This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MSP-MVS78.77 184.89 171.62 378.04 382.05 181.64 957.96 587.53 166.64 188.77 186.31 163.16 879.99 578.56 682.31 2191.03 1
MTAPA65.14 280.20 18
zzz-MVS74.25 1977.97 2269.91 1473.43 2374.06 4379.69 1856.44 1780.74 1364.98 368.72 2979.98 1962.92 1178.24 1577.77 1381.99 2986.30 23
xxxxxxxxxxxxxcwj74.63 1577.07 2671.79 179.32 180.76 382.96 257.49 982.82 764.79 483.69 852.03 11562.83 1277.13 2575.21 3083.35 787.85 15
SF-MVS77.13 681.70 671.79 179.32 180.76 382.96 257.49 982.82 764.79 483.69 884.46 362.83 1277.13 2575.21 3083.35 787.85 15
DVP-MVS77.82 383.46 371.24 775.26 1580.22 682.95 457.85 685.90 264.79 488.54 383.43 566.24 178.21 1678.56 680.34 4489.39 6
SMA-MVS77.32 582.51 571.26 675.43 1380.19 782.22 658.26 384.83 564.36 778.19 1483.46 463.61 681.00 180.28 183.66 489.62 5
HFP-MVS74.87 1378.86 1870.21 1173.99 2077.91 1780.36 1556.63 1578.41 1964.27 874.54 1977.75 2762.96 1078.70 1077.82 1183.02 1086.91 21
CSCG74.68 1479.22 1469.40 1775.69 1180.01 879.12 2352.83 4179.34 1763.99 970.49 2482.02 1060.35 3077.48 2377.22 1884.38 187.97 14
ACMMP_NAP76.15 781.17 770.30 1074.09 1979.47 981.59 1157.09 1381.38 1063.89 1079.02 1280.48 1762.24 1780.05 479.12 482.94 1288.64 8
HPM-MVS++copyleft76.01 880.47 1070.81 876.60 774.96 3580.18 1658.36 281.96 963.50 1178.80 1382.53 964.40 478.74 878.84 581.81 3187.46 18
DPE-MVS78.11 283.84 271.42 477.82 581.32 282.92 557.81 784.04 663.19 1288.63 286.00 264.52 378.71 977.63 1482.26 2290.57 3
CNVR-MVS75.62 1079.91 1270.61 975.76 978.82 1381.66 857.12 1279.77 1663.04 1370.69 2381.15 1462.99 980.23 379.54 383.11 989.16 7
SD-MVS74.43 1678.87 1669.26 1974.39 1873.70 4579.06 2455.24 2581.04 1162.71 1480.18 1182.61 861.70 2175.43 4073.92 4382.44 2085.22 32
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.75.22 1280.06 1169.56 1674.61 1772.74 4980.59 1355.70 2380.80 1262.65 1586.25 482.92 762.07 1976.89 2875.66 2981.77 3385.19 33
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MTMP62.63 1678.04 25
NCCC74.27 1877.83 2370.13 1275.70 1077.41 2280.51 1457.09 1378.25 2062.28 1765.54 3678.26 2462.18 1879.13 678.51 883.01 1187.68 17
DPM-MVS72.80 2675.90 2969.19 2075.51 1277.68 1981.62 1054.83 2675.96 2562.06 1863.96 4276.58 2958.55 3776.66 3276.77 2282.60 1883.68 42
DeepC-MVS66.32 273.85 2278.10 2168.90 2267.92 4979.31 1078.16 2859.28 178.24 2161.13 1967.36 3576.10 3263.40 779.11 778.41 983.52 588.16 12
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVS77.58 482.93 471.35 577.86 480.55 583.38 157.61 885.57 361.11 2086.10 582.98 664.76 278.29 1376.78 2183.40 690.20 4
CLD-MVS67.02 4971.57 4261.71 5171.01 3474.81 3771.62 5138.91 15271.86 4060.70 2164.97 3867.88 6051.88 8776.77 3174.98 3676.11 9069.75 119
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MP-MVScopyleft74.31 1778.87 1668.99 2173.49 2278.56 1479.25 2256.51 1675.33 2760.69 2275.30 1879.12 2261.81 2077.78 2077.93 1082.18 2788.06 13
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSLP-MVS++68.17 4370.72 4865.19 3869.41 4270.64 5574.99 4045.76 7470.20 4660.17 2356.42 7273.01 4361.14 2372.80 5370.54 5679.70 5081.42 51
MCST-MVS73.67 2477.39 2469.33 1876.26 878.19 1678.77 2554.54 3075.33 2759.99 2467.96 3179.23 2162.43 1678.00 1775.71 2884.02 287.30 19
SteuartSystems-ACMMP75.23 1179.60 1370.13 1276.81 678.92 1181.74 757.99 475.30 2959.83 2575.69 1778.45 2360.48 2880.58 279.77 283.94 388.52 9
Skip Steuart: Steuart Systems R&D Blog.
