This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LS3D97.79 5998.25 7097.26 5798.40 5999.63 2599.53 1898.63 199.25 4288.13 12396.93 9794.14 11999.19 3899.14 3399.23 1799.69 7999.42 140
DVP-MVS99.45 299.54 699.35 199.72 799.76 199.63 1198.37 299.63 699.03 398.95 3699.98 199.60 799.60 699.05 2499.74 4499.79 38
SED-MVS99.44 399.58 399.28 399.69 899.76 199.62 1498.35 399.51 1699.05 299.60 599.98 199.28 3599.61 598.83 4399.70 7699.77 52
HPM-MVS++copyleft99.10 2199.30 2798.86 2499.69 899.48 5799.59 1698.34 499.26 4096.55 3799.10 2899.96 1299.36 2799.25 2698.37 6999.64 10999.66 102
APDe-MVS99.49 199.64 199.32 299.74 499.74 599.75 198.34 499.56 1098.72 799.57 699.97 799.53 1699.65 299.25 1499.84 599.77 52
DPE-MVS99.39 499.55 599.20 499.63 2199.71 999.66 698.33 699.29 3498.40 1299.64 499.98 199.31 3199.56 998.96 3199.85 399.70 88
APD-MVScopyleft99.25 1299.38 2099.09 1199.69 899.58 4499.56 1798.32 798.85 9097.87 2098.91 3999.92 2899.30 3399.45 1599.38 899.79 2599.58 115
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MSP-MVS99.34 699.52 999.14 899.68 1299.75 499.64 898.31 899.44 2098.10 1499.28 1599.98 199.30 3399.34 2299.05 2499.81 1699.79 38
HFP-MVS99.32 799.53 899.07 1399.69 899.59 4199.63 1198.31 899.56 1097.37 2699.27 1699.97 799.70 399.35 2199.24 1699.71 6799.76 57
MCST-MVS99.11 2099.27 2998.93 2299.67 1399.33 8299.51 2098.31 899.28 3596.57 3699.10 2899.90 3299.71 299.19 3098.35 7099.82 1099.71 86
SD-MVS99.25 1299.50 1198.96 2198.79 5399.55 4899.33 3298.29 1199.75 197.96 1999.15 2299.95 1799.61 699.17 3199.06 2399.81 1699.84 18
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMMP_NAP99.05 2599.45 1398.58 3199.73 599.60 3999.64 898.28 1299.23 4394.57 6099.35 1399.97 799.55 1499.63 398.66 5199.70 7699.74 68
zzz-MVS99.31 899.44 1699.16 699.73 599.65 1799.63 1198.26 1399.27 3798.01 1899.27 1699.97 799.60 799.59 798.58 5699.71 6799.73 72
SR-MVS99.67 1398.25 1499.94 25
ACMMPR99.30 999.54 699.03 1699.66 1699.64 2299.68 498.25 1499.56 1097.12 3099.19 1999.95 1799.72 199.43 1699.25 1499.72 5799.77 52
MP-MVScopyleft99.07 2399.36 2298.74 2899.63 2199.57 4699.66 698.25 1499.00 7695.62 4398.97 3499.94 2599.54 1599.51 1298.79 4799.71 6799.73 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
xxxxxxxxxxxxxcwj98.14 5197.38 10599.03 1699.65 1899.41 6898.87 5498.24 1799.14 5598.73 599.11 2586.38 16198.92 5899.22 2798.84 4199.76 3599.56 121
SF-MVS99.18 1699.32 2699.03 1699.65 1899.41 6898.87 5498.24 1799.14 5598.73 599.11 2599.92 2898.92 5899.22 2798.84 4199.76 3599.56 121
SMA-MVScopyleft99.38 599.60 299.12 999.76 299.62 2999.39 2998.23 1999.52 1598.03 1799.45 1099.98 199.64 599.58 899.30 1199.68 8899.76 57
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNVR-MVS99.23 1499.28 2899.17 599.65 1899.34 7999.46 2498.21 2099.28 3598.47 998.89 4199.94 2599.50 1799.42 1798.61 5499.73 5199.52 128
NCCC99.05 2599.08 3999.02 1999.62 2399.38 7199.43 2898.21 2099.36 2797.66 2397.79 7799.90 3299.45 2299.17 3198.43 6499.77 3399.51 132
CP-MVS99.27 1099.44 1699.08 1299.62 2399.58 4499.53 1898.16 2299.21 4697.79 2199.15 2299.96 1299.59 1099.54 1198.86 3999.78 2899.74 68
AdaColmapbinary99.06 2498.98 4999.15 799.60 2599.30 8599.38 3098.16 2299.02 7498.55 898.71 5099.57 5599.58 1399.09 3597.84 9899.64 10999.36 146
X-MVS98.93 2999.37 2198.42 3299.67 1399.62 2999.60 1598.15 2499.08 6593.81 7898.46 5999.95 1799.59 1099.49 1399.21 1999.68 8899.75 64
DeepC-MVS97.63 498.33 4698.57 6098.04 4298.62 5799.65 1799.45 2598.15 2499.51 1692.80 9595.74 12596.44 8999.46 2199.37 1999.50 299.78 2899.81 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PCF-MVS97.50 698.18 5098.35 6897.99 4398.65 5699.36 7498.94 5198.14 2698.59 11493.62 8296.61 10699.76 4899.03 5297.77 12197.45 11699.57 13898.89 171
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TSAR-MVS + ACMM98.77 3399.45 1397.98 4499.37 3799.46 5999.44 2798.13 2799.65 492.30 10298.91 3999.95 1799.05 5099.42 1798.95 3299.58 13499.82 23
SteuartSystems-ACMMP99.20 1599.51 1098.83 2799.66 1699.66 1599.71 398.12 2899.14 5596.62 3499.16 2199.98 199.12 4599.63 399.19 2099.78 2899.83 22
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + MP.99.27 1099.57 498.92 2398.78 5499.53 5099.72 298.11 2999.73 297.43 2599.15 2299.96 1299.59 1099.73 199.07 2299.88 199.82 23
