This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
DELS-MVS98.19 4998.77 5797.52 5198.29 6199.71 999.12 4194.58 6398.80 10095.38 4896.24 11598.24 7197.92 9599.06 3899.52 199.82 1099.79 38
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepC-MVS97.63 498.33 4698.57 6098.04 4298.62 5799.65 1799.45 2598.15 2499.51 1692.80 9595.74 12596.44 8999.46 2199.37 1999.50 299.78 2899.81 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator96.92 798.67 3799.05 4298.23 3899.57 2799.45 6199.11 4294.66 5999.69 396.80 3396.55 11099.61 5299.40 2598.87 5299.49 399.85 399.66 102
MSLP-MVS++99.15 1899.24 3199.04 1599.52 3299.49 5699.09 4498.07 3099.37 2598.47 997.79 7799.89 3499.50 1798.93 4599.45 499.61 11699.76 57
IS_MVSNet97.86 5898.86 5396.68 7496.02 10099.72 698.35 7593.37 8598.75 11094.01 7296.88 9998.40 6898.48 7999.09 3599.42 599.83 899.80 30
Vis-MVSNet (Re-imp)97.40 7498.89 5295.66 10195.99 10399.62 2997.82 9393.22 8898.82 9791.40 10996.94 9698.56 6695.70 15299.14 3399.41 699.79 2599.75 64
PHI-MVS99.08 2299.43 1898.67 2999.15 4699.59 4199.11 4297.35 4099.14 5597.30 2799.44 1199.96 1299.32 3098.89 5099.39 799.79 2599.58 115
APD-MVScopyleft99.25 1299.38 2099.09 1199.69 899.58 4499.56 1798.32 798.85 9097.87 2098.91 3999.92 2899.30 3399.45 1599.38 899.79 2599.58 115
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepPCF-MVS97.74 398.34 4599.46 1297.04 6398.82 5299.33 8296.28 13997.47 3999.58 894.70 5998.99 3399.85 4097.24 11399.55 1099.34 997.73 19799.56 121
DeepC-MVS_fast98.34 199.17 1799.45 1398.85 2599.55 2999.37 7399.64 898.05 3299.53 1396.58 3598.93 3799.92 2899.49 1999.46 1499.32 1099.80 2499.64 109
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SMA-MVScopyleft99.38 599.60 299.12 999.76 299.62 2999.39 2998.23 1999.52 1598.03 1799.45 1099.98 199.64 599.58 899.30 1199.68 8899.76 57
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
3Dnovator+96.92 798.71 3699.05 4298.32 3499.53 3099.34 7999.06 4694.61 6099.65 497.49 2496.75 10099.86 3799.44 2398.78 5799.30 1199.81 1699.67 98
QAPM98.62 4099.04 4598.13 3999.57 2799.48 5799.17 3894.78 5699.57 996.16 3896.73 10199.80 4399.33 2998.79 5699.29 1399.75 3999.64 109
APDe-MVS99.49 199.64 199.32 299.74 499.74 599.75 198.34 499.56 1098.72 799.57 699.97 799.53 1699.65 299.25 1499.84 599.77 52
ACMMPR99.30 999.54 699.03 1699.66 1699.64 2299.68 498.25 1499.56 1097.12 3099.19 1999.95 1799.72 199.43 1699.25 1499.72 5799.77 52
HFP-MVS99.32 799.53 899.07 1399.69 899.59 4199.63 1198.31 899.56 1097.37 2699.27 1699.97 799.70 399.35 2199.24 1699.71 6799.76 57
UA-Net97.13 8099.14 3594.78 10997.21 7999.38 7197.56 10292.04 9898.48 12388.03 12498.39 6299.91 3194.03 18399.33 2399.23 1799.81 1699.25 152
LS3D97.79 5998.25 7097.26 5798.40 5999.63 2599.53 1898.63 199.25 4288.13 12396.93 9794.14 11999.19 3899.14 3399.23 1799.69 7999.42 140
X-MVS98.93 2999.37 2198.42 3299.67 1399.62 2999.60 1598.15 2499.08 6593.81 7898.46 5999.95 1799.59 1099.49 1399.21 1999.68 8899.75 64
PGM-MVS98.86 3199.35 2598.29 3599.77 199.63 2599.67 595.63 4698.66 11395.27 4999.11 2599.82 4299.67 499.33 2399.19 2099.73 5199.74 68
SteuartSystems-ACMMP99.20 1599.51 1098.83 2799.66 1699.66 1599.71 398.12 2899.14 5596.62 3499.16 2199.98 199.12 4599.63 399.19 2099.78 2899.83 22
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + MP.99.27 1099.57 498.92 2398.78 5499.53 5099.72 298.11 2999.73 297.43 2599.15 2299.96 1299.59 1099.73 199.07 2299.88 199.82 23
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS99.25 1299.50 1198.96 2198.79 5399.55 4899.33 3298.29 1199.75 197.96 1999.15 2299.95 1799.61 699.17 3199.06 2399.81 1699.84 18
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DVP-MVS99.45 299.54 699.35 199.72 799.76 199.63 1198.37 299.63 699.03 398.95 3699.98 199.60 799.60 699.05 2499.74 4499.79 38
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS99.34 699.52 999.14 899.68 1299.75 499.64 898.31 899.44 2098.10 1499.28 1599.98 199.30 3399.34 2299.05 2499.81 1699.79 38
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
canonicalmvs97.31 7597.81 9196.72 7396.20 9899.45 6198.21 8191.60 10799.22 4495.39 4798.48 5790.95 13699.16 4397.66 12799.05 2499.76 3599.90 3
OpenMVScopyleft96.23 1197.95 5798.45 6597.35 5299.52 3299.42 6698.91 5394.61 6098.87 8792.24 10494.61 13699.05 6199.10 4798.64 6799.05 2499.74 4499.51 132
