This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS78.77 284.89 171.62 478.04 482.05 181.64 1057.96 687.53 166.64 288.77 186.31 163.16 979.99 678.56 782.31 2291.03 1
SED-MVS79.21 184.74 272.75 178.66 381.96 282.94 558.16 486.82 267.66 188.29 486.15 266.42 180.41 378.65 682.65 1790.92 2
DPE-MVS78.11 383.84 371.42 577.82 681.32 382.92 657.81 884.04 763.19 1388.63 286.00 364.52 478.71 1077.63 1582.26 2390.57 3
MSP-MVS77.82 483.46 471.24 875.26 1680.22 782.95 457.85 785.90 364.79 588.54 383.43 666.24 278.21 1778.56 780.34 4689.39 6
APDe-MVS77.58 582.93 571.35 677.86 580.55 683.38 157.61 985.57 461.11 2186.10 682.98 764.76 378.29 1476.78 2283.40 690.20 4
SMA-MVScopyleft77.32 682.51 671.26 775.43 1480.19 882.22 758.26 384.83 664.36 878.19 1583.46 563.61 781.00 180.28 183.66 489.62 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS77.13 781.70 771.79 279.32 180.76 482.96 257.49 1082.82 864.79 583.69 984.46 462.83 1377.13 2675.21 3183.35 787.85 15
ACMMP_NAP76.15 881.17 870.30 1174.09 2079.47 1081.59 1257.09 1481.38 1163.89 1179.02 1380.48 1862.24 1880.05 579.12 482.94 1288.64 8
DeepPCF-MVS66.49 174.25 2080.97 966.41 3267.75 5278.87 1375.61 3954.16 3484.86 558.22 3377.94 1681.01 1662.52 1678.34 1277.38 1680.16 4988.40 10
APD-MVScopyleft75.80 1080.90 1069.86 1675.42 1578.48 1681.43 1357.44 1280.45 1559.32 2785.28 780.82 1763.96 676.89 2976.08 2781.58 3888.30 11
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft76.01 980.47 1170.81 976.60 874.96 3680.18 1758.36 281.96 1063.50 1278.80 1482.53 1064.40 578.74 978.84 581.81 3287.46 18
TSAR-MVS + MP.75.22 1380.06 1269.56 1774.61 1872.74 5080.59 1455.70 2480.80 1362.65 1686.25 582.92 862.07 2076.89 2975.66 3081.77 3485.19 33
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS75.62 1179.91 1370.61 1075.76 1078.82 1481.66 957.12 1379.77 1763.04 1470.69 2481.15 1562.99 1080.23 479.54 383.11 989.16 7
SteuartSystems-ACMMP75.23 1279.60 1470.13 1376.81 778.92 1281.74 857.99 575.30 3059.83 2675.69 1878.45 2460.48 2980.58 279.77 283.94 388.52 9
Skip Steuart: Steuart Systems R&D Blog.
CSCG74.68 1579.22 1569.40 1875.69 1280.01 979.12 2452.83 4279.34 1863.99 1070.49 2582.02 1160.35 3177.48 2477.22 1984.38 187.97 14
TSAR-MVS + ACMM72.56 2979.07 1664.96 4173.24 2573.16 4978.50 2748.80 6579.34 1855.32 4185.04 881.49 1458.57 3775.06 4473.75 4575.35 10285.61 30
SD-MVS74.43 1778.87 1769.26 2074.39 1973.70 4679.06 2555.24 2681.04 1262.71 1580.18 1282.61 961.70 2275.43 4173.92 4482.44 2185.22 32
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MP-MVScopyleft74.31 1878.87 1768.99 2273.49 2378.56 1579.25 2356.51 1775.33 2860.69 2375.30 1979.12 2361.81 2177.78 2177.93 1182.18 2888.06 13
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HFP-MVS74.87 1478.86 1970.21 1273.99 2177.91 1880.36 1656.63 1678.41 2064.27 974.54 2077.75 2862.96 1178.70 1177.82 1283.02 1086.91 21
ACMMPR73.79 2478.41 2068.40 2572.35 2877.79 1979.32 2156.38 1977.67 2458.30 3274.16 2176.66 2961.40 2378.32 1377.80 1382.68 1686.51 22
train_agg73.89 2278.25 2168.80 2475.25 1772.27 5279.75 1856.05 2174.87 3358.97 2881.83 1179.76 2161.05 2677.39 2576.01 2881.71 3585.61 30
DeepC-MVS66.32 273.85 2378.10 2268.90 2367.92 5079.31 1178.16 2959.28 178.24 2261.13 2067.36 3676.10 3363.40 879.11 878.41 1083.52 588.16 12
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
zzz-MVS74.25 2077.97 2369.91 1573.43 2474.06 4479.69 1956.44 1880.74 1464.98 468.72 3079.98 2062.92 1278.24 1677.77 1481.99 3086.30 23
NCCC74.27 1977.83 2470.13 1375.70 1177.41 2380.51 1557.09 1478.25 2162.28 1865.54 3778.26 2562.18 1979.13 778.51 983.01 1187.68 17
MCST-MVS73.67 2577.39 2569.33 1976.26 978.19 1778.77 2654.54 3175.33 2859.99 2567.96 3279.23 2262.43 1778.00 1875.71 2984.02 287.30 19
PGM-MVS72.89 2677.13 2667.94 2672.47 2777.25 2479.27 2254.63 3073.71 3557.95 3472.38 2275.33 3560.75 2778.25 1577.36 1882.57 2085.62 29
xxxxxxxxxxxxxcwj74.63 1677.07 2771.79 279.32 180.76 482.96 257.49 1082.82 864.79 583.69 952.03 11762.83 1377.13 2675.21 3183.35 787.85 15
CP-MVS72.63 2876.95 2867.59 2770.67 3675.53 3477.95 3156.01 2275.65 2758.82 2969.16 2976.48 3160.46 3077.66 2277.20 2081.65 3686.97 20
DeepC-MVS_fast65.08 372.00 3076.11 2967.21 2968.93 4677.46 2176.54 3554.35 3274.92 3258.64 3165.18 3874.04 4362.62 1577.92 1977.02 2182.16 2986.21 24
