.84 142 | 50.37 126 | 50.25 173 | 58.17 160 | 55.99 144 | 39.90 157 | 41.88 173 | 38.16 124 | 45.91 138 | 45.30 166 | 44.58 127 | 66.15 137 | 66.89 102 | 73.36 129 | 73.57 108 |
|
CANet_DTU | | | 58.88 86 | 64.68 80 | 52.12 117 | 55.77 130 | 66.75 86 | 63.92 99 | 37.04 175 | 53.32 85 | 37.45 129 | 59.81 63 | 61.81 81 | 44.43 128 | 68.25 97 | 67.47 96 | 74.12 118 | 75.33 96 |
|
EG-PatchMatch MVS | | | 56.98 107 | 58.24 131 | 55.50 93 | 64.66 67 | 68.62 66 | 61.48 107 | 43.63 116 | 38.44 193 | 41.44 104 | 38.05 183 | 46.18 160 | 43.95 129 | 71.71 61 | 70.61 61 | 77.87 70 | 74.08 104 |
|
CMPMVS |  | 37.70 17 | 49.24 164 | 52.71 165 | 45.19 166 | 45.97 189 | 51.23 184 | 47.44 183 | 29.31 202 | 43.04 162 | 44.69 88 | 34.45 193 | 48.35 136 | 43.64 130 | 62.59 155 | 59.82 169 | 60.08 191 | 69.48 130 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
RPSCF | | | 46.41 182 | 54.42 154 | 37.06 197 | 25.70 220 | 45.14 204 | 45.39 193 | 20.81 214 | 62.79 60 | 35.10 134 | 44.92 149 | 55.60 110 | 43.56 131 | 56.12 191 | 52.45 199 | 51.80 208 | 63.91 169 |
|
MVS-HIRNet | | | 42.24 194 | 41.15 207 | 43.51 174 | 44.06 196 | 40.74 208 | 35.77 212 | 35.35 180 | 35.38 201 | 38.34 122 | 25.63 209 | 38.55 200 | 43.48 132 | 50.77 205 | 47.03 208 | 64.07 179 | 49.98 204 |
|
EPP-MVSNet | | | 59.39 82 | 65.45 73 | 52.32 116 | 60.96 87 | 67.70 75 | 58.42 126 | 44.75 93 | 49.71 105 | 27.23 169 | 59.03 66 | 62.20 79 | 43.34 133 | 70.71 72 | 69.13 74 | 79.25 61 | 79.63 62 |
|
Anonymous20231211 | | | 57.71 103 | 60.79 95 | 54.13 100 | 61.68 83 | 65.81 97 | 60.81 113 | 43.70 114 | 51.97 96 | 39.67 116 | 34.82 191 | 63.59 72 | 43.31 134 | 68.55 94 | 66.63 108 | 75.59 103 | 74.13 103 |
|
USDC | | | 51.11 152 | 53.71 157 | 48.08 152 | 44.76 192 | 55.99 170 | 53.01 165 | 40.90 146 | 52.49 92 | 36.14 132 | 44.67 151 | 33.66 209 | 43.27 135 | 63.23 152 | 61.10 163 | 70.39 160 | 64.82 164 |
|
DCV-MVSNet | | | 59.49 81 | 64.00 83 | 54.23 98 | 61.81 81 | 64.33 112 | 61.42 108 | 43.77 110 | 52.85 90 | 38.94 121 | 55.62 81 | 62.15 80 | 43.24 136 | 69.39 84 | 67.66 93 | 76.22 94 | 75.97 90 |
|
Anonymous202405211 | | | | 60.60 98 | | 63.44 77 | 66.71 90 | 61.00 112 | 47.23 72 | 50.62 101 | | 36.85 186 | 60.63 88 | 43.03 137 | 69.17 85 | 67.72 92 | 75.41 105 | 72.54 109 |
|
TDRefinement | | | 49.31 162 | 52.44 168 | 45.67 165 | 30.44 213 | 59.42 146 | 59.24 120 | 39.78 158 | 48.76 119 | 31.20 149 | 35.73 188 | 29.90 213 | 42.81 138 | 64.24 151 | 62.59 158 | 70.55 158 | 66.43 149 |
|
pmmvs-eth3d | | | 51.33 151 | 52.25 170 | 50.26 127 | 50.82 170 | 54.65 172 | 56.03 143 | 43.45 124 | 43.51 159 | 37.20 130 | 39.20 180 | 39.04 198 | 42.28 139 | 61.85 161 | 62.78 154 | 71.78 151 | 64.72 165 |
|