Vis-MVSNetpermissive96.16 10998.22 7493.75 12495.33 12999.70 1197.27 11190.85 12198.30 13085.51 14195.72 12796.45 8793.69 18998.70 6499.00 2899.84 599.69 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CANet98.46 4299.16 3497.64 4998.48 5899.64 2299.35 3194.71 5899.53 1395.17 5197.63 8399.59 5398.38 8198.88 5198.99 2999.74 4499.86 15
CDPH-MVS98.41 4399.10 3897.61 5099.32 4399.36 7499.49 2196.15 4598.82 9791.82 10698.41 6099.66 5199.10 4798.93 4598.97 3099.75 3999.58 115
DPE-MVS99.39 499.55 599.20 499.63 2199.71 999.66 698.33 699.29 3498.40 1299.64 499.98 199.31 3199.56 998.96 3199.85 399.70 88
TSAR-MVS + ACMM98.77 3399.45 1397.98 4499.37 3799.46 5999.44 2798.13 2799.65 492.30 10298.91 3999.95 1799.05 5099.42 1798.95 3299.58 13499.82 23
EPP-MVSNet97.75 6298.71 5896.63 7895.68 11599.56 4797.51 10393.10 9299.22 4494.99 5597.18 9297.30 8198.65 7198.83 5398.93 3399.84 599.92 1
CHOSEN 280x42097.99 5699.24 3196.53 8098.34 6099.61 3498.36 7489.80 14099.27 3795.08 5399.81 198.58 6598.64 7299.02 4098.92 3498.93 18299.48 136
CSCG98.90 3098.93 5198.85 2599.75 399.72 699.49 2196.58 4399.38 2398.05 1698.97 3497.87 7499.49 1997.78 12098.92 3499.78 2899.90 3
CHOSEN 1792x268896.41 10296.99 11995.74 9998.01 6699.72 697.70 9990.78 12499.13 6090.03 11687.35 19095.36 10398.33 8298.59 7498.91 3699.59 13099.87 12
MVS_111021_LR98.67 3799.41 1997.81 4799.37 3799.53 5098.51 6695.52 4899.27 3794.85 5699.56 799.69 5099.04 5199.36 2098.88 3799.60 12499.58 115
MVS_030498.14 5199.03 4697.10 6098.05 6599.63 2599.27 3494.33 6599.63 693.06 9097.32 8699.05 6198.09 8898.82 5498.87 3899.81 1699.89 6
CP-MVS99.27 1099.44 1699.08 1299.62 2399.58 4499.53 1898.16 2299.21 4697.79 2199.15 2299.96 1299.59 1099.54 1198.86 3999.78 2899.74 68
MAR-MVS97.71 6398.04 8297.32 5399.35 4198.91 10797.65 10091.68 10598.00 14297.01 3197.72 8194.83 10998.85 6598.44 8398.86 3999.41 16399.52 128
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
xxxxxxxxxxxxxcwj98.14 5197.38 10599.03 1699.65 1899.41 6898.87 5498.24 1799.14 5598.73 599.11 2586.38 16298.92 5899.22 2798.84 4199.76 3599.56 121
SF-MVS99.18 1699.32 2699.03 1699.65 1899.41 6898.87 5498.24 1799.14 5598.73 599.11 2599.92 2898.92 5899.22 2798.84 4199.76 3599.56 121
SED-MVS99.44 399.58 399.28 399.69 899.76 199.62 1498.35 399.51 1699.05 299.60 599.98 199.28 3599.61 598.83 4399.70 7699.77 52
MVS_111021_HR98.59 4199.36 2297.68 4899.42 3599.61 3498.14 8494.81 5599.31 3195.00 5499.51 899.79 4599.00 5498.94 4498.83 4399.69 7999.57 120
CNLPA99.03 2799.05 4299.01 2099.27 4499.22 9299.03 4897.98 3399.34 2999.00 498.25 6699.71 4999.31 3198.80 5598.82 4599.48 15399.17 156
FMVSNet296.64 9897.50 9795.63 10293.81 14897.98 15798.09 8690.87 12098.99 7793.48 8493.17 15295.25 10497.89 9698.63 6898.80 4699.68 8899.67 98
MP-MVScopyleft99.07 2399.36 2298.74 2899.63 2199.57 4699.66 698.25 1499.00 7695.62 4398.97 3499.94 2599.54 1599.51 1298.79 4799.71 6799.73 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CS-MVS98.06 5399.12 3696.82 7295.83 10899.66 1598.93 5293.12 9198.95 7994.29 6998.55 5499.05 6198.94 5699.05 3998.78 4899.83 899.80 30
ETV-MVS98.05 5499.25 3096.65 7695.61 11799.61 3498.26 8093.52 8198.90 8693.74 8199.32 1499.20 5898.90 6199.21 2998.72 4999.87 299.79 38
TSAR-MVS + GP.98.66 3999.36 2297.85 4697.16 8199.46 5999.03 4894.59 6299.09 6397.19 2999.73 399.95 1799.39 2698.95 4398.69 5099.75 3999.65 105
ACMMP_NAP99.05 2599.45 1398.58 3199.73 599.60 3999.64 898.28 1299.23 4394.57 6099.35 1399.97 799.55 1499.63 398.66 5199.70 7699.74 68
OMC-MVS98.84 3299.01 4898.65 3099.39 3699.23 9199.22 3596.70 4299.40 2297.77 2297.89 7699.80 4399.21 3699.02 4098.65 5299.57 13899.07 163
FMVSNet397.02 8398.12 7995.73 10093.59 15497.98 15798.34 7691.32 11498.80 10093.92 7497.21 8995.94 9997.63 10598.61 7098.62 5399.61 11699.65 105
CNVR-MVS99.23 1499.28 2899.17 599.65 1899.34 7999.46 2498.21 2099.28 3598.47 998.89 4199.94 2599.50 1799.42 1798.61 5499.73 5199.52 128
baseline97.45 7298.70 5995.99 9495.89 10599.36 7498.29 7791.37 11399.21 4692.99 9398.40 6196.87 8697.96 9398.60 7298.60 5599.42 16299.86 15
zzz-MVS99.31 899.44 1699.16 699.73 599.65 1799.63 1198.26 1399.27 3798.01 1899.27 1699.97 799.60 799.59 798.58 5699.71 6799.73 72
