This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSP-MVS98.86 298.97 198.75 299.43 1399.63 199.25 1197.81 198.62 197.69 197.59 1999.90 198.93 598.99 298.42 1199.37 5299.62 3
APDe-MVS98.87 198.96 298.77 199.58 299.53 499.44 197.81 198.22 897.33 398.70 399.33 898.86 898.96 498.40 1399.63 399.57 7
LS3D95.46 5795.14 7295.84 5097.91 5498.90 5498.58 2997.79 397.07 4283.65 11388.71 10288.64 10097.82 3497.49 5397.42 4799.26 7097.72 134
DPE-MVS98.75 398.91 498.57 399.21 2399.54 399.42 297.78 497.49 3096.84 898.94 199.82 398.59 2098.90 898.22 1799.56 1099.48 10
APD-MVScopyleft98.36 1498.32 2198.41 799.47 699.26 2099.12 1497.77 596.73 4896.12 1697.27 2798.88 2398.46 2498.47 1698.39 1499.52 1499.22 35
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft98.34 1598.47 1398.18 1699.46 899.15 2899.10 1597.69 697.67 2494.93 2697.62 1899.70 598.60 1998.45 1797.46 4599.31 6099.26 29
xxxxxxxxxxxxxcwj97.07 3795.99 5998.33 999.45 999.05 3198.27 3697.65 797.73 1797.02 698.18 1081.99 14098.11 2898.15 3197.62 3899.45 3099.19 39
SF-MVS98.39 1298.45 1598.33 999.45 999.05 3198.27 3697.65 797.73 1797.02 698.18 1099.25 1398.11 2898.15 3197.62 3899.45 3099.19 39
DVP-MVS98.73 498.93 398.50 599.44 1299.57 299.36 397.65 798.14 1096.51 1498.49 599.65 698.67 1898.60 1298.42 1199.40 4699.63 1
ACMMP_NAP98.20 1798.49 1197.85 2599.50 499.40 899.26 1097.64 1097.47 3292.62 4597.59 1999.09 2098.71 1698.82 1097.86 3299.40 4699.19 39
SMA-MVS98.66 598.89 598.39 899.60 199.41 799.00 1997.63 1197.78 1695.83 1898.33 999.83 298.85 1098.93 698.56 699.41 4399.40 13
zzz-MVS98.43 1098.31 2298.57 399.48 599.40 899.32 797.62 1297.70 2196.67 1096.59 3199.09 2098.86 898.65 1197.56 4299.45 3099.17 45
MCST-MVS98.20 1798.36 1798.01 2299.40 1599.05 3199.00 1997.62 1297.59 2893.70 3397.42 2699.30 998.77 1498.39 2297.48 4499.59 499.31 23
SR-MVS99.45 997.61 1499.20 14
SD-MVS98.52 698.77 798.23 1598.15 4999.26 2098.79 2597.59 1598.52 296.25 1597.99 1499.75 499.01 398.27 2597.97 2699.59 499.63 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS98.47 998.46 1498.48 699.40 1599.05 3199.02 1897.54 1697.73 1796.65 1197.20 2899.13 1898.85 1098.91 798.10 2199.41 4399.08 54
NCCC98.10 2098.05 2998.17 1899.38 1999.05 3199.00 1997.53 1798.04 1295.12 2494.80 4999.18 1698.58 2198.49 1597.78 3599.39 4898.98 70
HFP-MVS98.48 898.62 998.32 1199.39 1899.33 1599.27 997.42 1898.27 695.25 2398.34 898.83 2599.08 198.26 2698.08 2399.48 2299.26 29
MP-MVScopyleft98.09 2198.30 2397.84 2699.34 2099.19 2699.23 1297.40 1997.09 4193.03 3997.58 2198.85 2498.57 2298.44 1997.69 3699.48 2299.23 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS94.87 496.76 4696.50 5197.05 3598.21 4899.28 1898.67 2697.38 2097.31 3490.36 6889.19 9993.58 6898.19 2698.31 2398.50 799.51 1999.36 17
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPR98.40 1198.49 1198.28 1399.41 1499.40 899.36 397.35 2198.30 595.02 2597.79 1698.39 3699.04 298.26 2698.10 2199.50 2199.22 35
CP-MVS98.32 1698.34 2098.29 1299.34 2099.30 1699.15 1397.35 2197.49 3095.58 2197.72 1798.62 3298.82 1298.29 2497.67 3799.51 1999.28 24
AdaColmapbinary97.53 2996.93 4498.24 1499.21 2398.77 6198.47 3397.34 2396.68 5096.52 1395.11 4696.12 5798.72 1597.19 6296.24 7799.17 8598.39 110
SteuartSystems-ACMMP98.38 1398.71 897.99 2399.34 2099.46 699.34 597.33 2497.31 3494.25 2998.06 1299.17 1798.13 2798.98 398.46 999.55 1199.54 8
Skip Steuart: Steuart Systems R&D Blog.
