DeepC-MVS_fast | | 98.34 1 | 99.17 18 | 99.45 14 | 98.85 26 | 99.55 30 | 99.37 80 | 99.64 8 | 98.05 33 | 99.53 14 | 96.58 37 | 98.93 41 | 99.92 29 | 99.49 20 | 99.46 15 | 99.32 10 | 99.80 29 | 99.64 113 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PLC |  | 97.93 2 | 99.02 29 | 98.94 53 | 99.11 11 | 99.46 35 | 99.24 97 | 99.06 47 | 97.96 35 | 99.31 34 | 99.16 1 | 97.90 79 | 99.79 46 | 99.36 30 | 98.71 69 | 98.12 91 | 99.65 112 | 99.52 135 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
DeepPCF-MVS | | 97.74 3 | 98.34 46 | 99.46 13 | 97.04 67 | 98.82 53 | 99.33 89 | 96.28 146 | 97.47 40 | 99.58 9 | 94.70 63 | 98.99 37 | 99.85 41 | 97.24 120 | 99.55 11 | 99.34 9 | 97.73 204 | 99.56 128 |
|
DeepC-MVS | | 97.63 4 | 98.33 47 | 98.57 63 | 98.04 43 | 98.62 58 | 99.65 21 | 99.45 26 | 98.15 25 | 99.51 17 | 92.80 100 | 95.74 129 | 96.44 92 | 99.46 24 | 99.37 20 | 99.50 2 | 99.78 33 | 99.81 33 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TAPA-MVS | | 97.53 5 | 98.41 44 | 98.84 58 | 97.91 46 | 99.08 49 | 99.33 89 | 99.15 40 | 97.13 42 | 99.34 31 | 93.20 92 | 97.75 83 | 99.19 61 | 99.20 41 | 98.66 71 | 98.13 90 | 99.66 108 | 99.48 143 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PCF-MVS | | 97.50 6 | 98.18 52 | 98.35 71 | 97.99 44 | 98.65 57 | 99.36 81 | 98.94 54 | 98.14 27 | 98.59 121 | 93.62 87 | 96.61 110 | 99.76 49 | 99.03 56 | 97.77 128 | 97.45 123 | 99.57 145 | 98.89 178 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
3Dnovator+ | | 96.92 7 | 98.71 37 | 99.05 45 | 98.32 35 | 99.53 31 | 99.34 86 | 99.06 47 | 94.61 61 | 99.65 5 | 97.49 26 | 96.75 104 | 99.86 38 | 99.44 26 | 98.78 63 | 99.30 11 | 99.81 21 | 99.67 102 |
|
3Dnovator | | 96.92 7 | 98.67 38 | 99.05 45 | 98.23 39 | 99.57 28 | 99.45 67 | 99.11 43 | 94.66 60 | 99.69 3 | 96.80 35 | 96.55 114 | 99.61 54 | 99.40 28 | 98.87 58 | 99.49 3 | 99.85 9 | 99.66 106 |
|
ACMM | | 96.26 9 | 96.67 103 | 96.69 131 | 96.66 80 | 97.29 79 | 98.46 145 | 96.48 142 | 95.09 52 | 99.21 49 | 93.19 93 | 98.78 49 | 86.73 163 | 98.17 90 | 97.84 125 | 96.32 151 | 99.74 49 | 99.49 142 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMP | | 96.25 10 | 96.62 106 | 96.72 130 | 96.50 88 | 96.96 85 | 98.75 125 | 97.80 101 | 94.30 70 | 98.85 96 | 93.12 94 | 98.78 49 | 86.61 165 | 97.23 121 | 97.73 131 | 96.61 143 | 99.62 121 | 99.71 90 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
OpenMVS |  | 96.23 11 | 97.95 60 | 98.45 68 | 97.35 56 | 99.52 33 | 99.42 72 | 98.91 55 | 94.61 61 | 98.87 93 | 92.24 109 | 94.61 140 | 99.05 63 | 99.10 51 | 98.64 73 | 99.05 30 | 99.74 49 | 99.51 139 |
|
COLMAP_ROB |  | 96.15 12 | 97.78 63 | 98.17 79 | 97.32 57 | 98.84 52 | 99.45 67 | 99.28 34 | 95.43 50 | 99.48 19 | 91.80 113 | 94.83 139 | 98.36 72 | 98.90 64 | 98.09 105 | 97.85 104 | 99.68 95 | 99.15 164 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
ACMH+ | | 95.51 13 | 95.40 130 | 96.00 148 | 94.70 116 | 96.33 94 | 98.79 118 | 96.79 134 | 91.32 120 | 98.77 112 | 87.18 137 | 95.60 133 | 85.46 175 | 96.97 125 | 97.15 154 | 96.59 144 | 99.59 137 | 99.65 109 |
|
ACMH | | 95.42 14 | 95.27 134 | 95.96 150 | 94.45 121 | 96.83 89 | 98.78 120 | 94.72 177 | 91.67 112 | 98.95 86 | 86.82 140 | 96.42 116 | 83.67 185 | 97.00 124 | 97.48 143 | 96.68 140 | 99.69 86 | 99.76 61 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
IB-MVS | | 93.96 15 | 95.02 137 | 96.44 144 | 93.36 144 | 97.05 84 | 99.28 93 | 90.43 204 | 93.39 87 | 98.02 148 | 96.02 42 | 94.92 138 | 92.07 136 | 83.52 213 | 95.38 190 | 95.82 167 | 99.72 64 | 99.59 121 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
LTVRE_ROB | | 93.20 16 | 92.84 175 | 94.92 162 | 90.43 189 | 92.83 164 | 98.63 133 | 97.08 129 | 87.87 168 | 97.91 155 | 68.42 215 | 93.54 150 | 79.46 211 | 96.62 137 | 97.55 140 | 97.40 126 | 99.74 49 | 99.92 2 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
PMVS |  | 72.60 17 | 76.39 213 | 77.66 216 | 74.92 214 | 81.04 219 | 69.37 226 | 68.47 223 | 80.54 200 | 85.39 219 | 65.07 218 | 73.52 216 | 72.91 219 | 65.67 221 | 80.35 218 | 76.81 219 | 88.71 221 | 85.25 221 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
CMPMVS |  | 70.31 18 | 90.74 198 | 91.06 206 | 90.36 190 | 97.32 76 | 97.43 195 | 92.97 194 | 87.82 170 | 93.50 213 | 75.34 201 | 83.27 209 | 84.90 180 | 92.19 204 | 92.64 208 | 91.21 212 | 96.50 215 | 94.46 213 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
MVE |  | 67.97 19 | 65.53 217 | 67.43 219 | 63.31 218 | 59.33 225 | 74.20 223 | 53.09 227 | 70.43 221 | 66.27 223 | 43.13 224 | 45.98 223 | 30.62 228 | 70.65 218 | 79.34 219 | 86.30 215 | 83.25 224 | 89.33 217 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test2506 | | | 97.16 83 | 96.68 132 | 97.73 49 | 96.95 86 | 99.79 2 | 98.48 69 | 94.42 66 | 99.17 54 | 97.74 24 | 99.15 25 | 80.93 201 | 98.89 67 | 99.03 43 | 99.09 26 | 99.88 3 | 99.62 117 |
|
test1111 | | | 97.09 87 | 96.83 129 | 97.39 55 | 96.92 88 | 99.81 1 | 98.44 74 | 94.45 65 | 99.17 54 | 95.85 45 | 92.10 163 | 88.97 151 | 98.78 71 | 99.02 45 | 99.11 25 | 99.88 3 | 99.63 115 |
|
ECVR-MVS |  | | 97.27 80 | 97.09 119 | 97.48 54 | 96.95 86 | 99.79 2 | 98.48 69 | 94.42 66 | 99.17 54 | 96.28 40 | 93.54 150 | 89.39 150 | 98.89 67 | 99.03 43 | 99.09 26 | 99.88 3 | 99.61 120 |
|
DVP-MVS++ | | | 99.41 4 | 99.64 1 | 99.14 8 | 99.69 8 | 99.75 7 | 99.64 8 | 98.33 6 | 99.67 4 | 98.10 14 | 99.66 4 | 99.99 1 | 99.33 32 | 99.62 5 | 98.86 45 | 99.74 49 | 99.90 6 |
|
GeoE | | | 95.98 120 | 97.24 117 | 94.51 119 | 95.02 140 | 99.38 77 | 98.02 97 | 87.86 169 | 98.37 134 | 87.86 133 | 92.99 162 | 93.54 127 | 98.56 82 | 98.61 76 | 97.92 99 | 99.73 57 | 99.85 22 |
|
test_method | | | 87.27 208 | 91.58 204 | 82.25 211 | 75.65 222 | 87.52 221 | 86.81 215 | 72.60 220 | 97.51 167 | 73.20 207 | 85.07 206 | 79.97 207 | 88.69 208 | 97.31 148 | 95.24 178 | 96.53 214 | 98.41 186 |
|
pmnet_mix02 | | | 92.44 185 | 94.68 168 | 89.83 195 | 92.46 170 | 97.65 181 | 89.92 209 | 90.49 136 | 98.76 113 | 73.05 208 | 91.78 164 | 90.08 145 | 94.86 181 | 94.53 201 | 91.94 208 | 98.21 198 | 98.01 195 |
|
RE-MVS-def | | | | | | | | | | | 69.05 214 | | | | | | | |