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DPM-MVS72.80 2775.90 3069.19 2175.51 1377.68 2081.62 1154.83 2775.96 2662.06 1963.96 4376.58 3058.55 3876.66 3376.77 2382.60 1983.68 42
ACMMPcopyleft71.57 3175.84 3166.59 3170.30 4076.85 2978.46 2853.95 3573.52 3655.56 3970.13 2671.36 4858.55 3877.00 2876.23 2682.71 1585.81 28
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CDPH-MVS71.47 3275.82 3266.41 3272.97 2677.15 2578.14 3054.71 2869.88 4853.07 5670.98 2374.83 3756.95 5176.22 3476.57 2482.62 1885.09 34
X-MVS71.18 3375.66 3365.96 3671.71 3076.96 2677.26 3355.88 2372.75 3854.48 4964.39 4174.47 3854.19 6577.84 2077.37 1782.21 2685.85 27
HQP-MVS70.88 3475.02 3466.05 3571.69 3174.47 4177.51 3253.17 3972.89 3754.88 4570.03 2770.48 5057.26 4776.02 3675.01 3681.78 3386.21 24
PHI-MVS69.27 3974.84 3562.76 5166.83 5474.83 3773.88 4749.32 6170.61 4550.93 6069.62 2874.84 3657.25 4875.53 4074.32 4178.35 6584.17 37
MVS_030469.49 3773.96 3664.28 4667.92 5076.13 3274.90 4247.60 6763.29 5854.09 5367.44 3576.35 3259.53 3475.81 3875.03 3481.62 3783.70 41
TSAR-MVS + GP.69.71 3573.92 3764.80 4368.27 4870.56 5771.90 5150.75 5271.38 4257.46 3668.68 3175.42 3460.10 3273.47 5173.99 4380.32 4783.97 38
CANet68.77 4173.01 3863.83 4768.30 4775.19 3573.73 4847.90 6663.86 5554.84 4667.51 3474.36 4157.62 4274.22 4773.57 4880.56 4482.36 46
CPTT-MVS68.76 4273.01 3863.81 4865.42 6273.66 4776.39 3752.08 4472.61 3950.33 6260.73 5772.65 4659.43 3573.32 5272.12 5079.19 5885.99 26
3Dnovator+62.63 469.51 3672.62 4065.88 3768.21 4976.47 3073.50 4952.74 4370.85 4458.65 3055.97 7569.95 5161.11 2576.80 3175.09 3381.09 4283.23 45
canonicalmvs65.62 5372.06 4158.11 6763.94 7371.05 5564.49 9243.18 12274.08 3447.35 7164.17 4271.97 4751.17 9171.87 5770.74 5578.51 6380.56 54
LGP-MVS_train68.87 4072.03 4265.18 4069.33 4474.03 4576.67 3453.88 3668.46 4952.05 5963.21 4563.89 6756.31 5575.99 3774.43 4082.83 1484.18 36
CLD-MVS67.02 5071.57 4361.71 5271.01 3574.81 3871.62 5338.91 15471.86 4160.70 2264.97 3967.88 6151.88 8876.77 3274.98 3776.11 9269.75 120
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ACMP61.42 568.72 4371.37 4465.64 3869.06 4574.45 4275.88 3853.30 3868.10 5055.74 3861.53 5662.29 7356.97 5074.70 4574.23 4282.88 1384.31 35
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OMC-MVS65.16 5571.35 4557.94 7152.95 14368.82 6369.00 5738.28 16179.89 1655.20 4262.76 4968.31 5756.14 5871.30 6268.70 7376.06 9479.67 57
OPM-MVS69.33 3871.05 4667.32 2872.34 2975.70 3379.57 2056.34 2055.21 7053.81 5459.51 6168.96 5459.67 3377.61 2376.44 2582.19 2783.88 40
PCF-MVS59.98 867.32 4971.04 4762.97 5064.77 6474.49 4074.78 4349.54 5967.44 5154.39 5258.35 6672.81 4555.79 6171.54 5969.24 6778.57 6083.41 43
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MAR-MVS68.04 4570.74 4864.90 4271.68 3276.33 3174.63 4450.48 5663.81 5655.52 4054.88 8169.90 5257.39 4575.42 4274.79 3879.71 5180.03 56
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MSLP-MVS++68.17 4470.72 4965.19 3969.41 4370.64 5674.99 4145.76 7570.20 4760.17 2456.42 7373.01 4461.14 2472.80 5470.54 5879.70 5281.42 51
MVS_111021_HR67.62 4770.39 5064.39 4469.77 4270.45 5871.44 5551.72 4860.77 6455.06 4362.14 5366.40 6358.13 4176.13 3574.79 3880.19 4882.04 49
3Dnovator60.86 666.99 5170.32 5163.11 4966.63 5574.52 3971.56 5445.76 7567.37 5255.00 4454.31 8668.19 5858.49 4073.97 4873.63 4781.22 4180.23 55
DELS-MVS65.87 5270.30 5260.71 5464.05 7272.68 5170.90 5645.43 7957.49 6749.05 6964.43 4068.66 5555.11 6374.31 4673.02 4979.70 5281.51 50
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TSAR-MVS + COLMAP62.65 6669.90 5354.19 9546.31 18066.73 8565.49 8541.36 13776.57 2546.31 7676.80 1756.68 9853.27 7869.50 7666.65 10072.40 13876.36 84
EPNet65.14 5669.54 5460.00 5866.61 5667.67 7567.53 6355.32 2562.67 6046.22 7867.74 3365.93 6448.07 10772.17 5672.12 5076.28 8878.47 64
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
QAPM65.27 5469.49 5560.35 5665.43 6172.20 5365.69 8347.23 6863.46 5749.14 6753.56 8771.04 4957.01 4972.60 5571.41 5377.62 6982.14 48
AdaColmapbinary67.89 4668.85 5666.77 3073.73 2274.30 4375.28 4053.58 3770.24 4657.59 3551.19 9959.19 8960.74 2875.33 4373.72 4679.69 5477.96 67