X-MVS97.84 2398.19 2697.42 3099.40 1599.35 1199.06 1697.25 2597.38 3390.85 5696.06 3598.72 2898.53 2398.41 2198.15 2099.46 2699.28 24
DeepC-MVS_fast96.13 198.13 1998.27 2497.97 2499.16 2699.03 3899.05 1797.24 2698.22 894.17 3195.82 3798.07 3898.69 1798.83 998.80 299.52 1499.10 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + ACMM97.71 2798.60 1096.66 4098.64 4099.05 3198.85 2497.23 2798.45 389.40 8297.51 2399.27 1296.88 5898.53 1397.81 3498.96 11399.59 6
DPM-MVS96.86 4296.82 4796.91 3898.08 5198.20 8498.52 3297.20 2897.24 3791.42 5191.84 7498.45 3497.25 4697.07 6597.40 4998.95 11497.55 138
TSAR-MVS + MP.98.49 798.78 698.15 1998.14 5099.17 2799.34 597.18 2998.44 495.72 1997.84 1599.28 1098.87 799.05 198.05 2499.66 199.60 5
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PCF-MVS93.95 695.65 5395.14 7296.25 4497.73 5798.73 6497.59 5197.13 3092.50 13089.09 8889.85 9696.65 4996.90 5794.97 13194.89 11599.08 9898.38 111
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
train_agg97.65 2898.06 2897.18 3398.94 3298.91 5298.98 2397.07 3196.71 4990.66 6197.43 2599.08 2298.20 2597.96 4197.14 5699.22 7799.19 39
MSLP-MVS++98.04 2297.93 3198.18 1699.10 2799.09 3098.34 3596.99 3297.54 2996.60 1294.82 4898.45 3498.89 697.46 5498.77 499.17 8599.37 16
CPTT-MVS97.78 2597.54 3298.05 2198.91 3499.05 3199.00 1996.96 3397.14 3995.92 1795.50 4198.78 2798.99 497.20 6096.07 8198.54 15099.04 62
ACMMPcopyleft97.37 3297.48 3497.25 3198.88 3699.28 1898.47 3396.86 3497.04 4392.15 4697.57 2296.05 5997.67 3797.27 5895.99 8699.46 2699.14 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PLCcopyleft94.95 397.37 3296.77 4898.07 2098.97 3198.21 8397.94 4596.85 3597.66 2597.58 293.33 5796.84 4798.01 3397.13 6496.20 7999.09 9798.01 122
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA96.90 4196.28 5497.64 2898.56 4298.63 7396.85 6396.60 3697.73 1797.08 589.78 9796.28 5597.80 3696.73 7696.63 6898.94 11598.14 121
MSDG94.82 6793.73 9996.09 4798.34 4697.43 10197.06 5796.05 3795.84 7490.56 6286.30 12389.10 9795.55 8196.13 10295.61 9699.00 10995.73 170
DeepPCF-MVS95.28 297.00 3998.35 1995.42 5797.30 6198.94 4794.82 11096.03 3898.24 792.11 4795.80 3898.64 3195.51 8298.95 598.66 596.78 18299.20 38
PHI-MVS97.78 2598.44 1697.02 3698.73 3799.25 2298.11 4095.54 3996.66 5192.79 4298.52 499.38 797.50 4197.84 4498.39 1499.45 3099.03 63
CSCG97.44 3197.18 3997.75 2799.47 699.52 598.55 3095.41 4097.69 2395.72 1994.29 5295.53 6198.10 3096.20 9997.38 5099.24 7199.62 3
CDPH-MVS96.84 4397.49 3396.09 4798.92 3398.85 5798.61 2795.09 4196.00 6787.29 9995.45 4397.42 4297.16 4997.83 4597.94 2899.44 3898.92 76
OMC-MVS97.00 3996.92 4597.09 3498.69 3898.66 6897.85 4695.02 4298.09 1194.47 2793.15 5896.90 4597.38 4397.16 6396.82 6699.13 9297.65 135
TAPA-MVS94.18 596.38 4796.49 5296.25 4498.26 4798.66 6898.00 4394.96 4397.17 3889.48 7992.91 6296.35 5297.53 4096.59 8195.90 8999.28 6497.82 126
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TSAR-MVS + COLMAP94.79 6994.51 8195.11 6196.50 6997.54 9697.99 4494.54 4497.81 1585.88 10596.73 3081.28 14496.99 5596.29 9595.21 10898.76 13596.73 161
PGM-MVS97.81 2498.11 2797.46 2999.55 399.34 1499.32 794.51 4596.21 5993.07 3698.05 1397.95 4198.82 1298.22 2997.89 3199.48 2299.09 53
OPM-MVS93.61 9592.43 12095.00 6496.94 6697.34 10297.78 4794.23 4689.64 16185.53 10688.70 10382.81 13696.28 6996.28 9695.00 11499.24 7197.22 147
HQP-MVS94.43 7994.57 8094.27 8196.41 7297.23 10596.89 6193.98 4795.94 7083.68 11295.01 4784.46 12595.58 8095.47 11994.85 11999.07 10099.00 67
MVS_111021_LR97.16 3598.01 3096.16 4698.47 4398.98 4396.94 6093.89 4897.64 2691.44 5098.89 296.41 5197.20 4898.02 3997.29 5599.04 10898.85 85
abl_696.82 3998.60 4198.74 6297.74 4893.73 4996.25 5794.37 2894.55 5198.60 3397.25 4699.27 6698.61 95
EPNet96.27 5096.97 4395.46 5698.47 4398.28 8097.41 5393.67 5095.86 7392.86 4197.51 2393.79 6791.76 13297.03 6797.03 5898.61 14699.28 24
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMM92.75 1094.41 8193.84 9795.09 6296.41 7296.80 11494.88 10993.54 5196.41 5490.16 6992.31 6883.11 13596.32 6896.22 9894.65 12199.22 7797.35 144
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CANet96.84 4397.20 3796.42 4197.92 5399.24 2498.60 2893.51 5297.11 4093.07 3691.16 8197.24 4496.21 7098.24 2898.05 2499.22 7799.35 18
