This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
APDe-MVS77.58 482.93 471.35 577.86 480.55 583.38 157.61 885.57 361.11 2086.10 582.98 664.76 278.29 1376.78 2183.40 690.20 4
xxxxxxxxxxxxxcwj74.63 1577.07 2671.79 179.32 180.76 382.96 257.49 982.82 764.79 483.69 852.03 11562.83 1277.13 2575.21 3083.35 787.85 15
SF-MVS77.13 681.70 671.79 179.32 180.76 382.96 257.49 982.82 764.79 483.69 884.46 362.83 1277.13 2575.21 3083.35 787.85 15
DVP-MVS77.82 383.46 371.24 775.26 1580.22 682.95 457.85 685.90 264.79 488.54 383.43 566.24 178.21 1678.56 680.34 4489.39 6
DPE-MVS78.11 283.84 271.42 477.82 581.32 282.92 557.81 784.04 663.19 1288.63 286.00 264.52 378.71 977.63 1482.26 2290.57 3
SMA-MVS77.32 582.51 571.26 675.43 1380.19 782.22 658.26 384.83 564.36 778.19 1483.46 463.61 681.00 180.28 183.66 489.62 5
SteuartSystems-ACMMP75.23 1179.60 1370.13 1276.81 678.92 1181.74 757.99 475.30 2959.83 2575.69 1778.45 2360.48 2880.58 279.77 283.94 388.52 9
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS75.62 1079.91 1270.61 975.76 978.82 1381.66 857.12 1279.77 1663.04 1370.69 2381.15 1462.99 980.23 379.54 383.11 989.16 7
MSP-MVS78.77 184.89 171.62 378.04 382.05 181.64 957.96 587.53 166.64 188.77 186.31 163.16 879.99 578.56 682.31 2191.03 1
DPM-MVS72.80 2675.90 2969.19 2075.51 1277.68 1981.62 1054.83 2675.96 2562.06 1863.96 4276.58 2958.55 3776.66 3276.77 2282.60 1883.68 42
ACMMP_NAP76.15 781.17 770.30 1074.09 1979.47 981.59 1157.09 1381.38 1063.89 1079.02 1280.48 1762.24 1780.05 479.12 482.94 1288.64 8
APD-MVScopyleft75.80 980.90 969.86 1575.42 1478.48 1581.43 1257.44 1180.45 1459.32 2685.28 680.82 1663.96 576.89 2876.08 2681.58 3788.30 11
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + MP.75.22 1280.06 1169.56 1674.61 1772.74 4980.59 1355.70 2380.80 1262.65 1586.25 482.92 762.07 1976.89 2875.66 2981.77 3385.19 33
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
NCCC74.27 1877.83 2370.13 1275.70 1077.41 2280.51 1457.09 1378.25 2062.28 1765.54 3678.26 2462.18 1879.13 678.51 883.01 1187.68 17
HFP-MVS74.87 1378.86 1870.21 1173.99 2077.91 1780.36 1556.63 1578.41 1964.27 874.54 1977.75 2762.96 1078.70 1077.82 1183.02 1086.91 21
HPM-MVS++copyleft76.01 880.47 1070.81 876.60 774.96 3580.18 1658.36 281.96 963.50 1178.80 1382.53 964.40 478.74 878.84 581.81 3187.46 18
train_agg73.89 2178.25 2068.80 2375.25 1672.27 5179.75 1756.05 2074.87 3258.97 2781.83 1079.76 2061.05 2577.39 2476.01 2781.71 3485.61 30
zzz-MVS74.25 1977.97 2269.91 1473.43 2374.06 4379.69 1856.44 1780.74 1364.98 368.72 2979.98 1962.92 1178.24 1577.77 1381.99 2986.30 23
OPM-MVS69.33 3771.05 4567.32 2772.34 2875.70 3279.57 1956.34 1955.21 6953.81 5359.51 6068.96 5359.67 3277.61 2276.44 2482.19 2683.88 40
ACMMPR73.79 2378.41 1968.40 2472.35 2777.79 1879.32 2056.38 1877.67 2358.30 3174.16 2076.66 2861.40 2278.32 1277.80 1282.68 1686.51 22
PGM-MVS72.89 2577.13 2567.94 2572.47 2677.25 2379.27 2154.63 2973.71 3457.95 3372.38 2175.33 3460.75 2678.25 1477.36 1782.57 1985.62 29
MP-MVScopyleft74.31 1778.87 1668.99 2173.49 2278.56 1479.25 2256.51 1675.33 2760.69 2275.30 1879.12 2261.81 2077.78 2077.93 1082.18 2788.06 13
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CSCG74.68 1479.22 1469.40 1775.69 1180.01 879.12 2352.83 4179.34 1763.99 970.49 2482.02 1060.35 3077.48 2377.22 1884.38 187.97 14
SD-MVS74.43 1678.87 1669.26 1974.39 1873.70 4579.06 2455.24 2581.04 1162.71 1480.18 1182.61 861.70 2175.43 4073.92 4382.44 2085.22 32
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MCST-MVS73.67 2477.39 2469.33 1876.26 878.19 1678.77 2554.54 3075.33 2759.99 2467.96 3179.23 2162.43 1678.00 1775.71 2884.02 287.30 19
TSAR-MVS + ACMM72.56 2879.07 1564.96 4073.24 2473.16 4878.50 2648.80 6479.34 1755.32 4085.04 781.49 1358.57 3675.06 4373.75 4475.35 10085.61 30
ACMMPcopyleft71.57 3075.84 3066.59 3070.30 3976.85 2878.46 2753.95 3473.52 3555.56 3870.13 2571.36 4758.55 3777.00 2776.23 2582.71 1585.81 28
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS66.32 273.85 2278.10 2168.90 2267.92 4979.31 1078.16 2859.28 178.24 2161.13 1967.36 3576.10 3263.40 779.11 778.41 983.52 588.16 12
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CDPH-MVS71.47 3175.82 3166.41 3172.97 2577.15 2478.14 2954.71 2769.88 4753.07 5570.98 2274.83 3656.95 5076.22 3376.57 2382.62 1785.09 34
