DVP-MVS | | | 98.86 3 | 98.97 2 | 98.75 2 | 99.43 13 | 99.63 1 | 99.25 12 | 97.81 1 | 98.62 1 | 97.69 1 | 97.59 20 | 99.90 1 | 98.93 5 | 98.99 3 | 98.42 11 | 99.37 53 | 99.62 3 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
SED-MVS | | | 98.90 1 | 99.07 1 | 98.69 3 | 99.38 19 | 99.61 2 | 99.33 7 | 97.80 3 | 98.25 7 | 97.60 2 | 98.87 3 | 99.89 2 | 98.67 18 | 99.02 2 | 98.26 17 | 99.36 55 | 99.61 5 |
|
PLC |  | 94.95 3 | 97.37 33 | 96.77 50 | 98.07 21 | 98.97 32 | 98.21 85 | 97.94 46 | 96.85 36 | 97.66 26 | 97.58 3 | 93.33 59 | 96.84 48 | 98.01 35 | 97.13 66 | 96.20 82 | 99.09 101 | 98.01 126 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
APDe-MVS | | | 98.87 2 | 98.96 3 | 98.77 1 | 99.58 2 | 99.53 5 | 99.44 1 | 97.81 1 | 98.22 9 | 97.33 4 | 98.70 4 | 99.33 9 | 98.86 8 | 98.96 5 | 98.40 13 | 99.63 3 | 99.57 8 |
|
MTMP | | | | | | | | | | | 97.18 5 | | 98.83 26 | | | | | |
|
CNLPA | | | 96.90 42 | 96.28 56 | 97.64 29 | 98.56 43 | 98.63 73 | 96.85 64 | 96.60 37 | 97.73 18 | 97.08 6 | 89.78 99 | 96.28 56 | 97.80 39 | 96.73 78 | 96.63 70 | 98.94 119 | 98.14 125 |
|
xxxxxxxxxxxxxcwj | | | 97.07 38 | 95.99 61 | 98.33 10 | 99.45 9 | 99.05 32 | 98.27 37 | 97.65 8 | 97.73 18 | 97.02 7 | 98.18 11 | 81.99 144 | 98.11 29 | 98.15 33 | 97.62 40 | 99.45 31 | 99.19 41 |
|
SF-MVS | | | 98.39 13 | 98.45 16 | 98.33 10 | 99.45 9 | 99.05 32 | 98.27 37 | 97.65 8 | 97.73 18 | 97.02 7 | 98.18 11 | 99.25 14 | 98.11 29 | 98.15 33 | 97.62 40 | 99.45 31 | 99.19 41 |
|
DPE-MVS |  | | 98.75 4 | 98.91 5 | 98.57 4 | 99.21 24 | 99.54 4 | 99.42 2 | 97.78 5 | 97.49 31 | 96.84 9 | 98.94 1 | 99.82 4 | 98.59 21 | 98.90 9 | 98.22 18 | 99.56 10 | 99.48 12 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MTAPA | | | | | | | | | | | 96.83 10 | | 99.12 20 | | | | | |
|
zzz-MVS | | | 98.43 11 | 98.31 23 | 98.57 4 | 99.48 5 | 99.40 9 | 99.32 8 | 97.62 13 | 97.70 22 | 96.67 11 | 96.59 32 | 99.09 21 | 98.86 8 | 98.65 12 | 97.56 44 | 99.45 31 | 99.17 47 |
|
CNVR-MVS | | | 98.47 10 | 98.46 15 | 98.48 7 | 99.40 15 | 99.05 32 | 99.02 19 | 97.54 17 | 97.73 18 | 96.65 12 | 97.20 29 | 99.13 19 | 98.85 10 | 98.91 8 | 98.10 22 | 99.41 44 | 99.08 55 |
|
MSLP-MVS++ | | | 98.04 23 | 97.93 32 | 98.18 17 | 99.10 28 | 99.09 31 | 98.34 36 | 96.99 33 | 97.54 30 | 96.60 13 | 94.82 50 | 98.45 35 | 98.89 6 | 97.46 56 | 98.77 4 | 99.17 88 | 99.37 17 |
|
AdaColmap |  | | 97.53 30 | 96.93 46 | 98.24 15 | 99.21 24 | 98.77 61 | 98.47 34 | 97.34 24 | 96.68 52 | 96.52 14 | 95.11 48 | 96.12 58 | 98.72 15 | 97.19 64 | 96.24 79 | 99.17 88 | 98.39 114 |
|
MSP-MVS | | | 98.73 5 | 98.93 4 | 98.50 6 | 99.44 12 | 99.57 3 | 99.36 3 | 97.65 8 | 98.14 11 | 96.51 15 | 98.49 6 | 99.65 7 | 98.67 18 | 98.60 13 | 98.42 11 | 99.40 47 | 99.63 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
SD-MVS | | | 98.52 7 | 98.77 8 | 98.23 16 | 98.15 50 | 99.26 21 | 98.79 26 | 97.59 16 | 98.52 2 | 96.25 16 | 97.99 15 | 99.75 5 | 99.01 3 | 98.27 27 | 97.97 28 | 99.59 4 | 99.63 1 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
APD-MVS |  | | 98.36 15 | 98.32 22 | 98.41 8 | 99.47 6 | 99.26 21 | 99.12 15 | 97.77 6 | 96.73 50 | 96.12 17 | 97.27 28 | 98.88 24 | 98.46 25 | 98.47 17 | 98.39 14 | 99.52 14 | 99.22 37 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CPTT-MVS | | | 97.78 26 | 97.54 33 | 98.05 22 | 98.91 35 | 99.05 32 | 99.00 20 | 96.96 34 | 97.14 40 | 95.92 18 | 95.50 43 | 98.78 28 | 98.99 4 | 97.20 62 | 96.07 84 | 98.54 154 | 99.04 65 |
|
SMA-MVS |  | | 98.66 6 | 98.89 6 | 98.39 9 | 99.60 1 | 99.41 8 | 99.00 20 | 97.63 12 | 97.78 17 | 95.83 19 | 98.33 10 | 99.83 3 | 98.85 10 | 98.93 7 | 98.56 6 | 99.41 44 | 99.40 15 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
TSAR-MVS + MP. | | | 98.49 8 | 98.78 7 | 98.15 20 | 98.14 51 | 99.17 28 | 99.34 5 | 97.18 30 | 98.44 4 | 95.72 20 | 97.84 16 | 99.28 11 | 98.87 7 | 99.05 1 | 98.05 25 | 99.66 1 | 99.60 6 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
CSCG | | | 97.44 32 | 97.18 42 | 97.75 28 | 99.47 6 | 99.52 6 | 98.55 31 | 95.41 41 | 97.69 24 | 95.72 20 | 94.29 55 | 95.53 62 | 98.10 31 | 96.20 103 | 97.38 52 | 99.24 73 | 99.62 3 |
|
CP-MVS | | | 98.32 17 | 98.34 21 | 98.29 13 | 99.34 21 | 99.30 17 | 99.15 14 | 97.35 22 | 97.49 31 | 95.58 22 | 97.72 18 | 98.62 33 | 98.82 12 | 98.29 25 | 97.67 39 | 99.51 19 | 99.28 26 |
|
3Dnovator+ | | 93.91 7 | 97.23 35 | 97.22 39 | 97.24 33 | 98.89 36 | 98.85 57 | 98.26 39 | 93.25 58 | 97.99 14 | 95.56 23 | 90.01 97 | 98.03 41 | 98.05 32 | 97.91 44 | 98.43 10 | 99.44 39 | 99.35 19 |
|
HFP-MVS | | | 98.48 9 | 98.62 10 | 98.32 12 | 99.39 18 | 99.33 16 | 99.27 10 | 97.42 19 | 98.27 6 | 95.25 24 | 98.34 9 | 98.83 26 | 99.08 1 | 98.26 28 | 98.08 24 | 99.48 23 | 99.26 31 |
|
NCCC | | | 98.10 21 | 98.05 30 | 98.17 19 | 99.38 19 | 99.05 32 | 99.00 20 | 97.53 18 | 98.04 13 | 95.12 25 | 94.80 51 | 99.18 17 | 98.58 22 | 98.49 16 | 97.78 37 | 99.39 49 | 98.98 73 |
|
ACMMPR | | | 98.40 12 | 98.49 12 | 98.28 14 | 99.41 14 | 99.40 9 | 99.36 3 | 97.35 22 | 98.30 5 | 95.02 26 | 97.79 17 | 98.39 37 | 99.04 2 | 98.26 28 | 98.10 22 | 99.50 22 | 99.22 37 |
|
HPM-MVS++ |  | | 98.34 16 | 98.47 14 | 98.18 17 | 99.46 8 | 99.15 29 | 99.10 16 | 97.69 7 | 97.67 25 | 94.93 27 | 97.62 19 | 99.70 6 | 98.60 20 | 98.45 18 | 97.46 48 | 99.31 62 | 99.26 31 |
|
OMC-MVS | | | 97.00 40 | 96.92 47 | 97.09 35 | 98.69 39 | 98.66 68 | 97.85 47 | 95.02 43 | 98.09 12 | 94.47 28 | 93.15 60 | 96.90 46 | 97.38 46 | 97.16 65 | 96.82 68 | 99.13 96 | 97.65 139 |
|
abl_6 | | | | | 96.82 40 | 98.60 42 | 98.74 62 | 97.74 49 | 93.73 50 | 96.25 59 | 94.37 29 | 94.55 54 | 98.60 34 | 97.25 48 | | | 99.27 68 | 98.61 98 |
|
SteuartSystems-ACMMP | | | 98.38 14 | 98.71 9 | 97.99 24 | 99.34 21 | 99.46 7 | 99.34 5 | 97.33 25 | 97.31 35 | 94.25 30 | 98.06 13 | 99.17 18 | 98.13 28 | 98.98 4 | 98.46 9 | 99.55 12 | 99.54 9 |
Skip Steuart: Steuart Systems R&D Blog. |