ACMM60.30 767.58 4868.82 5766.13 3470.59 3772.01 5476.54 3554.26 3365.64 5454.78 4750.35 10261.72 7758.74 3675.79 3975.03 3481.88 3181.17 52
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
casdiffmvs64.09 5768.13 5859.37 6261.81 7868.32 6768.48 5944.45 9261.95 6149.12 6863.04 4669.67 5353.83 6870.46 6866.06 11078.55 6177.43 70
PVSNet_Blended_VisFu63.65 5866.92 5959.83 6060.03 8973.44 4866.33 7448.95 6352.20 8850.81 6156.07 7460.25 8553.56 7073.23 5370.01 6479.30 5683.24 44
TAPA-MVS54.74 1060.85 7366.61 6054.12 9747.38 17665.33 9665.35 8636.51 17075.16 3148.82 7054.70 8363.51 6953.31 7768.36 8864.97 12873.37 12174.27 97
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
diffmvs61.64 6966.55 6155.90 8656.63 11963.71 11067.13 6841.27 13859.49 6646.70 7463.93 4468.01 6050.46 9267.30 11165.51 11873.24 12677.87 68
MVS_111021_LR63.05 6366.43 6259.10 6361.33 8263.77 10965.87 8043.58 11060.20 6553.70 5562.09 5462.38 7255.84 6070.24 7268.08 7874.30 10978.28 66
CNLPA62.78 6566.31 6358.65 6558.47 9768.41 6665.98 7941.22 13978.02 2356.04 3746.65 12259.50 8857.50 4369.67 7565.27 12272.70 13376.67 77
MVS_Test62.40 6766.23 6457.94 7159.77 9264.77 10466.50 7341.76 13357.26 6849.33 6662.68 5067.47 6253.50 7368.57 8666.25 10776.77 8176.58 79
ETV-MVS63.23 6166.08 6559.91 5963.13 7668.13 6867.62 6244.62 8953.39 7846.23 7758.74 6358.19 9257.45 4473.60 4971.38 5480.39 4579.13 59
Effi-MVS+63.28 6065.96 6660.17 5764.26 6868.06 6968.78 5845.71 7754.08 7346.64 7555.92 7663.13 7155.94 5970.38 7171.43 5279.68 5578.70 62
OpenMVScopyleft57.13 962.81 6465.75 6759.39 6166.47 5769.52 6164.26 9443.07 12461.34 6350.19 6347.29 11964.41 6654.60 6470.18 7368.62 7577.73 6778.89 61
CS-MVS63.45 5965.72 6860.80 5364.20 6967.86 7168.46 6043.50 11453.86 7449.90 6456.44 7260.45 8457.27 4673.56 5070.13 6381.45 4077.73 69
Vis-MVSNetpermissive58.48 8865.70 6950.06 12253.40 14067.20 8160.24 11243.32 11948.83 11030.23 15062.38 5261.61 7840.35 14371.03 6569.77 6572.82 12979.11 60
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPP-MVSNet59.39 7865.45 7052.32 11260.96 8467.70 7458.42 12044.75 8749.71 9827.23 16559.03 6262.20 7443.34 12970.71 6769.13 6979.25 5779.63 58
test_part163.06 6265.27 7160.47 5566.24 6070.17 5971.86 5245.36 8153.75 7549.61 6544.85 14465.53 6548.93 9871.39 6070.65 5680.82 4380.59 53
UGNet57.03 10265.25 7247.44 15046.54 17966.73 8556.30 13343.28 12050.06 9532.99 13662.57 5163.26 7033.31 17368.25 9067.58 8772.20 14178.29 65
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DI_MVS_plusplus_trai61.88 6865.17 7358.06 6860.05 8865.26 9866.03 7744.22 9355.75 6946.73 7354.64 8468.12 5954.13 6769.13 7966.66 9977.18 7676.61 78
PVSNet_BlendedMVS61.63 7064.82 7457.91 7357.21 11567.55 7763.47 9846.08 7354.72 7152.46 5758.59 6460.73 8051.82 8970.46 6865.20 12476.44 8576.50 82
PVSNet_Blended61.63 7064.82 7457.91 7357.21 11567.55 7763.47 9846.08 7354.72 7152.46 5758.59 6460.73 8051.82 8970.46 6865.20 12476.44 8576.50 82
CANet_DTU58.88 8264.68 7652.12 11355.77 12366.75 8463.92 9537.04 16853.32 7937.45 12559.81 5961.81 7644.43 12468.25 9067.47 8974.12 11175.33 92
UA-Net58.50 8764.68 7651.30 11566.97 5367.13 8253.68 15445.65 7849.51 10131.58 14462.91 4768.47 5635.85 16468.20 9367.28 9074.03 11269.24 130
IS_MVSNet57.95 9764.26 7850.60 11761.62 8165.25 10057.18 12645.42 8050.79 9226.49 16857.81 6860.05 8634.51 16871.24 6470.20 6278.36 6474.44 96
DCV-MVSNet59.49 7764.00 7954.23 9461.81 7864.33 10661.42 10443.77 10352.85 8438.94 11755.62 7862.15 7543.24 13269.39 7767.66 8676.22 9075.97 86
EIA-MVS61.53 7263.79 8058.89 6463.82 7467.61 7665.35 8642.15 13249.98 9645.66 8057.47 7056.62 9956.59 5470.91 6669.15 6879.78 5074.80 94
Fast-Effi-MVS+60.36 7463.35 8156.87 8158.70 9465.86 9365.08 8837.11 16753.00 8345.36 8252.12 9456.07 10456.27 5671.28 6369.42 6678.71 5975.69 89
FC-MVSNet-train58.40 9063.15 8252.85 10864.29 6761.84 11855.98 13846.47 7153.06 8134.96 13261.95 5556.37 10239.49 14568.67 8368.36 7775.92 9671.81 108
PLCcopyleft52.09 1459.21 8062.47 8355.41 9053.24 14164.84 10364.47 9340.41 14865.92 5344.53 8646.19 13055.69 10555.33 6268.24 9265.30 12174.50 10771.09 111
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Effi-MVS+-dtu60.34 7562.32 8458.03 7064.31 6667.44 7965.99 7842.26 12949.55 9942.00 9948.92 10959.79 8756.27 5668.07 9767.03 9177.35 7475.45 91