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPM-MVS98.31 4798.53 6298.05 4198.76 5598.77 11499.13 4098.07 3099.10 6294.27 7196.70 10299.84 4198.70 6897.90 11498.11 8699.40 16599.28 149
MSLP-MVS++99.15 1899.24 3199.04 1599.52 3299.49 5699.09 4498.07 3099.37 2598.47 997.79 7799.89 3499.50 1798.93 4599.45 499.61 11699.76 57
DeepC-MVS_fast98.34 199.17 1799.45 1398.85 2599.55 2999.37 7399.64 898.05 3299.53 1396.58 3598.93 3799.92 2899.49 1999.46 1499.32 1099.80 2499.64 109
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CNLPA99.03 2799.05 4299.01 2099.27 4499.22 9299.03 4897.98 3399.34 2999.00 498.25 6699.71 4999.31 3198.80 5598.82 4599.48 15399.17 156
train_agg98.73 3599.11 3798.28 3699.36 3999.35 7799.48 2397.96 3498.83 9593.86 7798.70 5199.86 3799.44 2399.08 3798.38 6799.61 11699.58 115
PLCcopyleft97.93 299.02 2898.94 5099.11 1099.46 3499.24 9099.06 4697.96 3499.31 3199.16 197.90 7599.79 4599.36 2798.71 6398.12 8599.65 10599.52 128
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MSDG98.27 4898.29 6998.24 3799.20 4599.22 9299.20 3697.82 3699.37 2594.43 6595.90 12197.31 8099.12 4598.76 5998.35 7099.67 9699.14 160
CPTT-MVS99.14 1999.20 3399.06 1499.58 2699.53 5099.45 2597.80 3799.19 4998.32 1398.58 5399.95 1799.60 799.28 2598.20 8199.64 10999.69 92
ACMMPcopyleft98.74 3499.03 4698.40 3399.36 3999.64 2299.20 3697.75 3898.82 9795.24 5098.85 4299.87 3699.17 4298.74 6297.50 11199.71 6799.76 57
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepPCF-MVS97.74 398.34 4599.46 1297.04 6398.82 5299.33 8296.28 13997.47 3999.58 894.70 5998.99 3399.85 4097.24 11399.55 1099.34 997.73 19699.56 121
PHI-MVS99.08 2299.43 1898.67 2999.15 4699.59 4199.11 4297.35 4099.14 5597.30 2799.44 1199.96 1299.32 3098.89 5099.39 799.79 2599.58 115
TAPA-MVS97.53 598.41 4398.84 5597.91 4599.08 4899.33 8299.15 3997.13 4199.34 2993.20 8797.75 7999.19 5999.20 3798.66 6598.13 8499.66 10199.48 136
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OMC-MVS98.84 3299.01 4898.65 3099.39 3699.23 9199.22 3596.70 4299.40 2297.77 2297.89 7699.80 4399.21 3699.02 4098.65 5299.57 13899.07 163
CSCG98.90 3098.93 5198.85 2599.75 399.72 699.49 2196.58 4399.38 2398.05 1698.97 3497.87 7499.49 1997.78 12098.92 3499.78 2899.90 3
TSAR-MVS + COLMAP96.79 8996.55 12897.06 6297.70 7098.46 13899.07 4596.23 4499.38 2391.32 11098.80 4385.61 16798.69 7097.64 13096.92 12899.37 16799.06 164
CDPH-MVS98.41 4399.10 3897.61 5099.32 4399.36 7499.49 2196.15 4598.82 9791.82 10698.41 6099.66 5199.10 4798.93 4598.97 3099.75 3999.58 115
PGM-MVS98.86 3199.35 2598.29 3599.77 199.63 2599.67 595.63 4698.66 11295.27 4999.11 2599.82 4299.67 499.33 2399.19 2099.73 5199.74 68
OPM-MVS96.22 10795.85 14796.65 7697.75 6898.54 13399.00 5095.53 4796.88 17489.88 11795.95 12086.46 16098.07 8997.65 12996.63 13599.67 9698.83 173
MVS_111021_LR98.67 3799.41 1997.81 4799.37 3799.53 5098.51 6695.52 4899.27 3794.85 5699.56 799.69 5099.04 5199.36 2098.88 3799.60 12499.58 115
COLMAP_ROBcopyleft96.15 1297.78 6098.17 7697.32 5398.84 5199.45 6199.28 3395.43 4999.48 1891.80 10794.83 13598.36 6998.90 6198.09 9897.85 9799.68 8899.15 157
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
HQP-MVS96.37 10396.58 12696.13 8997.31 7798.44 14098.45 6895.22 5098.86 8888.58 12198.33 6487.00 15297.67 10497.23 14396.56 13899.56 14199.62 112
ACMM96.26 996.67 9796.69 12596.66 7597.29 7898.46 13896.48 13595.09 5199.21 4693.19 8898.78 4586.73 15698.17 8397.84 11896.32 14499.74 4499.49 135
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PVSNet_BlendedMVS97.51 7097.71 9297.28 5598.06 6399.61 3497.31 10995.02 5299.08 6595.51 4598.05 7090.11 13998.07 8998.91 4898.40 6599.72 5799.78 44
PVSNet_Blended97.51 7097.71 9297.28 5598.06 6399.61 3497.31 10995.02 5299.08 6595.51 4598.05 7090.11 13998.07 8998.91 4898.40 6599.72 5799.78 44
abl_698.09 4099.33 4299.22 9298.79 5994.96 5498.52 12197.00 3297.30 8799.86 3798.76 6699.69 7999.41 141
MVS_111021_HR98.59 4199.36 2297.68 4899.42 3599.61 3498.14 8494.81 5599.31 3195.00 5499.51 899.79 4599.00 5498.94 4498.83 4399.69 7999.57 120
QAPM98.62 4099.04 4598.13 3999.57 2799.48 5799.17 3894.78 5699.57 996.16 3896.73 10199.80 4399.33 2998.79 5699.29 1399.75 3999.64 109