TSAR-MVS + GP. | | | 97.45 31 | 98.36 18 | 96.39 43 | 95.56 83 | 98.93 49 | 97.74 49 | 93.31 55 | 97.61 28 | 94.24 31 | 98.44 8 | 99.19 16 | 98.03 34 | 97.60 52 | 97.41 50 | 99.44 39 | 99.33 21 |
|
DeepC-MVS_fast | | 96.13 1 | 98.13 20 | 98.27 25 | 97.97 25 | 99.16 27 | 99.03 39 | 99.05 18 | 97.24 27 | 98.22 9 | 94.17 32 | 95.82 39 | 98.07 39 | 98.69 17 | 98.83 10 | 98.80 2 | 99.52 14 | 99.10 52 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
3Dnovator | | 93.79 8 | 97.08 37 | 97.20 40 | 96.95 38 | 99.09 29 | 99.03 39 | 98.20 40 | 93.33 54 | 97.99 14 | 93.82 33 | 90.61 91 | 96.80 49 | 97.82 37 | 97.90 45 | 98.78 3 | 99.47 26 | 99.26 31 |
|
MCST-MVS | | | 98.20 18 | 98.36 18 | 98.01 23 | 99.40 15 | 99.05 32 | 99.00 20 | 97.62 13 | 97.59 29 | 93.70 34 | 97.42 27 | 99.30 10 | 98.77 14 | 98.39 23 | 97.48 47 | 99.59 4 | 99.31 24 |
|
PVSNet_BlendedMVS | | | 95.41 61 | 95.28 71 | 95.57 55 | 97.42 60 | 99.02 41 | 95.89 96 | 93.10 61 | 96.16 62 | 93.12 35 | 91.99 72 | 85.27 121 | 94.66 96 | 98.09 39 | 97.34 53 | 99.24 73 | 99.08 55 |
|
PVSNet_Blended | | | 95.41 61 | 95.28 71 | 95.57 55 | 97.42 60 | 99.02 41 | 95.89 96 | 93.10 61 | 96.16 62 | 93.12 35 | 91.99 72 | 85.27 121 | 94.66 96 | 98.09 39 | 97.34 53 | 99.24 73 | 99.08 55 |
|
CANet | | | 96.84 44 | 97.20 40 | 96.42 42 | 97.92 54 | 99.24 25 | 98.60 29 | 93.51 53 | 97.11 41 | 93.07 37 | 91.16 83 | 97.24 45 | 96.21 73 | 98.24 30 | 98.05 25 | 99.22 79 | 99.35 19 |
|
PGM-MVS | | | 97.81 25 | 98.11 28 | 97.46 30 | 99.55 3 | 99.34 15 | 99.32 8 | 94.51 46 | 96.21 61 | 93.07 37 | 98.05 14 | 97.95 42 | 98.82 12 | 98.22 31 | 97.89 33 | 99.48 23 | 99.09 54 |
|
MVSTER | | | 94.89 67 | 95.07 77 | 94.68 76 | 94.71 106 | 96.68 124 | 97.00 59 | 90.57 94 | 95.18 93 | 93.05 39 | 95.21 46 | 86.41 113 | 93.72 114 | 97.59 53 | 95.88 93 | 99.00 113 | 98.50 106 |
|
MP-MVS |  | | 98.09 22 | 98.30 24 | 97.84 27 | 99.34 21 | 99.19 27 | 99.23 13 | 97.40 20 | 97.09 42 | 93.03 40 | 97.58 22 | 98.85 25 | 98.57 23 | 98.44 20 | 97.69 38 | 99.48 23 | 99.23 35 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
IB-MVS | | 89.56 15 | 91.71 119 | 92.50 118 | 90.79 126 | 95.94 79 | 98.44 79 | 87.05 196 | 91.38 85 | 93.15 123 | 92.98 41 | 84.78 132 | 85.14 124 | 78.27 203 | 92.47 174 | 94.44 137 | 99.10 100 | 99.08 55 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
EPNet | | | 96.27 52 | 96.97 45 | 95.46 57 | 98.47 44 | 98.28 82 | 97.41 54 | 93.67 51 | 95.86 75 | 92.86 42 | 97.51 24 | 93.79 69 | 91.76 137 | 97.03 69 | 97.03 60 | 98.61 150 | 99.28 26 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DELS-MVS | | | 96.06 53 | 96.04 60 | 96.07 50 | 97.77 56 | 99.25 23 | 98.10 42 | 93.26 56 | 94.42 104 | 92.79 43 | 88.52 108 | 93.48 71 | 95.06 91 | 98.51 15 | 98.83 1 | 99.45 31 | 99.28 26 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
PHI-MVS | | | 97.78 26 | 98.44 17 | 97.02 37 | 98.73 38 | 99.25 23 | 98.11 41 | 95.54 40 | 96.66 53 | 92.79 43 | 98.52 5 | 99.38 8 | 97.50 44 | 97.84 46 | 98.39 14 | 99.45 31 | 99.03 66 |
|
dps | | | 90.11 144 | 89.37 157 | 90.98 121 | 93.89 125 | 96.21 137 | 93.49 134 | 77.61 194 | 91.95 145 | 92.74 45 | 88.85 103 | 78.77 156 | 92.37 130 | 87.71 202 | 87.71 199 | 95.80 193 | 94.38 185 |
|
ACMMP_NAP | | | 98.20 18 | 98.49 12 | 97.85 26 | 99.50 4 | 99.40 9 | 99.26 11 | 97.64 11 | 97.47 33 | 92.62 46 | 97.59 20 | 99.09 21 | 98.71 16 | 98.82 11 | 97.86 34 | 99.40 47 | 99.19 41 |
|
ACMMP |  | | 97.37 33 | 97.48 35 | 97.25 32 | 98.88 37 | 99.28 19 | 98.47 34 | 96.86 35 | 97.04 45 | 92.15 47 | 97.57 23 | 96.05 60 | 97.67 40 | 97.27 60 | 95.99 89 | 99.46 27 | 99.14 51 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
DeepPCF-MVS | | 95.28 2 | 97.00 40 | 98.35 20 | 95.42 58 | 97.30 62 | 98.94 47 | 94.82 115 | 96.03 39 | 98.24 8 | 92.11 48 | 95.80 40 | 98.64 32 | 95.51 86 | 98.95 6 | 98.66 5 | 96.78 187 | 99.20 40 |
|
MAR-MVS | | | 95.50 56 | 95.60 65 | 95.39 59 | 98.67 40 | 98.18 88 | 95.89 96 | 89.81 104 | 94.55 102 | 91.97 49 | 92.99 62 | 90.21 89 | 97.30 47 | 96.79 75 | 97.49 46 | 98.72 140 | 98.99 71 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
CLD-MVS | | | 94.79 71 | 94.36 87 | 95.30 60 | 95.21 93 | 97.46 102 | 97.23 56 | 92.24 71 | 96.43 55 | 91.77 50 | 92.69 66 | 84.31 129 | 96.06 74 | 95.52 121 | 95.03 115 | 99.31 62 | 99.06 60 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CS-MVS | | | 96.45 48 | 97.46 37 | 95.28 61 | 94.58 110 | 98.63 73 | 97.19 57 | 90.59 93 | 95.87 74 | 91.74 51 | 95.84 38 | 96.55 51 | 98.05 32 | 98.04 41 | 97.99 27 | 99.51 19 | 99.29 25 |
|
MVS_111021_LR | | | 97.16 36 | 98.01 31 | 96.16 47 | 98.47 44 | 98.98 44 | 96.94 61 | 93.89 49 | 97.64 27 | 91.44 52 | 98.89 2 | 96.41 52 | 97.20 50 | 98.02 42 | 97.29 57 | 99.04 112 | 98.85 88 |
|
DPM-MVS | | | 96.86 43 | 96.82 49 | 96.91 39 | 98.08 52 | 98.20 86 | 98.52 33 | 97.20 29 | 97.24 38 | 91.42 53 | 91.84 76 | 98.45 35 | 97.25 48 | 97.07 67 | 97.40 51 | 98.95 118 | 97.55 142 |
|
PatchMatch-RL | | | 94.69 75 | 94.41 85 | 95.02 64 | 97.63 59 | 98.15 89 | 94.50 122 | 91.99 73 | 95.32 87 | 91.31 54 | 95.47 44 | 83.44 136 | 96.02 76 | 96.56 84 | 95.23 111 | 98.69 143 | 96.67 166 |
|
CHOSEN 280x420 | | | 95.46 59 | 97.01 44 | 93.66 92 | 97.28 63 | 97.98 93 | 96.40 81 | 85.39 156 | 96.10 66 | 91.07 55 | 96.53 33 | 96.34 55 | 95.61 83 | 97.65 51 | 96.95 63 | 96.21 188 | 97.49 143 |
|
Anonymous20231211 | | | 93.49 100 | 92.33 127 | 94.84 71 | 94.78 104 | 98.00 92 | 96.11 87 | 91.85 75 | 94.86 97 | 90.91 56 | 74.69 174 | 89.18 97 | 96.73 63 | 94.82 136 | 95.51 103 | 98.67 144 | 99.24 34 |
|
XVS | | | | | | 96.60 68 | 99.35 12 | 96.82 65 | | | 90.85 57 | | 98.72 29 | | | | 99.46 27 | |
|
X-MVStestdata | | | | | | 96.60 68 | 99.35 12 | 96.82 65 | | | 90.85 57 | | 98.72 29 | | | | 99.46 27 | |
|
X-MVS | | | 97.84 24 | 98.19 27 | 97.42 31 | 99.40 15 | 99.35 12 | 99.06 17 | 97.25 26 | 97.38 34 | 90.85 57 | 96.06 36 | 98.72 29 | 98.53 24 | 98.41 22 | 98.15 21 | 99.46 27 | 99.28 26 |
|
canonicalmvs | | | 95.25 65 | 95.45 69 | 95.00 65 | 95.27 91 | 98.72 65 | 96.89 62 | 89.82 103 | 96.51 54 | 90.84 60 | 93.72 58 | 86.01 116 | 97.66 41 | 95.78 115 | 97.94 30 | 99.54 13 | 99.50 11 |