SixPastTwentyTwo | | | 47.55 178 | 50.25 183 | 44.41 172 | 47.30 184 | 54.31 174 | 47.81 180 | 40.36 155 | 33.76 203 | 19.93 191 | 43.75 158 | 32.77 211 | 42.07 140 | 59.82 168 | 60.94 164 | 68.98 162 | 66.37 151 |
|
MDTV_nov1_ep13 | | | 50.32 158 | 52.43 169 | 47.86 155 | 49.87 174 | 54.70 171 | 58.10 127 | 34.29 187 | 45.59 145 | 37.71 126 | 47.44 123 | 47.42 146 | 41.86 141 | 58.07 180 | 55.21 186 | 65.34 177 | 58.56 189 |
|
PM-MVS | | | 44.55 189 | 48.13 191 | 40.37 188 | 32.85 212 | 46.82 200 | 46.11 189 | 29.28 203 | 40.48 181 | 29.99 155 | 39.98 179 | 34.39 208 | 41.80 142 | 56.08 192 | 53.88 197 | 62.19 188 | 65.31 160 |
|
test-mter | | | 45.30 186 | 50.37 180 | 39.38 190 | 33.65 210 | 46.99 198 | 47.59 181 | 18.59 216 | 38.75 191 | 28.00 164 | 43.28 165 | 46.82 154 | 41.50 143 | 57.28 183 | 55.78 181 | 66.93 173 | 63.70 170 |
|
test-LLR | | | 49.28 163 | 50.29 181 | 48.10 151 | 55.26 133 | 47.16 196 | 49.52 172 | 43.48 122 | 39.22 188 | 31.98 144 | 43.65 160 | 47.93 139 | 41.29 144 | 56.80 185 | 55.36 184 | 67.08 171 | 61.94 177 |
|
TESTMET0.1,1 | | | 46.09 185 | 50.29 181 | 41.18 185 | 36.91 206 | 47.16 196 | 49.52 172 | 20.32 215 | 39.22 188 | 31.98 144 | 43.65 160 | 47.93 139 | 41.29 144 | 56.80 185 | 55.36 184 | 67.08 171 | 61.94 177 |
|
COLMAP_ROB |  | 46.52 15 | 51.99 148 | 54.86 152 | 48.63 144 | 49.13 177 | 61.73 126 | 60.53 114 | 36.57 176 | 53.14 86 | 32.95 141 | 37.10 184 | 38.68 199 | 40.49 146 | 65.72 141 | 63.08 150 | 72.11 149 | 64.60 166 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
Vis-MVSNet |  | | 58.48 92 | 65.70 72 | 50.06 128 | 53.40 147 | 67.20 82 | 60.24 116 | 43.32 125 | 48.83 117 | 30.23 154 | 62.38 56 | 61.61 83 | 40.35 147 | 71.03 68 | 69.77 68 | 72.82 136 | 79.11 64 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
tpmrst | | | 48.08 173 | 49.88 185 | 45.98 161 | 52.71 151 | 48.11 193 | 53.62 162 | 33.70 192 | 48.70 121 | 39.74 115 | 48.96 113 | 46.23 159 | 40.29 148 | 50.14 208 | 49.28 204 | 55.80 199 | 57.71 191 |
|
FC-MVSNet-train | | | 58.40 94 | 63.15 86 | 52.85 112 | 64.29 69 | 61.84 125 | 55.98 145 | 46.47 77 | 53.06 87 | 34.96 136 | 61.95 59 | 56.37 106 | 39.49 149 | 68.67 90 | 68.36 83 | 75.92 102 | 71.81 112 |
|
MDTV_nov1_ep13_2view | | | 47.62 177 | 49.72 186 | 45.18 167 | 48.05 180 | 53.70 175 | 54.90 155 | 33.80 191 | 39.90 186 | 29.79 156 | 38.85 181 | 41.89 185 | 39.17 150 | 58.99 171 | 55.55 183 | 65.34 177 | 59.17 187 |
|
UniMVSNet_NR-MVSNet | | | 56.94 109 | 61.14 92 | 52.05 118 | 60.02 96 | 65.21 105 | 57.44 130 | 52.93 42 | 49.37 109 | 24.31 181 | 54.62 88 | 50.54 130 | 39.04 151 | 68.69 89 | 68.84 78 | 78.53 66 | 70.72 117 |
|
DU-MVS | | | 55.41 123 | 59.59 114 | 50.54 125 | 54.60 138 | 62.97 119 | 57.44 130 | 51.80 47 | 48.62 123 | 24.31 181 | 51.99 98 | 47.00 150 | 39.04 151 | 68.11 102 | 67.75 91 | 76.03 101 | 70.72 117 |
|