|
SED-MVS | | | 99.44 3 | 99.58 4 | 99.28 3 | 99.69 8 | 99.76 4 | 99.62 15 | 98.35 3 | 99.51 17 | 99.05 2 | 99.60 6 | 99.98 2 | 99.28 39 | 99.61 6 | 98.83 50 | 99.70 83 | 99.77 56 |
|
xxxxxxxxxxxxxcwj | | | 98.14 53 | 97.38 108 | 99.03 17 | 99.65 19 | 99.41 74 | 98.87 56 | 98.24 18 | 99.14 62 | 98.73 5 | 99.11 29 | 86.38 168 | 98.92 61 | 99.22 29 | 98.84 48 | 99.76 40 | 99.56 128 |
|
SF-MVS | | | 99.18 17 | 99.32 28 | 99.03 17 | 99.65 19 | 99.41 74 | 98.87 56 | 98.24 18 | 99.14 62 | 98.73 5 | 99.11 29 | 99.92 29 | 98.92 61 | 99.22 29 | 98.84 48 | 99.76 40 | 99.56 128 |
|
9.14 | | | | | | | | | | | | | 99.79 46 | | | | | |
|
uanet_test | | | 0.00 220 | 0.00 222 | 0.00 222 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 226 | 0.00 226 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
ET-MVSNet_ETH3D | | | 96.17 114 | 96.99 124 | 95.21 111 | 88.53 211 | 98.54 140 | 98.28 84 | 92.61 98 | 98.85 96 | 93.60 88 | 99.06 36 | 90.39 142 | 98.63 79 | 95.98 185 | 96.68 140 | 99.61 123 | 99.41 148 |
|
UniMVSNet_ETH3D | | | 93.15 170 | 92.33 203 | 94.11 125 | 93.91 152 | 98.61 136 | 94.81 174 | 90.98 125 | 97.06 179 | 87.51 136 | 82.27 211 | 76.33 217 | 97.87 107 | 94.79 200 | 97.47 122 | 99.56 148 | 99.81 33 |
|
EIA-MVS | | | 97.70 67 | 98.78 59 | 96.44 90 | 95.72 115 | 99.65 21 | 98.14 90 | 93.72 82 | 98.30 137 | 92.31 106 | 98.63 56 | 97.90 76 | 98.97 59 | 98.92 53 | 98.30 82 | 99.78 33 | 99.80 35 |
|
ETV-MVS | | | 98.05 56 | 99.25 34 | 96.65 81 | 95.61 121 | 99.61 38 | 98.26 86 | 93.52 85 | 98.90 92 | 93.74 86 | 99.32 16 | 99.20 60 | 98.90 64 | 99.21 31 | 98.72 55 | 99.87 8 | 99.79 42 |
|
CS-MVS | | | 97.98 59 | 99.26 33 | 96.48 89 | 95.60 123 | 99.67 16 | 98.46 72 | 93.16 95 | 99.37 26 | 92.22 110 | 98.49 60 | 98.95 65 | 99.55 14 | 99.27 27 | 99.17 23 | 99.88 3 | 99.92 2 |
|
DVP-MVS |  | | 99.45 2 | 99.54 7 | 99.35 1 | 99.72 7 | 99.76 4 | 99.63 12 | 98.37 2 | 99.63 7 | 99.03 3 | 98.95 40 | 99.98 2 | 99.60 7 | 99.60 7 | 99.05 30 | 99.74 49 | 99.79 42 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
SR-MVS | | | | | | 99.67 14 | | | 98.25 15 | | | | 99.94 26 | | | | | |
|
DPM-MVS | | | 98.31 48 | 98.53 65 | 98.05 42 | 98.76 56 | 98.77 121 | 99.13 41 | 98.07 31 | 99.10 69 | 94.27 75 | 96.70 106 | 99.84 42 | 98.70 74 | 97.90 121 | 98.11 92 | 99.40 172 | 99.28 156 |
|
thisisatest0530 | | | 97.23 81 | 98.25 73 | 96.05 96 | 95.60 123 | 99.59 46 | 96.96 132 | 93.23 90 | 99.17 54 | 92.60 103 | 98.75 52 | 96.19 96 | 98.17 90 | 98.19 100 | 96.10 159 | 99.72 64 | 99.77 56 |
|
Anonymous202405211 | | | | 97.40 107 | | 96.45 92 | 99.54 55 | 98.08 95 | 93.79 78 | 98.24 141 | | 93.55 149 | 94.41 118 | 98.88 69 | 98.04 113 | 98.24 85 | 99.75 44 | 99.76 61 |
|
DCV-MVSNet | | | 97.56 71 | 98.36 70 | 96.62 84 | 96.44 93 | 98.36 154 | 98.37 78 | 91.73 110 | 99.11 68 | 94.80 61 | 98.36 67 | 96.28 95 | 98.60 81 | 98.12 102 | 98.44 68 | 99.76 40 | 99.87 16 |
|
tttt0517 | | | 97.23 81 | 98.24 76 | 96.04 97 | 95.60 123 | 99.60 44 | 96.94 133 | 93.23 90 | 99.15 59 | 92.56 104 | 98.74 53 | 96.12 99 | 98.17 90 | 98.21 98 | 96.10 159 | 99.73 57 | 99.78 48 |
|
our_test_3 | | | | | | 92.30 172 | 97.58 187 | 90.09 208 | | | | | | | | | | |
|
thisisatest0515 | | | 94.61 147 | 96.89 126 | 91.95 164 | 92.00 178 | 98.47 144 | 92.01 199 | 90.73 132 | 98.18 142 | 83.96 151 | 94.51 141 | 95.13 109 | 93.38 197 | 97.38 145 | 94.74 193 | 99.61 123 | 99.79 42 |
|
SMA-MVS |  | | 99.38 6 | 99.60 3 | 99.12 10 | 99.76 2 | 99.62 33 | 99.39 30 | 98.23 20 | 99.52 16 | 98.03 18 | 99.45 11 | 99.98 2 | 99.64 5 | 99.58 9 | 99.30 11 | 99.68 95 | 99.76 61 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
DPE-MVS |  | | 99.39 5 | 99.55 6 | 99.20 4 | 99.63 22 | 99.71 13 | 99.66 6 | 98.33 6 | 99.29 37 | 98.40 12 | 99.64 5 | 99.98 2 | 99.31 35 | 99.56 10 | 98.96 37 | 99.85 9 | 99.70 92 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
test_part1 | | | 95.56 126 | 95.38 158 | 95.78 102 | 96.07 103 | 98.16 161 | 97.57 108 | 90.78 130 | 97.43 169 | 93.04 96 | 89.12 184 | 89.41 149 | 97.93 101 | 96.38 171 | 97.38 127 | 99.29 179 | 99.78 48 |
|
thres100view900 | | | 96.72 99 | 96.47 141 | 97.00 73 | 96.31 96 | 99.52 59 | 98.28 84 | 94.01 73 | 97.35 170 | 94.52 65 | 95.90 125 | 86.93 160 | 99.09 53 | 98.07 108 | 97.87 103 | 99.81 21 | 99.63 115 |
|
tfpnnormal | | | 93.85 163 | 94.12 178 | 93.54 139 | 93.22 163 | 98.24 158 | 95.45 160 | 91.96 107 | 94.61 209 | 83.91 152 | 90.74 171 | 81.75 198 | 97.04 123 | 97.49 142 | 96.16 157 | 99.68 95 | 99.84 23 |
|
tfpn200view9 | | | 96.75 97 | 96.51 138 | 97.03 68 | 96.31 96 | 99.67 16 | 98.41 75 | 93.99 75 | 97.35 170 | 94.52 65 | 95.90 125 | 86.93 160 | 99.14 48 | 98.26 95 | 97.80 107 | 99.82 15 | 99.70 92 |
|
CHOSEN 280x420 | | | 97.99 58 | 99.24 35 | 96.53 85 | 98.34 61 | 99.61 38 | 98.36 80 | 89.80 146 | 99.27 40 | 95.08 57 | 99.81 1 | 98.58 68 | 98.64 78 | 99.02 45 | 98.92 40 | 98.93 189 | 99.48 143 |
|
CANet | | | 98.46 43 | 99.16 38 | 97.64 51 | 98.48 59 | 99.64 26 | 99.35 32 | 94.71 59 | 99.53 14 | 95.17 55 | 97.63 87 | 99.59 55 | 98.38 88 | 98.88 57 | 98.99 35 | 99.74 49 | 99.86 19 |
|
Fast-Effi-MVS+-dtu | | | 95.38 131 | 98.20 78 | 92.09 159 | 93.91 152 | 98.87 115 | 97.35 115 | 85.01 188 | 99.08 72 | 81.09 173 | 98.10 73 | 96.36 93 | 95.62 162 | 98.43 91 | 97.03 132 | 99.55 150 | 99.50 141 |
|
Effi-MVS+-dtu | | | 95.74 123 | 98.04 85 | 93.06 148 | 93.92 151 | 99.16 102 | 97.90 98 | 88.16 166 | 99.07 77 | 82.02 169 | 98.02 77 | 94.32 120 | 96.74 132 | 98.53 84 | 97.56 115 | 99.61 123 | 99.62 117 |
|
CANet_DTU | | | 96.64 104 | 99.08 42 | 93.81 130 | 97.10 83 | 99.42 72 | 98.85 58 | 90.01 140 | 99.31 34 | 79.98 181 | 99.78 2 | 99.10 62 | 97.42 117 | 98.35 92 | 98.05 95 | 99.47 162 | 99.53 132 |
|
MVS_0304 | | | 98.14 53 | 99.03 49 | 97.10 64 | 98.05 66 | 99.63 29 | 99.27 35 | 94.33 69 | 99.63 7 | 93.06 95 | 97.32 90 | 99.05 63 | 98.09 95 | 98.82 60 | 98.87 44 | 99.81 21 | 99.89 10 |
|
MSP-MVS | | | 99.34 7 | 99.52 10 | 99.14 8 | 99.68 13 | 99.75 7 | 99.64 8 | 98.31 9 | 99.44 21 | 98.10 14 | 99.28 18 | 99.98 2 | 99.30 37 | 99.34 23 | 99.05 30 | 99.81 21 | 99.79 42 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