CP-MVS72.63 2776.95 2767.59 2670.67 3575.53 3377.95 3056.01 2175.65 2658.82 2869.16 2876.48 3060.46 2977.66 2177.20 1981.65 3586.97 20
HQP-MVS70.88 3375.02 3366.05 3471.69 3074.47 4077.51 3153.17 3872.89 3654.88 4470.03 2670.48 4957.26 4676.02 3575.01 3581.78 3286.21 24
X-MVS71.18 3275.66 3265.96 3571.71 2976.96 2577.26 3255.88 2272.75 3754.48 4864.39 4074.47 3754.19 6477.84 1977.37 1682.21 2585.85 27
LGP-MVS_train68.87 3972.03 4165.18 3969.33 4374.03 4476.67 3353.88 3568.46 4852.05 5863.21 4463.89 6556.31 5475.99 3674.43 3982.83 1484.18 36
DeepC-MVS_fast65.08 372.00 2976.11 2867.21 2868.93 4577.46 2076.54 3454.35 3174.92 3158.64 3065.18 3774.04 4262.62 1477.92 1877.02 2082.16 2886.21 24
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMM60.30 767.58 4768.82 5666.13 3370.59 3672.01 5376.54 3454.26 3265.64 5354.78 4650.35 10161.72 7558.74 3575.79 3875.03 3381.88 3081.17 52
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CPTT-MVS68.76 4173.01 3763.81 4765.42 6073.66 4676.39 3652.08 4372.61 3850.33 6160.73 5672.65 4559.43 3473.32 5172.12 4979.19 5685.99 26
ACMP61.42 568.72 4271.37 4365.64 3769.06 4474.45 4175.88 3753.30 3768.10 4955.74 3761.53 5562.29 7156.97 4974.70 4474.23 4182.88 1384.31 35
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DeepPCF-MVS66.49 174.25 1980.97 866.41 3167.75 5178.87 1275.61 3854.16 3384.86 458.22 3277.94 1581.01 1562.52 1578.34 1177.38 1580.16 4788.40 10
AdaColmapbinary67.89 4568.85 5566.77 2973.73 2174.30 4275.28 3953.58 3670.24 4557.59 3451.19 9859.19 8760.74 2775.33 4273.72 4579.69 5277.96 66
MSLP-MVS++68.17 4370.72 4865.19 3869.41 4270.64 5574.99 4045.76 7470.20 4660.17 2356.42 7273.01 4361.14 2372.80 5370.54 5679.70 5081.42 51
MVS_030469.49 3673.96 3564.28 4567.92 4976.13 3174.90 4147.60 6663.29 5754.09 5267.44 3476.35 3159.53 3375.81 3775.03 3381.62 3683.70 41
PCF-MVS59.98 867.32 4871.04 4662.97 4964.77 6274.49 3974.78 4249.54 5867.44 5054.39 5158.35 6572.81 4455.79 6071.54 5869.24 6578.57 5883.41 43
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MAR-MVS68.04 4470.74 4764.90 4171.68 3176.33 3074.63 4350.48 5563.81 5555.52 3954.88 8069.90 5157.39 4475.42 4174.79 3779.71 4980.03 55
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
XVS70.49 3776.96 2574.36 4454.48 4874.47 3782.24 23
X-MVStestdata70.49 3776.96 2574.36 4454.48 4874.47 3782.24 23
PHI-MVS69.27 3874.84 3462.76 5066.83 5374.83 3673.88 4649.32 6070.61 4450.93 5969.62 2774.84 3557.25 4775.53 3974.32 4078.35 6384.17 37
CANet68.77 4073.01 3763.83 4668.30 4675.19 3473.73 4747.90 6563.86 5454.84 4567.51 3374.36 4057.62 4174.22 4673.57 4780.56 4282.36 46
3Dnovator+62.63 469.51 3572.62 3965.88 3668.21 4876.47 2973.50 4852.74 4270.85 4358.65 2955.97 7469.95 5061.11 2476.80 3075.09 3281.09 4183.23 45
abl_664.36 4470.08 4077.45 2172.88 4950.15 5671.31 4254.77 4762.79 4777.99 2656.80 5181.50 3883.91 39
TSAR-MVS + GP.69.71 3473.92 3664.80 4268.27 4770.56 5671.90 5050.75 5171.38 4157.46 3568.68 3075.42 3360.10 3173.47 5073.99 4280.32 4583.97 38
CLD-MVS67.02 4971.57 4261.71 5171.01 3474.81 3771.62 5138.91 15271.86 4060.70 2164.97 3867.88 6051.88 8776.77 3174.98 3676.11 9069.75 119
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
3Dnovator60.86 666.99 5070.32 5063.11 4866.63 5474.52 3871.56 5245.76 7467.37 5155.00 4354.31 8568.19 5758.49 3973.97 4773.63 4681.22 4080.23 54
MVS_111021_HR67.62 4670.39 4964.39 4369.77 4170.45 5771.44 5351.72 4760.77 6355.06 4262.14 5266.40 6258.13 4076.13 3474.79 3780.19 4682.04 49
DELS-MVS65.87 5170.30 5160.71 5364.05 7072.68 5070.90 5445.43 7857.49 6649.05 6764.43 3968.66 5455.11 6274.31 4573.02 4879.70 5081.51 50
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OMC-MVS65.16 5471.35 4457.94 6952.95 14168.82 6169.00 5538.28 15979.89 1555.20 4162.76 4868.31 5656.14 5771.30 6068.70 7176.06 9279.67 56
Effi-MVS+63.28 5965.96 6560.17 5564.26 6668.06 6768.78 5645.71 7654.08 7246.64 7355.92 7563.13 6955.94 5870.38 6971.43 5179.68 5378.70 61
casdiffmvs64.09 5668.13 5759.37 6061.81 7668.32 6568.48 5744.45 9061.95 6049.12 6663.04 4569.67 5253.83 6770.46 6666.06 10878.55 5977.43 69