APD-MVScopyleft75.80 980.90 969.86 1575.42 1478.48 1581.43 1257.44 1180.45 1459.32 2685.28 680.82 1663.96 576.89 2876.08 2681.58 3788.30 11
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
train_agg73.89 2178.25 2068.80 2375.25 1672.27 5179.75 1756.05 2074.87 3258.97 2781.83 1079.76 2061.05 2577.39 2476.01 2781.71 3485.61 30
CP-MVS72.63 2776.95 2767.59 2670.67 3575.53 3377.95 3056.01 2175.65 2658.82 2869.16 2876.48 3060.46 2977.66 2177.20 1981.65 3586.97 20
3Dnovator+62.63 469.51 3572.62 3965.88 3668.21 4876.47 2973.50 4852.74 4270.85 4358.65 2955.97 7469.95 5061.11 2476.80 3075.09 3281.09 4183.23 45
DeepC-MVS_fast65.08 372.00 2976.11 2867.21 2868.93 4577.46 2076.54 3454.35 3174.92 3158.64 3065.18 3774.04 4262.62 1477.92 1877.02 2082.16 2886.21 24
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPR73.79 2378.41 1968.40 2472.35 2777.79 1879.32 2056.38 1877.67 2358.30 3174.16 2076.66 2861.40 2278.32 1277.80 1282.68 1686.51 22
DeepPCF-MVS66.49 174.25 1980.97 866.41 3167.75 5178.87 1275.61 3854.16 3384.86 458.22 3277.94 1581.01 1562.52 1578.34 1177.38 1580.16 4788.40 10
PGM-MVS72.89 2577.13 2567.94 2572.47 2677.25 2379.27 2154.63 2973.71 3457.95 3372.38 2175.33 3460.75 2678.25 1477.36 1782.57 1985.62 29
AdaColmapbinary67.89 4568.85 5566.77 2973.73 2174.30 4275.28 3953.58 3670.24 4557.59 3451.19 9859.19 8760.74 2775.33 4273.72 4579.69 5277.96 66
TSAR-MVS + GP.69.71 3473.92 3664.80 4268.27 4770.56 5671.90 5050.75 5171.38 4157.46 3568.68 3075.42 3360.10 3173.47 5073.99 4280.32 4583.97 38
CNLPA62.78 6366.31 6258.65 6358.47 9568.41 6465.98 7741.22 13778.02 2256.04 3646.65 12159.50 8657.50 4269.67 7365.27 12072.70 13176.67 76
ACMP61.42 568.72 4271.37 4365.64 3769.06 4474.45 4175.88 3753.30 3768.10 4955.74 3761.53 5562.29 7156.97 4974.70 4474.23 4182.88 1384.31 35
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMMPcopyleft71.57 3075.84 3066.59 3070.30 3976.85 2878.46 2753.95 3473.52 3555.56 3870.13 2571.36 4758.55 3777.00 2776.23 2582.71 1585.81 28
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MAR-MVS68.04 4470.74 4764.90 4171.68 3176.33 3074.63 4350.48 5563.81 5555.52 3954.88 8069.90 5157.39 4475.42 4174.79 3779.71 4980.03 55
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
TSAR-MVS + ACMM72.56 2879.07 1564.96 4073.24 2473.16 4878.50 2648.80 6479.34 1755.32 4085.04 781.49 1358.57 3675.06 4373.75 4475.35 10085.61 30
OMC-MVS65.16 5471.35 4457.94 6952.95 14168.82 6169.00 5538.28 15979.89 1555.20 4162.76 4868.31 5656.14 5771.30 6068.70 7176.06 9279.67 56
MVS_111021_HR67.62 4670.39 4964.39 4369.77 4170.45 5771.44 5351.72 4760.77 6355.06 4262.14 5266.40 6258.13 4076.13 3474.79 3780.19 4682.04 49
3Dnovator60.86 666.99 5070.32 5063.11 4866.63 5474.52 3871.56 5245.76 7467.37 5155.00 4354.31 8568.19 5758.49 3973.97 4773.63 4681.22 4080.23 54
HQP-MVS70.88 3375.02 3366.05 3471.69 3074.47 4077.51 3153.17 3872.89 3654.88 4470.03 2670.48 4957.26 4676.02 3575.01 3581.78 3286.21 24
CANet68.77 4073.01 3763.83 4668.30 4675.19 3473.73 4747.90 6563.86 5454.84 4567.51 3374.36 4057.62 4174.22 4673.57 4780.56 4282.36 46
ACMM60.30 767.58 4768.82 5666.13 3370.59 3672.01 5376.54 3454.26 3265.64 5354.78 4650.35 10161.72 7558.74 3575.79 3875.03 3381.88 3081.17 52
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
abl_664.36 4470.08 4077.45 2172.88 4950.15 5671.31 4254.77 4762.79 4777.99 2656.80 5181.50 3883.91 39
XVS70.49 3776.96 2574.36 4454.48 4874.47 3782.24 23
X-MVStestdata70.49 3776.96 2574.36 4454.48 4874.47 3782.24 23
X-MVS71.18 3275.66 3265.96 3571.71 2976.96 2577.26 3255.88 2272.75 3754.48 4864.39 4074.47 3754.19 6477.84 1977.37 1682.21 2585.85 27
PCF-MVS59.98 867.32 4871.04 4662.97 4964.77 6274.49 3974.78 4249.54 5867.44 5054.39 5158.35 6572.81 4455.79 6071.54 5869.24 6578.57 5883.41 43
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_030469.49 3673.96 3564.28 4567.92 4976.13 3174.90 4147.60 6663.29 5754.09 5267.44 3476.35 3159.53 3375.81 3775.03 3381.62 3683.70 41
OPM-MVS69.33 3771.05 4567.32 2772.34 2875.70 3279.57 1956.34 1955.21 6953.81 5359.51 6068.96 5359.67 3277.61 2276.44 2482.19 2683.88 40
MVS_111021_LR63.05 6166.43 6159.10 6161.33 8063.77 10765.87 7843.58 10860.20 6453.70 5462.09 5362.38 7055.84 5970.24 7068.08 7674.30 10778.28 65
CDPH-MVS71.47 3175.82 3166.41 3172.97 2577.15 2478.14 2954.71 2769.88 4753.07 5570.98 2274.83 3656.95 5076.22 3376.57 2382.62 1785.09 34