IterMVS-SCA-FT | | | 94.89 140 | 97.87 92 | 91.42 173 | 94.86 144 | 97.70 175 | 97.24 120 | 84.88 189 | 98.93 89 | 75.74 197 | 94.26 144 | 98.25 73 | 96.69 133 | 98.52 85 | 97.68 111 | 99.10 187 | 99.73 76 |
|
TSAR-MVS + MP. | | | 99.27 11 | 99.57 5 | 98.92 24 | 98.78 55 | 99.53 56 | 99.72 2 | 98.11 30 | 99.73 2 | 97.43 27 | 99.15 25 | 99.96 13 | 99.59 10 | 99.73 1 | 99.07 28 | 99.88 3 | 99.82 28 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
OPM-MVS | | | 96.22 113 | 95.85 154 | 96.65 81 | 97.75 69 | 98.54 140 | 99.00 53 | 95.53 48 | 96.88 183 | 89.88 123 | 95.95 124 | 86.46 167 | 98.07 96 | 97.65 136 | 96.63 142 | 99.67 103 | 98.83 180 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
ACMMP_NAP | | | 99.05 26 | 99.45 14 | 98.58 32 | 99.73 5 | 99.60 44 | 99.64 8 | 98.28 13 | 99.23 46 | 94.57 64 | 99.35 15 | 99.97 8 | 99.55 14 | 99.63 3 | 98.66 57 | 99.70 83 | 99.74 72 |
|
ambc | | | | 80.99 214 | | 80.04 220 | 90.84 217 | 90.91 201 | | 96.09 198 | 74.18 203 | 62.81 218 | 30.59 229 | 82.44 214 | 96.25 179 | 91.77 209 | 95.91 217 | 98.56 182 |
|
zzz-MVS | | | 99.31 9 | 99.44 17 | 99.16 6 | 99.73 5 | 99.65 21 | 99.63 12 | 98.26 14 | 99.27 40 | 98.01 19 | 99.27 19 | 99.97 8 | 99.60 7 | 99.59 8 | 98.58 62 | 99.71 74 | 99.73 76 |
|
CS-MVS-test | | | 98.09 55 | 99.32 28 | 96.67 79 | 95.48 131 | 99.61 38 | 99.01 51 | 92.22 100 | 99.32 33 | 93.89 81 | 99.30 17 | 98.77 66 | 99.49 20 | 99.16 35 | 99.16 24 | 99.92 1 | 99.91 5 |
|
Effi-MVS+ | | | 95.81 121 | 97.31 115 | 94.06 126 | 95.09 138 | 99.35 84 | 97.24 120 | 88.22 164 | 98.54 125 | 85.38 149 | 98.52 58 | 88.68 152 | 98.70 74 | 98.32 93 | 97.93 98 | 99.74 49 | 99.84 23 |
|
new-patchmatchnet | | | 86.12 209 | 87.30 211 | 84.74 208 | 86.92 214 | 95.19 215 | 83.57 218 | 84.42 193 | 92.67 215 | 65.66 216 | 80.32 212 | 64.72 221 | 89.41 207 | 92.33 211 | 89.21 213 | 98.43 194 | 96.69 208 |
|
pmmvs6 | | | 91.90 195 | 92.53 202 | 91.17 179 | 91.81 184 | 97.63 182 | 93.23 192 | 88.37 163 | 93.43 214 | 80.61 175 | 77.32 215 | 87.47 155 | 94.12 188 | 96.58 165 | 95.72 169 | 98.88 191 | 99.53 132 |
|
pmmvs5 | | | 92.71 182 | 94.27 175 | 90.90 184 | 91.42 197 | 97.74 174 | 93.23 192 | 86.66 178 | 95.99 202 | 78.96 187 | 91.45 166 | 83.44 187 | 95.55 164 | 97.30 149 | 95.05 184 | 99.58 141 | 98.93 174 |
|
Fast-Effi-MVS+ | | | 95.38 131 | 96.52 137 | 94.05 127 | 94.15 150 | 99.14 104 | 97.24 120 | 86.79 175 | 98.53 126 | 87.62 135 | 94.51 141 | 87.06 157 | 98.76 72 | 98.60 79 | 98.04 96 | 99.72 64 | 99.77 56 |
|
Anonymous20231211 | | | 97.10 86 | 97.06 122 | 97.14 63 | 96.32 95 | 99.52 59 | 98.16 89 | 93.76 79 | 98.84 100 | 95.98 43 | 90.92 169 | 94.58 117 | 98.90 64 | 97.72 132 | 98.10 93 | 99.71 74 | 99.75 68 |
|
pmmvs-eth3d | | | 89.81 202 | 89.65 209 | 90.00 192 | 86.94 213 | 95.38 212 | 91.08 200 | 86.39 180 | 94.57 210 | 82.27 168 | 83.03 210 | 64.94 220 | 93.96 191 | 96.57 166 | 93.82 199 | 99.35 175 | 99.24 160 |
|
GG-mvs-BLEND | | | 69.11 214 | 98.13 81 | 35.26 219 | 3.49 228 | 98.20 160 | 94.89 170 | 2.38 225 | 98.42 132 | 5.82 229 | 96.37 117 | 98.60 67 | 5.97 224 | 98.75 67 | 97.98 97 | 99.01 188 | 98.61 181 |
|
Anonymous20231206 | | | 90.70 199 | 93.93 184 | 86.92 204 | 90.21 209 | 96.79 205 | 90.30 206 | 86.61 179 | 96.05 200 | 69.25 213 | 88.46 189 | 84.86 181 | 85.86 211 | 97.11 156 | 96.47 148 | 99.30 178 | 97.80 197 |
|
MTAPA | | | | | | | | | | | 98.09 16 | | 99.97 8 | | | | | |
|
MTMP | | | | | | | | | | | 98.46 11 | | 99.96 13 | | | | | |
|
gm-plane-assit | | | 89.44 204 | 92.82 201 | 85.49 207 | 91.37 199 | 95.34 213 | 79.55 221 | 82.12 196 | 91.68 217 | 64.79 219 | 87.98 193 | 80.26 205 | 95.66 160 | 98.51 87 | 97.56 115 | 99.45 164 | 98.41 186 |
|
train_agg | | | 98.73 36 | 99.11 40 | 98.28 37 | 99.36 40 | 99.35 84 | 99.48 24 | 97.96 35 | 98.83 101 | 93.86 82 | 98.70 55 | 99.86 38 | 99.44 26 | 99.08 41 | 98.38 73 | 99.61 123 | 99.58 122 |
|
gg-mvs-nofinetune | | | 90.85 197 | 94.14 176 | 87.02 203 | 94.89 143 | 99.25 95 | 98.64 64 | 76.29 217 | 88.24 218 | 57.50 222 | 79.93 213 | 95.45 105 | 95.18 176 | 98.77 64 | 98.07 94 | 99.62 121 | 99.24 160 |
|
SCA | | | 94.95 138 | 97.44 105 | 92.04 160 | 95.55 126 | 99.16 102 | 96.26 147 | 79.30 206 | 99.02 81 | 85.73 146 | 98.18 71 | 97.13 86 | 97.69 110 | 96.03 183 | 94.91 187 | 97.69 205 | 97.65 198 |
|
MS-PatchMatch | | | 95.99 118 | 97.26 116 | 94.51 119 | 97.46 73 | 98.76 124 | 97.27 118 | 86.97 174 | 99.09 70 | 89.83 124 | 93.51 152 | 97.78 78 | 96.18 148 | 97.53 141 | 95.71 170 | 99.35 175 | 98.41 186 |
|
Patchmatch-RL test | | | | | | | | 66.86 224 | | | | | | | | | | |
|
tmp_tt | | | | | 82.25 211 | 97.73 70 | 88.71 219 | 80.18 219 | 68.65 222 | 99.15 59 | 86.98 138 | 99.47 10 | 85.31 177 | 68.35 220 | 87.51 214 | 83.81 216 | 91.64 219 | |
|
canonicalmvs | | | 97.31 78 | 97.81 94 | 96.72 77 | 96.20 102 | 99.45 67 | 98.21 87 | 91.60 113 | 99.22 47 | 95.39 51 | 98.48 61 | 90.95 140 | 99.16 47 | 97.66 134 | 99.05 30 | 99.76 40 | 99.90 6 |
|
anonymousdsp | | | 93.12 171 | 95.86 153 | 89.93 194 | 91.09 203 | 98.25 157 | 95.12 164 | 85.08 186 | 97.44 168 | 73.30 205 | 90.89 170 | 90.78 141 | 95.25 175 | 97.91 120 | 95.96 165 | 99.71 74 | 99.82 28 |
|
v144192 | | | 92.38 189 | 93.55 192 | 91.00 182 | 91.44 196 | 97.47 194 | 94.27 187 | 87.41 172 | 96.52 193 | 78.03 189 | 87.50 196 | 82.65 194 | 95.32 172 | 95.82 188 | 95.15 181 | 99.55 150 | 99.78 48 |
|
v1921920 | | | 92.36 191 | 93.57 190 | 90.94 183 | 91.39 198 | 97.39 197 | 94.70 178 | 87.63 171 | 96.60 191 | 76.63 194 | 86.98 200 | 82.89 191 | 95.75 157 | 96.26 178 | 95.14 182 | 99.55 150 | 99.73 76 |
|
FC-MVSNet-train | | | 97.04 88 | 97.91 91 | 96.03 98 | 96.00 106 | 98.41 150 | 96.53 141 | 93.42 86 | 99.04 80 | 93.02 97 | 98.03 76 | 94.32 120 | 97.47 116 | 97.93 119 | 97.77 109 | 99.75 44 | 99.88 14 |
|
UA-Net | | | 97.13 85 | 99.14 39 | 94.78 115 | 97.21 80 | 99.38 77 | 97.56 109 | 92.04 104 | 98.48 129 | 88.03 130 | 98.39 66 | 99.91 32 | 94.03 190 | 99.33 24 | 99.23 18 | 99.81 21 | 99.25 159 |
|