LS3D60.20 7661.70 8558.45 6664.18 7067.77 7267.19 6548.84 6461.67 6241.27 10345.89 13451.81 11854.18 6668.78 8166.50 10575.03 10469.48 126
ET-MVSNet_ETH3D58.38 9161.57 8654.67 9342.15 19265.26 9865.70 8143.82 10248.84 10942.34 9659.76 6047.76 13556.68 5367.02 11868.60 7677.33 7573.73 103
IterMVS-LS58.30 9361.39 8754.71 9259.92 9158.40 14959.42 11443.64 10848.71 11340.25 11057.53 6958.55 9152.15 8665.42 13965.34 12072.85 12775.77 87
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet56.94 10561.14 8852.05 11460.02 9065.21 10157.44 12452.93 4149.37 10224.31 17554.62 8550.54 12439.04 14768.69 8268.84 7278.53 6270.72 113
MVSTER57.19 10161.11 8952.62 11050.82 16358.79 14561.55 10237.86 16448.81 11141.31 10257.43 7152.10 11648.60 10268.19 9466.75 9775.56 9875.68 90
baseline55.19 12160.88 9048.55 13849.87 16758.10 15458.70 11934.75 17652.82 8539.48 11660.18 5860.86 7945.41 11961.05 15660.74 15963.10 17672.41 106
Anonymous2023121157.71 9960.79 9154.13 9661.68 8065.81 9460.81 10943.70 10751.97 8939.67 11234.82 18363.59 6843.31 13068.55 8766.63 10175.59 9774.13 99
IB-MVS54.11 1158.36 9260.70 9255.62 8858.67 9568.02 7061.56 10143.15 12346.09 13344.06 8844.24 14750.99 12348.71 10166.70 12170.33 5977.60 7078.50 63
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Anonymous20240521160.60 9363.44 7566.71 8861.00 10847.23 6850.62 9436.85 17860.63 8343.03 13369.17 7867.72 8575.41 9972.54 105
v1059.17 8160.60 9357.50 7657.95 10066.73 8567.09 6944.11 9446.85 12745.42 8148.18 11551.07 12053.63 6967.84 10166.59 10376.79 8076.92 75
v858.88 8260.57 9556.92 8057.35 11065.69 9566.69 7242.64 12647.89 12245.77 7949.04 10752.98 11352.77 8067.51 10865.57 11776.26 8975.30 93
UniMVSNet (Re)55.15 12260.39 9649.03 13155.31 12564.59 10555.77 13950.63 5348.66 11520.95 17951.47 9750.40 12534.41 17067.81 10267.89 8077.11 7971.88 107
ACMH+53.71 1259.26 7960.28 9758.06 6864.17 7168.46 6567.51 6450.93 5152.46 8735.83 12940.83 16945.12 16352.32 8469.88 7469.00 7177.59 7176.21 85
GBi-Net55.20 11960.25 9849.31 12552.42 14661.44 12057.03 12744.04 9749.18 10530.47 14648.28 11158.19 9238.22 15068.05 9866.96 9273.69 11669.65 121
test155.20 11960.25 9849.31 12552.42 14661.44 12057.03 12744.04 9749.18 10530.47 14648.28 11158.19 9238.22 15068.05 9866.96 9273.69 11669.65 121
MS-PatchMatch58.19 9660.20 10055.85 8765.17 6364.16 10764.82 8941.48 13650.95 9142.17 9845.38 13956.42 10048.08 10668.30 8966.70 9873.39 12069.46 128
v114458.88 8260.16 10157.39 7758.03 9967.26 8067.14 6744.46 9145.17 13944.33 8747.81 11649.92 12853.20 7967.77 10366.62 10277.15 7776.58 79
V4256.97 10460.14 10253.28 10248.16 17262.78 11566.30 7537.93 16347.44 12442.68 9448.19 11452.59 11551.90 8767.46 10965.94 11372.72 13176.55 81
TranMVSNet+NR-MVSNet55.87 11260.14 10250.88 11659.46 9363.82 10857.93 12252.98 4048.94 10820.52 18152.87 8947.33 14136.81 16169.12 8069.03 7077.56 7269.89 119
v2v48258.69 8560.12 10457.03 7957.16 11766.05 9267.17 6643.52 11246.33 13145.19 8349.46 10651.02 12152.51 8267.30 11166.03 11176.61 8274.62 95
FMVSNet255.04 12359.95 10549.31 12552.42 14661.44 12057.03 12744.08 9649.55 9930.40 14946.89 12058.84 9038.22 15067.07 11766.21 10873.69 11669.65 121
thisisatest053056.68 10759.68 10653.19 10452.97 14260.96 12859.41 11540.51 14448.26 11941.06 10552.67 9046.30 15149.78 9367.66 10667.83 8175.39 10074.07 101
v119258.51 8659.66 10757.17 7857.82 10167.72 7366.21 7644.83 8644.15 14743.49 9046.68 12147.94 13253.55 7167.39 11066.51 10477.13 7877.20 73
tttt051756.53 10959.59 10852.95 10752.66 14560.99 12759.21 11740.51 14447.89 12240.40 10852.50 9346.04 15549.78 9367.75 10467.83 8175.15 10374.17 98
DU-MVS55.41 11759.59 10850.54 11954.60 13162.97 11257.44 12451.80 4648.62 11624.31 17551.99 9547.00 14439.04 14768.11 9567.75 8476.03 9570.72 113
FMVSNet354.78 12459.58 11049.17 12852.37 14961.31 12456.72 13244.04 9749.18 10530.47 14648.28 11158.19 9238.09 15365.48 13765.20 12473.31 12369.45 129
ACMH52.42 1358.24 9459.56 11156.70 8366.34 5869.59 6066.71 7149.12 6246.08 13428.90 15742.67 16441.20 18152.60 8171.39 6070.28 6076.51 8475.72 88
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
NR-MVSNet55.35 11859.46 11250.56 11861.33 8262.97 11257.91 12351.80 4648.62 11620.59 18051.99 9544.73 16934.10 17168.58 8568.64 7477.66 6870.67 117