PVSNet_BlendedMVS61.63 6864.82 7257.91 7157.21 11367.55 7563.47 9646.08 7254.72 7052.46 5658.59 6360.73 7851.82 8870.46 6665.20 12276.44 8376.50 81
PVSNet_Blended61.63 6864.82 7257.91 7157.21 11367.55 7563.47 9646.08 7254.72 7052.46 5658.59 6360.73 7851.82 8870.46 6665.20 12276.44 8376.50 81
LGP-MVS_train68.87 3972.03 4165.18 3969.33 4374.03 4476.67 3353.88 3568.46 4852.05 5863.21 4463.89 6556.31 5475.99 3674.43 3982.83 1484.18 36
PHI-MVS69.27 3874.84 3462.76 5066.83 5374.83 3673.88 4649.32 6070.61 4450.93 5969.62 2774.84 3557.25 4775.53 3974.32 4078.35 6384.17 37
PVSNet_Blended_VisFu63.65 5766.92 5859.83 5860.03 8773.44 4766.33 7248.95 6252.20 8650.81 6056.07 7360.25 8353.56 6973.23 5270.01 6279.30 5483.24 44
CPTT-MVS68.76 4173.01 3763.81 4765.42 6073.66 4676.39 3652.08 4372.61 3850.33 6160.73 5672.65 4559.43 3473.32 5172.12 4979.19 5685.99 26
OpenMVScopyleft57.13 962.81 6265.75 6659.39 5966.47 5669.52 5964.26 9243.07 12261.34 6250.19 6247.29 11864.41 6454.60 6370.18 7168.62 7377.73 6578.89 60
CS-MVS63.45 5865.72 6760.80 5264.20 6767.86 6968.46 5843.50 11253.86 7349.90 6356.44 7160.45 8257.27 4573.56 4970.13 6181.45 3977.73 68
MVS_Test62.40 6566.23 6357.94 6959.77 9064.77 10266.50 7141.76 13157.26 6749.33 6462.68 4967.47 6153.50 7268.57 8466.25 10576.77 7976.58 78
QAPM65.27 5369.49 5460.35 5465.43 5972.20 5265.69 8147.23 6763.46 5649.14 6553.56 8671.04 4857.01 4872.60 5471.41 5277.62 6782.14 48
casdiffmvs64.09 5668.13 5759.37 6061.81 7668.32 6568.48 5744.45 9061.95 6049.12 6663.04 4569.67 5253.83 6770.46 6666.06 10878.55 5977.43 69
DELS-MVS65.87 5170.30 5160.71 5364.05 7072.68 5070.90 5445.43 7857.49 6649.05 6764.43 3968.66 5455.11 6274.31 4573.02 4879.70 5081.51 50
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TAPA-MVS54.74 1060.85 7166.61 5954.12 9547.38 17465.33 9465.35 8436.51 16875.16 3048.82 6854.70 8263.51 6753.31 7668.36 8664.97 12673.37 11974.27 96
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
canonicalmvs65.62 5272.06 4058.11 6563.94 7171.05 5464.49 9043.18 12074.08 3347.35 6964.17 4171.97 4651.17 9071.87 5670.74 5478.51 6180.56 53
tpm cat153.30 12953.41 15153.17 10358.16 9659.15 14163.73 9538.27 16050.73 9146.98 7045.57 13744.00 17349.20 9655.90 18554.02 18462.65 17664.50 159
DI_MVS_plusplus_trai61.88 6665.17 7158.06 6660.05 8665.26 9666.03 7544.22 9155.75 6846.73 7154.64 8368.12 5854.13 6669.13 7766.66 9777.18 7476.61 77
diffmvs61.64 6766.55 6055.90 8456.63 11763.71 10867.13 6641.27 13659.49 6546.70 7263.93 4368.01 5950.46 9167.30 10965.51 11673.24 12477.87 67
Effi-MVS+63.28 5965.96 6560.17 5564.26 6668.06 6768.78 5645.71 7654.08 7246.64 7355.92 7563.13 6955.94 5870.38 6971.43 5179.68 5378.70 61
TSAR-MVS + COLMAP62.65 6469.90 5254.19 9346.31 17866.73 8365.49 8341.36 13576.57 2446.31 7476.80 1656.68 9653.27 7769.50 7466.65 9872.40 13676.36 83
ETV-MVS63.23 6066.08 6459.91 5763.13 7468.13 6667.62 6044.62 8753.39 7646.23 7558.74 6258.19 9057.45 4373.60 4871.38 5380.39 4379.13 58
EPNet65.14 5569.54 5360.00 5666.61 5567.67 7367.53 6155.32 2462.67 5946.22 7667.74 3265.93 6348.07 10572.17 5572.12 4976.28 8678.47 63
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v858.88 8060.57 9356.92 7857.35 10865.69 9366.69 7042.64 12447.89 12045.77 7749.04 10652.98 11152.77 7967.51 10665.57 11576.26 8775.30 92
EIA-MVS61.53 7063.79 7858.89 6263.82 7267.61 7465.35 8442.15 13049.98 9445.66 7857.47 6956.62 9756.59 5370.91 6469.15 6679.78 4874.80 93
v1059.17 7960.60 9157.50 7457.95 9866.73 8367.09 6744.11 9246.85 12545.42 7948.18 11451.07 11853.63 6867.84 9966.59 10176.79 7876.92 74
Fast-Effi-MVS+60.36 7263.35 7956.87 7958.70 9265.86 9165.08 8637.11 16553.00 8145.36 8052.12 9356.07 10256.27 5571.28 6169.42 6478.71 5775.69 88
v2v48258.69 8360.12 10257.03 7757.16 11566.05 9067.17 6443.52 11046.33 12945.19 8149.46 10551.02 11952.51 8167.30 10966.03 10976.61 8074.62 94
CMPMVSbinary37.70 1749.24 15552.71 15645.19 15745.97 18051.23 17547.44 17429.31 19243.04 15344.69 8234.45 18348.35 12843.64 12462.59 14659.82 16060.08 18269.48 125
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CostFormer56.57 10659.13 11353.60 9757.52 10361.12 12366.94 6835.95 17053.44 7444.68 8355.87 7654.44 10648.21 10260.37 15858.33 16568.27 15770.33 117