CS-MVS63.45 5865.72 6760.80 5264.20 6767.86 6968.46 5843.50 11253.86 7349.90 6356.44 7160.45 8257.27 4573.56 4970.13 6181.45 3977.73 68
MSDG58.46 8758.97 11557.85 7366.27 5866.23 8967.72 5942.33 12653.43 7543.68 8743.39 15345.35 15749.75 9468.66 8267.77 8177.38 7167.96 134
ETV-MVS63.23 6066.08 6459.91 5763.13 7468.13 6667.62 6044.62 8753.39 7646.23 7558.74 6258.19 9057.45 4373.60 4871.38 5380.39 4379.13 58
EPNet65.14 5569.54 5360.00 5666.61 5567.67 7367.53 6155.32 2462.67 5946.22 7667.74 3265.93 6348.07 10572.17 5572.12 4976.28 8678.47 63
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMH+53.71 1259.26 7760.28 9558.06 6664.17 6968.46 6367.51 6250.93 5052.46 8535.83 12740.83 16745.12 16152.32 8369.88 7269.00 6977.59 6976.21 84
LS3D60.20 7461.70 8358.45 6464.18 6867.77 7067.19 6348.84 6361.67 6141.27 10145.89 13351.81 11654.18 6568.78 7966.50 10375.03 10269.48 125
v2v48258.69 8360.12 10257.03 7757.16 11566.05 9067.17 6443.52 11046.33 12945.19 8149.46 10551.02 11952.51 8167.30 10966.03 10976.61 8074.62 94
v114458.88 8060.16 9957.39 7558.03 9767.26 7867.14 6544.46 8945.17 13744.33 8547.81 11549.92 12653.20 7867.77 10166.62 10077.15 7576.58 78
diffmvs61.64 6766.55 6055.90 8456.63 11763.71 10867.13 6641.27 13659.49 6546.70 7263.93 4368.01 5950.46 9167.30 10965.51 11673.24 12477.87 67
v1059.17 7960.60 9157.50 7457.95 9866.73 8367.09 6744.11 9246.85 12545.42 7948.18 11451.07 11853.63 6867.84 9966.59 10176.79 7876.92 74
CostFormer56.57 10659.13 11353.60 9757.52 10361.12 12366.94 6835.95 17053.44 7444.68 8355.87 7654.44 10648.21 10260.37 15858.33 16568.27 15770.33 117
ACMH52.42 1358.24 9259.56 10956.70 8166.34 5769.59 5866.71 6949.12 6146.08 13228.90 15442.67 16241.20 17952.60 8071.39 5970.28 5876.51 8275.72 87
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v858.88 8060.57 9356.92 7857.35 10865.69 9366.69 7042.64 12447.89 12045.77 7749.04 10652.98 11152.77 7967.51 10665.57 11576.26 8775.30 92
MVS_Test62.40 6566.23 6357.94 6959.77 9064.77 10266.50 7141.76 13157.26 6749.33 6462.68 4967.47 6153.50 7268.57 8466.25 10576.77 7976.58 78
PVSNet_Blended_VisFu63.65 5766.92 5859.83 5860.03 8773.44 4766.33 7248.95 6252.20 8650.81 6056.07 7360.25 8353.56 6973.23 5270.01 6279.30 5483.24 44
V4256.97 10260.14 10053.28 10048.16 17062.78 11366.30 7337.93 16147.44 12242.68 9248.19 11352.59 11351.90 8667.46 10765.94 11172.72 12976.55 80
v119258.51 8459.66 10557.17 7657.82 9967.72 7166.21 7444.83 8444.15 14543.49 8846.68 12047.94 13053.55 7067.39 10866.51 10277.13 7677.20 72
DI_MVS_plusplus_trai61.88 6665.17 7158.06 6660.05 8665.26 9666.03 7544.22 9155.75 6846.73 7154.64 8368.12 5854.13 6669.13 7766.66 9777.18 7476.61 77
Effi-MVS+-dtu60.34 7362.32 8258.03 6864.31 6467.44 7765.99 7642.26 12749.55 9742.00 9748.92 10859.79 8556.27 5568.07 9567.03 8977.35 7275.45 90
CNLPA62.78 6366.31 6258.65 6358.47 9568.41 6465.98 7741.22 13778.02 2256.04 3646.65 12159.50 8657.50 4269.67 7365.27 12072.70 13176.67 76
MVS_111021_LR63.05 6166.43 6159.10 6161.33 8063.77 10765.87 7843.58 10860.20 6453.70 5462.09 5362.38 7055.84 5970.24 7068.08 7674.30 10778.28 65
ET-MVSNet_ETH3D58.38 8961.57 8454.67 9142.15 19065.26 9665.70 7943.82 10048.84 10742.34 9459.76 5947.76 13356.68 5267.02 11668.60 7477.33 7373.73 102
v14419258.23 9359.40 11156.87 7957.56 10066.89 8165.70 7945.01 8244.06 14642.88 9046.61 12248.09 12953.49 7366.94 11765.90 11276.61 8077.29 70
QAPM65.27 5369.49 5460.35 5465.43 5972.20 5265.69 8147.23 6763.46 5649.14 6553.56 8671.04 4857.01 4872.60 5471.41 5277.62 6782.14 48
Fast-Effi-MVS+-dtu56.30 10859.29 11252.82 10758.64 9464.89 10065.56 8232.89 18745.80 13435.04 12945.89 13354.14 10749.41 9567.16 11266.45 10475.37 9970.69 114
TSAR-MVS + COLMAP62.65 6469.90 5254.19 9346.31 17866.73 8365.49 8341.36 13576.57 2446.31 7476.80 1656.68 9653.27 7769.50 7466.65 9872.40 13676.36 83
EIA-MVS61.53 7063.79 7858.89 6263.82 7267.61 7465.35 8442.15 13049.98 9445.66 7857.47 6956.62 9756.59 5370.91 6469.15 6679.78 4874.80 93
TAPA-MVS54.74 1060.85 7166.61 5954.12 9547.38 17465.33 9465.35 8436.51 16875.16 3048.82 6854.70 8263.51 6753.31 7668.36 8664.97 12673.37 11974.27 96
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Fast-Effi-MVS+60.36 7263.35 7956.87 7958.70 9265.86 9165.08 8637.11 16553.00 8145.36 8052.12 9356.07 10256.27 5571.28 6169.42 6478.71 5775.69 88
