This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSP-MVS99.45 299.54 599.35 199.72 799.76 199.63 1198.37 299.63 699.03 298.95 3599.98 199.60 799.60 599.05 2499.74 4499.79 38
PVSNet_Blended_VisFu97.41 7298.49 6396.15 8797.49 7099.76 196.02 14193.75 7699.26 3993.38 8593.73 14399.35 5596.47 13398.96 4198.46 6099.77 3399.90 3
DVP-MVS99.34 599.52 899.14 799.68 1199.75 399.64 898.31 799.44 1998.10 1399.28 1499.98 199.30 3399.34 2199.05 2499.81 1699.79 38
APDe-MVS99.49 199.64 199.32 299.74 499.74 499.75 198.34 399.56 1098.72 699.57 599.97 699.53 1699.65 299.25 1499.84 599.77 51
CHOSEN 1792x268896.41 10196.99 11895.74 9798.01 6599.72 597.70 9890.78 12399.13 5990.03 11487.35 18795.36 10298.33 8198.59 7398.91 3699.59 12999.87 12
IS_MVSNet97.86 5798.86 5296.68 7396.02 9899.72 598.35 7493.37 8498.75 10894.01 7196.88 9898.40 6798.48 7899.09 3499.42 599.83 899.80 30
CSCG98.90 2998.93 5098.85 2499.75 399.72 599.49 2096.58 4299.38 2298.05 1598.97 3397.87 7399.49 1997.78 11998.92 3499.78 2899.90 3
DPE-MVS99.39 399.55 499.20 399.63 2099.71 899.66 698.33 599.29 3398.40 1199.64 499.98 199.31 3199.56 898.96 3199.85 399.70 86
DELS-MVS98.19 4898.77 5697.52 5098.29 6099.71 899.12 4094.58 6298.80 9995.38 4796.24 11498.24 7097.92 9399.06 3799.52 199.82 1099.79 38
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Vis-MVSNetpermissive96.16 10898.22 7393.75 12295.33 12799.70 1097.27 10990.85 12098.30 12885.51 13995.72 12696.45 8693.69 18698.70 6399.00 2899.84 599.69 90
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
tfpn200view996.75 9096.51 13097.03 6396.31 9199.67 1198.41 6893.99 7097.35 15994.52 6095.90 12086.93 15199.14 4398.26 8797.80 9999.82 1099.70 86
thres600view796.69 9496.43 13797.00 6896.28 9499.67 1198.41 6893.99 7097.85 15094.29 6895.96 11885.91 16399.19 3798.26 8797.63 10499.82 1099.73 70
thres20096.76 8996.53 12897.03 6396.31 9199.67 1198.37 7193.99 7097.68 15694.49 6295.83 12386.77 15399.18 3998.26 8797.82 9899.82 1099.66 100
CS-MVS98.06 5299.12 3596.82 7195.83 10699.66 1498.93 5193.12 9098.95 7894.29 6898.55 5399.05 6098.94 5599.05 3898.78 4799.83 899.80 30
SteuartSystems-ACMMP99.20 1499.51 998.83 2699.66 1599.66 1499.71 398.12 2799.14 5496.62 3399.16 2099.98 199.12 4499.63 399.19 2099.78 2899.83 22
Skip Steuart: Steuart Systems R&D Blog.
EIA-MVS97.70 6398.78 5596.44 8395.72 11099.65 1698.14 8393.72 7798.30 12892.31 9998.63 5197.90 7298.97 5498.92 4698.30 7599.78 2899.80 30
zzz-MVS99.31 799.44 1599.16 599.73 599.65 1699.63 1198.26 1299.27 3698.01 1799.27 1599.97 699.60 799.59 698.58 5599.71 6799.73 70
UGNet97.66 6499.07 4096.01 9297.19 7999.65 1697.09 11993.39 8299.35 2794.40 6698.79 4399.59 5294.24 17798.04 10598.29 7699.73 5199.80 30
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
HyFIR lowres test95.99 11196.56 12695.32 10297.99 6699.65 1696.54 13088.86 14698.44 12389.77 11784.14 19697.05 8399.03 5198.55 7598.19 8199.73 5199.86 15
DeepC-MVS97.63 498.33 4598.57 5998.04 4198.62 5699.65 1699.45 2498.15 2399.51 1692.80 9395.74 12496.44 8899.46 2199.37 1899.50 299.78 2899.81 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet98.46 4199.16 3397.64 4898.48 5799.64 2199.35 3094.71 5799.53 1395.17 5097.63 8299.59 5298.38 8098.88 5098.99 2999.74 4499.86 15
ACMMPR99.30 899.54 599.03 1599.66 1599.64 2199.68 498.25 1399.56 1097.12 2999.19 1899.95 1699.72 199.43 1599.25 1499.72 5799.77 51
ACMMPcopyleft98.74 3399.03 4598.40 3299.36 3899.64 2199.20 3597.75 3798.82 9695.24 4998.85 4199.87 3599.17 4198.74 6197.50 11099.71 6799.76 55
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS_030498.14 5099.03 4597.10 5998.05 6499.63 2499.27 3394.33 6499.63 693.06 8997.32 8599.05 6098.09 8798.82 5398.87 3899.81 1699.89 6
thres40096.71 9396.45 13597.02 6596.28 9499.63 2498.41 6894.00 6997.82 15194.42 6595.74 12486.26 16099.18 3998.20 9197.79 10099.81 1699.70 86
PGM-MVS98.86 3099.35 2498.29 3499.77 199.63 2499.67 595.63 4598.66 11195.27 4899.11 2499.82 4199.67 499.33 2299.19 2099.73 5199.74 66
LS3D97.79 5898.25 6997.26 5698.40 5899.63 2499.53 1798.63 199.25 4188.13 12196.93 9694.14 11899.19 3799.14 3299.23 1799.69 7899.42 139
SMA-MVS99.38 499.60 299.12 899.76 299.62 2899.39 2898.23 1899.52 1598.03 1699.45 999.98 199.64 599.58 799.30 1199.68 8799.76 55