PLCcopyleft52.09 1459.21 7862.47 8155.41 8853.24 13964.84 10164.47 9140.41 14665.92 5244.53 8446.19 12955.69 10355.33 6168.24 9065.30 11974.50 10571.09 110
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v114458.88 8060.16 9957.39 7558.03 9767.26 7867.14 6544.46 8945.17 13744.33 8547.81 11549.92 12653.20 7867.77 10166.62 10077.15 7576.58 78
IB-MVS54.11 1158.36 9060.70 9055.62 8658.67 9368.02 6861.56 9943.15 12146.09 13144.06 8644.24 14550.99 12148.71 9966.70 11970.33 5777.60 6878.50 62
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MSDG58.46 8758.97 11557.85 7366.27 5866.23 8967.72 5942.33 12653.43 7543.68 8743.39 15345.35 15749.75 9468.66 8267.77 8177.38 7167.96 134
v119258.51 8459.66 10557.17 7657.82 9967.72 7166.21 7444.83 8444.15 14543.49 8846.68 12047.94 13053.55 7067.39 10866.51 10277.13 7677.20 72
tpm48.82 15951.27 16745.96 15354.10 13447.35 18656.05 13330.23 19146.70 12643.21 8952.54 9147.55 13737.28 15654.11 19050.50 19354.90 19360.12 177
v14419258.23 9359.40 11156.87 7957.56 10066.89 8165.70 7945.01 8244.06 14642.88 9046.61 12248.09 12953.49 7366.94 11765.90 11276.61 8077.29 70
v192192057.89 9659.02 11456.58 8257.55 10166.66 8764.72 8944.70 8643.55 14942.73 9146.17 13046.93 14353.51 7166.78 11865.75 11476.29 8577.28 71
V4256.97 10260.14 10053.28 10048.16 17062.78 11366.30 7337.93 16147.44 12242.68 9248.19 11352.59 11351.90 8667.46 10765.94 11172.72 12976.55 80
v124057.55 9858.63 11856.29 8357.30 11166.48 8863.77 9444.56 8842.77 15942.48 9345.64 13646.28 15053.46 7466.32 12465.80 11376.16 8977.13 73
ET-MVSNet_ETH3D58.38 8961.57 8454.67 9142.15 19065.26 9665.70 7943.82 10048.84 10742.34 9459.76 5947.76 13356.68 5267.02 11668.60 7477.33 7373.73 102
v14855.58 11457.61 12953.20 10154.59 13161.86 11561.18 10338.70 15744.30 14442.25 9547.53 11650.24 12548.73 9865.15 13862.61 14873.79 11271.61 108
MS-PatchMatch58.19 9460.20 9855.85 8565.17 6164.16 10564.82 8741.48 13450.95 8942.17 9645.38 13856.42 9848.08 10468.30 8766.70 9673.39 11869.46 127
Effi-MVS+-dtu60.34 7362.32 8258.03 6864.31 6467.44 7765.99 7642.26 12749.55 9742.00 9748.92 10859.79 8556.27 5568.07 9567.03 8977.35 7275.45 90
EG-PatchMatch MVS56.98 10158.24 12255.50 8764.66 6368.62 6261.48 10143.63 10738.44 18341.44 9838.05 17346.18 15243.95 12371.71 5770.61 5577.87 6474.08 99
SCA50.99 14553.22 15548.40 13851.07 15756.78 15950.25 16139.05 15148.31 11641.38 9949.54 10346.70 14746.00 11458.31 16856.28 16862.65 17656.60 185
MVSTER57.19 9961.11 8752.62 10850.82 16158.79 14361.55 10037.86 16248.81 10941.31 10057.43 7052.10 11448.60 10068.19 9266.75 9575.56 9675.68 89
LS3D60.20 7461.70 8358.45 6464.18 6867.77 7067.19 6348.84 6361.67 6141.27 10145.89 13351.81 11654.18 6568.78 7966.50 10375.03 10269.48 125
baseline255.89 10957.82 12553.64 9657.36 10761.09 12459.75 11140.45 14447.38 12341.26 10251.23 9746.90 14448.11 10365.63 13464.38 13174.90 10368.16 133
thisisatest053056.68 10559.68 10453.19 10252.97 14060.96 12659.41 11340.51 14248.26 11741.06 10352.67 8946.30 14949.78 9267.66 10467.83 7975.39 9874.07 100
PatchmatchNetpermissive49.92 15251.29 16648.32 14051.83 15151.86 17353.38 15537.63 16447.90 11940.83 10448.54 10945.30 15845.19 11956.86 17553.99 18661.08 18154.57 188
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
pmmvs454.66 12356.07 13453.00 10454.63 12857.08 15860.43 10944.10 9351.69 8840.55 10546.55 12544.79 16645.95 11562.54 14763.66 13672.36 13766.20 145
tttt051756.53 10759.59 10652.95 10552.66 14360.99 12559.21 11540.51 14247.89 12040.40 10652.50 9246.04 15349.78 9267.75 10267.83 7975.15 10174.17 97
dps50.42 14751.20 16849.51 12255.88 12056.07 16053.73 15038.89 15343.66 14740.36 10745.66 13537.63 19445.23 11859.05 16156.18 16962.94 17560.16 176
IterMVS-LS58.30 9161.39 8554.71 9059.92 8958.40 14759.42 11243.64 10648.71 11140.25 10857.53 6858.55 8952.15 8565.42 13765.34 11872.85 12575.77 86
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tpmrst48.08 16449.88 17645.98 15252.71 14248.11 18453.62 15333.70 18348.70 11239.74 10948.96 10746.23 15140.29 14250.14 19849.28 19555.80 19057.71 183
Anonymous2023121157.71 9760.79 8954.13 9461.68 7865.81 9260.81 10743.70 10551.97 8739.67 11034.82 18163.59 6643.31 12868.55 8566.63 9975.59 9574.13 98
CR-MVSNet50.47 14652.61 15747.98 14449.03 16952.94 16848.27 16838.86 15444.41 14139.59 11144.34 14444.65 16946.63 11158.97 16360.31 15865.48 16662.66 165