MDA-MVSNet-bldmvs | | | 41.36 195 | 43.15 205 | 39.27 191 | 28.74 215 | 52.68 179 | 44.95 196 | 40.84 147 | 32.89 205 | 18.13 195 | 31.61 197 | 22.09 220 | 38.97 153 | 50.45 207 | 56.11 179 | 64.01 180 | 56.23 194 |
|
GBi-Net | | | 55.20 126 | 60.25 103 | 49.31 132 | 52.42 153 | 61.44 127 | 57.03 133 | 44.04 104 | 49.18 112 | 30.47 150 | 48.28 116 | 58.19 96 | 38.22 154 | 68.05 105 | 66.96 99 | 73.69 123 | 69.65 125 |
|
test1 | | | 55.20 126 | 60.25 103 | 49.31 132 | 52.42 153 | 61.44 127 | 57.03 133 | 44.04 104 | 49.18 112 | 30.47 150 | 48.28 116 | 58.19 96 | 38.22 154 | 68.05 105 | 66.96 99 | 73.69 123 | 69.65 125 |
|
FMVSNet2 | | | 55.04 130 | 59.95 111 | 49.31 132 | 52.42 153 | 61.44 127 | 57.03 133 | 44.08 103 | 49.55 106 | 30.40 153 | 46.89 125 | 58.84 94 | 38.22 154 | 67.07 124 | 66.21 115 | 73.69 123 | 69.65 125 |
|
FMVSNet3 | | | 54.78 131 | 59.58 116 | 49.17 135 | 52.37 156 | 61.31 131 | 56.72 138 | 44.04 104 | 49.18 112 | 30.47 150 | 48.28 116 | 58.19 96 | 38.09 157 | 65.48 144 | 65.20 131 | 73.31 130 | 69.45 133 |
|
UniMVSNet_ETH3D | | | 52.62 140 | 55.98 144 | 48.70 143 | 51.04 167 | 60.71 137 | 56.87 136 | 46.74 76 | 42.52 170 | 26.96 171 | 42.50 172 | 45.95 162 | 37.87 158 | 66.22 135 | 65.15 134 | 72.74 137 | 68.78 137 |
|
test2506 | | | 55.82 119 | 59.57 117 | 51.46 119 | 60.39 91 | 64.55 110 | 58.69 124 | 48.87 66 | 53.91 78 | 26.99 170 | 48.97 112 | 41.72 187 | 37.71 159 | 70.96 69 | 69.49 69 | 76.08 97 | 67.37 144 |
|
ECVR-MVS |  | | 56.44 114 | 60.74 96 | 51.42 120 | 60.39 91 | 64.55 110 | 58.69 124 | 48.87 66 | 53.91 78 | 26.76 172 | 45.55 144 | 53.43 116 | 37.71 159 | 70.96 69 | 69.49 69 | 76.08 97 | 67.32 146 |
|
FMVSNet1 | | | 54.08 134 | 58.68 126 | 48.71 142 | 50.90 169 | 61.35 130 | 56.73 137 | 43.94 108 | 45.91 142 | 29.32 160 | 42.72 170 | 56.26 107 | 37.70 161 | 68.05 105 | 66.96 99 | 73.69 123 | 69.50 129 |
|
RPMNet | | | 46.41 182 | 48.72 188 | 43.72 173 | 47.77 182 | 52.94 177 | 46.02 190 | 33.92 189 | 44.41 150 | 31.82 147 | 36.89 185 | 37.42 204 | 37.41 162 | 53.88 200 | 54.02 193 | 65.37 176 | 61.47 179 |
|
tfpn200view9 | | | 52.53 141 | 55.51 146 | 49.06 137 | 57.31 118 | 60.24 139 | 55.42 151 | 43.77 110 | 42.85 166 | 27.81 165 | 43.00 168 | 45.06 171 | 37.32 163 | 66.38 130 | 64.54 137 | 72.71 139 | 66.54 148 |
|
tpm | | | 48.82 168 | 51.27 176 | 45.96 162 | 54.10 143 | 47.35 195 | 56.05 142 | 30.23 201 | 46.70 135 | 43.21 95 | 52.54 95 | 47.55 145 | 37.28 164 | 54.11 199 | 50.50 202 | 54.90 202 | 60.12 185 |
|
thres100view900 | | | 52.04 147 | 54.81 153 | 48.80 140 | 57.31 118 | 59.33 147 | 55.30 152 | 42.92 131 | 42.85 166 | 27.81 165 | 43.00 168 | 45.06 171 | 36.99 165 | 64.74 149 | 63.51 146 | 72.47 144 | 65.21 162 |
|