XVS97.42 7299.62 2898.59 6393.81 7799.95 1699.69 78
X-MVStestdata97.42 7299.62 2898.59 6393.81 7799.95 1699.69 78
X-MVS98.93 2899.37 2098.42 3199.67 1299.62 2899.60 1498.15 2399.08 6493.81 7798.46 5899.95 1699.59 1099.49 1299.21 1999.68 8799.75 62
Vis-MVSNet (Re-imp)97.40 7398.89 5195.66 9995.99 10199.62 2897.82 9293.22 8798.82 9691.40 10796.94 9598.56 6595.70 15099.14 3299.41 699.79 2599.75 62
ETV-MVS98.05 5399.25 2996.65 7595.61 11599.61 3398.26 7993.52 8098.90 8593.74 8099.32 1399.20 5798.90 6099.21 2898.72 4899.87 299.79 38
CHOSEN 280x42097.99 5599.24 3096.53 7998.34 5999.61 3398.36 7389.80 13799.27 3695.08 5299.81 198.58 6498.64 7199.02 3998.92 3498.93 18099.48 135
PVSNet_BlendedMVS97.51 6997.71 9197.28 5498.06 6299.61 3397.31 10795.02 5199.08 6495.51 4498.05 6990.11 13898.07 8898.91 4798.40 6499.72 5799.78 44
PVSNet_Blended97.51 6997.71 9197.28 5498.06 6299.61 3397.31 10795.02 5199.08 6495.51 4498.05 6990.11 13898.07 8898.91 4798.40 6499.72 5799.78 44
MVS_111021_HR98.59 4099.36 2197.68 4799.42 3499.61 3398.14 8394.81 5499.31 3095.00 5399.51 799.79 4499.00 5398.94 4398.83 4399.69 7899.57 119
tttt051797.23 7698.24 7296.04 9095.60 11799.60 3896.94 12493.23 8599.15 5192.56 9798.74 4896.12 9598.17 8298.21 9096.10 15099.73 5199.78 44
ACMMP_NAP99.05 2499.45 1298.58 3099.73 599.60 3899.64 898.28 1199.23 4294.57 5999.35 1299.97 699.55 1499.63 398.66 5099.70 7699.74 66
thisisatest053097.23 7698.25 6996.05 8995.60 11799.59 4096.96 12393.23 8599.17 5092.60 9698.75 4796.19 9298.17 8298.19 9296.10 15099.72 5799.77 51
HFP-MVS99.32 699.53 799.07 1299.69 899.59 4099.63 1198.31 799.56 1097.37 2599.27 1599.97 699.70 399.35 2099.24 1699.71 6799.76 55
PHI-MVS99.08 2199.43 1798.67 2899.15 4599.59 4099.11 4197.35 3999.14 5497.30 2699.44 1099.96 1199.32 3098.89 4999.39 799.79 2599.58 114
APD-MVScopyleft99.25 1199.38 1999.09 1099.69 899.58 4399.56 1698.32 698.85 8997.87 1998.91 3899.92 2799.30 3399.45 1499.38 899.79 2599.58 114
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS99.27 999.44 1599.08 1199.62 2299.58 4399.53 1798.16 2199.21 4597.79 2099.15 2199.96 1199.59 1099.54 1098.86 3999.78 2899.74 66
MP-MVScopyleft99.07 2299.36 2198.74 2799.63 2099.57 4599.66 698.25 1399.00 7595.62 4298.97 3399.94 2499.54 1599.51 1198.79 4699.71 6799.73 70
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EPP-MVSNet97.75 6198.71 5796.63 7795.68 11399.56 4697.51 10193.10 9199.22 4394.99 5497.18 9197.30 8098.65 7098.83 5298.93 3399.84 599.92 1
SD-MVS99.25 1199.50 1098.96 2098.79 5299.55 4799.33 3198.29 1099.75 197.96 1899.15 2199.95 1699.61 699.17 3099.06 2399.81 1699.84 18
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Anonymous20240521197.40 10396.45 8799.54 4898.08 8893.79 7398.24 13293.55 14494.41 11498.88 6398.04 10598.24 7899.75 3999.76 55
TSAR-MVS + MP.99.27 999.57 398.92 2298.78 5399.53 4999.72 298.11 2899.73 297.43 2499.15 2199.96 1199.59 1099.73 199.07 2299.88 199.82 23
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CPTT-MVS99.14 1899.20 3299.06 1399.58 2599.53 4999.45 2497.80 3699.19 4898.32 1298.58 5299.95 1699.60 799.28 2498.20 8099.64 10899.69 90
MVS_111021_LR98.67 3699.41 1897.81 4699.37 3699.53 4998.51 6595.52 4799.27 3694.85 5599.56 699.69 4999.04 5099.36 1998.88 3799.60 12399.58 114
thres100view90096.72 9296.47 13397.00 6896.31 9199.52 5298.28 7794.01 6897.35 15994.52 6095.90 12086.93 15199.09 4898.07 10097.87 9599.81 1699.63 109
Anonymous2023121197.10 8097.06 11697.14 5896.32 9099.52 5298.16 8293.76 7498.84 9395.98 3990.92 16094.58 11398.90 6097.72 12498.10 8699.71 6799.75 62
casdiffmvs96.93 8597.43 10296.34 8495.70 11199.50 5497.75 9693.22 8798.98 7792.64 9494.97 13191.71 13398.93 5698.62 6898.52 5999.82 1099.72 81
MSLP-MVS++99.15 1799.24 3099.04 1499.52 3199.49 5599.09 4398.07 2999.37 2498.47 897.79 7699.89 3399.50 1798.93 4499.45 499.61 11599.76 55
HPM-MVS++copyleft99.10 2099.30 2698.86 2399.69 899.48 5699.59 1598.34 399.26 3996.55 3699.10 2799.96 1199.36 2799.25 2598.37 6899.64 10899.66 100
QAPM98.62 3999.04 4498.13 3899.57 2699.48 5699.17 3794.78 5599.57 996.16 3796.73 10099.80 4299.33 2998.79 5599.29 1399.75 3999.64 107
TSAR-MVS + ACMM98.77 3299.45 1297.98 4399.37 3699.46 5899.44 2698.13 2699.65 492.30 10098.91 3899.95 1699.05 4999.42 1698.95 3299.58 13399.82 23