Patchmtry47.61 18548.27 16838.86 15439.59 111
PatchT48.08 16451.03 16944.64 16142.96 18750.12 17840.36 19635.09 17243.17 15239.59 11142.00 16539.96 18646.63 11158.97 16360.31 15863.21 17362.66 165
baseline55.19 11960.88 8848.55 13649.87 16558.10 15258.70 11734.75 17452.82 8339.48 11460.18 5760.86 7745.41 11761.05 15460.74 15763.10 17472.41 105
DCV-MVSNet59.49 7564.00 7754.23 9261.81 7664.33 10461.42 10243.77 10152.85 8238.94 11555.62 7762.15 7343.24 13069.39 7567.66 8476.22 8875.97 85
CHOSEN 1792x268855.85 11158.01 12353.33 9957.26 11262.82 11263.29 9841.55 13346.65 12738.34 11634.55 18253.50 10852.43 8267.10 11467.56 8667.13 16173.92 101
MVS-HIRNet42.24 18541.15 19743.51 16544.06 18640.74 19935.77 20235.35 17135.38 19138.34 11625.63 19938.55 19143.48 12650.77 19547.03 19964.07 17049.98 195
thisisatest051553.85 12656.84 13350.37 11850.25 16458.17 15155.99 13539.90 14941.88 16438.16 11845.91 13245.30 15844.58 12166.15 12866.89 9373.36 12073.57 103
v7n55.67 11257.46 13053.59 9856.06 11965.29 9561.06 10543.26 11940.17 17437.99 11940.79 16845.27 16047.09 10967.67 10366.21 10676.08 9176.82 75
MDTV_nov1_ep1350.32 14952.43 16047.86 14649.87 16554.70 16258.10 11934.29 17845.59 13637.71 12047.44 11747.42 13841.86 13558.07 17155.21 17765.34 16858.56 181
PatchMatch-RL50.11 15151.56 16548.43 13746.23 17951.94 17250.21 16238.62 15846.62 12837.51 12142.43 16439.38 18752.24 8460.98 15559.56 16165.76 16560.01 178
HyFIR lowres test56.87 10458.60 11954.84 8956.62 11869.27 6064.77 8842.21 12845.66 13537.50 12233.08 18457.47 9553.33 7565.46 13667.94 7774.60 10471.35 109
CANet_DTU58.88 8064.68 7452.12 11155.77 12166.75 8263.92 9337.04 16653.32 7737.45 12359.81 5861.81 7444.43 12268.25 8867.47 8774.12 10975.33 91
pmmvs-eth3d51.33 14252.25 16150.26 11950.82 16154.65 16356.03 13443.45 11643.51 15037.20 12439.20 17139.04 18942.28 13361.85 15262.78 14571.78 14264.72 157
GA-MVS55.67 11258.33 12052.58 10955.23 12663.09 10961.08 10440.15 14842.95 15437.02 12552.61 9047.68 13447.51 10765.92 13065.35 11774.49 10670.68 115
USDC51.11 14353.71 14848.08 14344.76 18255.99 16153.01 15640.90 13852.49 8436.14 12644.67 14333.66 19943.27 12963.23 14361.10 15470.39 15164.82 156
ACMH+53.71 1259.26 7760.28 9558.06 6664.17 6968.46 6367.51 6250.93 5052.46 8535.83 12740.83 16745.12 16152.32 8369.88 7269.00 6977.59 6976.21 84
RPSCF46.41 17354.42 14537.06 18825.70 21045.14 19545.39 18420.81 20462.79 5835.10 12844.92 14255.60 10443.56 12556.12 18252.45 19051.80 19963.91 161
Fast-Effi-MVS+-dtu56.30 10859.29 11252.82 10758.64 9464.89 10065.56 8232.89 18745.80 13435.04 12945.89 13354.14 10749.41 9567.16 11266.45 10475.37 9970.69 114
FC-MVSNet-train58.40 8863.15 8052.85 10664.29 6561.84 11655.98 13646.47 7053.06 7934.96 13061.95 5456.37 10039.49 14368.67 8168.36 7575.92 9471.81 107
PMMVS49.20 15754.28 14743.28 16834.13 19845.70 19448.98 16626.09 20046.31 13034.92 13155.22 7853.47 10947.48 10859.43 16059.04 16368.05 15860.77 173
IterMVS53.45 12857.12 13149.17 12649.23 16760.93 12759.05 11634.63 17644.53 14033.22 13251.09 10051.01 12048.38 10162.43 14960.79 15670.54 15069.05 130
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UGNet57.03 10065.25 7047.44 14846.54 17766.73 8356.30 13143.28 11850.06 9332.99 13362.57 5063.26 6833.31 17168.25 8867.58 8572.20 13978.29 64
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
COLMAP_ROBcopyleft46.52 1551.99 13954.86 14348.63 13549.13 16861.73 11760.53 10836.57 16753.14 7832.95 13437.10 17438.68 19040.49 14065.72 13263.08 14172.11 14064.60 158
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
IterMVS-SCA-FT52.18 13657.75 12745.68 15551.01 15962.06 11455.10 14534.75 17444.85 13832.86 13551.13 9951.22 11748.74 9762.47 14861.51 15251.61 20071.02 111
anonymousdsp52.84 13057.78 12647.06 14940.24 19358.95 14253.70 15133.54 18436.51 19032.69 13643.88 14745.40 15647.97 10667.17 11170.28 5874.22 10882.29 47
test-LLR49.28 15450.29 17248.10 14255.26 12447.16 18749.52 16343.48 11439.22 17831.98 13743.65 15147.93 13141.29 13856.80 17655.36 17567.08 16261.94 169
TESTMET0.1,146.09 17650.29 17241.18 17636.91 19647.16 18749.52 16320.32 20539.22 17831.98 13743.65 15147.93 13141.29 13856.80 17655.36 17567.08 16261.94 169
TinyColmap47.08 17047.56 18446.52 15142.35 18953.44 16751.77 15840.70 14143.44 15131.92 13929.78 19223.72 20845.04 12061.99 15159.54 16267.35 16061.03 172
