This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
ACMMPR99.30 999.54 699.03 1699.66 1699.64 2199.68 498.25 1499.56 1197.12 3099.19 2199.95 1799.72 199.43 1699.25 1499.72 5999.77 54
MCST-MVS99.11 2099.27 3198.93 2299.67 1399.33 8499.51 2098.31 899.28 3696.57 3699.10 3099.90 3299.71 299.19 3098.35 7199.82 1199.71 89
HFP-MVS99.32 799.53 899.07 1399.69 899.59 4099.63 1198.31 899.56 1197.37 2699.27 1899.97 799.70 399.35 2199.24 1699.71 7099.76 60
PGM-MVS98.86 3199.35 2598.29 3599.77 199.63 2499.67 595.63 4698.66 11495.27 4999.11 2799.82 4299.67 499.33 2399.19 2099.73 5299.74 71
SMA-MVScopyleft99.38 599.60 299.12 999.76 299.62 2899.39 2998.23 1999.52 1698.03 1799.45 1099.98 199.64 599.58 899.30 1199.68 9199.76 60
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SD-MVS99.25 1299.50 1198.96 2198.79 5399.55 4999.33 3298.29 1199.75 197.96 1999.15 2499.95 1799.61 699.17 3199.06 2499.81 1799.84 21
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DVP-MVS99.45 299.54 699.35 199.72 799.76 199.63 1198.37 299.63 699.03 398.95 3899.98 199.60 799.60 699.05 2599.74 4599.79 40
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
zzz-MVS99.31 899.44 1699.16 699.73 599.65 1699.63 1198.26 1399.27 3898.01 1899.27 1899.97 799.60 799.59 798.58 5799.71 7099.73 75
CPTT-MVS99.14 1999.20 3599.06 1499.58 2699.53 5199.45 2597.80 3799.19 5098.32 1398.58 5599.95 1799.60 799.28 2598.20 8299.64 11299.69 95
TSAR-MVS + MP.99.27 1099.57 498.92 2398.78 5499.53 5199.72 298.11 2999.73 297.43 2599.15 2499.96 1299.59 1099.73 199.07 2399.88 299.82 26
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
X-MVS98.93 2999.37 2198.42 3299.67 1399.62 2899.60 1598.15 2499.08 6693.81 7898.46 6099.95 1799.59 1099.49 1399.21 1999.68 9199.75 67
CP-MVS99.27 1099.44 1699.08 1299.62 2399.58 4499.53 1898.16 2299.21 4797.79 2199.15 2499.96 1299.59 1099.54 1198.86 4199.78 2999.74 71
AdaColmapbinary99.06 2498.98 5099.15 799.60 2599.30 8799.38 3098.16 2299.02 7598.55 898.71 5299.57 5599.58 1399.09 3697.84 10199.64 11299.36 149
ACMMP_NAP99.05 2599.45 1398.58 3199.73 599.60 3899.64 898.28 1299.23 4494.57 6099.35 1499.97 799.55 1499.63 398.66 5299.70 7999.74 71
MP-MVScopyleft99.07 2399.36 2298.74 2899.63 2199.57 4699.66 698.25 1499.00 7895.62 4398.97 3699.94 2599.54 1599.51 1298.79 4999.71 7099.73 75
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APDe-MVS99.49 199.64 199.32 299.74 499.74 599.75 198.34 499.56 1198.72 799.57 699.97 799.53 1699.65 299.25 1499.84 799.77 54
MSLP-MVS++99.15 1899.24 3399.04 1599.52 3299.49 5799.09 4498.07 3099.37 2698.47 997.79 7899.89 3499.50 1798.93 4699.45 499.61 11999.76 60
CNVR-MVS99.23 1499.28 3099.17 599.65 1899.34 8199.46 2498.21 2099.28 3698.47 998.89 4399.94 2599.50 1799.42 1798.61 5599.73 5299.52 131
CSCG98.90 3098.93 5298.85 2599.75 399.72 699.49 2196.58 4399.38 2498.05 1698.97 3697.87 7599.49 1997.78 12398.92 3699.78 2999.90 4
DeepC-MVS_fast98.34 199.17 1799.45 1398.85 2599.55 2999.37 7599.64 898.05 3299.53 1496.58 3598.93 3999.92 2899.49 1999.46 1499.32 1099.80 2599.64 112
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS97.63 498.33 4698.57 6198.04 4298.62 5799.65 1699.45 2598.15 2499.51 1792.80 9595.74 12696.44 9099.46 2199.37 1999.50 299.78 2999.81 31
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
NCCC99.05 2599.08 4099.02 1999.62 2399.38 7299.43 2898.21 2099.36 2897.66 2397.79 7899.90 3299.45 2299.17 3198.43 6599.77 3499.51 135
train_agg98.73 3599.11 3898.28 3699.36 3999.35 7999.48 2397.96 3498.83 9693.86 7798.70 5399.86 3799.44 2399.08 3898.38 6899.61 11999.58 118
3Dnovator+96.92 798.71 3699.05 4398.32 3499.53 3099.34 8199.06 4694.61 6099.65 497.49 2496.75 10199.86 3799.44 2398.78 5899.30 1199.81 1799.67 101
3Dnovator96.92 798.67 3799.05 4398.23 3899.57 2799.45 6299.11 4294.66 5999.69 396.80 3396.55 11199.61 5299.40 2598.87 5399.49 399.85 599.66 105
TSAR-MVS + GP.98.66 3999.36 2297.85 4697.16 8199.46 6099.03 4894.59 6299.09 6497.19 2999.73 399.95 1799.39 2698.95 4498.69 5199.75 4099.65 108
HPM-MVS++copyleft99.10 2199.30 2898.86 2499.69 899.48 5899.59 1698.34 499.26 4196.55 3799.10 3099.96 1299.36 2799.25 2698.37 7099.64 11299.66 105
PLCcopyleft97.93 299.02 2898.94 5199.11 1099.46 3499.24 9299.06 4697.96 3499.31 3299.16 197.90 7699.79 4599.36 2798.71 6498.12 8699.65 10899.52 131