MVS_Test97.30 7698.54 6195.87 9595.74 11199.28 8698.19 8291.40 11299.18 5091.59 10898.17 6896.18 9498.63 7398.61 7098.55 5799.66 10199.78 44
EPNet98.05 5498.86 5397.10 6099.02 4999.43 6598.47 6794.73 5799.05 7195.62 4398.93 3797.62 7895.48 16098.59 7498.55 5799.29 17299.84 18
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CVMVSNet95.33 12697.09 11593.27 13995.23 13098.39 14595.49 15292.58 9597.71 15783.00 15694.44 13993.28 12693.92 18697.79 11998.54 5999.41 16399.45 138
casdiffmvs96.93 8697.43 10396.34 8595.70 11399.50 5597.75 9793.22 8898.98 7892.64 9694.97 13291.71 13498.93 5798.62 6998.52 6099.82 1099.72 83
PVSNet_Blended_VisFu97.41 7398.49 6496.15 8897.49 7199.76 196.02 14393.75 7799.26 4093.38 8693.73 14499.35 5696.47 13598.96 4298.46 6199.77 3399.90 3
DCV-MVSNet97.56 6898.36 6796.62 7996.44 8998.36 14798.37 7291.73 10499.11 6194.80 5798.36 6396.28 9298.60 7598.12 9598.44 6299.76 3599.87 12
baseline197.58 6798.05 8197.02 6696.21 9799.45 6197.71 9893.71 7998.47 12495.75 4298.78 4593.20 12898.91 6098.52 7898.44 6299.81 1699.53 125
NCCC99.05 2599.08 3999.02 1999.62 2399.38 7199.43 2898.21 2099.36 2797.66 2397.79 7799.90 3299.45 2299.17 3198.43 6499.77 3399.51 132
PVSNet_BlendedMVS97.51 7097.71 9297.28 5598.06 6399.61 3497.31 10995.02 5299.08 6595.51 4598.05 7090.11 13998.07 8998.91 4898.40 6599.72 5799.78 44
PVSNet_Blended97.51 7097.71 9297.28 5598.06 6399.61 3497.31 10995.02 5299.08 6595.51 4598.05 7090.11 13998.07 8998.91 4898.40 6599.72 5799.78 44
train_agg98.73 3599.11 3798.28 3699.36 3999.35 7799.48 2397.96 3498.83 9593.86 7798.70 5199.86 3799.44 2399.08 3798.38 6799.61 11699.58 115
CDS-MVSNet96.59 10198.02 8494.92 10894.45 14198.96 10597.46 10591.75 10397.86 15190.07 11596.02 11897.25 8296.21 13998.04 10698.38 6799.60 12499.65 105
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HPM-MVS++copyleft99.10 2199.30 2798.86 2499.69 899.48 5799.59 1698.34 499.26 4096.55 3799.10 2899.96 1299.36 2799.25 2698.37 6999.64 10999.66 102
MCST-MVS99.11 2099.27 2998.93 2299.67 1399.33 8299.51 2098.31 899.28 3596.57 3699.10 2899.90 3299.71 299.19 3098.35 7099.82 1099.71 86
MSDG98.27 4898.29 6998.24 3799.20 4599.22 9299.20 3697.82 3699.37 2594.43 6595.90 12197.31 8099.12 4598.76 5998.35 7099.67 9699.14 160
test0.0.03 196.69 9598.12 7995.01 10795.49 12498.99 10295.86 14590.82 12298.38 12792.54 10096.66 10497.33 7995.75 15097.75 12398.34 7299.60 12499.40 144
GBi-Net96.98 8498.00 8595.78 9693.81 14897.98 15798.09 8691.32 11498.80 10093.92 7497.21 8995.94 9997.89 9698.07 10198.34 7299.68 8899.67 98
test196.98 8498.00 8595.78 9693.81 14897.98 15798.09 8691.32 11498.80 10093.92 7497.21 8995.94 9997.89 9698.07 10198.34 7299.68 8899.67 98
FMVSNet195.77 11596.41 13995.03 10693.42 15597.86 16497.11 12089.89 13798.53 12092.00 10589.17 17493.23 12798.15 8698.07 10198.34 7299.61 11699.69 92
EIA-MVS97.70 6498.78 5696.44 8495.72 11299.65 1798.14 8493.72 7898.30 13092.31 10198.63 5297.90 7398.97 5598.92 4798.30 7699.78 2899.80 30
UGNet97.66 6599.07 4196.01 9397.19 8099.65 1797.09 12193.39 8399.35 2894.40 6798.79 4499.59 5394.24 18098.04 10698.29 7799.73 5199.80 30
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS-LS96.12 11097.48 9994.53 11295.19 13197.56 18297.15 11789.19 14799.08 6588.23 12294.97 13294.73 11197.84 10197.86 11798.26 7899.60 12499.88 10
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous20240521197.40 10496.45 8899.54 4998.08 8993.79 7498.24 13493.55 14594.41 11598.88 6498.04 10698.24 7999.75 3999.76 57
EPNet_dtu96.30 10598.53 6293.70 12798.97 5098.24 15197.36 10794.23 6798.85 9079.18 17899.19 1998.47 6794.09 18297.89 11598.21 8098.39 18898.85 172
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CPTT-MVS99.14 1999.20 3399.06 1499.58 2699.53 5099.45 2597.80 3799.19 4998.32 1398.58 5399.95 1799.60 799.28 2598.20 8199.64 10999.69 92
HyFIR lowres test95.99 11296.56 12795.32 10497.99 6799.65 1796.54 13288.86 14998.44 12589.77 11984.14 19997.05 8499.03 5298.55 7698.19 8299.73 5199.86 15
diffmvs96.83 8897.33 10896.25 8695.76 11099.34 7998.06 9093.22 8899.43 2192.30 10296.90 9889.83 14498.55 7698.00 10998.14 8399.64 10999.70 88
TAPA-MVS97.53 598.41 4398.84 5597.91 4599.08 4899.33 8299.15 3997.13 4199.34 2993.20 8797.75 7999.19 5999.20 3798.66 6598.13 8499.66 10199.48 136