RPMNet46.41 17348.72 17943.72 16447.77 17352.94 16846.02 18133.92 18044.41 14131.82 14036.89 17537.42 19537.41 15453.88 19154.02 18465.37 16761.47 171
UA-Net58.50 8564.68 7451.30 11366.97 5267.13 8053.68 15245.65 7749.51 9931.58 14162.91 4668.47 5535.85 16268.20 9167.28 8874.03 11069.24 129
TDRefinement49.31 15352.44 15945.67 15630.44 20359.42 13759.24 11439.78 15048.76 11031.20 14235.73 17829.90 20342.81 13264.24 14262.59 14970.55 14966.43 141
GBi-Net55.20 11760.25 9649.31 12352.42 14461.44 11857.03 12544.04 9549.18 10330.47 14348.28 11058.19 9038.22 14868.05 9666.96 9073.69 11469.65 120
test155.20 11760.25 9649.31 12352.42 14461.44 11857.03 12544.04 9549.18 10330.47 14348.28 11058.19 9038.22 14868.05 9666.96 9073.69 11469.65 120
FMVSNet354.78 12259.58 10849.17 12652.37 14761.31 12256.72 13044.04 9549.18 10330.47 14348.28 11058.19 9038.09 15165.48 13565.20 12273.31 12169.45 128
FMVSNet255.04 12159.95 10349.31 12352.42 14461.44 11857.03 12544.08 9449.55 9730.40 14646.89 11958.84 8838.22 14867.07 11566.21 10673.69 11469.65 120
Vis-MVSNetpermissive58.48 8665.70 6850.06 12053.40 13867.20 7960.24 11043.32 11748.83 10830.23 14762.38 5161.61 7640.35 14171.03 6369.77 6372.82 12779.11 59
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PM-MVS44.55 18048.13 18240.37 17932.85 20246.82 19146.11 18029.28 19340.48 17229.99 14839.98 17034.39 19841.80 13656.08 18353.88 18862.19 17965.31 152
MDTV_nov1_ep13_2view47.62 16849.72 17745.18 15848.05 17153.70 16654.90 14633.80 18239.90 17629.79 14938.85 17241.89 17739.17 14458.99 16255.55 17465.34 16859.17 179
baseline154.48 12458.69 11649.57 12160.63 8558.29 15055.70 13844.95 8349.20 10229.62 15054.77 8154.75 10535.29 16367.15 11364.08 13271.21 14662.58 168
EPMVS44.66 17947.86 18340.92 17747.97 17244.70 19647.58 17333.27 18548.11 11829.58 15149.65 10244.38 17134.65 16551.71 19347.90 19752.49 19848.57 199
CDS-MVSNet52.42 13357.06 13247.02 15053.92 13658.30 14955.50 14046.47 7042.52 16129.38 15249.50 10452.85 11228.49 18166.70 11966.89 9368.34 15662.63 167
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
FMVSNet154.08 12558.68 11748.71 13350.90 16061.35 12156.73 12943.94 9945.91 13329.32 15342.72 16156.26 10137.70 15368.05 9666.96 9073.69 11469.50 124
ACMH52.42 1358.24 9259.56 10956.70 8166.34 5769.59 5866.71 6949.12 6146.08 13228.90 15442.67 16241.20 17952.60 8071.39 5970.28 5876.51 8275.72 87
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ADS-MVSNet40.67 18943.38 19437.50 18744.36 18439.79 20242.09 19432.67 18944.34 14328.87 15540.76 16940.37 18430.22 17548.34 20245.87 20146.81 20344.21 203
pmmvs547.07 17151.02 17042.46 17045.18 18151.47 17448.23 17033.09 18638.17 18628.62 15646.60 12343.48 17430.74 17458.28 16958.63 16468.92 15460.48 174
test-mter45.30 17750.37 17139.38 18133.65 20046.99 18947.59 17218.59 20638.75 18128.00 15743.28 15646.82 14641.50 13757.28 17455.78 17266.93 16463.70 162
thres100view90052.04 13854.81 14448.80 13157.31 10959.33 13855.30 14342.92 12342.85 15727.81 15843.00 15945.06 16336.99 15764.74 14063.51 13772.47 13565.21 154
tfpn200view952.53 13255.51 13749.06 12857.31 10960.24 13055.42 14243.77 10142.85 15727.81 15843.00 15945.06 16337.32 15566.38 12164.54 12872.71 13066.54 140
thres20052.39 13455.37 14048.90 13057.39 10660.18 13155.60 13943.73 10342.93 15527.41 16043.35 15445.09 16236.61 16066.36 12263.92 13572.66 13265.78 150
EPNet_dtu52.05 13758.26 12144.81 16054.10 13450.09 17952.01 15740.82 14053.03 8027.41 16054.90 7957.96 9426.72 18362.97 14462.70 14767.78 15966.19 146
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPP-MVSNet59.39 7665.45 6952.32 11060.96 8267.70 7258.42 11844.75 8549.71 9627.23 16259.03 6162.20 7243.34 12770.71 6569.13 6779.25 5579.63 57
UniMVSNet_ETH3D52.62 13155.98 13548.70 13451.04 15860.71 12856.87 12846.74 6942.52 16126.96 16342.50 16345.95 15437.87 15266.22 12665.15 12572.74 12868.78 132
thres40052.38 13555.51 13748.74 13257.49 10460.10 13355.45 14143.54 10942.90 15626.72 16443.34 15545.03 16536.61 16066.20 12764.53 12972.66 13266.43 141
IS_MVSNet57.95 9564.26 7650.60 11561.62 7965.25 9857.18 12445.42 7950.79 9026.49 16557.81 6760.05 8434.51 16671.24 6270.20 6078.36 6274.44 95
tfpnnormal50.16 15052.19 16247.78 14756.86 11658.37 14854.15 14844.01 9838.35 18525.94 16636.10 17737.89 19234.50 16765.93 12963.42 13871.26 14565.28 153
pm-mvs151.02 14455.55 13645.73 15454.16 13358.52 14550.92 15942.56 12540.32 17325.67 16743.66 15050.34 12430.06 17665.85 13163.97 13470.99 14866.21 144
thres600view751.91 14155.14 14148.14 14157.43 10560.18 13154.60 14743.73 10342.61 16025.20 16843.10 15844.47 17035.19 16466.36 12263.28 14072.66 13266.01 148
TransMVSNet (Re)51.92 14055.38 13947.88 14560.95 8359.90 13453.95 14945.14 8139.47 17724.85 16943.87 14846.51 14829.15 17867.55 10565.23 12173.26 12365.16 155
ambc45.54 19050.66 16352.63 17140.99 19538.36 18424.67 17022.62 20213.94 21129.14 17965.71 13358.06 16658.60 18667.43 136
pmmvs648.35 16251.64 16444.51 16251.92 15057.94 15449.44 16542.17 12934.45 19224.62 17128.87 19546.90 14429.07 18064.60 14163.08 14169.83 15265.68 151
UniMVSNet_NR-MVSNet56.94 10361.14 8652.05 11260.02 8865.21 9957.44 12252.93 4049.37 10024.31 17254.62 8450.54 12239.04 14568.69 8068.84 7078.53 6070.72 112
DU-MVS55.41 11559.59 10650.54 11754.60 12962.97 11057.44 12251.80 4548.62 11424.31 17251.99 9447.00 14239.04 14568.11 9367.75 8276.03 9370.72 112
MIMVSNet43.79 18248.53 18038.27 18441.46 19148.97 18250.81 16032.88 18844.55 13922.07 17432.05 18547.15 14024.76 18658.73 16556.09 17157.63 18952.14 189
FMVSNet540.96 18745.81 18835.29 19234.30 19744.55 19747.28 17528.84 19440.76 17021.62 17529.85 19142.44 17524.77 18557.53 17355.00 17854.93 19250.56 194
UniMVSNet (Re)55.15 12060.39 9449.03 12955.31 12364.59 10355.77 13750.63 5248.66 11320.95 17651.47 9650.40 12334.41 16867.81 10067.89 7877.11 7771.88 106
NR-MVSNet55.35 11659.46 11050.56 11661.33 8062.97 11057.91 12151.80 4548.62 11420.59 17751.99 9444.73 16734.10 16968.58 8368.64 7277.66 6670.67 116
TranMVSNet+NR-MVSNet55.87 11060.14 10050.88 11459.46 9163.82 10657.93 12052.98 3948.94 10620.52 17852.87 8847.33 13936.81 15969.12 7869.03 6877.56 7069.89 118
TAMVS44.02 18149.18 17837.99 18647.03 17645.97 19345.04 18528.47 19539.11 18020.23 17943.22 15748.52 12728.49 18158.15 17057.95 16758.71 18451.36 191
SixPastTwentyTwo47.55 16950.25 17444.41 16347.30 17554.31 16547.81 17140.36 14733.76 19319.93 18043.75 14932.77 20142.07 13459.82 15960.94 15568.98 15366.37 143
PMVScopyleft27.84 1833.81 19835.28 20232.09 19534.13 19824.81 20832.51 20526.48 19926.41 20319.37 18123.76 20024.02 20725.18 18450.78 19447.24 19854.89 19449.95 196
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS38.36 19440.41 19835.97 18938.92 19539.85 20145.50 18325.79 20141.13 16818.70 18230.10 19024.56 20631.86 17349.42 20046.80 20055.04 19151.03 192
CHOSEN 280x42040.80 18845.05 19135.84 19132.95 20129.57 20644.98 18623.71 20337.54 18818.42 18331.36 18847.07 14146.41 11356.71 17854.65 18248.55 20258.47 182
MDA-MVSNet-bldmvs41.36 18643.15 19539.27 18228.74 20552.68 17044.95 18740.84 13932.89 19518.13 18431.61 18722.09 20938.97 14750.45 19756.11 17064.01 17156.23 186
Baseline_NR-MVSNet53.50 12757.89 12448.37 13954.60 12959.25 14056.10 13251.84 4449.32 10117.92 18545.38 13847.68 13436.93 15868.11 9365.95 11072.84 12669.57 123
pmmvs335.10 19738.47 19931.17 19626.37 20940.47 20034.51 20418.09 20724.75 20416.88 18623.05 20126.69 20532.69 17250.73 19651.60 19158.46 18751.98 190
test0.0.03 143.15 18346.95 18538.72 18355.26 12450.56 17642.48 19343.48 11438.16 18715.11 18735.07 18044.69 16816.47 19655.95 18454.34 18359.54 18349.87 197
CVMVSNet46.38 17552.01 16339.81 18042.40 18850.26 17746.15 17937.68 16340.03 17515.09 18846.56 12447.56 13633.72 17056.50 18055.65 17363.80 17267.53 135
LTVRE_ROB44.17 1647.06 17250.15 17543.44 16651.39 15358.42 14642.90 19243.51 11122.27 20614.85 18941.94 16634.57 19745.43 11662.28 15062.77 14662.56 17868.83 131
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Anonymous2023120642.28 18445.89 18738.07 18551.96 14948.98 18143.66 19138.81 15638.74 18214.32 19026.74 19740.90 18020.94 19156.64 17954.67 18158.71 18454.59 187
Vis-MVSNet (Re-imp)50.37 14857.73 12841.80 17457.53 10254.35 16445.70 18245.24 8049.80 9513.43 19158.23 6656.42 9820.11 19362.96 14563.36 13968.76 15558.96 180
tmp_tt5.40 2083.97 2142.35 2153.26 2150.44 21117.56 20712.09 19211.48 2077.14 2131.98 20915.68 20815.49 20910.69 212
gg-mvs-nofinetune49.07 15852.56 15845.00 15961.99 7559.78 13553.55 15441.63 13231.62 19912.08 19329.56 19353.28 11029.57 17766.27 12564.49 13071.19 14762.92 164