MS-PatchMatch58.19 9460.20 9855.85 8565.17 6164.16 10564.82 8741.48 13450.95 8942.17 9645.38 13856.42 9848.08 10468.30 8766.70 9673.39 11869.46 127
HyFIR lowres test56.87 10458.60 11954.84 8956.62 11869.27 6064.77 8842.21 12845.66 13537.50 12233.08 18457.47 9553.33 7565.46 13667.94 7774.60 10471.35 109
v192192057.89 9659.02 11456.58 8257.55 10166.66 8764.72 8944.70 8643.55 14942.73 9146.17 13046.93 14353.51 7166.78 11865.75 11476.29 8577.28 71
canonicalmvs65.62 5272.06 4058.11 6563.94 7171.05 5464.49 9043.18 12074.08 3347.35 6964.17 4171.97 4651.17 9071.87 5670.74 5478.51 6180.56 53
PLCcopyleft52.09 1459.21 7862.47 8155.41 8853.24 13964.84 10164.47 9140.41 14665.92 5244.53 8446.19 12955.69 10355.33 6168.24 9065.30 11974.50 10571.09 110
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OpenMVScopyleft57.13 962.81 6265.75 6659.39 5966.47 5669.52 5964.26 9243.07 12261.34 6250.19 6247.29 11864.41 6454.60 6370.18 7168.62 7377.73 6578.89 60
CANet_DTU58.88 8064.68 7452.12 11155.77 12166.75 8263.92 9337.04 16653.32 7737.45 12359.81 5861.81 7444.43 12268.25 8867.47 8774.12 10975.33 91
v124057.55 9858.63 11856.29 8357.30 11166.48 8863.77 9444.56 8842.77 15942.48 9345.64 13646.28 15053.46 7466.32 12465.80 11376.16 8977.13 73
tpm cat153.30 12953.41 15153.17 10358.16 9659.15 14163.73 9538.27 16050.73 9146.98 7045.57 13744.00 17349.20 9655.90 18554.02 18462.65 17664.50 159
PVSNet_BlendedMVS61.63 6864.82 7257.91 7157.21 11367.55 7563.47 9646.08 7254.72 7052.46 5658.59 6360.73 7851.82 8870.46 6665.20 12276.44 8376.50 81
PVSNet_Blended61.63 6864.82 7257.91 7157.21 11367.55 7563.47 9646.08 7254.72 7052.46 5658.59 6360.73 7851.82 8870.46 6665.20 12276.44 8376.50 81
CHOSEN 1792x268855.85 11158.01 12353.33 9957.26 11262.82 11263.29 9841.55 13346.65 12738.34 11634.55 18253.50 10852.43 8267.10 11467.56 8667.13 16173.92 101
IB-MVS54.11 1158.36 9060.70 9055.62 8658.67 9368.02 6861.56 9943.15 12146.09 13144.06 8644.24 14550.99 12148.71 9966.70 11970.33 5777.60 6878.50 62
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVSTER57.19 9961.11 8752.62 10850.82 16158.79 14361.55 10037.86 16248.81 10941.31 10057.43 7052.10 11448.60 10068.19 9266.75 9575.56 9675.68 89
EG-PatchMatch MVS56.98 10158.24 12255.50 8764.66 6368.62 6261.48 10143.63 10738.44 18341.44 9838.05 17346.18 15243.95 12371.71 5770.61 5577.87 6474.08 99
DCV-MVSNet59.49 7564.00 7754.23 9261.81 7664.33 10461.42 10243.77 10152.85 8238.94 11555.62 7762.15 7343.24 13069.39 7567.66 8476.22 8875.97 85
v14855.58 11457.61 12953.20 10154.59 13161.86 11561.18 10338.70 15744.30 14442.25 9547.53 11650.24 12548.73 9865.15 13862.61 14873.79 11271.61 108
GA-MVS55.67 11258.33 12052.58 10955.23 12663.09 10961.08 10440.15 14842.95 15437.02 12552.61 9047.68 13447.51 10765.92 13065.35 11774.49 10670.68 115
v7n55.67 11257.46 13053.59 9856.06 11965.29 9561.06 10543.26 11940.17 17437.99 11940.79 16845.27 16047.09 10967.67 10366.21 10676.08 9176.82 75
Anonymous20240521160.60 9163.44 7366.71 8661.00 10647.23 6750.62 9236.85 17660.63 8143.03 13169.17 7667.72 8375.41 9772.54 104
Anonymous2023121157.71 9760.79 8954.13 9461.68 7865.81 9260.81 10743.70 10551.97 8739.67 11034.82 18163.59 6643.31 12868.55 8566.63 9975.59 9574.13 98
COLMAP_ROBcopyleft46.52 1551.99 13954.86 14348.63 13549.13 16861.73 11760.53 10836.57 16753.14 7832.95 13437.10 17438.68 19040.49 14065.72 13263.08 14172.11 14064.60 158
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
pmmvs454.66 12356.07 13453.00 10454.63 12857.08 15860.43 10944.10 9351.69 8840.55 10546.55 12544.79 16645.95 11562.54 14763.66 13672.36 13766.20 145
Vis-MVSNetpermissive58.48 8665.70 6850.06 12053.40 13867.20 7960.24 11043.32 11748.83 10830.23 14762.38 5161.61 7640.35 14171.03 6369.77 6372.82 12779.11 59
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
baseline255.89 10957.82 12553.64 9657.36 10761.09 12459.75 11140.45 14447.38 12341.26 10251.23 9746.90 14448.11 10365.63 13464.38 13174.90 10368.16 133
IterMVS-LS58.30 9161.39 8554.71 9059.92 8958.40 14759.42 11243.64 10648.71 11140.25 10857.53 6858.55 8952.15 8565.42 13765.34 11872.85 12575.77 86
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