v14419258.23 9559.40 11356.87 8157.56 10266.89 8365.70 8145.01 8444.06 14842.88 9246.61 12348.09 13153.49 7466.94 11965.90 11476.61 8277.29 71
Fast-Effi-MVS+-dtu56.30 11059.29 11452.82 10958.64 9664.89 10265.56 8432.89 18945.80 13635.04 13145.89 13454.14 10949.41 9667.16 11466.45 10675.37 10170.69 115
CostFormer56.57 10859.13 11553.60 9957.52 10561.12 12566.94 7035.95 17253.44 7644.68 8555.87 7754.44 10848.21 10460.37 16058.33 16768.27 15970.33 118
v192192057.89 9859.02 11656.58 8457.55 10366.66 8964.72 9144.70 8843.55 15142.73 9346.17 13146.93 14553.51 7266.78 12065.75 11676.29 8777.28 72
MSDG58.46 8958.97 11757.85 7566.27 5966.23 9167.72 6142.33 12853.43 7743.68 8943.39 15545.35 15949.75 9568.66 8467.77 8377.38 7367.96 135
baseline154.48 12658.69 11849.57 12360.63 8758.29 15255.70 14044.95 8549.20 10429.62 15354.77 8254.75 10735.29 16567.15 11564.08 13471.21 14862.58 169
FMVSNet154.08 12758.68 11948.71 13550.90 16261.35 12356.73 13143.94 10145.91 13529.32 15642.72 16356.26 10337.70 15568.05 9866.96 9273.69 11669.50 125
v124057.55 10058.63 12056.29 8557.30 11366.48 9063.77 9644.56 9042.77 16142.48 9545.64 13746.28 15253.46 7566.32 12665.80 11576.16 9177.13 74
HyFIR lowres test56.87 10658.60 12154.84 9156.62 12069.27 6264.77 9042.21 13045.66 13737.50 12433.08 18657.47 9753.33 7665.46 13867.94 7974.60 10671.35 110
GA-MVS55.67 11458.33 12252.58 11155.23 12863.09 11161.08 10640.15 15042.95 15637.02 12752.61 9147.68 13647.51 10965.92 13265.35 11974.49 10870.68 116
EPNet_dtu52.05 13958.26 12344.81 16254.10 13650.09 18152.01 15940.82 14253.03 8227.41 16354.90 8057.96 9626.72 18562.97 14662.70 14967.78 16166.19 147
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EG-PatchMatch MVS56.98 10358.24 12455.50 8964.66 6568.62 6461.48 10343.63 10938.44 18541.44 10038.05 17546.18 15443.95 12571.71 5870.61 5777.87 6674.08 100
CHOSEN 1792x268855.85 11358.01 12553.33 10157.26 11462.82 11463.29 10041.55 13546.65 12938.34 11834.55 18453.50 11052.43 8367.10 11667.56 8867.13 16373.92 102
Baseline_NR-MVSNet53.50 12957.89 12648.37 14154.60 13159.25 14256.10 13451.84 4549.32 10317.92 18845.38 13947.68 13636.93 16068.11 9565.95 11272.84 12869.57 124
baseline255.89 11157.82 12753.64 9857.36 10961.09 12659.75 11340.45 14647.38 12541.26 10451.23 9846.90 14648.11 10565.63 13664.38 13374.90 10568.16 134
anonymousdsp52.84 13257.78 12847.06 15140.24 19558.95 14453.70 15333.54 18636.51 19232.69 13943.88 14945.40 15847.97 10867.17 11370.28 6074.22 11082.29 47
IterMVS-SCA-FT52.18 13857.75 12945.68 15751.01 16162.06 11655.10 14734.75 17644.85 14032.86 13851.13 10051.22 11948.74 9962.47 15061.51 15451.61 20271.02 112
Vis-MVSNet (Re-imp)50.37 15057.73 13041.80 17657.53 10454.35 16645.70 18445.24 8249.80 9713.43 19458.23 6756.42 10020.11 19562.96 14763.36 14168.76 15758.96 181
v14855.58 11657.61 13153.20 10354.59 13361.86 11761.18 10538.70 15944.30 14642.25 9747.53 11750.24 12748.73 10065.15 14062.61 15073.79 11471.61 109
v7n55.67 11457.46 13253.59 10056.06 12165.29 9761.06 10743.26 12140.17 17637.99 12140.79 17045.27 16247.09 11167.67 10566.21 10876.08 9376.82 76
IterMVS53.45 13057.12 13349.17 12849.23 16960.93 12959.05 11834.63 17844.53 14233.22 13451.09 10151.01 12248.38 10362.43 15160.79 15870.54 15269.05 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet52.42 13557.06 13447.02 15253.92 13858.30 15155.50 14246.47 7142.52 16329.38 15549.50 10552.85 11428.49 18366.70 12166.89 9568.34 15862.63 168
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thisisatest051553.85 12856.84 13550.37 12050.25 16658.17 15355.99 13739.90 15141.88 16638.16 12045.91 13345.30 16044.58 12366.15 13066.89 9573.36 12273.57 104
pmmvs454.66 12556.07 13653.00 10654.63 13057.08 16060.43 11144.10 9551.69 9040.55 10746.55 12644.79 16845.95 11762.54 14963.66 13872.36 13966.20 146
UniMVSNet_ETH3D52.62 13355.98 13748.70 13651.04 16060.71 13056.87 13046.74 7042.52 16326.96 16642.50 16545.95 15637.87 15466.22 12865.15 12772.74 13068.78 133
pm-mvs151.02 14655.55 13845.73 15654.16 13558.52 14750.92 16142.56 12740.32 17525.67 17043.66 15250.34 12630.06 17865.85 13363.97 13670.99 15066.21 145
tfpn200view952.53 13455.51 13949.06 13057.31 11160.24 13255.42 14443.77 10342.85 15927.81 16143.00 16145.06 16537.32 15766.38 12364.54 13072.71 13266.54 141