gm-plane-assit44.74 17845.95 18643.33 16760.88 8446.79 19236.97 20032.24 19024.15 20511.79 19429.26 19432.97 20046.64 11065.09 13962.95 14371.45 14460.42 175
CP-MVSNet48.37 16153.53 15042.34 17151.35 15458.01 15346.56 17750.54 5341.62 16610.61 19546.53 12640.68 18323.18 18858.71 16661.83 15071.81 14167.36 138
PS-CasMVS48.18 16353.25 15442.27 17251.26 15557.94 15446.51 17850.52 5441.30 16710.56 19645.35 14040.34 18523.04 18958.66 16761.79 15171.74 14367.38 137
EU-MVSNet40.63 19045.65 18934.78 19339.11 19446.94 19040.02 19734.03 17933.50 19410.37 19735.57 17937.80 19323.65 18751.90 19250.21 19461.49 18063.62 163
PEN-MVS49.21 15654.32 14643.24 16954.33 13259.26 13947.04 17651.37 4941.67 1659.97 19846.22 12841.80 17822.97 19060.52 15664.03 13373.73 11366.75 139
test20.0340.38 19144.20 19235.92 19053.73 13749.05 18038.54 19843.49 11332.55 1969.54 19927.88 19639.12 18812.24 20156.28 18154.69 18057.96 18849.83 198
N_pmnet32.67 20036.85 20127.79 20040.55 19232.13 20535.80 20126.79 19837.24 1899.10 20032.02 18630.94 20216.30 19747.22 20341.21 20238.21 20637.21 204
Gipumacopyleft25.87 20126.91 20424.66 20128.98 20420.17 20920.46 20834.62 17729.55 2019.10 2004.91 2115.31 21515.76 19849.37 20149.10 19639.03 20529.95 206
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testgi38.71 19343.64 19332.95 19452.30 14848.63 18335.59 20335.05 17331.58 2009.03 20230.29 18940.75 18211.19 20655.30 18653.47 18954.53 19545.48 201
WR-MVS48.78 16055.06 14241.45 17555.50 12260.40 12943.77 19049.99 5741.92 1638.10 20345.24 14145.56 15517.47 19461.57 15364.60 12773.85 11166.14 147
DTE-MVSNet48.03 16653.28 15341.91 17354.64 12757.50 15644.63 18951.66 4841.02 1697.97 20446.26 12740.90 18020.24 19260.45 15762.89 14472.33 13863.97 160
WR-MVS_H47.65 16753.67 14940.63 17851.45 15259.74 13644.71 18849.37 5940.69 1717.61 20546.04 13144.34 17217.32 19557.79 17261.18 15373.30 12265.86 149
MIMVSNet135.51 19641.41 19628.63 19827.53 20743.36 19838.09 19933.82 18132.01 1976.77 20621.63 20335.43 19611.97 20355.05 18853.99 18653.59 19748.36 200
new-patchmatchnet33.24 19937.20 20028.62 19944.32 18538.26 20429.68 20736.05 16931.97 1986.33 20726.59 19827.33 20411.12 20750.08 19941.05 20344.23 20445.15 202
new_pmnet23.19 20228.17 20317.37 20217.03 21124.92 20719.66 20916.16 20927.05 2024.42 20820.77 20419.20 21012.19 20237.71 20436.38 20434.77 20731.17 205
E-PMN15.09 20413.19 20717.30 20327.80 20612.62 2127.81 21227.54 19614.62 2103.19 2096.89 2082.52 21815.09 19915.93 20720.22 20722.38 20819.53 209
EMVS14.49 20512.45 20816.87 20527.02 20812.56 2138.13 21127.19 19715.05 2093.14 2106.69 2092.67 21715.08 20014.60 20918.05 20820.67 20917.56 211
FC-MVSNet-test39.65 19248.35 18129.49 19744.43 18339.28 20330.23 20640.44 14543.59 1483.12 21153.00 8742.03 17610.02 20855.09 18754.77 17948.66 20150.71 193
MVEpermissive12.28 1913.53 20615.72 20610.96 2077.39 21315.71 2116.05 21323.73 20210.29 2123.01 2125.77 2103.41 21611.91 20420.11 20629.79 20513.67 21124.98 207
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft6.95 2145.98 2142.25 21011.73 2112.07 21311.85 2065.43 21411.75 20511.40 2108.10 21318.38 210
PMMVS215.84 20319.68 20511.35 20615.74 21216.95 21013.31 21017.64 20816.08 2080.36 21413.12 20511.47 2121.69 21028.82 20527.24 20619.38 21024.09 208
GG-mvs-BLEND36.62 19553.39 15217.06 2040.01 21558.61 14448.63 1670.01 21247.13 1240.02 21543.98 14660.64 800.03 21154.92 18951.47 19253.64 19656.99 184
uanet_test0.00 2090.00 2110.00 2090.00 2160.00 2160.00 2180.00 2130.00 2150.00 2160.00 2140.00 2190.00 2140.00 2120.00 2120.00 2140.00 214
sosnet-low-res0.00 2090.00 2110.00 2090.00 2160.00 2160.00 2180.00 2130.00 2150.00 2160.00 2140.00 2190.00 2140.00 2120.00 2120.00 2140.00 214
sosnet0.00 2090.00 2110.00 2090.00 2160.00 2160.00 2180.00 2130.00 2150.00 2160.00 2140.00 2190.00 2140.00 2120.00 2120.00 2140.00 214
testmvs0.01 2070.02 2090.00 2090.00 2160.00 2160.01 2170.00 2130.01 2130.00 2160.03 2130.00 2190.01 2120.01 2110.01 2100.00 2140.06 213
test1230.01 2070.02 2090.00 2090.00 2160.00 2160.00 2180.00 2130.01 2130.00 2160.04 2120.00 2190.01 2120.00 2120.01 2100.00 2140.07 212
9.1481.81 11
SR-MVS71.46 3354.67 2881.54 12
Anonymous20240521160.60 9163.44 7366.71 8661.00 10647.23 6750.62 9236.85 17660.63 8143.03 13169.17 7667.72 8375.41 9772.54 104
our_test_351.15 15657.31 15755.12 144
test_part190.62 2
Patchmatch-RL test1.04 216
mPP-MVS71.67 3274.36 40
NP-MVS72.00 39