thisisatest053056.68 10559.68 10453.19 10252.97 14060.96 12659.41 11340.51 14248.26 11741.06 10352.67 8946.30 14949.78 9267.66 10467.83 7975.39 9874.07 100
TDRefinement49.31 15352.44 15945.67 15630.44 20359.42 13759.24 11439.78 15048.76 11031.20 14235.73 17829.90 20342.81 13264.24 14262.59 14970.55 14966.43 141
tttt051756.53 10759.59 10652.95 10552.66 14360.99 12559.21 11540.51 14247.89 12040.40 10652.50 9246.04 15349.78 9267.75 10267.83 7975.15 10174.17 97
IterMVS53.45 12857.12 13149.17 12649.23 16760.93 12759.05 11634.63 17644.53 14033.22 13251.09 10051.01 12048.38 10162.43 14960.79 15670.54 15069.05 130
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
baseline55.19 11960.88 8848.55 13649.87 16558.10 15258.70 11734.75 17452.82 8339.48 11460.18 5760.86 7745.41 11761.05 15460.74 15763.10 17472.41 105
EPP-MVSNet59.39 7665.45 6952.32 11060.96 8267.70 7258.42 11844.75 8549.71 9627.23 16259.03 6162.20 7243.34 12770.71 6569.13 6779.25 5579.63 57
MDTV_nov1_ep1350.32 14952.43 16047.86 14649.87 16554.70 16258.10 11934.29 17845.59 13637.71 12047.44 11747.42 13841.86 13558.07 17155.21 17765.34 16858.56 181
TranMVSNet+NR-MVSNet55.87 11060.14 10050.88 11459.46 9163.82 10657.93 12052.98 3948.94 10620.52 17852.87 8847.33 13936.81 15969.12 7869.03 6877.56 7069.89 118
NR-MVSNet55.35 11659.46 11050.56 11661.33 8062.97 11057.91 12151.80 4548.62 11420.59 17751.99 9444.73 16734.10 16968.58 8368.64 7277.66 6670.67 116
UniMVSNet_NR-MVSNet56.94 10361.14 8652.05 11260.02 8865.21 9957.44 12252.93 4049.37 10024.31 17254.62 8450.54 12239.04 14568.69 8068.84 7078.53 6070.72 112
DU-MVS55.41 11559.59 10650.54 11754.60 12962.97 11057.44 12251.80 4548.62 11424.31 17251.99 9447.00 14239.04 14568.11 9367.75 8276.03 9370.72 112
IS_MVSNet57.95 9564.26 7650.60 11561.62 7965.25 9857.18 12445.42 7950.79 9026.49 16557.81 6760.05 8434.51 16671.24 6270.20 6078.36 6274.44 95
GBi-Net55.20 11760.25 9649.31 12352.42 14461.44 11857.03 12544.04 9549.18 10330.47 14348.28 11058.19 9038.22 14868.05 9666.96 9073.69 11469.65 120
test155.20 11760.25 9649.31 12352.42 14461.44 11857.03 12544.04 9549.18 10330.47 14348.28 11058.19 9038.22 14868.05 9666.96 9073.69 11469.65 120
FMVSNet255.04 12159.95 10349.31 12352.42 14461.44 11857.03 12544.08 9449.55 9730.40 14646.89 11958.84 8838.22 14867.07 11566.21 10673.69 11469.65 120
UniMVSNet_ETH3D52.62 13155.98 13548.70 13451.04 15860.71 12856.87 12846.74 6942.52 16126.96 16342.50 16345.95 15437.87 15266.22 12665.15 12572.74 12868.78 132
FMVSNet154.08 12558.68 11748.71 13350.90 16061.35 12156.73 12943.94 9945.91 13329.32 15342.72 16156.26 10137.70 15368.05 9666.96 9073.69 11469.50 124
FMVSNet354.78 12259.58 10849.17 12652.37 14761.31 12256.72 13044.04 9549.18 10330.47 14348.28 11058.19 9038.09 15165.48 13565.20 12273.31 12169.45 128
UGNet57.03 10065.25 7047.44 14846.54 17766.73 8356.30 13143.28 11850.06 9332.99 13362.57 5063.26 6833.31 17168.25 8867.58 8572.20 13978.29 64
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Baseline_NR-MVSNet53.50 12757.89 12448.37 13954.60 12959.25 14056.10 13251.84 4449.32 10117.92 18545.38 13847.68 13436.93 15868.11 9365.95 11072.84 12669.57 123
tpm48.82 15951.27 16745.96 15354.10 13447.35 18656.05 13330.23 19146.70 12643.21 8952.54 9147.55 13737.28 15654.11 19050.50 19354.90 19360.12 177
pmmvs-eth3d51.33 14252.25 16150.26 11950.82 16154.65 16356.03 13443.45 11643.51 15037.20 12439.20 17139.04 18942.28 13361.85 15262.78 14571.78 14264.72 157
thisisatest051553.85 12656.84 13350.37 11850.25 16458.17 15155.99 13539.90 14941.88 16438.16 11845.91 13245.30 15844.58 12166.15 12866.89 9373.36 12073.57 103
FC-MVSNet-train58.40 8863.15 8052.85 10664.29 6561.84 11655.98 13646.47 7053.06 7934.96 13061.95 5456.37 10039.49 14368.67 8168.36 7575.92 9471.81 107
UniMVSNet (Re)55.15 12060.39 9449.03 12955.31 12364.59 10355.77 13750.63 5248.66 11320.95 17651.47 9650.40 12334.41 16867.81 10067.89 7877.11 7771.88 106
baseline154.48 12458.69 11649.57 12160.63 8558.29 15055.70 13844.95 8349.20 10229.62 15054.77 8154.75 10535.29 16367.15 11364.08 13271.21 14662.58 168
thres20052.39 13455.37 14048.90 13057.39 10660.18 13155.60 13943.73 10342.93 15527.41 16043.35 15445.09 16236.61 16066.36 12263.92 13572.66 13265.78 150
CDS-MVSNet52.42 13357.06 13247.02 15053.92 13658.30 14955.50 14046.47 7042.52 16129.38 15249.50 10452.85 11228.49 18166.70 11966.89 9368.34 15662.63 167
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thres40052.38 13555.51 13748.74 13257.49 10460.10 13355.45 14143.54 10942.90 15626.72 16443.34 15545.03 16536.61 16066.20 12764.53 12972.66 13266.43 141
tfpn200view952.53 13255.51 13749.06 12857.31 10960.24 13055.42 14243.77 10142.85 15727.81 15843.00 15945.06 16337.32 15566.38 12164.54 12872.71 13066.54 140
thres100view90052.04 13854.81 14448.80 13157.31 10959.33 13855.30 14342.92 12342.85 15727.81 15843.00 15945.06 16336.99 15764.74 14063.51 13772.47 13565.21 154
our_test_351.15 15657.31 15755.12 144
IterMVS-SCA-FT52.18 13657.75 12745.68 15551.01 15962.06 11455.10 14534.75 17444.85 13832.86 13551.13 9951.22 11748.74 9762.47 14861.51 15251.61 20071.02 111
MDTV_nov1_ep13_2view47.62 16849.72 17745.18 15848.05 17153.70 16654.90 14633.80 18239.90 17629.79 14938.85 17241.89 17739.17 14458.99 16255.55 17465.34 16859.17 179
thres600view751.91 14155.14 14148.14 14157.43 10560.18 13154.60 14743.73 10342.61 16025.20 16843.10 15844.47 17035.19 16466.36 12263.28 14072.66 13266.01 148
tfpnnormal50.16 15052.19 16247.78 14756.86 11658.37 14854.15 14844.01 9838.35 18525.94 16636.10 17737.89 19234.50 16765.93 12963.42 13871.26 14565.28 153
TransMVSNet (Re)51.92 14055.38 13947.88 14560.95 8359.90 13453.95 14945.14 8139.47 17724.85 16943.87 14846.51 14829.15 17867.55 10565.23 12173.26 12365.16 155
dps50.42 14751.20 16849.51 12255.88 12056.07 16053.73 15038.89 15343.66 14740.36 10745.66 13537.63 19445.23 11859.05 16156.18 16962.94 17560.16 176
anonymousdsp52.84 13057.78 12647.06 14940.24 19358.95 14253.70 15133.54 18436.51 19032.69 13643.88 14745.40 15647.97 10667.17 11170.28 5874.22 10882.29 47
UA-Net58.50 8564.68 7451.30 11366.97 5267.13 8053.68 15245.65 7749.51 9931.58 14162.91 4668.47 5535.85 16268.20 9167.28 8874.03 11069.24 129
tpmrst48.08 16449.88 17645.98 15252.71 14248.11 18453.62 15333.70 18348.70 11239.74 10948.96 10746.23 15140.29 14250.14 19849.28 19555.80 19057.71 183
gg-mvs-nofinetune49.07 15852.56 15845.00 15961.99 7559.78 13553.55 15441.63 13231.62 19912.08 19329.56 19353.28 11029.57 17766.27 12564.49 13071.19 14762.92 164
PatchmatchNetpermissive49.92 15251.29 16648.32 14051.83 15151.86 17353.38 15537.63 16447.90 11940.83 10448.54 10945.30 15845.19 11956.86 17553.99 18661.08 18154.57 188
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
USDC51.11 14353.71 14848.08 14344.76 18255.99 16153.01 15640.90 13852.49 8436.14 12644.67 14333.66 19943.27 12963.23 14361.10 15470.39 15164.82 156
EPNet_dtu52.05 13758.26 12144.81 16054.10 13450.09 17952.01 15740.82 14053.03 8027.41 16054.90 7957.96 9426.72 18362.97 14462.70 14767.78 15966.19 146
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TinyColmap47.08 17047.56 18446.52 15142.35 18953.44 16751.77 15840.70 14143.44 15131.92 13929.78 19223.72 20845.04 12061.99 15159.54 16267.35 16061.03 172
pm-mvs151.02 14455.55 13645.73 15454.16 13358.52 14550.92 15942.56 12540.32 17325.67 16743.66 15050.34 12430.06 17665.85 13163.97 13470.99 14866.21 144
MIMVSNet43.79 18248.53 18038.27 18441.46 19148.97 18250.81 16032.88 18844.55 13922.07 17432.05 18547.15 14024.76 18658.73 16556.09 17157.63 18952.14 189
SCA50.99 14553.22 15548.40 13851.07 15756.78 15950.25 16139.05 15148.31 11641.38 9949.54 10346.70 14746.00 11458.31 16856.28 16862.65 17656.60 185
PatchMatch-RL50.11 15151.56 16548.43 13746.23 17951.94 17250.21 16238.62 15846.62 12837.51 12142.43 16439.38 18752.24 8460.98 15559.56 16165.76 16560.01 178
test-LLR49.28 15450.29 17248.10 14255.26 12447.16 18749.52 16343.48 11439.22 17831.98 13743.65 15147.93 13141.29 13856.80 17655.36 17567.08 16261.94 169
TESTMET0.1,146.09 17650.29 17241.18 17636.91 19647.16 18749.52 16320.32 20539.22 17831.98 13743.65 15147.93 13141.29 13856.80 17655.36 17567.08 16261.94 169
pmmvs648.35 16251.64 16444.51 16251.92 15057.94 15449.44 16542.17 12934.45 19224.62 17128.87 19546.90 14429.07 18064.60 14163.08 14169.83 15265.68 151
PMMVS49.20 15754.28 14743.28 16834.13 19845.70 19448.98 16626.09 20046.31 13034.92 13155.22 7853.47 10947.48 10859.43 16059.04 16368.05 15860.77 173
GG-mvs-BLEND36.62 19553.39 15217.06 2040.01 21558.61 14448.63 1670.01 21247.13 1240.02 21543.98 14660.64 800.03 21154.92 18951.47 19253.64 19656.99 184
CR-MVSNet50.47 14652.61 15747.98 14449.03 16952.94 16848.27 16838.86 15444.41 14139.59 11144.34 14444.65 16946.63 11158.97 16360.31 15865.48 16662.66 165
Patchmtry47.61 18548.27 16838.86 15439.59 111
pmmvs547.07 17151.02 17042.46 17045.18 18151.47 17448.23 17033.09 18638.17 18628.62 15646.60 12343.48 17430.74 17458.28 16958.63 16468.92 15460.48 174
SixPastTwentyTwo47.55 16950.25 17444.41 16347.30 17554.31 16547.81 17140.36 14733.76 19319.93 18043.75 14932.77 20142.07 13459.82 15960.94 15568.98 15366.37 143
test-mter45.30 17750.37 17139.38 18133.65 20046.99 18947.59 17218.59 20638.75 18128.00 15743.28 15646.82 14641.50 13757.28 17455.78 17266.93 16463.70 162
EPMVS44.66 17947.86 18340.92 17747.97 17244.70 19647.58 17333.27 18548.11 11829.58 15149.65 10244.38 17134.65 16551.71 19347.90 19752.49 19848.57 199
CMPMVSbinary37.70 1749.24 15552.71 15645.19 15745.97 18051.23 17547.44 17429.31 19243.04 15344.69 8234.45 18348.35 12843.64 12462.59 14659.82 16060.08 18269.48 125
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FMVSNet540.96 18745.81 18835.29 19234.30 19744.55 19747.28 17528.84 19440.76 17021.62 17529.85 19142.44 17524.77 18557.53 17355.00 17854.93 19250.56 194
PEN-MVS49.21 15654.32 14643.24 16954.33 13259.26 13947.04 17651.37 4941.67 1659.97 19846.22 12841.80 17822.97 19060.52 15664.03 13373.73 11366.75 139
CP-MVSNet48.37 16153.53 15042.34 17151.35 15458.01 15346.56 17750.54 5341.62 16610.61 19546.53 12640.68 18323.18 18858.71 16661.83 15071.81 14167.36 138
PS-CasMVS48.18 16353.25 15442.27 17251.26 15557.94 15446.51 17850.52 5441.30 16710.56 19645.35 14040.34 18523.04 18958.66 16761.79 15171.74 14367.38 137
CVMVSNet46.38 17552.01 16339.81 18042.40 18850.26 17746.15 17937.68 16340.03 17515.09 18846.56 12447.56 13633.72 17056.50 18055.65 17363.80 17267.53 135
PM-MVS44.55 18048.13 18240.37 17932.85 20246.82 19146.11 18029.28 19340.48 17229.99 14839.98 17034.39 19841.80 13656.08 18353.88 18862.19 17965.31 152
RPMNet46.41 17348.72 17943.72 16447.77 17352.94 16846.02 18133.92 18044.41 14131.82 14036.89 17537.42 19537.41 15453.88 19154.02 18465.37 16761.47 171
Vis-MVSNet (Re-imp)50.37 14857.73 12841.80 17457.53 10254.35 16445.70 18245.24 8049.80 9513.43 19158.23 6656.42 9820.11 19362.96 14563.36 13968.76 15558.96 180
FPMVS38.36 19440.41 19835.97 18938.92 19539.85 20145.50 18325.79 20141.13 16818.70 18230.10 19024.56 20631.86 17349.42 20046.80 20055.04 19151.03 192
RPSCF46.41 17354.42 14537.06 18825.70 21045.14 19545.39 18420.81 20462.79 5835.10 12844.92 14255.60 10443.56 12556.12 18252.45 19051.80 19963.91 161
TAMVS44.02 18149.18 17837.99 18647.03 17645.97 19345.04 18528.47 19539.11 18020.23 17943.22 15748.52 12728.49 18158.15 17057.95 16758.71 18451.36 191
CHOSEN 280x42040.80 18845.05 19135.84 19132.95 20129.57 20644.98 18623.71 20337.54 18818.42 18331.36 18847.07 14146.41 11356.71 17854.65 18248.55 20258.47 182
MDA-MVSNet-bldmvs41.36 18643.15 19539.27 18228.74 20552.68 17044.95 18740.84 13932.89 19518.13 18431.61 18722.09 20938.97 14750.45 19756.11 17064.01 17156.23 186
WR-MVS_H47.65 16753.67 14940.63 17851.45 15259.74 13644.71 18849.37 5940.69 1717.61 20546.04 13144.34 17217.32 19557.79 17261.18 15373.30 12265.86 149
DTE-MVSNet48.03 16653.28 15341.91 17354.64 12757.50 15644.63 18951.66 4841.02 1697.97 20446.26 12740.90 18020.24 19260.45 15762.89 14472.33 13863.97 160
WR-MVS48.78 16055.06 14241.45 17555.50 12260.40 12943.77 19049.99 5741.92 1638.10 20345.24 14145.56 15517.47 19461.57 15364.60 12773.85 11166.14 147
Anonymous2023120642.28 18445.89 18738.07 18551.96 14948.98 18143.66 19138.81 15638.74 18214.32 19026.74 19740.90 18020.94 19156.64 17954.67 18158.71 18454.59 187
LTVRE_ROB44.17 1647.06 17250.15 17543.44 16651.39 15358.42 14642.90 19243.51 11122.27 20614.85 18941.94 16634.57 19745.43 11662.28 15062.77 14662.56 17868.83 131
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test0.0.03 143.15 18346.95 18538.72 18355.26 12450.56 17642.48 19343.48 11438.16 18715.11 18735.07 18044.69 16816.47 19655.95 18454.34 18359.54 18349.87 197
ADS-MVSNet40.67 18943.38 19437.50 18744.36 18439.79 20242.09 19432.67 18944.34 14328.87 15540.76 16940.37 18430.22 17548.34 20245.87 20146.81 20344.21 203
ambc45.54 19050.66 16352.63 17140.99 19538.36 18424.67 17022.62 20213.94 21129.14 17965.71 13358.06 16658.60 18667.43 136
PatchT48.08 16451.03 16944.64 16142.96 18750.12 17840.36 19635.09 17243.17 15239.59 11142.00 16539.96 18646.63 11158.97 16360.31 15863.21 17362.66 165
EU-MVSNet40.63 19045.65 18934.78 19339.11 19446.94 19040.02 19734.03 17933.50 19410.37 19735.57 17937.80 19323.65 18751.90 19250.21 19461.49 18063.62 163
test20.0340.38 19144.20 19235.92 19053.73 13749.05 18038.54 19843.49 11332.55 1969.54 19927.88 19639.12 18812.24 20156.28 18154.69 18057.96 18849.83 198
MIMVSNet135.51 19641.41 19628.63 19827.53 20743.36 19838.09 19933.82 18132.01 1976.77 20621.63 20335.43 19611.97 20355.05 18853.99 18653.59 19748.36 200
gm-plane-assit44.74 17845.95 18643.33 16760.88 8446.79 19236.97 20032.24 19024.15 20511.79 19429.26 19432.97 20046.64 11065.09 13962.95 14371.45 14460.42 175
N_pmnet32.67 20036.85 20127.79 20040.55 19232.13 20535.80 20126.79 19837.24 1899.10 20032.02 18630.94 20216.30 19747.22 20341.21 20238.21 20637.21 204
MVS-HIRNet42.24 18541.15 19743.51 16544.06 18640.74 19935.77 20235.35 17135.38 19138.34 11625.63 19938.55 19143.48 12650.77 19547.03 19964.07 17049.98 195
testgi38.71 19343.64 19332.95 19452.30 14848.63 18335.59 20335.05 17331.58 2009.03 20230.29 18940.75 18211.19 20655.30 18653.47 18954.53 19545.48 201
pmmvs335.10 19738.47 19931.17 19626.37 20940.47 20034.51 20418.09 20724.75 20416.88 18623.05 20126.69 20532.69 17250.73 19651.60 19158.46 18751.98 190
PMVScopyleft27.84 1833.81 19835.28 20232.09 19534.13 19824.81 20832.51 20526.48 19926.41 20319.37 18123.76 20024.02 20725.18 18450.78 19447.24 19854.89 19449.95 196
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FC-MVSNet-test39.65 19248.35 18129.49 19744.43 18339.28 20330.23 20640.44 14543.59 1483.12 21153.00 8742.03 17610.02 20855.09 18754.77 17948.66 20150.71 193
new-patchmatchnet33.24 19937.20 20028.62 19944.32 18538.26 20429.68 20736.05 16931.97 1986.33 20726.59 19827.33 20411.12 20750.08 19941.05 20344.23 20445.15 202
Gipumacopyleft25.87 20126.91 20424.66 20128.98 20420.17 20920.46 20834.62 17729.55 2019.10 2004.91 2115.31 21515.76 19849.37 20149.10 19639.03 20529.95 206
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
new_pmnet23.19 20228.17 20317.37 20217.03 21124.92 20719.66 20916.16 20927.05 2024.42 20820.77 20419.20 21012.19 20237.71 20436.38 20434.77 20731.17 205
PMMVS215.84 20319.68 20511.35 20615.74 21216.95 21013.31 21017.64 20816.08 2080.36 21413.12 20511.47 2121.69 21028.82 20527.24 20619.38 21024.09 208
EMVS14.49 20512.45 20816.87 20527.02 20812.56 2138.13 21127.19 19715.05 2093.14 2106.69 2092.67 21715.08 20014.60 20918.05 20820.67 20917.56 211
E-PMN15.09 20413.19 20717.30 20327.80 20612.62 2127.81 21227.54 19614.62 2103.19 2096.89 2082.52 21815.09 19915.93 20720.22 20722.38 20819.53 209
MVEpermissive12.28 1913.53 20615.72 20610.96 2077.39 21315.71 2116.05 21323.73 20210.29 2123.01 2125.77 2103.41 21611.91 20420.11 20629.79 20513.67 21124.98 207
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft6.95 2145.98 2142.25 21011.73 2112.07 21311.85 2065.43 21411.75 20511.40 2108.10 21318.38 210
tmp_tt5.40 2083.97 2142.35 2153.26 2150.44 21117.56 20712.09 19211.48 2077.14 2131.98 20915.68 20815.49 20910.69 212
Patchmatch-RL test1.04 216
testmvs0.01 2070.02 2090.00 2090.00 2160.00 2160.01 2170.00 2130.01 2130.00 2160.03 2130.00 2190.01 2120.01 2110.01 2100.00 2140.06 213
uanet_test0.00 2090.00 2110.00 2090.00 2160.00 2160.00 2180.00 2130.00 2150.00 2160.00 2140.00 2190.00 2140.00 2120.00 2120.00 2140.00 214
sosnet-low-res0.00 2090.00 2110.00 2090.00 2160.00 2160.00 2180.00 2130.00 2150.00 2160.00 2140.00 2190.00 2140.00 2120.00 2120.00 2140.00 214
sosnet0.00 2090.00 2110.00 2090.00 2160.00 2160.00 2180.00 2130.00 2150.00 2160.00 2140.00 2190.00 2140.00 2120.00 2120.00 2140.00 214
test1230.01 2070.02 2090.00 2090.00 2160.00 2160.00 2180.00 2130.01 2130.00 2160.04 2120.00 2190.01 2120.00 2120.01 2100.00 2140.07 212
9.1481.81 11
SR-MVS71.46 3354.67 2881.54 12
test_part190.62 2
MTAPA65.14 280.20 18
MTMP62.63 1678.04 25
mPP-MVS71.67 3274.36 40
NP-MVS72.00 39