v1192 | | | 92.43 187 | 93.61 189 | 91.05 181 | 91.53 194 | 97.43 195 | 94.61 182 | 87.99 167 | 96.60 191 | 76.72 193 | 87.11 199 | 82.74 193 | 95.85 156 | 96.35 174 | 95.30 177 | 99.60 131 | 99.74 72 |
|
FC-MVSNet-test | | | 96.07 117 | 97.94 90 | 93.89 128 | 93.60 160 | 98.67 131 | 96.62 138 | 90.30 139 | 98.76 113 | 88.62 126 | 95.57 134 | 97.63 80 | 94.48 183 | 97.97 117 | 97.48 121 | 99.71 74 | 99.52 135 |
|
v1144 | | | 92.81 176 | 94.03 181 | 91.40 175 | 91.68 187 | 97.60 186 | 94.73 176 | 88.40 162 | 96.71 188 | 78.48 188 | 88.14 192 | 84.46 183 | 95.45 170 | 96.31 176 | 95.22 179 | 99.65 112 | 99.76 61 |
|
sosnet-low-res | | | 0.00 220 | 0.00 222 | 0.00 222 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 226 | 0.00 226 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
HFP-MVS | | | 99.32 8 | 99.53 9 | 99.07 14 | 99.69 8 | 99.59 46 | 99.63 12 | 98.31 9 | 99.56 11 | 97.37 28 | 99.27 19 | 99.97 8 | 99.70 3 | 99.35 22 | 99.24 17 | 99.71 74 | 99.76 61 |
|
v148 | | | 92.36 191 | 92.88 198 | 91.75 169 | 91.63 191 | 97.66 179 | 92.64 196 | 90.55 135 | 96.09 198 | 83.34 159 | 88.19 190 | 80.00 206 | 92.74 201 | 93.98 204 | 94.58 194 | 99.58 141 | 99.69 96 |
|
sosnet | | | 0.00 220 | 0.00 222 | 0.00 222 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 226 | 0.00 226 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
v7n | | | 91.61 196 | 92.95 197 | 90.04 191 | 90.56 206 | 97.69 177 | 93.74 191 | 85.59 184 | 95.89 204 | 76.95 192 | 86.60 202 | 78.60 214 | 93.76 195 | 97.01 158 | 94.99 185 | 99.65 112 | 99.87 16 |
|
DI_MVS_plusplus_trai | | | 96.90 93 | 97.49 101 | 96.21 93 | 95.61 121 | 99.40 76 | 98.72 63 | 92.11 102 | 99.14 62 | 92.98 99 | 93.08 160 | 95.14 108 | 98.13 94 | 98.05 112 | 97.91 101 | 99.74 49 | 99.73 76 |
|
HPM-MVS++ |  | | 99.10 22 | 99.30 30 | 98.86 25 | 99.69 8 | 99.48 63 | 99.59 17 | 98.34 4 | 99.26 43 | 96.55 39 | 99.10 32 | 99.96 13 | 99.36 30 | 99.25 28 | 98.37 75 | 99.64 116 | 99.66 106 |
|
XVS | | | | | | 97.42 74 | 99.62 33 | 98.59 66 | | | 93.81 83 | | 99.95 18 | | | | 99.69 86 | |
|
v1240 | | | 91.99 194 | 93.33 195 | 90.44 188 | 91.29 200 | 97.30 200 | 94.25 188 | 86.79 175 | 96.43 194 | 75.49 200 | 86.34 203 | 81.85 197 | 95.29 173 | 96.42 170 | 95.22 179 | 99.52 157 | 99.73 76 |
|
pm-mvs1 | | | 94.27 152 | 95.57 156 | 92.75 151 | 92.58 167 | 98.13 162 | 94.87 172 | 90.71 133 | 96.70 189 | 83.78 154 | 89.94 177 | 89.85 147 | 94.96 180 | 97.58 139 | 97.07 131 | 99.61 123 | 99.72 87 |
|
X-MVStestdata | | | | | | 97.42 74 | 99.62 33 | 98.59 66 | | | 93.81 83 | | 99.95 18 | | | | 99.69 86 | |
|
X-MVS | | | 98.93 30 | 99.37 23 | 98.42 33 | 99.67 14 | 99.62 33 | 99.60 16 | 98.15 25 | 99.08 72 | 93.81 83 | 98.46 63 | 99.95 18 | 99.59 10 | 99.49 14 | 99.21 20 | 99.68 95 | 99.75 68 |
|
v8 | | | 92.87 174 | 93.87 187 | 91.72 171 | 92.05 177 | 97.50 192 | 94.79 175 | 88.20 165 | 96.85 185 | 80.11 180 | 90.01 176 | 82.86 192 | 95.48 167 | 95.15 195 | 94.90 188 | 99.66 108 | 99.80 35 |
|
v10 | | | 92.79 178 | 94.06 180 | 91.31 177 | 91.78 185 | 97.29 201 | 94.87 172 | 86.10 182 | 96.97 182 | 79.82 182 | 88.16 191 | 84.56 182 | 95.63 161 | 96.33 175 | 95.31 176 | 99.65 112 | 99.80 35 |
|
v2v482 | | | 92.77 179 | 93.52 193 | 91.90 167 | 91.59 193 | 97.63 182 | 94.57 184 | 90.31 137 | 96.80 187 | 79.22 184 | 88.74 187 | 81.55 199 | 96.04 153 | 95.26 192 | 94.97 186 | 99.66 108 | 99.69 96 |
|
V42 | | | 93.05 172 | 93.90 186 | 92.04 160 | 91.91 180 | 97.66 179 | 94.91 169 | 89.91 142 | 96.85 185 | 80.58 176 | 89.66 178 | 83.43 188 | 95.37 171 | 95.03 198 | 94.90 188 | 99.59 137 | 99.78 48 |
|
SD-MVS | | | 99.25 13 | 99.50 12 | 98.96 22 | 98.79 54 | 99.55 54 | 99.33 33 | 98.29 12 | 99.75 1 | 97.96 20 | 99.15 25 | 99.95 18 | 99.61 6 | 99.17 33 | 99.06 29 | 99.81 21 | 99.84 23 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
GA-MVS | | | 93.93 160 | 96.31 147 | 91.16 180 | 93.61 159 | 98.79 118 | 95.39 162 | 90.69 134 | 98.25 140 | 73.28 206 | 96.15 120 | 88.42 153 | 94.39 185 | 97.76 129 | 95.35 175 | 99.58 141 | 99.45 145 |
|
MSLP-MVS++ | | | 99.15 19 | 99.24 35 | 99.04 16 | 99.52 33 | 99.49 62 | 99.09 45 | 98.07 31 | 99.37 26 | 98.47 9 | 97.79 81 | 99.89 35 | 99.50 18 | 98.93 51 | 99.45 4 | 99.61 123 | 99.76 61 |
|
APDe-MVS | | | 99.49 1 | 99.64 1 | 99.32 2 | 99.74 4 | 99.74 9 | 99.75 1 | 98.34 4 | 99.56 11 | 98.72 7 | 99.57 7 | 99.97 8 | 99.53 17 | 99.65 2 | 99.25 15 | 99.84 11 | 99.77 56 |
|
TSAR-MVS + COLMAP | | | 96.79 95 | 96.55 135 | 97.06 66 | 97.70 71 | 98.46 145 | 99.07 46 | 96.23 45 | 99.38 24 | 91.32 116 | 98.80 47 | 85.61 174 | 98.69 76 | 97.64 137 | 96.92 135 | 99.37 174 | 99.06 171 |
|
CVMVSNet | | | 95.33 133 | 97.09 119 | 93.27 146 | 95.23 136 | 98.39 152 | 95.49 159 | 92.58 99 | 97.71 164 | 83.00 163 | 94.44 143 | 93.28 130 | 93.92 193 | 97.79 126 | 98.54 65 | 99.41 170 | 99.45 145 |
|
TSAR-MVS + ACMM | | | 98.77 34 | 99.45 14 | 97.98 45 | 99.37 38 | 99.46 65 | 99.44 28 | 98.13 28 | 99.65 5 | 92.30 107 | 98.91 43 | 99.95 18 | 99.05 54 | 99.42 18 | 98.95 38 | 99.58 141 | 99.82 28 |
|
pmmvs4 | | | 95.09 135 | 95.90 151 | 94.14 124 | 92.29 173 | 97.70 175 | 95.45 160 | 90.31 137 | 98.60 120 | 90.70 118 | 93.25 155 | 89.90 146 | 96.67 135 | 97.13 155 | 95.42 174 | 99.44 166 | 99.28 156 |
|
EU-MVSNet | | | 92.80 177 | 94.76 167 | 90.51 187 | 91.88 181 | 96.74 207 | 92.48 197 | 88.69 158 | 96.21 195 | 79.00 186 | 91.51 165 | 87.82 154 | 91.83 205 | 95.87 187 | 96.27 152 | 99.21 182 | 98.92 177 |
|
test-LLR | | | 95.50 128 | 97.32 112 | 93.37 143 | 95.49 129 | 98.74 126 | 96.44 144 | 90.82 128 | 98.18 142 | 82.75 164 | 96.60 111 | 94.67 115 | 95.54 165 | 98.09 105 | 96.00 161 | 99.20 183 | 98.93 174 |
|
TESTMET0.1,1 | | | 94.95 138 | 97.32 112 | 92.20 157 | 92.62 166 | 98.74 126 | 96.44 144 | 86.67 177 | 98.18 142 | 82.75 164 | 96.60 111 | 94.67 115 | 95.54 165 | 98.09 105 | 96.00 161 | 99.20 183 | 98.93 174 |
|
test-mter | | | 94.86 141 | 97.32 112 | 92.00 162 | 92.41 171 | 98.82 117 | 96.18 149 | 86.35 181 | 98.05 147 | 82.28 167 | 96.48 115 | 94.39 119 | 95.46 169 | 98.17 101 | 96.20 155 | 99.32 177 | 99.13 168 |
|