thres40052.38 13755.51 13948.74 13457.49 10660.10 13555.45 14343.54 11142.90 15826.72 16743.34 15745.03 16736.61 16266.20 12964.53 13172.66 13466.43 142
TransMVSNet (Re)51.92 14255.38 14147.88 14760.95 8559.90 13653.95 15145.14 8339.47 17924.85 17243.87 15046.51 15029.15 18067.55 10765.23 12373.26 12565.16 156
thres20052.39 13655.37 14248.90 13257.39 10860.18 13355.60 14143.73 10542.93 15727.41 16343.35 15645.09 16436.61 16266.36 12463.92 13772.66 13465.78 151
thres600view751.91 14355.14 14348.14 14357.43 10760.18 13354.60 14943.73 10542.61 16225.20 17143.10 16044.47 17235.19 16666.36 12463.28 14272.66 13466.01 149
WR-MVS48.78 16255.06 14441.45 17755.50 12460.40 13143.77 19249.99 5841.92 1658.10 20645.24 14245.56 15717.47 19661.57 15564.60 12973.85 11366.14 148
COLMAP_ROBcopyleft46.52 1551.99 14154.86 14548.63 13749.13 17061.73 11960.53 11036.57 16953.14 8032.95 13737.10 17638.68 19240.49 14265.72 13463.08 14372.11 14264.60 159
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
thres100view90052.04 14054.81 14648.80 13357.31 11159.33 14055.30 14542.92 12542.85 15927.81 16143.00 16145.06 16536.99 15964.74 14263.51 13972.47 13765.21 155
RPSCF46.41 17554.42 14737.06 19025.70 21245.14 19745.39 18620.81 20662.79 5935.10 13044.92 14355.60 10643.56 12756.12 18452.45 19251.80 20163.91 162
PEN-MVS49.21 15854.32 14843.24 17154.33 13459.26 14147.04 17851.37 5041.67 1679.97 20146.22 12941.80 18022.97 19260.52 15864.03 13573.73 11566.75 140
PMMVS49.20 15954.28 14943.28 17034.13 20045.70 19648.98 16826.09 20246.31 13234.92 13355.22 7953.47 11147.48 11059.43 16259.04 16568.05 16060.77 174
USDC51.11 14553.71 15048.08 14544.76 18455.99 16353.01 15840.90 14052.49 8636.14 12844.67 14533.66 20143.27 13163.23 14561.10 15670.39 15364.82 157
WR-MVS_H47.65 16953.67 15140.63 18051.45 15459.74 13844.71 19049.37 6040.69 1737.61 20846.04 13244.34 17417.32 19757.79 17461.18 15573.30 12465.86 150
CP-MVSNet48.37 16353.53 15242.34 17351.35 15658.01 15546.56 17950.54 5441.62 16810.61 19846.53 12740.68 18523.18 19058.71 16861.83 15271.81 14367.36 139
tpm cat153.30 13153.41 15353.17 10558.16 9859.15 14363.73 9738.27 16250.73 9346.98 7245.57 13844.00 17549.20 9755.90 18754.02 18662.65 17864.50 160
GG-mvs-BLEND36.62 19753.39 15417.06 2060.01 21758.61 14648.63 1690.01 21447.13 1260.02 21843.98 14860.64 820.03 21354.92 19151.47 19453.64 19856.99 185
DTE-MVSNet48.03 16853.28 15541.91 17554.64 12957.50 15844.63 19151.66 4941.02 1717.97 20746.26 12840.90 18220.24 19460.45 15962.89 14672.33 14063.97 161
PS-CasMVS48.18 16553.25 15642.27 17451.26 15757.94 15646.51 18050.52 5541.30 16910.56 19945.35 14140.34 18723.04 19158.66 16961.79 15371.74 14567.38 138
SCA50.99 14753.22 15748.40 14051.07 15956.78 16150.25 16339.05 15348.31 11841.38 10149.54 10446.70 14946.00 11658.31 17056.28 17062.65 17856.60 186
CMPMVSbinary37.70 1749.24 15752.71 15845.19 15945.97 18251.23 17747.44 17629.31 19443.04 15544.69 8434.45 18548.35 13043.64 12662.59 14859.82 16260.08 18469.48 126
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CR-MVSNet50.47 14852.61 15947.98 14649.03 17152.94 17048.27 17038.86 15644.41 14339.59 11344.34 14644.65 17146.63 11358.97 16560.31 16065.48 16862.66 166
gg-mvs-nofinetune49.07 16052.56 16045.00 16161.99 7759.78 13753.55 15641.63 13431.62 20112.08 19629.56 19553.28 11229.57 17966.27 12764.49 13271.19 14962.92 165
TDRefinement49.31 15552.44 16145.67 15830.44 20559.42 13959.24 11639.78 15248.76 11231.20 14535.73 18029.90 20542.81 13464.24 14462.59 15170.55 15166.43 142
MDTV_nov1_ep1350.32 15152.43 16247.86 14849.87 16754.70 16458.10 12134.29 18045.59 13837.71 12247.44 11847.42 14041.86 13758.07 17355.21 17965.34 17058.56 182
pmmvs-eth3d51.33 14452.25 16350.26 12150.82 16354.65 16556.03 13643.45 11843.51 15237.20 12639.20 17339.04 19142.28 13561.85 15462.78 14771.78 14464.72 158
tfpnnormal50.16 15252.19 16447.78 14956.86 11858.37 15054.15 15044.01 10038.35 18725.94 16936.10 17937.89 19434.50 16965.93 13163.42 14071.26 14765.28 154
CVMVSNet46.38 17752.01 16539.81 18242.40 19050.26 17946.15 18137.68 16540.03 17715.09 19146.56 12547.56 13833.72 17256.50 18255.65 17563.80 17467.53 136
