MSP-MVS | | | 99.45 2 | 99.54 5 | 99.35 1 | 99.72 7 | 99.76 1 | 99.63 11 | 98.37 2 | 99.63 6 | 99.03 2 | 98.95 35 | 99.98 1 | 99.60 7 | 99.60 5 | 99.05 24 | 99.74 44 | 99.79 38 |
|
PVSNet_Blended_VisFu | | | 97.41 72 | 98.49 63 | 96.15 87 | 97.49 70 | 99.76 1 | 96.02 141 | 93.75 76 | 99.26 39 | 93.38 85 | 93.73 143 | 99.35 55 | 96.47 133 | 98.96 41 | 98.46 60 | 99.77 33 | 99.90 3 |
|
DVP-MVS | | | 99.34 5 | 99.52 8 | 99.14 7 | 99.68 11 | 99.75 3 | 99.64 8 | 98.31 7 | 99.44 19 | 98.10 13 | 99.28 14 | 99.98 1 | 99.30 33 | 99.34 21 | 99.05 24 | 99.81 16 | 99.79 38 |
|
APDe-MVS | | | 99.49 1 | 99.64 1 | 99.32 2 | 99.74 4 | 99.74 4 | 99.75 1 | 98.34 3 | 99.56 10 | 98.72 6 | 99.57 5 | 99.97 6 | 99.53 16 | 99.65 2 | 99.25 14 | 99.84 5 | 99.77 51 |
|
CHOSEN 1792x2688 | | | 96.41 101 | 96.99 118 | 95.74 97 | 98.01 65 | 99.72 5 | 97.70 98 | 90.78 123 | 99.13 59 | 90.03 114 | 87.35 187 | 95.36 102 | 98.33 81 | 98.59 73 | 98.91 36 | 99.59 129 | 99.87 12 |
|
IS_MVSNet | | | 97.86 57 | 98.86 52 | 96.68 73 | 96.02 98 | 99.72 5 | 98.35 74 | 93.37 84 | 98.75 108 | 94.01 71 | 96.88 98 | 98.40 67 | 98.48 78 | 99.09 34 | 99.42 5 | 99.83 8 | 99.80 30 |
|
CSCG | | | 98.90 29 | 98.93 50 | 98.85 24 | 99.75 3 | 99.72 5 | 99.49 20 | 96.58 42 | 99.38 22 | 98.05 15 | 98.97 33 | 97.87 73 | 99.49 19 | 97.78 119 | 98.92 34 | 99.78 28 | 99.90 3 |
|
DPE-MVS | | | 99.39 3 | 99.55 4 | 99.20 3 | 99.63 20 | 99.71 8 | 99.66 6 | 98.33 5 | 99.29 33 | 98.40 11 | 99.64 4 | 99.98 1 | 99.31 31 | 99.56 8 | 98.96 31 | 99.85 3 | 99.70 86 |
|
DELS-MVS | | | 98.19 48 | 98.77 56 | 97.52 50 | 98.29 60 | 99.71 8 | 99.12 40 | 94.58 62 | 98.80 99 | 95.38 47 | 96.24 114 | 98.24 70 | 97.92 93 | 99.06 37 | 99.52 1 | 99.82 10 | 99.79 38 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
Vis-MVSNet | | | 96.16 108 | 98.22 73 | 93.75 122 | 95.33 127 | 99.70 10 | 97.27 109 | 90.85 120 | 98.30 128 | 85.51 139 | 95.72 126 | 96.45 86 | 93.69 186 | 98.70 63 | 99.00 28 | 99.84 5 | 99.69 90 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
tfpn200view9 | | | 96.75 90 | 96.51 130 | 97.03 63 | 96.31 91 | 99.67 11 | 98.41 68 | 93.99 70 | 97.35 159 | 94.52 60 | 95.90 120 | 86.93 151 | 99.14 43 | 98.26 87 | 97.80 99 | 99.82 10 | 99.70 86 |
|
thres600view7 | | | 96.69 94 | 96.43 137 | 97.00 68 | 96.28 94 | 99.67 11 | 98.41 68 | 93.99 70 | 97.85 150 | 94.29 68 | 95.96 118 | 85.91 163 | 99.19 37 | 98.26 87 | 97.63 104 | 99.82 10 | 99.73 70 |
|
thres200 | | | 96.76 89 | 96.53 128 | 97.03 63 | 96.31 91 | 99.67 11 | 98.37 71 | 93.99 70 | 97.68 156 | 94.49 62 | 95.83 123 | 86.77 153 | 99.18 39 | 98.26 87 | 97.82 98 | 99.82 10 | 99.66 100 |
|
CS-MVS | | | 98.06 52 | 99.12 35 | 96.82 71 | 95.83 106 | 99.66 14 | 98.93 51 | 93.12 90 | 98.95 78 | 94.29 68 | 98.55 53 | 99.05 60 | 98.94 55 | 99.05 38 | 98.78 47 | 99.83 8 | 99.80 30 |
|
SteuartSystems-ACMMP | | | 99.20 14 | 99.51 9 | 98.83 26 | 99.66 15 | 99.66 14 | 99.71 3 | 98.12 27 | 99.14 54 | 96.62 33 | 99.16 20 | 99.98 1 | 99.12 44 | 99.63 3 | 99.19 20 | 99.78 28 | 99.83 22 |
Skip Steuart: Steuart Systems R&D Blog. |
EIA-MVS | | | 97.70 63 | 98.78 55 | 96.44 83 | 95.72 110 | 99.65 16 | 98.14 83 | 93.72 77 | 98.30 128 | 92.31 99 | 98.63 51 | 97.90 72 | 98.97 54 | 98.92 46 | 98.30 75 | 99.78 28 | 99.80 30 |
|
zzz-MVS | | | 99.31 7 | 99.44 15 | 99.16 5 | 99.73 5 | 99.65 16 | 99.63 11 | 98.26 12 | 99.27 36 | 98.01 17 | 99.27 15 | 99.97 6 | 99.60 7 | 99.59 6 | 98.58 55 | 99.71 67 | 99.73 70 |
|
UGNet | | | 97.66 64 | 99.07 40 | 96.01 92 | 97.19 79 | 99.65 16 | 97.09 119 | 93.39 82 | 99.35 27 | 94.40 66 | 98.79 43 | 99.59 52 | 94.24 177 | 98.04 105 | 98.29 76 | 99.73 51 | 99.80 30 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
HyFIR lowres test | | | 95.99 111 | 96.56 126 | 95.32 102 | 97.99 66 | 99.65 16 | 96.54 130 | 88.86 146 | 98.44 123 | 89.77 117 | 84.14 196 | 97.05 83 | 99.03 51 | 98.55 75 | 98.19 81 | 99.73 51 | 99.86 15 |
|
DeepC-MVS | | 97.63 4 | 98.33 45 | 98.57 59 | 98.04 41 | 98.62 56 | 99.65 16 | 99.45 24 | 98.15 23 | 99.51 16 | 92.80 93 | 95.74 124 | 96.44 88 | 99.46 21 | 99.37 18 | 99.50 2 | 99.78 28 | 99.81 28 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CANet | | | 98.46 41 | 99.16 33 | 97.64 48 | 98.48 57 | 99.64 21 | 99.35 30 | 94.71 57 | 99.53 13 | 95.17 50 | 97.63 82 | 99.59 52 | 98.38 80 | 98.88 50 | 98.99 29 | 99.74 44 | 99.86 15 |
|
ACMMPR | | | 99.30 8 | 99.54 5 | 99.03 15 | 99.66 15 | 99.64 21 | 99.68 4 | 98.25 13 | 99.56 10 | 97.12 29 | 99.19 18 | 99.95 16 | 99.72 1 | 99.43 15 | 99.25 14 | 99.72 57 | 99.77 51 |
|
ACMMP | | | 98.74 33 | 99.03 45 | 98.40 32 | 99.36 38 | 99.64 21 | 99.20 35 | 97.75 37 | 98.82 96 | 95.24 49 | 98.85 41 | 99.87 35 | 99.17 41 | 98.74 61 | 97.50 110 | 99.71 67 | 99.76 55 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
MVS_0304 | | | 98.14 50 | 99.03 45 | 97.10 59 | 98.05 64 | 99.63 24 | 99.27 33 | 94.33 64 | 99.63 6 | 93.06 89 | 97.32 85 | 99.05 60 | 98.09 87 | 98.82 53 | 98.87 38 | 99.81 16 | 99.89 6 |
|
thres400 | | | 96.71 93 | 96.45 135 | 97.02 65 | 96.28 94 | 99.63 24 | 98.41 68 | 94.00 69 | 97.82 151 | 94.42 65 | 95.74 124 | 86.26 160 | 99.18 39 | 98.20 91 | 97.79 100 | 99.81 16 | 99.70 86 |
|
PGM-MVS | | | 98.86 30 | 99.35 24 | 98.29 34 | 99.77 1 | 99.63 24 | 99.67 5 | 95.63 45 | 98.66 111 | 95.27 48 | 99.11 24 | 99.82 41 | 99.67 4 | 99.33 22 | 99.19 20 | 99.73 51 | 99.74 66 |
|
LS3D | | | 97.79 58 | 98.25 69 | 97.26 56 | 98.40 58 | 99.63 24 | 99.53 17 | 98.63 1 | 99.25 41 | 88.13 121 | 96.93 96 | 94.14 118 | 99.19 37 | 99.14 32 | 99.23 17 | 99.69 78 | 99.42 139 |
|
SMA-MVS | | | 99.38 4 | 99.60 2 | 99.12 8 | 99.76 2 | 99.62 28 | 99.39 28 | 98.23 18 | 99.52 15 | 98.03 16 | 99.45 9 | 99.98 1 | 99.64 5 | 99.58 7 | 99.30 11 | 99.68 87 | 99.76 55 |
|
XVS | | | | | | 97.42 72 | 99.62 28 | 98.59 63 | | | 93.81 77 | | 99.95 16 | | | | 99.69 78 | |
|
X-MVStestdata | | | | | | 97.42 72 | 99.62 28 | 98.59 63 | | | 93.81 77 | | 99.95 16 | | | | 99.69 78 | |
|
X-MVS | | | 98.93 28 | 99.37 20 | 98.42 31 | 99.67 12 | 99.62 28 | 99.60 14 | 98.15 23 | 99.08 64 | 93.81 77 | 98.46 58 | 99.95 16 | 99.59 10 | 99.49 12 | 99.21 19 | 99.68 87 | 99.75 62 |
|
Vis-MVSNet (Re-imp) | | | 97.40 73 | 98.89 51 | 95.66 99 | 95.99 101 | 99.62 28 | 97.82 92 | 93.22 87 | 98.82 96 | 91.40 107 | 96.94 95 | 98.56 65 | 95.70 150 | 99.14 32 | 99.41 6 | 99.79 25 | 99.75 62 |
|
ETV-MVS | | | 98.05 53 | 99.25 29 | 96.65 75 | 95.61 115 | 99.61 33 | 98.26 79 | 93.52 80 | 98.90 85 | 93.74 80 | 99.32 13 | 99.20 57 | 98.90 60 | 99.21 28 | 98.72 48 | 99.87 2 | 99.79 38 |
|
CHOSEN 280x420 | | | 97.99 55 | 99.24 30 | 96.53 79 | 98.34 59 | 99.61 33 | 98.36 73 | 89.80 137 | 99.27 36 | 95.08 52 | 99.81 1 | 98.58 64 | 98.64 71 | 99.02 39 | 98.92 34 | 98.93 180 | 99.48 135 |
|
PVSNet_BlendedMVS | | | 97.51 69 | 97.71 91 | 97.28 54 | 98.06 62 | 99.61 33 | 97.31 107 | 95.02 51 | 99.08 64 | 95.51 44 | 98.05 69 | 90.11 138 | 98.07 88 | 98.91 47 | 98.40 64 | 99.72 57 | 99.78 44 |
|
PVSNet_Blended | | | 97.51 69 | 97.71 91 | 97.28 54 | 98.06 62 | 99.61 33 | 97.31 107 | 95.02 51 | 99.08 64 | 95.51 44 | 98.05 69 | 90.11 138 | 98.07 88 | 98.91 47 | 98.40 64 | 99.72 57 | 99.78 44 |
|
MVS_111021_HR | | | 98.59 40 | 99.36 21 | 97.68 47 | 99.42 34 | 99.61 33 | 98.14 83 | 94.81 54 | 99.31 30 | 95.00 53 | 99.51 7 | 99.79 44 | 99.00 53 | 98.94 43 | 98.83 43 | 99.69 78 | 99.57 119 |
|
tttt0517 | | | 97.23 76 | 98.24 72 | 96.04 90 | 95.60 117 | 99.60 38 | 96.94 124 | 93.23 85 | 99.15 51 | 92.56 97 | 98.74 48 | 96.12 95 | 98.17 82 | 98.21 90 | 96.10 150 | 99.73 51 | 99.78 44 |
|
ACMMP_NAP | | | 99.05 24 | 99.45 12 | 98.58 30 | 99.73 5 | 99.60 38 | 99.64 8 | 98.28 11 | 99.23 42 | 94.57 59 | 99.35 12 | 99.97 6 | 99.55 14 | 99.63 3 | 98.66 50 | 99.70 76 | 99.74 66 |
|
thisisatest0530 | | | 97.23 76 | 98.25 69 | 96.05 89 | 95.60 117 | 99.59 40 | 96.96 123 | 93.23 85 | 99.17 50 | 92.60 96 | 98.75 47 | 96.19 92 | 98.17 82 | 98.19 92 | 96.10 150 | 99.72 57 | 99.77 51 |
|
HFP-MVS | | | 99.32 6 | 99.53 7 | 99.07 12 | 99.69 8 | 99.59 40 | 99.63 11 | 98.31 7 | 99.56 10 | 97.37 25 | 99.27 15 | 99.97 6 | 99.70 3 | 99.35 20 | 99.24 16 | 99.71 67 | 99.76 55 |
|
PHI-MVS | | | 99.08 21 | 99.43 17 | 98.67 28 | 99.15 45 | 99.59 40 | 99.11 41 | 97.35 39 | 99.14 54 | 97.30 26 | 99.44 10 | 99.96 11 | 99.32 30 | 98.89 49 | 99.39 7 | 99.79 25 | 99.58 114 |
|
APD-MVS | | | 99.25 11 | 99.38 19 | 99.09 10 | 99.69 8 | 99.58 43 | 99.56 16 | 98.32 6 | 98.85 89 | 97.87 19 | 98.91 38 | 99.92 27 | 99.30 33 | 99.45 14 | 99.38 8 | 99.79 25 | 99.58 114 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CP-MVS | | | 99.27 9 | 99.44 15 | 99.08 11 | 99.62 22 | 99.58 43 | 99.53 17 | 98.16 21 | 99.21 45 | 97.79 20 | 99.15 21 | 99.96 11 | 99.59 10 | 99.54 10 | 98.86 39 | 99.78 28 | 99.74 66 |
|
MP-MVS | | | 99.07 22 | 99.36 21 | 98.74 27 | 99.63 20 | 99.57 45 | 99.66 6 | 98.25 13 | 99.00 75 | 95.62 42 | 98.97 33 | 99.94 24 | 99.54 15 | 99.51 11 | 98.79 46 | 99.71 67 | 99.73 70 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
EPP-MVSNet | | | 97.75 61 | 98.71 57 | 96.63 77 | 95.68 113 | 99.56 46 | 97.51 101 | 93.10 91 | 99.22 43 | 94.99 54 | 97.18 91 | 97.30 80 | 98.65 70 | 98.83 52 | 98.93 33 | 99.84 5 | 99.92 1 |
|
SD-MVS | | | 99.25 11 | 99.50 10 | 98.96 20 | 98.79 52 | 99.55 47 | 99.33 31 | 98.29 10 | 99.75 1 | 97.96 18 | 99.15 21 | 99.95 16 | 99.61 6 | 99.17 30 | 99.06 23 | 99.81 16 | 99.84 18 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
Anonymous202405211 | | | | 97.40 103 | | 96.45 87 | 99.54 48 | 98.08 88 | 93.79 73 | 98.24 132 | | 93.55 144 | 94.41 114 | 98.88 63 | 98.04 105 | 98.24 78 | 99.75 39 | 99.76 55 |
|
TSAR-MVS + MP. | | | 99.27 9 | 99.57 3 | 98.92 22 | 98.78 53 | 99.53 49 | 99.72 2 | 98.11 28 | 99.73 2 | 97.43 24 | 99.15 21 | 99.96 11 | 99.59 10 | 99.73 1 | 99.07 22 | 99.88 1 | 99.82 23 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
CPTT-MVS | | | 99.14 18 | 99.20 32 | 99.06 13 | 99.58 25 | 99.53 49 | 99.45 24 | 97.80 36 | 99.19 48 | 98.32 12 | 98.58 52 | 99.95 16 | 99.60 7 | 99.28 24 | 98.20 80 | 99.64 108 | 99.69 90 |
|
MVS_111021_LR | | | 98.67 36 | 99.41 18 | 97.81 46 | 99.37 36 | 99.53 49 | 98.51 65 | 95.52 47 | 99.27 36 | 94.85 55 | 99.56 6 | 99.69 49 | 99.04 50 | 99.36 19 | 98.88 37 | 99.60 123 | 99.58 114 |
|
thres100view900 | | | 96.72 92 | 96.47 133 | 97.00 68 | 96.31 91 | 99.52 52 | 98.28 77 | 94.01 68 | 97.35 159 | 94.52 60 | 95.90 120 | 86.93 151 | 99.09 48 | 98.07 100 | 97.87 95 | 99.81 16 | 99.63 109 |
|
Anonymous20231211 | | | 97.10 80 | 97.06 116 | 97.14 58 | 96.32 90 | 99.52 52 | 98.16 82 | 93.76 74 | 98.84 93 | 95.98 39 | 90.92 160 | 94.58 113 | 98.90 60 | 97.72 124 | 98.10 86 | 99.71 67 | 99.75 62 |
|
casdiffmvs | | | 96.93 85 | 97.43 102 | 96.34 84 | 95.70 111 | 99.50 54 | 97.75 96 | 93.22 87 | 98.98 77 | 92.64 94 | 94.97 131 | 91.71 133 | 98.93 56 | 98.62 68 | 98.52 59 | 99.82 10 | 99.72 81 |
|
MSLP-MVS++ | | | 99.15 17 | 99.24 30 | 99.04 14 | 99.52 31 | 99.49 55 | 99.09 43 | 98.07 29 | 99.37 24 | 98.47 8 | 97.79 76 | 99.89 33 | 99.50 17 | 98.93 44 | 99.45 4 | 99.61 115 | 99.76 55 |
|
HPM-MVS++ | | | 99.10 20 | 99.30 26 | 98.86 23 | 99.69 8 | 99.48 56 | 99.59 15 | 98.34 3 | 99.26 39 | 96.55 36 | 99.10 27 | 99.96 11 | 99.36 27 | 99.25 25 | 98.37 68 | 99.64 108 | 99.66 100 |
|
QAPM | | | 98.62 39 | 99.04 44 | 98.13 38 | 99.57 26 | 99.48 56 | 99.17 37 | 94.78 55 | 99.57 9 | 96.16 37 | 96.73 100 | 99.80 42 | 99.33 29 | 98.79 55 | 99.29 13 | 99.75 39 | 99.64 107 |
|
TSAR-MVS + ACMM | | | 98.77 32 | 99.45 12 | 97.98 43 | 99.37 36 | 99.46 58 | 99.44 26 | 98.13 26 | 99.65 4 | 92.30 100 | 98.91 38 | 99.95 16 | 99.05 49 | 99.42 16 | 98.95 32 | 99.58 133 | 99.82 23 |
|
TSAR-MVS + GP. | | | 98.66 38 | 99.36 21 | 97.85 45 | 97.16 80 | 99.46 58 | 99.03 47 | 94.59 61 | 99.09 62 | 97.19 28 | 99.73 3 | 99.95 16 | 99.39 26 | 98.95 42 | 98.69 49 | 99.75 39 | 99.65 103 |
|
canonicalmvs | | | 97.31 74 | 97.81 90 | 96.72 72 | 96.20 97 | 99.45 60 | 98.21 80 | 91.60 106 | 99.22 43 | 95.39 46 | 98.48 56 | 90.95 135 | 99.16 42 | 97.66 126 | 99.05 24 | 99.76 35 | 99.90 3 |
|
baseline1 | | | 97.58 66 | 98.05 80 | 97.02 65 | 96.21 96 | 99.45 60 | 97.71 97 | 93.71 78 | 98.47 122 | 95.75 41 | 98.78 44 | 93.20 127 | 98.91 59 | 98.52 77 | 98.44 61 | 99.81 16 | 99.53 124 |
|
3Dnovator | | 96.92 7 | 98.67 36 | 99.05 41 | 98.23 37 | 99.57 26 | 99.45 60 | 99.11 41 | 94.66 58 | 99.69 3 | 96.80 32 | 96.55 109 | 99.61 51 | 99.40 25 | 98.87 51 | 99.49 3 | 99.85 3 | 99.66 100 |
|
COLMAP_ROB | | 96.15 12 | 97.78 59 | 98.17 75 | 97.32 52 | 98.84 50 | 99.45 60 | 99.28 32 | 95.43 48 | 99.48 17 | 91.80 105 | 94.83 134 | 98.36 68 | 98.90 60 | 98.09 97 | 97.85 96 | 99.68 87 | 99.15 156 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
EPNet | | | 98.05 53 | 98.86 52 | 97.10 59 | 99.02 48 | 99.43 64 | 98.47 66 | 94.73 56 | 99.05 70 | 95.62 42 | 98.93 36 | 97.62 77 | 95.48 158 | 98.59 73 | 98.55 56 | 99.29 171 | 99.84 18 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CANet_DTU | | | 96.64 97 | 99.08 38 | 93.81 121 | 97.10 81 | 99.42 65 | 98.85 55 | 90.01 131 | 99.31 30 | 79.98 172 | 99.78 2 | 99.10 59 | 97.42 108 | 98.35 84 | 98.05 88 | 99.47 154 | 99.53 124 |
|
OpenMVS | | 96.23 11 | 97.95 56 | 98.45 64 | 97.35 51 | 99.52 31 | 99.42 65 | 98.91 52 | 94.61 59 | 98.87 86 | 92.24 102 | 94.61 135 | 99.05 60 | 99.10 46 | 98.64 66 | 99.05 24 | 99.74 44 | 99.51 131 |
|
xxxxxxxxxxxxxcwj | | | 98.14 50 | 97.38 104 | 99.03 15 | 99.65 17 | 99.41 67 | 98.87 53 | 98.24 16 | 99.14 54 | 98.73 4 | 99.11 24 | 86.38 159 | 98.92 57 | 99.22 26 | 98.84 41 | 99.76 35 | 99.56 120 |
|
SF-MVS | | | 99.18 15 | 99.32 25 | 99.03 15 | 99.65 17 | 99.41 67 | 98.87 53 | 98.24 16 | 99.14 54 | 98.73 4 | 99.11 24 | 99.92 27 | 98.92 57 | 99.22 26 | 98.84 41 | 99.76 35 | 99.56 120 |
|
DI_MVS_plusplus_trai | | | 96.90 86 | 97.49 97 | 96.21 86 | 95.61 115 | 99.40 69 | 98.72 60 | 92.11 95 | 99.14 54 | 92.98 92 | 93.08 154 | 95.14 104 | 98.13 86 | 98.05 104 | 97.91 93 | 99.74 44 | 99.73 70 |
|
UA-Net | | | 97.13 79 | 99.14 34 | 94.78 107 | 97.21 78 | 99.38 70 | 97.56 100 | 92.04 97 | 98.48 121 | 88.03 122 | 98.39 61 | 99.91 30 | 94.03 180 | 99.33 22 | 99.23 17 | 99.81 16 | 99.25 151 |
|
NCCC | | | 99.05 24 | 99.08 38 | 99.02 18 | 99.62 22 | 99.38 70 | 99.43 27 | 98.21 19 | 99.36 26 | 97.66 22 | 97.79 76 | 99.90 31 | 99.45 22 | 99.17 30 | 98.43 63 | 99.77 33 | 99.51 131 |
|
DeepC-MVS_fast | | 98.34 1 | 99.17 16 | 99.45 12 | 98.85 24 | 99.55 28 | 99.37 72 | 99.64 8 | 98.05 31 | 99.53 13 | 96.58 34 | 98.93 36 | 99.92 27 | 99.49 19 | 99.46 13 | 99.32 10 | 99.80 24 | 99.64 107 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
CDPH-MVS | | | 98.41 42 | 99.10 37 | 97.61 49 | 99.32 42 | 99.36 73 | 99.49 20 | 96.15 44 | 98.82 96 | 91.82 104 | 98.41 59 | 99.66 50 | 99.10 46 | 98.93 44 | 98.97 30 | 99.75 39 | 99.58 114 |
|
baseline | | | 97.45 71 | 98.70 58 | 95.99 93 | 95.89 103 | 99.36 73 | 98.29 76 | 91.37 112 | 99.21 45 | 92.99 91 | 98.40 60 | 96.87 85 | 97.96 92 | 98.60 71 | 98.60 54 | 99.42 161 | 99.86 15 |
|
PCF-MVS | | 97.50 6 | 98.18 49 | 98.35 67 | 97.99 42 | 98.65 55 | 99.36 73 | 98.94 50 | 98.14 25 | 98.59 113 | 93.62 81 | 96.61 105 | 99.76 47 | 99.03 51 | 97.77 120 | 97.45 115 | 99.57 137 | 98.89 170 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
Effi-MVS+ | | | 95.81 113 | 97.31 111 | 94.06 117 | 95.09 130 | 99.35 76 | 97.24 111 | 88.22 155 | 98.54 117 | 85.38 140 | 98.52 54 | 88.68 143 | 98.70 67 | 98.32 85 | 97.93 91 | 99.74 44 | 99.84 18 |
|
train_agg | | | 98.73 34 | 99.11 36 | 98.28 35 | 99.36 38 | 99.35 76 | 99.48 22 | 97.96 33 | 98.83 94 | 93.86 76 | 98.70 50 | 99.86 36 | 99.44 23 | 99.08 36 | 98.38 66 | 99.61 115 | 99.58 114 |
|
diffmvs | | | 96.83 87 | 97.33 107 | 96.25 85 | 95.76 108 | 99.34 78 | 98.06 89 | 93.22 87 | 99.43 20 | 92.30 100 | 96.90 97 | 89.83 142 | 98.55 75 | 98.00 108 | 98.14 82 | 99.64 108 | 99.70 86 |
|
CNVR-MVS | | | 99.23 13 | 99.28 27 | 99.17 4 | 99.65 17 | 99.34 78 | 99.46 23 | 98.21 19 | 99.28 34 | 98.47 8 | 98.89 40 | 99.94 24 | 99.50 17 | 99.42 16 | 98.61 53 | 99.73 51 | 99.52 127 |
|
3Dnovator+ | | 96.92 7 | 98.71 35 | 99.05 41 | 98.32 33 | 99.53 29 | 99.34 78 | 99.06 45 | 94.61 59 | 99.65 4 | 97.49 23 | 96.75 99 | 99.86 36 | 99.44 23 | 98.78 56 | 99.30 11 | 99.81 16 | 99.67 96 |
|
MCST-MVS | | | 99.11 19 | 99.27 28 | 98.93 21 | 99.67 12 | 99.33 81 | 99.51 19 | 98.31 7 | 99.28 34 | 96.57 35 | 99.10 27 | 99.90 31 | 99.71 2 | 99.19 29 | 98.35 69 | 99.82 10 | 99.71 84 |
|
DeepPCF-MVS | | 97.74 3 | 98.34 44 | 99.46 11 | 97.04 62 | 98.82 51 | 99.33 81 | 96.28 137 | 97.47 38 | 99.58 8 | 94.70 58 | 98.99 32 | 99.85 39 | 97.24 111 | 99.55 9 | 99.34 9 | 97.73 194 | 99.56 120 |
|
TAPA-MVS | | 97.53 5 | 98.41 42 | 98.84 54 | 97.91 44 | 99.08 47 | 99.33 81 | 99.15 38 | 97.13 40 | 99.34 28 | 93.20 86 | 97.75 78 | 99.19 58 | 99.20 36 | 98.66 64 | 98.13 83 | 99.66 100 | 99.48 135 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
AdaColmap | | | 99.06 23 | 98.98 48 | 99.15 6 | 99.60 24 | 99.30 84 | 99.38 29 | 98.16 21 | 99.02 73 | 98.55 7 | 98.71 49 | 99.57 54 | 99.58 13 | 99.09 34 | 97.84 97 | 99.64 108 | 99.36 145 |
|
MVS_Test | | | 97.30 75 | 98.54 60 | 95.87 94 | 95.74 109 | 99.28 85 | 98.19 81 | 91.40 111 | 99.18 49 | 91.59 106 | 98.17 67 | 96.18 93 | 98.63 72 | 98.61 69 | 98.55 56 | 99.66 100 | 99.78 44 |
|
IB-MVS | | 93.96 15 | 95.02 128 | 96.44 136 | 93.36 135 | 97.05 82 | 99.28 85 | 90.43 195 | 93.39 82 | 98.02 139 | 96.02 38 | 94.92 133 | 92.07 131 | 83.52 202 | 95.38 180 | 95.82 158 | 99.72 57 | 99.59 113 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
gg-mvs-nofinetune | | | 90.85 187 | 94.14 166 | 87.02 193 | 94.89 134 | 99.25 87 | 98.64 61 | 76.29 207 | 88.24 207 | 57.50 210 | 79.93 202 | 95.45 101 | 95.18 167 | 98.77 57 | 98.07 87 | 99.62 113 | 99.24 152 |
|
PatchMatch-RL | | | 97.77 60 | 98.25 69 | 97.21 57 | 99.11 46 | 99.25 87 | 97.06 121 | 94.09 67 | 98.72 109 | 95.14 51 | 98.47 57 | 96.29 90 | 98.43 79 | 98.65 65 | 97.44 116 | 99.45 156 | 98.94 165 |
|
PLC | | 97.93 2 | 99.02 27 | 98.94 49 | 99.11 9 | 99.46 33 | 99.24 89 | 99.06 45 | 97.96 33 | 99.31 30 | 99.16 1 | 97.90 74 | 99.79 44 | 99.36 27 | 98.71 62 | 98.12 84 | 99.65 104 | 99.52 127 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
OMC-MVS | | | 98.84 31 | 99.01 47 | 98.65 29 | 99.39 35 | 99.23 90 | 99.22 34 | 96.70 41 | 99.40 21 | 97.77 21 | 97.89 75 | 99.80 42 | 99.21 35 | 99.02 39 | 98.65 51 | 99.57 137 | 99.07 162 |
|
abl_6 | | | | | 98.09 39 | 99.33 41 | 99.22 91 | 98.79 58 | 94.96 53 | 98.52 120 | 97.00 31 | 97.30 86 | 99.86 36 | 98.76 65 | | | 99.69 78 | 99.41 140 |
|
CNLPA | | | 99.03 26 | 99.05 41 | 99.01 19 | 99.27 43 | 99.22 91 | 99.03 47 | 97.98 32 | 99.34 28 | 99.00 3 | 98.25 65 | 99.71 48 | 99.31 31 | 98.80 54 | 98.82 44 | 99.48 152 | 99.17 155 |
|
MSDG | | | 98.27 47 | 98.29 68 | 98.24 36 | 99.20 44 | 99.22 91 | 99.20 35 | 97.82 35 | 99.37 24 | 94.43 64 | 95.90 120 | 97.31 79 | 99.12 44 | 98.76 58 | 98.35 69 | 99.67 95 | 99.14 159 |
|
Effi-MVS+-dtu | | | 95.74 115 | 98.04 81 | 93.06 139 | 93.92 142 | 99.16 94 | 97.90 90 | 88.16 157 | 99.07 69 | 82.02 160 | 98.02 72 | 94.32 116 | 96.74 123 | 98.53 76 | 97.56 107 | 99.61 115 | 99.62 110 |
|
SCA | | | 94.95 129 | 97.44 101 | 92.04 151 | 95.55 119 | 99.16 94 | 96.26 138 | 79.30 196 | 99.02 73 | 85.73 137 | 98.18 66 | 97.13 82 | 97.69 101 | 96.03 173 | 94.91 177 | 97.69 195 | 97.65 188 |
|
Fast-Effi-MVS+ | | | 95.38 122 | 96.52 129 | 94.05 118 | 94.15 141 | 99.14 96 | 97.24 111 | 86.79 165 | 98.53 118 | 87.62 126 | 94.51 136 | 87.06 148 | 98.76 65 | 98.60 71 | 98.04 89 | 99.72 57 | 99.77 51 |
|
baseline2 | | | 96.36 103 | 97.82 89 | 94.65 109 | 94.60 138 | 99.09 97 | 96.45 134 | 89.63 139 | 98.36 126 | 91.29 109 | 97.60 83 | 94.13 119 | 96.37 134 | 98.45 80 | 97.70 102 | 99.54 146 | 99.41 140 |
|
TAMVS | | | 95.53 118 | 96.50 132 | 94.39 113 | 93.86 145 | 99.03 98 | 96.67 127 | 89.55 141 | 97.33 161 | 90.64 111 | 93.02 155 | 91.58 134 | 96.21 137 | 97.72 124 | 97.43 117 | 99.43 159 | 99.36 145 |
|
testgi | | | 95.67 116 | 97.48 98 | 93.56 128 | 95.07 131 | 99.00 99 | 95.33 154 | 88.47 152 | 98.80 99 | 86.90 130 | 97.30 86 | 92.33 129 | 95.97 145 | 97.66 126 | 97.91 93 | 99.60 123 | 99.38 144 |
|
RPSCF | | | 97.61 65 | 98.16 76 | 96.96 70 | 98.10 61 | 99.00 99 | 98.84 56 | 93.76 74 | 99.45 18 | 94.78 57 | 99.39 11 | 99.31 56 | 98.53 77 | 96.61 154 | 95.43 164 | 97.74 192 | 97.93 186 |
|
ADS-MVSNet | | | 94.65 136 | 97.04 117 | 91.88 159 | 95.68 113 | 98.99 101 | 95.89 142 | 79.03 199 | 99.15 51 | 85.81 136 | 96.96 94 | 98.21 71 | 97.10 113 | 94.48 191 | 94.24 186 | 97.74 192 | 97.21 192 |
|
test0.0.03 1 | | | 96.69 94 | 98.12 78 | 95.01 105 | 95.49 122 | 98.99 101 | 95.86 143 | 90.82 121 | 98.38 125 | 92.54 98 | 96.66 103 | 97.33 78 | 95.75 148 | 97.75 122 | 98.34 71 | 99.60 123 | 99.40 143 |
|
MDTV_nov1_ep13 | | | 95.57 117 | 97.48 98 | 93.35 136 | 95.43 124 | 98.97 103 | 97.19 114 | 83.72 185 | 98.92 84 | 87.91 124 | 97.75 78 | 96.12 95 | 97.88 97 | 96.84 153 | 95.64 162 | 97.96 190 | 98.10 183 |
|
CDS-MVSNet | | | 96.59 100 | 98.02 83 | 94.92 106 | 94.45 139 | 98.96 104 | 97.46 103 | 91.75 102 | 97.86 149 | 90.07 113 | 96.02 117 | 97.25 81 | 96.21 137 | 98.04 105 | 98.38 66 | 99.60 123 | 99.65 103 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
EPMVS | | | 95.05 127 | 96.86 122 | 92.94 141 | 95.84 105 | 98.96 104 | 96.68 126 | 79.87 192 | 99.05 70 | 90.15 112 | 97.12 92 | 95.99 97 | 97.49 106 | 95.17 184 | 94.75 182 | 97.59 196 | 96.96 196 |
|
MAR-MVS | | | 97.71 62 | 98.04 81 | 97.32 52 | 99.35 40 | 98.91 106 | 97.65 99 | 91.68 104 | 98.00 140 | 97.01 30 | 97.72 80 | 94.83 108 | 98.85 64 | 98.44 82 | 98.86 39 | 99.41 162 | 99.52 127 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
Fast-Effi-MVS+-dtu | | | 95.38 122 | 98.20 74 | 92.09 150 | 93.91 143 | 98.87 107 | 97.35 106 | 85.01 178 | 99.08 64 | 81.09 164 | 98.10 68 | 96.36 89 | 95.62 153 | 98.43 83 | 97.03 123 | 99.55 142 | 99.50 133 |
|
PatchmatchNet | | | 94.70 134 | 97.08 115 | 91.92 156 | 95.53 120 | 98.85 108 | 95.77 144 | 79.54 194 | 98.95 78 | 85.98 134 | 98.52 54 | 96.45 86 | 97.39 109 | 95.32 181 | 94.09 187 | 97.32 198 | 97.38 191 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
test-mter | | | 94.86 132 | 97.32 108 | 92.00 153 | 92.41 161 | 98.82 109 | 96.18 140 | 86.35 171 | 98.05 138 | 82.28 158 | 96.48 110 | 94.39 115 | 95.46 160 | 98.17 93 | 96.20 146 | 99.32 169 | 99.13 160 |
|
GA-MVS | | | 93.93 151 | 96.31 139 | 91.16 171 | 93.61 150 | 98.79 110 | 95.39 153 | 90.69 126 | 98.25 131 | 73.28 197 | 96.15 115 | 88.42 144 | 94.39 175 | 97.76 121 | 95.35 166 | 99.58 133 | 99.45 137 |
|
ACMH+ | | 95.51 13 | 95.40 121 | 96.00 140 | 94.70 108 | 96.33 89 | 98.79 110 | 96.79 125 | 91.32 113 | 98.77 105 | 87.18 128 | 95.60 128 | 85.46 166 | 96.97 116 | 97.15 145 | 96.59 135 | 99.59 129 | 99.65 103 |
|
ACMH | | 95.42 14 | 95.27 125 | 95.96 142 | 94.45 112 | 96.83 84 | 98.78 112 | 94.72 168 | 91.67 105 | 98.95 78 | 86.82 131 | 96.42 111 | 83.67 176 | 97.00 115 | 97.48 135 | 96.68 131 | 99.69 78 | 99.76 55 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DPM-MVS | | | 98.31 46 | 98.53 61 | 98.05 40 | 98.76 54 | 98.77 113 | 99.13 39 | 98.07 29 | 99.10 61 | 94.27 70 | 96.70 101 | 99.84 40 | 98.70 67 | 97.90 113 | 98.11 85 | 99.40 164 | 99.28 148 |
|
LGP-MVS_train | | | 96.23 105 | 96.89 120 | 95.46 101 | 97.32 74 | 98.77 113 | 98.81 57 | 93.60 79 | 98.58 114 | 85.52 138 | 99.08 29 | 86.67 155 | 97.83 100 | 97.87 115 | 97.51 109 | 99.69 78 | 99.73 70 |
|
TDRefinement | | | 93.04 164 | 93.57 180 | 92.41 144 | 96.58 86 | 98.77 113 | 97.78 95 | 91.96 100 | 98.12 136 | 80.84 165 | 89.13 174 | 79.87 198 | 87.78 198 | 96.44 159 | 94.50 185 | 99.54 146 | 98.15 182 |
|
MS-PatchMatch | | | 95.99 111 | 97.26 112 | 94.51 111 | 97.46 71 | 98.76 116 | 97.27 109 | 86.97 164 | 99.09 62 | 89.83 116 | 93.51 146 | 97.78 74 | 96.18 139 | 97.53 133 | 95.71 161 | 99.35 167 | 98.41 178 |
|
ACMP | | 96.25 10 | 96.62 99 | 96.72 123 | 96.50 82 | 96.96 83 | 98.75 117 | 97.80 93 | 94.30 65 | 98.85 89 | 93.12 88 | 98.78 44 | 86.61 156 | 97.23 112 | 97.73 123 | 96.61 134 | 99.62 113 | 99.71 84 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
test-LLR | | | 95.50 119 | 97.32 108 | 93.37 134 | 95.49 122 | 98.74 118 | 96.44 135 | 90.82 121 | 98.18 133 | 82.75 155 | 96.60 106 | 94.67 111 | 95.54 156 | 98.09 97 | 96.00 152 | 99.20 174 | 98.93 166 |
|
TESTMET0.1,1 | | | 94.95 129 | 97.32 108 | 92.20 148 | 92.62 157 | 98.74 118 | 96.44 135 | 86.67 167 | 98.18 133 | 82.75 155 | 96.60 106 | 94.67 111 | 95.54 156 | 98.09 97 | 96.00 152 | 99.20 174 | 98.93 166 |
|
PMMVS | | | 97.52 68 | 98.39 65 | 96.51 81 | 95.82 107 | 98.73 120 | 97.80 93 | 93.05 92 | 98.76 106 | 94.39 67 | 99.07 30 | 97.03 84 | 98.55 75 | 98.31 86 | 97.61 105 | 99.43 159 | 99.21 154 |
|
dps | | | 94.63 137 | 95.31 152 | 93.84 120 | 95.53 120 | 98.71 121 | 96.54 130 | 80.12 191 | 97.81 153 | 97.21 27 | 96.98 93 | 92.37 128 | 96.34 136 | 92.46 198 | 91.77 198 | 97.26 200 | 97.08 194 |
|
MIMVSNet | | | 94.49 142 | 97.59 95 | 90.87 176 | 91.74 176 | 98.70 122 | 94.68 170 | 78.73 201 | 97.98 141 | 83.71 148 | 97.71 81 | 94.81 109 | 96.96 117 | 97.97 109 | 97.92 92 | 99.40 164 | 98.04 184 |
|
FC-MVSNet-test | | | 96.07 110 | 97.94 86 | 93.89 119 | 93.60 151 | 98.67 123 | 96.62 129 | 90.30 130 | 98.76 106 | 88.62 118 | 95.57 129 | 97.63 76 | 94.48 173 | 97.97 109 | 97.48 113 | 99.71 67 | 99.52 127 |
|
PatchT | | | 93.96 150 | 97.36 105 | 90.00 183 | 94.76 137 | 98.65 124 | 90.11 198 | 78.57 202 | 97.96 144 | 80.42 168 | 96.07 116 | 94.10 120 | 96.85 120 | 98.10 95 | 97.49 111 | 99.26 172 | 99.15 156 |
|
LTVRE_ROB | | 93.20 16 | 92.84 166 | 94.92 153 | 90.43 180 | 92.83 155 | 98.63 125 | 97.08 120 | 87.87 159 | 97.91 146 | 68.42 203 | 93.54 145 | 79.46 200 | 96.62 128 | 97.55 132 | 97.40 118 | 99.74 44 | 99.92 1 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
tpmrst | | | 93.86 153 | 95.88 144 | 91.50 163 | 95.69 112 | 98.62 126 | 95.64 147 | 79.41 195 | 98.80 99 | 83.76 147 | 95.63 127 | 96.13 94 | 97.25 110 | 92.92 195 | 92.31 195 | 97.27 199 | 96.74 197 |
|
CLD-MVS | | | 96.74 91 | 96.51 130 | 97.01 67 | 96.71 85 | 98.62 126 | 98.73 59 | 94.38 63 | 98.94 81 | 94.46 63 | 97.33 84 | 87.03 149 | 98.07 88 | 97.20 144 | 96.87 127 | 99.72 57 | 99.54 123 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
UniMVSNet_ETH3D | | | 93.15 161 | 92.33 193 | 94.11 116 | 93.91 143 | 98.61 128 | 94.81 165 | 90.98 118 | 97.06 168 | 87.51 127 | 82.27 200 | 76.33 206 | 97.87 98 | 94.79 190 | 97.47 114 | 99.56 140 | 99.81 28 |
|
CR-MVSNet | | | 94.57 141 | 97.34 106 | 91.33 167 | 94.90 133 | 98.59 129 | 97.15 115 | 79.14 197 | 97.98 141 | 80.42 168 | 96.59 108 | 93.50 124 | 96.85 120 | 98.10 95 | 97.49 111 | 99.50 151 | 99.15 156 |
|
Patchmtry | | | | | | | 98.59 129 | 97.15 115 | 79.14 197 | | 80.42 168 | | | | | | | |
|
RPMNet | | | 94.66 135 | 97.16 113 | 91.75 160 | 94.98 132 | 98.59 129 | 97.00 122 | 78.37 203 | 97.98 141 | 83.78 145 | 96.27 113 | 94.09 121 | 96.91 118 | 97.36 138 | 96.73 129 | 99.48 152 | 99.09 161 |
|
ET-MVSNet_ETH3D | | | 96.17 107 | 96.99 118 | 95.21 103 | 88.53 201 | 98.54 132 | 98.28 77 | 92.61 93 | 98.85 89 | 93.60 82 | 99.06 31 | 90.39 137 | 98.63 72 | 95.98 175 | 96.68 131 | 99.61 115 | 99.41 140 |
|
OPM-MVS | | | 96.22 106 | 95.85 146 | 96.65 75 | 97.75 67 | 98.54 132 | 99.00 49 | 95.53 46 | 96.88 172 | 89.88 115 | 95.95 119 | 86.46 158 | 98.07 88 | 97.65 128 | 96.63 133 | 99.67 95 | 98.83 172 |
|
tpm cat1 | | | 94.06 146 | 94.90 154 | 93.06 139 | 95.42 126 | 98.52 134 | 96.64 128 | 80.67 188 | 97.82 151 | 92.63 95 | 93.39 148 | 95.00 106 | 96.06 143 | 91.36 201 | 91.58 200 | 96.98 202 | 96.66 199 |
|
MVSTER | | | 97.16 78 | 97.71 91 | 96.52 80 | 95.97 102 | 98.48 135 | 98.63 62 | 92.10 96 | 98.68 110 | 95.96 40 | 99.23 17 | 91.79 132 | 96.87 119 | 98.76 58 | 97.37 119 | 99.57 137 | 99.68 95 |
|
thisisatest0515 | | | 94.61 138 | 96.89 120 | 91.95 155 | 92.00 168 | 98.47 136 | 92.01 190 | 90.73 124 | 98.18 133 | 83.96 142 | 94.51 136 | 95.13 105 | 93.38 187 | 97.38 137 | 94.74 183 | 99.61 115 | 99.79 38 |
|
TSAR-MVS + COLMAP | | | 96.79 88 | 96.55 127 | 97.06 61 | 97.70 69 | 98.46 137 | 99.07 44 | 96.23 43 | 99.38 22 | 91.32 108 | 98.80 42 | 85.61 165 | 98.69 69 | 97.64 129 | 96.92 126 | 99.37 166 | 99.06 163 |
|
ACMM | | 96.26 9 | 96.67 96 | 96.69 124 | 96.66 74 | 97.29 77 | 98.46 137 | 96.48 133 | 95.09 50 | 99.21 45 | 93.19 87 | 98.78 44 | 86.73 154 | 98.17 82 | 97.84 117 | 96.32 142 | 99.74 44 | 99.49 134 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
HQP-MVS | | | 96.37 102 | 96.58 125 | 96.13 88 | 97.31 76 | 98.44 139 | 98.45 67 | 95.22 49 | 98.86 87 | 88.58 119 | 98.33 63 | 87.00 150 | 97.67 102 | 97.23 142 | 96.56 136 | 99.56 140 | 99.62 110 |
|
USDC | | | 94.26 144 | 94.83 156 | 93.59 127 | 96.02 98 | 98.44 139 | 97.84 91 | 88.65 150 | 98.86 87 | 82.73 157 | 94.02 140 | 80.56 192 | 96.76 122 | 97.28 141 | 96.15 149 | 99.55 142 | 98.50 176 |
|
EG-PatchMatch MVS | | | 92.45 175 | 93.92 175 | 90.72 177 | 92.56 159 | 98.43 141 | 94.88 162 | 84.54 181 | 97.18 164 | 79.55 174 | 86.12 194 | 83.23 180 | 93.15 190 | 97.22 143 | 96.00 152 | 99.67 95 | 99.27 150 |
|
FC-MVSNet-train | | | 97.04 81 | 97.91 87 | 96.03 91 | 96.00 100 | 98.41 142 | 96.53 132 | 93.42 81 | 99.04 72 | 93.02 90 | 98.03 71 | 94.32 116 | 97.47 107 | 97.93 111 | 97.77 101 | 99.75 39 | 99.88 10 |
|
SixPastTwentyTwo | | | 93.44 158 | 95.32 151 | 91.24 169 | 92.11 166 | 98.40 143 | 92.77 186 | 88.64 151 | 98.09 137 | 77.83 181 | 93.51 146 | 85.74 164 | 96.52 132 | 96.91 151 | 94.89 180 | 99.59 129 | 99.73 70 |
|
CVMVSNet | | | 95.33 124 | 97.09 114 | 93.27 137 | 95.23 128 | 98.39 144 | 95.49 150 | 92.58 94 | 97.71 155 | 83.00 154 | 94.44 138 | 93.28 125 | 93.92 183 | 97.79 118 | 98.54 58 | 99.41 162 | 99.45 137 |
|
MVS-HIRNet | | | 92.51 174 | 95.97 141 | 88.48 190 | 93.73 149 | 98.37 145 | 90.33 196 | 75.36 209 | 98.32 127 | 77.78 182 | 89.15 173 | 94.87 107 | 95.14 168 | 97.62 130 | 96.39 140 | 98.51 183 | 97.11 193 |
|
DCV-MVSNet | | | 97.56 67 | 98.36 66 | 96.62 78 | 96.44 88 | 98.36 146 | 98.37 71 | 91.73 103 | 99.11 60 | 94.80 56 | 98.36 62 | 96.28 91 | 98.60 74 | 98.12 94 | 98.44 61 | 99.76 35 | 99.87 12 |
|
CostFormer | | | 94.25 145 | 94.88 155 | 93.51 131 | 95.43 124 | 98.34 147 | 96.21 139 | 80.64 189 | 97.94 145 | 94.01 71 | 98.30 64 | 86.20 162 | 97.52 104 | 92.71 196 | 92.69 193 | 97.23 201 | 98.02 185 |
|
TinyColmap | | | 94.00 148 | 94.35 164 | 93.60 126 | 95.89 103 | 98.26 148 | 97.49 102 | 88.82 147 | 98.56 116 | 83.21 151 | 91.28 159 | 80.48 194 | 96.68 125 | 97.34 139 | 96.26 145 | 99.53 148 | 98.24 181 |
|
anonymousdsp | | | 93.12 162 | 95.86 145 | 89.93 185 | 91.09 193 | 98.25 149 | 95.12 155 | 85.08 176 | 97.44 158 | 73.30 196 | 90.89 161 | 90.78 136 | 95.25 166 | 97.91 112 | 95.96 156 | 99.71 67 | 99.82 23 |
|
tfpnnormal | | | 93.85 154 | 94.12 168 | 93.54 130 | 93.22 154 | 98.24 150 | 95.45 151 | 91.96 100 | 94.61 198 | 83.91 143 | 90.74 162 | 81.75 189 | 97.04 114 | 97.49 134 | 96.16 148 | 99.68 87 | 99.84 18 |
|
EPNet_dtu | | | 96.30 104 | 98.53 61 | 93.70 125 | 98.97 49 | 98.24 150 | 97.36 105 | 94.23 66 | 98.85 89 | 79.18 176 | 99.19 18 | 98.47 66 | 94.09 179 | 97.89 114 | 98.21 79 | 98.39 186 | 98.85 171 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
GG-mvs-BLEND | | | 69.11 203 | 98.13 77 | 35.26 208 | 3.49 217 | 98.20 152 | 94.89 161 | 2.38 214 | 98.42 124 | 5.82 217 | 96.37 112 | 98.60 63 | 5.97 213 | 98.75 60 | 97.98 90 | 99.01 179 | 98.61 173 |
|
pm-mvs1 | | | 94.27 143 | 95.57 148 | 92.75 142 | 92.58 158 | 98.13 153 | 94.87 163 | 90.71 125 | 96.70 178 | 83.78 145 | 89.94 168 | 89.85 141 | 94.96 171 | 97.58 131 | 97.07 122 | 99.61 115 | 99.72 81 |
|
UniMVSNet (Re) | | | 94.58 140 | 95.34 150 | 93.71 124 | 92.25 165 | 98.08 154 | 94.97 158 | 91.29 117 | 97.03 170 | 87.94 123 | 93.97 142 | 86.25 161 | 96.07 142 | 96.27 167 | 95.97 155 | 99.72 57 | 99.79 38 |
|
GBi-Net | | | 96.98 83 | 98.00 84 | 95.78 95 | 93.81 146 | 97.98 155 | 98.09 85 | 91.32 113 | 98.80 99 | 93.92 73 | 97.21 88 | 95.94 98 | 97.89 94 | 98.07 100 | 98.34 71 | 99.68 87 | 99.67 96 |
|
test1 | | | 96.98 83 | 98.00 84 | 95.78 95 | 93.81 146 | 97.98 155 | 98.09 85 | 91.32 113 | 98.80 99 | 93.92 73 | 97.21 88 | 95.94 98 | 97.89 94 | 98.07 100 | 98.34 71 | 99.68 87 | 99.67 96 |
|
FMVSNet3 | | | 97.02 82 | 98.12 78 | 95.73 98 | 93.59 152 | 97.98 155 | 98.34 75 | 91.32 113 | 98.80 99 | 93.92 73 | 97.21 88 | 95.94 98 | 97.63 103 | 98.61 69 | 98.62 52 | 99.61 115 | 99.65 103 |
|
FMVSNet2 | | | 96.64 97 | 97.50 96 | 95.63 100 | 93.81 146 | 97.98 155 | 98.09 85 | 90.87 119 | 98.99 76 | 93.48 83 | 93.17 151 | 95.25 103 | 97.89 94 | 98.63 67 | 98.80 45 | 99.68 87 | 99.67 96 |
|
MDTV_nov1_ep13_2view | | | 92.44 176 | 95.66 147 | 88.68 188 | 91.05 194 | 97.92 159 | 92.17 189 | 79.64 193 | 98.83 94 | 76.20 186 | 91.45 157 | 93.51 123 | 95.04 169 | 95.68 179 | 93.70 190 | 97.96 190 | 98.53 175 |
|
WR-MVS_H | | | 93.54 156 | 94.67 159 | 92.22 146 | 91.95 169 | 97.91 160 | 94.58 174 | 88.75 148 | 96.64 179 | 83.88 144 | 90.66 164 | 85.13 169 | 94.40 174 | 96.54 158 | 95.91 157 | 99.73 51 | 99.89 6 |
|
UniMVSNet_NR-MVSNet | | | 94.59 139 | 95.47 149 | 93.55 129 | 91.85 173 | 97.89 161 | 95.03 156 | 92.00 98 | 97.33 161 | 86.12 132 | 93.19 150 | 87.29 147 | 96.60 129 | 96.12 170 | 96.70 130 | 99.72 57 | 99.80 30 |
|
FMVSNet1 | | | 95.77 114 | 96.41 138 | 95.03 104 | 93.42 153 | 97.86 162 | 97.11 118 | 89.89 134 | 98.53 118 | 92.00 103 | 89.17 172 | 93.23 126 | 98.15 85 | 98.07 100 | 98.34 71 | 99.61 115 | 99.69 90 |
|
DU-MVS | | | 93.98 149 | 94.44 163 | 93.44 132 | 91.66 178 | 97.77 163 | 95.03 156 | 91.57 107 | 97.17 165 | 86.12 132 | 93.13 152 | 81.13 191 | 96.60 129 | 95.10 186 | 97.01 125 | 99.67 95 | 99.80 30 |
|
NR-MVSNet | | | 94.01 147 | 94.51 161 | 93.44 132 | 92.56 159 | 97.77 163 | 95.67 145 | 91.57 107 | 97.17 165 | 85.84 135 | 93.13 152 | 80.53 193 | 95.29 164 | 97.01 149 | 96.17 147 | 99.69 78 | 99.75 62 |
|
pmmvs5 | | | 92.71 173 | 94.27 165 | 90.90 175 | 91.42 187 | 97.74 165 | 93.23 183 | 86.66 168 | 95.99 191 | 78.96 178 | 91.45 157 | 83.44 178 | 95.55 155 | 97.30 140 | 95.05 174 | 99.58 133 | 98.93 166 |
|
IterMVS-SCA-FT | | | 94.89 131 | 97.87 88 | 91.42 164 | 94.86 135 | 97.70 166 | 97.24 111 | 84.88 179 | 98.93 82 | 75.74 188 | 94.26 139 | 98.25 69 | 96.69 124 | 98.52 77 | 97.68 103 | 99.10 178 | 99.73 70 |
|
pmmvs4 | | | 95.09 126 | 95.90 143 | 94.14 115 | 92.29 163 | 97.70 166 | 95.45 151 | 90.31 128 | 98.60 112 | 90.70 110 | 93.25 149 | 89.90 140 | 96.67 126 | 97.13 146 | 95.42 165 | 99.44 158 | 99.28 148 |
|
v7n | | | 91.61 186 | 92.95 187 | 90.04 182 | 90.56 196 | 97.69 168 | 93.74 182 | 85.59 174 | 95.89 193 | 76.95 183 | 86.60 192 | 78.60 203 | 93.76 185 | 97.01 149 | 94.99 175 | 99.65 104 | 99.87 12 |
|
WR-MVS | | | 93.43 159 | 94.48 162 | 92.21 147 | 91.52 185 | 97.69 168 | 94.66 172 | 89.98 132 | 96.86 173 | 83.43 149 | 90.12 166 | 85.03 170 | 93.94 182 | 96.02 174 | 95.82 158 | 99.71 67 | 99.82 23 |
|
v148 | | | 92.36 181 | 92.88 188 | 91.75 160 | 91.63 181 | 97.66 170 | 92.64 187 | 90.55 127 | 96.09 187 | 83.34 150 | 88.19 180 | 80.00 196 | 92.74 191 | 93.98 193 | 94.58 184 | 99.58 133 | 99.69 90 |
|
V42 | | | 93.05 163 | 93.90 176 | 92.04 151 | 91.91 170 | 97.66 170 | 94.91 160 | 89.91 133 | 96.85 174 | 80.58 167 | 89.66 169 | 83.43 179 | 95.37 162 | 95.03 188 | 94.90 178 | 99.59 129 | 99.78 44 |
|
pmmvs6 | | | 91.90 185 | 92.53 192 | 91.17 170 | 91.81 174 | 97.63 172 | 93.23 183 | 88.37 154 | 93.43 203 | 80.61 166 | 77.32 204 | 87.47 146 | 94.12 178 | 96.58 156 | 95.72 160 | 98.88 182 | 99.53 124 |
|
v2v482 | | | 92.77 170 | 93.52 183 | 91.90 158 | 91.59 183 | 97.63 172 | 94.57 175 | 90.31 128 | 96.80 176 | 79.22 175 | 88.74 177 | 81.55 190 | 96.04 144 | 95.26 182 | 94.97 176 | 99.66 100 | 99.69 90 |
|
IterMVS | | | 94.81 133 | 97.71 91 | 91.42 164 | 94.83 136 | 97.63 172 | 97.38 104 | 85.08 176 | 98.93 82 | 75.67 189 | 94.02 140 | 97.64 75 | 96.66 127 | 98.45 80 | 97.60 106 | 98.90 181 | 99.72 81 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TransMVSNet (Re) | | | 93.45 157 | 94.08 169 | 92.72 143 | 92.83 155 | 97.62 175 | 94.94 159 | 91.54 109 | 95.65 195 | 83.06 153 | 88.93 175 | 83.53 177 | 94.25 176 | 97.41 136 | 97.03 123 | 99.67 95 | 98.40 180 |
|
v1144 | | | 92.81 167 | 94.03 171 | 91.40 166 | 91.68 177 | 97.60 176 | 94.73 167 | 88.40 153 | 96.71 177 | 78.48 179 | 88.14 182 | 84.46 174 | 95.45 161 | 96.31 166 | 95.22 169 | 99.65 104 | 99.76 55 |
|
our_test_3 | | | | | | 92.30 162 | 97.58 177 | 90.09 199 | | | | | | | | | | |
|
TranMVSNet+NR-MVSNet | | | 93.67 155 | 94.14 166 | 93.13 138 | 91.28 192 | 97.58 177 | 95.60 148 | 91.97 99 | 97.06 168 | 84.05 141 | 90.64 165 | 82.22 186 | 96.17 140 | 94.94 189 | 96.78 128 | 99.69 78 | 99.78 44 |
|
CP-MVSNet | | | 93.25 160 | 94.00 172 | 92.38 145 | 91.65 180 | 97.56 179 | 94.38 177 | 89.20 143 | 96.05 189 | 83.16 152 | 89.51 170 | 81.97 187 | 96.16 141 | 96.43 160 | 96.56 136 | 99.71 67 | 99.89 6 |
|
IterMVS-LS | | | 96.12 109 | 97.48 98 | 94.53 110 | 95.19 129 | 97.56 179 | 97.15 115 | 89.19 144 | 99.08 64 | 88.23 120 | 94.97 131 | 94.73 110 | 97.84 99 | 97.86 116 | 98.26 77 | 99.60 123 | 99.88 10 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PS-CasMVS | | | 92.72 171 | 93.36 184 | 91.98 154 | 91.62 182 | 97.52 181 | 94.13 181 | 88.98 145 | 95.94 192 | 81.51 163 | 87.35 187 | 79.95 197 | 95.91 146 | 96.37 162 | 96.49 138 | 99.70 76 | 99.89 6 |
|
v8 | | | 92.87 165 | 93.87 177 | 91.72 162 | 92.05 167 | 97.50 182 | 94.79 166 | 88.20 156 | 96.85 174 | 80.11 171 | 90.01 167 | 82.86 183 | 95.48 158 | 95.15 185 | 94.90 178 | 99.66 100 | 99.80 30 |
|
tpm | | | 92.38 179 | 94.79 157 | 89.56 186 | 94.30 140 | 97.50 182 | 94.24 180 | 78.97 200 | 97.72 154 | 74.93 193 | 97.97 73 | 82.91 181 | 96.60 129 | 93.65 194 | 94.81 181 | 98.33 187 | 98.98 164 |
|
v144192 | | | 92.38 179 | 93.55 182 | 91.00 173 | 91.44 186 | 97.47 184 | 94.27 178 | 87.41 162 | 96.52 182 | 78.03 180 | 87.50 186 | 82.65 185 | 95.32 163 | 95.82 178 | 95.15 171 | 99.55 142 | 99.78 44 |
|
v1192 | | | 92.43 177 | 93.61 179 | 91.05 172 | 91.53 184 | 97.43 185 | 94.61 173 | 87.99 158 | 96.60 180 | 76.72 184 | 87.11 189 | 82.74 184 | 95.85 147 | 96.35 164 | 95.30 168 | 99.60 123 | 99.74 66 |
|
CMPMVS | | 70.31 18 | 90.74 188 | 91.06 195 | 90.36 181 | 97.32 74 | 97.43 185 | 92.97 185 | 87.82 160 | 93.50 202 | 75.34 192 | 83.27 198 | 84.90 171 | 92.19 194 | 92.64 197 | 91.21 201 | 96.50 204 | 94.46 203 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
v1921920 | | | 92.36 181 | 93.57 180 | 90.94 174 | 91.39 188 | 97.39 187 | 94.70 169 | 87.63 161 | 96.60 180 | 76.63 185 | 86.98 190 | 82.89 182 | 95.75 148 | 96.26 168 | 95.14 172 | 99.55 142 | 99.73 70 |
|
N_pmnet | | | 92.21 183 | 94.60 160 | 89.42 187 | 91.88 171 | 97.38 188 | 89.15 201 | 89.74 138 | 97.89 147 | 73.75 195 | 87.94 184 | 92.23 130 | 93.85 184 | 96.10 171 | 93.20 192 | 98.15 189 | 97.43 190 |
|
PEN-MVS | | | 92.72 171 | 93.20 186 | 92.15 149 | 91.29 190 | 97.31 189 | 94.67 171 | 89.81 135 | 96.19 185 | 81.83 161 | 88.58 178 | 79.06 201 | 95.61 154 | 95.21 183 | 96.27 143 | 99.72 57 | 99.82 23 |
|
v1240 | | | 91.99 184 | 93.33 185 | 90.44 179 | 91.29 190 | 97.30 190 | 94.25 179 | 86.79 165 | 96.43 183 | 75.49 191 | 86.34 193 | 81.85 188 | 95.29 164 | 96.42 161 | 95.22 169 | 99.52 149 | 99.73 70 |
|
v10 | | | 92.79 169 | 94.06 170 | 91.31 168 | 91.78 175 | 97.29 191 | 94.87 163 | 86.10 172 | 96.97 171 | 79.82 173 | 88.16 181 | 84.56 173 | 95.63 152 | 96.33 165 | 95.31 167 | 99.65 104 | 99.80 30 |
|
Baseline_NR-MVSNet | | | 93.87 152 | 93.98 173 | 93.75 122 | 91.66 178 | 97.02 192 | 95.53 149 | 91.52 110 | 97.16 167 | 87.77 125 | 87.93 185 | 83.69 175 | 96.35 135 | 95.10 186 | 97.23 120 | 99.68 87 | 99.73 70 |
|
DTE-MVSNet | | | 92.42 178 | 92.85 189 | 91.91 157 | 90.87 195 | 96.97 193 | 94.53 176 | 89.81 135 | 95.86 194 | 81.59 162 | 88.83 176 | 77.88 204 | 95.01 170 | 94.34 192 | 96.35 141 | 99.64 108 | 99.73 70 |
|
DeepMVS_CX | | | | | | | 96.85 194 | 87.43 204 | 89.27 142 | 98.30 128 | 75.55 190 | 95.05 130 | 79.47 199 | 92.62 193 | 89.48 202 | | 95.18 207 | 95.96 201 |
|
Anonymous20231206 | | | 90.70 189 | 93.93 174 | 86.92 194 | 90.21 199 | 96.79 195 | 90.30 197 | 86.61 169 | 96.05 189 | 69.25 202 | 88.46 179 | 84.86 172 | 85.86 200 | 97.11 147 | 96.47 139 | 99.30 170 | 97.80 187 |
|
MDA-MVSNet-bldmvs | | | 87.84 197 | 89.22 199 | 86.23 195 | 81.74 207 | 96.77 196 | 83.74 206 | 89.57 140 | 94.50 200 | 72.83 199 | 96.64 104 | 64.47 211 | 92.71 192 | 81.43 206 | 92.28 196 | 96.81 203 | 98.47 177 |
|
EU-MVSNet | | | 92.80 168 | 94.76 158 | 90.51 178 | 91.88 171 | 96.74 197 | 92.48 188 | 88.69 149 | 96.21 184 | 79.00 177 | 91.51 156 | 87.82 145 | 91.83 195 | 95.87 177 | 96.27 143 | 99.21 173 | 98.92 169 |
|
test20.03 | | | 90.65 190 | 93.71 178 | 87.09 192 | 90.44 197 | 96.24 198 | 89.74 200 | 85.46 175 | 95.59 196 | 72.99 198 | 90.68 163 | 85.33 167 | 84.41 201 | 95.94 176 | 95.10 173 | 99.52 149 | 97.06 195 |
|
new_pmnet | | | 90.45 191 | 92.84 190 | 87.66 191 | 88.96 200 | 96.16 199 | 88.71 202 | 84.66 180 | 97.56 157 | 71.91 201 | 85.60 195 | 86.58 157 | 93.28 188 | 96.07 172 | 93.54 191 | 98.46 184 | 94.39 204 |
|
FMVSNet5 | | | 95.42 120 | 96.47 133 | 94.20 114 | 92.26 164 | 95.99 200 | 95.66 146 | 87.15 163 | 97.87 148 | 93.46 84 | 96.68 102 | 93.79 122 | 97.52 104 | 97.10 148 | 97.21 121 | 99.11 177 | 96.62 200 |
|
PM-MVS | | | 89.55 193 | 90.30 197 | 88.67 189 | 87.06 202 | 95.60 201 | 90.88 193 | 84.51 182 | 96.14 186 | 75.75 187 | 86.89 191 | 63.47 212 | 94.64 172 | 96.85 152 | 93.89 188 | 99.17 176 | 99.29 147 |
|
pmmvs-eth3d | | | 89.81 192 | 89.65 198 | 90.00 183 | 86.94 203 | 95.38 202 | 91.08 191 | 86.39 170 | 94.57 199 | 82.27 159 | 83.03 199 | 64.94 209 | 93.96 181 | 96.57 157 | 93.82 189 | 99.35 167 | 99.24 152 |
|
gm-plane-assit | | | 89.44 194 | 92.82 191 | 85.49 197 | 91.37 189 | 95.34 203 | 79.55 210 | 82.12 186 | 91.68 206 | 64.79 207 | 87.98 183 | 80.26 195 | 95.66 151 | 98.51 79 | 97.56 107 | 99.45 156 | 98.41 178 |
|
MIMVSNet1 | | | 88.61 195 | 90.68 196 | 86.19 196 | 81.56 208 | 95.30 204 | 87.78 203 | 85.98 173 | 94.19 201 | 72.30 200 | 78.84 203 | 78.90 202 | 90.06 196 | 96.59 155 | 95.47 163 | 99.46 155 | 95.49 202 |
|
new-patchmatchnet | | | 86.12 198 | 87.30 200 | 84.74 198 | 86.92 204 | 95.19 205 | 83.57 207 | 84.42 183 | 92.67 204 | 65.66 204 | 80.32 201 | 64.72 210 | 89.41 197 | 92.33 200 | 89.21 202 | 98.43 185 | 96.69 198 |
|
pmmvs3 | | | 88.19 196 | 91.27 194 | 84.60 199 | 85.60 205 | 93.66 206 | 85.68 205 | 81.13 187 | 92.36 205 | 63.66 209 | 89.51 170 | 77.10 205 | 93.22 189 | 96.37 162 | 92.40 194 | 98.30 188 | 97.46 189 |
|
ambc | | | | 80.99 203 | | 80.04 210 | 90.84 207 | 90.91 192 | | 96.09 187 | 74.18 194 | 62.81 207 | 30.59 218 | 82.44 203 | 96.25 169 | 91.77 198 | 95.91 206 | 98.56 174 |
|
FPMVS | | | 83.82 199 | 84.61 201 | 82.90 200 | 90.39 198 | 90.71 208 | 90.85 194 | 84.10 184 | 95.47 197 | 65.15 205 | 83.44 197 | 74.46 207 | 75.48 204 | 81.63 205 | 79.42 207 | 91.42 209 | 87.14 208 |
|
tmp_tt | | | | | 82.25 201 | 97.73 68 | 88.71 209 | 80.18 208 | 68.65 211 | 99.15 51 | 86.98 129 | 99.47 8 | 85.31 168 | 68.35 209 | 87.51 203 | 83.81 205 | 91.64 208 | |
|
PMMVS2 | | | 77.26 201 | 79.47 204 | 74.70 204 | 76.00 211 | 88.37 210 | 74.22 211 | 76.34 206 | 78.31 209 | 54.13 211 | 69.96 206 | 52.50 214 | 70.14 208 | 84.83 204 | 88.71 203 | 97.35 197 | 93.58 206 |
|
Gipuma | | | 81.40 200 | 81.78 202 | 80.96 202 | 83.21 206 | 85.61 211 | 79.73 209 | 76.25 208 | 97.33 161 | 64.21 208 | 55.32 208 | 55.55 213 | 86.04 199 | 92.43 199 | 92.20 197 | 96.32 205 | 93.99 205 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MVE | | 67.97 19 | 65.53 206 | 67.43 208 | 63.31 207 | 59.33 214 | 74.20 212 | 53.09 216 | 70.43 210 | 66.27 212 | 43.13 212 | 45.98 212 | 30.62 217 | 70.65 207 | 79.34 208 | 86.30 204 | 83.25 213 | 89.33 207 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EMVS | | | 68.12 205 | 68.11 207 | 68.14 206 | 75.51 212 | 71.76 213 | 55.38 215 | 77.20 205 | 77.78 210 | 37.79 214 | 53.59 209 | 43.61 215 | 74.72 205 | 67.05 210 | 76.70 209 | 88.27 212 | 86.24 209 |
|
E-PMN | | | 68.30 204 | 68.43 206 | 68.15 205 | 74.70 213 | 71.56 214 | 55.64 214 | 77.24 204 | 77.48 211 | 39.46 213 | 51.95 211 | 41.68 216 | 73.28 206 | 70.65 209 | 79.51 206 | 88.61 211 | 86.20 210 |
|
PMVS | | 72.60 17 | 76.39 202 | 77.66 205 | 74.92 203 | 81.04 209 | 69.37 215 | 68.47 212 | 80.54 190 | 85.39 208 | 65.07 206 | 73.52 205 | 72.91 208 | 65.67 210 | 80.35 207 | 76.81 208 | 88.71 210 | 85.25 211 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
testmvs | | | 31.24 207 | 40.15 209 | 20.86 209 | 12.61 215 | 17.99 216 | 25.16 217 | 13.30 212 | 48.42 213 | 24.82 215 | 53.07 210 | 30.13 219 | 28.47 211 | 42.73 211 | 37.65 210 | 20.79 214 | 51.04 212 |
|
test123 | | | 26.75 208 | 34.25 210 | 18.01 210 | 7.93 216 | 17.18 217 | 24.85 218 | 12.36 213 | 44.83 214 | 16.52 216 | 41.80 213 | 18.10 220 | 28.29 212 | 33.08 212 | 34.79 211 | 18.10 215 | 49.95 213 |
|
uanet_test | | | 0.00 209 | 0.00 211 | 0.00 211 | 0.00 218 | 0.00 218 | 0.00 219 | 0.00 215 | 0.00 215 | 0.00 218 | 0.00 214 | 0.00 221 | 0.00 214 | 0.00 213 | 0.00 212 | 0.00 216 | 0.00 214 |
|
sosnet-low-res | | | 0.00 209 | 0.00 211 | 0.00 211 | 0.00 218 | 0.00 218 | 0.00 219 | 0.00 215 | 0.00 215 | 0.00 218 | 0.00 214 | 0.00 221 | 0.00 214 | 0.00 213 | 0.00 212 | 0.00 216 | 0.00 214 |
|
sosnet | | | 0.00 209 | 0.00 211 | 0.00 211 | 0.00 218 | 0.00 218 | 0.00 219 | 0.00 215 | 0.00 215 | 0.00 218 | 0.00 214 | 0.00 221 | 0.00 214 | 0.00 213 | 0.00 212 | 0.00 216 | 0.00 214 |
|
9.14 | | | | | | | | | | | | | 99.79 44 | | | | | |
|
SR-MVS | | | | | | 99.67 12 | | | 98.25 13 | | | | 99.94 24 | | | | | |
|
test_part1 | | | | | | | | | | | | | | | | | | 99.62 110 |
|
MTAPA | | | | | | | | | | | 98.09 14 | | 99.97 6 | | | | | |
|
MTMP | | | | | | | | | | | 98.46 10 | | 99.96 11 | | | | | |
|
Patchmatch-RL test | | | | | | | | 66.86 213 | | | | | | | | | | |
|
mPP-MVS | | | | | | 99.53 29 | | | | | | | 99.89 33 | | | | | |
|
NP-MVS | | | | | | | | | | 98.57 115 | | | | | | | | |
|