TSAR-MVS + GP.98.66 3899.36 2197.85 4597.16 8099.46 5899.03 4794.59 6199.09 6297.19 2899.73 399.95 1699.39 2698.95 4298.69 4999.75 3999.65 103
canonicalmvs97.31 7497.81 9096.72 7296.20 9799.45 6098.21 8091.60 10699.22 4395.39 4698.48 5690.95 13599.16 4297.66 12699.05 2499.76 3599.90 3
baseline197.58 6698.05 8097.02 6596.21 9699.45 6097.71 9793.71 7898.47 12295.75 4198.78 4493.20 12798.91 5998.52 7798.44 6199.81 1699.53 124
3Dnovator96.92 798.67 3699.05 4198.23 3799.57 2699.45 6099.11 4194.66 5899.69 396.80 3296.55 10999.61 5199.40 2598.87 5199.49 399.85 399.66 100
COLMAP_ROBcopyleft96.15 1297.78 5998.17 7597.32 5298.84 5099.45 6099.28 3295.43 4899.48 1791.80 10594.83 13498.36 6898.90 6098.09 9797.85 9699.68 8799.15 156
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EPNet98.05 5398.86 5297.10 5999.02 4899.43 6498.47 6694.73 5699.05 7095.62 4298.93 3697.62 7795.48 15898.59 7398.55 5699.29 17199.84 18
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet_DTU96.64 9799.08 3893.81 12197.10 8199.42 6598.85 5590.01 13199.31 3079.98 17299.78 299.10 5997.42 10898.35 8498.05 8899.47 15499.53 124
OpenMVScopyleft96.23 1197.95 5698.45 6497.35 5199.52 3199.42 6598.91 5294.61 5998.87 8692.24 10294.61 13599.05 6099.10 4698.64 6699.05 2499.74 4499.51 131
xxxxxxxxxxxxxcwj98.14 5097.38 10499.03 1599.65 1799.41 6798.87 5398.24 1699.14 5498.73 499.11 2486.38 15998.92 5799.22 2698.84 4199.76 3599.56 120
SF-MVS99.18 1599.32 2599.03 1599.65 1799.41 6798.87 5398.24 1699.14 5498.73 499.11 2499.92 2798.92 5799.22 2698.84 4199.76 3599.56 120
DI_MVS_plusplus_trai96.90 8697.49 9796.21 8695.61 11599.40 6998.72 6092.11 9599.14 5492.98 9293.08 15495.14 10498.13 8698.05 10497.91 9399.74 4499.73 70
UA-Net97.13 7999.14 3494.78 10797.21 7899.38 7097.56 10092.04 9798.48 12188.03 12298.39 6199.91 3094.03 18099.33 2299.23 1799.81 1699.25 151
NCCC99.05 2499.08 3899.02 1899.62 2299.38 7099.43 2798.21 1999.36 2697.66 2297.79 7699.90 3199.45 2299.17 3098.43 6399.77 3399.51 131
DeepC-MVS_fast98.34 199.17 1699.45 1298.85 2499.55 2899.37 7299.64 898.05 3199.53 1396.58 3498.93 3699.92 2799.49 1999.46 1399.32 1099.80 2499.64 107
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CDPH-MVS98.41 4299.10 3797.61 4999.32 4299.36 7399.49 2096.15 4498.82 9691.82 10498.41 5999.66 5099.10 4698.93 4498.97 3099.75 3999.58 114
baseline97.45 7198.70 5895.99 9395.89 10399.36 7398.29 7691.37 11299.21 4592.99 9198.40 6096.87 8597.96 9298.60 7198.60 5499.42 16199.86 15
PCF-MVS97.50 698.18 4998.35 6797.99 4298.65 5599.36 7398.94 5098.14 2598.59 11393.62 8196.61 10599.76 4799.03 5197.77 12097.45 11599.57 13798.89 170
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Effi-MVS+95.81 11397.31 11194.06 11795.09 13099.35 7697.24 11188.22 15598.54 11785.38 14098.52 5488.68 14398.70 6798.32 8597.93 9199.74 4499.84 18
train_agg98.73 3499.11 3698.28 3599.36 3899.35 7699.48 2297.96 3398.83 9493.86 7698.70 5099.86 3699.44 2399.08 3698.38 6699.61 11599.58 114
diffmvs96.83 8797.33 10796.25 8595.76 10899.34 7898.06 8993.22 8799.43 2092.30 10096.90 9789.83 14298.55 7598.00 10898.14 8299.64 10899.70 86
CNVR-MVS99.23 1399.28 2799.17 499.65 1799.34 7899.46 2398.21 1999.28 3498.47 898.89 4099.94 2499.50 1799.42 1698.61 5399.73 5199.52 127
3Dnovator+96.92 798.71 3599.05 4198.32 3399.53 2999.34 7899.06 4594.61 5999.65 497.49 2396.75 9999.86 3699.44 2398.78 5699.30 1199.81 1699.67 96
MCST-MVS99.11 1999.27 2898.93 2199.67 1299.33 8199.51 1998.31 799.28 3496.57 3599.10 2799.90 3199.71 299.19 2998.35 6999.82 1099.71 84
DeepPCF-MVS97.74 398.34 4499.46 1197.04 6298.82 5199.33 8196.28 13797.47 3899.58 894.70 5898.99 3299.85 3997.24 11199.55 999.34 997.73 19499.56 120
TAPA-MVS97.53 598.41 4298.84 5497.91 4499.08 4799.33 8199.15 3897.13 4099.34 2893.20 8697.75 7899.19 5899.20 3698.66 6498.13 8399.66 10099.48 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
AdaColmapbinary99.06 2398.98 4899.15 699.60 2499.30 8499.38 2998.16 2199.02 7398.55 798.71 4999.57 5499.58 1399.09 3497.84 9799.64 10899.36 145
MVS_Test97.30 7598.54 6095.87 9495.74 10999.28 8598.19 8191.40 11199.18 4991.59 10698.17 6796.18 9398.63 7298.61 6998.55 5699.66 10099.78 44