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CS-MVS-test97.90 5899.30 2896.26 8695.44 12699.59 4098.63 6391.99 10099.57 992.31 10199.37 1398.60 6499.33 2999.11 3598.93 3499.87 399.93 1
QAPM98.62 4099.04 4698.13 3999.57 2799.48 5899.17 3894.78 5699.57 996.16 3896.73 10299.80 4399.33 2998.79 5799.29 1399.75 4099.64 112
PHI-MVS99.08 2299.43 1898.67 2999.15 4699.59 4099.11 4297.35 4099.14 5697.30 2799.44 1199.96 1299.32 3198.89 5199.39 799.79 2699.58 118
CS-MVS98.21 4999.34 2696.89 7295.51 12399.56 4798.85 5593.31 8699.01 7794.48 6499.31 1699.46 5699.31 3299.02 4099.19 2099.90 199.87 13
DPE-MVScopyleft99.39 499.55 599.20 499.63 2199.71 999.66 698.33 699.29 3598.40 1299.64 499.98 199.31 3299.56 998.96 3299.85 599.70 91
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CNLPA99.03 2799.05 4399.01 2099.27 4499.22 9499.03 4897.98 3399.34 3099.00 498.25 6799.71 4999.31 3298.80 5698.82 4799.48 15699.17 159
MSP-MVS99.34 699.52 999.14 899.68 1299.75 499.64 898.31 899.44 2198.10 1499.28 1799.98 199.30 3599.34 2299.05 2599.81 1799.79 40
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APD-MVScopyleft99.25 1299.38 2099.09 1199.69 899.58 4499.56 1798.32 798.85 9197.87 2098.91 4199.92 2899.30 3599.45 1599.38 899.79 2699.58 118
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SED-MVS99.44 399.58 399.28 399.69 899.76 199.62 1498.35 399.51 1799.05 299.60 599.98 199.28 3799.61 598.83 4599.70 7999.77 54
OMC-MVS98.84 3299.01 4998.65 3099.39 3699.23 9399.22 3596.70 4299.40 2397.77 2297.89 7799.80 4399.21 3899.02 4098.65 5399.57 14199.07 166
TAPA-MVS97.53 598.41 4398.84 5697.91 4599.08 4899.33 8499.15 3997.13 4199.34 3093.20 8797.75 8099.19 6099.20 3998.66 6698.13 8599.66 10499.48 139
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thres600view796.69 9696.43 14197.00 6996.28 9599.67 1298.41 7093.99 7197.85 15594.29 7095.96 12085.91 16999.19 4098.26 9197.63 10899.82 1199.73 75
LS3D97.79 6098.25 7197.26 5798.40 5999.63 2499.53 1898.63 199.25 4388.13 12496.93 9894.14 12099.19 4099.14 3399.23 1799.69 8299.42 143
thres40096.71 9596.45 13997.02 6696.28 9599.63 2498.41 7094.00 7097.82 15694.42 6795.74 12686.26 16699.18 4298.20 9597.79 10499.81 1799.70 91
thres20096.76 9196.53 13197.03 6496.31 9299.67 1298.37 7393.99 7197.68 16194.49 6395.83 12586.77 15999.18 4298.26 9197.82 10299.82 1199.66 105
ACMMPcopyleft98.74 3499.03 4798.40 3399.36 3999.64 2199.20 3697.75 3898.82 9895.24 5098.85 4499.87 3699.17 4498.74 6397.50 11499.71 7099.76 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
canonicalmvs97.31 7697.81 9296.72 7396.20 9899.45 6298.21 8291.60 10899.22 4595.39 4798.48 5890.95 13899.16 4597.66 13099.05 2599.76 3699.90 4
tfpn200view996.75 9296.51 13497.03 6496.31 9299.67 1298.41 7093.99 7197.35 16694.52 6195.90 12286.93 15799.14 4698.26 9197.80 10399.82 1199.70 91
SteuartSystems-ACMMP99.20 1599.51 1098.83 2799.66 1699.66 1599.71 398.12 2899.14 5696.62 3499.16 2399.98 199.12 4799.63 399.19 2099.78 2999.83 25
Skip Steuart: Steuart Systems R&D Blog.
MSDG98.27 4898.29 7098.24 3799.20 4599.22 9499.20 3697.82 3699.37 2694.43 6695.90 12297.31 8199.12 4798.76 6098.35 7199.67 9999.14 163
CDPH-MVS98.41 4399.10 3997.61 5099.32 4399.36 7699.49 2196.15 4598.82 9891.82 10798.41 6199.66 5199.10 4998.93 4698.97 3199.75 4099.58 118
OpenMVScopyleft96.23 1197.95 5798.45 6697.35 5299.52 3299.42 6798.91 5294.61 6098.87 8892.24 10594.61 13799.05 6299.10 4998.64 6899.05 2599.74 4599.51 135
thres100view90096.72 9496.47 13797.00 6996.31 9299.52 5498.28 7994.01 6997.35 16694.52 6195.90 12286.93 15799.09 5198.07 10497.87 9999.81 1799.63 114
TSAR-MVS + ACMM98.77 3399.45 1397.98 4499.37 3799.46 6099.44 2798.13 2799.65 492.30 10398.91 4199.95 1799.05 5299.42 1798.95 3399.58 13799.82 26
MVS_111021_LR98.67 3799.41 1997.81 4799.37 3799.53 5198.51 6795.52 4899.27 3894.85 5699.56 799.69 5099.04 5399.36 2098.88 3999.60 12799.58 118
HyFIR lowres test95.99 11396.56 12995.32 10597.99 6799.65 1696.54 13588.86 15098.44 12789.77 12084.14 20397.05 8599.03 5498.55 7998.19 8399.73 5299.86 17
PCF-MVS97.50 698.18 5198.35 6997.99 4398.65 5699.36 7698.94 5198.14 2698.59 11693.62 8296.61 10799.76 4899.03 5497.77 12497.45 11999.57 14198.89 174
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_111021_HR98.59 4199.36 2297.68 4899.42 3599.61 3398.14 8594.81 5599.31 3295.00 5499.51 899.79 4599.00 5698.94 4598.83 4599.69 8299.57 123
EIA-MVS97.70 6598.78 5796.44 8495.72 11199.65 1698.14 8593.72 7898.30 13392.31 10198.63 5497.90 7498.97 5798.92 4898.30 7799.78 2999.80 33
casdiffmvs96.93 8797.43 10496.34 8595.70 11299.50 5697.75 9993.22 8998.98 8092.64 9694.97 13391.71 13698.93 5898.62 7098.52 6199.82 1199.72 86
xxxxxxxxxxxxxcwj98.14 5297.38 10699.03 1699.65 1899.41 6998.87 5398.24 1799.14 5698.73 599.11 2786.38 16598.92 5999.22 2798.84 4399.76 3699.56 124
SF-MVS99.18 1699.32 2799.03 1699.65 1899.41 6998.87 5398.24 1799.14 5698.73 599.11 2799.92 2898.92 5999.22 2798.84 4399.76 3699.56 124
baseline197.58 6898.05 8297.02 6696.21 9799.45 6297.71 10093.71 7998.47 12695.75 4298.78 4793.20 13098.91 6198.52 8198.44 6399.81 1799.53 128
ETV-MVS98.05 5499.25 3296.65 7695.61 11699.61 3398.26 8193.52 8198.90 8793.74 8199.32 1599.20 5998.90 6299.21 2998.72 5099.87 399.79 40
Anonymous2023121197.10 8297.06 11997.14 5996.32 9199.52 5498.16 8493.76 7598.84 9595.98 4090.92 16594.58 11598.90 6297.72 12898.10 8899.71 7099.75 67
COLMAP_ROBcopyleft96.15 1297.78 6198.17 7797.32 5398.84 5199.45 6299.28 3395.43 4999.48 1991.80 10894.83 13698.36 7098.90 6298.09 10197.85 10099.68 9199.15 160
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous20240521197.40 10596.45 8899.54 5098.08 9093.79 7498.24 13793.55 14794.41 11698.88 6598.04 10998.24 8099.75 4099.76 60
MAR-MVS97.71 6498.04 8397.32 5399.35 4198.91 11097.65 10291.68 10698.00 14597.01 3197.72 8294.83 11098.85 6698.44 8698.86 4199.41 16699.52 131
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Fast-Effi-MVS+95.38 12696.52 13294.05 12294.15 14599.14 9997.24 11586.79 17098.53 12187.62 13094.51 13887.06 15398.76 6798.60 7498.04 9199.72 5999.77 54
abl_698.09 4099.33 4299.22 9498.79 5994.96 5498.52 12497.00 3297.30 8899.86 3798.76 6799.69 8299.41 144
DROMVSNet95.38 12696.52 13294.05 12294.15 14599.14 9997.24 11586.79 17098.53 12187.62 13094.51 13887.06 15398.76 6798.60 7498.04 9199.72 5999.77 54
DPM-MVS98.31 4798.53 6398.05 4198.76 5598.77 11799.13 4098.07 3099.10 6394.27 7196.70 10399.84 4198.70 7097.90 11798.11 8799.40 16899.28 152
Effi-MVS+95.81 11697.31 11394.06 12195.09 13399.35 7997.24 11588.22 15998.54 12085.38 14598.52 5688.68 14898.70 7098.32 8997.93 9499.74 4599.84 21
TSAR-MVS + COLMAP96.79 9096.55 13097.06 6297.70 7098.46 14199.07 4596.23 4499.38 2491.32 11198.80 4585.61 17198.69 7297.64 13396.92 13199.37 17099.06 167
EPP-MVSNet97.75 6398.71 5996.63 7895.68 11499.56 4797.51 10593.10 9299.22 4594.99 5597.18 9397.30 8298.65 7398.83 5498.93 3499.84 799.92 2
CHOSEN 280x42097.99 5699.24 3396.53 8098.34 6099.61 3398.36 7589.80 14199.27 3895.08 5399.81 198.58 6698.64 7499.02 4098.92 3698.93 18599.48 139
ET-MVSNet_ETH3D96.17 10996.99 12195.21 10688.53 20798.54 13698.28 7992.61 9498.85 9193.60 8399.06 3490.39 14098.63 7595.98 18196.68 13699.61 11999.41 144
MVS_Test97.30 7798.54 6295.87 9695.74 11099.28 8898.19 8391.40 11399.18 5191.59 10998.17 6996.18 9598.63 7598.61 7198.55 5899.66 10499.78 46
DCV-MVSNet97.56 6998.36 6896.62 7996.44 8998.36 15098.37 7391.73 10599.11 6294.80 5798.36 6496.28 9398.60 7798.12 9898.44 6399.76 3699.87 13
GeoE95.98 11597.24 11594.51 11495.02 13599.38 7298.02 9287.86 16498.37 13087.86 12892.99 15993.54 12598.56 7898.61 7197.92 9599.73 5299.85 20
diffmvs96.83 8997.33 10996.25 8795.76 10999.34 8198.06 9193.22 8999.43 2292.30 10396.90 9989.83 14698.55 7998.00 11298.14 8499.64 11299.70 91
PMMVS97.52 7098.39 6796.51 8295.82 10898.73 12497.80 9693.05 9398.76 10894.39 6999.07 3397.03 8698.55 7998.31 9097.61 10999.43 16399.21 158
RPSCF97.61 6798.16 7896.96 7198.10 6299.00 10398.84 5793.76 7599.45 2094.78 5899.39 1299.31 5898.53 8196.61 15995.43 16997.74 19897.93 192
IS_MVSNet97.86 5998.86 5496.68 7496.02 10099.72 698.35 7693.37 8598.75 11194.01 7296.88 10098.40 6998.48 8299.09 3699.42 599.83 1099.80 33
PatchMatch-RL97.77 6298.25 7197.21 5899.11 4799.25 9097.06 12694.09 6898.72 11295.14 5298.47 5996.29 9298.43 8398.65 6797.44 12099.45 16098.94 169
CANet98.46 4299.16 3697.64 4998.48 5899.64 2199.35 3194.71 5899.53 1495.17 5197.63 8499.59 5398.38 8498.88 5298.99 3099.74 4599.86 17
CHOSEN 1792x268896.41 10396.99 12195.74 10098.01 6699.72 697.70 10190.78 12599.13 6190.03 11787.35 19395.36 10498.33 8598.59 7798.91 3899.59 13399.87 13
thisisatest053097.23 7898.25 7196.05 9195.60 11899.59 4096.96 12893.23 8799.17 5292.60 9898.75 5096.19 9498.17 8698.19 9696.10 15599.72 5999.77 54
tttt051797.23 7898.24 7496.04 9295.60 11899.60 3896.94 12993.23 8799.15 5392.56 9998.74 5196.12 9798.17 8698.21 9496.10 15599.73 5299.78 46
ACMM96.26 996.67 9896.69 12796.66 7597.29 7898.46 14196.48 13895.09 5199.21 4793.19 8898.78 4786.73 16098.17 8697.84 12196.32 14799.74 4599.49 138
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet195.77 11796.41 14295.03 10793.42 15897.86 16797.11 12389.89 13898.53 12192.00 10689.17 17793.23 12998.15 8998.07 10498.34 7399.61 11999.69 95
DI_MVS_plusplus_trai96.90 8897.49 9996.21 8895.61 11699.40 7198.72 6192.11 9699.14 5692.98 9493.08 15795.14 10698.13 9098.05 10897.91 9799.74 4599.73 75
MVS_030498.14 5299.03 4797.10 6098.05 6599.63 2499.27 3494.33 6599.63 693.06 9097.32 8799.05 6298.09 9198.82 5598.87 4099.81 1799.89 7
OPM-MVS96.22 10895.85 15096.65 7697.75 6898.54 13699.00 5095.53 4796.88 17989.88 11895.95 12186.46 16498.07 9297.65 13296.63 13899.67 9998.83 176
PVSNet_BlendedMVS97.51 7197.71 9397.28 5598.06 6399.61 3397.31 11195.02 5299.08 6695.51 4598.05 7190.11 14198.07 9298.91 4998.40 6699.72 5999.78 46
PVSNet_Blended97.51 7197.71 9397.28 5598.06 6399.61 3397.31 11195.02 5299.08 6695.51 4598.05 7190.11 14198.07 9298.91 4998.40 6699.72 5999.78 46
CLD-MVS96.74 9396.51 13497.01 6896.71 8698.62 13098.73 6094.38 6498.94 8394.46 6597.33 8687.03 15598.07 9297.20 14996.87 13299.72 5999.54 127
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
baseline97.45 7398.70 6095.99 9595.89 10599.36 7698.29 7891.37 11499.21 4792.99 9398.40 6296.87 8797.96 9698.60 7498.60 5699.42 16599.86 17
test_part195.56 12195.38 15495.78 9796.07 9998.16 15797.57 10390.78 12597.43 16593.04 9189.12 18089.41 14797.93 9796.38 16797.38 12399.29 17599.78 46
DELS-MVS98.19 5098.77 5897.52 5198.29 6199.71 999.12 4194.58 6398.80 10195.38 4896.24 11698.24 7297.92 9899.06 3999.52 199.82 1199.79 40
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
GBi-Net96.98 8598.00 8695.78 9793.81 15197.98 16098.09 8791.32 11598.80 10193.92 7497.21 9095.94 10097.89 9998.07 10498.34 7399.68 9199.67 101
test196.98 8598.00 8695.78 9793.81 15197.98 16098.09 8791.32 11598.80 10193.92 7497.21 9095.94 10097.89 9998.07 10498.34 7399.68 9199.67 101
FMVSNet296.64 9997.50 9895.63 10393.81 15197.98 16098.09 8790.87 12198.99 7993.48 8493.17 15495.25 10597.89 9998.63 6998.80 4899.68 9199.67 101
MDTV_nov1_ep1395.57 12097.48 10093.35 14195.43 12798.97 10797.19 11983.72 19198.92 8687.91 12797.75 8096.12 9797.88 10296.84 15895.64 16797.96 19698.10 188
UniMVSNet_ETH3D93.15 16692.33 19994.11 12093.91 14898.61 13294.81 17090.98 12097.06 17587.51 13282.27 20776.33 21397.87 10394.79 19697.47 11899.56 14499.81 31
IterMVS-LS96.12 11197.48 10094.53 11395.19 13297.56 18597.15 12089.19 14899.08 6688.23 12394.97 13394.73 11297.84 10497.86 12098.26 7999.60 12799.88 11
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LGP-MVS_train96.23 10796.89 12395.46 10497.32 7598.77 11798.81 5893.60 8098.58 11785.52 14399.08 3286.67 16197.83 10597.87 11997.51 11399.69 8299.73 75
SCA94.95 13497.44 10392.04 15695.55 12099.16 9796.26 14379.30 20299.02 7585.73 14298.18 6897.13 8497.69 10696.03 17994.91 18397.69 20197.65 194
HQP-MVS96.37 10496.58 12896.13 9097.31 7798.44 14398.45 6995.22 5098.86 8988.58 12298.33 6587.00 15697.67 10797.23 14796.56 14199.56 14499.62 115
FMVSNet397.02 8498.12 8095.73 10193.59 15797.98 16098.34 7791.32 11598.80 10193.92 7497.21 9095.94 10097.63 10898.61 7198.62 5499.61 11999.65 108
CostFormer94.25 15094.88 16093.51 13695.43 12798.34 15196.21 14480.64 19597.94 15094.01 7298.30 6686.20 16897.52 10992.71 20392.69 19997.23 20798.02 190
FMVSNet595.42 12496.47 13794.20 11892.26 17095.99 20695.66 15187.15 16897.87 15393.46 8596.68 10493.79 12497.52 10997.10 15397.21 12699.11 18296.62 206
EPMVS95.05 13296.86 12592.94 14695.84 10798.96 10896.68 13179.87 19899.05 7290.15 11597.12 9495.99 9997.49 11195.17 19094.75 18897.59 20296.96 202
FC-MVSNet-train97.04 8397.91 8996.03 9396.00 10298.41 14696.53 13793.42 8299.04 7493.02 9298.03 7394.32 11897.47 11297.93 11597.77 10599.75 4099.88 11
CANet_DTU96.64 9999.08 4093.81 12697.10 8299.42 6798.85 5590.01 13599.31 3279.98 17799.78 299.10 6197.42 11398.35 8898.05 9099.47 15899.53 128
PatchmatchNetpermissive94.70 13997.08 11891.92 16195.53 12198.85 11295.77 14979.54 20098.95 8185.98 13998.52 5696.45 8897.39 11495.32 18794.09 19397.32 20497.38 197
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmrst93.86 15895.88 14891.50 16895.69 11398.62 13095.64 15279.41 20198.80 10183.76 15295.63 12996.13 9697.25 11592.92 20292.31 20197.27 20596.74 203
DeepPCF-MVS97.74 398.34 4599.46 1297.04 6398.82 5299.33 8496.28 14297.47 3999.58 894.70 5998.99 3599.85 4097.24 11699.55 1099.34 997.73 20099.56 124
ACMP96.25 1096.62 10196.72 12696.50 8396.96 8498.75 12197.80 9694.30 6698.85 9193.12 8998.78 4786.61 16297.23 11797.73 12796.61 13999.62 11799.71 89
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ADS-MVSNet94.65 14197.04 12091.88 16495.68 11498.99 10595.89 14779.03 20599.15 5385.81 14196.96 9698.21 7397.10 11894.48 19894.24 19297.74 19897.21 198
tfpnnormal93.85 15994.12 17493.54 13593.22 15998.24 15495.45 15691.96 10294.61 20583.91 14890.74 16781.75 19597.04 11997.49 13896.16 15399.68 9199.84 21
ACMH95.42 1495.27 13095.96 14694.45 11696.83 8598.78 11694.72 17391.67 10798.95 8186.82 13696.42 11383.67 18297.00 12097.48 13996.68 13699.69 8299.76 60
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+95.51 1395.40 12596.00 14494.70 11196.33 9098.79 11496.79 13091.32 11598.77 10787.18 13395.60 13085.46 17296.97 12197.15 15096.59 14099.59 13399.65 108
MIMVSNet94.49 14797.59 9790.87 18191.74 18298.70 12694.68 17578.73 20797.98 14683.71 15397.71 8394.81 11196.96 12297.97 11397.92 9599.40 16898.04 189
RPMNet94.66 14097.16 11691.75 16594.98 13698.59 13397.00 12778.37 20997.98 14683.78 15096.27 11594.09 12396.91 12397.36 14296.73 13499.48 15699.09 165
MVSTER97.16 8097.71 9396.52 8195.97 10498.48 13998.63 6392.10 9798.68 11395.96 4199.23 2091.79 13596.87 12498.76 6097.37 12499.57 14199.68 100
CR-MVSNet94.57 14697.34 10891.33 17294.90 13798.59 13397.15 12079.14 20397.98 14680.42 17396.59 11093.50 12796.85 12598.10 9997.49 11599.50 15599.15 160
PatchT93.96 15597.36 10790.00 18894.76 14198.65 12890.11 20378.57 20897.96 14980.42 17396.07 11894.10 12296.85 12598.10 9997.49 11599.26 17799.15 160
USDC94.26 14994.83 16193.59 13296.02 10098.44 14397.84 9488.65 15498.86 8982.73 16294.02 14380.56 19896.76 12797.28 14696.15 15499.55 14698.50 180
Effi-MVS+-dtu95.74 11898.04 8393.06 14493.92 14799.16 9797.90 9388.16 16199.07 7182.02 16598.02 7494.32 11896.74 12898.53 8097.56 11199.61 11999.62 115
IterMVS-SCA-FT94.89 13697.87 9091.42 16994.86 13997.70 17197.24 11584.88 18598.93 8475.74 19394.26 14298.25 7196.69 12998.52 8197.68 10799.10 18399.73 75
TinyColmap94.00 15394.35 17093.60 13195.89 10598.26 15297.49 10688.82 15198.56 11983.21 15691.28 16480.48 20096.68 13097.34 14396.26 15099.53 15298.24 186
pmmvs495.09 13195.90 14794.14 11992.29 16997.70 17195.45 15690.31 13298.60 11590.70 11393.25 15289.90 14496.67 13197.13 15195.42 17099.44 16299.28 152
IterMVS94.81 13897.71 9391.42 16994.83 14097.63 17897.38 10885.08 18298.93 8475.67 19494.02 14397.64 7796.66 13298.45 8497.60 11098.90 18699.72 86
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LTVRE_ROB93.20 1692.84 17194.92 15890.43 18592.83 16098.63 12997.08 12587.87 16397.91 15168.42 21193.54 14879.46 20796.62 13397.55 13697.40 12299.74 4599.92 2
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_NR-MVSNet94.59 14495.47 15393.55 13491.85 17997.89 16695.03 16192.00 9997.33 16886.12 13793.19 15387.29 15296.60 13496.12 17696.70 13599.72 5999.80 33
DU-MVS93.98 15494.44 16993.44 13791.66 18497.77 16895.03 16191.57 10997.17 17286.12 13793.13 15581.13 19796.60 13495.10 19297.01 13099.67 9999.80 33
tpm92.38 18594.79 16289.56 19294.30 14497.50 18894.24 18578.97 20697.72 15974.93 19897.97 7582.91 18796.60 13493.65 20194.81 18798.33 19298.98 168
SixPastTwentyTwo93.44 16395.32 15691.24 17492.11 17298.40 14792.77 19188.64 15598.09 14277.83 18693.51 14985.74 17096.52 13796.91 15694.89 18699.59 13399.73 75
PVSNet_Blended_VisFu97.41 7498.49 6596.15 8997.49 7199.76 196.02 14693.75 7799.26 4193.38 8693.73 14699.35 5796.47 13898.96 4398.46 6299.77 3499.90 4
baseline296.36 10597.82 9194.65 11294.60 14299.09 10196.45 13989.63 14398.36 13191.29 11297.60 8594.13 12196.37 13998.45 8497.70 10699.54 15099.41 144
Baseline_NR-MVSNet93.87 15793.98 17993.75 12791.66 18497.02 19895.53 15491.52 11297.16 17487.77 12987.93 19183.69 18196.35 14095.10 19297.23 12599.68 9199.73 75
dps94.63 14295.31 15793.84 12595.53 12198.71 12596.54 13580.12 19797.81 15897.21 2896.98 9592.37 13196.34 14192.46 20591.77 20597.26 20697.08 200
CDS-MVSNet96.59 10298.02 8594.92 10994.45 14398.96 10897.46 10791.75 10497.86 15490.07 11696.02 11997.25 8396.21 14298.04 10998.38 6899.60 12799.65 108
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAMVS95.53 12296.50 13694.39 11793.86 15099.03 10296.67 13289.55 14597.33 16890.64 11493.02 15891.58 13796.21 14297.72 12897.43 12199.43 16399.36 149
MS-PatchMatch95.99 11397.26 11494.51 11497.46 7298.76 12097.27 11386.97 16999.09 6489.83 11993.51 14997.78 7696.18 14497.53 13795.71 16699.35 17198.41 182
TranMVSNet+NR-MVSNet93.67 16094.14 17293.13 14391.28 19897.58 18395.60 15391.97 10197.06 17584.05 14690.64 17082.22 19296.17 14594.94 19596.78 13399.69 8299.78 46
CP-MVSNet93.25 16594.00 17892.38 15091.65 18697.56 18594.38 18289.20 14796.05 19683.16 15789.51 17581.97 19396.16 14696.43 16596.56 14199.71 7099.89 7
UniMVSNet (Re)94.58 14595.34 15593.71 12992.25 17198.08 15994.97 16391.29 11997.03 17787.94 12693.97 14586.25 16796.07 14796.27 17395.97 16099.72 5999.79 40
tpm cat194.06 15194.90 15993.06 14495.42 12998.52 13896.64 13380.67 19497.82 15692.63 9793.39 15195.00 10896.06 14891.36 20891.58 20796.98 20896.66 205
v2v48292.77 17593.52 18991.90 16391.59 18997.63 17894.57 18090.31 13296.80 18379.22 18088.74 18381.55 19696.04 14995.26 18894.97 18299.66 10499.69 95
testgi95.67 11997.48 10093.56 13395.07 13499.00 10395.33 15988.47 15698.80 10186.90 13597.30 8892.33 13295.97 15097.66 13097.91 9799.60 12799.38 148
PS-CasMVS92.72 17693.36 19091.98 15991.62 18897.52 18794.13 18688.98 14995.94 19981.51 16887.35 19379.95 20495.91 15196.37 16896.49 14399.70 7999.89 7
v119292.43 18393.61 18591.05 17791.53 19097.43 19194.61 17887.99 16296.60 18776.72 18987.11 19582.74 19095.85 15296.35 17095.30 17399.60 12799.74 71
v192192092.36 18793.57 18690.94 17991.39 19497.39 19394.70 17487.63 16696.60 18776.63 19086.98 19682.89 18895.75 15396.26 17495.14 17899.55 14699.73 75
test0.0.03 196.69 9698.12 8095.01 10895.49 12498.99 10595.86 14890.82 12398.38 12992.54 10096.66 10597.33 8095.75 15397.75 12698.34 7399.60 12799.40 147
Vis-MVSNet (Re-imp)97.40 7598.89 5395.66 10295.99 10399.62 2897.82 9593.22 8998.82 9891.40 11096.94 9798.56 6795.70 15599.14 3399.41 699.79 2699.75 67
gm-plane-assit89.44 20092.82 19785.49 20391.37 19595.34 20979.55 21782.12 19291.68 21364.79 21587.98 18980.26 20195.66 15698.51 8397.56 11199.45 16098.41 182
v1092.79 17494.06 17691.31 17391.78 18197.29 19794.87 16886.10 17896.97 17879.82 17888.16 18784.56 17995.63 15796.33 17195.31 17299.65 10899.80 33
Fast-Effi-MVS+-dtu95.38 12698.20 7692.09 15593.91 14898.87 11197.35 11085.01 18499.08 6681.09 16998.10 7096.36 9195.62 15898.43 8797.03 12899.55 14699.50 137
PEN-MVS92.72 17693.20 19292.15 15491.29 19697.31 19594.67 17689.81 13996.19 19281.83 16688.58 18479.06 20895.61 15995.21 18996.27 14899.72 5999.82 26
pmmvs592.71 17894.27 17190.90 18091.42 19397.74 17093.23 18886.66 17495.99 19878.96 18391.45 16283.44 18495.55 16097.30 14595.05 18099.58 13798.93 170
test-LLR95.50 12397.32 11093.37 13995.49 12498.74 12296.44 14090.82 12398.18 13882.75 16096.60 10894.67 11395.54 16198.09 10196.00 15799.20 17998.93 170
TESTMET0.1,194.95 13497.32 11092.20 15392.62 16298.74 12296.44 14086.67 17398.18 13882.75 16096.60 10894.67 11395.54 16198.09 10196.00 15799.20 17998.93 170
v892.87 17093.87 18391.72 16792.05 17397.50 18894.79 17188.20 16096.85 18180.11 17690.01 17282.86 18995.48 16395.15 19194.90 18499.66 10499.80 33
EPNet98.05 5498.86 5497.10 6099.02 4999.43 6698.47 6894.73 5799.05 7295.62 4398.93 3997.62 7995.48 16398.59 7798.55 5899.29 17599.84 21
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test-mter94.86 13797.32 11092.00 15892.41 16798.82 11396.18 14586.35 17798.05 14382.28 16396.48 11294.39 11795.46 16598.17 9796.20 15199.32 17399.13 164
v114492.81 17294.03 17791.40 17191.68 18397.60 18294.73 17288.40 15796.71 18478.48 18488.14 18884.46 18095.45 16696.31 17295.22 17599.65 10899.76 60
V4293.05 16893.90 18292.04 15691.91 17697.66 17594.91 16589.91 13796.85 18180.58 17289.66 17483.43 18595.37 16795.03 19494.90 18499.59 13399.78 46
v14419292.38 18593.55 18891.00 17891.44 19297.47 19094.27 18387.41 16796.52 18978.03 18587.50 19282.65 19195.32 16895.82 18495.15 17799.55 14699.78 46
v124091.99 19093.33 19190.44 18491.29 19697.30 19694.25 18486.79 17096.43 19075.49 19686.34 19981.85 19495.29 16996.42 16695.22 17599.52 15399.73 75
NR-MVSNet94.01 15294.51 16793.44 13792.56 16497.77 16895.67 15091.57 10997.17 17285.84 14093.13 15580.53 19995.29 16997.01 15496.17 15299.69 8299.75 67
anonymousdsp93.12 16795.86 14989.93 19091.09 19998.25 15395.12 16085.08 18297.44 16473.30 20190.89 16690.78 13995.25 17197.91 11695.96 16199.71 7099.82 26
gg-mvs-nofinetune90.85 19394.14 17287.02 19994.89 13899.25 9098.64 6276.29 21388.24 21457.50 21879.93 20995.45 10395.18 17298.77 5998.07 8999.62 11799.24 156
MVS-HIRNet92.51 17995.97 14588.48 19693.73 15498.37 14990.33 20175.36 21598.32 13277.78 18789.15 17894.87 10995.14 17397.62 13496.39 14598.51 18897.11 199
MDTV_nov1_ep13_2view92.44 18195.66 15188.68 19491.05 20097.92 16492.17 19479.64 19998.83 9676.20 19191.45 16293.51 12695.04 17495.68 18593.70 19697.96 19698.53 179
DTE-MVSNet92.42 18492.85 19591.91 16290.87 20196.97 19994.53 18189.81 13995.86 20181.59 16788.83 18277.88 21195.01 17594.34 19996.35 14699.64 11299.73 75
pm-mvs194.27 14895.57 15292.75 14792.58 16398.13 15894.87 16890.71 12896.70 18583.78 15089.94 17389.85 14594.96 17697.58 13597.07 12799.61 11999.72 86
pmnet_mix0292.44 18194.68 16489.83 19192.46 16697.65 17789.92 20590.49 13198.76 10873.05 20491.78 16090.08 14394.86 17794.53 19791.94 20498.21 19498.01 191
PM-MVS89.55 19990.30 20488.67 19587.06 20895.60 20790.88 19884.51 18896.14 19375.75 19286.89 19763.47 21994.64 17896.85 15793.89 19499.17 18199.29 151
FC-MVSNet-test96.07 11297.94 8893.89 12493.60 15698.67 12796.62 13490.30 13498.76 10888.62 12195.57 13197.63 7894.48 17997.97 11397.48 11799.71 7099.52 131
WR-MVS_H93.54 16194.67 16592.22 15191.95 17597.91 16594.58 17988.75 15296.64 18683.88 14990.66 16985.13 17594.40 18096.54 16395.91 16299.73 5299.89 7
GA-MVS93.93 15696.31 14391.16 17693.61 15598.79 11495.39 15890.69 12998.25 13673.28 20296.15 11788.42 14994.39 18197.76 12595.35 17199.58 13799.45 141
TransMVSNet (Re)93.45 16294.08 17592.72 14892.83 16097.62 18194.94 16491.54 11195.65 20283.06 15888.93 18183.53 18394.25 18297.41 14097.03 12899.67 9998.40 185
UGNet97.66 6699.07 4296.01 9497.19 8099.65 1697.09 12493.39 8399.35 2994.40 6898.79 4699.59 5394.24 18398.04 10998.29 7899.73 5299.80 33
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pmmvs691.90 19192.53 19891.17 17591.81 18097.63 17893.23 18888.37 15893.43 21080.61 17177.32 21187.47 15194.12 18496.58 16195.72 16598.88 18799.53 128
EPNet_dtu96.30 10698.53 6393.70 13098.97 5098.24 15497.36 10994.23 6798.85 9179.18 18199.19 2198.47 6894.09 18597.89 11898.21 8198.39 19198.85 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UA-Net97.13 8199.14 3794.78 11097.21 7999.38 7297.56 10492.04 9898.48 12588.03 12598.39 6399.91 3194.03 18699.33 2399.23 1799.81 1799.25 155
pmmvs-eth3d89.81 19889.65 20590.00 18886.94 20995.38 20891.08 19686.39 17694.57 20682.27 16483.03 20664.94 21693.96 18796.57 16293.82 19599.35 17199.24 156
WR-MVS93.43 16494.48 16892.21 15291.52 19197.69 17394.66 17789.98 13696.86 18083.43 15490.12 17185.03 17693.94 18896.02 18095.82 16399.71 7099.82 26
CVMVSNet95.33 12997.09 11793.27 14295.23 13198.39 14895.49 15592.58 9597.71 16083.00 15994.44 14193.28 12893.92 18997.79 12298.54 6099.41 16699.45 141
N_pmnet92.21 18994.60 16689.42 19391.88 17797.38 19489.15 20789.74 14297.89 15273.75 20087.94 19092.23 13393.85 19096.10 17793.20 19898.15 19597.43 196
v7n91.61 19292.95 19390.04 18790.56 20297.69 17393.74 18785.59 18095.89 20076.95 18886.60 19878.60 21093.76 19197.01 15494.99 18199.65 10899.87 13
Vis-MVSNetpermissive96.16 11098.22 7593.75 12795.33 13099.70 1197.27 11390.85 12298.30 13385.51 14495.72 12896.45 8893.69 19298.70 6599.00 2999.84 799.69 95
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thisisatest051594.61 14396.89 12391.95 16092.00 17498.47 14092.01 19590.73 12798.18 13883.96 14794.51 13895.13 10793.38 19397.38 14194.74 18999.61 11999.79 40
new_pmnet90.45 19792.84 19687.66 19788.96 20696.16 20588.71 20884.66 18697.56 16271.91 20885.60 20186.58 16393.28 19496.07 17893.54 19798.46 18994.39 210
pmmvs388.19 20291.27 20184.60 20585.60 21193.66 21285.68 21281.13 19392.36 21263.66 21789.51 17577.10 21293.22 19596.37 16892.40 20098.30 19397.46 195
EG-PatchMatch MVS92.45 18093.92 18190.72 18292.56 16498.43 14594.88 16784.54 18797.18 17179.55 17986.12 20083.23 18693.15 19697.22 14896.00 15799.67 9999.27 154
v14892.36 18792.88 19491.75 16591.63 18797.66 17592.64 19290.55 13096.09 19483.34 15588.19 18680.00 20292.74 19793.98 20094.58 19099.58 13799.69 95
MDA-MVSNet-bldmvs87.84 20389.22 20686.23 20181.74 21396.77 20283.74 21389.57 14494.50 20772.83 20696.64 10664.47 21892.71 19881.43 21392.28 20296.81 20998.47 181
DeepMVS_CXcopyleft96.85 20087.43 21089.27 14698.30 13375.55 19595.05 13279.47 20692.62 19989.48 20995.18 21495.96 207
CMPMVSbinary70.31 1890.74 19491.06 20290.36 18697.32 7597.43 19192.97 19087.82 16593.50 20975.34 19783.27 20584.90 17792.19 20092.64 20491.21 20896.50 21194.46 209
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet92.80 17394.76 16390.51 18391.88 17796.74 20392.48 19388.69 15396.21 19179.00 18291.51 16187.82 15091.83 20195.87 18396.27 14899.21 17898.92 173
MIMVSNet188.61 20190.68 20386.19 20281.56 21495.30 21087.78 20985.98 17994.19 20872.30 20778.84 21078.90 20990.06 20296.59 16095.47 16899.46 15995.49 208
new-patchmatchnet86.12 20587.30 20784.74 20486.92 21095.19 21183.57 21484.42 18992.67 21165.66 21280.32 20864.72 21789.41 20392.33 20789.21 20998.43 19096.69 204
test_method87.27 20491.58 20082.25 20775.65 21887.52 21786.81 21172.60 21697.51 16373.20 20385.07 20279.97 20388.69 20497.31 14495.24 17496.53 21098.41 182
TDRefinement93.04 16993.57 18692.41 14996.58 8798.77 11797.78 9891.96 10298.12 14180.84 17089.13 17979.87 20587.78 20596.44 16494.50 19199.54 15098.15 187
Gipumacopyleft81.40 20781.78 20980.96 20983.21 21285.61 21879.73 21676.25 21497.33 16864.21 21655.32 21555.55 22086.04 20692.43 20692.20 20396.32 21293.99 211
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
Anonymous2023120690.70 19593.93 18086.92 20090.21 20596.79 20190.30 20286.61 17596.05 19669.25 20988.46 18584.86 17885.86 20797.11 15296.47 14499.30 17497.80 193
test20.0390.65 19693.71 18487.09 19890.44 20396.24 20489.74 20685.46 18195.59 20372.99 20590.68 16885.33 17384.41 20895.94 18295.10 17999.52 15397.06 201
IB-MVS93.96 1595.02 13396.44 14093.36 14097.05 8399.28 8890.43 20093.39 8398.02 14496.02 3994.92 13592.07 13483.52 20995.38 18695.82 16399.72 5999.59 117
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ambc80.99 21080.04 21690.84 21390.91 19796.09 19474.18 19962.81 21430.59 22582.44 21096.25 17591.77 20595.91 21398.56 178
FPMVS83.82 20684.61 20882.90 20690.39 20490.71 21490.85 19984.10 19095.47 20465.15 21383.44 20474.46 21475.48 21181.63 21279.42 21491.42 21687.14 214
EMVS68.12 21268.11 21468.14 21375.51 21971.76 22055.38 22277.20 21177.78 21737.79 22253.59 21643.61 22274.72 21267.05 21776.70 21688.27 21986.24 215
E-PMN68.30 21168.43 21368.15 21274.70 22071.56 22155.64 22177.24 21077.48 21839.46 22151.95 21841.68 22373.28 21370.65 21679.51 21388.61 21886.20 216
MVEpermissive67.97 1965.53 21367.43 21563.31 21459.33 22174.20 21953.09 22370.43 21766.27 21943.13 22045.98 21930.62 22470.65 21479.34 21586.30 21183.25 22089.33 213
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS277.26 20879.47 21174.70 21176.00 21788.37 21674.22 21876.34 21278.31 21654.13 21969.96 21352.50 22170.14 21584.83 21188.71 21097.35 20393.58 212
tmp_tt82.25 20797.73 6988.71 21580.18 21568.65 21899.15 5386.98 13499.47 985.31 17468.35 21687.51 21083.81 21291.64 215
PMVScopyleft72.60 1776.39 20977.66 21274.92 21081.04 21569.37 22268.47 21980.54 19685.39 21565.07 21473.52 21272.91 21565.67 21780.35 21476.81 21588.71 21785.25 217
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testmvs31.24 21440.15 21620.86 21612.61 22217.99 22325.16 22413.30 21948.42 22024.82 22353.07 21730.13 22628.47 21842.73 21837.65 21720.79 22151.04 218
test12326.75 21534.25 21718.01 2177.93 22317.18 22424.85 22512.36 22044.83 22116.52 22441.80 22018.10 22728.29 21933.08 21934.79 21818.10 22249.95 219
GG-mvs-BLEND69.11 21098.13 7935.26 2153.49 22498.20 15694.89 1662.38 22198.42 1285.82 22596.37 11498.60 645.97 22098.75 6297.98 9399.01 18498.61 177
uanet_test0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
sosnet-low-res0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
sosnet0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
RE-MVS-def69.05 210
9.1499.79 45
SR-MVS99.67 1398.25 1499.94 25
our_test_392.30 16897.58 18390.09 204
MTAPA98.09 1599.97 7
MTMP98.46 1199.96 12
Patchmatch-RL test66.86 220
XVS97.42 7399.62 2898.59 6593.81 7899.95 1799.69 82
X-MVStestdata97.42 7399.62 2898.59 6593.81 7899.95 1799.69 82
mPP-MVS99.53 3099.89 34
NP-MVS98.57 118
Patchmtry98.59 13397.15 12079.14 20380.42 173