This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS98.86 398.97 298.75 299.43 1399.63 199.25 1297.81 198.62 197.69 197.59 2099.90 198.93 598.99 398.42 1199.37 5299.62 3
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APDe-MVS98.87 298.96 398.77 199.58 299.53 599.44 197.81 198.22 997.33 498.70 499.33 998.86 898.96 598.40 1399.63 399.57 8
SED-MVS98.90 199.07 198.69 399.38 1999.61 299.33 797.80 398.25 797.60 298.87 399.89 298.67 1899.02 298.26 1799.36 5499.61 5
LS3D95.46 5895.14 7395.84 5197.91 5598.90 5598.58 3097.79 497.07 4383.65 11588.71 10388.64 10197.82 3597.49 5497.42 4899.26 7197.72 135
DPE-MVScopyleft98.75 498.91 598.57 499.21 2499.54 499.42 297.78 597.49 3196.84 998.94 199.82 498.59 2198.90 998.22 1899.56 1099.48 11
APD-MVScopyleft98.36 1598.32 2298.41 899.47 699.26 2199.12 1597.77 696.73 4996.12 1797.27 2898.88 2498.46 2598.47 1798.39 1499.52 1499.22 35
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft98.34 1698.47 1498.18 1799.46 899.15 2999.10 1697.69 797.67 2594.93 2797.62 1999.70 698.60 2098.45 1897.46 4699.31 6199.26 29
xxxxxxxxxxxxxcwj97.07 3895.99 6098.33 1099.45 999.05 3298.27 3797.65 897.73 1897.02 798.18 1181.99 14298.11 2998.15 3297.62 3999.45 3099.19 39
SF-MVS98.39 1398.45 1698.33 1099.45 999.05 3298.27 3797.65 897.73 1897.02 798.18 1199.25 1498.11 2998.15 3297.62 3999.45 3099.19 39
MSP-MVS98.73 598.93 498.50 699.44 1299.57 399.36 397.65 898.14 1196.51 1598.49 699.65 798.67 1898.60 1398.42 1199.40 4699.63 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ACMMP_NAP98.20 1898.49 1297.85 2699.50 499.40 999.26 1197.64 1197.47 3392.62 4697.59 2099.09 2198.71 1698.82 1197.86 3399.40 4699.19 39
SMA-MVScopyleft98.66 698.89 698.39 999.60 199.41 899.00 2097.63 1297.78 1795.83 1998.33 1099.83 398.85 1098.93 798.56 699.41 4399.40 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
zzz-MVS98.43 1198.31 2398.57 499.48 599.40 999.32 897.62 1397.70 2296.67 1196.59 3299.09 2198.86 898.65 1297.56 4399.45 3099.17 45
MCST-MVS98.20 1898.36 1898.01 2399.40 1599.05 3299.00 2097.62 1397.59 2993.70 3497.42 2799.30 1098.77 1498.39 2397.48 4599.59 499.31 23
SR-MVS99.45 997.61 1599.20 15
SD-MVS98.52 798.77 898.23 1698.15 5099.26 2198.79 2697.59 1698.52 296.25 1697.99 1599.75 599.01 398.27 2697.97 2799.59 499.63 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS98.47 1098.46 1598.48 799.40 1599.05 3299.02 1997.54 1797.73 1896.65 1297.20 2999.13 1998.85 1098.91 898.10 2299.41 4399.08 54
NCCC98.10 2198.05 3098.17 1999.38 1999.05 3299.00 2097.53 1898.04 1395.12 2594.80 5099.18 1798.58 2298.49 1697.78 3699.39 4898.98 71
HFP-MVS98.48 998.62 1098.32 1299.39 1899.33 1699.27 1097.42 1998.27 695.25 2498.34 998.83 2699.08 198.26 2798.08 2499.48 2299.26 29
MP-MVScopyleft98.09 2298.30 2497.84 2799.34 2199.19 2799.23 1397.40 2097.09 4293.03 4097.58 2298.85 2598.57 2398.44 2097.69 3799.48 2299.23 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS94.87 496.76 4796.50 5297.05 3698.21 4999.28 1998.67 2797.38 2197.31 3590.36 6989.19 10093.58 6998.19 2798.31 2498.50 799.51 1999.36 17
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPR98.40 1298.49 1298.28 1499.41 1499.40 999.36 397.35 2298.30 595.02 2697.79 1798.39 3799.04 298.26 2798.10 2299.50 2199.22 35
CP-MVS98.32 1798.34 2198.29 1399.34 2199.30 1799.15 1497.35 2297.49 3195.58 2297.72 1898.62 3398.82 1298.29 2597.67 3899.51 1999.28 24
AdaColmapbinary97.53 3096.93 4598.24 1599.21 2498.77 6298.47 3497.34 2496.68 5196.52 1495.11 4796.12 5898.72 1597.19 6396.24 7899.17 8698.39 111
SteuartSystems-ACMMP98.38 1498.71 997.99 2499.34 2199.46 799.34 597.33 2597.31 3594.25 3098.06 1399.17 1898.13 2898.98 498.46 999.55 1199.54 9
Skip Steuart: Steuart Systems R&D Blog.