IB-MVS93.96 1595.02 12896.44 13693.36 13597.05 8299.28 8590.43 19593.39 8298.02 13996.02 3894.92 13392.07 13183.52 20295.38 18095.82 15899.72 5799.59 113
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune90.85 18794.14 16687.02 19394.89 13499.25 8798.64 6176.29 20788.24 20757.50 21079.93 20295.45 10195.18 16798.77 5798.07 8799.62 11399.24 152
PatchMatch-RL97.77 6098.25 6997.21 5799.11 4699.25 8797.06 12194.09 6798.72 10995.14 5198.47 5796.29 9098.43 7998.65 6597.44 11699.45 15698.94 165
PLCcopyleft97.93 299.02 2798.94 4999.11 999.46 3399.24 8999.06 4597.96 3399.31 3099.16 197.90 7499.79 4499.36 2798.71 6298.12 8499.65 10499.52 127
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OMC-MVS98.84 3199.01 4798.65 2999.39 3599.23 9099.22 3496.70 4199.40 2197.77 2197.89 7599.80 4299.21 3599.02 3998.65 5199.57 13799.07 162
abl_698.09 3999.33 4199.22 9198.79 5894.96 5398.52 12097.00 3197.30 8699.86 3698.76 6599.69 7899.41 140
CNLPA99.03 2699.05 4199.01 1999.27 4399.22 9199.03 4797.98 3299.34 2899.00 398.25 6599.71 4899.31 3198.80 5498.82 4499.48 15299.17 155
MSDG98.27 4798.29 6898.24 3699.20 4499.22 9199.20 3597.82 3599.37 2494.43 6495.90 12097.31 7999.12 4498.76 5898.35 6999.67 9599.14 159
Effi-MVS+-dtu95.74 11598.04 8193.06 13993.92 14299.16 9497.90 9088.16 15799.07 6982.02 16098.02 7294.32 11696.74 12398.53 7697.56 10799.61 11599.62 110
SCA94.95 12997.44 10192.04 15195.55 11999.16 9496.26 13879.30 19699.02 7385.73 13798.18 6697.13 8297.69 10196.03 17394.91 17797.69 19597.65 188
Fast-Effi-MVS+95.38 12296.52 12994.05 11894.15 14199.14 9697.24 11186.79 16598.53 11887.62 12694.51 13687.06 14898.76 6598.60 7198.04 8999.72 5799.77 51
baseline296.36 10397.82 8994.65 10994.60 13899.09 9796.45 13489.63 13998.36 12691.29 10997.60 8394.13 11996.37 13498.45 8097.70 10299.54 14699.41 140
TAMVS95.53 11896.50 13294.39 11393.86 14599.03 9896.67 12789.55 14197.33 16190.64 11193.02 15591.58 13496.21 13797.72 12497.43 11799.43 15999.36 145
testgi95.67 11697.48 9893.56 12895.07 13199.00 9995.33 15488.47 15298.80 9986.90 13097.30 8692.33 12995.97 14597.66 12697.91 9399.60 12399.38 144
RPSCF97.61 6598.16 7696.96 7098.10 6199.00 9998.84 5693.76 7499.45 1894.78 5799.39 1199.31 5698.53 7796.61 15495.43 16497.74 19297.93 186
ADS-MVSNet94.65 13697.04 11791.88 15995.68 11398.99 10195.89 14279.03 19999.15 5185.81 13696.96 9498.21 7197.10 11394.48 19194.24 18697.74 19297.21 192
test0.0.03 196.69 9498.12 7895.01 10595.49 12298.99 10195.86 14390.82 12198.38 12592.54 9896.66 10397.33 7895.75 14897.75 12298.34 7199.60 12399.40 143
MDTV_nov1_ep1395.57 11797.48 9893.35 13695.43 12498.97 10397.19 11483.72 18598.92 8487.91 12497.75 7896.12 9597.88 9796.84 15395.64 16297.96 19098.10 183
CDS-MVSNet96.59 10098.02 8394.92 10694.45 13998.96 10497.46 10391.75 10297.86 14990.07 11396.02 11797.25 8196.21 13798.04 10598.38 6699.60 12399.65 103
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EPMVS95.05 12796.86 12292.94 14195.84 10598.96 10496.68 12679.87 19299.05 7090.15 11297.12 9295.99 9797.49 10695.17 18494.75 18297.59 19696.96 196
MAR-MVS97.71 6298.04 8197.32 5299.35 4098.91 10697.65 9991.68 10498.00 14097.01 3097.72 8094.83 10898.85 6498.44 8298.86 3999.41 16299.52 127
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Fast-Effi-MVS+-dtu95.38 12298.20 7492.09 15093.91 14398.87 10797.35 10685.01 17899.08 6481.09 16498.10 6896.36 8995.62 15398.43 8397.03 12399.55 14299.50 133
PatchmatchNetpermissive94.70 13497.08 11591.92 15695.53 12098.85 10895.77 14479.54 19498.95 7885.98 13498.52 5496.45 8697.39 10995.32 18194.09 18797.32 19897.38 191
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test-mter94.86 13297.32 10892.00 15392.41 16198.82 10996.18 14086.35 17198.05 13882.28 15896.48 11094.39 11595.46 16098.17 9396.20 14699.32 16999.13 160
GA-MVS93.93 15196.31 13991.16 17193.61 15098.79 11095.39 15390.69 12698.25 13173.28 19796.15 11588.42 14494.39 17597.76 12195.35 16699.58 13399.45 137
ACMH+95.51 1395.40 12196.00 14094.70 10896.33 8998.79 11096.79 12591.32 11398.77 10587.18 12895.60 12885.46 16696.97 11697.15 14596.59 13599.59 12999.65 103
ACMH95.42 1495.27 12595.96 14294.45 11296.83 8498.78 11294.72 16891.67 10598.95 7886.82 13196.42 11183.67 17697.00 11597.48 13596.68 13199.69 7899.76 55