ACMMPR | | | 99.30 10 | 99.54 7 | 99.03 17 | 99.66 17 | 99.64 26 | 99.68 4 | 98.25 15 | 99.56 11 | 97.12 32 | 99.19 22 | 99.95 18 | 99.72 1 | 99.43 17 | 99.25 15 | 99.72 64 | 99.77 56 |
|
testgi | | | 95.67 124 | 97.48 102 | 93.56 137 | 95.07 139 | 99.00 107 | 95.33 163 | 88.47 161 | 98.80 106 | 86.90 139 | 97.30 91 | 92.33 134 | 95.97 154 | 97.66 134 | 97.91 101 | 99.60 131 | 99.38 152 |
|
test20.03 | | | 90.65 200 | 93.71 188 | 87.09 202 | 90.44 207 | 96.24 208 | 89.74 210 | 85.46 185 | 95.59 207 | 72.99 209 | 90.68 172 | 85.33 176 | 84.41 212 | 95.94 186 | 95.10 183 | 99.52 157 | 97.06 205 |
|
thres600view7 | | | 96.69 101 | 96.43 145 | 97.00 73 | 96.28 99 | 99.67 16 | 98.41 75 | 93.99 75 | 97.85 159 | 94.29 74 | 95.96 123 | 85.91 172 | 99.19 42 | 98.26 95 | 97.63 112 | 99.82 15 | 99.73 76 |
|
ADS-MVSNet | | | 94.65 145 | 97.04 123 | 91.88 168 | 95.68 118 | 98.99 109 | 95.89 151 | 79.03 209 | 99.15 59 | 85.81 145 | 96.96 99 | 98.21 75 | 97.10 122 | 94.48 202 | 94.24 196 | 97.74 202 | 97.21 202 |
|
MP-MVS |  | | 99.07 24 | 99.36 24 | 98.74 29 | 99.63 22 | 99.57 51 | 99.66 6 | 98.25 15 | 99.00 83 | 95.62 47 | 98.97 38 | 99.94 26 | 99.54 16 | 99.51 13 | 98.79 54 | 99.71 74 | 99.73 76 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
testmvs | | | 31.24 218 | 40.15 220 | 20.86 220 | 12.61 226 | 17.99 227 | 25.16 228 | 13.30 223 | 48.42 224 | 24.82 227 | 53.07 221 | 30.13 230 | 28.47 222 | 42.73 222 | 37.65 221 | 20.79 225 | 51.04 222 |
|
thres400 | | | 96.71 100 | 96.45 143 | 97.02 70 | 96.28 99 | 99.63 29 | 98.41 75 | 94.00 74 | 97.82 160 | 94.42 71 | 95.74 129 | 86.26 169 | 99.18 44 | 98.20 99 | 97.79 108 | 99.81 21 | 99.70 92 |
|
test123 | | | 26.75 219 | 34.25 221 | 18.01 221 | 7.93 227 | 17.18 228 | 24.85 229 | 12.36 224 | 44.83 225 | 16.52 228 | 41.80 224 | 18.10 231 | 28.29 223 | 33.08 223 | 34.79 222 | 18.10 226 | 49.95 223 |
|
thres200 | | | 96.76 96 | 96.53 136 | 97.03 68 | 96.31 96 | 99.67 16 | 98.37 78 | 93.99 75 | 97.68 165 | 94.49 68 | 95.83 128 | 86.77 162 | 99.18 44 | 98.26 95 | 97.82 106 | 99.82 15 | 99.66 106 |
|
test0.0.03 1 | | | 96.69 101 | 98.12 82 | 95.01 113 | 95.49 129 | 98.99 109 | 95.86 152 | 90.82 128 | 98.38 133 | 92.54 105 | 96.66 108 | 97.33 82 | 95.75 157 | 97.75 130 | 98.34 78 | 99.60 131 | 99.40 151 |
|
pmmvs3 | | | 88.19 206 | 91.27 205 | 84.60 209 | 85.60 215 | 93.66 216 | 85.68 216 | 81.13 197 | 92.36 216 | 63.66 221 | 89.51 179 | 77.10 216 | 93.22 199 | 96.37 172 | 92.40 204 | 98.30 197 | 97.46 199 |
|
EMVS | | | 68.12 216 | 68.11 218 | 68.14 217 | 75.51 223 | 71.76 224 | 55.38 226 | 77.20 215 | 77.78 221 | 37.79 226 | 53.59 220 | 43.61 226 | 74.72 216 | 67.05 221 | 76.70 220 | 88.27 223 | 86.24 219 |
|
E-PMN | | | 68.30 215 | 68.43 217 | 68.15 216 | 74.70 224 | 71.56 225 | 55.64 225 | 77.24 214 | 77.48 222 | 39.46 225 | 51.95 222 | 41.68 227 | 73.28 217 | 70.65 220 | 79.51 217 | 88.61 222 | 86.20 220 |
|
PGM-MVS | | | 98.86 32 | 99.35 27 | 98.29 36 | 99.77 1 | 99.63 29 | 99.67 5 | 95.63 47 | 98.66 119 | 95.27 53 | 99.11 29 | 99.82 43 | 99.67 4 | 99.33 24 | 99.19 21 | 99.73 57 | 99.74 72 |
|
MCST-MVS | | | 99.11 21 | 99.27 32 | 98.93 23 | 99.67 14 | 99.33 89 | 99.51 21 | 98.31 9 | 99.28 38 | 96.57 38 | 99.10 32 | 99.90 33 | 99.71 2 | 99.19 32 | 98.35 76 | 99.82 15 | 99.71 90 |
|
MVS_Test | | | 97.30 79 | 98.54 64 | 95.87 101 | 95.74 114 | 99.28 93 | 98.19 88 | 91.40 118 | 99.18 53 | 91.59 114 | 98.17 72 | 96.18 97 | 98.63 79 | 98.61 76 | 98.55 63 | 99.66 108 | 99.78 48 |
|
MDA-MVSNet-bldmvs | | | 87.84 207 | 89.22 210 | 86.23 205 | 81.74 217 | 96.77 206 | 83.74 217 | 89.57 149 | 94.50 211 | 72.83 210 | 96.64 109 | 64.47 222 | 92.71 202 | 81.43 217 | 92.28 206 | 96.81 213 | 98.47 185 |
|
CDPH-MVS | | | 98.41 44 | 99.10 41 | 97.61 52 | 99.32 44 | 99.36 81 | 99.49 22 | 96.15 46 | 98.82 103 | 91.82 112 | 98.41 64 | 99.66 52 | 99.10 51 | 98.93 51 | 98.97 36 | 99.75 44 | 99.58 122 |
|
casdiffmvs | | | 96.93 92 | 97.43 106 | 96.34 91 | 95.70 116 | 99.50 61 | 97.75 104 | 93.22 92 | 98.98 85 | 92.64 101 | 94.97 136 | 91.71 138 | 98.93 60 | 98.62 75 | 98.52 66 | 99.82 15 | 99.72 87 |
|
diffmvs | | | 96.83 94 | 97.33 111 | 96.25 92 | 95.76 113 | 99.34 86 | 98.06 96 | 93.22 92 | 99.43 22 | 92.30 107 | 96.90 102 | 89.83 148 | 98.55 83 | 98.00 116 | 98.14 89 | 99.64 116 | 99.70 92 |
|
baseline2 | | | 96.36 110 | 97.82 93 | 94.65 117 | 94.60 147 | 99.09 105 | 96.45 143 | 89.63 148 | 98.36 135 | 91.29 117 | 97.60 88 | 94.13 123 | 96.37 143 | 98.45 88 | 97.70 110 | 99.54 154 | 99.41 148 |
|
baseline1 | | | 97.58 70 | 98.05 84 | 97.02 70 | 96.21 101 | 99.45 67 | 97.71 105 | 93.71 83 | 98.47 130 | 95.75 46 | 98.78 49 | 93.20 132 | 98.91 63 | 98.52 85 | 98.44 68 | 99.81 21 | 99.53 132 |
|
PMMVS2 | | | 77.26 212 | 79.47 215 | 74.70 215 | 76.00 221 | 88.37 220 | 74.22 222 | 76.34 216 | 78.31 220 | 54.13 223 | 69.96 217 | 52.50 225 | 70.14 219 | 84.83 215 | 88.71 214 | 97.35 207 | 93.58 216 |
|
PM-MVS | | | 89.55 203 | 90.30 208 | 88.67 199 | 87.06 212 | 95.60 211 | 90.88 202 | 84.51 192 | 96.14 197 | 75.75 196 | 86.89 201 | 63.47 223 | 94.64 182 | 96.85 161 | 93.89 198 | 99.17 185 | 99.29 155 |
|
PS-CasMVS | | | 92.72 180 | 93.36 194 | 91.98 163 | 91.62 192 | 97.52 191 | 94.13 190 | 88.98 154 | 95.94 203 | 81.51 172 | 87.35 197 | 79.95 208 | 95.91 155 | 96.37 172 | 96.49 147 | 99.70 83 | 99.89 10 |
|
UniMVSNet_NR-MVSNet | | | 94.59 148 | 95.47 157 | 93.55 138 | 91.85 183 | 97.89 170 | 95.03 165 | 92.00 105 | 97.33 172 | 86.12 141 | 93.19 156 | 87.29 156 | 96.60 138 | 96.12 180 | 96.70 139 | 99.72 64 | 99.80 35 |
|
PEN-MVS | | | 92.72 180 | 93.20 196 | 92.15 158 | 91.29 200 | 97.31 199 | 94.67 180 | 89.81 144 | 96.19 196 | 81.83 170 | 88.58 188 | 79.06 212 | 95.61 163 | 95.21 193 | 96.27 152 | 99.72 64 | 99.82 28 |
|
TransMVSNet (Re) | | | 93.45 166 | 94.08 179 | 92.72 152 | 92.83 164 | 97.62 185 | 94.94 168 | 91.54 116 | 95.65 206 | 83.06 162 | 88.93 185 | 83.53 186 | 94.25 186 | 97.41 144 | 97.03 132 | 99.67 103 | 98.40 189 |
|
DTE-MVSNet | | | 92.42 188 | 92.85 199 | 91.91 166 | 90.87 205 | 96.97 203 | 94.53 185 | 89.81 144 | 95.86 205 | 81.59 171 | 88.83 186 | 77.88 215 | 95.01 179 | 94.34 203 | 96.35 150 | 99.64 116 | 99.73 76 |