EPNet98.05 5498.86 5397.10 6099.02 4999.43 6598.47 6794.73 5799.05 7195.62 4398.93 3797.62 7895.48 16098.59 7498.55 5799.29 17299.84 18
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet98.46 4299.16 3497.64 4998.48 5899.64 2299.35 3194.71 5899.53 1395.17 5197.63 8399.59 5398.38 8198.88 5198.99 2999.74 4499.86 15
3Dnovator96.92 798.67 3799.05 4298.23 3899.57 2799.45 6199.11 4294.66 5999.69 396.80 3396.55 11099.61 5299.40 2598.87 5299.49 399.85 399.66 102
3Dnovator+96.92 798.71 3699.05 4298.32 3499.53 3099.34 7999.06 4694.61 6099.65 497.49 2496.75 10099.86 3799.44 2398.78 5799.30 1199.81 1699.67 98
OpenMVScopyleft96.23 1197.95 5798.45 6597.35 5299.52 3299.42 6698.91 5394.61 6098.87 8792.24 10494.61 13699.05 6199.10 4798.64 6799.05 2499.74 4499.51 132
TSAR-MVS + GP.98.66 3999.36 2297.85 4697.16 8199.46 5999.03 4894.59 6299.09 6397.19 2999.73 399.95 1799.39 2698.95 4398.69 5099.75 3999.65 105
DELS-MVS98.19 4998.77 5797.52 5198.29 6199.71 999.12 4194.58 6398.80 10095.38 4896.24 11598.24 7197.92 9599.06 3899.52 199.82 1099.79 38
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CLD-MVS96.74 9296.51 13197.01 6896.71 8698.62 12798.73 6094.38 6498.94 8294.46 6497.33 8587.03 15198.07 8997.20 14596.87 12999.72 5799.54 124
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVS_030498.14 5199.03 4697.10 6098.05 6599.63 2599.27 3494.33 6599.63 693.06 9097.32 8699.05 6198.09 8898.82 5498.87 3899.81 1699.89 6
ACMP96.25 1096.62 10096.72 12496.50 8396.96 8498.75 11897.80 9494.30 6698.85 9093.12 8998.78 4586.61 15897.23 11497.73 12496.61 13699.62 11499.71 86
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EPNet_dtu96.30 10598.53 6293.70 12798.97 5098.24 15197.36 10794.23 6798.85 9079.18 17899.19 1998.47 6794.09 18197.89 11598.21 8098.39 18898.85 172
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchMatch-RL97.77 6198.25 7097.21 5899.11 4799.25 8897.06 12394.09 6898.72 11095.14 5298.47 5896.29 9198.43 8098.65 6697.44 11799.45 15798.94 166
thres100view90096.72 9396.47 13497.00 6996.31 9299.52 5398.28 7894.01 6997.35 16194.52 6195.90 12186.93 15399.09 4998.07 10197.87 9699.81 1699.63 111
thres40096.71 9496.45 13697.02 6696.28 9599.63 2598.41 6994.00 7097.82 15294.42 6695.74 12586.26 16299.18 4098.20 9297.79 10199.81 1699.70 88
tfpn200view996.75 9196.51 13197.03 6496.31 9299.67 1298.41 6993.99 7197.35 16194.52 6195.90 12186.93 15399.14 4498.26 8897.80 10099.82 1099.70 88
thres600view796.69 9596.43 13897.00 6996.28 9599.67 1298.41 6993.99 7197.85 15194.29 6995.96 11985.91 16599.19 3898.26 8897.63 10599.82 1099.73 72
thres20096.76 9096.53 12997.03 6496.31 9299.67 1298.37 7293.99 7197.68 15794.49 6395.83 12486.77 15599.18 4098.26 8897.82 9999.82 1099.66 102
Anonymous20240521197.40 10496.45 8899.54 4998.08 8993.79 7498.24 13393.55 14594.41 11598.88 6498.04 10698.24 7999.75 3999.76 57
Anonymous2023121197.10 8197.06 11797.14 5996.32 9199.52 5398.16 8393.76 7598.84 9495.98 4090.92 16194.58 11498.90 6197.72 12598.10 8799.71 6799.75 64
RPSCF97.61 6698.16 7796.96 7198.10 6299.00 10098.84 5793.76 7599.45 1994.78 5899.39 1299.31 5798.53 7896.61 15595.43 16697.74 19497.93 187
PVSNet_Blended_VisFu97.41 7398.49 6496.15 8897.49 7199.76 196.02 14393.75 7799.26 4093.38 8693.73 14499.35 5696.47 13598.96 4298.46 6199.77 3399.90 3
EIA-MVS97.70 6498.78 5696.44 8495.72 11299.65 1798.14 8493.72 7898.30 12992.31 10198.63 5297.90 7398.97 5598.92 4798.30 7699.78 2899.80 30
baseline197.58 6798.05 8197.02 6696.21 9799.45 6197.71 9893.71 7998.47 12395.75 4298.78 4593.20 12898.91 6098.52 7898.44 6299.81 1699.53 125
LGP-MVS_train96.23 10696.89 12195.46 10397.32 7598.77 11498.81 5893.60 8098.58 11585.52 14099.08 3086.67 15797.83 10297.87 11697.51 11099.69 7999.73 72
ETV-MVS98.05 5499.25 3096.65 7695.61 11799.61 3498.26 8093.52 8198.90 8693.74 8199.32 1499.20 5898.90 6199.21 2998.72 4999.87 299.79 38
FC-MVSNet-train97.04 8297.91 8896.03 9296.00 10298.41 14396.53 13493.42 8299.04 7393.02 9298.03 7294.32 11797.47 10997.93 11297.77 10299.75 3999.88 10
UGNet97.66 6599.07 4196.01 9397.19 8099.65 1797.09 12193.39 8399.35 2894.40 6798.79 4499.59 5394.24 17998.04 10698.29 7799.73 5199.80 30
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IB-MVS93.96 1595.02 13096.44 13793.36 13797.05 8399.28 8690.43 19793.39 8398.02 14096.02 3994.92 13492.07 13283.52 20495.38 18295.82 16099.72 5799.59 114