3Dnovator93.79 897.08 3697.20 3796.95 3799.09 2899.03 3898.20 3993.33 5397.99 1393.82 3290.61 8996.80 4897.82 3497.90 4398.78 399.47 2599.26 29
TSAR-MVS + GP.97.45 3098.36 1796.39 4295.56 8298.93 4997.74 4893.31 5497.61 2794.24 3098.44 799.19 1598.03 3297.60 5097.41 4899.44 3899.33 20
DELS-MVS96.06 5296.04 5896.07 4997.77 5599.25 2298.10 4193.26 5594.42 10292.79 4288.52 10693.48 6995.06 8798.51 1498.83 199.45 3099.28 24
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
QAPM96.78 4597.14 4196.36 4399.05 2999.14 2998.02 4293.26 5597.27 3690.84 5991.16 8197.31 4397.64 3997.70 4898.20 1899.33 5599.18 43
3Dnovator+93.91 797.23 3497.22 3697.24 3298.89 3598.85 5798.26 3893.25 5797.99 1395.56 2290.01 9598.03 4098.05 3197.91 4298.43 1099.44 3899.35 18
MVS_111021_HR97.04 3898.20 2595.69 5298.44 4599.29 1796.59 7393.20 5897.70 2189.94 7498.46 696.89 4696.71 6298.11 3697.95 2799.27 6699.01 66
COLMAP_ROBcopyleft90.49 1493.27 10292.71 11193.93 8597.75 5697.44 10096.07 8793.17 5995.40 8383.86 11183.76 13888.72 9993.87 10694.25 14394.11 13798.87 12195.28 176
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MVS_030496.31 4896.91 4695.62 5397.21 6399.20 2598.55 3093.10 6097.04 4389.73 7690.30 9196.35 5295.71 7698.14 3397.93 3099.38 4999.40 13
PVSNet_BlendedMVS95.41 5995.28 6995.57 5497.42 5999.02 4095.89 9393.10 6096.16 6093.12 3491.99 7085.27 11994.66 9298.09 3797.34 5199.24 7199.08 54
PVSNet_Blended95.41 5995.28 6995.57 5497.42 5999.02 4095.89 9393.10 6096.16 6093.12 3491.99 7085.27 11994.66 9298.09 3797.34 5199.24 7199.08 54
OpenMVScopyleft92.33 1195.50 5495.22 7195.82 5198.98 3098.97 4597.67 5093.04 6394.64 9889.18 8684.44 13494.79 6396.79 5997.23 5997.61 4099.24 7198.88 81
EPNet_dtu92.45 10995.02 7689.46 13798.02 5295.47 15994.79 11192.62 6494.97 9370.11 18394.76 5092.61 7484.07 19295.94 10595.56 9797.15 17995.82 169
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres40093.56 9692.43 12094.87 6995.40 8498.91 5296.70 7092.38 6592.93 12288.19 9486.69 11577.35 15797.13 5096.75 7595.85 9199.42 4298.56 97
tfpn200view993.64 9392.57 11294.89 6795.33 8698.94 4796.82 6492.31 6692.63 12688.29 9087.21 11078.01 15497.12 5296.82 7095.85 9199.45 3098.56 97
thres600view793.49 9892.37 12394.79 7295.42 8398.93 4996.58 7492.31 6693.04 12087.88 9586.62 11676.94 15997.09 5396.82 7095.63 9599.45 3098.63 94
thres20093.62 9492.54 11394.88 6895.36 8598.93 4996.75 6892.31 6692.84 12388.28 9286.99 11277.81 15697.13 5096.82 7095.92 8799.45 3098.49 103
thres100view90093.55 9792.47 11994.81 7195.33 8698.74 6296.78 6792.30 6992.63 12688.29 9087.21 11078.01 15496.78 6096.38 9095.92 8799.38 4998.40 109
CLD-MVS94.79 6994.36 8595.30 5995.21 9297.46 9997.23 5592.24 7096.43 5391.77 4992.69 6484.31 12696.06 7195.52 11795.03 11199.31 6099.06 58
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ACMP92.88 994.43 7994.38 8494.50 7796.01 7797.69 9495.85 9692.09 7195.74 7689.12 8795.14 4582.62 13894.77 8895.73 11394.67 12099.14 9199.06 58
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PatchMatch-RL94.69 7394.41 8395.02 6397.63 5898.15 8794.50 11791.99 7295.32 8591.31 5295.47 4283.44 13396.02 7396.56 8295.23 10798.69 13996.67 162
baseline194.59 7594.47 8294.72 7395.16 9397.97 9296.07 8791.94 7394.86 9589.98 7291.60 7885.87 11695.64 7897.07 6596.90 6299.52 1497.06 154
Anonymous2023121193.49 9892.33 12494.84 7094.78 10498.00 9096.11 8591.85 7494.86 9590.91 5574.69 16989.18 9596.73 6194.82 13295.51 9998.67 14099.24 32
LGP-MVS_train94.12 8494.62 7993.53 9196.44 7197.54 9697.40 5491.84 7594.66 9781.09 12695.70 4083.36 13495.10 8696.36 9395.71 9499.32 5799.03 63
PVSNet_Blended_VisFu94.77 7195.54 6593.87 8696.48 7098.97 4594.33 11991.84 7594.93 9490.37 6785.04 12994.99 6290.87 14798.12 3597.30 5399.30 6299.45 12
Anonymous20240521192.18 12595.04 9798.20 8496.14 8491.79 7793.93 10874.60 17088.38 10396.48 6695.17 12795.82 9399.00 10999.15 47
casdiffmvs94.38 8294.15 9294.64 7694.70 10898.51 7696.03 8991.66 7895.70 7789.36 8386.48 11885.03 12496.60 6597.40 5597.30 5399.52 1498.67 92
diffmvs94.31 8394.21 8794.42 7994.64 10998.28 8096.36 8091.56 7996.77 4788.89 8988.97 10084.23 12796.01 7496.05 10396.41 7299.05 10798.79 89
RPSCF94.05 8594.00 9394.12 8396.20 7496.41 12896.61 7291.54 8095.83 7589.73 7696.94 2992.80 7295.35 8591.63 18090.44 18395.27 19493.94 186
UGNet94.92 6496.63 4992.93 9996.03 7698.63 7394.53 11691.52 8196.23 5890.03 7192.87 6396.10 5886.28 17896.68 7896.60 6999.16 8899.32 22