pmmvs648.35 16451.64 16644.51 16451.92 15257.94 15649.44 16742.17 13134.45 19424.62 17428.87 19746.90 14629.07 18264.60 14363.08 14369.83 15465.68 152
PatchMatch-RL50.11 15351.56 16748.43 13946.23 18151.94 17450.21 16438.62 16046.62 13037.51 12342.43 16639.38 18952.24 8560.98 15759.56 16365.76 16760.01 179
PatchmatchNetpermissive49.92 15451.29 16848.32 14251.83 15351.86 17553.38 15737.63 16647.90 12140.83 10648.54 11045.30 16045.19 12156.86 17753.99 18861.08 18354.57 189
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm48.82 16151.27 16945.96 15554.10 13647.35 18856.05 13530.23 19346.70 12843.21 9152.54 9247.55 13937.28 15854.11 19250.50 19554.90 19560.12 178
dps50.42 14951.20 17049.51 12455.88 12256.07 16253.73 15238.89 15543.66 14940.36 10945.66 13637.63 19645.23 12059.05 16356.18 17162.94 17760.16 177
PatchT48.08 16651.03 17144.64 16342.96 18950.12 18040.36 19835.09 17443.17 15439.59 11342.00 16739.96 18846.63 11358.97 16560.31 16063.21 17562.66 166
pmmvs547.07 17351.02 17242.46 17245.18 18351.47 17648.23 17233.09 18838.17 18828.62 15946.60 12443.48 17630.74 17658.28 17158.63 16668.92 15660.48 175
test-mter45.30 17950.37 17339.38 18333.65 20246.99 19147.59 17418.59 20838.75 18328.00 16043.28 15846.82 14841.50 13957.28 17655.78 17466.93 16663.70 163
test-LLR49.28 15650.29 17448.10 14455.26 12647.16 18949.52 16543.48 11639.22 18031.98 14043.65 15347.93 13341.29 14056.80 17855.36 17767.08 16461.94 170
TESTMET0.1,146.09 17850.29 17441.18 17836.91 19847.16 18949.52 16520.32 20739.22 18031.98 14043.65 15347.93 13341.29 14056.80 17855.36 17767.08 16461.94 170
SixPastTwentyTwo47.55 17150.25 17644.41 16547.30 17754.31 16747.81 17340.36 14933.76 19519.93 18343.75 15132.77 20342.07 13659.82 16160.94 15768.98 15566.37 144
LTVRE_ROB44.17 1647.06 17450.15 17743.44 16851.39 15558.42 14842.90 19443.51 11322.27 20814.85 19241.94 16834.57 19945.43 11862.28 15262.77 14862.56 18068.83 132
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tpmrst48.08 16649.88 17845.98 15452.71 14448.11 18653.62 15533.70 18548.70 11439.74 11148.96 10846.23 15340.29 14450.14 20049.28 19755.80 19257.71 184
MDTV_nov1_ep13_2view47.62 17049.72 17945.18 16048.05 17353.70 16854.90 14833.80 18439.90 17829.79 15238.85 17441.89 17939.17 14658.99 16455.55 17665.34 17059.17 180
TAMVS44.02 18349.18 18037.99 18847.03 17845.97 19545.04 18728.47 19739.11 18220.23 18243.22 15948.52 12928.49 18358.15 17257.95 16958.71 18651.36 192
RPMNet46.41 17548.72 18143.72 16647.77 17552.94 17046.02 18333.92 18244.41 14331.82 14336.89 17737.42 19737.41 15653.88 19354.02 18665.37 16961.47 172
MIMVSNet43.79 18448.53 18238.27 18641.46 19348.97 18450.81 16232.88 19044.55 14122.07 17732.05 18747.15 14224.76 18858.73 16756.09 17357.63 19152.14 190
FC-MVSNet-test39.65 19448.35 18329.49 19944.43 18539.28 20530.23 20840.44 14743.59 1503.12 21453.00 8842.03 17810.02 21055.09 18954.77 18148.66 20350.71 194
PM-MVS44.55 18248.13 18440.37 18132.85 20446.82 19346.11 18229.28 19540.48 17429.99 15139.98 17234.39 20041.80 13856.08 18553.88 19062.19 18165.31 153
EPMVS44.66 18147.86 18540.92 17947.97 17444.70 19847.58 17533.27 18748.11 12029.58 15449.65 10344.38 17334.65 16751.71 19547.90 19952.49 20048.57 200
TinyColmap47.08 17247.56 18646.52 15342.35 19153.44 16951.77 16040.70 14343.44 15331.92 14229.78 19423.72 21045.04 12261.99 15359.54 16467.35 16261.03 173
test0.0.03 143.15 18546.95 18738.72 18555.26 12650.56 17842.48 19543.48 11638.16 18915.11 19035.07 18244.69 17016.47 19855.95 18654.34 18559.54 18549.87 198
gm-plane-assit44.74 18045.95 18843.33 16960.88 8646.79 19436.97 20232.24 19224.15 20711.79 19729.26 19632.97 20246.64 11265.09 14162.95 14571.45 14660.42 176
Anonymous2023120642.28 18645.89 18938.07 18751.96 15148.98 18343.66 19338.81 15838.74 18414.32 19326.74 19940.90 18220.94 19356.64 18154.67 18358.71 18654.59 188
FMVSNet540.96 18945.81 19035.29 19434.30 19944.55 19947.28 17728.84 19640.76 17221.62 17829.85 19342.44 17724.77 18757.53 17555.00 18054.93 19450.56 195
EU-MVSNet40.63 19245.65 19134.78 19539.11 19646.94 19240.02 19934.03 18133.50 19610.37 20035.57 18137.80 19523.65 18951.90 19450.21 19661.49 18263.62 164
ambc45.54 19250.66 16552.63 17340.99 19738.36 18624.67 17322.62 20413.94 21329.14 18165.71 13558.06 16858.60 18867.43 137