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
IS_MVSNet97.86 5898.86 5396.68 7496.02 10099.72 698.35 7593.37 8598.75 10994.01 7296.88 9998.40 6898.48 7999.09 3599.42 599.83 899.80 30
thisisatest053097.23 7798.25 7096.05 9095.60 11999.59 4196.96 12593.23 8699.17 5192.60 9898.75 4896.19 9398.17 8398.19 9396.10 15299.72 5799.77 52
tttt051797.23 7798.24 7396.04 9195.60 11999.60 3996.94 12693.23 8699.15 5292.56 9998.74 4996.12 9698.17 8398.21 9196.10 15299.73 5199.78 44
casdiffmvs96.93 8697.43 10396.34 8595.70 11399.50 5597.75 9793.22 8898.98 7892.64 9694.97 13291.71 13498.93 5798.62 6998.52 6099.82 1099.72 83
diffmvs96.83 8897.33 10896.25 8695.76 11099.34 7998.06 9093.22 8899.43 2192.30 10296.90 9889.83 14398.55 7698.00 10998.14 8399.64 10999.70 88
Vis-MVSNet (Re-imp)97.40 7498.89 5295.66 10195.99 10399.62 2997.82 9393.22 8898.82 9791.40 10996.94 9698.56 6695.70 15299.14 3399.41 699.79 2599.75 64
CS-MVS98.06 5399.12 3696.82 7295.83 10899.66 1598.93 5293.12 9198.95 7994.29 6998.55 5499.05 6198.94 5699.05 3998.78 4899.83 899.80 30
EPP-MVSNet97.75 6298.71 5896.63 7895.68 11599.56 4797.51 10393.10 9299.22 4494.99 5597.18 9297.30 8198.65 7198.83 5398.93 3399.84 599.92 1
PMMVS97.52 6998.39 6696.51 8295.82 10998.73 12197.80 9493.05 9398.76 10794.39 6899.07 3197.03 8598.55 7698.31 8797.61 10699.43 16099.21 155
ET-MVSNet_ETH3D96.17 10896.99 11995.21 10588.53 20398.54 13398.28 7892.61 9498.85 9093.60 8399.06 3290.39 13898.63 7395.98 17796.68 13399.61 11699.41 141
CVMVSNet95.33 12697.09 11593.27 13995.23 13098.39 14595.49 15292.58 9597.71 15683.00 15694.44 13993.28 12693.92 18597.79 11998.54 5999.41 16399.45 138
DI_MVS_plusplus_trai96.90 8797.49 9896.21 8795.61 11799.40 7098.72 6192.11 9699.14 5592.98 9493.08 15595.14 10598.13 8798.05 10597.91 9499.74 4499.73 72
MVSTER97.16 7997.71 9296.52 8195.97 10498.48 13698.63 6392.10 9798.68 11195.96 4199.23 1891.79 13396.87 12198.76 5997.37 12199.57 13899.68 97
UA-Net97.13 8099.14 3594.78 10997.21 7999.38 7197.56 10292.04 9898.48 12288.03 12498.39 6299.91 3194.03 18299.33 2399.23 1799.81 1699.25 152
UniMVSNet_NR-MVSNet94.59 14195.47 15093.55 13191.85 17597.89 16395.03 15892.00 9997.33 16386.12 13493.19 15187.29 14996.60 13196.12 17296.70 13299.72 5799.80 30
TranMVSNet+NR-MVSNet93.67 15794.14 16893.13 14091.28 19497.58 17995.60 15091.97 10097.06 17084.05 14390.64 16682.22 18896.17 14294.94 19196.78 13099.69 7999.78 44
tfpnnormal93.85 15694.12 17093.54 13293.22 15698.24 15195.45 15391.96 10194.61 20083.91 14590.74 16381.75 19197.04 11697.49 13596.16 15099.68 8899.84 18
TDRefinement93.04 16693.57 18292.41 14696.58 8798.77 11497.78 9691.96 10198.12 13780.84 16789.13 17579.87 20087.78 20096.44 16094.50 18799.54 14798.15 183
CDS-MVSNet96.59 10198.02 8494.92 10894.45 14198.96 10597.46 10591.75 10397.86 15090.07 11596.02 11897.25 8296.21 13998.04 10698.38 6799.60 12499.65 105
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DCV-MVSNet97.56 6898.36 6796.62 7996.44 8998.36 14798.37 7291.73 10499.11 6194.80 5798.36 6396.28 9298.60 7598.12 9598.44 6299.76 3599.87 12
MAR-MVS97.71 6398.04 8297.32 5399.35 4198.91 10797.65 10091.68 10598.00 14197.01 3197.72 8194.83 10998.85 6598.44 8398.86 3999.41 16399.52 128
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ACMH95.42 1495.27 12795.96 14394.45 11496.83 8598.78 11394.72 17091.67 10698.95 7986.82 13396.42 11283.67 17897.00 11797.48 13696.68 13399.69 7999.76 57
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
canonicalmvs97.31 7597.81 9196.72 7396.20 9899.45 6198.21 8191.60 10799.22 4495.39 4798.48 5790.95 13699.16 4397.66 12799.05 2499.76 3599.90 3
DU-MVS93.98 15194.44 16593.44 13491.66 18097.77 16595.03 15891.57 10897.17 16786.12 13493.13 15381.13 19396.60 13195.10 18897.01 12799.67 9699.80 30
NR-MVSNet94.01 14994.51 16393.44 13492.56 16197.77 16595.67 14791.57 10897.17 16785.84 13793.13 15380.53 19595.29 16697.01 15096.17 14999.69 7999.75 64
TransMVSNet (Re)93.45 15994.08 17192.72 14592.83 15797.62 17794.94 16191.54 11095.65 19783.06 15588.93 17783.53 17994.25 17897.41 13797.03 12599.67 9698.40 181
Baseline_NR-MVSNet93.87 15493.98 17593.75 12491.66 18097.02 19495.53 15191.52 11197.16 16987.77 12787.93 18783.69 17796.35 13795.10 18897.23 12299.68 8899.73 72
MVS_Test97.30 7698.54 6195.87 9595.74 11199.28 8698.19 8291.40 11299.18 5091.59 10898.17 6896.18 9498.63 7398.61 7098.55 5799.66 10199.78 44
baseline97.45 7298.70 5995.99 9495.89 10599.36 7498.29 7791.37 11399.21 4692.99 9398.40 6196.87 8697.96 9398.60 7298.60 5599.42 16299.86 15
GBi-Net96.98 8498.00 8595.78 9693.81 14897.98 15798.09 8691.32 11498.80 10093.92 7497.21 8995.94 9997.89 9698.07 10198.34 7299.68 8899.67 98
test196.98 8498.00 8595.78 9693.81 14897.98 15798.09 8691.32 11498.80 10093.92 7497.21 8995.94 9997.89 9698.07 10198.34 7299.68 8899.67 98
FMVSNet397.02 8398.12 7995.73 10093.59 15497.98 15798.34 7691.32 11498.80 10093.92 7497.21 8995.94 9997.63 10598.61 7098.62 5399.61 11699.65 105
ACMH+95.51 1395.40 12396.00 14194.70 11096.33 9098.79 11196.79 12791.32 11498.77 10687.18 13095.60 12985.46 16896.97 11897.15 14696.59 13799.59 13099.65 105
UniMVSNet (Re)94.58 14295.34 15293.71 12692.25 16798.08 15694.97 16091.29 11897.03 17287.94 12593.97 14386.25 16396.07 14496.27 16995.97 15799.72 5799.79 38
UniMVSNet_ETH3D93.15 16392.33 19594.11 11893.91 14598.61 12994.81 16790.98 11997.06 17087.51 12982.27 20276.33 20897.87 10094.79 19297.47 11599.56 14199.81 28
FMVSNet296.64 9897.50 9795.63 10293.81 14897.98 15798.09 8690.87 12098.99 7793.48 8493.17 15295.25 10497.89 9698.63 6898.80 4699.68 8899.67 98
Vis-MVSNetpermissive96.16 10998.22 7493.75 12495.33 12999.70 1197.27 11190.85 12198.30 12985.51 14195.72 12796.45 8793.69 18898.70 6499.00 2899.84 599.69 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test-LLR95.50 12197.32 10993.37 13695.49 12498.74 11996.44 13790.82 12298.18 13482.75 15796.60 10794.67 11295.54 15898.09 9896.00 15499.20 17698.93 167
test0.0.03 196.69 9598.12 7995.01 10795.49 12498.99 10295.86 14590.82 12298.38 12692.54 10096.66 10497.33 7995.75 15097.75 12398.34 7299.60 12499.40 144
test_part195.56 11995.38 15195.78 9696.07 9998.16 15497.57 10190.78 12497.43 16093.04 9189.12 17689.41 14497.93 9496.38 16397.38 12099.29 17299.78 44
CHOSEN 1792x268896.41 10296.99 11995.74 9998.01 6699.72 697.70 9990.78 12499.13 6090.03 11687.35 18995.36 10398.33 8298.59 7498.91 3699.59 13099.87 12
thisisatest051594.61 14096.89 12191.95 15792.00 17098.47 13792.01 19290.73 12698.18 13483.96 14494.51 13795.13 10693.38 18997.38 13894.74 18599.61 11699.79 38
pm-mvs194.27 14595.57 14992.75 14492.58 16098.13 15594.87 16590.71 12796.70 18083.78 14789.94 16989.85 14294.96 17397.58 13297.07 12499.61 11699.72 83
GA-MVS93.93 15396.31 14091.16 17393.61 15298.79 11195.39 15590.69 12898.25 13273.28 19996.15 11688.42 14694.39 17797.76 12295.35 16899.58 13499.45 138
v14892.36 18392.88 19091.75 16291.63 18397.66 17292.64 18990.55 12996.09 18983.34 15288.19 18280.00 19892.74 19393.98 19594.58 18699.58 13499.69 92
v2v48292.77 17293.52 18591.90 16091.59 18597.63 17494.57 17790.31 13096.80 17879.22 17788.74 17981.55 19296.04 14695.26 18494.97 17899.66 10199.69 92
pmmvs495.09 12895.90 14494.14 11792.29 16597.70 16895.45 15390.31 13098.60 11390.70 11293.25 15089.90 14196.67 12897.13 14795.42 16799.44 15999.28 149
FC-MVSNet-test96.07 11197.94 8793.89 12193.60 15398.67 12496.62 13190.30 13298.76 10788.62 12095.57 13097.63 7794.48 17597.97 11097.48 11499.71 6799.52 128
CANet_DTU96.64 9899.08 3993.81 12397.10 8299.42 6698.85 5690.01 13399.31 3179.98 17499.78 299.10 6097.42 11098.35 8598.05 8999.47 15599.53 125
WR-MVS93.43 16194.48 16492.21 14991.52 18797.69 17094.66 17489.98 13496.86 17583.43 15190.12 16785.03 17293.94 18496.02 17695.82 16099.71 6799.82 23
V4293.05 16593.90 17892.04 15391.91 17297.66 17294.91 16289.91 13596.85 17680.58 16989.66 17083.43 18195.37 16495.03 19094.90 18099.59 13099.78 44
FMVSNet195.77 11596.41 13995.03 10693.42 15597.86 16497.11 12089.89 13698.53 11992.00 10589.17 17393.23 12798.15 8698.07 10198.34 7299.61 11699.69 92
PEN-MVS92.72 17393.20 18892.15 15191.29 19297.31 19194.67 17389.81 13796.19 18781.83 16388.58 18079.06 20395.61 15695.21 18596.27 14599.72 5799.82 23
DTE-MVSNet92.42 18092.85 19191.91 15990.87 19796.97 19594.53 17889.81 13795.86 19681.59 16488.83 17877.88 20695.01 17294.34 19496.35 14399.64 10999.73 72
CHOSEN 280x42097.99 5699.24 3196.53 8098.34 6099.61 3498.36 7489.80 13999.27 3795.08 5399.81 198.58 6598.64 7299.02 4098.92 3498.93 18299.48 136
N_pmnet92.21 18594.60 16289.42 18991.88 17397.38 19089.15 20389.74 14097.89 14873.75 19787.94 18692.23 13193.85 18696.10 17393.20 19498.15 19197.43 191
baseline296.36 10497.82 9094.65 11194.60 14099.09 9896.45 13689.63 14198.36 12791.29 11197.60 8494.13 12096.37 13698.45 8197.70 10399.54 14799.41 141
MDA-MVSNet-bldmvs87.84 19989.22 20186.23 19781.74 20996.77 19883.74 20889.57 14294.50 20272.83 20196.64 10564.47 21392.71 19481.43 20892.28 19896.81 20598.47 178
TAMVS95.53 12096.50 13394.39 11593.86 14799.03 9996.67 12989.55 14397.33 16390.64 11393.02 15691.58 13596.21 13997.72 12597.43 11899.43 16099.36 146
DeepMVS_CXcopyleft96.85 19687.43 20689.27 14498.30 12975.55 19295.05 13179.47 20192.62 19589.48 20495.18 20995.96 202
CP-MVSNet93.25 16294.00 17492.38 14791.65 18297.56 18194.38 17989.20 14596.05 19183.16 15489.51 17181.97 18996.16 14396.43 16196.56 13899.71 6799.89 6
IterMVS-LS96.12 11097.48 9994.53 11295.19 13197.56 18197.15 11789.19 14699.08 6588.23 12294.97 13294.73 11197.84 10197.86 11798.26 7899.60 12499.88 10
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PS-CasMVS92.72 17393.36 18691.98 15691.62 18497.52 18394.13 18388.98 14795.94 19481.51 16587.35 18979.95 19995.91 14896.37 16496.49 14099.70 7699.89 6
HyFIR lowres test95.99 11296.56 12795.32 10497.99 6799.65 1796.54 13288.86 14898.44 12489.77 11984.14 19897.05 8499.03 5298.55 7698.19 8299.73 5199.86 15
TinyColmap94.00 15094.35 16693.60 12895.89 10598.26 14997.49 10488.82 14998.56 11783.21 15391.28 16080.48 19696.68 12797.34 14096.26 14799.53 14998.24 182
WR-MVS_H93.54 15894.67 16192.22 14891.95 17197.91 16294.58 17688.75 15096.64 18183.88 14690.66 16585.13 17194.40 17696.54 15995.91 15999.73 5199.89 6
EU-MVSNet92.80 17094.76 16090.51 18091.88 17396.74 19992.48 19088.69 15196.21 18679.00 17991.51 15787.82 14791.83 19795.87 17996.27 14599.21 17598.92 170
USDC94.26 14694.83 15893.59 12996.02 10098.44 14097.84 9288.65 15298.86 8882.73 15994.02 14180.56 19496.76 12497.28 14296.15 15199.55 14398.50 177
SixPastTwentyTwo93.44 16095.32 15391.24 17192.11 16898.40 14492.77 18888.64 15398.09 13877.83 18393.51 14785.74 16696.52 13496.91 15294.89 18299.59 13099.73 72
testgi95.67 11797.48 9993.56 13095.07 13399.00 10095.33 15688.47 15498.80 10086.90 13297.30 8792.33 13095.97 14797.66 12797.91 9499.60 12499.38 145
v114492.81 16994.03 17391.40 16891.68 17997.60 17894.73 16988.40 15596.71 17978.48 18188.14 18484.46 17695.45 16396.31 16895.22 17199.65 10599.76 57
pmmvs691.90 18792.53 19491.17 17291.81 17697.63 17493.23 18588.37 15693.43 20580.61 16877.32 20687.47 14894.12 18096.58 15795.72 16298.88 18499.53 125
Effi-MVS+95.81 11497.31 11294.06 11995.09 13299.35 7797.24 11388.22 15798.54 11885.38 14298.52 5588.68 14598.70 6898.32 8697.93 9299.74 4499.84 18
v892.87 16793.87 17991.72 16492.05 16997.50 18494.79 16888.20 15896.85 17680.11 17390.01 16882.86 18595.48 16095.15 18794.90 18099.66 10199.80 30
Effi-MVS+-dtu95.74 11698.04 8293.06 14193.92 14499.16 9597.90 9188.16 15999.07 7082.02 16298.02 7394.32 11796.74 12598.53 7797.56 10899.61 11699.62 112
v119292.43 17993.61 18191.05 17491.53 18697.43 18794.61 17587.99 16096.60 18276.72 18687.11 19182.74 18695.85 14996.35 16695.30 17099.60 12499.74 68
LTVRE_ROB93.20 1692.84 16894.92 15590.43 18292.83 15798.63 12697.08 12287.87 16197.91 14768.42 20693.54 14679.46 20296.62 13097.55 13397.40 11999.74 4499.92 1
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CMPMVSbinary70.31 1890.74 19091.06 19790.36 18397.32 7597.43 18792.97 18787.82 16293.50 20475.34 19483.27 20084.90 17392.19 19692.64 19991.21 20396.50 20694.46 204
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
v192192092.36 18393.57 18290.94 17691.39 19097.39 18994.70 17187.63 16396.60 18276.63 18786.98 19282.89 18495.75 15096.26 17095.14 17499.55 14399.73 72
v14419292.38 18193.55 18491.00 17591.44 18897.47 18694.27 18087.41 16496.52 18478.03 18287.50 18882.65 18795.32 16595.82 18095.15 17399.55 14399.78 44
FMVSNet595.42 12296.47 13494.20 11692.26 16695.99 20295.66 14887.15 16597.87 14993.46 8596.68 10393.79 12397.52 10697.10 14997.21 12399.11 17996.62 201
MS-PatchMatch95.99 11297.26 11394.51 11397.46 7298.76 11797.27 11186.97 16699.09 6389.83 11893.51 14797.78 7596.18 14197.53 13495.71 16399.35 16898.41 179
Fast-Effi-MVS+95.38 12496.52 13094.05 12094.15 14399.14 9797.24 11386.79 16798.53 11987.62 12894.51 13787.06 15098.76 6698.60 7298.04 9099.72 5799.77 52
v124091.99 18693.33 18790.44 18191.29 19297.30 19294.25 18186.79 16796.43 18575.49 19386.34 19581.85 19095.29 16696.42 16295.22 17199.52 15099.73 72
TESTMET0.1,194.95 13197.32 10992.20 15092.62 15998.74 11996.44 13786.67 16998.18 13482.75 15796.60 10794.67 11295.54 15898.09 9896.00 15499.20 17698.93 167
pmmvs592.71 17594.27 16790.90 17791.42 18997.74 16793.23 18586.66 17095.99 19378.96 18091.45 15883.44 18095.55 15797.30 14195.05 17699.58 13498.93 167
Anonymous2023120690.70 19193.93 17686.92 19690.21 20196.79 19790.30 19986.61 17196.05 19169.25 20488.46 18184.86 17485.86 20297.11 14896.47 14199.30 17197.80 188
pmmvs-eth3d89.81 19489.65 20090.00 18586.94 20595.38 20491.08 19386.39 17294.57 20182.27 16183.03 20164.94 21193.96 18396.57 15893.82 19199.35 16899.24 153
test-mter94.86 13497.32 10992.00 15592.41 16398.82 11096.18 14286.35 17398.05 13982.28 16096.48 11194.39 11695.46 16298.17 9496.20 14899.32 17099.13 161
v1092.79 17194.06 17291.31 17091.78 17797.29 19394.87 16586.10 17496.97 17379.82 17588.16 18384.56 17595.63 15496.33 16795.31 16999.65 10599.80 30
MIMVSNet188.61 19790.68 19886.19 19881.56 21095.30 20687.78 20585.98 17594.19 20372.30 20278.84 20578.90 20490.06 19896.59 15695.47 16599.46 15695.49 203
v7n91.61 18892.95 18990.04 18490.56 19897.69 17093.74 18485.59 17695.89 19576.95 18586.60 19478.60 20593.76 18797.01 15094.99 17799.65 10599.87 12
test20.0390.65 19293.71 18087.09 19490.44 19996.24 20089.74 20285.46 17795.59 19872.99 20090.68 16485.33 16984.41 20395.94 17895.10 17599.52 15097.06 196
anonymousdsp93.12 16495.86 14689.93 18791.09 19598.25 15095.12 15785.08 17897.44 15973.30 19890.89 16290.78 13795.25 16897.91 11395.96 15899.71 6799.82 23
IterMVS94.81 13597.71 9291.42 16694.83 13897.63 17497.38 10685.08 17898.93 8375.67 19194.02 14197.64 7696.66 12998.45 8197.60 10798.90 18399.72 83
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Fast-Effi-MVS+-dtu95.38 12498.20 7592.09 15293.91 14598.87 10897.35 10885.01 18099.08 6581.09 16698.10 6996.36 9095.62 15598.43 8497.03 12599.55 14399.50 134
IterMVS-SCA-FT94.89 13397.87 8991.42 16694.86 13797.70 16897.24 11384.88 18198.93 8375.74 19094.26 14098.25 7096.69 12698.52 7897.68 10499.10 18099.73 72
new_pmnet90.45 19392.84 19287.66 19388.96 20296.16 20188.71 20484.66 18297.56 15871.91 20385.60 19786.58 15993.28 19096.07 17493.54 19398.46 18694.39 205
EG-PatchMatch MVS92.45 17793.92 17790.72 17992.56 16198.43 14294.88 16484.54 18397.18 16679.55 17686.12 19683.23 18293.15 19297.22 14496.00 15499.67 9699.27 151
PM-MVS89.55 19590.30 19988.67 19187.06 20495.60 20390.88 19584.51 18496.14 18875.75 18986.89 19363.47 21494.64 17496.85 15393.89 19099.17 17899.29 148
new-patchmatchnet86.12 20087.30 20284.74 20086.92 20695.19 20783.57 20984.42 18592.67 20665.66 20780.32 20364.72 21289.41 19992.33 20289.21 20498.43 18796.69 199
FPMVS83.82 20184.61 20382.90 20290.39 20090.71 21090.85 19684.10 18695.47 19965.15 20883.44 19974.46 20975.48 20681.63 20779.42 20991.42 21187.14 209
MDTV_nov1_ep1395.57 11897.48 9993.35 13895.43 12698.97 10497.19 11683.72 18798.92 8587.91 12697.75 7996.12 9697.88 9996.84 15495.64 16497.96 19298.10 184
gm-plane-assit89.44 19692.82 19385.49 19991.37 19195.34 20579.55 21282.12 18891.68 20864.79 21087.98 18580.26 19795.66 15398.51 8097.56 10899.45 15798.41 179
pmmvs388.19 19891.27 19684.60 20185.60 20793.66 20885.68 20781.13 18992.36 20763.66 21289.51 17177.10 20793.22 19196.37 16492.40 19698.30 19097.46 190
tpm cat194.06 14894.90 15693.06 14195.42 12898.52 13596.64 13080.67 19097.82 15292.63 9793.39 14995.00 10796.06 14591.36 20391.58 20296.98 20496.66 200
CostFormer94.25 14794.88 15793.51 13395.43 12698.34 14896.21 14180.64 19197.94 14694.01 7298.30 6586.20 16497.52 10692.71 19892.69 19597.23 20398.02 186
PMVScopyleft72.60 1776.39 20477.66 20774.92 20581.04 21169.37 21768.47 21480.54 19285.39 21065.07 20973.52 20772.91 21065.67 21280.35 20976.81 21088.71 21285.25 212
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dps94.63 13995.31 15493.84 12295.53 12298.71 12296.54 13280.12 19397.81 15497.21 2896.98 9492.37 12996.34 13892.46 20091.77 20097.26 20297.08 195
EPMVS95.05 12996.86 12392.94 14395.84 10798.96 10596.68 12879.87 19499.05 7190.15 11497.12 9395.99 9897.49 10895.17 18694.75 18497.59 19896.96 197
MDTV_nov1_ep13_2view92.44 17895.66 14888.68 19091.05 19697.92 16192.17 19179.64 19598.83 9576.20 18891.45 15893.51 12495.04 17195.68 18193.70 19297.96 19298.53 176
PatchmatchNetpermissive94.70 13697.08 11691.92 15895.53 12298.85 10995.77 14679.54 19698.95 7985.98 13698.52 5596.45 8797.39 11195.32 18394.09 18997.32 20097.38 192
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst93.86 15595.88 14591.50 16595.69 11498.62 12795.64 14979.41 19798.80 10083.76 14995.63 12896.13 9597.25 11292.92 19792.31 19797.27 20196.74 198
SCA94.95 13197.44 10292.04 15395.55 12199.16 9596.26 14079.30 19899.02 7485.73 13998.18 6797.13 8397.69 10396.03 17594.91 17997.69 19797.65 189
CR-MVSNet94.57 14397.34 10791.33 16994.90 13598.59 13097.15 11779.14 19997.98 14280.42 17096.59 10993.50 12596.85 12298.10 9697.49 11299.50 15299.15 157
Patchmtry98.59 13097.15 11779.14 19980.42 170
ADS-MVSNet94.65 13897.04 11891.88 16195.68 11598.99 10295.89 14479.03 20199.15 5285.81 13896.96 9598.21 7297.10 11594.48 19394.24 18897.74 19497.21 193
tpm92.38 18194.79 15989.56 18894.30 14297.50 18494.24 18278.97 20297.72 15574.93 19597.97 7482.91 18396.60 13193.65 19694.81 18398.33 18998.98 165
MIMVSNet94.49 14497.59 9690.87 17891.74 17898.70 12394.68 17278.73 20397.98 14283.71 15097.71 8294.81 11096.96 11997.97 11097.92 9399.40 16598.04 185
PatchT93.96 15297.36 10690.00 18594.76 13998.65 12590.11 20078.57 20497.96 14580.42 17096.07 11794.10 12196.85 12298.10 9697.49 11299.26 17499.15 157
RPMNet94.66 13797.16 11491.75 16294.98 13498.59 13097.00 12478.37 20597.98 14283.78 14796.27 11494.09 12296.91 12097.36 13996.73 13199.48 15399.09 162
E-PMN68.30 20668.43 20868.15 20774.70 21571.56 21655.64 21677.24 20677.48 21339.46 21651.95 21341.68 21873.28 20870.65 21179.51 20888.61 21386.20 211
EMVS68.12 20768.11 20968.14 20875.51 21471.76 21555.38 21777.20 20777.78 21237.79 21753.59 21143.61 21774.72 20767.05 21276.70 21188.27 21486.24 210
PMMVS277.26 20379.47 20674.70 20676.00 21388.37 21274.22 21376.34 20878.31 21154.13 21469.96 20852.50 21670.14 21084.83 20688.71 20597.35 19993.58 207
gg-mvs-nofinetune90.85 18994.14 16887.02 19594.89 13699.25 8898.64 6276.29 20988.24 20957.50 21379.93 20495.45 10295.18 16998.77 5898.07 8899.62 11499.24 153
Gipumacopyleft81.40 20281.78 20480.96 20483.21 20885.61 21379.73 21176.25 21097.33 16364.21 21155.32 21055.55 21586.04 20192.43 20192.20 19996.32 20793.99 206
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVS-HIRNet92.51 17695.97 14288.48 19293.73 15198.37 14690.33 19875.36 21198.32 12877.78 18489.15 17494.87 10895.14 17097.62 13196.39 14298.51 18597.11 194
MVEpermissive67.97 1965.53 20867.43 21063.31 20959.33 21674.20 21453.09 21870.43 21266.27 21443.13 21545.98 21430.62 21970.65 20979.34 21086.30 20683.25 21589.33 208
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt82.25 20397.73 6988.71 21180.18 21068.65 21399.15 5286.98 13199.47 985.31 17068.35 21187.51 20583.81 20791.64 210
testmvs31.24 20940.15 21120.86 21112.61 21717.99 21825.16 21913.30 21448.42 21524.82 21853.07 21230.13 22128.47 21342.73 21337.65 21220.79 21651.04 213
test12326.75 21034.25 21218.01 2127.93 21817.18 21924.85 22012.36 21544.83 21616.52 21941.80 21518.10 22228.29 21433.08 21434.79 21318.10 21749.95 214
GG-mvs-BLEND69.11 20598.13 7835.26 2103.49 21998.20 15394.89 1632.38 21698.42 1255.82 22096.37 11398.60 645.97 21598.75 6197.98 9199.01 18198.61 174
uanet_test0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
sosnet-low-res0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
sosnet0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
RE-MVS-def69.05 205
9.1499.79 45
our_test_392.30 16497.58 17990.09 201
ambc80.99 20580.04 21290.84 20990.91 19496.09 18974.18 19662.81 20930.59 22082.44 20596.25 17191.77 20095.91 20898.56 175
MTAPA98.09 1599.97 7
MTMP98.46 1199.96 12
Patchmatch-RL test66.86 215
XVS97.42 7399.62 2998.59 6493.81 7899.95 1799.69 79
X-MVStestdata97.42 7399.62 2998.59 6493.81 7899.95 1799.69 79
mPP-MVS99.53 3099.89 34
NP-MVS98.57 116