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DPM-MVS98.31 4698.53 6198.05 4098.76 5498.77 11399.13 3998.07 2999.10 6194.27 7096.70 10199.84 4098.70 6797.90 11398.11 8599.40 16499.28 148
LGP-MVS_train96.23 10596.89 12095.46 10197.32 7498.77 11398.81 5793.60 7998.58 11485.52 13899.08 2986.67 15597.83 10097.87 11597.51 10999.69 7899.73 70
TDRefinement93.04 16493.57 18092.41 14496.58 8698.77 11397.78 9591.96 10098.12 13680.84 16589.13 17479.87 19887.78 19896.44 15994.50 18599.54 14698.15 182
MS-PatchMatch95.99 11197.26 11294.51 11197.46 7198.76 11697.27 10986.97 16499.09 6289.83 11693.51 14697.78 7496.18 13997.53 13395.71 16199.35 16798.41 178
ACMP96.25 1096.62 9996.72 12396.50 8296.96 8398.75 11797.80 9394.30 6598.85 8993.12 8898.78 4486.61 15697.23 11297.73 12396.61 13499.62 11399.71 84
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test-LLR95.50 11997.32 10893.37 13495.49 12298.74 11896.44 13590.82 12198.18 13382.75 15596.60 10694.67 11195.54 15698.09 9796.00 15299.20 17498.93 166
TESTMET0.1,194.95 12997.32 10892.20 14892.62 15798.74 11896.44 13586.67 16798.18 13382.75 15596.60 10694.67 11195.54 15698.09 9796.00 15299.20 17498.93 166
PMMVS97.52 6898.39 6596.51 8195.82 10798.73 12097.80 9393.05 9298.76 10694.39 6799.07 3097.03 8498.55 7598.31 8697.61 10599.43 15999.21 154
dps94.63 13795.31 15293.84 12095.53 12098.71 12196.54 13080.12 19197.81 15397.21 2796.98 9392.37 12896.34 13692.46 19891.77 19897.26 20097.08 194
MIMVSNet94.49 14297.59 9590.87 17691.74 17698.70 12294.68 17078.73 20197.98 14183.71 14897.71 8194.81 10996.96 11797.97 10997.92 9299.40 16498.04 184
FC-MVSNet-test96.07 11097.94 8693.89 11993.60 15198.67 12396.62 12990.30 13098.76 10688.62 11895.57 12997.63 7694.48 17397.97 10997.48 11399.71 6799.52 127
PatchT93.96 15097.36 10590.00 18394.76 13798.65 12490.11 19878.57 20297.96 14480.42 16896.07 11694.10 12096.85 12098.10 9597.49 11199.26 17299.15 156
LTVRE_ROB93.20 1692.84 16694.92 15390.43 18092.83 15598.63 12597.08 12087.87 15997.91 14668.42 20393.54 14579.46 20096.62 12897.55 13297.40 11899.74 4499.92 1
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tpmrst93.86 15395.88 14491.50 16395.69 11298.62 12695.64 14779.41 19598.80 9983.76 14795.63 12796.13 9497.25 11092.92 19592.31 19597.27 19996.74 197
CLD-MVS96.74 9196.51 13097.01 6796.71 8598.62 12698.73 5994.38 6398.94 8194.46 6397.33 8487.03 14998.07 8897.20 14496.87 12799.72 5799.54 123
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_ETH3D93.15 16192.33 19394.11 11693.91 14398.61 12894.81 16590.98 11897.06 16887.51 12782.27 20076.33 20697.87 9894.79 19097.47 11499.56 14099.81 28
CR-MVSNet94.57 14197.34 10691.33 16794.90 13398.59 12997.15 11579.14 19797.98 14180.42 16896.59 10893.50 12496.85 12098.10 9597.49 11199.50 15199.15 156
Patchmtry98.59 12997.15 11579.14 19780.42 168
RPMNet94.66 13597.16 11391.75 16094.98 13298.59 12997.00 12278.37 20397.98 14183.78 14596.27 11394.09 12196.91 11897.36 13896.73 12999.48 15299.09 161
ET-MVSNet_ETH3D96.17 10796.99 11895.21 10388.53 20198.54 13298.28 7792.61 9398.85 8993.60 8299.06 3190.39 13798.63 7295.98 17596.68 13199.61 11599.41 140
OPM-MVS96.22 10695.85 14696.65 7597.75 6798.54 13299.00 4995.53 4696.88 17289.88 11595.95 11986.46 15898.07 8897.65 12896.63 13399.67 9598.83 172
tpm cat194.06 14694.90 15493.06 13995.42 12698.52 13496.64 12880.67 18897.82 15192.63 9593.39 14895.00 10696.06 14391.36 20191.58 20096.98 20296.66 199
MVSTER97.16 7897.71 9196.52 8095.97 10298.48 13598.63 6292.10 9698.68 11095.96 4099.23 1791.79 13296.87 11998.76 5897.37 11999.57 13799.68 95
thisisatest051594.61 13896.89 12091.95 15592.00 16898.47 13692.01 19090.73 12498.18 13383.96 14294.51 13695.13 10593.38 18797.38 13794.74 18399.61 11599.79 38
TSAR-MVS + COLMAP96.79 8896.55 12797.06 6197.70 6998.46 13799.07 4496.23 4399.38 2291.32 10898.80 4285.61 16598.69 6997.64 12996.92 12699.37 16699.06 163
ACMM96.26 996.67 9696.69 12496.66 7497.29 7798.46 13796.48 13395.09 5099.21 4593.19 8798.78 4486.73 15498.17 8297.84 11796.32 14299.74 4499.49 134
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP-MVS96.37 10296.58 12596.13 8897.31 7698.44 13998.45 6795.22 4998.86 8788.58 11998.33 6387.00 15097.67 10297.23 14296.56 13699.56 14099.62 110
USDC94.26 14494.83 15693.59 12796.02 9898.44 13997.84 9188.65 15098.86 8782.73 15794.02 14080.56 19296.76 12297.28 14196.15 14999.55 14298.50 176
EG-PatchMatch MVS92.45 17593.92 17590.72 17792.56 15998.43 14194.88 16284.54 18197.18 16479.55 17486.12 19483.23 18093.15 19097.22 14396.00 15299.67 9599.27 150
FC-MVSNet-train97.04 8197.91 8796.03 9196.00 10098.41 14296.53 13293.42 8199.04 7293.02 9098.03 7194.32 11697.47 10797.93 11197.77 10199.75 3999.88 10
SixPastTwentyTwo93.44 15895.32 15191.24 16992.11 16698.40 14392.77 18688.64 15198.09 13777.83 18193.51 14685.74 16496.52 13296.91 15194.89 18099.59 12999.73 70
CVMVSNet95.33 12497.09 11493.27 13795.23 12898.39 14495.49 15092.58 9497.71 15583.00 15494.44 13893.28 12593.92 18397.79 11898.54 5899.41 16299.45 137
MVS-HIRNet92.51 17495.97 14188.48 19093.73 14998.37 14590.33 19675.36 20998.32 12777.78 18289.15 17394.87 10795.14 16897.62 13096.39 14098.51 18397.11 193
DCV-MVSNet97.56 6798.36 6696.62 7896.44 8898.36 14698.37 7191.73 10399.11 6094.80 5698.36 6296.28 9198.60 7498.12 9498.44 6199.76 3599.87 12
CostFormer94.25 14594.88 15593.51 13195.43 12498.34 14796.21 13980.64 18997.94 14594.01 7198.30 6486.20 16297.52 10492.71 19692.69 19397.23 20198.02 185
TinyColmap94.00 14894.35 16493.60 12695.89 10398.26 14897.49 10288.82 14798.56 11683.21 15191.28 15980.48 19496.68 12597.34 13996.26 14599.53 14898.24 181
anonymousdsp93.12 16295.86 14589.93 18591.09 19398.25 14995.12 15585.08 17697.44 15873.30 19690.89 16190.78 13695.25 16697.91 11295.96 15699.71 6799.82 23
tfpnnormal93.85 15494.12 16893.54 13093.22 15498.24 15095.45 15191.96 10094.61 19883.91 14390.74 16281.75 18997.04 11497.49 13496.16 14899.68 8799.84 18
EPNet_dtu96.30 10498.53 6193.70 12598.97 4998.24 15097.36 10594.23 6698.85 8979.18 17699.19 1898.47 6694.09 17997.89 11498.21 7998.39 18698.85 171
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GG-mvs-BLEND69.11 20398.13 7735.26 2083.49 21798.20 15294.89 1612.38 21498.42 1245.82 21796.37 11298.60 635.97 21398.75 6097.98 9099.01 17998.61 173
pm-mvs194.27 14395.57 14892.75 14292.58 15898.13 15394.87 16390.71 12596.70 17883.78 14589.94 16889.85 14194.96 17197.58 13197.07 12299.61 11599.72 81
UniMVSNet (Re)94.58 14095.34 15093.71 12492.25 16598.08 15494.97 15891.29 11797.03 17087.94 12393.97 14286.25 16196.07 14296.27 16795.97 15599.72 5799.79 38
GBi-Net96.98 8398.00 8495.78 9593.81 14697.98 15598.09 8591.32 11398.80 9993.92 7397.21 8895.94 9897.89 9498.07 10098.34 7199.68 8799.67 96
test196.98 8398.00 8495.78 9593.81 14697.98 15598.09 8591.32 11398.80 9993.92 7397.21 8895.94 9897.89 9498.07 10098.34 7199.68 8799.67 96
FMVSNet397.02 8298.12 7895.73 9893.59 15297.98 15598.34 7591.32 11398.80 9993.92 7397.21 8895.94 9897.63 10398.61 6998.62 5299.61 11599.65 103
FMVSNet296.64 9797.50 9695.63 10093.81 14697.98 15598.09 8590.87 11998.99 7693.48 8393.17 15195.25 10397.89 9498.63 6798.80 4599.68 8799.67 96
MDTV_nov1_ep13_2view92.44 17695.66 14788.68 18891.05 19497.92 15992.17 18979.64 19398.83 9476.20 18691.45 15793.51 12395.04 16995.68 17993.70 19097.96 19098.53 175
WR-MVS_H93.54 15694.67 15992.22 14691.95 16997.91 16094.58 17488.75 14896.64 17983.88 14490.66 16485.13 16994.40 17496.54 15895.91 15799.73 5199.89 6
UniMVSNet_NR-MVSNet94.59 13995.47 14993.55 12991.85 17397.89 16195.03 15692.00 9897.33 16186.12 13293.19 15087.29 14796.60 12996.12 17096.70 13099.72 5799.80 30
FMVSNet195.77 11496.41 13895.03 10493.42 15397.86 16297.11 11889.89 13498.53 11892.00 10389.17 17293.23 12698.15 8598.07 10098.34 7199.61 11599.69 90
DU-MVS93.98 14994.44 16393.44 13291.66 17897.77 16395.03 15691.57 10797.17 16586.12 13293.13 15281.13 19196.60 12995.10 18697.01 12599.67 9599.80 30
NR-MVSNet94.01 14794.51 16193.44 13292.56 15997.77 16395.67 14591.57 10797.17 16585.84 13593.13 15280.53 19395.29 16497.01 14996.17 14799.69 7899.75 62
pmmvs592.71 17394.27 16590.90 17591.42 18797.74 16593.23 18386.66 16895.99 19178.96 17891.45 15783.44 17895.55 15597.30 14095.05 17499.58 13398.93 166
IterMVS-SCA-FT94.89 13197.87 8891.42 16494.86 13597.70 16697.24 11184.88 17998.93 8275.74 18894.26 13998.25 6996.69 12498.52 7797.68 10399.10 17899.73 70
pmmvs495.09 12695.90 14394.14 11592.29 16397.70 16695.45 15190.31 12898.60 11290.70 11093.25 14989.90 14096.67 12697.13 14695.42 16599.44 15899.28 148
v7n91.61 18692.95 18790.04 18290.56 19697.69 16893.74 18285.59 17495.89 19376.95 18386.60 19278.60 20393.76 18597.01 14994.99 17599.65 10499.87 12
WR-MVS93.43 15994.48 16292.21 14791.52 18597.69 16894.66 17289.98 13296.86 17383.43 14990.12 16685.03 17093.94 18296.02 17495.82 15899.71 6799.82 23
v14892.36 18192.88 18891.75 16091.63 18197.66 17092.64 18790.55 12796.09 18783.34 15088.19 18080.00 19692.74 19193.98 19394.58 18499.58 13399.69 90
V4293.05 16393.90 17692.04 15191.91 17097.66 17094.91 16089.91 13396.85 17480.58 16789.66 16983.43 17995.37 16295.03 18894.90 17899.59 12999.78 44
pmmvs691.90 18592.53 19291.17 17091.81 17497.63 17293.23 18388.37 15493.43 20380.61 16677.32 20487.47 14694.12 17896.58 15695.72 16098.88 18299.53 124
v2v48292.77 17093.52 18391.90 15891.59 18397.63 17294.57 17590.31 12896.80 17679.22 17588.74 17781.55 19096.04 14495.26 18294.97 17699.66 10099.69 90
IterMVS94.81 13397.71 9191.42 16494.83 13697.63 17297.38 10485.08 17698.93 8275.67 18994.02 14097.64 7596.66 12798.45 8097.60 10698.90 18199.72 81
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TransMVSNet (Re)93.45 15794.08 16992.72 14392.83 15597.62 17594.94 15991.54 10995.65 19583.06 15388.93 17583.53 17794.25 17697.41 13697.03 12399.67 9598.40 180
v114492.81 16794.03 17191.40 16691.68 17797.60 17694.73 16788.40 15396.71 17778.48 17988.14 18284.46 17495.45 16196.31 16695.22 16999.65 10499.76 55
our_test_392.30 16297.58 17790.09 199
TranMVSNet+NR-MVSNet93.67 15594.14 16693.13 13891.28 19297.58 17795.60 14891.97 9997.06 16884.05 14190.64 16582.22 18696.17 14094.94 18996.78 12899.69 7899.78 44
CP-MVSNet93.25 16094.00 17292.38 14591.65 18097.56 17994.38 17789.20 14396.05 18983.16 15289.51 17081.97 18796.16 14196.43 16096.56 13699.71 6799.89 6
IterMVS-LS96.12 10997.48 9894.53 11095.19 12997.56 17997.15 11589.19 14499.08 6488.23 12094.97 13194.73 11097.84 9997.86 11698.26 7799.60 12399.88 10
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PS-CasMVS92.72 17193.36 18491.98 15491.62 18297.52 18194.13 18188.98 14595.94 19281.51 16387.35 18779.95 19795.91 14696.37 16296.49 13899.70 7699.89 6
v892.87 16593.87 17791.72 16292.05 16797.50 18294.79 16688.20 15696.85 17480.11 17190.01 16782.86 18395.48 15895.15 18594.90 17899.66 10099.80 30
tpm92.38 17994.79 15789.56 18694.30 14097.50 18294.24 18078.97 20097.72 15474.93 19397.97 7382.91 18196.60 12993.65 19494.81 18198.33 18798.98 164
v14419292.38 17993.55 18291.00 17391.44 18697.47 18494.27 17887.41 16296.52 18278.03 18087.50 18682.65 18595.32 16395.82 17895.15 17199.55 14299.78 44
v119292.43 17793.61 17991.05 17291.53 18497.43 18594.61 17387.99 15896.60 18076.72 18487.11 18982.74 18495.85 14796.35 16495.30 16899.60 12399.74 66
CMPMVSbinary70.31 1890.74 18891.06 19590.36 18197.32 7497.43 18592.97 18587.82 16093.50 20275.34 19283.27 19884.90 17192.19 19492.64 19791.21 20196.50 20494.46 203
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
v192192092.36 18193.57 18090.94 17491.39 18897.39 18794.70 16987.63 16196.60 18076.63 18586.98 19082.89 18295.75 14896.26 16895.14 17299.55 14299.73 70
N_pmnet92.21 18394.60 16089.42 18791.88 17197.38 18889.15 20189.74 13897.89 14773.75 19587.94 18492.23 13093.85 18496.10 17193.20 19298.15 18997.43 190
PEN-MVS92.72 17193.20 18692.15 14991.29 19097.31 18994.67 17189.81 13596.19 18581.83 16188.58 17879.06 20195.61 15495.21 18396.27 14399.72 5799.82 23
v124091.99 18493.33 18590.44 17991.29 19097.30 19094.25 17986.79 16596.43 18375.49 19186.34 19381.85 18895.29 16496.42 16195.22 16999.52 14999.73 70
v1092.79 16994.06 17091.31 16891.78 17597.29 19194.87 16386.10 17296.97 17179.82 17388.16 18184.56 17395.63 15296.33 16595.31 16799.65 10499.80 30
Baseline_NR-MVSNet93.87 15293.98 17393.75 12291.66 17897.02 19295.53 14991.52 11097.16 16787.77 12587.93 18583.69 17596.35 13595.10 18697.23 12099.68 8799.73 70
DTE-MVSNet92.42 17892.85 18991.91 15790.87 19596.97 19394.53 17689.81 13595.86 19481.59 16288.83 17677.88 20495.01 17094.34 19296.35 14199.64 10899.73 70
DeepMVS_CXcopyleft96.85 19487.43 20489.27 14298.30 12875.55 19095.05 13079.47 19992.62 19389.48 20295.18 20795.96 201
Anonymous2023120690.70 18993.93 17486.92 19490.21 19996.79 19590.30 19786.61 16996.05 18969.25 20288.46 17984.86 17285.86 20097.11 14796.47 13999.30 17097.80 187
MDA-MVSNet-bldmvs87.84 19789.22 19986.23 19581.74 20796.77 19683.74 20689.57 14094.50 20072.83 19996.64 10464.47 21192.71 19281.43 20692.28 19696.81 20398.47 177
EU-MVSNet92.80 16894.76 15890.51 17891.88 17196.74 19792.48 18888.69 14996.21 18479.00 17791.51 15687.82 14591.83 19595.87 17796.27 14399.21 17398.92 169
test20.0390.65 19093.71 17887.09 19290.44 19796.24 19889.74 20085.46 17595.59 19672.99 19890.68 16385.33 16784.41 20195.94 17695.10 17399.52 14997.06 195
new_pmnet90.45 19192.84 19087.66 19188.96 20096.16 19988.71 20284.66 18097.56 15771.91 20185.60 19586.58 15793.28 18896.07 17293.54 19198.46 18494.39 204
FMVSNet595.42 12096.47 13394.20 11492.26 16495.99 20095.66 14687.15 16397.87 14893.46 8496.68 10293.79 12297.52 10497.10 14897.21 12199.11 17796.62 200
PM-MVS89.55 19390.30 19788.67 18987.06 20295.60 20190.88 19384.51 18296.14 18675.75 18786.89 19163.47 21294.64 17296.85 15293.89 18899.17 17699.29 147
pmmvs-eth3d89.81 19289.65 19890.00 18386.94 20395.38 20291.08 19186.39 17094.57 19982.27 15983.03 19964.94 20993.96 18196.57 15793.82 18999.35 16799.24 152
gm-plane-assit89.44 19492.82 19185.49 19791.37 18995.34 20379.55 21082.12 18691.68 20664.79 20787.98 18380.26 19595.66 15198.51 7997.56 10799.45 15698.41 178
MIMVSNet188.61 19590.68 19686.19 19681.56 20895.30 20487.78 20385.98 17394.19 20172.30 20078.84 20378.90 20290.06 19696.59 15595.47 16399.46 15595.49 202
new-patchmatchnet86.12 19887.30 20084.74 19886.92 20495.19 20583.57 20784.42 18392.67 20465.66 20480.32 20164.72 21089.41 19792.33 20089.21 20298.43 18596.69 198
pmmvs388.19 19691.27 19484.60 19985.60 20593.66 20685.68 20581.13 18792.36 20563.66 20989.51 17077.10 20593.22 18996.37 16292.40 19498.30 18897.46 189
ambc80.99 20380.04 21090.84 20790.91 19296.09 18774.18 19462.81 20730.59 21882.44 20396.25 16991.77 19895.91 20698.56 174
FPMVS83.82 19984.61 20182.90 20090.39 19890.71 20890.85 19484.10 18495.47 19765.15 20583.44 19774.46 20775.48 20481.63 20579.42 20791.42 20987.14 208
tmp_tt82.25 20197.73 6888.71 20980.18 20868.65 21199.15 5186.98 12999.47 885.31 16868.35 20987.51 20383.81 20591.64 208
PMMVS277.26 20179.47 20474.70 20476.00 21188.37 21074.22 21176.34 20678.31 20954.13 21169.96 20652.50 21470.14 20884.83 20488.71 20397.35 19793.58 206
Gipumacopyleft81.40 20081.78 20280.96 20283.21 20685.61 21179.73 20976.25 20897.33 16164.21 20855.32 20855.55 21386.04 19992.43 19992.20 19796.32 20593.99 205
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVEpermissive67.97 1965.53 20667.43 20863.31 20759.33 21474.20 21253.09 21670.43 21066.27 21243.13 21245.98 21230.62 21770.65 20779.34 20886.30 20483.25 21389.33 207
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS68.12 20568.11 20768.14 20675.51 21271.76 21355.38 21577.20 20577.78 21037.79 21453.59 20943.61 21574.72 20567.05 21076.70 20988.27 21286.24 209
E-PMN68.30 20468.43 20668.15 20574.70 21371.56 21455.64 21477.24 20477.48 21139.46 21351.95 21141.68 21673.28 20670.65 20979.51 20688.61 21186.20 210
PMVScopyleft72.60 1776.39 20277.66 20574.92 20381.04 20969.37 21568.47 21280.54 19085.39 20865.07 20673.52 20572.91 20865.67 21080.35 20776.81 20888.71 21085.25 211
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testmvs31.24 20740.15 20920.86 20912.61 21517.99 21625.16 21713.30 21248.42 21324.82 21553.07 21030.13 21928.47 21142.73 21137.65 21020.79 21451.04 212
test12326.75 20834.25 21018.01 2107.93 21617.18 21724.85 21812.36 21344.83 21416.52 21641.80 21318.10 22028.29 21233.08 21234.79 21118.10 21549.95 213
uanet_test0.00 2090.00 2110.00 2110.00 2180.00 2180.00 2190.00 2150.00 2150.00 2180.00 2140.00 2210.00 2140.00 2130.00 2120.00 2160.00 214
sosnet-low-res0.00 2090.00 2110.00 2110.00 2180.00 2180.00 2190.00 2150.00 2150.00 2180.00 2140.00 2210.00 2140.00 2130.00 2120.00 2160.00 214
sosnet0.00 2090.00 2110.00 2110.00 2180.00 2180.00 2190.00 2150.00 2150.00 2180.00 2140.00 2210.00 2140.00 2130.00 2120.00 2160.00 214
9.1499.79 44
SR-MVS99.67 1298.25 1399.94 24
test_part199.62 110
MTAPA98.09 1499.97 6
MTMP98.46 1099.96 11
Patchmatch-RL test66.86 213
mPP-MVS99.53 2999.89 33
NP-MVS98.57 115