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EIA-MVS95.50 5496.19 5694.69 7494.83 10198.88 5695.93 9091.50 8294.47 10189.43 8093.14 5992.72 7397.05 5497.82 4797.13 5799.43 4199.15 47
ETV-MVS96.31 4897.47 3594.96 6694.79 10298.78 6096.08 8691.41 8396.16 6090.50 6395.76 3996.20 5697.39 4298.42 2097.82 3399.57 899.18 43
IB-MVS89.56 1591.71 11592.50 11590.79 12195.94 7898.44 7787.05 19191.38 8493.15 11992.98 4084.78 13085.14 12278.27 19792.47 16994.44 13299.10 9699.08 54
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
FC-MVSNet-train93.85 8993.91 9493.78 8894.94 9996.79 11794.29 12091.13 8593.84 11288.26 9390.40 9085.23 12194.65 9496.54 8495.31 10499.38 4999.28 24
IS_MVSNet95.28 6196.43 5393.94 8495.30 8899.01 4295.90 9191.12 8694.13 10787.50 9891.23 8094.45 6594.17 10198.45 1798.50 799.65 299.23 33
Vis-MVSNet (Re-imp)94.46 7896.24 5592.40 10295.23 9198.64 7195.56 9990.99 8794.42 10285.02 10890.88 8794.65 6488.01 16998.17 3098.37 1699.57 898.53 100
thisisatest053094.54 7695.47 6693.46 9394.51 11198.65 7094.66 11390.72 8895.69 7986.90 10293.80 5489.44 9194.74 8996.98 6994.86 11699.19 8498.85 85
tttt051794.52 7795.44 6893.44 9494.51 11198.68 6794.61 11590.72 8895.61 8186.84 10393.78 5589.26 9494.74 8997.02 6894.86 11699.20 8398.87 83
EPP-MVSNet95.27 6296.18 5794.20 8294.88 10098.64 7194.97 10690.70 9095.34 8489.67 7891.66 7793.84 6695.42 8497.32 5797.00 5999.58 699.47 11
CS-MVS96.23 5197.15 4095.16 6095.01 9898.98 4397.13 5690.68 9196.00 6791.21 5394.03 5396.48 5097.35 4498.00 4097.43 4699.55 1199.15 47
DI_MVS_plusplus_trai94.01 8693.63 10194.44 7894.54 11098.26 8297.51 5290.63 9295.88 7289.34 8480.54 15189.36 9295.48 8396.33 9496.27 7699.17 8598.78 90
MVSTER94.89 6595.07 7594.68 7594.71 10696.68 12097.00 5890.57 9395.18 9193.05 3895.21 4486.41 11193.72 11097.59 5195.88 9099.00 10998.50 102
UniMVSNet_NR-MVSNet90.35 13389.96 14690.80 12089.66 16695.83 14792.48 14690.53 9490.96 15179.57 13179.33 15577.14 15893.21 11992.91 16394.50 13199.37 5299.05 60
TranMVSNet+NR-MVSNet89.23 14988.48 15890.11 13289.07 18295.25 16792.91 13990.43 9590.31 15777.10 14376.62 16271.57 18191.83 13192.12 17394.59 12499.32 5798.92 76
TDRefinement89.07 15288.15 16190.14 13095.16 9396.88 11095.55 10090.20 9689.68 16076.42 14876.67 16174.30 16984.85 18693.11 15991.91 17798.64 14594.47 179
tfpnnormal88.50 15787.01 17890.23 12691.36 14795.78 15092.74 14190.09 9783.65 19576.33 14971.46 19069.58 19191.84 13095.54 11694.02 14099.06 10399.03 63
UA-Net93.96 8795.95 6091.64 10996.06 7598.59 7595.29 10190.00 9891.06 14982.87 11590.64 8898.06 3986.06 17998.14 3398.20 1899.58 696.96 155
DU-MVS89.67 14388.84 15490.63 12389.26 17695.61 15392.48 14689.91 9991.22 14779.57 13177.72 15971.18 18393.21 11992.53 16794.57 12599.35 5499.05 60
NR-MVSNet89.34 14688.66 15590.13 13190.40 15695.61 15393.04 13889.91 9991.22 14778.96 13477.72 15968.90 19489.16 16594.24 14493.95 14199.32 5798.99 68
ET-MVSNet_ETH3D93.34 10094.33 8692.18 10483.26 20497.66 9596.72 6989.89 10195.62 8087.17 10096.00 3683.69 13296.99 5593.78 14795.34 10399.06 10398.18 120
canonicalmvs95.25 6395.45 6795.00 6495.27 9098.72 6596.89 6189.82 10296.51 5290.84 5993.72 5686.01 11497.66 3895.78 11197.94 2899.54 1399.50 9
MAR-MVS95.50 5495.60 6395.39 5898.67 3998.18 8695.89 9389.81 10394.55 10091.97 4892.99 6090.21 8797.30 4596.79 7397.49 4398.72 13698.99 68
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Baseline_NR-MVSNet89.27 14888.01 16490.73 12289.26 17693.71 19292.71 14389.78 10490.73 15281.28 12573.53 17972.85 17592.30 12692.53 16793.84 14699.07 10098.88 81
ACMH90.77 1391.51 12091.63 13391.38 11295.62 8196.87 11291.76 16489.66 10591.58 14478.67 13586.73 11478.12 15293.77 10994.59 13494.54 12898.78 13398.98 70
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TransMVSNet (Re)87.73 17086.79 18088.83 14390.76 15294.40 18691.33 17089.62 10684.73 19275.41 15672.73 18371.41 18286.80 17594.53 13693.93 14299.06 10395.83 168
PMMVS94.61 7495.56 6493.50 9294.30 11596.74 11894.91 10889.56 10795.58 8287.72 9696.15 3492.86 7196.06 7195.47 11995.02 11298.43 15897.09 150
DCV-MVSNet94.76 7295.12 7494.35 8095.10 9695.81 14896.46 7889.49 10896.33 5590.16 6992.55 6690.26 8695.83 7595.52 11796.03 8499.06 10399.33 20
ACMH+90.88 1291.41 12191.13 13791.74 10895.11 9596.95 10993.13 13689.48 10992.42 13279.93 13085.13 12878.02 15393.82 10893.49 15493.88 14398.94 11597.99 123
UniMVSNet (Re)90.03 14089.61 14990.51 12489.97 16496.12 13592.32 15089.26 11090.99 15080.95 12778.25 15875.08 16691.14 13993.78 14793.87 14499.41 4399.21 37
CVMVSNet89.77 14291.66 13287.56 16993.21 13295.45 16091.94 16389.22 11189.62 16269.34 18983.99 13785.90 11584.81 18794.30 14295.28 10596.85 18197.09 150
CDS-MVSNet92.77 10593.60 10291.80 10792.63 13896.80 11495.24 10289.14 11290.30 15884.58 10986.76 11390.65 8390.42 15595.89 10696.49 7098.79 13298.32 115
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS_Test94.82 6795.66 6293.84 8794.79 10298.35 7996.49 7789.10 11396.12 6387.09 10192.58 6590.61 8496.48 6696.51 8896.89 6399.11 9598.54 99
UniMVSNet_ETH3D88.47 15886.00 18791.35 11391.55 14596.29 13192.53 14588.81 11485.58 19082.33 11867.63 19966.87 19994.04 10491.49 18195.24 10698.84 12498.92 76
GBi-Net93.81 9094.18 8893.38 9591.34 14895.86 14496.22 8188.68 11595.23 8890.40 6486.39 11991.16 7894.40 9896.52 8596.30 7399.21 8097.79 127
test193.81 9094.18 8893.38 9591.34 14895.86 14496.22 8188.68 11595.23 8890.40 6486.39 11991.16 7894.40 9896.52 8596.30 7399.21 8097.79 127
FMVSNet393.79 9294.17 9093.35 9791.21 15195.99 13796.62 7188.68 11595.23 8890.40 6486.39 11991.16 7894.11 10295.96 10496.67 6799.07 10097.79 127
baseline94.83 6695.82 6193.68 8994.75 10597.80 9396.51 7688.53 11897.02 4589.34 8492.93 6192.18 7594.69 9195.78 11196.08 8098.27 16198.97 74
CHOSEN 1792x268892.66 10792.49 11692.85 10097.13 6498.89 5595.90 9188.50 11995.32 8583.31 11471.99 18788.96 9894.10 10396.69 7796.49 7098.15 16399.10 51
Vis-MVSNetpermissive92.77 10595.00 7790.16 12894.10 11898.79 5994.76 11288.26 12092.37 13579.95 12988.19 10891.58 7784.38 18997.59 5197.58 4199.52 1498.91 79
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FMVSNet293.30 10193.36 10793.22 9891.34 14895.86 14496.22 8188.24 12195.15 9289.92 7581.64 14689.36 9294.40 9896.77 7496.98 6099.21 8097.79 127
v14887.51 17286.79 18088.36 14889.39 17395.21 16889.84 18288.20 12287.61 17877.56 13973.38 18170.32 18886.80 17590.70 18592.31 17398.37 15997.98 125
pm-mvs189.19 15089.02 15389.38 13990.40 15695.74 15192.05 15888.10 12386.13 18677.70 13873.72 17879.44 14888.97 16695.81 11094.51 13099.08 9897.78 132
pmmvs490.55 13089.91 14791.30 11490.26 16094.95 17492.73 14287.94 12493.44 11885.35 10782.28 14576.09 16193.02 12193.56 15292.26 17598.51 15296.77 160
v2v48288.25 16187.71 17188.88 14289.23 18095.28 16492.10 15687.89 12588.69 16973.31 16875.32 16571.64 18091.89 12992.10 17592.92 16198.86 12397.99 123
GA-MVS89.28 14790.75 14387.57 16891.77 14496.48 12592.29 15287.58 12690.61 15565.77 19484.48 13376.84 16089.46 16395.84 10893.68 14898.52 15197.34 145
baseline293.01 10394.17 9091.64 10992.83 13697.49 9893.40 13187.53 12793.67 11486.07 10491.83 7586.58 10891.36 13696.38 9095.06 11098.67 14098.20 119
thisisatest051590.12 13892.06 12887.85 16290.03 16296.17 13487.83 18887.45 12891.71 14377.15 14285.40 12784.01 12985.74 18195.41 12193.30 15598.88 12098.43 105
CANet_DTU93.92 8896.57 5090.83 11995.63 8098.39 7896.99 5987.38 12996.26 5671.97 17296.31 3393.02 7094.53 9597.38 5696.83 6598.49 15397.79 127
FC-MVSNet-test91.63 11693.82 9889.08 14192.02 14396.40 12993.26 13487.26 13093.72 11377.26 14188.61 10589.86 8985.50 18295.72 11595.02 11299.16 8897.44 141
V4288.31 16087.95 16688.73 14489.44 17195.34 16392.23 15487.21 13188.83 16674.49 16474.89 16873.43 17490.41 15792.08 17692.77 16698.60 14898.33 113
FMVSNet191.54 11990.93 14092.26 10390.35 15895.27 16695.22 10387.16 13291.37 14687.62 9775.45 16483.84 13094.43 9696.52 8596.30 7398.82 12597.74 133
test-LLR91.62 11793.56 10489.35 14093.31 13096.57 12392.02 16087.06 13392.34 13675.05 16190.20 9288.64 10090.93 14396.19 10094.07 13897.75 17396.90 158
test0.0.03 191.97 11193.91 9489.72 13393.31 13096.40 12991.34 16987.06 13393.86 11081.67 12291.15 8389.16 9686.02 18095.08 12895.09 10998.91 11896.64 164
USDC90.69 12790.52 14490.88 11894.17 11796.43 12795.82 9786.76 13593.92 10976.27 15086.49 11774.30 16993.67 11295.04 13093.36 15298.61 14694.13 183
WR-MVS87.93 16588.09 16287.75 16389.26 17695.28 16490.81 17586.69 13688.90 16575.29 15774.31 17473.72 17285.19 18592.26 17093.32 15499.27 6698.81 88
HyFIR lowres test92.03 11091.55 13492.58 10197.13 6498.72 6594.65 11486.54 13793.58 11682.56 11767.75 19890.47 8595.67 7795.87 10795.54 9898.91 11898.93 75
TinyColmap89.42 14488.58 15690.40 12593.80 12495.45 16093.96 12486.54 13792.24 13876.49 14780.83 14970.44 18693.37 11594.45 13893.30 15598.26 16293.37 193
PEN-MVS87.22 17786.50 18588.07 15388.88 18594.44 18590.99 17486.21 13986.53 18473.66 16774.97 16766.56 20389.42 16491.20 18393.48 15199.24 7198.31 116
N_pmnet84.80 18785.10 19184.45 18789.25 17992.86 19584.04 19786.21 13988.78 16766.73 19372.41 18674.87 16885.21 18488.32 19486.45 19795.30 19392.04 195
IterMVS-LS92.56 10893.18 10891.84 10693.90 12094.97 17394.99 10586.20 14194.18 10682.68 11685.81 12587.36 10794.43 9695.31 12396.02 8598.87 12198.60 96
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TAMVS90.54 13190.87 14290.16 12891.48 14696.61 12293.26 13486.08 14287.71 17681.66 12383.11 14284.04 12890.42 15594.54 13594.60 12398.04 16895.48 174
DTE-MVSNet86.67 18086.09 18687.35 17288.45 19194.08 19090.65 17686.05 14386.13 18672.19 17174.58 17266.77 20187.61 17290.31 18693.12 15799.13 9297.62 137
Effi-MVS+92.93 10493.86 9691.86 10594.07 11998.09 8995.59 9885.98 14494.27 10579.54 13391.12 8481.81 14196.71 6296.67 7996.06 8299.27 6698.98 70
MDA-MVSNet-bldmvs80.11 19580.24 19879.94 19577.01 20793.21 19378.86 20585.94 14582.71 19960.86 20079.71 15451.77 21283.71 19375.60 20486.37 19893.28 20392.35 194
CP-MVSNet87.89 16887.27 17488.62 14589.30 17495.06 17090.60 17785.78 14687.43 18075.98 15174.60 17068.14 19690.76 14893.07 16193.60 14999.30 6298.98 70
PS-CasMVS87.33 17586.68 18388.10 15289.22 18194.93 17590.35 18085.70 14786.44 18574.01 16673.43 18066.59 20290.04 15992.92 16293.52 15099.28 6498.91 79
v114487.92 16787.79 16988.07 15389.27 17595.15 16992.17 15585.62 14888.52 17071.52 17473.80 17772.40 17891.06 14193.54 15392.80 16498.81 12898.33 113
WR-MVS_H87.93 16587.85 16888.03 15889.62 16795.58 15790.47 17885.55 14987.20 18176.83 14574.42 17372.67 17786.37 17793.22 15893.04 15899.33 5598.83 87
CMPMVSbinary65.18 1784.76 18883.10 19486.69 17895.29 8995.05 17188.37 18685.51 15080.27 20271.31 17668.37 19673.85 17185.25 18387.72 19587.75 19394.38 20288.70 202
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CHOSEN 280x42095.46 5797.01 4293.66 9097.28 6297.98 9196.40 7985.39 15196.10 6491.07 5496.53 3296.34 5495.61 7997.65 4996.95 6196.21 18397.49 139
EU-MVSNet85.62 18587.65 17283.24 19188.54 19092.77 19687.12 19085.32 15286.71 18264.54 19678.52 15775.11 16578.35 19692.25 17192.28 17495.58 19095.93 167
SixPastTwentyTwo88.37 15989.47 15087.08 17490.01 16395.93 14387.41 18985.32 15290.26 15970.26 18186.34 12271.95 17990.93 14392.89 16491.72 17898.55 14997.22 147
pmmvs685.98 18484.89 19287.25 17388.83 18794.35 18789.36 18485.30 15478.51 20475.44 15562.71 20375.41 16387.65 17193.58 15192.40 17296.89 18097.29 146
testgi89.42 14491.50 13587.00 17692.40 14195.59 15589.15 18585.27 15592.78 12472.42 17091.75 7676.00 16284.09 19194.38 14093.82 14798.65 14496.15 165
v119287.51 17287.31 17387.74 16489.04 18394.87 17892.07 15785.03 15688.49 17170.32 18072.65 18470.35 18791.21 13893.59 14992.80 16498.78 13398.42 107
v888.21 16287.94 16788.51 14689.62 16795.01 17292.31 15184.99 15788.94 16474.70 16375.03 16673.51 17390.67 15192.11 17492.74 16798.80 13098.24 117
Effi-MVS+-dtu91.78 11493.59 10389.68 13692.44 14097.11 10794.40 11884.94 15892.43 13175.48 15491.09 8583.75 13193.55 11396.61 8095.47 10097.24 17898.67 92
LTVRE_ROB87.32 1687.55 17188.25 16086.73 17790.66 15395.80 14993.05 13784.77 15983.35 19660.32 20383.12 14167.39 19793.32 11694.36 14194.86 11698.28 16098.87 83
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs587.83 16988.09 16287.51 17189.59 16995.48 15889.75 18384.73 16086.07 18871.44 17580.57 15070.09 18990.74 15094.47 13792.87 16398.82 12597.10 149
v14419287.40 17487.20 17687.64 16588.89 18494.88 17791.65 16584.70 16187.80 17571.17 17873.20 18270.91 18490.75 14992.69 16592.49 17098.71 13798.43 105
Fast-Effi-MVS+91.87 11292.08 12791.62 11192.91 13497.21 10694.93 10784.60 16293.61 11581.49 12483.50 13978.95 14996.62 6496.55 8396.22 7899.16 8898.51 101
v192192087.31 17687.13 17787.52 17088.87 18694.72 17991.96 16284.59 16388.28 17269.86 18672.50 18570.03 19091.10 14093.33 15692.61 16998.71 13798.44 104
MS-PatchMatch91.82 11392.51 11491.02 11595.83 7996.88 11095.05 10484.55 16493.85 11182.01 11982.51 14491.71 7690.52 15495.07 12993.03 15998.13 16494.52 178
v124086.89 17886.75 18287.06 17588.75 18894.65 18291.30 17184.05 16587.49 17968.94 19071.96 18868.86 19590.65 15293.33 15692.72 16898.67 14098.24 117
pmmvs-eth3d84.33 19082.94 19585.96 18584.16 20190.94 20086.55 19283.79 16684.25 19375.85 15370.64 19256.43 20987.44 17492.20 17290.41 18497.97 16995.68 171
Anonymous2023120683.84 19185.19 19082.26 19287.38 19692.87 19485.49 19583.65 16786.07 18863.44 19968.42 19569.01 19375.45 20093.34 15592.44 17198.12 16694.20 182
FMVSNet590.36 13290.93 14089.70 13487.99 19292.25 19792.03 15983.51 16892.20 13984.13 11085.59 12686.48 10992.43 12494.61 13394.52 12998.13 16490.85 198
v1088.00 16387.96 16588.05 15689.44 17194.68 18092.36 14983.35 16989.37 16372.96 16973.98 17672.79 17691.35 13793.59 14992.88 16298.81 12898.42 107
v7n86.43 18186.52 18486.33 18187.91 19394.93 17590.15 18183.05 17086.57 18370.21 18271.48 18966.78 20087.72 17094.19 14692.96 16098.92 11798.76 91
test20.0382.92 19385.52 18879.90 19687.75 19491.84 19882.80 20082.99 17182.65 20060.32 20378.90 15670.50 18567.10 20392.05 17790.89 18098.44 15691.80 196
anonymousdsp88.90 15491.00 13986.44 18088.74 18995.97 13990.40 17982.86 17288.77 16867.33 19281.18 14881.44 14390.22 15896.23 9794.27 13599.12 9499.16 46
TESTMET0.1,191.07 12393.56 10488.17 15190.43 15596.57 12392.02 16082.83 17392.34 13675.05 16190.20 9288.64 10090.93 14396.19 10094.07 13897.75 17396.90 158
test-mter90.95 12493.54 10687.93 16190.28 15996.80 11491.44 16682.68 17492.15 14074.37 16589.57 9888.23 10590.88 14696.37 9294.31 13497.93 17097.37 143
MIMVSNet180.03 19680.93 19778.97 19772.46 21090.73 20180.81 20382.44 17580.39 20163.64 19857.57 20464.93 20476.37 19891.66 17991.55 17998.07 16789.70 200
PM-MVS84.72 18984.47 19385.03 18684.67 20091.57 19986.27 19382.31 17687.65 17770.62 17976.54 16356.41 21088.75 16892.59 16689.85 18797.54 17696.66 163
EG-PatchMatch MVS86.68 17987.24 17586.02 18490.58 15496.26 13291.08 17381.59 17784.96 19169.80 18771.35 19175.08 16684.23 19094.24 14493.35 15398.82 12595.46 175
IterMVS90.20 13592.43 12087.61 16792.82 13794.31 18894.11 12181.54 17892.97 12169.90 18584.71 13188.16 10689.96 16195.25 12494.17 13697.31 17797.46 140
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Fast-Effi-MVS+-dtu91.19 12293.64 10088.33 14992.19 14296.46 12693.99 12381.52 17992.59 12871.82 17392.17 6985.54 11791.68 13395.73 11394.64 12298.80 13098.34 112
IterMVS-SCA-FT90.24 13492.48 11887.63 16692.85 13594.30 18993.79 12581.47 18092.66 12569.95 18484.66 13288.38 10389.99 16095.39 12294.34 13397.74 17597.63 136
MDTV_nov1_ep1391.57 11893.18 10889.70 13493.39 12896.97 10893.53 12880.91 18195.70 7781.86 12092.40 6789.93 8893.25 11891.97 17890.80 18195.25 19594.46 180
new-patchmatchnet78.49 19878.19 20078.84 19884.13 20290.06 20277.11 20780.39 18279.57 20359.64 20666.01 20055.65 21175.62 19984.55 20080.70 20296.14 18490.77 199
FPMVS75.84 19974.59 20177.29 20086.92 19783.89 20885.01 19680.05 18382.91 19860.61 20265.25 20160.41 20663.86 20475.60 20473.60 20687.29 20880.47 206
new_pmnet81.53 19482.68 19680.20 19483.47 20389.47 20482.21 20278.36 18487.86 17460.14 20567.90 19769.43 19282.03 19489.22 19287.47 19594.99 19787.39 203
gm-plane-assit83.26 19285.29 18980.89 19389.52 17089.89 20370.26 20878.24 18577.11 20558.01 20774.16 17566.90 19890.63 15397.20 6096.05 8398.66 14395.68 171
CostFormer90.69 12790.48 14590.93 11794.18 11696.08 13694.03 12278.20 18693.47 11789.96 7390.97 8680.30 14593.72 11087.66 19788.75 19095.51 19196.12 166
tpm cat188.90 15487.78 17090.22 12793.88 12295.39 16293.79 12578.11 18792.55 12989.43 8081.31 14779.84 14791.40 13584.95 19986.34 19994.68 20194.09 184
dps90.11 13989.37 15290.98 11693.89 12196.21 13393.49 12977.61 18891.95 14192.74 4488.85 10178.77 15192.37 12587.71 19687.71 19495.80 18794.38 181
PMVScopyleft63.12 1867.27 20166.39 20468.30 20277.98 20660.24 21259.53 21276.82 18966.65 20860.74 20154.39 20559.82 20751.24 20773.92 20770.52 20783.48 20979.17 208
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EPMVS90.88 12692.12 12689.44 13894.71 10697.24 10493.55 12776.81 19095.89 7181.77 12191.49 7986.47 11093.87 10690.21 18790.07 18595.92 18593.49 192
MDTV_nov1_ep13_2view86.30 18288.27 15984.01 18887.71 19594.67 18188.08 18776.78 19190.59 15668.66 19180.46 15280.12 14687.58 17389.95 19088.20 19295.25 19593.90 188
PatchmatchNetpermissive90.56 12992.49 11688.31 15093.83 12396.86 11392.42 14876.50 19295.96 6978.31 13691.96 7289.66 9093.48 11490.04 18989.20 18995.32 19293.73 190
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst88.86 15689.62 14887.97 16094.33 11495.98 13892.62 14476.36 19394.62 9976.94 14485.98 12482.80 13792.80 12286.90 19887.15 19694.77 19993.93 187
tpm87.95 16489.44 15186.21 18292.53 13994.62 18391.40 16776.36 19391.46 14569.80 18787.43 10975.14 16491.55 13489.85 19190.60 18295.61 18996.96 155
SCA90.92 12593.04 11088.45 14793.72 12597.33 10392.77 14076.08 19596.02 6678.26 13791.96 7290.86 8193.99 10590.98 18490.04 18695.88 18694.06 185
CR-MVSNet90.16 13791.96 13088.06 15593.32 12995.95 14193.36 13275.99 19692.40 13375.19 15883.18 14085.37 11892.05 12795.21 12594.56 12698.47 15597.08 152
Patchmtry95.96 14093.36 13275.99 19675.19 158
MIMVSNet88.99 15391.07 13886.57 17986.78 19895.62 15291.20 17275.40 19890.65 15476.57 14684.05 13682.44 13991.01 14295.84 10895.38 10298.48 15493.50 191
PatchT89.13 15191.71 13186.11 18392.92 13395.59 15583.64 19875.09 19991.87 14275.19 15882.63 14385.06 12392.05 12795.21 12594.56 12697.76 17297.08 152
ADS-MVSNet89.80 14191.33 13688.00 15994.43 11396.71 11992.29 15274.95 20096.07 6577.39 14088.67 10486.09 11393.26 11788.44 19389.57 18895.68 18893.81 189
RPMNet90.19 13692.03 12988.05 15693.46 12695.95 14193.41 13074.59 20192.40 13375.91 15284.22 13586.41 11192.49 12394.42 13993.85 14598.44 15696.96 155
pmmvs379.16 19780.12 19978.05 19979.36 20586.59 20678.13 20673.87 20276.42 20657.51 20870.59 19357.02 20884.66 18890.10 18888.32 19194.75 20091.77 197
MVS-HIRNet85.36 18686.89 17983.57 18990.13 16194.51 18483.57 19972.61 20388.27 17371.22 17768.97 19481.81 14188.91 16793.08 16091.94 17694.97 19889.64 201
gg-mvs-nofinetune86.17 18388.57 15783.36 19093.44 12798.15 8796.58 7472.05 20474.12 20749.23 21064.81 20290.85 8289.90 16297.83 4596.84 6498.97 11297.41 142
Gipumacopyleft68.35 20066.71 20370.27 20174.16 20968.78 21163.93 21171.77 20583.34 19754.57 20934.37 20831.88 21468.69 20283.30 20185.53 20088.48 20779.78 207
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft86.86 20579.50 20470.43 20690.73 15263.66 19780.36 15360.83 20579.68 19576.23 20389.46 20686.53 204
E-PMN50.67 20447.85 20753.96 20564.13 21350.98 21538.06 21369.51 20751.40 21124.60 21329.46 21124.39 21656.07 20648.17 20959.70 20871.40 21170.84 210
EMVS49.98 20546.76 20853.74 20664.96 21251.29 21437.81 21469.35 20851.83 21022.69 21429.57 21025.06 21557.28 20544.81 21056.11 20970.32 21268.64 211
PMMVS264.36 20365.94 20562.52 20467.37 21177.44 20964.39 21069.32 20961.47 20934.59 21146.09 20741.03 21348.02 21074.56 20678.23 20391.43 20582.76 205
MVEpermissive50.86 1949.54 20651.43 20647.33 20744.14 21459.20 21336.45 21560.59 21041.47 21231.14 21229.58 20917.06 21848.52 20962.22 20874.63 20563.12 21375.87 209
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt66.88 20386.07 19973.86 21068.22 20933.38 21196.88 4680.67 12888.23 10778.82 15049.78 20882.68 20277.47 20483.19 210
testmvs12.09 20716.94 2096.42 2093.15 2156.08 2169.51 2173.84 21221.46 2135.31 21527.49 2126.76 21910.89 21117.06 21115.01 2105.84 21424.75 212
test1239.58 20813.53 2104.97 2101.31 2175.47 2178.32 2182.95 21318.14 2142.03 21720.82 2132.34 22010.60 21210.00 21214.16 2114.60 21523.77 213
GG-mvs-BLEND66.17 20294.91 7832.63 2081.32 21696.64 12191.40 1670.85 21494.39 1042.20 21690.15 9495.70 602.27 21396.39 8995.44 10197.78 17195.68 171
uanet_test0.00 2090.00 2110.00 2110.00 2180.00 2180.00 2190.00 2150.00 2150.00 2180.00 2140.00 2210.00 2140.00 2130.00 2120.00 2160.00 214
sosnet-low-res0.00 2090.00 2110.00 2110.00 2180.00 2180.00 2190.00 2150.00 2150.00 2180.00 2140.00 2210.00 2140.00 2130.00 2120.00 2160.00 214
sosnet0.00 2090.00 2110.00 2110.00 2180.00 2180.00 2190.00 2150.00 2150.00 2180.00 2140.00 2210.00 2140.00 2130.00 2120.00 2160.00 214
9.1499.28 10
our_test_389.78 16593.84 19185.59 194
test_part199.38 15
ambc73.83 20276.23 20885.13 20782.27 20184.16 19465.58 19552.82 20623.31 21773.55 20191.41 18285.26 20192.97 20494.70 177
MTAPA96.83 999.12 19
MTMP97.18 498.83 25
Patchmatch-RL test34.61 216
XVS96.60 6799.35 1196.82 6490.85 5698.72 2899.46 26
X-MVStestdata96.60 6799.35 1196.82 6490.85 5698.72 2899.46 26
mPP-MVS99.21 2398.29 37
NP-MVS95.32 85