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PLCcopyleft97.93 299.02 2898.94 5099.11 1099.46 3499.24 9099.06 4697.96 3499.31 3199.16 197.90 7599.79 4599.36 2798.71 6398.12 8599.65 10599.52 128
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DPM-MVS98.31 4798.53 6298.05 4198.76 5598.77 11499.13 4098.07 3099.10 6294.27 7196.70 10299.84 4198.70 6897.90 11498.11 8699.40 16599.28 149
Anonymous2023121197.10 8197.06 11797.14 5996.32 9199.52 5398.16 8393.76 7598.84 9495.98 4090.92 16294.58 11498.90 6197.72 12598.10 8799.71 6799.75 64
gg-mvs-nofinetune90.85 19094.14 16987.02 19694.89 13699.25 8898.64 6276.29 21088.24 21057.50 21479.93 20595.45 10295.18 16998.77 5898.07 8899.62 11499.24 153
CANet_DTU96.64 9899.08 3993.81 12397.10 8299.42 6698.85 5690.01 13499.31 3179.98 17499.78 299.10 6097.42 11098.35 8598.05 8999.47 15599.53 125
Fast-Effi-MVS+95.38 12496.52 13094.05 12094.15 14399.14 9797.24 11386.79 16898.53 12087.62 12894.51 13787.06 15198.76 6698.60 7298.04 9099.72 5799.77 52
GG-mvs-BLEND69.11 20698.13 7835.26 2113.49 22098.20 15394.89 1632.38 21798.42 1265.82 22196.37 11398.60 645.97 21698.75 6197.98 9199.01 18198.61 174
Effi-MVS+95.81 11497.31 11294.06 11995.09 13299.35 7797.24 11388.22 15898.54 11985.38 14298.52 5588.68 14698.70 6898.32 8697.93 9299.74 4499.84 18
MIMVSNet94.49 14497.59 9690.87 17891.74 17998.70 12394.68 17278.73 20497.98 14383.71 15097.71 8294.81 11096.96 11997.97 11097.92 9399.40 16598.04 185
DI_MVS_plusplus_trai96.90 8797.49 9896.21 8795.61 11799.40 7098.72 6192.11 9699.14 5592.98 9493.08 15595.14 10598.13 8798.05 10597.91 9499.74 4499.73 72
testgi95.67 11797.48 9993.56 13095.07 13399.00 10095.33 15688.47 15598.80 10086.90 13297.30 8792.33 13095.97 14797.66 12797.91 9499.60 12499.38 145
thres100view90096.72 9396.47 13497.00 6996.31 9299.52 5398.28 7894.01 6997.35 16294.52 6195.90 12186.93 15499.09 4998.07 10197.87 9699.81 1699.63 111
COLMAP_ROBcopyleft96.15 1297.78 6098.17 7697.32 5398.84 5199.45 6199.28 3395.43 4999.48 1891.80 10794.83 13598.36 6998.90 6198.09 9897.85 9799.68 8899.15 157
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AdaColmapbinary99.06 2498.98 4999.15 799.60 2599.30 8599.38 3098.16 2299.02 7498.55 898.71 5099.57 5599.58 1399.09 3597.84 9899.64 10999.36 146
thres20096.76 9096.53 12997.03 6496.31 9299.67 1298.37 7293.99 7197.68 15894.49 6395.83 12486.77 15699.18 4098.26 8897.82 9999.82 1099.66 102
tfpn200view996.75 9196.51 13197.03 6496.31 9299.67 1298.41 6993.99 7197.35 16294.52 6195.90 12186.93 15499.14 4498.26 8897.80 10099.82 1099.70 88
thres40096.71 9496.45 13697.02 6696.28 9599.63 2598.41 6994.00 7097.82 15394.42 6695.74 12586.26 16399.18 4098.20 9297.79 10199.81 1699.70 88
FC-MVSNet-train97.04 8297.91 8896.03 9296.00 10298.41 14396.53 13493.42 8299.04 7393.02 9298.03 7294.32 11797.47 10997.93 11297.77 10299.75 3999.88 10
baseline296.36 10497.82 9094.65 11194.60 14099.09 9896.45 13689.63 14298.36 12891.29 11197.60 8494.13 12096.37 13698.45 8197.70 10399.54 14799.41 141
IterMVS-SCA-FT94.89 13397.87 8991.42 16694.86 13797.70 16897.24 11384.88 18298.93 8375.74 19094.26 14098.25 7096.69 12698.52 7897.68 10499.10 18099.73 72
thres600view796.69 9596.43 13897.00 6996.28 9599.67 1298.41 6993.99 7197.85 15294.29 6995.96 11985.91 16699.19 3898.26 8897.63 10599.82 1099.73 72
PMMVS97.52 6998.39 6696.51 8295.82 10998.73 12197.80 9493.05 9398.76 10794.39 6899.07 3197.03 8598.55 7698.31 8797.61 10699.43 16099.21 155
IterMVS94.81 13597.71 9291.42 16694.83 13897.63 17597.38 10685.08 17998.93 8375.67 19194.02 14197.64 7696.66 12998.45 8197.60 10798.90 18399.72 83
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu95.74 11698.04 8293.06 14193.92 14499.16 9597.90 9188.16 16099.07 7082.02 16298.02 7394.32 11796.74 12598.53 7797.56 10899.61 11699.62 112
gm-plane-assit89.44 19792.82 19485.49 20091.37 19295.34 20679.55 21382.12 18991.68 20964.79 21187.98 18680.26 19895.66 15398.51 8097.56 10899.45 15798.41 179
LGP-MVS_train96.23 10696.89 12195.46 10397.32 7598.77 11498.81 5893.60 8098.58 11685.52 14099.08 3086.67 15897.83 10297.87 11697.51 11099.69 7999.73 72
ACMMPcopyleft98.74 3499.03 4698.40 3399.36 3999.64 2299.20 3697.75 3898.82 9795.24 5098.85 4299.87 3699.17 4298.74 6297.50 11199.71 6799.76 57