|
QAPM | | | 96.78 46 | 97.14 43 | 96.36 44 | 99.05 30 | 99.14 30 | 98.02 43 | 93.26 56 | 97.27 37 | 90.84 60 | 91.16 83 | 97.31 44 | 97.64 42 | 97.70 50 | 98.20 19 | 99.33 57 | 99.18 45 |
|
train_agg | | | 97.65 29 | 98.06 29 | 97.18 34 | 98.94 33 | 98.91 52 | 98.98 24 | 97.07 32 | 96.71 51 | 90.66 62 | 97.43 26 | 99.08 23 | 98.20 26 | 97.96 43 | 97.14 58 | 99.22 79 | 99.19 41 |
|
MSDG | | | 94.82 69 | 93.73 101 | 96.09 48 | 98.34 47 | 97.43 104 | 97.06 58 | 96.05 38 | 95.84 76 | 90.56 63 | 86.30 125 | 89.10 99 | 95.55 85 | 96.13 106 | 95.61 100 | 99.00 113 | 95.73 174 |
|
ETV-MVS | | | 96.31 50 | 97.47 36 | 94.96 67 | 94.79 102 | 98.78 60 | 96.08 88 | 91.41 84 | 96.16 62 | 90.50 64 | 95.76 41 | 96.20 57 | 97.39 45 | 98.42 21 | 97.82 35 | 99.57 8 | 99.18 45 |
|
GBi-Net | | | 93.81 92 | 94.18 90 | 93.38 97 | 91.34 153 | 95.86 148 | 96.22 83 | 88.68 117 | 95.23 90 | 90.40 65 | 86.39 121 | 91.16 80 | 94.40 102 | 96.52 88 | 96.30 75 | 99.21 82 | 97.79 131 |
|
test1 | | | 93.81 92 | 94.18 90 | 93.38 97 | 91.34 153 | 95.86 148 | 96.22 83 | 88.68 117 | 95.23 90 | 90.40 65 | 86.39 121 | 91.16 80 | 94.40 102 | 96.52 88 | 96.30 75 | 99.21 82 | 97.79 131 |
|
FMVSNet3 | | | 93.79 94 | 94.17 92 | 93.35 99 | 91.21 156 | 95.99 141 | 96.62 73 | 88.68 117 | 95.23 90 | 90.40 65 | 86.39 121 | 91.16 80 | 94.11 106 | 95.96 108 | 96.67 69 | 99.07 104 | 97.79 131 |
|
PVSNet_Blended_VisFu | | | 94.77 73 | 95.54 67 | 93.87 88 | 96.48 71 | 98.97 45 | 94.33 124 | 91.84 76 | 94.93 96 | 90.37 68 | 85.04 131 | 94.99 64 | 90.87 152 | 98.12 37 | 97.30 55 | 99.30 64 | 99.45 14 |
|
DeepC-MVS | | 94.87 4 | 96.76 47 | 96.50 53 | 97.05 36 | 98.21 49 | 99.28 19 | 98.67 27 | 97.38 21 | 97.31 35 | 90.36 69 | 89.19 101 | 93.58 70 | 98.19 27 | 98.31 24 | 98.50 7 | 99.51 19 | 99.36 18 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DCV-MVSNet | | | 94.76 74 | 95.12 76 | 94.35 82 | 95.10 97 | 95.81 152 | 96.46 80 | 89.49 109 | 96.33 57 | 90.16 70 | 92.55 68 | 90.26 88 | 95.83 78 | 95.52 121 | 96.03 87 | 99.06 107 | 99.33 21 |
|
ACMM | | 92.75 10 | 94.41 83 | 93.84 99 | 95.09 63 | 96.41 73 | 96.80 118 | 94.88 114 | 93.54 52 | 96.41 56 | 90.16 70 | 92.31 70 | 83.11 138 | 96.32 71 | 96.22 101 | 94.65 125 | 99.22 79 | 97.35 148 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
test_part1 | | | 91.21 126 | 89.47 154 | 93.24 100 | 94.26 118 | 95.45 164 | 95.26 105 | 88.36 122 | 88.49 176 | 90.04 72 | 72.61 190 | 82.82 139 | 93.69 116 | 93.25 162 | 94.62 127 | 97.84 175 | 99.06 60 |
|
UGNet | | | 94.92 66 | 96.63 51 | 92.93 102 | 96.03 77 | 98.63 73 | 94.53 121 | 91.52 82 | 96.23 60 | 90.03 73 | 92.87 65 | 96.10 59 | 86.28 184 | 96.68 80 | 96.60 71 | 99.16 91 | 99.32 23 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
baseline1 | | | 94.59 77 | 94.47 84 | 94.72 74 | 95.16 94 | 97.97 94 | 96.07 89 | 91.94 74 | 94.86 97 | 89.98 74 | 91.60 80 | 85.87 118 | 95.64 81 | 97.07 67 | 96.90 64 | 99.52 14 | 97.06 158 |
|
CostFormer | | | 90.69 132 | 90.48 149 | 90.93 122 | 94.18 119 | 96.08 140 | 94.03 127 | 78.20 192 | 93.47 120 | 89.96 75 | 90.97 88 | 80.30 149 | 93.72 114 | 87.66 203 | 88.75 195 | 95.51 197 | 96.12 170 |
|
MVS_111021_HR | | | 97.04 39 | 98.20 26 | 95.69 53 | 98.44 46 | 99.29 18 | 96.59 75 | 93.20 59 | 97.70 22 | 89.94 76 | 98.46 7 | 96.89 47 | 96.71 64 | 98.11 38 | 97.95 29 | 99.27 68 | 99.01 69 |
|
FMVSNet2 | | | 93.30 103 | 93.36 109 | 93.22 101 | 91.34 153 | 95.86 148 | 96.22 83 | 88.24 124 | 95.15 94 | 89.92 77 | 81.64 149 | 89.36 94 | 94.40 102 | 96.77 76 | 96.98 62 | 99.21 82 | 97.79 131 |
|
MVS_0304 | | | 96.31 50 | 96.91 48 | 95.62 54 | 97.21 64 | 99.20 26 | 98.55 31 | 93.10 61 | 97.04 45 | 89.73 78 | 90.30 93 | 96.35 53 | 95.71 79 | 98.14 35 | 97.93 32 | 99.38 50 | 99.40 15 |
|
RPSCF | | | 94.05 87 | 94.00 95 | 94.12 85 | 96.20 75 | 96.41 132 | 96.61 74 | 91.54 81 | 95.83 77 | 89.73 78 | 96.94 30 | 92.80 74 | 95.35 89 | 91.63 186 | 90.44 188 | 95.27 200 | 93.94 191 |
|
EPP-MVSNet | | | 95.27 64 | 96.18 59 | 94.20 84 | 94.88 100 | 98.64 71 | 94.97 110 | 90.70 91 | 95.34 86 | 89.67 80 | 91.66 79 | 93.84 68 | 95.42 88 | 97.32 59 | 97.00 61 | 99.58 6 | 99.47 13 |
|
TAPA-MVS | | 94.18 5 | 96.38 49 | 96.49 54 | 96.25 45 | 98.26 48 | 98.66 68 | 98.00 44 | 94.96 44 | 97.17 39 | 89.48 81 | 92.91 64 | 96.35 53 | 97.53 43 | 96.59 83 | 95.90 92 | 99.28 66 | 97.82 130 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
EIA-MVS | | | 95.50 56 | 96.19 58 | 94.69 75 | 94.83 101 | 98.88 56 | 95.93 93 | 91.50 83 | 94.47 103 | 89.43 82 | 93.14 61 | 92.72 75 | 97.05 56 | 97.82 49 | 97.13 59 | 99.43 42 | 99.15 49 |
|
tpm cat1 | | | 88.90 159 | 87.78 175 | 90.22 132 | 93.88 126 | 95.39 167 | 93.79 130 | 78.11 193 | 92.55 133 | 89.43 82 | 81.31 151 | 79.84 151 | 91.40 140 | 84.95 206 | 86.34 204 | 94.68 207 | 94.09 188 |
|
TSAR-MVS + ACMM | | | 97.71 28 | 98.60 11 | 96.66 41 | 98.64 41 | 99.05 32 | 98.85 25 | 97.23 28 | 98.45 3 | 89.40 84 | 97.51 24 | 99.27 13 | 96.88 60 | 98.53 14 | 97.81 36 | 98.96 117 | 99.59 7 |
|
casdiffmvs | | | 94.38 84 | 94.15 94 | 94.64 77 | 94.70 108 | 98.51 77 | 96.03 91 | 91.66 79 | 95.70 79 | 89.36 85 | 86.48 120 | 85.03 126 | 96.60 68 | 97.40 57 | 97.30 55 | 99.52 14 | 98.67 95 |
|
DI_MVS_plusplus_trai | | | 94.01 88 | 93.63 103 | 94.44 79 | 94.54 111 | 98.26 84 | 97.51 53 | 90.63 92 | 95.88 73 | 89.34 86 | 80.54 156 | 89.36 94 | 95.48 87 | 96.33 97 | 96.27 78 | 99.17 88 | 98.78 93 |
|
baseline | | | 94.83 68 | 95.82 63 | 93.68 91 | 94.75 105 | 97.80 95 | 96.51 78 | 88.53 120 | 97.02 47 | 89.34 86 | 92.93 63 | 92.18 77 | 94.69 95 | 95.78 115 | 96.08 83 | 98.27 165 | 98.97 77 |
|
OpenMVS |  | 92.33 11 | 95.50 56 | 95.22 73 | 95.82 52 | 98.98 31 | 98.97 45 | 97.67 51 | 93.04 64 | 94.64 100 | 89.18 88 | 84.44 136 | 94.79 65 | 96.79 61 | 97.23 61 | 97.61 42 | 99.24 73 | 98.88 84 |
|
ACMP | | 92.88 9 | 94.43 81 | 94.38 86 | 94.50 78 | 96.01 78 | 97.69 97 | 95.85 99 | 92.09 72 | 95.74 78 | 89.12 89 | 95.14 47 | 82.62 142 | 94.77 92 | 95.73 117 | 94.67 124 | 99.14 95 | 99.06 60 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PCF-MVS | | 93.95 6 | 95.65 55 | 95.14 74 | 96.25 45 | 97.73 58 | 98.73 64 | 97.59 52 | 97.13 31 | 92.50 134 | 89.09 90 | 89.85 98 | 96.65 50 | 96.90 59 | 94.97 135 | 94.89 119 | 99.08 102 | 98.38 115 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
diffmvs | | | 94.31 85 | 94.21 89 | 94.42 80 | 94.64 109 | 98.28 82 | 96.36 82 | 91.56 80 | 96.77 49 | 88.89 91 | 88.97 102 | 84.23 130 | 96.01 77 | 96.05 107 | 96.41 74 | 99.05 111 | 98.79 92 |
|
CS-MVS-test | | | 95.94 54 | 97.30 38 | 94.36 81 | 94.44 114 | 98.51 77 | 96.65 72 | 88.71 116 | 97.06 44 | 88.76 92 | 94.68 53 | 95.44 63 | 98.01 35 | 98.29 25 | 97.55 45 | 99.56 10 | 99.54 9 |
|
thres100view900 | | | 93.55 99 | 92.47 122 | 94.81 72 | 95.33 87 | 98.74 62 | 96.78 68 | 92.30 70 | 92.63 130 | 88.29 93 | 87.21 112 | 78.01 159 | 96.78 62 | 96.38 93 | 95.92 90 | 99.38 50 | 98.40 113 |
|
tfpn200view9 | | | 93.64 95 | 92.57 115 | 94.89 68 | 95.33 87 | 98.94 47 | 96.82 65 | 92.31 67 | 92.63 130 | 88.29 93 | 87.21 112 | 78.01 159 | 97.12 54 | 96.82 72 | 95.85 94 | 99.45 31 | 98.56 100 |
|
thres200 | | | 93.62 96 | 92.54 116 | 94.88 69 | 95.36 86 | 98.93 49 | 96.75 69 | 92.31 67 | 92.84 127 | 88.28 95 | 86.99 114 | 77.81 161 | 97.13 52 | 96.82 72 | 95.92 90 | 99.45 31 | 98.49 107 |
|
FC-MVSNet-train | | | 93.85 91 | 93.91 96 | 93.78 90 | 94.94 99 | 96.79 121 | 94.29 125 | 91.13 86 | 93.84 114 | 88.26 96 | 90.40 92 | 85.23 123 | 94.65 98 | 96.54 87 | 95.31 108 | 99.38 50 | 99.28 26 |
|
thres400 | | | 93.56 98 | 92.43 123 | 94.87 70 | 95.40 85 | 98.91 52 | 96.70 71 | 92.38 66 | 92.93 126 | 88.19 97 | 86.69 117 | 77.35 162 | 97.13 52 | 96.75 77 | 95.85 94 | 99.42 43 | 98.56 100 |
|
thres600view7 | | | 93.49 100 | 92.37 126 | 94.79 73 | 95.42 84 | 98.93 49 | 96.58 76 | 92.31 67 | 93.04 124 | 87.88 98 | 86.62 118 | 76.94 165 | 97.09 55 | 96.82 72 | 95.63 99 | 99.45 31 | 98.63 97 |
|
PMMVS | | | 94.61 76 | 95.56 66 | 93.50 94 | 94.30 117 | 96.74 122 | 94.91 113 | 89.56 108 | 95.58 84 | 87.72 99 | 96.15 35 | 92.86 73 | 96.06 74 | 95.47 123 | 95.02 116 | 98.43 162 | 97.09 154 |
|
FMVSNet1 | | | 91.54 123 | 90.93 144 | 92.26 107 | 90.35 163 | 95.27 171 | 95.22 107 | 87.16 135 | 91.37 151 | 87.62 100 | 75.45 169 | 83.84 133 | 94.43 100 | 96.52 88 | 96.30 75 | 98.82 129 | 97.74 137 |
|
IS_MVSNet | | | 95.28 63 | 96.43 55 | 93.94 86 | 95.30 89 | 99.01 43 | 95.90 94 | 91.12 87 | 94.13 109 | 87.50 101 | 91.23 82 | 94.45 67 | 94.17 105 | 98.45 18 | 98.50 7 | 99.65 2 | 99.23 35 |
|
CDPH-MVS | | | 96.84 44 | 97.49 34 | 96.09 48 | 98.92 34 | 98.85 57 | 98.61 28 | 95.09 42 | 96.00 69 | 87.29 102 | 95.45 45 | 97.42 43 | 97.16 51 | 97.83 47 | 97.94 30 | 99.44 39 | 98.92 79 |
|
ET-MVSNet_ETH3D | | | 93.34 102 | 94.33 88 | 92.18 108 | 83.26 210 | 97.66 98 | 96.72 70 | 89.89 102 | 95.62 82 | 87.17 103 | 96.00 37 | 83.69 135 | 96.99 57 | 93.78 151 | 95.34 107 | 99.06 107 | 98.18 124 |
|
MVS_Test | | | 94.82 69 | 95.66 64 | 93.84 89 | 94.79 102 | 98.35 81 | 96.49 79 | 89.10 114 | 96.12 65 | 87.09 104 | 92.58 67 | 90.61 86 | 96.48 69 | 96.51 91 | 96.89 65 | 99.11 99 | 98.54 102 |
|
thisisatest0530 | | | 94.54 78 | 95.47 68 | 93.46 95 | 94.51 112 | 98.65 70 | 94.66 118 | 90.72 89 | 95.69 81 | 86.90 105 | 93.80 56 | 89.44 93 | 94.74 93 | 96.98 71 | 94.86 120 | 99.19 86 | 98.85 88 |
|
tttt0517 | | | 94.52 79 | 95.44 70 | 93.44 96 | 94.51 112 | 98.68 67 | 94.61 120 | 90.72 89 | 95.61 83 | 86.84 106 | 93.78 57 | 89.26 96 | 94.74 93 | 97.02 70 | 94.86 120 | 99.20 85 | 98.87 86 |
|
baseline2 | | | 93.01 105 | 94.17 92 | 91.64 113 | 92.83 141 | 97.49 101 | 93.40 136 | 87.53 130 | 93.67 116 | 86.07 107 | 91.83 77 | 86.58 110 | 91.36 141 | 96.38 93 | 95.06 114 | 98.67 144 | 98.20 123 |
|
TSAR-MVS + COLMAP | | | 94.79 71 | 94.51 83 | 95.11 62 | 96.50 70 | 97.54 99 | 97.99 45 | 94.54 45 | 97.81 16 | 85.88 108 | 96.73 31 | 81.28 148 | 96.99 57 | 96.29 98 | 95.21 112 | 98.76 139 | 96.73 165 |
|
OPM-MVS | | | 93.61 97 | 92.43 123 | 95.00 65 | 96.94 67 | 97.34 105 | 97.78 48 | 94.23 47 | 89.64 166 | 85.53 109 | 88.70 105 | 82.81 140 | 96.28 72 | 96.28 99 | 95.00 118 | 99.24 73 | 97.22 151 |
|
pmmvs4 | | | 90.55 135 | 89.91 151 | 91.30 119 | 90.26 165 | 94.95 179 | 92.73 147 | 87.94 127 | 93.44 121 | 85.35 110 | 82.28 148 | 76.09 167 | 93.02 126 | 93.56 156 | 92.26 180 | 98.51 156 | 96.77 164 |
|
Vis-MVSNet (Re-imp) | | | 94.46 80 | 96.24 57 | 92.40 105 | 95.23 92 | 98.64 71 | 95.56 102 | 90.99 88 | 94.42 104 | 85.02 111 | 90.88 89 | 94.65 66 | 88.01 174 | 98.17 32 | 98.37 16 | 99.57 8 | 98.53 103 |
|
CDS-MVSNet | | | 92.77 107 | 93.60 104 | 91.80 111 | 92.63 143 | 96.80 118 | 95.24 106 | 89.14 113 | 90.30 163 | 84.58 112 | 86.76 115 | 90.65 85 | 90.42 160 | 95.89 110 | 96.49 72 | 98.79 136 | 98.32 119 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
FMVSNet5 | | | 90.36 137 | 90.93 144 | 89.70 139 | 87.99 198 | 92.25 203 | 92.03 164 | 83.51 174 | 92.20 143 | 84.13 113 | 85.59 128 | 86.48 111 | 92.43 129 | 94.61 137 | 94.52 134 | 98.13 168 | 90.85 204 |
|
GeoE | | | 92.52 111 | 92.64 114 | 92.39 106 | 93.96 123 | 97.76 96 | 96.01 92 | 85.60 153 | 93.23 122 | 83.94 114 | 81.56 150 | 84.80 127 | 95.63 82 | 96.22 101 | 95.83 96 | 99.19 86 | 99.07 59 |
|
COLMAP_ROB |  | 90.49 14 | 93.27 104 | 92.71 113 | 93.93 87 | 97.75 57 | 97.44 103 | 96.07 89 | 93.17 60 | 95.40 85 | 83.86 115 | 83.76 140 | 88.72 101 | 93.87 110 | 94.25 147 | 94.11 142 | 98.87 125 | 95.28 180 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
HQP-MVS | | | 94.43 81 | 94.57 82 | 94.27 83 | 96.41 73 | 97.23 108 | 96.89 62 | 93.98 48 | 95.94 71 | 83.68 116 | 95.01 49 | 84.46 128 | 95.58 84 | 95.47 123 | 94.85 123 | 99.07 104 | 99.00 70 |
|
LS3D | | | 95.46 59 | 95.14 74 | 95.84 51 | 97.91 55 | 98.90 54 | 98.58 30 | 97.79 4 | 97.07 43 | 83.65 117 | 88.71 104 | 88.64 102 | 97.82 37 | 97.49 55 | 97.42 49 | 99.26 72 | 97.72 138 |
|
CHOSEN 1792x2688 | | | 92.66 109 | 92.49 119 | 92.85 103 | 97.13 65 | 98.89 55 | 95.90 94 | 88.50 121 | 95.32 87 | 83.31 118 | 71.99 193 | 88.96 100 | 94.10 107 | 96.69 79 | 96.49 72 | 98.15 167 | 99.10 52 |
|
UA-Net | | | 93.96 89 | 95.95 62 | 91.64 113 | 96.06 76 | 98.59 76 | 95.29 104 | 90.00 99 | 91.06 154 | 82.87 119 | 90.64 90 | 98.06 40 | 86.06 185 | 98.14 35 | 98.20 19 | 99.58 6 | 96.96 159 |
|
IterMVS-LS | | | 92.56 110 | 93.18 110 | 91.84 110 | 93.90 124 | 94.97 178 | 94.99 109 | 86.20 145 | 94.18 108 | 82.68 120 | 85.81 127 | 87.36 109 | 94.43 100 | 95.31 127 | 96.02 88 | 98.87 125 | 98.60 99 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
HyFIR lowres test | | | 92.03 113 | 91.55 138 | 92.58 104 | 97.13 65 | 98.72 65 | 94.65 119 | 86.54 141 | 93.58 119 | 82.56 121 | 67.75 204 | 90.47 87 | 95.67 80 | 95.87 111 | 95.54 102 | 98.91 122 | 98.93 78 |
|
UniMVSNet_ETH3D | | | 88.47 163 | 86.00 193 | 91.35 118 | 91.55 150 | 96.29 135 | 92.53 150 | 88.81 115 | 85.58 197 | 82.33 122 | 67.63 205 | 66.87 206 | 94.04 108 | 91.49 187 | 95.24 110 | 98.84 128 | 98.92 79 |
|
MS-PatchMatch | | | 91.82 117 | 92.51 117 | 91.02 120 | 95.83 80 | 96.88 114 | 95.05 108 | 84.55 170 | 93.85 113 | 82.01 123 | 82.51 147 | 91.71 78 | 90.52 159 | 95.07 133 | 93.03 164 | 98.13 168 | 94.52 182 |
|
MDTV_nov1_ep13 | | | 91.57 122 | 93.18 110 | 89.70 139 | 93.39 132 | 96.97 112 | 93.53 133 | 80.91 187 | 95.70 79 | 81.86 124 | 92.40 69 | 89.93 90 | 93.25 123 | 91.97 183 | 90.80 186 | 95.25 201 | 94.46 184 |
|
EPMVS | | | 90.88 131 | 92.12 129 | 89.44 143 | 94.71 106 | 97.24 107 | 93.55 132 | 76.81 196 | 95.89 72 | 81.77 125 | 91.49 81 | 86.47 112 | 93.87 110 | 90.21 193 | 90.07 190 | 95.92 191 | 93.49 197 |
|
test0.0.03 1 | | | 91.97 114 | 93.91 96 | 89.72 138 | 93.31 134 | 96.40 133 | 91.34 174 | 87.06 136 | 93.86 112 | 81.67 126 | 91.15 85 | 89.16 98 | 86.02 186 | 95.08 132 | 95.09 113 | 98.91 122 | 96.64 168 |
|
TAMVS | | | 90.54 136 | 90.87 146 | 90.16 133 | 91.48 151 | 96.61 126 | 93.26 139 | 86.08 146 | 87.71 183 | 81.66 127 | 83.11 145 | 84.04 131 | 90.42 160 | 94.54 139 | 94.60 128 | 98.04 172 | 95.48 178 |
|
Fast-Effi-MVS+ | | | 91.87 115 | 92.08 130 | 91.62 115 | 92.91 138 | 97.21 109 | 94.93 111 | 84.60 167 | 93.61 117 | 81.49 128 | 83.50 141 | 78.95 153 | 96.62 66 | 96.55 85 | 96.22 80 | 99.16 91 | 98.51 104 |
|
DROMVSNet | | | 91.87 115 | 92.08 130 | 91.62 115 | 92.91 138 | 97.21 109 | 94.93 111 | 84.60 167 | 93.61 117 | 81.49 128 | 83.50 141 | 78.95 153 | 96.62 66 | 96.55 85 | 96.22 80 | 99.16 91 | 98.51 104 |
|
Baseline_NR-MVSNet | | | 89.27 153 | 88.01 169 | 90.73 127 | 89.26 182 | 93.71 198 | 92.71 148 | 89.78 105 | 90.73 157 | 81.28 130 | 73.53 184 | 72.85 181 | 92.30 131 | 92.53 172 | 93.84 151 | 99.07 104 | 98.88 84 |
|
LGP-MVS_train | | | 94.12 86 | 94.62 81 | 93.53 93 | 96.44 72 | 97.54 99 | 97.40 55 | 91.84 76 | 94.66 99 | 81.09 131 | 95.70 42 | 83.36 137 | 95.10 90 | 96.36 96 | 95.71 98 | 99.32 59 | 99.03 66 |
|
UniMVSNet (Re) | | | 90.03 145 | 89.61 153 | 90.51 129 | 89.97 169 | 96.12 139 | 92.32 155 | 89.26 111 | 90.99 155 | 80.95 132 | 78.25 163 | 75.08 172 | 91.14 144 | 93.78 151 | 93.87 149 | 99.41 44 | 99.21 39 |
|
tmp_tt | | | | | 66.88 209 | 86.07 205 | 73.86 216 | 68.22 216 | 33.38 218 | 96.88 48 | 80.67 133 | 88.23 109 | 78.82 155 | 49.78 215 | 82.68 209 | 77.47 211 | 83.19 217 | |
|
Vis-MVSNet |  | | 92.77 107 | 95.00 79 | 90.16 133 | 94.10 121 | 98.79 59 | 94.76 117 | 88.26 123 | 92.37 139 | 79.95 134 | 88.19 110 | 91.58 79 | 84.38 195 | 97.59 53 | 97.58 43 | 99.52 14 | 98.91 82 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
ACMH+ | | 90.88 12 | 91.41 125 | 91.13 141 | 91.74 112 | 95.11 96 | 96.95 113 | 93.13 141 | 89.48 110 | 92.42 136 | 79.93 135 | 85.13 130 | 78.02 158 | 93.82 112 | 93.49 158 | 93.88 148 | 98.94 119 | 97.99 127 |
|
UniMVSNet_NR-MVSNet | | | 90.35 138 | 89.96 150 | 90.80 125 | 89.66 172 | 95.83 151 | 92.48 151 | 90.53 95 | 90.96 156 | 79.57 136 | 79.33 160 | 77.14 163 | 93.21 124 | 92.91 168 | 94.50 136 | 99.37 53 | 99.05 63 |
|
DU-MVS | | | 89.67 148 | 88.84 159 | 90.63 128 | 89.26 182 | 95.61 157 | 92.48 151 | 89.91 100 | 91.22 152 | 79.57 136 | 77.72 164 | 71.18 189 | 93.21 124 | 92.53 172 | 94.57 130 | 99.35 56 | 99.05 63 |
|
Effi-MVS+ | | | 92.93 106 | 93.86 98 | 91.86 109 | 94.07 122 | 98.09 91 | 95.59 101 | 85.98 148 | 94.27 107 | 79.54 138 | 91.12 86 | 81.81 145 | 96.71 64 | 96.67 81 | 96.06 85 | 99.27 68 | 98.98 73 |
|
NR-MVSNet | | | 89.34 151 | 88.66 160 | 90.13 136 | 90.40 161 | 95.61 157 | 93.04 143 | 89.91 100 | 91.22 152 | 78.96 139 | 77.72 164 | 68.90 200 | 89.16 170 | 94.24 148 | 93.95 146 | 99.32 59 | 98.99 71 |
|
ACMH | | 90.77 13 | 91.51 124 | 91.63 137 | 91.38 117 | 95.62 82 | 96.87 116 | 91.76 169 | 89.66 106 | 91.58 149 | 78.67 140 | 86.73 116 | 78.12 157 | 93.77 113 | 94.59 138 | 94.54 133 | 98.78 137 | 98.98 73 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PatchmatchNet |  | | 90.56 134 | 92.49 119 | 88.31 155 | 93.83 127 | 96.86 117 | 92.42 153 | 76.50 198 | 95.96 70 | 78.31 141 | 91.96 74 | 89.66 92 | 93.48 119 | 90.04 195 | 89.20 194 | 95.32 198 | 93.73 195 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
SCA | | | 90.92 130 | 93.04 112 | 88.45 152 | 93.72 129 | 97.33 106 | 92.77 145 | 76.08 201 | 96.02 68 | 78.26 142 | 91.96 74 | 90.86 83 | 93.99 109 | 90.98 190 | 90.04 191 | 95.88 192 | 94.06 190 |
|
pm-mvs1 | | | 89.19 155 | 89.02 158 | 89.38 144 | 90.40 161 | 95.74 155 | 92.05 163 | 88.10 126 | 86.13 193 | 77.70 143 | 73.72 183 | 79.44 152 | 88.97 171 | 95.81 114 | 94.51 135 | 99.08 102 | 97.78 136 |
|
v148 | | | 87.51 177 | 86.79 186 | 88.36 153 | 89.39 179 | 95.21 173 | 89.84 187 | 88.20 125 | 87.61 185 | 77.56 144 | 73.38 186 | 70.32 194 | 86.80 180 | 90.70 191 | 92.31 178 | 98.37 163 | 97.98 129 |
|
ADS-MVSNet | | | 89.80 146 | 91.33 140 | 88.00 164 | 94.43 115 | 96.71 123 | 92.29 157 | 74.95 206 | 96.07 67 | 77.39 145 | 88.67 106 | 86.09 115 | 93.26 122 | 88.44 199 | 89.57 193 | 95.68 194 | 93.81 194 |
|
FC-MVSNet-test | | | 91.63 120 | 93.82 100 | 89.08 146 | 92.02 148 | 96.40 133 | 93.26 139 | 87.26 133 | 93.72 115 | 77.26 146 | 88.61 107 | 89.86 91 | 85.50 188 | 95.72 119 | 95.02 116 | 99.16 91 | 97.44 145 |
|
thisisatest0515 | | | 90.12 143 | 92.06 132 | 87.85 167 | 90.03 167 | 96.17 138 | 87.83 193 | 87.45 131 | 91.71 148 | 77.15 147 | 85.40 129 | 84.01 132 | 85.74 187 | 95.41 125 | 93.30 160 | 98.88 124 | 98.43 109 |
|
TranMVSNet+NR-MVSNet | | | 89.23 154 | 88.48 163 | 90.11 137 | 89.07 188 | 95.25 172 | 92.91 144 | 90.43 96 | 90.31 162 | 77.10 148 | 76.62 167 | 71.57 187 | 91.83 136 | 92.12 178 | 94.59 129 | 99.32 59 | 98.92 79 |
|
tpmrst | | | 88.86 161 | 89.62 152 | 87.97 165 | 94.33 116 | 95.98 142 | 92.62 149 | 76.36 199 | 94.62 101 | 76.94 149 | 85.98 126 | 82.80 141 | 92.80 127 | 86.90 205 | 87.15 201 | 94.77 205 | 93.93 192 |
|
WR-MVS_H | | | 87.93 170 | 87.85 173 | 88.03 163 | 89.62 173 | 95.58 161 | 90.47 183 | 85.55 154 | 87.20 188 | 76.83 150 | 74.42 178 | 72.67 183 | 86.37 183 | 93.22 163 | 93.04 163 | 99.33 57 | 98.83 90 |
|
MIMVSNet | | | 88.99 158 | 91.07 142 | 86.57 184 | 86.78 204 | 95.62 156 | 91.20 177 | 75.40 204 | 90.65 159 | 76.57 151 | 84.05 138 | 82.44 143 | 91.01 147 | 95.84 112 | 95.38 106 | 98.48 158 | 93.50 196 |
|
TinyColmap | | | 89.42 149 | 88.58 161 | 90.40 130 | 93.80 128 | 95.45 164 | 93.96 129 | 86.54 141 | 92.24 142 | 76.49 152 | 80.83 153 | 70.44 192 | 93.37 120 | 94.45 142 | 93.30 160 | 98.26 166 | 93.37 198 |
|
TDRefinement | | | 89.07 157 | 88.15 166 | 90.14 135 | 95.16 94 | 96.88 114 | 95.55 103 | 90.20 97 | 89.68 165 | 76.42 153 | 76.67 166 | 74.30 175 | 84.85 192 | 93.11 164 | 91.91 182 | 98.64 149 | 94.47 183 |
|
tfpnnormal | | | 88.50 162 | 87.01 184 | 90.23 131 | 91.36 152 | 95.78 154 | 92.74 146 | 90.09 98 | 83.65 202 | 76.33 154 | 71.46 196 | 69.58 197 | 91.84 135 | 95.54 120 | 94.02 145 | 99.06 107 | 99.03 66 |
|
USDC | | | 90.69 132 | 90.52 148 | 90.88 123 | 94.17 120 | 96.43 131 | 95.82 100 | 86.76 138 | 93.92 111 | 76.27 155 | 86.49 119 | 74.30 175 | 93.67 117 | 95.04 134 | 93.36 157 | 98.61 150 | 94.13 187 |
|
CP-MVSNet | | | 87.89 173 | 87.27 179 | 88.62 150 | 89.30 180 | 95.06 175 | 90.60 182 | 85.78 150 | 87.43 187 | 75.98 156 | 74.60 175 | 68.14 203 | 90.76 153 | 93.07 166 | 93.60 154 | 99.30 64 | 98.98 73 |
|
RPMNet | | | 90.19 141 | 92.03 133 | 88.05 161 | 93.46 130 | 95.95 145 | 93.41 135 | 74.59 207 | 92.40 137 | 75.91 157 | 84.22 137 | 86.41 113 | 92.49 128 | 94.42 143 | 93.85 150 | 98.44 160 | 96.96 159 |
|
pmmvs-eth3d | | | 84.33 196 | 82.94 201 | 85.96 190 | 84.16 207 | 90.94 206 | 86.55 197 | 83.79 172 | 84.25 200 | 75.85 158 | 70.64 198 | 56.43 216 | 87.44 179 | 92.20 177 | 90.41 189 | 97.97 173 | 95.68 175 |
|
Effi-MVS+-dtu | | | 91.78 118 | 93.59 105 | 89.68 141 | 92.44 145 | 97.11 111 | 94.40 123 | 84.94 163 | 92.43 135 | 75.48 159 | 91.09 87 | 83.75 134 | 93.55 118 | 96.61 82 | 95.47 104 | 97.24 183 | 98.67 95 |
|
pmmvs6 | | | 85.98 190 | 84.89 198 | 87.25 178 | 88.83 193 | 94.35 192 | 89.36 189 | 85.30 159 | 78.51 211 | 75.44 160 | 62.71 210 | 75.41 169 | 87.65 176 | 93.58 155 | 92.40 177 | 96.89 185 | 97.29 150 |
|
TransMVSNet (Re) | | | 87.73 175 | 86.79 186 | 88.83 148 | 90.76 157 | 94.40 191 | 91.33 175 | 89.62 107 | 84.73 199 | 75.41 161 | 72.73 188 | 71.41 188 | 86.80 180 | 94.53 140 | 93.93 147 | 99.06 107 | 95.83 172 |
|
WR-MVS | | | 87.93 170 | 88.09 167 | 87.75 168 | 89.26 182 | 95.28 169 | 90.81 180 | 86.69 139 | 88.90 170 | 75.29 162 | 74.31 179 | 73.72 178 | 85.19 191 | 92.26 175 | 93.32 159 | 99.27 68 | 98.81 91 |
|
CR-MVSNet | | | 90.16 142 | 91.96 134 | 88.06 160 | 93.32 133 | 95.95 145 | 93.36 137 | 75.99 202 | 92.40 137 | 75.19 163 | 83.18 143 | 85.37 120 | 92.05 132 | 95.21 129 | 94.56 131 | 98.47 159 | 97.08 156 |
|
Patchmtry | | | | | | | 95.96 144 | 93.36 137 | 75.99 202 | | 75.19 163 | | | | | | | |
|
PatchT | | | 89.13 156 | 91.71 135 | 86.11 188 | 92.92 137 | 95.59 159 | 83.64 204 | 75.09 205 | 91.87 146 | 75.19 163 | 82.63 146 | 85.06 125 | 92.05 132 | 95.21 129 | 94.56 131 | 97.76 177 | 97.08 156 |
|
test-LLR | | | 91.62 121 | 93.56 106 | 89.35 145 | 93.31 134 | 96.57 127 | 92.02 165 | 87.06 136 | 92.34 140 | 75.05 166 | 90.20 94 | 88.64 102 | 90.93 148 | 96.19 104 | 94.07 143 | 97.75 178 | 96.90 162 |
|
TESTMET0.1,1 | | | 91.07 128 | 93.56 106 | 88.17 156 | 90.43 160 | 96.57 127 | 92.02 165 | 82.83 179 | 92.34 140 | 75.05 166 | 90.20 94 | 88.64 102 | 90.93 148 | 96.19 104 | 94.07 143 | 97.75 178 | 96.90 162 |
|
v8 | | | 88.21 167 | 87.94 172 | 88.51 151 | 89.62 173 | 95.01 177 | 92.31 156 | 84.99 162 | 88.94 169 | 74.70 168 | 75.03 171 | 73.51 179 | 90.67 156 | 92.11 179 | 92.74 172 | 98.80 134 | 98.24 121 |
|
V42 | | | 88.31 165 | 87.95 171 | 88.73 149 | 89.44 177 | 95.34 168 | 92.23 159 | 87.21 134 | 88.83 171 | 74.49 169 | 74.89 173 | 73.43 180 | 90.41 162 | 92.08 181 | 92.77 171 | 98.60 152 | 98.33 117 |
|
test-mter | | | 90.95 129 | 93.54 108 | 87.93 166 | 90.28 164 | 96.80 118 | 91.44 171 | 82.68 180 | 92.15 144 | 74.37 170 | 89.57 100 | 88.23 107 | 90.88 151 | 96.37 95 | 94.31 139 | 97.93 174 | 97.37 147 |
|
PS-CasMVS | | | 87.33 180 | 86.68 189 | 88.10 157 | 89.22 187 | 94.93 180 | 90.35 185 | 85.70 151 | 86.44 192 | 74.01 171 | 73.43 185 | 66.59 209 | 90.04 164 | 92.92 167 | 93.52 155 | 99.28 66 | 98.91 82 |
|
PEN-MVS | | | 87.22 182 | 86.50 191 | 88.07 158 | 88.88 191 | 94.44 190 | 90.99 179 | 86.21 143 | 86.53 191 | 73.66 172 | 74.97 172 | 66.56 210 | 89.42 169 | 91.20 189 | 93.48 156 | 99.24 73 | 98.31 120 |
|
v2v482 | | | 88.25 166 | 87.71 176 | 88.88 147 | 89.23 186 | 95.28 169 | 92.10 161 | 87.89 128 | 88.69 174 | 73.31 173 | 75.32 170 | 71.64 186 | 91.89 134 | 92.10 180 | 92.92 166 | 98.86 127 | 97.99 127 |
|
v10 | | | 88.00 168 | 87.96 170 | 88.05 161 | 89.44 177 | 94.68 185 | 92.36 154 | 83.35 175 | 89.37 168 | 72.96 174 | 73.98 181 | 72.79 182 | 91.35 142 | 93.59 153 | 92.88 167 | 98.81 132 | 98.42 111 |
|
testgi | | | 89.42 149 | 91.50 139 | 87.00 181 | 92.40 146 | 95.59 159 | 89.15 190 | 85.27 160 | 92.78 128 | 72.42 175 | 91.75 78 | 76.00 168 | 84.09 197 | 94.38 144 | 93.82 152 | 98.65 148 | 96.15 169 |
|
DTE-MVSNet | | | 86.67 185 | 86.09 192 | 87.35 177 | 88.45 197 | 94.08 196 | 90.65 181 | 86.05 147 | 86.13 193 | 72.19 176 | 74.58 177 | 66.77 208 | 87.61 177 | 90.31 192 | 93.12 162 | 99.13 96 | 97.62 141 |
|
CANet_DTU | | | 93.92 90 | 96.57 52 | 90.83 124 | 95.63 81 | 98.39 80 | 96.99 60 | 87.38 132 | 96.26 58 | 71.97 177 | 96.31 34 | 93.02 72 | 94.53 99 | 97.38 58 | 96.83 67 | 98.49 157 | 97.79 131 |
|
Fast-Effi-MVS+-dtu | | | 91.19 127 | 93.64 102 | 88.33 154 | 92.19 147 | 96.46 130 | 93.99 128 | 81.52 185 | 92.59 132 | 71.82 178 | 92.17 71 | 85.54 119 | 91.68 138 | 95.73 117 | 94.64 126 | 98.80 134 | 98.34 116 |
|
v1144 | | | 87.92 172 | 87.79 174 | 88.07 158 | 89.27 181 | 95.15 174 | 92.17 160 | 85.62 152 | 88.52 175 | 71.52 179 | 73.80 182 | 72.40 184 | 91.06 146 | 93.54 157 | 92.80 169 | 98.81 132 | 98.33 117 |
|
pmmvs5 | | | 87.83 174 | 88.09 167 | 87.51 176 | 89.59 175 | 95.48 162 | 89.75 188 | 84.73 165 | 86.07 195 | 71.44 180 | 80.57 155 | 70.09 195 | 90.74 155 | 94.47 141 | 92.87 168 | 98.82 129 | 97.10 153 |
|
CMPMVS |  | 65.18 17 | 84.76 194 | 83.10 200 | 86.69 183 | 95.29 90 | 95.05 176 | 88.37 191 | 85.51 155 | 80.27 209 | 71.31 181 | 68.37 202 | 73.85 177 | 85.25 189 | 87.72 201 | 87.75 198 | 94.38 208 | 88.70 208 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
MVS-HIRNet | | | 85.36 192 | 86.89 185 | 83.57 195 | 90.13 166 | 94.51 189 | 83.57 205 | 72.61 209 | 88.27 179 | 71.22 182 | 68.97 200 | 81.81 145 | 88.91 172 | 93.08 165 | 91.94 181 | 94.97 204 | 89.64 207 |
|
v144192 | | | 87.40 179 | 87.20 181 | 87.64 170 | 88.89 190 | 94.88 182 | 91.65 170 | 84.70 166 | 87.80 182 | 71.17 183 | 73.20 187 | 70.91 190 | 90.75 154 | 92.69 170 | 92.49 175 | 98.71 141 | 98.43 109 |
|
PM-MVS | | | 84.72 195 | 84.47 199 | 85.03 191 | 84.67 206 | 91.57 205 | 86.27 198 | 82.31 182 | 87.65 184 | 70.62 184 | 76.54 168 | 56.41 217 | 88.75 173 | 92.59 171 | 89.85 192 | 97.54 181 | 96.66 167 |
|
v1192 | | | 87.51 177 | 87.31 178 | 87.74 169 | 89.04 189 | 94.87 183 | 92.07 162 | 85.03 161 | 88.49 176 | 70.32 185 | 72.65 189 | 70.35 193 | 91.21 143 | 93.59 153 | 92.80 169 | 98.78 137 | 98.42 111 |
|
SixPastTwentyTwo | | | 88.37 164 | 89.47 154 | 87.08 179 | 90.01 168 | 95.93 147 | 87.41 194 | 85.32 157 | 90.26 164 | 70.26 186 | 86.34 124 | 71.95 185 | 90.93 148 | 92.89 169 | 91.72 183 | 98.55 153 | 97.22 151 |
|
v7n | | | 86.43 186 | 86.52 190 | 86.33 186 | 87.91 199 | 94.93 180 | 90.15 186 | 83.05 176 | 86.57 190 | 70.21 187 | 71.48 195 | 66.78 207 | 87.72 175 | 94.19 150 | 92.96 165 | 98.92 121 | 98.76 94 |
|
EPNet_dtu | | | 92.45 112 | 95.02 78 | 89.46 142 | 98.02 53 | 95.47 163 | 94.79 116 | 92.62 65 | 94.97 95 | 70.11 188 | 94.76 52 | 92.61 76 | 84.07 198 | 95.94 109 | 95.56 101 | 97.15 184 | 95.82 173 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
IterMVS-SCA-FT | | | 90.24 139 | 92.48 121 | 87.63 171 | 92.85 140 | 94.30 194 | 93.79 130 | 81.47 186 | 92.66 129 | 69.95 189 | 84.66 134 | 88.38 105 | 89.99 165 | 95.39 126 | 94.34 138 | 97.74 180 | 97.63 140 |
|
IterMVS | | | 90.20 140 | 92.43 123 | 87.61 172 | 92.82 142 | 94.31 193 | 94.11 126 | 81.54 184 | 92.97 125 | 69.90 190 | 84.71 133 | 88.16 108 | 89.96 166 | 95.25 128 | 94.17 141 | 97.31 182 | 97.46 144 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
v1921920 | | | 87.31 181 | 87.13 182 | 87.52 175 | 88.87 192 | 94.72 184 | 91.96 167 | 84.59 169 | 88.28 178 | 69.86 191 | 72.50 191 | 70.03 196 | 91.10 145 | 93.33 160 | 92.61 174 | 98.71 141 | 98.44 108 |
|
EG-PatchMatch MVS | | | 86.68 184 | 87.24 180 | 86.02 189 | 90.58 159 | 96.26 136 | 91.08 178 | 81.59 183 | 84.96 198 | 69.80 192 | 71.35 197 | 75.08 172 | 84.23 196 | 94.24 148 | 93.35 158 | 98.82 129 | 95.46 179 |
|
tpm | | | 87.95 169 | 89.44 156 | 86.21 187 | 92.53 144 | 94.62 188 | 91.40 172 | 76.36 199 | 91.46 150 | 69.80 192 | 87.43 111 | 75.14 170 | 91.55 139 | 89.85 197 | 90.60 187 | 95.61 195 | 96.96 159 |
|
CVMVSNet | | | 89.77 147 | 91.66 136 | 87.56 174 | 93.21 136 | 95.45 164 | 91.94 168 | 89.22 112 | 89.62 167 | 69.34 194 | 83.99 139 | 85.90 117 | 84.81 193 | 94.30 146 | 95.28 109 | 96.85 186 | 97.09 154 |
|
v1240 | | | 86.89 183 | 86.75 188 | 87.06 180 | 88.75 194 | 94.65 187 | 91.30 176 | 84.05 171 | 87.49 186 | 68.94 195 | 71.96 194 | 68.86 201 | 90.65 157 | 93.33 160 | 92.72 173 | 98.67 144 | 98.24 121 |
|
MDTV_nov1_ep13_2view | | | 86.30 187 | 88.27 164 | 84.01 194 | 87.71 201 | 94.67 186 | 88.08 192 | 76.78 197 | 90.59 161 | 68.66 196 | 80.46 157 | 80.12 150 | 87.58 178 | 89.95 196 | 88.20 197 | 95.25 201 | 93.90 193 |
|
anonymousdsp | | | 88.90 159 | 91.00 143 | 86.44 185 | 88.74 195 | 95.97 143 | 90.40 184 | 82.86 178 | 88.77 173 | 67.33 197 | 81.18 152 | 81.44 147 | 90.22 163 | 96.23 100 | 94.27 140 | 99.12 98 | 99.16 48 |
|
N_pmnet | | | 84.80 193 | 85.10 197 | 84.45 193 | 89.25 185 | 92.86 201 | 84.04 203 | 86.21 143 | 88.78 172 | 66.73 198 | 72.41 192 | 74.87 174 | 85.21 190 | 88.32 200 | 86.45 202 | 95.30 199 | 92.04 201 |
|
GA-MVS | | | 89.28 152 | 90.75 147 | 87.57 173 | 91.77 149 | 96.48 129 | 92.29 157 | 87.58 129 | 90.61 160 | 65.77 199 | 84.48 135 | 76.84 166 | 89.46 168 | 95.84 112 | 93.68 153 | 98.52 155 | 97.34 149 |
|
pmnet_mix02 | | | 86.12 189 | 87.12 183 | 84.96 192 | 89.82 170 | 94.12 195 | 84.88 202 | 86.63 140 | 91.78 147 | 65.60 200 | 80.76 154 | 76.98 164 | 86.61 182 | 87.29 204 | 84.80 207 | 96.21 188 | 94.09 188 |
|
ambc | | | | 73.83 209 | | 76.23 214 | 85.13 213 | 82.27 207 | | 84.16 201 | 65.58 201 | 52.82 213 | 23.31 224 | 73.55 207 | 91.41 188 | 85.26 206 | 92.97 210 | 94.70 181 |
|
EU-MVSNet | | | 85.62 191 | 87.65 177 | 83.24 197 | 88.54 196 | 92.77 202 | 87.12 195 | 85.32 157 | 86.71 189 | 64.54 202 | 78.52 162 | 75.11 171 | 78.35 202 | 92.25 176 | 92.28 179 | 95.58 196 | 95.93 171 |
|
DeepMVS_CX |  | | | | | | 86.86 211 | 79.50 210 | 70.43 212 | 90.73 157 | 63.66 203 | 80.36 158 | 60.83 212 | 79.68 201 | 76.23 210 | | 89.46 212 | 86.53 210 |
|
MIMVSNet1 | | | 80.03 202 | 80.93 203 | 78.97 203 | 72.46 216 | 90.73 207 | 80.81 209 | 82.44 181 | 80.39 208 | 63.64 204 | 57.57 211 | 64.93 211 | 76.37 204 | 91.66 185 | 91.55 184 | 98.07 171 | 89.70 206 |
|
RE-MVS-def | | | | | | | | | | | 63.50 205 | | | | | | | |
|
Anonymous20231206 | | | 83.84 197 | 85.19 196 | 82.26 198 | 87.38 202 | 92.87 200 | 85.49 200 | 83.65 173 | 86.07 195 | 63.44 206 | 68.42 201 | 69.01 199 | 75.45 206 | 93.34 159 | 92.44 176 | 98.12 170 | 94.20 186 |
|
test_method | | | 72.96 206 | 78.68 206 | 66.28 210 | 50.17 220 | 64.90 218 | 75.45 214 | 50.90 217 | 87.89 180 | 62.54 207 | 62.98 209 | 68.34 202 | 70.45 208 | 91.90 184 | 82.41 208 | 88.19 214 | 92.35 199 |
|
MDA-MVSNet-bldmvs | | | 80.11 201 | 80.24 204 | 79.94 201 | 77.01 213 | 93.21 199 | 78.86 211 | 85.94 149 | 82.71 206 | 60.86 208 | 79.71 159 | 51.77 219 | 83.71 199 | 75.60 211 | 86.37 203 | 93.28 209 | 92.35 199 |
|
PMVS |  | 63.12 18 | 67.27 208 | 66.39 211 | 68.30 208 | 77.98 212 | 60.24 219 | 59.53 219 | 76.82 195 | 66.65 215 | 60.74 209 | 54.39 212 | 59.82 214 | 51.24 214 | 73.92 214 | 70.52 214 | 83.48 216 | 79.17 214 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
FPMVS | | | 75.84 205 | 74.59 208 | 77.29 206 | 86.92 203 | 83.89 214 | 85.01 201 | 80.05 189 | 82.91 205 | 60.61 210 | 65.25 207 | 60.41 213 | 63.86 211 | 75.60 211 | 73.60 213 | 87.29 215 | 80.47 212 |
|
test20.03 | | | 82.92 199 | 85.52 194 | 79.90 202 | 87.75 200 | 91.84 204 | 82.80 206 | 82.99 177 | 82.65 207 | 60.32 211 | 78.90 161 | 70.50 191 | 67.10 210 | 92.05 182 | 90.89 185 | 98.44 160 | 91.80 202 |
|
LTVRE_ROB | | 87.32 16 | 87.55 176 | 88.25 165 | 86.73 182 | 90.66 158 | 95.80 153 | 93.05 142 | 84.77 164 | 83.35 203 | 60.32 211 | 83.12 144 | 67.39 204 | 93.32 121 | 94.36 145 | 94.86 120 | 98.28 164 | 98.87 86 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
new_pmnet | | | 81.53 200 | 82.68 202 | 80.20 200 | 83.47 209 | 89.47 210 | 82.21 208 | 78.36 190 | 87.86 181 | 60.14 213 | 67.90 203 | 69.43 198 | 82.03 200 | 89.22 198 | 87.47 200 | 94.99 203 | 87.39 209 |
|
new-patchmatchnet | | | 78.49 204 | 78.19 207 | 78.84 204 | 84.13 208 | 90.06 208 | 77.11 213 | 80.39 188 | 79.57 210 | 59.64 214 | 66.01 206 | 55.65 218 | 75.62 205 | 84.55 207 | 80.70 209 | 96.14 190 | 90.77 205 |
|
gm-plane-assit | | | 83.26 198 | 85.29 195 | 80.89 199 | 89.52 176 | 89.89 209 | 70.26 215 | 78.24 191 | 77.11 212 | 58.01 215 | 74.16 180 | 66.90 205 | 90.63 158 | 97.20 62 | 96.05 86 | 98.66 147 | 95.68 175 |
|
pmmvs3 | | | 79.16 203 | 80.12 205 | 78.05 205 | 79.36 211 | 86.59 212 | 78.13 212 | 73.87 208 | 76.42 213 | 57.51 216 | 70.59 199 | 57.02 215 | 84.66 194 | 90.10 194 | 88.32 196 | 94.75 206 | 91.77 203 |
|
Gipuma |  | | 68.35 207 | 66.71 210 | 70.27 207 | 74.16 215 | 68.78 217 | 63.93 218 | 71.77 211 | 83.34 204 | 54.57 217 | 34.37 215 | 31.88 221 | 68.69 209 | 83.30 208 | 85.53 205 | 88.48 213 | 79.78 213 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
gg-mvs-nofinetune | | | 86.17 188 | 88.57 162 | 83.36 196 | 93.44 131 | 98.15 89 | 96.58 76 | 72.05 210 | 74.12 214 | 49.23 218 | 64.81 208 | 90.85 84 | 89.90 167 | 97.83 47 | 96.84 66 | 98.97 116 | 97.41 146 |
|
PMMVS2 | | | 64.36 210 | 65.94 212 | 62.52 211 | 67.37 217 | 77.44 215 | 64.39 217 | 69.32 215 | 61.47 216 | 34.59 219 | 46.09 214 | 41.03 220 | 48.02 217 | 74.56 213 | 78.23 210 | 91.43 211 | 82.76 211 |
|
MVE |  | 50.86 19 | 49.54 213 | 51.43 213 | 47.33 214 | 44.14 221 | 59.20 220 | 36.45 222 | 60.59 216 | 41.47 219 | 31.14 220 | 29.58 216 | 17.06 225 | 48.52 216 | 62.22 215 | 74.63 212 | 63.12 220 | 75.87 215 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 50.67 211 | 47.85 214 | 53.96 212 | 64.13 219 | 50.98 222 | 38.06 220 | 69.51 213 | 51.40 218 | 24.60 221 | 29.46 218 | 24.39 223 | 56.07 213 | 48.17 216 | 59.70 215 | 71.40 218 | 70.84 216 |
|
EMVS | | | 49.98 212 | 46.76 215 | 53.74 213 | 64.96 218 | 51.29 221 | 37.81 221 | 69.35 214 | 51.83 217 | 22.69 222 | 29.57 217 | 25.06 222 | 57.28 212 | 44.81 217 | 56.11 216 | 70.32 219 | 68.64 217 |
|
testmvs | | | 12.09 214 | 16.94 216 | 6.42 216 | 3.15 222 | 6.08 223 | 9.51 224 | 3.84 219 | 21.46 220 | 5.31 223 | 27.49 219 | 6.76 226 | 10.89 218 | 17.06 218 | 15.01 217 | 5.84 221 | 24.75 218 |
|
GG-mvs-BLEND | | | 66.17 209 | 94.91 80 | 32.63 215 | 1.32 223 | 96.64 125 | 91.40 172 | 0.85 221 | 94.39 106 | 2.20 224 | 90.15 96 | 95.70 61 | 2.27 220 | 96.39 92 | 95.44 105 | 97.78 176 | 95.68 175 |
|
test123 | | | 9.58 215 | 13.53 217 | 4.97 217 | 1.31 224 | 5.47 224 | 8.32 225 | 2.95 220 | 18.14 221 | 2.03 225 | 20.82 220 | 2.34 227 | 10.60 219 | 10.00 219 | 14.16 218 | 4.60 222 | 23.77 219 |
|
uanet_test | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
sosnet-low-res | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
sosnet | | | 0.00 216 | 0.00 218 | 0.00 218 | 0.00 225 | 0.00 225 | 0.00 226 | 0.00 222 | 0.00 222 | 0.00 226 | 0.00 221 | 0.00 228 | 0.00 221 | 0.00 220 | 0.00 219 | 0.00 223 | 0.00 220 |
|
9.14 | | | | | | | | | | | | | 99.28 11 | | | | | |
|
SR-MVS | | | | | | 99.45 9 | | | 97.61 15 | | | | 99.20 15 | | | | | |
|
Anonymous202405211 | | | | 92.18 128 | | 95.04 98 | 98.20 86 | 96.14 86 | 91.79 78 | 93.93 110 | | 74.60 175 | 88.38 105 | 96.48 69 | 95.17 131 | 95.82 97 | 99.00 113 | 99.15 49 |
|
our_test_3 | | | | | | 89.78 171 | 93.84 197 | 85.59 199 | | | | | | | | | | |
|
Patchmatch-RL test | | | | | | | | 34.61 223 | | | | | | | | | | |
|
mPP-MVS | | | | | | 99.21 24 | | | | | | | 98.29 38 | | | | | |
|
NP-MVS | | | | | | | | | | 95.32 87 | | | | | | | | |
|