|
DU-MVS | | | 93.98 158 | 94.44 173 | 93.44 141 | 91.66 188 | 97.77 172 | 95.03 165 | 91.57 114 | 97.17 176 | 86.12 141 | 93.13 158 | 81.13 200 | 96.60 138 | 95.10 196 | 97.01 134 | 99.67 103 | 99.80 35 |
|
UniMVSNet (Re) | | | 94.58 149 | 95.34 159 | 93.71 133 | 92.25 175 | 98.08 163 | 94.97 167 | 91.29 124 | 97.03 181 | 87.94 131 | 93.97 147 | 86.25 170 | 96.07 151 | 96.27 177 | 95.97 164 | 99.72 64 | 99.79 42 |
|
CP-MVSNet | | | 93.25 169 | 94.00 182 | 92.38 154 | 91.65 190 | 97.56 189 | 94.38 186 | 89.20 152 | 96.05 200 | 83.16 161 | 89.51 179 | 81.97 196 | 96.16 150 | 96.43 169 | 96.56 145 | 99.71 74 | 99.89 10 |
|
WR-MVS_H | | | 93.54 165 | 94.67 169 | 92.22 155 | 91.95 179 | 97.91 169 | 94.58 183 | 88.75 157 | 96.64 190 | 83.88 153 | 90.66 173 | 85.13 178 | 94.40 184 | 96.54 167 | 95.91 166 | 99.73 57 | 99.89 10 |
|
WR-MVS | | | 93.43 168 | 94.48 172 | 92.21 156 | 91.52 195 | 97.69 177 | 94.66 181 | 89.98 141 | 96.86 184 | 83.43 158 | 90.12 175 | 85.03 179 | 93.94 192 | 96.02 184 | 95.82 167 | 99.71 74 | 99.82 28 |
|
NR-MVSNet | | | 94.01 156 | 94.51 171 | 93.44 141 | 92.56 168 | 97.77 172 | 95.67 154 | 91.57 114 | 97.17 176 | 85.84 144 | 93.13 158 | 80.53 203 | 95.29 173 | 97.01 158 | 96.17 156 | 99.69 86 | 99.75 68 |
|
Baseline_NR-MVSNet | | | 93.87 161 | 93.98 183 | 93.75 131 | 91.66 188 | 97.02 202 | 95.53 158 | 91.52 117 | 97.16 178 | 87.77 134 | 87.93 195 | 83.69 184 | 96.35 144 | 95.10 196 | 97.23 129 | 99.68 95 | 99.73 76 |
|
TranMVSNet+NR-MVSNet | | | 93.67 164 | 94.14 176 | 93.13 147 | 91.28 202 | 97.58 187 | 95.60 157 | 91.97 106 | 97.06 179 | 84.05 150 | 90.64 174 | 82.22 195 | 96.17 149 | 94.94 199 | 96.78 137 | 99.69 86 | 99.78 48 |
|
TSAR-MVS + GP. | | | 98.66 40 | 99.36 24 | 97.85 47 | 97.16 82 | 99.46 65 | 99.03 49 | 94.59 63 | 99.09 70 | 97.19 31 | 99.73 3 | 99.95 18 | 99.39 29 | 98.95 49 | 98.69 56 | 99.75 44 | 99.65 109 |
|
abl_6 | | | | | 98.09 41 | 99.33 43 | 99.22 99 | 98.79 61 | 94.96 55 | 98.52 128 | 97.00 34 | 97.30 91 | 99.86 38 | 98.76 72 | | | 99.69 86 | 99.41 148 |
|
mPP-MVS | | | | | | 99.53 31 | | | | | | | 99.89 35 | | | | | |
|
SixPastTwentyTwo | | | 93.44 167 | 95.32 160 | 91.24 178 | 92.11 176 | 98.40 151 | 92.77 195 | 88.64 160 | 98.09 146 | 77.83 190 | 93.51 152 | 85.74 173 | 96.52 141 | 96.91 160 | 94.89 190 | 99.59 137 | 99.73 76 |
|
LGP-MVS_train | | | 96.23 112 | 96.89 126 | 95.46 109 | 97.32 76 | 98.77 121 | 98.81 60 | 93.60 84 | 98.58 122 | 85.52 147 | 99.08 34 | 86.67 164 | 97.83 109 | 97.87 123 | 97.51 117 | 99.69 86 | 99.73 76 |
|
baseline | | | 97.45 75 | 98.70 62 | 95.99 100 | 95.89 109 | 99.36 81 | 98.29 83 | 91.37 119 | 99.21 49 | 92.99 98 | 98.40 65 | 96.87 89 | 97.96 100 | 98.60 79 | 98.60 61 | 99.42 169 | 99.86 19 |
|
EPNet_dtu | | | 96.30 111 | 98.53 65 | 93.70 134 | 98.97 51 | 98.24 158 | 97.36 114 | 94.23 71 | 98.85 96 | 79.18 185 | 99.19 22 | 98.47 70 | 94.09 189 | 97.89 122 | 98.21 86 | 98.39 195 | 98.85 179 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CHOSEN 1792x2688 | | | 96.41 108 | 96.99 124 | 95.74 105 | 98.01 67 | 99.72 10 | 97.70 106 | 90.78 130 | 99.13 67 | 90.03 122 | 87.35 197 | 95.36 106 | 98.33 89 | 98.59 81 | 98.91 42 | 99.59 137 | 99.87 16 |
|
EPNet | | | 98.05 56 | 98.86 56 | 97.10 64 | 99.02 50 | 99.43 71 | 98.47 71 | 94.73 58 | 99.05 78 | 95.62 47 | 98.93 41 | 97.62 81 | 95.48 167 | 98.59 81 | 98.55 63 | 99.29 179 | 99.84 23 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
APD-MVS |  | | 99.25 13 | 99.38 22 | 99.09 12 | 99.69 8 | 99.58 49 | 99.56 18 | 98.32 8 | 98.85 96 | 97.87 21 | 98.91 43 | 99.92 29 | 99.30 37 | 99.45 16 | 99.38 8 | 99.79 30 | 99.58 122 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CNVR-MVS | | | 99.23 15 | 99.28 31 | 99.17 5 | 99.65 19 | 99.34 86 | 99.46 25 | 98.21 21 | 99.28 38 | 98.47 9 | 98.89 45 | 99.94 26 | 99.50 18 | 99.42 18 | 98.61 60 | 99.73 57 | 99.52 135 |
|
NCCC | | | 99.05 26 | 99.08 42 | 99.02 20 | 99.62 24 | 99.38 77 | 99.43 29 | 98.21 21 | 99.36 29 | 97.66 25 | 97.79 81 | 99.90 33 | 99.45 25 | 99.17 33 | 98.43 70 | 99.77 38 | 99.51 139 |
|
CP-MVS | | | 99.27 11 | 99.44 17 | 99.08 13 | 99.62 24 | 99.58 49 | 99.53 19 | 98.16 23 | 99.21 49 | 97.79 22 | 99.15 25 | 99.96 13 | 99.59 10 | 99.54 12 | 98.86 45 | 99.78 33 | 99.74 72 |
|
NP-MVS | | | | | | | | | | 98.57 123 | | | | | | | | |
|
EG-PatchMatch MVS | | | 92.45 184 | 93.92 185 | 90.72 186 | 92.56 168 | 98.43 149 | 94.88 171 | 84.54 191 | 97.18 175 | 79.55 183 | 86.12 204 | 83.23 189 | 93.15 200 | 97.22 152 | 96.00 161 | 99.67 103 | 99.27 158 |
|
tpm cat1 | | | 94.06 155 | 94.90 163 | 93.06 148 | 95.42 134 | 98.52 142 | 96.64 137 | 80.67 198 | 97.82 160 | 92.63 102 | 93.39 154 | 95.00 110 | 96.06 152 | 91.36 212 | 91.58 211 | 96.98 212 | 96.66 209 |
|
SteuartSystems-ACMMP | | | 99.20 16 | 99.51 11 | 98.83 28 | 99.66 17 | 99.66 20 | 99.71 3 | 98.12 29 | 99.14 62 | 96.62 36 | 99.16 24 | 99.98 2 | 99.12 49 | 99.63 3 | 99.19 21 | 99.78 33 | 99.83 27 |
Skip Steuart: Steuart Systems R&D Blog. |
CostFormer | | | 94.25 154 | 94.88 164 | 93.51 140 | 95.43 132 | 98.34 155 | 96.21 148 | 80.64 199 | 97.94 154 | 94.01 76 | 98.30 69 | 86.20 171 | 97.52 113 | 92.71 207 | 92.69 203 | 97.23 211 | 98.02 194 |
|
CR-MVSNet | | | 94.57 150 | 97.34 110 | 91.33 176 | 94.90 142 | 98.59 137 | 97.15 124 | 79.14 207 | 97.98 150 | 80.42 177 | 96.59 113 | 93.50 129 | 96.85 129 | 98.10 103 | 97.49 119 | 99.50 159 | 99.15 164 |
|
Patchmtry | | | | | | | 98.59 137 | 97.15 124 | 79.14 207 | | 80.42 177 | | | | | | | |
|
PatchT | | | 93.96 159 | 97.36 109 | 90.00 192 | 94.76 146 | 98.65 132 | 90.11 207 | 78.57 212 | 97.96 153 | 80.42 177 | 96.07 121 | 94.10 124 | 96.85 129 | 98.10 103 | 97.49 119 | 99.26 181 | 99.15 164 |
|
tpmrst | | | 93.86 162 | 95.88 152 | 91.50 172 | 95.69 117 | 98.62 134 | 95.64 156 | 79.41 205 | 98.80 106 | 83.76 156 | 95.63 132 | 96.13 98 | 97.25 119 | 92.92 206 | 92.31 205 | 97.27 209 | 96.74 207 |
|