X-MVS97.84 2498.19 2797.42 3199.40 1599.35 1299.06 1797.25 2697.38 3490.85 5796.06 3698.72 2998.53 2498.41 2298.15 2199.46 2699.28 24
DeepC-MVS_fast96.13 198.13 2098.27 2597.97 2599.16 2799.03 3999.05 1897.24 2798.22 994.17 3295.82 3898.07 3998.69 1798.83 1098.80 299.52 1499.10 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + ACMM97.71 2898.60 1196.66 4198.64 4199.05 3298.85 2597.23 2898.45 389.40 8497.51 2499.27 1396.88 5998.53 1497.81 3598.96 11499.59 7
DPM-MVS96.86 4396.82 4896.91 3998.08 5298.20 8598.52 3397.20 2997.24 3891.42 5291.84 7598.45 3597.25 4797.07 6697.40 5098.95 11597.55 139
TSAR-MVS + MP.98.49 898.78 798.15 2098.14 5199.17 2899.34 597.18 3098.44 495.72 2097.84 1699.28 1198.87 799.05 198.05 2599.66 199.60 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PCF-MVS93.95 695.65 5495.14 7396.25 4597.73 5898.73 6597.59 5297.13 3192.50 13189.09 9089.85 9796.65 5096.90 5894.97 13294.89 11699.08 9998.38 112
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
train_agg97.65 2998.06 2997.18 3498.94 3398.91 5398.98 2497.07 3296.71 5090.66 6297.43 2699.08 2398.20 2697.96 4297.14 5799.22 7899.19 39
MSLP-MVS++98.04 2397.93 3298.18 1799.10 2899.09 3198.34 3696.99 3397.54 3096.60 1394.82 4998.45 3598.89 697.46 5598.77 499.17 8699.37 16
CPTT-MVS97.78 2697.54 3398.05 2298.91 3599.05 3299.00 2096.96 3497.14 4095.92 1895.50 4298.78 2898.99 497.20 6196.07 8298.54 15199.04 63
ACMMPcopyleft97.37 3397.48 3597.25 3298.88 3799.28 1998.47 3496.86 3597.04 4492.15 4797.57 2396.05 6097.67 3897.27 5995.99 8799.46 2699.14 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PLCcopyleft94.95 397.37 3396.77 4998.07 2198.97 3298.21 8497.94 4696.85 3697.66 2697.58 393.33 5896.84 4898.01 3497.13 6596.20 8099.09 9898.01 123
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA96.90 4296.28 5597.64 2998.56 4398.63 7496.85 6496.60 3797.73 1897.08 689.78 9896.28 5697.80 3796.73 7796.63 6998.94 11698.14 122
MSDG94.82 6893.73 10096.09 4898.34 4797.43 10297.06 5896.05 3895.84 7590.56 6386.30 12489.10 9895.55 8296.13 10395.61 9799.00 11095.73 171
DeepPCF-MVS95.28 297.00 4098.35 2095.42 5897.30 6298.94 4894.82 11296.03 3998.24 892.11 4895.80 3998.64 3295.51 8398.95 698.66 596.78 18499.20 38
PHI-MVS97.78 2698.44 1797.02 3798.73 3899.25 2398.11 4195.54 4096.66 5292.79 4398.52 599.38 897.50 4297.84 4598.39 1499.45 3099.03 64
CSCG97.44 3297.18 4097.75 2899.47 699.52 698.55 3195.41 4197.69 2495.72 2094.29 5395.53 6298.10 3196.20 10097.38 5199.24 7299.62 3
CDPH-MVS96.84 4497.49 3496.09 4898.92 3498.85 5898.61 2895.09 4296.00 6887.29 10195.45 4497.42 4397.16 5097.83 4697.94 2999.44 3898.92 77
OMC-MVS97.00 4096.92 4697.09 3598.69 3998.66 6997.85 4795.02 4398.09 1294.47 2893.15 5996.90 4697.38 4497.16 6496.82 6799.13 9397.65 136
TAPA-MVS94.18 596.38 4896.49 5396.25 4598.26 4898.66 6998.00 4494.96 4497.17 3989.48 8192.91 6396.35 5397.53 4196.59 8295.90 9099.28 6597.82 127
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TSAR-MVS + COLMAP94.79 7094.51 8295.11 6296.50 7097.54 9797.99 4594.54 4597.81 1685.88 10796.73 3181.28 14696.99 5696.29 9695.21 10998.76 13696.73 162
PGM-MVS97.81 2598.11 2897.46 3099.55 399.34 1599.32 894.51 4696.21 6093.07 3798.05 1497.95 4298.82 1298.22 3097.89 3299.48 2299.09 53
OPM-MVS93.61 9692.43 12195.00 6596.94 6797.34 10397.78 4894.23 4789.64 16385.53 10888.70 10482.81 13896.28 7096.28 9795.00 11599.24 7297.22 148
HQP-MVS94.43 8094.57 8194.27 8296.41 7397.23 10696.89 6293.98 4895.94 7183.68 11495.01 4884.46 12695.58 8195.47 12094.85 12099.07 10199.00 68
MVS_111021_LR97.16 3698.01 3196.16 4798.47 4498.98 4496.94 6193.89 4997.64 2791.44 5198.89 296.41 5297.20 4998.02 4097.29 5699.04 10998.85 86
abl_696.82 4098.60 4298.74 6397.74 4993.73 5096.25 5894.37 2994.55 5298.60 3497.25 4799.27 6798.61 96
EPNet96.27 5196.97 4495.46 5798.47 4498.28 8197.41 5493.67 5195.86 7492.86 4297.51 2493.79 6891.76 13497.03 6897.03 5998.61 14799.28 24
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMM92.75 1094.41 8293.84 9895.09 6396.41 7396.80 11594.88 11193.54 5296.41 5590.16 7092.31 6983.11 13696.32 6996.22 9994.65 12299.22 7897.35 145
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CANet96.84 4497.20 3896.42 4297.92 5499.24 2598.60 2993.51 5397.11 4193.07 3791.16 8297.24 4596.21 7198.24 2998.05 2599.22 7899.35 18
3Dnovator93.79 897.08 3797.20 3896.95 3899.09 2999.03 3998.20 4093.33 5497.99 1493.82 3390.61 9096.80 4997.82 3597.90 4498.78 399.47 2599.26 29
TSAR-MVS + GP.97.45 3198.36 1896.39 4395.56 8398.93 5097.74 4993.31 5597.61 2894.24 3198.44 899.19 1698.03 3397.60 5197.41 4999.44 3899.33 20
DELS-MVS96.06 5396.04 5996.07 5097.77 5699.25 2398.10 4293.26 5694.42 10392.79 4388.52 10793.48 7095.06 8898.51 1598.83 199.45 3099.28 24
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
QAPM96.78 4697.14 4296.36 4499.05 3099.14 3098.02 4393.26 5697.27 3790.84 6091.16 8297.31 4497.64 4097.70 4998.20 1999.33 5699.18 43
3Dnovator+93.91 797.23 3597.22 3797.24 3398.89 3698.85 5898.26 3993.25 5897.99 1495.56 2390.01 9698.03 4198.05 3297.91 4398.43 1099.44 3899.35 18
MVS_111021_HR97.04 3998.20 2695.69 5398.44 4699.29 1896.59 7493.20 5997.70 2289.94 7698.46 796.89 4796.71 6398.11 3797.95 2899.27 6799.01 67
COLMAP_ROBcopyleft90.49 1493.27 10392.71 11293.93 8697.75 5797.44 10196.07 8893.17 6095.40 8483.86 11383.76 13988.72 10093.87 10794.25 14494.11 13998.87 12295.28 177
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MVS_030496.31 4996.91 4795.62 5497.21 6499.20 2698.55 3193.10 6197.04 4489.73 7890.30 9296.35 5395.71 7798.14 3497.93 3199.38 4999.40 14
PVSNet_BlendedMVS95.41 6095.28 7095.57 5597.42 6099.02 4195.89 9493.10 6196.16 6193.12 3591.99 7185.27 12094.66 9398.09 3897.34 5299.24 7299.08 54
PVSNet_Blended95.41 6095.28 7095.57 5597.42 6099.02 4195.89 9493.10 6196.16 6193.12 3591.99 7185.27 12094.66 9398.09 3897.34 5299.24 7299.08 54
OpenMVScopyleft92.33 1195.50 5595.22 7295.82 5298.98 3198.97 4697.67 5193.04 6494.64 9989.18 8884.44 13594.79 6496.79 6097.23 6097.61 4199.24 7298.88 82
EPNet_dtu92.45 11095.02 7789.46 13998.02 5395.47 16094.79 11392.62 6594.97 9470.11 18594.76 5192.61 7584.07 19595.94 10695.56 9897.15 18195.82 170
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres40093.56 9792.43 12194.87 7095.40 8598.91 5396.70 7192.38 6692.93 12388.19 9686.69 11677.35 15997.13 5196.75 7695.85 9299.42 4298.56 98
tfpn200view993.64 9492.57 11394.89 6895.33 8798.94 4896.82 6592.31 6792.63 12788.29 9287.21 11178.01 15697.12 5396.82 7195.85 9299.45 3098.56 98
thres600view793.49 9992.37 12494.79 7395.42 8498.93 5096.58 7592.31 6793.04 12187.88 9786.62 11776.94 16297.09 5496.82 7195.63 9699.45 3098.63 95
thres20093.62 9592.54 11494.88 6995.36 8698.93 5096.75 6992.31 6792.84 12488.28 9486.99 11377.81 15897.13 5196.82 7195.92 8899.45 3098.49 104
thres100view90093.55 9892.47 12094.81 7295.33 8798.74 6396.78 6892.30 7092.63 12788.29 9287.21 11178.01 15696.78 6196.38 9195.92 8899.38 4998.40 110
CLD-MVS94.79 7094.36 8695.30 6095.21 9397.46 10097.23 5692.24 7196.43 5491.77 5092.69 6584.31 12796.06 7295.52 11895.03 11299.31 6199.06 58
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ACMP92.88 994.43 8094.38 8594.50 7896.01 7897.69 9595.85 9792.09 7295.74 7789.12 8995.14 4682.62 14094.77 8995.73 11494.67 12199.14 9299.06 58
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PatchMatch-RL94.69 7494.41 8495.02 6497.63 5998.15 8894.50 11991.99 7395.32 8691.31 5395.47 4383.44 13496.02 7496.56 8395.23 10898.69 14096.67 163
baseline194.59 7694.47 8394.72 7495.16 9497.97 9396.07 8891.94 7494.86 9689.98 7491.60 7985.87 11795.64 7997.07 6696.90 6399.52 1497.06 155
Anonymous2023121193.49 9992.33 12594.84 7194.78 10598.00 9196.11 8691.85 7594.86 9690.91 5674.69 17189.18 9696.73 6294.82 13395.51 10098.67 14199.24 32
LGP-MVS_train94.12 8594.62 8093.53 9296.44 7297.54 9797.40 5591.84 7694.66 9881.09 12895.70 4183.36 13595.10 8796.36 9495.71 9599.32 5899.03 64
PVSNet_Blended_VisFu94.77 7295.54 6693.87 8796.48 7198.97 4694.33 12191.84 7694.93 9590.37 6885.04 13094.99 6390.87 14998.12 3697.30 5499.30 6399.45 13
Anonymous20240521192.18 12695.04 9898.20 8596.14 8591.79 7893.93 10974.60 17288.38 10496.48 6795.17 12895.82 9499.00 11099.15 47
casdiffmvs94.38 8394.15 9394.64 7794.70 10998.51 7796.03 9091.66 7995.70 7889.36 8586.48 11985.03 12596.60 6697.40 5697.30 5499.52 1498.67 93
diffmvs94.31 8494.21 8894.42 8094.64 11098.28 8196.36 8191.56 8096.77 4888.89 9188.97 10184.23 12896.01 7596.05 10496.41 7399.05 10898.79 90
RPSCF94.05 8694.00 9494.12 8496.20 7596.41 12996.61 7391.54 8195.83 7689.73 7896.94 3092.80 7395.35 8691.63 18290.44 18595.27 19793.94 188
UGNet94.92 6596.63 5092.93 10196.03 7798.63 7494.53 11891.52 8296.23 5990.03 7392.87 6496.10 5986.28 18196.68 7996.60 7099.16 8999.32 22
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EIA-MVS95.50 5596.19 5794.69 7594.83 10298.88 5795.93 9191.50 8394.47 10289.43 8293.14 6092.72 7497.05 5597.82 4897.13 5899.43 4199.15 47
ETV-MVS96.31 4997.47 3694.96 6794.79 10398.78 6196.08 8791.41 8496.16 6190.50 6495.76 4096.20 5797.39 4398.42 2197.82 3499.57 899.18 43
IB-MVS89.56 1591.71 11692.50 11690.79 12395.94 7998.44 7887.05 19391.38 8593.15 12092.98 4184.78 13185.14 12378.27 20092.47 17194.44 13499.10 9799.08 54
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
FC-MVSNet-train93.85 9093.91 9593.78 8994.94 10096.79 11894.29 12291.13 8693.84 11388.26 9590.40 9185.23 12294.65 9596.54 8595.31 10599.38 4999.28 24
IS_MVSNet95.28 6296.43 5493.94 8595.30 8999.01 4395.90 9291.12 8794.13 10887.50 10091.23 8194.45 6694.17 10298.45 1898.50 799.65 299.23 33
Vis-MVSNet (Re-imp)94.46 7996.24 5692.40 10495.23 9298.64 7295.56 10090.99 8894.42 10385.02 11090.88 8894.65 6588.01 17198.17 3198.37 1699.57 898.53 101
thisisatest053094.54 7795.47 6793.46 9494.51 11298.65 7194.66 11590.72 8995.69 8086.90 10493.80 5589.44 9294.74 9096.98 7094.86 11799.19 8598.85 86
tttt051794.52 7895.44 6993.44 9594.51 11298.68 6894.61 11790.72 8995.61 8286.84 10593.78 5689.26 9594.74 9097.02 6994.86 11799.20 8498.87 84
EPP-MVSNet95.27 6396.18 5894.20 8394.88 10198.64 7294.97 10890.70 9195.34 8589.67 8091.66 7893.84 6795.42 8597.32 5897.00 6099.58 699.47 12
CS-MVS96.23 5297.15 4195.16 6195.01 9998.98 4497.13 5790.68 9296.00 6891.21 5494.03 5496.48 5197.35 4598.00 4197.43 4799.55 1199.15 47
DI_MVS_plusplus_trai94.01 8793.63 10294.44 7994.54 11198.26 8397.51 5390.63 9395.88 7389.34 8680.54 15389.36 9395.48 8496.33 9596.27 7799.17 8698.78 91
MVSTER94.89 6695.07 7694.68 7694.71 10796.68 12197.00 5990.57 9495.18 9293.05 3995.21 4586.41 11293.72 11197.59 5295.88 9199.00 11098.50 103
UniMVSNet_NR-MVSNet90.35 13589.96 14790.80 12289.66 16995.83 14892.48 14890.53 9590.96 15379.57 13379.33 15777.14 16093.21 12192.91 16594.50 13399.37 5299.05 61
TranMVSNet+NR-MVSNet89.23 15188.48 16090.11 13489.07 18595.25 16992.91 14190.43 9690.31 15977.10 14576.62 16471.57 18491.83 13392.12 17594.59 12699.32 5898.92 77
TDRefinement89.07 15488.15 16390.14 13295.16 9496.88 11195.55 10190.20 9789.68 16276.42 15076.67 16374.30 17284.85 18993.11 16191.91 17998.64 14694.47 180
tfpnnormal88.50 15987.01 18190.23 12891.36 14995.78 15192.74 14390.09 9883.65 19876.33 15171.46 19369.58 19491.84 13295.54 11794.02 14299.06 10499.03 64
UA-Net93.96 8895.95 6191.64 11196.06 7698.59 7695.29 10290.00 9991.06 15182.87 11790.64 8998.06 4086.06 18298.14 3498.20 1999.58 696.96 156
DU-MVS89.67 14588.84 15690.63 12589.26 17995.61 15492.48 14889.91 10091.22 14979.57 13377.72 16171.18 18693.21 12192.53 16994.57 12799.35 5599.05 61
NR-MVSNet89.34 14888.66 15790.13 13390.40 15895.61 15493.04 14089.91 10091.22 14978.96 13677.72 16168.90 19789.16 16794.24 14593.95 14399.32 5898.99 69
ET-MVSNet_ETH3D93.34 10194.33 8792.18 10683.26 20797.66 9696.72 7089.89 10295.62 8187.17 10296.00 3783.69 13396.99 5693.78 14895.34 10499.06 10498.18 121
canonicalmvs95.25 6495.45 6895.00 6595.27 9198.72 6696.89 6289.82 10396.51 5390.84 6093.72 5786.01 11597.66 3995.78 11297.94 2999.54 1399.50 10
MAR-MVS95.50 5595.60 6495.39 5998.67 4098.18 8795.89 9489.81 10494.55 10191.97 4992.99 6190.21 8897.30 4696.79 7497.49 4498.72 13798.99 69
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Baseline_NR-MVSNet89.27 15088.01 16690.73 12489.26 17993.71 19592.71 14589.78 10590.73 15481.28 12773.53 18172.85 17892.30 12892.53 16993.84 14899.07 10198.88 82
ACMH90.77 1391.51 12191.63 13491.38 11495.62 8296.87 11391.76 16689.66 10691.58 14678.67 13786.73 11578.12 15493.77 11094.59 13594.54 13098.78 13498.98 71
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TransMVSNet (Re)87.73 17286.79 18388.83 14590.76 15494.40 18891.33 17289.62 10784.73 19575.41 15872.73 18571.41 18586.80 17794.53 13793.93 14499.06 10495.83 169
PMMVS94.61 7595.56 6593.50 9394.30 11696.74 11994.91 11089.56 10895.58 8387.72 9896.15 3592.86 7296.06 7295.47 12095.02 11398.43 15997.09 151
DCV-MVSNet94.76 7395.12 7594.35 8195.10 9795.81 14996.46 7989.49 10996.33 5690.16 7092.55 6790.26 8795.83 7695.52 11896.03 8599.06 10499.33 20
ACMH+90.88 1291.41 12291.13 13891.74 11095.11 9696.95 11093.13 13889.48 11092.42 13379.93 13285.13 12978.02 15593.82 10993.49 15593.88 14598.94 11697.99 124
UniMVSNet (Re)90.03 14289.61 15090.51 12689.97 16696.12 13692.32 15289.26 11190.99 15280.95 12978.25 16075.08 16991.14 14193.78 14893.87 14699.41 4399.21 37
CVMVSNet89.77 14491.66 13387.56 17193.21 13495.45 16191.94 16589.22 11289.62 16469.34 19183.99 13885.90 11684.81 19094.30 14395.28 10696.85 18397.09 151
CDS-MVSNet92.77 10693.60 10391.80 10992.63 14096.80 11595.24 10489.14 11390.30 16084.58 11186.76 11490.65 8490.42 15795.89 10796.49 7198.79 13398.32 116
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS_Test94.82 6895.66 6393.84 8894.79 10398.35 8096.49 7889.10 11496.12 6487.09 10392.58 6690.61 8596.48 6796.51 8996.89 6499.11 9698.54 100
UniMVSNet_ETH3D88.47 16086.00 19091.35 11591.55 14796.29 13292.53 14788.81 11585.58 19382.33 12067.63 20266.87 20294.04 10591.49 18395.24 10798.84 12598.92 77
GBi-Net93.81 9194.18 8993.38 9691.34 15095.86 14596.22 8288.68 11695.23 8990.40 6586.39 12091.16 7994.40 9996.52 8696.30 7499.21 8197.79 128
test193.81 9194.18 8993.38 9691.34 15095.86 14596.22 8288.68 11695.23 8990.40 6586.39 12091.16 7994.40 9996.52 8696.30 7499.21 8197.79 128
FMVSNet393.79 9394.17 9193.35 9891.21 15395.99 13896.62 7288.68 11695.23 8990.40 6586.39 12091.16 7994.11 10395.96 10596.67 6899.07 10197.79 128
baseline94.83 6795.82 6293.68 9094.75 10697.80 9496.51 7788.53 11997.02 4689.34 8692.93 6292.18 7694.69 9295.78 11296.08 8198.27 16298.97 75
CHOSEN 1792x268892.66 10892.49 11792.85 10297.13 6598.89 5695.90 9288.50 12095.32 8683.31 11671.99 19088.96 9994.10 10496.69 7896.49 7198.15 16499.10 51
test_part191.21 12389.47 15193.24 9994.26 11795.45 16195.26 10388.36 12188.49 17390.04 7272.61 18782.82 13793.69 11393.25 15994.62 12497.84 17299.06 58
Vis-MVSNetpermissive92.77 10695.00 7890.16 13094.10 12098.79 6094.76 11488.26 12292.37 13679.95 13188.19 10991.58 7884.38 19297.59 5297.58 4299.52 1498.91 80
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FMVSNet293.30 10293.36 10893.22 10091.34 15095.86 14596.22 8288.24 12395.15 9389.92 7781.64 14789.36 9394.40 9996.77 7596.98 6199.21 8197.79 128
v14887.51 17486.79 18388.36 15089.39 17695.21 17089.84 18488.20 12487.61 18177.56 14173.38 18370.32 19186.80 17790.70 18792.31 17598.37 16097.98 126
pm-mvs189.19 15289.02 15589.38 14190.40 15895.74 15292.05 16088.10 12586.13 18977.70 14073.72 18079.44 15088.97 16895.81 11194.51 13299.08 9997.78 133
pmmvs490.55 13289.91 14891.30 11690.26 16294.95 17692.73 14487.94 12693.44 11985.35 10982.28 14676.09 16493.02 12393.56 15392.26 17798.51 15396.77 161
v2v48288.25 16387.71 17388.88 14489.23 18395.28 16692.10 15887.89 12788.69 17173.31 17075.32 16771.64 18391.89 13192.10 17792.92 16398.86 12497.99 124
GA-MVS89.28 14990.75 14487.57 17091.77 14696.48 12692.29 15487.58 12890.61 15765.77 19684.48 13476.84 16389.46 16595.84 10993.68 15098.52 15297.34 146
baseline293.01 10494.17 9191.64 11192.83 13897.49 9993.40 13387.53 12993.67 11586.07 10691.83 7686.58 10991.36 13896.38 9195.06 11198.67 14198.20 120
thisisatest051590.12 14092.06 12987.85 16490.03 16496.17 13587.83 19087.45 13091.71 14577.15 14485.40 12884.01 13085.74 18495.41 12293.30 15798.88 12198.43 106
CANet_DTU93.92 8996.57 5190.83 12195.63 8198.39 7996.99 6087.38 13196.26 5771.97 17496.31 3493.02 7194.53 9697.38 5796.83 6698.49 15497.79 128
FC-MVSNet-test91.63 11793.82 9989.08 14392.02 14596.40 13093.26 13687.26 13293.72 11477.26 14388.61 10689.86 9085.50 18595.72 11695.02 11399.16 8997.44 142
V4288.31 16287.95 16888.73 14689.44 17495.34 16592.23 15687.21 13388.83 16874.49 16674.89 17073.43 17790.41 15992.08 17892.77 16898.60 14998.33 114
FMVSNet191.54 12090.93 14192.26 10590.35 16095.27 16895.22 10587.16 13491.37 14887.62 9975.45 16683.84 13194.43 9796.52 8696.30 7498.82 12697.74 134
test-LLR91.62 11893.56 10589.35 14293.31 13296.57 12492.02 16287.06 13592.34 13775.05 16390.20 9388.64 10190.93 14596.19 10194.07 14097.75 17596.90 159
test0.0.03 191.97 11293.91 9589.72 13593.31 13296.40 13091.34 17187.06 13593.86 11181.67 12491.15 8489.16 9786.02 18395.08 12995.09 11098.91 11996.64 165
USDC90.69 12990.52 14590.88 12094.17 11996.43 12895.82 9886.76 13793.92 11076.27 15286.49 11874.30 17293.67 11495.04 13193.36 15498.61 14794.13 184
WR-MVS87.93 16788.09 16487.75 16589.26 17995.28 16690.81 17786.69 13888.90 16775.29 15974.31 17673.72 17585.19 18892.26 17293.32 15699.27 6798.81 89
pmnet_mix0286.12 18687.12 18084.96 18989.82 16794.12 19284.88 19986.63 13991.78 14465.60 19780.76 15176.98 16186.61 17987.29 20084.80 20496.21 18594.09 185
HyFIR lowres test92.03 11191.55 13592.58 10397.13 6598.72 6694.65 11686.54 14093.58 11782.56 11967.75 20190.47 8695.67 7895.87 10895.54 9998.91 11998.93 76
TinyColmap89.42 14688.58 15890.40 12793.80 12695.45 16193.96 12686.54 14092.24 13976.49 14980.83 15070.44 18993.37 11794.45 13993.30 15798.26 16393.37 195
PEN-MVS87.22 17986.50 18888.07 15588.88 18894.44 18790.99 17686.21 14286.53 18773.66 16974.97 16966.56 20689.42 16691.20 18593.48 15399.24 7298.31 117
N_pmnet84.80 19085.10 19484.45 19089.25 18292.86 19884.04 20086.21 14288.78 16966.73 19572.41 18974.87 17185.21 18788.32 19686.45 19995.30 19692.04 197
IterMVS-LS92.56 10993.18 10991.84 10893.90 12294.97 17594.99 10786.20 14494.18 10782.68 11885.81 12687.36 10894.43 9795.31 12496.02 8698.87 12298.60 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TAMVS90.54 13390.87 14390.16 13091.48 14896.61 12393.26 13686.08 14587.71 17981.66 12583.11 14384.04 12990.42 15794.54 13694.60 12598.04 16995.48 175
DTE-MVSNet86.67 18286.09 18987.35 17488.45 19494.08 19390.65 17886.05 14686.13 18972.19 17374.58 17466.77 20487.61 17490.31 18893.12 15999.13 9397.62 138
Effi-MVS+92.93 10593.86 9791.86 10794.07 12198.09 9095.59 9985.98 14794.27 10679.54 13591.12 8581.81 14396.71 6396.67 8096.06 8399.27 6798.98 71
MDA-MVSNet-bldmvs80.11 19880.24 20179.94 19877.01 21093.21 19678.86 20885.94 14882.71 20260.86 20479.71 15651.77 21583.71 19675.60 20786.37 20093.28 20692.35 196
CP-MVSNet87.89 17087.27 17688.62 14789.30 17795.06 17290.60 17985.78 14987.43 18375.98 15374.60 17268.14 19990.76 15093.07 16393.60 15199.30 6398.98 71
PS-CasMVS87.33 17786.68 18688.10 15489.22 18494.93 17790.35 18285.70 15086.44 18874.01 16873.43 18266.59 20590.04 16192.92 16493.52 15299.28 6598.91 80
v114487.92 16987.79 17188.07 15589.27 17895.15 17192.17 15785.62 15188.52 17271.52 17673.80 17972.40 18191.06 14393.54 15492.80 16698.81 12998.33 114
WR-MVS_H87.93 16787.85 17088.03 16089.62 17095.58 15890.47 18085.55 15287.20 18476.83 14774.42 17572.67 18086.37 18093.22 16093.04 16099.33 5698.83 88
CMPMVSbinary65.18 1784.76 19183.10 19786.69 18095.29 9095.05 17388.37 18885.51 15380.27 20571.31 17868.37 19973.85 17485.25 18687.72 19787.75 19594.38 20588.70 204
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CHOSEN 280x42095.46 5897.01 4393.66 9197.28 6397.98 9296.40 8085.39 15496.10 6591.07 5596.53 3396.34 5595.61 8097.65 5096.95 6296.21 18597.49 140
EU-MVSNet85.62 18887.65 17483.24 19488.54 19392.77 19987.12 19285.32 15586.71 18564.54 19978.52 15975.11 16878.35 19992.25 17392.28 17695.58 19395.93 168
SixPastTwentyTwo88.37 16189.47 15187.08 17690.01 16595.93 14487.41 19185.32 15590.26 16170.26 18386.34 12371.95 18290.93 14592.89 16691.72 18098.55 15097.22 148
pmmvs685.98 18784.89 19587.25 17588.83 19094.35 18989.36 18685.30 15778.51 20775.44 15762.71 20675.41 16687.65 17393.58 15292.40 17496.89 18297.29 147
testgi89.42 14691.50 13687.00 17892.40 14395.59 15689.15 18785.27 15892.78 12572.42 17291.75 7776.00 16584.09 19494.38 14193.82 14998.65 14596.15 166
v119287.51 17487.31 17587.74 16689.04 18694.87 18092.07 15985.03 15988.49 17370.32 18272.65 18670.35 19091.21 14093.59 15092.80 16698.78 13498.42 108
v888.21 16487.94 16988.51 14889.62 17095.01 17492.31 15384.99 16088.94 16674.70 16575.03 16873.51 17690.67 15392.11 17692.74 16998.80 13198.24 118
Effi-MVS+-dtu91.78 11593.59 10489.68 13892.44 14297.11 10894.40 12084.94 16192.43 13275.48 15691.09 8683.75 13293.55 11596.61 8195.47 10197.24 18098.67 93
LTVRE_ROB87.32 1687.55 17388.25 16286.73 17990.66 15595.80 15093.05 13984.77 16283.35 19960.32 20783.12 14267.39 20093.32 11894.36 14294.86 11798.28 16198.87 84
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs587.83 17188.09 16487.51 17389.59 17295.48 15989.75 18584.73 16386.07 19171.44 17780.57 15270.09 19290.74 15294.47 13892.87 16598.82 12697.10 150
v14419287.40 17687.20 17887.64 16788.89 18794.88 17991.65 16784.70 16487.80 17871.17 18073.20 18470.91 18790.75 15192.69 16792.49 17298.71 13898.43 106
Fast-Effi-MVS+91.87 11392.08 12891.62 11392.91 13697.21 10794.93 10984.60 16593.61 11681.49 12683.50 14078.95 15196.62 6596.55 8496.22 7999.16 8998.51 102
v192192087.31 17887.13 17987.52 17288.87 18994.72 18191.96 16484.59 16688.28 17569.86 18872.50 18870.03 19391.10 14293.33 15792.61 17198.71 13898.44 105
MS-PatchMatch91.82 11492.51 11591.02 11795.83 8096.88 11195.05 10684.55 16793.85 11282.01 12182.51 14591.71 7790.52 15695.07 13093.03 16198.13 16594.52 179
v124086.89 18086.75 18587.06 17788.75 19194.65 18491.30 17384.05 16887.49 18268.94 19271.96 19168.86 19890.65 15493.33 15792.72 17098.67 14198.24 118
pmmvs-eth3d84.33 19382.94 19885.96 18784.16 20490.94 20386.55 19483.79 16984.25 19675.85 15570.64 19556.43 21287.44 17692.20 17490.41 18697.97 17095.68 172
Anonymous2023120683.84 19485.19 19382.26 19587.38 19992.87 19785.49 19783.65 17086.07 19163.44 20368.42 19869.01 19675.45 20393.34 15692.44 17398.12 16794.20 183
FMVSNet590.36 13490.93 14189.70 13687.99 19592.25 20092.03 16183.51 17192.20 14084.13 11285.59 12786.48 11092.43 12694.61 13494.52 13198.13 16590.85 200
v1088.00 16587.96 16788.05 15889.44 17494.68 18292.36 15183.35 17289.37 16572.96 17173.98 17872.79 17991.35 13993.59 15092.88 16498.81 12998.42 108
v7n86.43 18386.52 18786.33 18387.91 19694.93 17790.15 18383.05 17386.57 18670.21 18471.48 19266.78 20387.72 17294.19 14792.96 16298.92 11898.76 92
test20.0382.92 19685.52 19179.90 19987.75 19791.84 20182.80 20382.99 17482.65 20360.32 20778.90 15870.50 18867.10 20692.05 17990.89 18298.44 15791.80 198
anonymousdsp88.90 15691.00 14086.44 18288.74 19295.97 14090.40 18182.86 17588.77 17067.33 19481.18 14981.44 14590.22 16096.23 9894.27 13799.12 9599.16 46
TESTMET0.1,191.07 12593.56 10588.17 15390.43 15796.57 12492.02 16282.83 17692.34 13775.05 16390.20 9388.64 10190.93 14596.19 10194.07 14097.75 17596.90 159
test-mter90.95 12693.54 10787.93 16390.28 16196.80 11591.44 16882.68 17792.15 14174.37 16789.57 9988.23 10690.88 14896.37 9394.31 13697.93 17197.37 144
MIMVSNet180.03 19980.93 20078.97 20072.46 21390.73 20480.81 20682.44 17880.39 20463.64 20157.57 20764.93 20776.37 20191.66 18191.55 18198.07 16889.70 202
PM-MVS84.72 19284.47 19685.03 18884.67 20391.57 20286.27 19582.31 17987.65 18070.62 18176.54 16556.41 21388.75 17092.59 16889.85 18997.54 17896.66 164
EG-PatchMatch MVS86.68 18187.24 17786.02 18690.58 15696.26 13391.08 17581.59 18084.96 19469.80 18971.35 19475.08 16984.23 19394.24 14593.35 15598.82 12695.46 176
IterMVS90.20 13792.43 12187.61 16992.82 13994.31 19094.11 12381.54 18192.97 12269.90 18784.71 13288.16 10789.96 16395.25 12594.17 13897.31 17997.46 141
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Fast-Effi-MVS+-dtu91.19 12493.64 10188.33 15192.19 14496.46 12793.99 12581.52 18292.59 12971.82 17592.17 7085.54 11891.68 13595.73 11494.64 12398.80 13198.34 113
IterMVS-SCA-FT90.24 13692.48 11987.63 16892.85 13794.30 19193.79 12781.47 18392.66 12669.95 18684.66 13388.38 10489.99 16295.39 12394.34 13597.74 17797.63 137
MDTV_nov1_ep1391.57 11993.18 10989.70 13693.39 13096.97 10993.53 13080.91 18495.70 7881.86 12292.40 6889.93 8993.25 12091.97 18090.80 18395.25 19894.46 181
new-patchmatchnet78.49 20178.19 20378.84 20184.13 20590.06 20577.11 21080.39 18579.57 20659.64 21066.01 20355.65 21475.62 20284.55 20380.70 20596.14 18790.77 201
FPMVS75.84 20274.59 20477.29 20386.92 20083.89 21185.01 19880.05 18682.91 20160.61 20665.25 20460.41 20963.86 20775.60 20773.60 20987.29 21180.47 208
new_pmnet81.53 19782.68 19980.20 19783.47 20689.47 20782.21 20578.36 18787.86 17760.14 20967.90 20069.43 19582.03 19789.22 19487.47 19794.99 20087.39 205
gm-plane-assit83.26 19585.29 19280.89 19689.52 17389.89 20670.26 21178.24 18877.11 20858.01 21174.16 17766.90 20190.63 15597.20 6196.05 8498.66 14495.68 172
CostFormer90.69 12990.48 14690.93 11994.18 11896.08 13794.03 12478.20 18993.47 11889.96 7590.97 8780.30 14793.72 11187.66 19988.75 19295.51 19496.12 167
tpm cat188.90 15687.78 17290.22 12993.88 12495.39 16493.79 12778.11 19092.55 13089.43 8281.31 14879.84 14991.40 13784.95 20286.34 20194.68 20494.09 185
dps90.11 14189.37 15490.98 11893.89 12396.21 13493.49 13177.61 19191.95 14292.74 4588.85 10278.77 15392.37 12787.71 19887.71 19695.80 19094.38 182
PMVScopyleft63.12 1867.27 20466.39 20768.30 20577.98 20960.24 21559.53 21576.82 19266.65 21160.74 20554.39 20859.82 21051.24 21073.92 21070.52 21083.48 21279.17 210
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EPMVS90.88 12892.12 12789.44 14094.71 10797.24 10593.55 12976.81 19395.89 7281.77 12391.49 8086.47 11193.87 10790.21 18990.07 18795.92 18893.49 194
MDTV_nov1_ep13_2view86.30 18488.27 16184.01 19187.71 19894.67 18388.08 18976.78 19490.59 15868.66 19380.46 15480.12 14887.58 17589.95 19288.20 19495.25 19893.90 190
PatchmatchNetpermissive90.56 13192.49 11788.31 15293.83 12596.86 11492.42 15076.50 19595.96 7078.31 13891.96 7389.66 9193.48 11690.04 19189.20 19195.32 19593.73 192
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst88.86 15889.62 14987.97 16294.33 11595.98 13992.62 14676.36 19694.62 10076.94 14685.98 12582.80 13992.80 12486.90 20187.15 19894.77 20293.93 189
tpm87.95 16689.44 15386.21 18492.53 14194.62 18591.40 16976.36 19691.46 14769.80 18987.43 11075.14 16791.55 13689.85 19390.60 18495.61 19296.96 156
SCA90.92 12793.04 11188.45 14993.72 12797.33 10492.77 14276.08 19896.02 6778.26 13991.96 7390.86 8293.99 10690.98 18690.04 18895.88 18994.06 187
CR-MVSNet90.16 13991.96 13188.06 15793.32 13195.95 14293.36 13475.99 19992.40 13475.19 16083.18 14185.37 11992.05 12995.21 12694.56 12898.47 15697.08 153
Patchmtry95.96 14193.36 13475.99 19975.19 160
MIMVSNet88.99 15591.07 13986.57 18186.78 20195.62 15391.20 17475.40 20190.65 15676.57 14884.05 13782.44 14191.01 14495.84 10995.38 10398.48 15593.50 193
PatchT89.13 15391.71 13286.11 18592.92 13595.59 15683.64 20175.09 20291.87 14375.19 16082.63 14485.06 12492.05 12995.21 12694.56 12897.76 17497.08 153
ADS-MVSNet89.80 14391.33 13788.00 16194.43 11496.71 12092.29 15474.95 20396.07 6677.39 14288.67 10586.09 11493.26 11988.44 19589.57 19095.68 19193.81 191
RPMNet90.19 13892.03 13088.05 15893.46 12895.95 14293.41 13274.59 20492.40 13475.91 15484.22 13686.41 11292.49 12594.42 14093.85 14798.44 15796.96 156
pmmvs379.16 20080.12 20278.05 20279.36 20886.59 20978.13 20973.87 20576.42 20957.51 21270.59 19657.02 21184.66 19190.10 19088.32 19394.75 20391.77 199
MVS-HIRNet85.36 18986.89 18283.57 19290.13 16394.51 18683.57 20272.61 20688.27 17671.22 17968.97 19781.81 14388.91 16993.08 16291.94 17894.97 20189.64 203
gg-mvs-nofinetune86.17 18588.57 15983.36 19393.44 12998.15 8896.58 7572.05 20774.12 21049.23 21464.81 20590.85 8389.90 16497.83 4696.84 6598.97 11397.41 143
Gipumacopyleft68.35 20366.71 20670.27 20474.16 21268.78 21463.93 21471.77 20883.34 20054.57 21334.37 21131.88 21768.69 20583.30 20485.53 20288.48 21079.78 209
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft86.86 20879.50 20770.43 20990.73 15463.66 20080.36 15560.83 20879.68 19876.23 20689.46 20986.53 206
E-PMN50.67 20747.85 21053.96 20864.13 21650.98 21838.06 21669.51 21051.40 21424.60 21729.46 21424.39 21956.07 20948.17 21259.70 21171.40 21470.84 212
EMVS49.98 20846.76 21153.74 20964.96 21551.29 21737.81 21769.35 21151.83 21322.69 21829.57 21325.06 21857.28 20844.81 21356.11 21270.32 21568.64 213
PMMVS264.36 20665.94 20862.52 20767.37 21477.44 21264.39 21369.32 21261.47 21234.59 21546.09 21041.03 21648.02 21374.56 20978.23 20691.43 20882.76 207
MVEpermissive50.86 1949.54 20951.43 20947.33 21044.14 21759.20 21636.45 21860.59 21341.47 21531.14 21629.58 21217.06 22148.52 21262.22 21174.63 20863.12 21675.87 211
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt66.88 20686.07 20273.86 21368.22 21233.38 21496.88 4780.67 13088.23 10878.82 15249.78 21182.68 20577.47 20783.19 213
testmvs12.09 21016.94 2126.42 2123.15 2186.08 2199.51 2203.84 21521.46 2165.31 21927.49 2156.76 22210.89 21417.06 21415.01 2135.84 21724.75 214
test1239.58 21113.53 2134.97 2131.31 2205.47 2208.32 2212.95 21618.14 2172.03 22120.82 2162.34 22310.60 21510.00 21514.16 2144.60 21823.77 215
GG-mvs-BLEND66.17 20594.91 7932.63 2111.32 21996.64 12291.40 1690.85 21794.39 1052.20 22090.15 9595.70 612.27 21696.39 9095.44 10297.78 17395.68 172
uanet_test0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
sosnet-low-res0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
sosnet0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
RE-MVS-def63.50 202
9.1499.28 11
our_test_389.78 16893.84 19485.59 196
ambc73.83 20576.23 21185.13 21082.27 20484.16 19765.58 19852.82 20923.31 22073.55 20491.41 18485.26 20392.97 20794.70 178
MTAPA96.83 1099.12 20
MTMP97.18 598.83 26
Patchmatch-RL test34.61 219
XVS96.60 6899.35 1296.82 6590.85 5798.72 2999.46 26
X-MVStestdata96.60 6899.35 1296.82 6590.85 5798.72 2999.46 26
mPP-MVS99.21 2498.29 38
NP-MVS95.32 86