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CR-MVSNet94.57 14397.34 10791.33 16994.90 13598.59 13097.15 11779.14 20097.98 14380.42 17096.59 10993.50 12596.85 12298.10 9697.49 11299.50 15299.15 157
PatchT93.96 15297.36 10690.00 18594.76 13998.65 12590.11 20078.57 20597.96 14680.42 17096.07 11794.10 12196.85 12298.10 9697.49 11299.26 17499.15 157
FC-MVSNet-test96.07 11197.94 8793.89 12193.60 15398.67 12496.62 13190.30 13398.76 10788.62 12095.57 13097.63 7794.48 17697.97 11097.48 11499.71 6799.52 128
UniMVSNet_ETH3D93.15 16392.33 19694.11 11893.91 14598.61 12994.81 16790.98 11997.06 17187.51 12982.27 20376.33 20997.87 10094.79 19297.47 11599.56 14199.81 28
PCF-MVS97.50 698.18 5098.35 6897.99 4398.65 5699.36 7498.94 5198.14 2698.59 11593.62 8296.61 10699.76 4899.03 5297.77 12197.45 11699.57 13898.89 171
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PatchMatch-RL97.77 6198.25 7097.21 5899.11 4799.25 8897.06 12394.09 6898.72 11195.14 5298.47 5896.29 9198.43 8098.65 6697.44 11799.45 15798.94 166
TAMVS95.53 12096.50 13394.39 11593.86 14799.03 9996.67 12989.55 14497.33 16490.64 11393.02 15691.58 13596.21 13997.72 12597.43 11899.43 16099.36 146
LTVRE_ROB93.20 1692.84 16894.92 15590.43 18292.83 15798.63 12697.08 12287.87 16297.91 14868.42 20793.54 14679.46 20396.62 13097.55 13397.40 11999.74 4499.92 1
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_part195.56 11995.38 15195.78 9696.07 9998.16 15497.57 10190.78 12497.43 16193.04 9189.12 17789.41 14597.93 9496.38 16397.38 12099.29 17299.78 44
MVSTER97.16 7997.71 9296.52 8195.97 10498.48 13698.63 6392.10 9798.68 11295.96 4199.23 1891.79 13396.87 12198.76 5997.37 12199.57 13899.68 97
Baseline_NR-MVSNet93.87 15493.98 17693.75 12491.66 18197.02 19595.53 15191.52 11197.16 17087.77 12787.93 18883.69 17896.35 13795.10 18897.23 12299.68 8899.73 72
FMVSNet595.42 12296.47 13494.20 11692.26 16795.99 20395.66 14887.15 16697.87 15093.46 8596.68 10393.79 12397.52 10697.10 14997.21 12399.11 17996.62 202
pm-mvs194.27 14595.57 14992.75 14492.58 16098.13 15594.87 16590.71 12796.70 18183.78 14789.94 17089.85 14394.96 17397.58 13297.07 12499.61 11699.72 83
Fast-Effi-MVS+-dtu95.38 12498.20 7592.09 15293.91 14598.87 10897.35 10885.01 18199.08 6581.09 16698.10 6996.36 9095.62 15598.43 8497.03 12599.55 14399.50 134
TransMVSNet (Re)93.45 15994.08 17292.72 14592.83 15797.62 17894.94 16191.54 11095.65 19883.06 15588.93 17883.53 18094.25 17997.41 13797.03 12599.67 9698.40 181
DU-MVS93.98 15194.44 16693.44 13491.66 18197.77 16595.03 15891.57 10897.17 16886.12 13493.13 15381.13 19496.60 13195.10 18897.01 12799.67 9699.80 30
TSAR-MVS + COLMAP96.79 8996.55 12897.06 6297.70 7098.46 13899.07 4596.23 4499.38 2391.32 11098.80 4385.61 16898.69 7097.64 13096.92 12899.37 16799.06 164
CLD-MVS96.74 9296.51 13197.01 6896.71 8698.62 12798.73 6094.38 6498.94 8294.46 6497.33 8587.03 15298.07 8997.20 14596.87 12999.72 5799.54 124
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TranMVSNet+NR-MVSNet93.67 15794.14 16993.13 14091.28 19597.58 18095.60 15091.97 10097.06 17184.05 14390.64 16782.22 18996.17 14294.94 19196.78 13099.69 7999.78 44
RPMNet94.66 13797.16 11491.75 16294.98 13498.59 13097.00 12478.37 20697.98 14383.78 14796.27 11494.09 12296.91 12097.36 13996.73 13199.48 15399.09 162
UniMVSNet_NR-MVSNet94.59 14195.47 15093.55 13191.85 17697.89 16395.03 15892.00 9997.33 16486.12 13493.19 15187.29 15096.60 13196.12 17296.70 13299.72 5799.80 30
ET-MVSNet_ETH3D96.17 10896.99 11995.21 10588.53 20498.54 13398.28 7892.61 9498.85 9093.60 8399.06 3290.39 13898.63 7395.98 17796.68 13399.61 11699.41 141
ACMH95.42 1495.27 12795.96 14394.45 11496.83 8598.78 11394.72 17091.67 10698.95 7986.82 13396.42 11283.67 17997.00 11797.48 13696.68 13399.69 7999.76 57
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OPM-MVS96.22 10795.85 14796.65 7697.75 6898.54 13399.00 5095.53 4796.88 17589.88 11795.95 12086.46 16198.07 8997.65 12996.63 13599.67 9698.83 173
ACMP96.25 1096.62 10096.72 12496.50 8396.96 8498.75 11897.80 9494.30 6698.85 9093.12 8998.78 4586.61 15997.23 11497.73 12496.61 13699.62 11499.71 86
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+95.51 1395.40 12396.00 14194.70 11096.33 9098.79 11196.79 12791.32 11498.77 10687.18 13095.60 12985.46 16996.97 11897.15 14696.59 13799.59 13099.65 105
CP-MVSNet93.25 16294.00 17592.38 14791.65 18397.56 18294.38 17989.20 14696.05 19283.16 15489.51 17281.97 19096.16 14396.43 16196.56 13899.71 6799.89 6
HQP-MVS96.37 10396.58 12696.13 8997.31 7798.44 14098.45 6895.22 5098.86 8888.58 12198.33 6487.00 15397.67 10497.23 14396.56 13899.56 14199.62 112
PS-CasMVS92.72 17393.36 18791.98 15691.62 18597.52 18494.13 18388.98 14895.94 19581.51 16587.35 19079.95 20095.91 14896.37 16496.49 14099.70 7699.89 6
Anonymous2023120690.70 19293.93 17786.92 19790.21 20296.79 19890.30 19986.61 17296.05 19269.25 20588.46 18284.86 17585.86 20397.11 14896.47 14199.30 17197.80 189
MVS-HIRNet92.51 17695.97 14288.48 19393.73 15198.37 14690.33 19875.36 21298.32 12977.78 18489.15 17594.87 10895.14 17097.62 13196.39 14298.51 18597.11 195
DTE-MVSNet92.42 18192.85 19291.91 15990.87 19896.97 19694.53 17889.81 13895.86 19781.59 16488.83 17977.88 20795.01 17294.34 19596.35 14399.64 10999.73 72
ACMM96.26 996.67 9796.69 12596.66 7597.29 7898.46 13896.48 13595.09 5199.21 4693.19 8898.78 4586.73 15798.17 8397.84 11896.32 14499.74 4499.49 135
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EU-MVSNet92.80 17094.76 16090.51 18091.88 17496.74 20092.48 19088.69 15296.21 18779.00 17991.51 15887.82 14891.83 19895.87 17996.27 14599.21 17598.92 170
PEN-MVS92.72 17393.20 18992.15 15191.29 19397.31 19294.67 17389.81 13896.19 18881.83 16388.58 18179.06 20495.61 15695.21 18596.27 14599.72 5799.82 23
TinyColmap94.00 15094.35 16793.60 12895.89 10598.26 14997.49 10488.82 15098.56 11883.21 15391.28 16180.48 19796.68 12797.34 14096.26 14799.53 14998.24 182
test-mter94.86 13497.32 10992.00 15592.41 16498.82 11096.18 14286.35 17498.05 14082.28 16096.48 11194.39 11695.46 16298.17 9496.20 14899.32 17099.13 161
NR-MVSNet94.01 14994.51 16493.44 13492.56 16197.77 16595.67 14791.57 10897.17 16885.84 13793.13 15380.53 19695.29 16697.01 15096.17 14999.69 7999.75 64
tfpnnormal93.85 15694.12 17193.54 13293.22 15698.24 15195.45 15391.96 10194.61 20183.91 14590.74 16481.75 19297.04 11697.49 13596.16 15099.68 8899.84 18
USDC94.26 14694.83 15893.59 12996.02 10098.44 14097.84 9288.65 15398.86 8882.73 15994.02 14180.56 19596.76 12497.28 14296.15 15199.55 14398.50 177
thisisatest053097.23 7798.25 7096.05 9095.60 11999.59 4196.96 12593.23 8699.17 5192.60 9898.75 4896.19 9398.17 8398.19 9396.10 15299.72 5799.77 52
tttt051797.23 7798.24 7396.04 9195.60 11999.60 3996.94 12693.23 8699.15 5292.56 9998.74 4996.12 9698.17 8398.21 9196.10 15299.73 5199.78 44
test-LLR95.50 12197.32 10993.37 13695.49 12498.74 11996.44 13790.82 12298.18 13582.75 15796.60 10794.67 11295.54 15898.09 9896.00 15499.20 17698.93 167
TESTMET0.1,194.95 13197.32 10992.20 15092.62 15998.74 11996.44 13786.67 17098.18 13582.75 15796.60 10794.67 11295.54 15898.09 9896.00 15499.20 17698.93 167
EG-PatchMatch MVS92.45 17793.92 17890.72 17992.56 16198.43 14294.88 16484.54 18497.18 16779.55 17686.12 19783.23 18393.15 19397.22 14496.00 15499.67 9699.27 151
UniMVSNet (Re)94.58 14295.34 15293.71 12692.25 16898.08 15694.97 16091.29 11897.03 17387.94 12593.97 14386.25 16496.07 14496.27 16995.97 15799.72 5799.79 38
anonymousdsp93.12 16495.86 14689.93 18791.09 19698.25 15095.12 15785.08 17997.44 16073.30 19890.89 16390.78 13795.25 16897.91 11395.96 15899.71 6799.82 23
WR-MVS_H93.54 15894.67 16292.22 14891.95 17297.91 16294.58 17688.75 15196.64 18283.88 14690.66 16685.13 17294.40 17796.54 15995.91 15999.73 5199.89 6
WR-MVS93.43 16194.48 16592.21 14991.52 18897.69 17094.66 17489.98 13596.86 17683.43 15190.12 16885.03 17393.94 18596.02 17695.82 16099.71 6799.82 23
IB-MVS93.96 1595.02 13096.44 13793.36 13797.05 8399.28 8690.43 19793.39 8398.02 14196.02 3994.92 13492.07 13283.52 20595.38 18295.82 16099.72 5799.59 114
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
pmmvs691.90 18892.53 19591.17 17291.81 17797.63 17593.23 18588.37 15793.43 20680.61 16877.32 20787.47 14994.12 18196.58 15795.72 16298.88 18499.53 125
MS-PatchMatch95.99 11297.26 11394.51 11397.46 7298.76 11797.27 11186.97 16799.09 6389.83 11893.51 14797.78 7596.18 14197.53 13495.71 16399.35 16898.41 179
MDTV_nov1_ep1395.57 11897.48 9993.35 13895.43 12698.97 10497.19 11683.72 18898.92 8587.91 12697.75 7996.12 9697.88 9996.84 15495.64 16497.96 19398.10 184
MIMVSNet188.61 19890.68 19986.19 19981.56 21195.30 20787.78 20685.98 17694.19 20472.30 20378.84 20678.90 20590.06 19996.59 15695.47 16599.46 15695.49 204
RPSCF97.61 6698.16 7796.96 7198.10 6299.00 10098.84 5793.76 7599.45 1994.78 5899.39 1299.31 5798.53 7896.61 15595.43 16697.74 19597.93 188
pmmvs495.09 12895.90 14494.14 11792.29 16697.70 16895.45 15390.31 13198.60 11490.70 11293.25 15089.90 14296.67 12897.13 14795.42 16799.44 15999.28 149
GA-MVS93.93 15396.31 14091.16 17393.61 15298.79 11195.39 15590.69 12898.25 13373.28 19996.15 11688.42 14794.39 17897.76 12295.35 16899.58 13499.45 138
v1092.79 17194.06 17391.31 17091.78 17897.29 19494.87 16586.10 17596.97 17479.82 17588.16 18484.56 17695.63 15496.33 16795.31 16999.65 10599.80 30
v119292.43 18093.61 18291.05 17491.53 18797.43 18894.61 17587.99 16196.60 18376.72 18687.11 19282.74 18795.85 14996.35 16695.30 17099.60 12499.74 68
v114492.81 16994.03 17491.40 16891.68 18097.60 17994.73 16988.40 15696.71 18078.48 18188.14 18584.46 17795.45 16396.31 16895.22 17199.65 10599.76 57
v124091.99 18793.33 18890.44 18191.29 19397.30 19394.25 18186.79 16896.43 18675.49 19386.34 19681.85 19195.29 16696.42 16295.22 17199.52 15099.73 72
v14419292.38 18293.55 18591.00 17591.44 18997.47 18794.27 18087.41 16596.52 18578.03 18287.50 18982.65 18895.32 16595.82 18095.15 17399.55 14399.78 44
v192192092.36 18493.57 18390.94 17691.39 19197.39 19094.70 17187.63 16496.60 18376.63 18786.98 19382.89 18595.75 15096.26 17095.14 17499.55 14399.73 72
test20.0390.65 19393.71 18187.09 19590.44 20096.24 20189.74 20385.46 17895.59 19972.99 20190.68 16585.33 17084.41 20495.94 17895.10 17599.52 15097.06 197
pmmvs592.71 17594.27 16890.90 17791.42 19097.74 16793.23 18586.66 17195.99 19478.96 18091.45 15983.44 18195.55 15797.30 14195.05 17699.58 13498.93 167
v7n91.61 18992.95 19090.04 18490.56 19997.69 17093.74 18485.59 17795.89 19676.95 18586.60 19578.60 20693.76 18897.01 15094.99 17799.65 10599.87 12
v2v48292.77 17293.52 18691.90 16091.59 18697.63 17594.57 17790.31 13196.80 17979.22 17788.74 18081.55 19396.04 14695.26 18494.97 17899.66 10199.69 92
SCA94.95 13197.44 10292.04 15395.55 12199.16 9596.26 14079.30 19999.02 7485.73 13998.18 6797.13 8397.69 10396.03 17594.91 17997.69 19897.65 190
v892.87 16793.87 18091.72 16492.05 17097.50 18594.79 16888.20 15996.85 17780.11 17390.01 16982.86 18695.48 16095.15 18794.90 18099.66 10199.80 30
V4293.05 16593.90 17992.04 15391.91 17397.66 17294.91 16289.91 13696.85 17780.58 16989.66 17183.43 18295.37 16495.03 19094.90 18099.59 13099.78 44
SixPastTwentyTwo93.44 16095.32 15391.24 17192.11 16998.40 14492.77 18888.64 15498.09 13977.83 18393.51 14785.74 16796.52 13496.91 15294.89 18299.59 13099.73 72
tpm92.38 18294.79 15989.56 18994.30 14297.50 18594.24 18278.97 20397.72 15674.93 19597.97 7482.91 18496.60 13193.65 19794.81 18398.33 18998.98 165
EPMVS95.05 12996.86 12392.94 14395.84 10798.96 10596.68 12879.87 19599.05 7190.15 11497.12 9395.99 9897.49 10895.17 18694.75 18497.59 19996.96 198
thisisatest051594.61 14096.89 12191.95 15792.00 17198.47 13792.01 19290.73 12698.18 13583.96 14494.51 13795.13 10693.38 19097.38 13894.74 18599.61 11699.79 38
v14892.36 18492.88 19191.75 16291.63 18497.66 17292.64 18990.55 12996.09 19083.34 15288.19 18380.00 19992.74 19493.98 19694.58 18699.58 13499.69 92
TDRefinement93.04 16693.57 18392.41 14696.58 8798.77 11497.78 9691.96 10198.12 13880.84 16789.13 17679.87 20187.78 20196.44 16094.50 18799.54 14798.15 183
ADS-MVSNet94.65 13897.04 11891.88 16195.68 11598.99 10295.89 14479.03 20299.15 5285.81 13896.96 9598.21 7297.10 11594.48 19494.24 18897.74 19597.21 194
PatchmatchNetpermissive94.70 13697.08 11691.92 15895.53 12298.85 10995.77 14679.54 19798.95 7985.98 13698.52 5596.45 8797.39 11195.32 18394.09 18997.32 20197.38 193
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PM-MVS89.55 19690.30 20088.67 19287.06 20595.60 20490.88 19584.51 18596.14 18975.75 18986.89 19463.47 21594.64 17596.85 15393.89 19099.17 17899.29 148
pmmvs-eth3d89.81 19589.65 20190.00 18586.94 20695.38 20591.08 19386.39 17394.57 20282.27 16183.03 20264.94 21293.96 18496.57 15893.82 19199.35 16899.24 153
MDTV_nov1_ep13_2view92.44 17895.66 14888.68 19191.05 19797.92 16192.17 19179.64 19698.83 9576.20 18891.45 15993.51 12495.04 17195.68 18193.70 19297.96 19398.53 176
new_pmnet90.45 19492.84 19387.66 19488.96 20396.16 20288.71 20584.66 18397.56 15971.91 20485.60 19886.58 16093.28 19196.07 17493.54 19398.46 18694.39 206
N_pmnet92.21 18694.60 16389.42 19091.88 17497.38 19189.15 20489.74 14197.89 14973.75 19787.94 18792.23 13193.85 18796.10 17393.20 19498.15 19297.43 192
CostFormer94.25 14794.88 15793.51 13395.43 12698.34 14896.21 14180.64 19297.94 14794.01 7298.30 6586.20 16597.52 10692.71 19992.69 19597.23 20498.02 186
pmmvs388.19 19991.27 19784.60 20285.60 20893.66 20985.68 20881.13 19092.36 20863.66 21389.51 17277.10 20893.22 19296.37 16492.40 19698.30 19097.46 191
tpmrst93.86 15595.88 14591.50 16595.69 11498.62 12795.64 14979.41 19898.80 10083.76 14995.63 12896.13 9597.25 11292.92 19892.31 19797.27 20296.74 199
MDA-MVSNet-bldmvs87.84 20089.22 20286.23 19881.74 21096.77 19983.74 20989.57 14394.50 20372.83 20296.64 10564.47 21492.71 19581.43 20992.28 19896.81 20698.47 178
Gipumacopyleft81.40 20381.78 20580.96 20583.21 20985.61 21479.73 21276.25 21197.33 16464.21 21255.32 21155.55 21686.04 20292.43 20292.20 19996.32 20893.99 207
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmnet_mix0292.44 17894.68 16189.83 18892.46 16397.65 17489.92 20290.49 13098.76 10773.05 20091.78 15790.08 14194.86 17494.53 19391.94 20098.21 19198.01 187
ambc80.99 20680.04 21390.84 21090.91 19496.09 19074.18 19662.81 21030.59 22182.44 20696.25 17191.77 20195.91 20998.56 175
dps94.63 13995.31 15493.84 12295.53 12298.71 12296.54 13280.12 19497.81 15597.21 2896.98 9492.37 12996.34 13892.46 20191.77 20197.26 20397.08 196
tpm cat194.06 14894.90 15693.06 14195.42 12898.52 13596.64 13080.67 19197.82 15392.63 9793.39 14995.00 10796.06 14591.36 20491.58 20396.98 20596.66 201
CMPMVSbinary70.31 1890.74 19191.06 19890.36 18397.32 7597.43 18892.97 18787.82 16393.50 20575.34 19483.27 20184.90 17492.19 19792.64 20091.21 20496.50 20794.46 205
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new-patchmatchnet86.12 20187.30 20384.74 20186.92 20795.19 20883.57 21084.42 18692.67 20765.66 20880.32 20464.72 21389.41 20092.33 20389.21 20598.43 18796.69 200
PMMVS277.26 20479.47 20774.70 20776.00 21488.37 21374.22 21476.34 20978.31 21254.13 21569.96 20952.50 21770.14 21184.83 20788.71 20697.35 20093.58 208
MVEpermissive67.97 1965.53 20967.43 21163.31 21059.33 21774.20 21553.09 21970.43 21366.27 21543.13 21645.98 21530.62 22070.65 21079.34 21186.30 20783.25 21689.33 209
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt82.25 20497.73 6988.71 21280.18 21168.65 21499.15 5286.98 13199.47 985.31 17168.35 21287.51 20683.81 20891.64 211
E-PMN68.30 20768.43 20968.15 20874.70 21671.56 21755.64 21777.24 20777.48 21439.46 21751.95 21441.68 21973.28 20970.65 21279.51 20988.61 21486.20 212
FPMVS83.82 20284.61 20482.90 20390.39 20190.71 21190.85 19684.10 18795.47 20065.15 20983.44 20074.46 21075.48 20781.63 20879.42 21091.42 21287.14 210
PMVScopyleft72.60 1776.39 20577.66 20874.92 20681.04 21269.37 21868.47 21580.54 19385.39 21165.07 21073.52 20872.91 21165.67 21380.35 21076.81 21188.71 21385.25 213
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS68.12 20868.11 21068.14 20975.51 21571.76 21655.38 21877.20 20877.78 21337.79 21853.59 21243.61 21874.72 20867.05 21376.70 21288.27 21586.24 211
testmvs31.24 21040.15 21220.86 21212.61 21817.99 21925.16 22013.30 21548.42 21624.82 21953.07 21330.13 22228.47 21442.73 21437.65 21320.79 21751.04 214
test12326.75 21134.25 21318.01 2137.93 21917.18 22024.85 22112.36 21644.83 21716.52 22041.80 21618.10 22328.29 21533.08 21534.79 21418.10 21849.95 215
uanet_test0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
sosnet-low-res0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
sosnet0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
RE-MVS-def69.05 206
9.1499.79 45
SR-MVS99.67 1398.25 1499.94 25
our_test_392.30 16597.58 18090.09 201
MTAPA98.09 1599.97 7
MTMP98.46 1199.96 12
Patchmatch-RL test66.86 216
XVS97.42 7399.62 2998.59 6493.81 7899.95 1799.69 79
X-MVStestdata97.42 7399.62 2998.59 6493.81 7899.95 1799.69 79
abl_698.09 4099.33 4299.22 9298.79 5994.96 5498.52 12297.00 3297.30 8799.86 3798.76 6699.69 7999.41 141
mPP-MVS99.53 3099.89 34
NP-MVS98.57 117
Patchmtry98.59 13097.15 11779.14 20080.42 170
DeepMVS_CXcopyleft96.85 19787.43 20789.27 14598.30 13075.55 19295.05 13179.47 20292.62 19689.48 20595.18 21095.96 203