CHOSEN 280x42040.80 19045.05 19335.84 19332.95 20329.57 20844.98 18823.71 20537.54 19018.42 18631.36 19047.07 14346.41 11556.71 18054.65 18448.55 20458.47 183
test20.0340.38 19344.20 19435.92 19253.73 13949.05 18238.54 20043.49 11532.55 1989.54 20227.88 19839.12 19012.24 20356.28 18354.69 18257.96 19049.83 199
testgi38.71 19543.64 19532.95 19652.30 15048.63 18535.59 20535.05 17531.58 2029.03 20530.29 19140.75 18411.19 20855.30 18853.47 19154.53 19745.48 202
ADS-MVSNet40.67 19143.38 19637.50 18944.36 18639.79 20442.09 19632.67 19144.34 14528.87 15840.76 17140.37 18630.22 17748.34 20445.87 20346.81 20544.21 204
MDA-MVSNet-bldmvs41.36 18843.15 19739.27 18428.74 20752.68 17244.95 18940.84 14132.89 19718.13 18731.61 18922.09 21138.97 14950.45 19956.11 17264.01 17356.23 187
MIMVSNet135.51 19841.41 19828.63 20027.53 20943.36 20038.09 20133.82 18332.01 1996.77 20921.63 20535.43 19811.97 20555.05 19053.99 18853.59 19948.36 201
MVS-HIRNet42.24 18741.15 19943.51 16744.06 18840.74 20135.77 20435.35 17335.38 19338.34 11825.63 20138.55 19343.48 12850.77 19747.03 20164.07 17249.98 196
FPMVS38.36 19640.41 20035.97 19138.92 19739.85 20345.50 18525.79 20341.13 17018.70 18530.10 19224.56 20831.86 17549.42 20246.80 20255.04 19351.03 193
pmmvs335.10 19938.47 20131.17 19826.37 21140.47 20234.51 20618.09 20924.75 20616.88 18923.05 20326.69 20732.69 17450.73 19851.60 19358.46 18951.98 191
new-patchmatchnet33.24 20137.20 20228.62 20144.32 18738.26 20629.68 20936.05 17131.97 2006.33 21026.59 20027.33 20611.12 20950.08 20141.05 20544.23 20645.15 203
N_pmnet32.67 20236.85 20327.79 20240.55 19432.13 20735.80 20326.79 20037.24 1919.10 20332.02 18830.94 20416.30 19947.22 20541.21 20438.21 20837.21 205
PMVScopyleft27.84 1833.81 20035.28 20432.09 19734.13 20024.81 21032.51 20726.48 20126.41 20519.37 18423.76 20224.02 20925.18 18650.78 19647.24 20054.89 19649.95 197
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet23.19 20428.17 20517.37 20417.03 21324.92 20919.66 21116.16 21127.05 2044.42 21120.77 20619.20 21212.19 20437.71 20636.38 20634.77 20931.17 206
Gipumacopyleft25.87 20326.91 20624.66 20328.98 20620.17 21120.46 21034.62 17929.55 2039.10 2034.91 2135.31 21715.76 20049.37 20349.10 19839.03 20729.95 207
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS215.84 20519.68 20711.35 20815.74 21416.95 21213.31 21217.64 21016.08 2100.36 21713.12 20711.47 2141.69 21228.82 20727.24 20819.38 21224.09 209
MVEpermissive12.28 1913.53 20815.72 20810.96 2097.39 21515.71 2136.05 21523.73 20410.29 2143.01 2155.77 2123.41 21811.91 20620.11 20829.79 20713.67 21324.98 208
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN15.09 20613.19 20917.30 20527.80 20812.62 2147.81 21427.54 19814.62 2123.19 2126.89 2102.52 22015.09 20115.93 20920.22 20922.38 21019.53 210
EMVS14.49 20712.45 21016.87 20727.02 21012.56 2158.13 21327.19 19915.05 2113.14 2136.69 2112.67 21915.08 20214.60 21118.05 21020.67 21117.56 212
testmvs0.01 2090.02 2110.00 2110.00 2180.00 2180.01 2190.00 2150.01 2150.00 2190.03 2150.00 2210.01 2140.01 2130.01 2120.00 2160.06 214
test1230.01 2090.02 2110.00 2110.00 2180.00 2180.00 2200.00 2150.01 2150.00 2190.04 2140.00 2210.01 2140.00 2140.01 2120.00 2160.07 213
uanet_test0.00 2110.00 2130.00 2110.00 2180.00 2180.00 2200.00 2150.00 2170.00 2190.00 2160.00 2210.00 2160.00 2140.00 2140.00 2160.00 215
sosnet-low-res0.00 2110.00 2130.00 2110.00 2180.00 2180.00 2200.00 2150.00 2170.00 2190.00 2160.00 2210.00 2160.00 2140.00 2140.00 2160.00 215
sosnet0.00 2110.00 2130.00 2110.00 2180.00 2180.00 2200.00 2150.00 2170.00 2190.00 2160.00 2210.00 2160.00 2140.00 2140.00 2160.00 215
RE-MVS-def33.01 135
9.1481.81 12
SR-MVS71.46 3454.67 2981.54 13
our_test_351.15 15857.31 15955.12 146
MTAPA65.14 380.20 19
MTMP62.63 1778.04 26
Patchmatch-RL test1.04 218
tmp_tt5.40 2103.97 2162.35 2173.26 2170.44 21317.56 20912.09 19511.48 2097.14 2151.98 21115.68 21015.49 21110.69 214
XVS70.49 3876.96 2674.36 4554.48 4974.47 3882.24 24
X-MVStestdata70.49 3876.96 2674.36 4554.48 4974.47 3882.24 24
abl_664.36 4570.08 4177.45 2272.88 5050.15 5771.31 4354.77 4862.79 4877.99 2756.80 5281.50 3983.91 39
mPP-MVS71.67 3374.36 41
NP-MVS72.00 40
Patchmtry47.61 18748.27 17038.86 15639.59 113
DeepMVS_CXcopyleft6.95 2165.98 2162.25 21211.73 2132.07 21611.85 2085.43 21611.75 20711.40 2128.10 21518.38 211