tpm | | | 92.38 189 | 94.79 166 | 89.56 196 | 94.30 149 | 97.50 192 | 94.24 189 | 78.97 210 | 97.72 163 | 74.93 202 | 97.97 78 | 82.91 190 | 96.60 138 | 93.65 205 | 94.81 191 | 98.33 196 | 98.98 172 |
|
DELS-MVS | | | 98.19 51 | 98.77 60 | 97.52 53 | 98.29 62 | 99.71 13 | 99.12 42 | 94.58 64 | 98.80 106 | 95.38 52 | 96.24 119 | 98.24 74 | 97.92 102 | 99.06 42 | 99.52 1 | 99.82 15 | 99.79 42 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
RPMNet | | | 94.66 144 | 97.16 118 | 91.75 169 | 94.98 141 | 98.59 137 | 97.00 131 | 78.37 213 | 97.98 150 | 83.78 154 | 96.27 118 | 94.09 125 | 96.91 127 | 97.36 146 | 96.73 138 | 99.48 160 | 99.09 169 |
|
MVSTER | | | 97.16 83 | 97.71 95 | 96.52 86 | 95.97 108 | 98.48 143 | 98.63 65 | 92.10 103 | 98.68 118 | 95.96 44 | 99.23 21 | 91.79 137 | 96.87 128 | 98.76 65 | 97.37 128 | 99.57 145 | 99.68 101 |
|
CPTT-MVS | | | 99.14 20 | 99.20 37 | 99.06 15 | 99.58 27 | 99.53 56 | 99.45 26 | 97.80 38 | 99.19 52 | 98.32 13 | 98.58 57 | 99.95 18 | 99.60 7 | 99.28 26 | 98.20 87 | 99.64 116 | 99.69 96 |
|
GBi-Net | | | 96.98 90 | 98.00 88 | 95.78 102 | 93.81 155 | 97.98 164 | 98.09 92 | 91.32 120 | 98.80 106 | 93.92 78 | 97.21 93 | 95.94 102 | 97.89 103 | 98.07 108 | 98.34 78 | 99.68 95 | 99.67 102 |
|
PVSNet_Blended_VisFu | | | 97.41 76 | 98.49 67 | 96.15 94 | 97.49 72 | 99.76 4 | 96.02 150 | 93.75 81 | 99.26 43 | 93.38 91 | 93.73 148 | 99.35 58 | 96.47 142 | 98.96 48 | 98.46 67 | 99.77 38 | 99.90 6 |
|
PVSNet_BlendedMVS | | | 97.51 73 | 97.71 95 | 97.28 59 | 98.06 64 | 99.61 38 | 97.31 116 | 95.02 53 | 99.08 72 | 95.51 49 | 98.05 74 | 90.11 143 | 98.07 96 | 98.91 54 | 98.40 71 | 99.72 64 | 99.78 48 |
|
PVSNet_Blended | | | 97.51 73 | 97.71 95 | 97.28 59 | 98.06 64 | 99.61 38 | 97.31 116 | 95.02 53 | 99.08 72 | 95.51 49 | 98.05 74 | 90.11 143 | 98.07 96 | 98.91 54 | 98.40 71 | 99.72 64 | 99.78 48 |
|
FMVSNet5 | | | 95.42 129 | 96.47 141 | 94.20 123 | 92.26 174 | 95.99 210 | 95.66 155 | 87.15 173 | 97.87 157 | 93.46 90 | 96.68 107 | 93.79 126 | 97.52 113 | 97.10 157 | 97.21 130 | 99.11 186 | 96.62 210 |
|
test1 | | | 96.98 90 | 98.00 88 | 95.78 102 | 93.81 155 | 97.98 164 | 98.09 92 | 91.32 120 | 98.80 106 | 93.92 78 | 97.21 93 | 95.94 102 | 97.89 103 | 98.07 108 | 98.34 78 | 99.68 95 | 99.67 102 |
|
new_pmnet | | | 90.45 201 | 92.84 200 | 87.66 201 | 88.96 210 | 96.16 209 | 88.71 212 | 84.66 190 | 97.56 166 | 71.91 212 | 85.60 205 | 86.58 166 | 93.28 198 | 96.07 182 | 93.54 201 | 98.46 193 | 94.39 214 |
|
FMVSNet3 | | | 97.02 89 | 98.12 82 | 95.73 106 | 93.59 161 | 97.98 164 | 98.34 82 | 91.32 120 | 98.80 106 | 93.92 78 | 97.21 93 | 95.94 102 | 97.63 112 | 98.61 76 | 98.62 59 | 99.61 123 | 99.65 109 |
|
dps | | | 94.63 146 | 95.31 161 | 93.84 129 | 95.53 127 | 98.71 129 | 96.54 139 | 80.12 201 | 97.81 162 | 97.21 30 | 96.98 98 | 92.37 133 | 96.34 145 | 92.46 209 | 91.77 209 | 97.26 210 | 97.08 204 |
|
FMVSNet2 | | | 96.64 104 | 97.50 100 | 95.63 108 | 93.81 155 | 97.98 164 | 98.09 92 | 90.87 126 | 98.99 84 | 93.48 89 | 93.17 157 | 95.25 107 | 97.89 103 | 98.63 74 | 98.80 53 | 99.68 95 | 99.67 102 |
|
FMVSNet1 | | | 95.77 122 | 96.41 146 | 95.03 112 | 93.42 162 | 97.86 171 | 97.11 127 | 89.89 143 | 98.53 126 | 92.00 111 | 89.17 181 | 93.23 131 | 98.15 93 | 98.07 108 | 98.34 78 | 99.61 123 | 99.69 96 |
|
N_pmnet | | | 92.21 193 | 94.60 170 | 89.42 197 | 91.88 181 | 97.38 198 | 89.15 211 | 89.74 147 | 97.89 156 | 73.75 204 | 87.94 194 | 92.23 135 | 93.85 194 | 96.10 181 | 93.20 202 | 98.15 199 | 97.43 200 |
|
UGNet | | | 97.66 68 | 99.07 44 | 96.01 99 | 97.19 81 | 99.65 21 | 97.09 128 | 93.39 87 | 99.35 30 | 94.40 72 | 98.79 48 | 99.59 55 | 94.24 187 | 98.04 113 | 98.29 83 | 99.73 57 | 99.80 35 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
DROMVSNet | | | 98.22 50 | 99.44 17 | 96.79 76 | 95.62 120 | 99.56 52 | 99.01 51 | 92.22 100 | 99.17 54 | 94.51 67 | 99.41 13 | 99.62 53 | 99.49 20 | 99.16 35 | 99.26 14 | 99.91 2 | 99.94 1 |
|
MDTV_nov1_ep13_2view | | | 92.44 185 | 95.66 155 | 88.68 198 | 91.05 204 | 97.92 168 | 92.17 198 | 79.64 203 | 98.83 101 | 76.20 195 | 91.45 166 | 93.51 128 | 95.04 178 | 95.68 189 | 93.70 200 | 97.96 200 | 98.53 183 |
|
MDTV_nov1_ep13 | | | 95.57 125 | 97.48 102 | 93.35 145 | 95.43 132 | 98.97 111 | 97.19 123 | 83.72 195 | 98.92 91 | 87.91 132 | 97.75 83 | 96.12 99 | 97.88 106 | 96.84 162 | 95.64 171 | 97.96 200 | 98.10 192 |
|
MIMVSNet1 | | | 88.61 205 | 90.68 207 | 86.19 206 | 81.56 218 | 95.30 214 | 87.78 213 | 85.98 183 | 94.19 212 | 72.30 211 | 78.84 214 | 78.90 213 | 90.06 206 | 96.59 164 | 95.47 172 | 99.46 163 | 95.49 212 |
|
MIMVSNet | | | 94.49 151 | 97.59 99 | 90.87 185 | 91.74 186 | 98.70 130 | 94.68 179 | 78.73 211 | 97.98 150 | 83.71 157 | 97.71 86 | 94.81 113 | 96.96 126 | 97.97 117 | 97.92 99 | 99.40 172 | 98.04 193 |
|
IterMVS-LS | | | 96.12 116 | 97.48 102 | 94.53 118 | 95.19 137 | 97.56 189 | 97.15 124 | 89.19 153 | 99.08 72 | 88.23 128 | 94.97 136 | 94.73 114 | 97.84 108 | 97.86 124 | 98.26 84 | 99.60 131 | 99.88 14 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CDS-MVSNet | | | 96.59 107 | 98.02 87 | 94.92 114 | 94.45 148 | 98.96 112 | 97.46 112 | 91.75 109 | 97.86 158 | 90.07 121 | 96.02 122 | 97.25 85 | 96.21 146 | 98.04 113 | 98.38 73 | 99.60 131 | 99.65 109 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
IterMVS | | | 94.81 142 | 97.71 95 | 91.42 173 | 94.83 145 | 97.63 182 | 97.38 113 | 85.08 186 | 98.93 89 | 75.67 198 | 94.02 145 | 97.64 79 | 96.66 136 | 98.45 88 | 97.60 114 | 98.90 190 | 99.72 87 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MVS_111021_LR | | | 98.67 38 | 99.41 21 | 97.81 48 | 99.37 38 | 99.53 56 | 98.51 68 | 95.52 49 | 99.27 40 | 94.85 60 | 99.56 8 | 99.69 51 | 99.04 55 | 99.36 21 | 98.88 43 | 99.60 131 | 99.58 122 |
|
HQP-MVS | | | 96.37 109 | 96.58 133 | 96.13 95 | 97.31 78 | 98.44 147 | 98.45 73 | 95.22 51 | 98.86 94 | 88.58 127 | 98.33 68 | 87.00 159 | 97.67 111 | 97.23 151 | 96.56 145 | 99.56 148 | 99.62 117 |
|
QAPM | | | 98.62 41 | 99.04 48 | 98.13 40 | 99.57 28 | 99.48 63 | 99.17 39 | 94.78 57 | 99.57 10 | 96.16 41 | 96.73 105 | 99.80 44 | 99.33 32 | 98.79 62 | 99.29 13 | 99.75 44 | 99.64 113 |
|