Baseline_NR-MVSNet | | | 53.50 136 | 57.89 133 | 48.37 148 | 54.60 138 | 59.25 149 | 56.10 141 | 51.84 46 | 49.32 110 | 17.92 196 | 45.38 145 | 47.68 142 | 36.93 166 | 68.11 102 | 65.95 119 | 72.84 135 | 69.57 128 |
|
TranMVSNet+NR-MVSNet | | | 55.87 117 | 60.14 107 | 50.88 122 | 59.46 100 | 63.82 115 | 57.93 128 | 52.98 41 | 48.94 115 | 20.52 189 | 52.87 92 | 47.33 147 | 36.81 167 | 69.12 87 | 69.03 76 | 77.56 76 | 69.89 123 |
|
thres400 | | | 52.38 144 | 55.51 146 | 48.74 141 | 57.49 113 | 60.10 142 | 55.45 150 | 43.54 118 | 42.90 165 | 26.72 173 | 43.34 164 | 45.03 173 | 36.61 168 | 66.20 136 | 64.53 138 | 72.66 141 | 66.43 149 |
|
thres200 | | | 52.39 143 | 55.37 149 | 48.90 139 | 57.39 115 | 60.18 140 | 55.60 148 | 43.73 112 | 42.93 164 | 27.41 167 | 43.35 163 | 45.09 170 | 36.61 168 | 66.36 131 | 63.92 144 | 72.66 141 | 65.78 158 |
|
test1111 | | | 55.24 125 | 59.98 110 | 49.71 129 | 59.80 98 | 64.10 114 | 56.48 139 | 49.34 62 | 52.27 94 | 21.56 186 | 44.49 152 | 51.96 123 | 35.93 170 | 70.59 73 | 69.07 75 | 75.13 110 | 67.40 142 |
|
UA-Net | | | 58.50 91 | 64.68 80 | 51.30 121 | 66.97 55 | 67.13 84 | 53.68 161 | 45.65 84 | 49.51 108 | 31.58 148 | 62.91 51 | 68.47 59 | 35.85 171 | 68.20 100 | 67.28 97 | 74.03 119 | 69.24 134 |
|
baseline1 | | | 54.48 133 | 58.69 125 | 49.57 130 | 60.63 90 | 58.29 159 | 55.70 147 | 44.95 91 | 49.20 111 | 29.62 157 | 54.77 85 | 54.75 111 | 35.29 172 | 67.15 122 | 64.08 141 | 71.21 155 | 62.58 176 |
|
thres600view7 | | | 51.91 150 | 55.14 150 | 48.14 150 | 57.43 114 | 60.18 140 | 54.60 156 | 43.73 112 | 42.61 169 | 25.20 177 | 43.10 167 | 44.47 178 | 35.19 173 | 66.36 131 | 63.28 149 | 72.66 141 | 66.01 156 |
|
EPMVS | | | 44.66 188 | 47.86 192 | 40.92 186 | 47.97 181 | 44.70 205 | 47.58 182 | 33.27 194 | 48.11 127 | 29.58 158 | 49.65 107 | 44.38 179 | 34.65 174 | 51.71 203 | 47.90 206 | 52.49 207 | 48.57 208 |
|
IS_MVSNet | | | 57.95 101 | 64.26 82 | 50.60 123 | 61.62 84 | 65.25 103 | 57.18 132 | 45.42 86 | 50.79 99 | 26.49 174 | 57.81 72 | 60.05 90 | 34.51 175 | 71.24 67 | 70.20 66 | 78.36 68 | 74.44 100 |
|
tfpnnormal | | | 50.16 159 | 52.19 171 | 47.78 156 | 56.86 125 | 58.37 157 | 54.15 157 | 44.01 107 | 38.35 195 | 25.94 175 | 36.10 187 | 37.89 201 | 34.50 176 | 65.93 138 | 63.42 147 | 71.26 154 | 65.28 161 |
|
UniMVSNet (Re) | | | 55.15 129 | 60.39 101 | 49.03 138 | 55.31 132 | 64.59 109 | 55.77 146 | 50.63 54 | 48.66 122 | 20.95 187 | 51.47 101 | 50.40 131 | 34.41 177 | 67.81 109 | 67.89 87 | 77.11 83 | 71.88 111 |
|
NR-MVSNet | | | 55.35 124 | 59.46 119 | 50.56 124 | 61.33 85 | 62.97 119 | 57.91 129 | 51.80 47 | 48.62 123 | 20.59 188 | 51.99 98 | 44.73 175 | 34.10 178 | 68.58 92 | 68.64 80 | 77.66 72 | 70.67 121 |
|
CVMVSNet | | | 46.38 184 | 52.01 172 | 39.81 189 | 42.40 198 | 50.26 186 | 46.15 188 | 37.68 172 | 40.03 185 | 15.09 199 | 46.56 130 | 47.56 144 | 33.72 179 | 56.50 189 | 55.65 182 | 63.80 181 | 67.53 140 |
|
UGNet | | | 57.03 106 | 65.25 75 | 47.44 157 | 46.54 186 | 66.73 87 | 56.30 140 | 43.28 126 | 50.06 102 | 32.99 140 | 62.57 55 | 63.26 74 | 33.31 180 | 68.25 97 | 67.58 94 | 72.20 148 | 78.29 70 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
pmmvs3 | | | 35.10 207 | 38.47 209 | 31.17 206 | 26.37 219 | 40.47 209 | 34.51 214 | 18.09 217 | 24.75 214 | 16.88 197 | 23.05 211 | 26.69 215 | 32.69 181 | 50.73 206 | 51.60 200 | 58.46 196 | 51.98 198 |
|
FPMVS | | | 38.36 204 | 40.41 208 | 35.97 199 | 38.92 205 | 39.85 211 | 45.50 192 | 25.79 211 | 41.13 177 | 18.70 193 | 30.10 200 | 24.56 217 | 31.86 182 | 49.42 210 | 46.80 209 | 55.04 200 | 51.03 200 |
|
pmmvs5 | | | 47.07 180 | 51.02 179 | 42.46 179 | 45.18 191 | 51.47 183 | 48.23 179 | 33.09 196 | 38.17 196 | 28.62 163 | 46.60 129 | 43.48 182 | 30.74 183 | 58.28 178 | 58.63 173 | 68.92 163 | 60.48 182 |
|
ADS-MVSNet | | | 40.67 198 | 43.38 204 | 37.50 196 | 44.36 194 | 39.79 212 | 42.09 204 | 32.67 199 | 44.34 152 | 28.87 162 | 40.76 178 | 40.37 193 | 30.22 184 | 48.34 212 | 45.87 211 | 46.81 213 | 44.21 212 |
|
pm-mvs1 | | | 51.02 153 | 55.55 145 | 45.73 163 | 54.16 142 | 58.52 154 | 50.92 168 | 42.56 133 | 40.32 182 | 25.67 176 | 43.66 159 | 50.34 132 | 30.06 185 | 65.85 140 | 63.97 143 | 70.99 157 | 66.21 152 |
|
gg-mvs-nofinetune | | | 49.07 167 | 52.56 167 | 45.00 168 | 61.99 80 | 59.78 144 | 53.55 163 | 41.63 140 | 31.62 209 | 12.08 204 | 29.56 203 | 53.28 117 | 29.57 186 | 66.27 134 | 64.49 139 | 71.19 156 | 62.92 172 |
|
TransMVSNet (Re) | | | 51.92 149 | 55.38 148 | 47.88 154 | 60.95 88 | 59.90 143 | 53.95 158 | 45.14 89 | 39.47 187 | 24.85 178 | 43.87 157 | 46.51 156 | 29.15 187 | 67.55 114 | 65.23 130 | 73.26 132 | 65.16 163 |
|
ambc | | | | 45.54 199 | | 50.66 172 | 52.63 180 | 40.99 205 | | 38.36 194 | 24.67 179 | 22.62 212 | 13.94 222 | 29.14 188 | 65.71 142 | 58.06 175 | 58.60 195 | 67.43 141 |
|
pmmvs6 | | | 48.35 171 | 51.64 173 | 44.51 171 | 51.92 159 | 57.94 163 | 49.44 174 | 42.17 137 | 34.45 202 | 24.62 180 | 28.87 205 | 46.90 152 | 29.07 189 | 64.60 150 | 63.08 150 | 69.83 161 | 65.68 159 |
|
CDS-MVSNet | | | 52.42 142 | 57.06 141 | 47.02 159 | 53.92 145 | 58.30 158 | 55.50 149 | 46.47 77 | 42.52 170 | 29.38 159 | 49.50 109 | 52.85 119 | 28.49 190 | 66.70 128 | 66.89 102 | 68.34 165 | 62.63 175 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
TAMVS | | | 44.02 190 | 49.18 187 | 37.99 195 | 47.03 185 | 45.97 202 | 45.04 194 | 28.47 205 | 39.11 190 | 20.23 190 | 43.22 166 | 48.52 135 | 28.49 190 | 58.15 179 | 57.95 176 | 58.71 193 | 51.36 199 |
|
EPNet_dtu | | | 52.05 146 | 58.26 130 | 44.81 169 | 54.10 143 | 50.09 188 | 52.01 166 | 40.82 148 | 53.03 88 | 27.41 167 | 54.90 83 | 57.96 100 | 26.72 192 | 62.97 153 | 62.70 156 | 67.78 168 | 66.19 154 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PMVS |  | 27.84 18 | 33.81 208 | 35.28 212 | 32.09 205 | 34.13 208 | 24.81 218 | 32.51 215 | 26.48 209 | 26.41 213 | 19.37 192 | 23.76 210 | 24.02 218 | 25.18 193 | 50.78 204 | 47.24 207 | 54.89 203 | 49.95 205 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
FMVSNet5 | | | 40.96 196 | 45.81 197 | 35.29 202 | 34.30 207 | 44.55 206 | 47.28 184 | 28.84 204 | 40.76 179 | 21.62 185 | 29.85 201 | 42.44 183 | 24.77 194 | 57.53 182 | 55.00 187 | 54.93 201 | 50.56 202 |
|
MIMVSNet | | | 43.79 191 | 48.53 189 | 38.27 193 | 41.46 201 | 48.97 191 | 50.81 169 | 32.88 198 | 44.55 148 | 22.07 184 | 32.05 195 | 47.15 148 | 24.76 195 | 58.73 174 | 56.09 180 | 57.63 198 | 52.14 197 |
|
pmnet_mix02 | | | 40.48 200 | 43.80 202 | 36.61 198 | 45.79 190 | 40.45 210 | 42.12 203 | 33.18 195 | 40.30 183 | 24.11 183 | 38.76 182 | 37.11 205 | 24.30 196 | 52.97 201 | 46.66 210 | 50.17 210 | 50.33 203 |
|
EU-MVSNet | | | 40.63 199 | 45.65 198 | 34.78 203 | 39.11 204 | 46.94 199 | 40.02 207 | 34.03 188 | 33.50 204 | 10.37 208 | 35.57 189 | 37.80 202 | 23.65 197 | 51.90 202 | 50.21 203 | 61.49 189 | 63.62 171 |
|
CP-MVSNet | | | 48.37 170 | 53.53 159 | 42.34 180 | 51.35 163 | 58.01 162 | 46.56 186 | 50.54 55 | 41.62 175 | 10.61 206 | 46.53 132 | 40.68 192 | 23.18 198 | 58.71 175 | 61.83 159 | 71.81 150 | 67.36 145 |
|
PS-CasMVS | | | 48.18 172 | 53.25 163 | 42.27 181 | 51.26 164 | 57.94 163 | 46.51 187 | 50.52 56 | 41.30 176 | 10.56 207 | 45.35 147 | 40.34 194 | 23.04 199 | 58.66 176 | 61.79 160 | 71.74 152 | 67.38 143 |
|
PEN-MVS | | | 49.21 165 | 54.32 155 | 43.24 178 | 54.33 141 | 59.26 148 | 47.04 185 | 51.37 51 | 41.67 174 | 9.97 210 | 46.22 134 | 41.80 186 | 22.97 200 | 60.52 165 | 64.03 142 | 73.73 122 | 66.75 147 |
|
Anonymous20231206 | | | 42.28 193 | 45.89 196 | 38.07 194 | 51.96 158 | 48.98 190 | 43.66 200 | 38.81 165 | 38.74 192 | 14.32 201 | 26.74 207 | 40.90 189 | 20.94 201 | 56.64 188 | 54.67 190 | 58.71 193 | 54.59 195 |
|
DTE-MVSNet | | | 48.03 175 | 53.28 162 | 41.91 182 | 54.64 136 | 57.50 165 | 44.63 198 | 51.66 50 | 41.02 178 | 7.97 216 | 46.26 133 | 40.90 189 | 20.24 202 | 60.45 166 | 62.89 153 | 72.33 147 | 63.97 168 |
|
Vis-MVSNet (Re-imp) | | | 50.37 157 | 57.73 137 | 41.80 183 | 57.53 111 | 54.35 173 | 45.70 191 | 45.24 88 | 49.80 104 | 13.43 202 | 58.23 71 | 56.42 104 | 20.11 203 | 62.96 154 | 63.36 148 | 68.76 164 | 58.96 188 |
|
WR-MVS | | | 48.78 169 | 55.06 151 | 41.45 184 | 55.50 131 | 60.40 138 | 43.77 199 | 49.99 59 | 41.92 172 | 8.10 215 | 45.24 148 | 45.56 163 | 17.47 204 | 61.57 162 | 64.60 136 | 73.85 120 | 66.14 155 |
|
WR-MVS_H | | | 47.65 176 | 53.67 158 | 40.63 187 | 51.45 161 | 59.74 145 | 44.71 197 | 49.37 61 | 40.69 180 | 7.61 217 | 46.04 137 | 44.34 180 | 17.32 205 | 57.79 181 | 61.18 162 | 73.30 131 | 65.86 157 |
|
test0.0.03 1 | | | 43.15 192 | 46.95 194 | 38.72 192 | 55.26 133 | 50.56 185 | 42.48 202 | 43.48 122 | 38.16 197 | 15.11 198 | 35.07 190 | 44.69 176 | 16.47 206 | 55.95 193 | 54.34 192 | 59.54 192 | 49.87 206 |
|
N_pmnet | | | 32.67 210 | 36.85 211 | 27.79 210 | 40.55 202 | 32.13 215 | 35.80 211 | 26.79 208 | 37.24 199 | 9.10 212 | 32.02 196 | 30.94 212 | 16.30 207 | 47.22 213 | 41.21 212 | 38.21 216 | 37.21 213 |
|
Gipuma |  | | 25.87 211 | 26.91 214 | 24.66 211 | 28.98 214 | 20.17 219 | 20.46 218 | 34.62 186 | 29.55 211 | 9.10 212 | 4.91 222 | 5.31 226 | 15.76 208 | 49.37 211 | 49.10 205 | 39.03 215 | 29.95 215 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
E-PMN | | | 15.09 214 | 13.19 218 | 17.30 213 | 27.80 216 | 12.62 222 | 7.81 223 | 27.54 206 | 14.62 221 | 3.19 221 | 6.89 219 | 2.52 229 | 15.09 209 | 15.93 218 | 20.22 217 | 22.38 218 | 19.53 218 |
|
EMVS | | | 14.49 215 | 12.45 219 | 16.87 215 | 27.02 218 | 12.56 223 | 8.13 222 | 27.19 207 | 15.05 220 | 3.14 222 | 6.69 220 | 2.67 228 | 15.08 210 | 14.60 220 | 18.05 218 | 20.67 219 | 17.56 220 |
|
test20.03 | | | 40.38 201 | 44.20 201 | 35.92 200 | 53.73 146 | 49.05 189 | 38.54 208 | 43.49 121 | 32.55 206 | 9.54 211 | 27.88 206 | 39.12 197 | 12.24 211 | 56.28 190 | 54.69 189 | 57.96 197 | 49.83 207 |
|
new_pmnet | | | 23.19 212 | 28.17 213 | 17.37 212 | 17.03 221 | 24.92 217 | 19.66 219 | 16.16 219 | 27.05 212 | 4.42 220 | 20.77 214 | 19.20 221 | 12.19 212 | 37.71 214 | 36.38 214 | 34.77 217 | 31.17 214 |
|
MIMVSNet1 | | | 35.51 206 | 41.41 206 | 28.63 208 | 27.53 217 | 43.36 207 | 38.09 209 | 33.82 190 | 32.01 207 | 6.77 218 | 21.63 213 | 35.43 206 | 11.97 213 | 55.05 197 | 53.99 195 | 53.59 206 | 48.36 209 |
|
MVE |  | 12.28 19 | 13.53 216 | 15.72 216 | 10.96 217 | 7.39 223 | 15.71 221 | 6.05 224 | 23.73 212 | 10.29 223 | 3.01 224 | 5.77 221 | 3.41 227 | 11.91 214 | 20.11 216 | 29.79 215 | 13.67 222 | 24.98 216 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
DeepMVS_CX |  | | | | | | 6.95 224 | 5.98 225 | 2.25 221 | 11.73 222 | 2.07 225 | 11.85 217 | 5.43 225 | 11.75 215 | 11.40 221 | | 8.10 224 | 18.38 219 |
|
test_method | | | 12.44 217 | 14.66 217 | 9.85 218 | 1.30 225 | 3.32 225 | 13.00 221 | 3.21 220 | 22.42 216 | 10.22 209 | 14.13 215 | 25.64 216 | 11.43 216 | 19.75 217 | 11.61 220 | 19.96 220 | 5.79 221 |
|
testgi | | | 38.71 203 | 43.64 203 | 32.95 204 | 52.30 157 | 48.63 192 | 35.59 213 | 35.05 182 | 31.58 210 | 9.03 214 | 30.29 199 | 40.75 191 | 11.19 217 | 55.30 195 | 53.47 198 | 54.53 204 | 45.48 210 |
|
new-patchmatchnet | | | 33.24 209 | 37.20 210 | 28.62 209 | 44.32 195 | 38.26 214 | 29.68 217 | 36.05 178 | 31.97 208 | 6.33 219 | 26.59 208 | 27.33 214 | 11.12 218 | 50.08 209 | 41.05 213 | 44.23 214 | 45.15 211 |
|
FC-MVSNet-test | | | 39.65 202 | 48.35 190 | 29.49 207 | 44.43 193 | 39.28 213 | 30.23 216 | 40.44 153 | 43.59 157 | 3.12 223 | 53.00 91 | 42.03 184 | 10.02 219 | 55.09 196 | 54.77 188 | 48.66 211 | 50.71 201 |
|
tmp_tt | | | | | 5.40 219 | 3.97 224 | 2.35 226 | 3.26 226 | 0.44 222 | 17.56 218 | 12.09 203 | 11.48 218 | 7.14 224 | 1.98 220 | 15.68 219 | 15.49 219 | 10.69 223 | |
|
PMMVS2 | | | 15.84 213 | 19.68 215 | 11.35 216 | 15.74 222 | 16.95 220 | 13.31 220 | 17.64 218 | 16.08 219 | 0.36 226 | 13.12 216 | 11.47 223 | 1.69 221 | 28.82 215 | 27.24 216 | 19.38 221 | 24.09 217 |
|
GG-mvs-BLEND | | | 36.62 205 | 53.39 161 | 17.06 214 | 0.01 226 | 58.61 153 | 48.63 176 | 0.01 223 | 47.13 133 | 0.02 227 | 43.98 155 | 60.64 87 | 0.03 222 | 54.92 198 | 51.47 201 | 53.64 205 | 56.99 192 |
|
testmvs | | | 0.01 218 | 0.02 220 | 0.00 220 | 0.00 227 | 0.00 227 | 0.01 228 | 0.00 224 | 0.01 224 | 0.00 228 | 0.03 224 | 0.00 230 | 0.01 223 | 0.01 222 | 0.01 221 | 0.00 225 | 0.06 223 |
|
test123 | | | 0.01 218 | 0.02 220 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 229 | 0.00 224 | 0.01 224 | 0.00 228 | 0.04 223 | 0.00 230 | 0.01 223 | 0.00 223 | 0.01 221 | 0.00 225 | 0.07 222 |
|
uanet_test | | | 0.00 220 | 0.00 222 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 229 | 0.00 224 | 0.00 226 | 0.00 228 | 0.00 225 | 0.00 230 | 0.00 225 | 0.00 223 | 0.00 223 | 0.00 225 | 0.00 224 |
|
sosnet-low-res | | | 0.00 220 | 0.00 222 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 229 | 0.00 224 | 0.00 226 | 0.00 228 | 0.00 225 | 0.00 230 | 0.00 225 | 0.00 223 | 0.00 223 | 0.00 225 | 0.00 224 |
|
sosnet | | | 0.00 220 | 0.00 222 | 0.00 220 | 0.00 227 | 0.00 227 | 0.00 229 | 0.00 224 | 0.00 226 | 0.00 228 | 0.00 225 | 0.00 230 | 0.00 225 | 0.00 223 | 0.00 223 | 0.00 225 | 0.00 224 |
|
RE-MVS-def | | | | | | | | | | | 33.01 139 | | | | | | | |
|
9.14 | | | | | | | | | | | | | 81.81 13 | | | | | |
|
SR-MVS | | | | | | 71.46 35 | | | 54.67 30 | | | | 81.54 14 | | | | | |
|
our_test_3 | | | | | | 51.15 165 | 57.31 166 | 55.12 153 | | | | | | | | | | |
|
MTAPA | | | | | | | | | | | 65.14 4 | | 80.20 20 | | | | | |
|
MTMP | | | | | | | | | | | 62.63 18 | | 78.04 27 | | | | | |
|
Patchmatch-RL test | | | | | | | | 1.04 227 | | | | | | | | | | |
|
XVS | | | | | | 70.49 39 | 76.96 27 | 74.36 46 | | | 54.48 50 | | 74.47 39 | | | | 82.24 25 | |
|
X-MVStestdata | | | | | | 70.49 39 | 76.96 27 | 74.36 46 | | | 54.48 50 | | 74.47 39 | | | | 82.24 25 | |
|
mPP-MVS | | | | | | 71.67 34 | | | | | | | 74.36 42 | | | | | |
|
NP-MVS | | | | | | | | | | 72.00 41 | | | | | | | | |
|
Patchmtry | | | | | | | 47.61 194 | 48.27 177 | 38.86 163 | | 39.59 117 | | | | | | | |
|