Vis-MVSNet |  | | 96.16 115 | 98.22 77 | 93.75 131 | 95.33 135 | 99.70 15 | 97.27 118 | 90.85 127 | 98.30 137 | 85.51 148 | 95.72 131 | 96.45 90 | 93.69 196 | 98.70 70 | 99.00 34 | 99.84 11 | 99.69 96 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
MVS-HIRNet | | | 92.51 183 | 95.97 149 | 88.48 200 | 93.73 158 | 98.37 153 | 90.33 205 | 75.36 219 | 98.32 136 | 77.78 191 | 89.15 182 | 94.87 111 | 95.14 177 | 97.62 138 | 96.39 149 | 98.51 192 | 97.11 203 |
|
HyFIR lowres test | | | 95.99 118 | 96.56 134 | 95.32 110 | 97.99 68 | 99.65 21 | 96.54 139 | 88.86 155 | 98.44 131 | 89.77 125 | 84.14 207 | 97.05 87 | 99.03 56 | 98.55 83 | 98.19 88 | 99.73 57 | 99.86 19 |
|
EPMVS | | | 95.05 136 | 96.86 128 | 92.94 150 | 95.84 111 | 98.96 112 | 96.68 135 | 79.87 202 | 99.05 78 | 90.15 120 | 97.12 97 | 95.99 101 | 97.49 115 | 95.17 194 | 94.75 192 | 97.59 206 | 96.96 206 |
|
TAMVS | | | 95.53 127 | 96.50 140 | 94.39 122 | 93.86 154 | 99.03 106 | 96.67 136 | 89.55 150 | 97.33 172 | 90.64 119 | 93.02 161 | 91.58 139 | 96.21 146 | 97.72 132 | 97.43 125 | 99.43 167 | 99.36 153 |
|
IS_MVSNet | | | 97.86 61 | 98.86 56 | 96.68 78 | 96.02 104 | 99.72 10 | 98.35 81 | 93.37 89 | 98.75 116 | 94.01 76 | 96.88 103 | 98.40 71 | 98.48 86 | 99.09 39 | 99.42 5 | 99.83 14 | 99.80 35 |
|
RPSCF | | | 97.61 69 | 98.16 80 | 96.96 75 | 98.10 63 | 99.00 107 | 98.84 59 | 93.76 79 | 99.45 20 | 94.78 62 | 99.39 14 | 99.31 59 | 98.53 85 | 96.61 163 | 95.43 173 | 97.74 202 | 97.93 196 |
|
Vis-MVSNet (Re-imp) | | | 97.40 77 | 98.89 55 | 95.66 107 | 95.99 107 | 99.62 33 | 97.82 100 | 93.22 92 | 98.82 103 | 91.40 115 | 96.94 100 | 98.56 69 | 95.70 159 | 99.14 37 | 99.41 6 | 99.79 30 | 99.75 68 |
|
MVS_111021_HR | | | 98.59 42 | 99.36 24 | 97.68 50 | 99.42 36 | 99.61 38 | 98.14 90 | 94.81 56 | 99.31 34 | 95.00 58 | 99.51 9 | 99.79 46 | 99.00 58 | 98.94 50 | 98.83 50 | 99.69 86 | 99.57 127 |
|
CSCG | | | 98.90 31 | 98.93 54 | 98.85 26 | 99.75 3 | 99.72 10 | 99.49 22 | 96.58 44 | 99.38 24 | 98.05 17 | 98.97 38 | 97.87 77 | 99.49 20 | 97.78 127 | 98.92 40 | 99.78 33 | 99.90 6 |
|
PatchMatch-RL | | | 97.77 64 | 98.25 73 | 97.21 62 | 99.11 48 | 99.25 95 | 97.06 130 | 94.09 72 | 98.72 117 | 95.14 56 | 98.47 62 | 96.29 94 | 98.43 87 | 98.65 72 | 97.44 124 | 99.45 164 | 98.94 173 |
|
TDRefinement | | | 93.04 173 | 93.57 190 | 92.41 153 | 96.58 91 | 98.77 121 | 97.78 103 | 91.96 107 | 98.12 145 | 80.84 174 | 89.13 183 | 79.87 209 | 87.78 209 | 96.44 168 | 94.50 195 | 99.54 154 | 98.15 191 |
|
USDC | | | 94.26 153 | 94.83 165 | 93.59 136 | 96.02 104 | 98.44 147 | 97.84 99 | 88.65 159 | 98.86 94 | 82.73 166 | 94.02 145 | 80.56 202 | 96.76 131 | 97.28 150 | 96.15 158 | 99.55 150 | 98.50 184 |
|
EPP-MVSNet | | | 97.75 65 | 98.71 61 | 96.63 83 | 95.68 118 | 99.56 52 | 97.51 110 | 93.10 96 | 99.22 47 | 94.99 59 | 97.18 96 | 97.30 84 | 98.65 77 | 98.83 59 | 98.93 39 | 99.84 11 | 99.92 2 |
|
PMMVS | | | 97.52 72 | 98.39 69 | 96.51 87 | 95.82 112 | 98.73 128 | 97.80 101 | 93.05 97 | 98.76 113 | 94.39 73 | 99.07 35 | 97.03 88 | 98.55 83 | 98.31 94 | 97.61 113 | 99.43 167 | 99.21 162 |
|
ACMMP |  | | 98.74 35 | 99.03 49 | 98.40 34 | 99.36 40 | 99.64 26 | 99.20 37 | 97.75 39 | 98.82 103 | 95.24 54 | 98.85 46 | 99.87 37 | 99.17 46 | 98.74 68 | 97.50 118 | 99.71 74 | 99.76 61 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CNLPA | | | 99.03 28 | 99.05 45 | 99.01 21 | 99.27 45 | 99.22 99 | 99.03 49 | 97.98 34 | 99.34 31 | 99.00 4 | 98.25 70 | 99.71 50 | 99.31 35 | 98.80 61 | 98.82 52 | 99.48 160 | 99.17 163 |
|
PatchmatchNet |  | | 94.70 143 | 97.08 121 | 91.92 165 | 95.53 127 | 98.85 116 | 95.77 153 | 79.54 204 | 98.95 86 | 85.98 143 | 98.52 58 | 96.45 90 | 97.39 118 | 95.32 191 | 94.09 197 | 97.32 208 | 97.38 201 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
PHI-MVS | | | 99.08 23 | 99.43 20 | 98.67 30 | 99.15 47 | 99.59 46 | 99.11 43 | 97.35 41 | 99.14 62 | 97.30 29 | 99.44 12 | 99.96 13 | 99.32 34 | 98.89 56 | 99.39 7 | 99.79 30 | 99.58 122 |
|
OMC-MVS | | | 98.84 33 | 99.01 51 | 98.65 31 | 99.39 37 | 99.23 98 | 99.22 36 | 96.70 43 | 99.40 23 | 97.77 23 | 97.89 80 | 99.80 44 | 99.21 40 | 99.02 45 | 98.65 58 | 99.57 145 | 99.07 170 |
|
AdaColmap |  | | 99.06 25 | 98.98 52 | 99.15 7 | 99.60 26 | 99.30 92 | 99.38 31 | 98.16 23 | 99.02 81 | 98.55 8 | 98.71 54 | 99.57 57 | 99.58 13 | 99.09 39 | 97.84 105 | 99.64 116 | 99.36 153 |
|
DeepMVS_CX |  | | | | | | 96.85 204 | 87.43 214 | 89.27 151 | 98.30 137 | 75.55 199 | 95.05 135 | 79.47 210 | 92.62 203 | 89.48 213 | | 95.18 218 | 95.96 211 |
|
TinyColmap | | | 94.00 157 | 94.35 174 | 93.60 135 | 95.89 109 | 98.26 156 | 97.49 111 | 88.82 156 | 98.56 124 | 83.21 160 | 91.28 168 | 80.48 204 | 96.68 134 | 97.34 147 | 96.26 154 | 99.53 156 | 98.24 190 |
|
MAR-MVS | | | 97.71 66 | 98.04 85 | 97.32 57 | 99.35 42 | 98.91 114 | 97.65 107 | 91.68 111 | 98.00 149 | 97.01 33 | 97.72 85 | 94.83 112 | 98.85 70 | 98.44 90 | 98.86 45 | 99.41 170 | 99.52 135 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MSDG | | | 98.27 49 | 98.29 72 | 98.24 38 | 99.20 46 | 99.22 99 | 99.20 37 | 97.82 37 | 99.37 26 | 94.43 70 | 95.90 125 | 97.31 83 | 99.12 49 | 98.76 65 | 98.35 76 | 99.67 103 | 99.14 167 |
|
LS3D | | | 97.79 62 | 98.25 73 | 97.26 61 | 98.40 60 | 99.63 29 | 99.53 19 | 98.63 1 | 99.25 45 | 88.13 129 | 96.93 101 | 94.14 122 | 99.19 42 | 99.14 37 | 99.23 18 | 99.69 86 | 99.42 147 |
|
CLD-MVS | | | 96.74 98 | 96.51 138 | 97.01 72 | 96.71 90 | 98.62 134 | 98.73 62 | 94.38 68 | 98.94 88 | 94.46 69 | 97.33 89 | 87.03 158 | 98.07 96 | 97.20 153 | 96.87 136 | 99.72 64 | 99.54 131 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
FPMVS | | | 83.82 210 | 84.61 212 | 82.90 210 | 90.39 208 | 90.71 218 | 90.85 203 | 84.10 194 | 95.47 208 | 65.15 217 | 83.44 208 | 74.46 218 | 75.48 215 | 81.63 216 | 79.42 218 | 91.42 220 | 87.14 218 |
|
Gipuma |  | | 81.40 211 | 81.78 213 | 80.96 213 | 83.21 216 | 85.61 222 | 79.73 220 | 76.25 218 | 97.33 172 | 64.21 220 | 55.32 219 | 55.55 224 | 86.04 210 | 92.43 210 | 92.20 207 | 96.32 216 | 93.99 215 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |