This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
DELS-MVS98.19 5098.77 5897.52 5198.29 6199.71 999.12 4194.58 6398.80 10195.38 4896.24 11698.24 7297.92 9899.06 3999.52 199.82 1199.79 40
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepC-MVS97.63 498.33 4698.57 6198.04 4298.62 5799.65 1699.45 2598.15 2499.51 1792.80 9595.74 12696.44 9099.46 2199.37 1999.50 299.78 2999.81 31
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator96.92 798.67 3799.05 4398.23 3899.57 2799.45 6299.11 4294.66 5999.69 396.80 3396.55 11199.61 5299.40 2598.87 5399.49 399.85 599.66 105
MSLP-MVS++99.15 1899.24 3399.04 1599.52 3299.49 5799.09 4498.07 3099.37 2698.47 997.79 7899.89 3499.50 1798.93 4699.45 499.61 11999.76 60
IS_MVSNet97.86 5998.86 5496.68 7496.02 10099.72 698.35 7693.37 8598.75 11194.01 7296.88 10098.40 6998.48 8299.09 3699.42 599.83 1099.80 33
Vis-MVSNet (Re-imp)97.40 7598.89 5395.66 10295.99 10399.62 2897.82 9593.22 8998.82 9891.40 11096.94 9798.56 6795.70 15599.14 3399.41 699.79 2699.75 67
PHI-MVS99.08 2299.43 1898.67 2999.15 4699.59 4099.11 4297.35 4099.14 5697.30 2799.44 1199.96 1299.32 3198.89 5199.39 799.79 2699.58 118
APD-MVScopyleft99.25 1299.38 2099.09 1199.69 899.58 4499.56 1798.32 798.85 9197.87 2098.91 4199.92 2899.30 3599.45 1599.38 899.79 2699.58 118
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepPCF-MVS97.74 398.34 4599.46 1297.04 6398.82 5299.33 8496.28 14297.47 3999.58 894.70 5998.99 3599.85 4097.24 11699.55 1099.34 997.73 20099.56 124
DeepC-MVS_fast98.34 199.17 1799.45 1398.85 2599.55 2999.37 7599.64 898.05 3299.53 1496.58 3598.93 3999.92 2899.49 1999.46 1499.32 1099.80 2599.64 112
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SMA-MVScopyleft99.38 599.60 299.12 999.76 299.62 2899.39 2998.23 1999.52 1698.03 1799.45 1099.98 199.64 599.58 899.30 1199.68 9199.76 60
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
3Dnovator+96.92 798.71 3699.05 4398.32 3499.53 3099.34 8199.06 4694.61 6099.65 497.49 2496.75 10199.86 3799.44 2398.78 5899.30 1199.81 1799.67 101
QAPM98.62 4099.04 4698.13 3999.57 2799.48 5899.17 3894.78 5699.57 996.16 3896.73 10299.80 4399.33 2998.79 5799.29 1399.75 4099.64 112
APDe-MVS99.49 199.64 199.32 299.74 499.74 599.75 198.34 499.56 1198.72 799.57 699.97 799.53 1699.65 299.25 1499.84 799.77 54
ACMMPR99.30 999.54 699.03 1699.66 1699.64 2199.68 498.25 1499.56 1197.12 3099.19 2199.95 1799.72 199.43 1699.25 1499.72 5999.77 54
HFP-MVS99.32 799.53 899.07 1399.69 899.59 4099.63 1198.31 899.56 1197.37 2699.27 1899.97 799.70 399.35 2199.24 1699.71 7099.76 60
UA-Net97.13 8199.14 3794.78 11097.21 7999.38 7297.56 10492.04 9898.48 12588.03 12598.39 6399.91 3194.03 18699.33 2399.23 1799.81 1799.25 155
LS3D97.79 6098.25 7197.26 5798.40 5999.63 2499.53 1898.63 199.25 4388.13 12496.93 9894.14 12099.19 4099.14 3399.23 1799.69 8299.42 143
X-MVS98.93 2999.37 2198.42 3299.67 1399.62 2899.60 1598.15 2499.08 6693.81 7898.46 6099.95 1799.59 1099.49 1399.21 1999.68 9199.75 67
CS-MVS98.21 4999.34 2696.89 7295.51 12399.56 4798.85 5593.31 8699.01 7794.48 6499.31 1699.46 5699.31 3299.02 4099.19 2099.90 199.87 13
PGM-MVS98.86 3199.35 2598.29 3599.77 199.63 2499.67 595.63 4698.66 11495.27 4999.11 2799.82 4299.67 499.33 2399.19 2099.73 5299.74 71
SteuartSystems-ACMMP99.20 1599.51 1098.83 2799.66 1699.66 1599.71 398.12 2899.14 5696.62 3499.16 2399.98 199.12 4799.63 399.19 2099.78 2999.83 25
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + MP.99.27 1099.57 498.92 2398.78 5499.53 5199.72 298.11 2999.73 297.43 2599.15 2499.96 1299.59 1099.73 199.07 2399.88 299.82 26
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS99.25 1299.50 1198.96 2198.79 5399.55 4999.33 3298.29 1199.75 197.96 1999.15 2499.95 1799.61 699.17 3199.06 2499.81 1799.84 21
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DVP-MVS99.45 299.54 699.35 199.72 799.76 199.63 1198.37 299.63 699.03 398.95 3899.98 199.60 799.60 699.05 2599.74 4599.79 40
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS99.34 699.52 999.14 899.68 1299.75 499.64 898.31 899.44 2198.10 1499.28 1799.98 199.30 3599.34 2299.05 2599.81 1799.79 40
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
canonicalmvs97.31 7697.81 9296.72 7396.20 9899.45 6298.21 8291.60 10899.22 4595.39 4798.48 5890.95 13899.16 4597.66 13099.05 2599.76 3699.90 4
OpenMVScopyleft96.23 1197.95 5798.45 6697.35 5299.52 3299.42 6798.91 5294.61 6098.87 8892.24 10594.61 13799.05 6299.10 4998.64 6899.05 2599.74 4599.51 135
Vis-MVSNetpermissive96.16 11098.22 7593.75 12795.33 13099.70 1197.27 11390.85 12298.30 13385.51 14495.72 12896.45 8893.69 19298.70 6599.00 2999.84 799.69 95
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CANet98.46 4299.16 3697.64 4998.48 5899.64 2199.35 3194.71 5899.53 1495.17 5197.63 8499.59 5398.38 8498.88 5298.99 3099.74 4599.86 17
CDPH-MVS98.41 4399.10 3997.61 5099.32 4399.36 7699.49 2196.15 4598.82 9891.82 10798.41 6199.66 5199.10 4998.93 4698.97 3199.75 4099.58 118
DPE-MVScopyleft99.39 499.55 599.20 499.63 2199.71 999.66 698.33 699.29 3598.40 1299.64 499.98 199.31 3299.56 998.96 3299.85 599.70 91
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + ACMM98.77 3399.45 1397.98 4499.37 3799.46 6099.44 2798.13 2799.65 492.30 10398.91 4199.95 1799.05 5299.42 1798.95 3399.58 13799.82 26
CS-MVS-test97.90 5899.30 2896.26 8695.44 12699.59 4098.63 6391.99 10099.57 992.31 10199.37 1398.60 6499.33 2999.11 3598.93 3499.87 399.93 1
EPP-MVSNet97.75 6398.71 5996.63 7895.68 11499.56 4797.51 10593.10 9299.22 4594.99 5597.18 9397.30 8298.65 7398.83 5498.93 3499.84 799.92 2
CHOSEN 280x42097.99 5699.24 3396.53 8098.34 6099.61 3398.36 7589.80 14199.27 3895.08 5399.81 198.58 6698.64 7499.02 4098.92 3698.93 18599.48 139
CSCG98.90 3098.93 5298.85 2599.75 399.72 699.49 2196.58 4399.38 2498.05 1698.97 3697.87 7599.49 1997.78 12398.92 3699.78 2999.90 4
CHOSEN 1792x268896.41 10396.99 12195.74 10098.01 6699.72 697.70 10190.78 12599.13 6190.03 11787.35 19395.36 10498.33 8598.59 7798.91 3899.59 13399.87 13
MVS_111021_LR98.67 3799.41 1997.81 4799.37 3799.53 5198.51 6795.52 4899.27 3894.85 5699.56 799.69 5099.04 5399.36 2098.88 3999.60 12799.58 118
MVS_030498.14 5299.03 4797.10 6098.05 6599.63 2499.27 3494.33 6599.63 693.06 9097.32 8799.05 6298.09 9198.82 5598.87 4099.81 1799.89 7
CP-MVS99.27 1099.44 1699.08 1299.62 2399.58 4499.53 1898.16 2299.21 4797.79 2199.15 2499.96 1299.59 1099.54 1198.86 4199.78 2999.74 71
MAR-MVS97.71 6498.04 8397.32 5399.35 4198.91 11097.65 10291.68 10698.00 14597.01 3197.72 8294.83 11098.85 6698.44 8698.86 4199.41 16699.52 131
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
xxxxxxxxxxxxxcwj98.14 5297.38 10699.03 1699.65 1899.41 6998.87 5398.24 1799.14 5698.73 599.11 2786.38 16598.92 5999.22 2798.84 4399.76 3699.56 124
SF-MVS99.18 1699.32 2799.03 1699.65 1899.41 6998.87 5398.24 1799.14 5698.73 599.11 2799.92 2898.92 5999.22 2798.84 4399.76 3699.56 124
SED-MVS99.44 399.58 399.28 399.69 899.76 199.62 1498.35 399.51 1799.05 299.60 599.98 199.28 3799.61 598.83 4599.70 7999.77 54
MVS_111021_HR98.59 4199.36 2297.68 4899.42 3599.61 3398.14 8594.81 5599.31 3295.00 5499.51 899.79 4599.00 5698.94 4598.83 4599.69 8299.57 123
CNLPA99.03 2799.05 4399.01 2099.27 4499.22 9499.03 4897.98 3399.34 3099.00 498.25 6799.71 4999.31 3298.80 5698.82 4799.48 15699.17 159
FMVSNet296.64 9997.50 9895.63 10393.81 15197.98 16098.09 8790.87 12198.99 7993.48 8493.17 15495.25 10597.89 9998.63 6998.80 4899.68 9199.67 101
MP-MVScopyleft99.07 2399.36 2298.74 2899.63 2199.57 4699.66 698.25 1499.00 7895.62 4398.97 3699.94 2599.54 1599.51 1298.79 4999.71 7099.73 75
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ETV-MVS98.05 5499.25 3296.65 7695.61 11699.61 3398.26 8193.52 8198.90 8793.74 8199.32 1599.20 5998.90 6299.21 2998.72 5099.87 399.79 40
TSAR-MVS + GP.98.66 3999.36 2297.85 4697.16 8199.46 6099.03 4894.59 6299.09 6497.19 2999.73 399.95 1799.39 2698.95 4498.69 5199.75 4099.65 108
ACMMP_NAP99.05 2599.45 1398.58 3199.73 599.60 3899.64 898.28 1299.23 4494.57 6099.35 1499.97 799.55 1499.63 398.66 5299.70 7999.74 71
OMC-MVS98.84 3299.01 4998.65 3099.39 3699.23 9399.22 3596.70 4299.40 2397.77 2297.89 7799.80 4399.21 3899.02 4098.65 5399.57 14199.07 166
FMVSNet397.02 8498.12 8095.73 10193.59 15797.98 16098.34 7791.32 11598.80 10193.92 7497.21 9095.94 10097.63 10898.61 7198.62 5499.61 11999.65 108
CNVR-MVS99.23 1499.28 3099.17 599.65 1899.34 8199.46 2498.21 2099.28 3698.47 998.89 4399.94 2599.50 1799.42 1798.61 5599.73 5299.52 131
baseline97.45 7398.70 6095.99 9595.89 10599.36 7698.29 7891.37 11499.21 4792.99 9398.40 6296.87 8797.96 9698.60 7498.60 5699.42 16599.86 17
zzz-MVS99.31 899.44 1699.16 699.73 599.65 1699.63 1198.26 1399.27 3898.01 1899.27 1899.97 799.60 799.59 798.58 5799.71 7099.73 75
MVS_Test97.30 7798.54 6295.87 9695.74 11099.28 8898.19 8391.40 11399.18 5191.59 10998.17 6996.18 9598.63 7598.61 7198.55 5899.66 10499.78 46
EPNet98.05 5498.86 5497.10 6099.02 4999.43 6698.47 6894.73 5799.05 7295.62 4398.93 3997.62 7995.48 16398.59 7798.55 5899.29 17599.84 21
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CVMVSNet95.33 12997.09 11793.27 14295.23 13198.39 14895.49 15592.58 9597.71 16083.00 15994.44 14193.28 12893.92 18997.79 12298.54 6099.41 16699.45 141
casdiffmvs96.93 8797.43 10496.34 8595.70 11299.50 5697.75 9993.22 8998.98 8092.64 9694.97 13391.71 13698.93 5898.62 7098.52 6199.82 1199.72 86
PVSNet_Blended_VisFu97.41 7498.49 6596.15 8997.49 7199.76 196.02 14693.75 7799.26 4193.38 8693.73 14699.35 5796.47 13898.96 4398.46 6299.77 3499.90 4
DCV-MVSNet97.56 6998.36 6896.62 7996.44 8998.36 15098.37 7391.73 10599.11 6294.80 5798.36 6496.28 9398.60 7798.12 9898.44 6399.76 3699.87 13
baseline197.58 6898.05 8297.02 6696.21 9799.45 6297.71 10093.71 7998.47 12695.75 4298.78 4793.20 13098.91 6198.52 8198.44 6399.81 1799.53 128
NCCC99.05 2599.08 4099.02 1999.62 2399.38 7299.43 2898.21 2099.36 2897.66 2397.79 7899.90 3299.45 2299.17 3198.43 6599.77 3499.51 135
PVSNet_BlendedMVS97.51 7197.71 9397.28 5598.06 6399.61 3397.31 11195.02 5299.08 6695.51 4598.05 7190.11 14198.07 9298.91 4998.40 6699.72 5999.78 46
PVSNet_Blended97.51 7197.71 9397.28 5598.06 6399.61 3397.31 11195.02 5299.08 6695.51 4598.05 7190.11 14198.07 9298.91 4998.40 6699.72 5999.78 46
train_agg98.73 3599.11 3898.28 3699.36 3999.35 7999.48 2397.96 3498.83 9693.86 7798.70 5399.86 3799.44 2399.08 3898.38 6899.61 11999.58 118
CDS-MVSNet96.59 10298.02 8594.92 10994.45 14398.96 10897.46 10791.75 10497.86 15490.07 11696.02 11997.25 8396.21 14298.04 10998.38 6899.60 12799.65 108
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HPM-MVS++copyleft99.10 2199.30 2898.86 2499.69 899.48 5899.59 1698.34 499.26 4196.55 3799.10 3099.96 1299.36 2799.25 2698.37 7099.64 11299.66 105
MCST-MVS99.11 2099.27 3198.93 2299.67 1399.33 8499.51 2098.31 899.28 3696.57 3699.10 3099.90 3299.71 299.19 3098.35 7199.82 1199.71 89
MSDG98.27 4898.29 7098.24 3799.20 4599.22 9499.20 3697.82 3699.37 2694.43 6695.90 12297.31 8199.12 4798.76 6098.35 7199.67 9999.14 163
test0.0.03 196.69 9698.12 8095.01 10895.49 12498.99 10595.86 14890.82 12398.38 12992.54 10096.66 10597.33 8095.75 15397.75 12698.34 7399.60 12799.40 147
GBi-Net96.98 8598.00 8695.78 9793.81 15197.98 16098.09 8791.32 11598.80 10193.92 7497.21 9095.94 10097.89 9998.07 10498.34 7399.68 9199.67 101
test196.98 8598.00 8695.78 9793.81 15197.98 16098.09 8791.32 11598.80 10193.92 7497.21 9095.94 10097.89 9998.07 10498.34 7399.68 9199.67 101
FMVSNet195.77 11796.41 14295.03 10793.42 15897.86 16797.11 12389.89 13898.53 12192.00 10689.17 17793.23 12998.15 8998.07 10498.34 7399.61 11999.69 95
EIA-MVS97.70 6598.78 5796.44 8495.72 11199.65 1698.14 8593.72 7898.30 13392.31 10198.63 5497.90 7498.97 5798.92 4898.30 7799.78 2999.80 33
UGNet97.66 6699.07 4296.01 9497.19 8099.65 1697.09 12493.39 8399.35 2994.40 6898.79 4699.59 5394.24 18398.04 10998.29 7899.73 5299.80 33
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS-LS96.12 11197.48 10094.53 11395.19 13297.56 18597.15 12089.19 14899.08 6688.23 12394.97 13394.73 11297.84 10497.86 12098.26 7999.60 12799.88 11
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous20240521197.40 10596.45 8899.54 5098.08 9093.79 7498.24 13793.55 14794.41 11698.88 6598.04 10998.24 8099.75 4099.76 60
EPNet_dtu96.30 10698.53 6393.70 13098.97 5098.24 15497.36 10994.23 6798.85 9179.18 18199.19 2198.47 6894.09 18597.89 11898.21 8198.39 19198.85 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CPTT-MVS99.14 1999.20 3599.06 1499.58 2699.53 5199.45 2597.80 3799.19 5098.32 1398.58 5599.95 1799.60 799.28 2598.20 8299.64 11299.69 95
HyFIR lowres test95.99 11396.56 12995.32 10597.99 6799.65 1696.54 13588.86 15098.44 12789.77 12084.14 20397.05 8599.03 5498.55 7998.19 8399.73 5299.86 17
diffmvs96.83 8997.33 10996.25 8795.76 10999.34 8198.06 9193.22 8999.43 2292.30 10396.90 9989.83 14698.55 7998.00 11298.14 8499.64 11299.70 91
TAPA-MVS97.53 598.41 4398.84 5697.91 4599.08 4899.33 8499.15 3997.13 4199.34 3093.20 8797.75 8099.19 6099.20 3998.66 6698.13 8599.66 10499.48 139
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PLCcopyleft97.93 299.02 2898.94 5199.11 1099.46 3499.24 9299.06 4697.96 3499.31 3299.16 197.90 7699.79 4599.36 2798.71 6498.12 8699.65 10899.52 131
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DPM-MVS98.31 4798.53 6398.05 4198.76 5598.77 11799.13 4098.07 3099.10 6394.27 7196.70 10399.84 4198.70 7097.90 11798.11 8799.40 16899.28 152
Anonymous2023121197.10 8297.06 11997.14 5996.32 9199.52 5498.16 8493.76 7598.84 9595.98 4090.92 16594.58 11598.90 6297.72 12898.10 8899.71 7099.75 67
gg-mvs-nofinetune90.85 19394.14 17287.02 19994.89 13899.25 9098.64 6276.29 21388.24 21457.50 21879.93 20995.45 10395.18 17298.77 5998.07 8999.62 11799.24 156
CANet_DTU96.64 9999.08 4093.81 12697.10 8299.42 6798.85 5590.01 13599.31 3279.98 17799.78 299.10 6197.42 11398.35 8898.05 9099.47 15899.53 128
Fast-Effi-MVS+95.38 12696.52 13294.05 12294.15 14599.14 9997.24 11586.79 17098.53 12187.62 13094.51 13887.06 15398.76 6798.60 7498.04 9199.72 5999.77 54
DROMVSNet95.38 12696.52 13294.05 12294.15 14599.14 9997.24 11586.79 17098.53 12187.62 13094.51 13887.06 15398.76 6798.60 7498.04 9199.72 5999.77 54
GG-mvs-BLEND69.11 21098.13 7935.26 2153.49 22498.20 15694.89 1662.38 22198.42 1285.82 22596.37 11498.60 645.97 22098.75 6297.98 9399.01 18498.61 177
Effi-MVS+95.81 11697.31 11394.06 12195.09 13399.35 7997.24 11588.22 15998.54 12085.38 14598.52 5688.68 14898.70 7098.32 8997.93 9499.74 4599.84 21
GeoE95.98 11597.24 11594.51 11495.02 13599.38 7298.02 9287.86 16498.37 13087.86 12892.99 15993.54 12598.56 7898.61 7197.92 9599.73 5299.85 20
MIMVSNet94.49 14797.59 9790.87 18191.74 18298.70 12694.68 17578.73 20797.98 14683.71 15397.71 8394.81 11196.96 12297.97 11397.92 9599.40 16898.04 189
DI_MVS_plusplus_trai96.90 8897.49 9996.21 8895.61 11699.40 7198.72 6192.11 9699.14 5692.98 9493.08 15795.14 10698.13 9098.05 10897.91 9799.74 4599.73 75
testgi95.67 11997.48 10093.56 13395.07 13499.00 10395.33 15988.47 15698.80 10186.90 13597.30 8892.33 13295.97 15097.66 13097.91 9799.60 12799.38 148
thres100view90096.72 9496.47 13797.00 6996.31 9299.52 5498.28 7994.01 6997.35 16694.52 6195.90 12286.93 15799.09 5198.07 10497.87 9999.81 1799.63 114
COLMAP_ROBcopyleft96.15 1297.78 6198.17 7797.32 5398.84 5199.45 6299.28 3395.43 4999.48 1991.80 10894.83 13698.36 7098.90 6298.09 10197.85 10099.68 9199.15 160
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AdaColmapbinary99.06 2498.98 5099.15 799.60 2599.30 8799.38 3098.16 2299.02 7598.55 898.71 5299.57 5599.58 1399.09 3697.84 10199.64 11299.36 149
thres20096.76 9196.53 13197.03 6496.31 9299.67 1298.37 7393.99 7197.68 16194.49 6395.83 12586.77 15999.18 4298.26 9197.82 10299.82 1199.66 105
tfpn200view996.75 9296.51 13497.03 6496.31 9299.67 1298.41 7093.99 7197.35 16694.52 6195.90 12286.93 15799.14 4698.26 9197.80 10399.82 1199.70 91
thres40096.71 9596.45 13997.02 6696.28 9599.63 2498.41 7094.00 7097.82 15694.42 6795.74 12686.26 16699.18 4298.20 9597.79 10499.81 1799.70 91
FC-MVSNet-train97.04 8397.91 8996.03 9396.00 10298.41 14696.53 13793.42 8299.04 7493.02 9298.03 7394.32 11897.47 11297.93 11597.77 10599.75 4099.88 11
baseline296.36 10597.82 9194.65 11294.60 14299.09 10196.45 13989.63 14398.36 13191.29 11297.60 8594.13 12196.37 13998.45 8497.70 10699.54 15099.41 144
IterMVS-SCA-FT94.89 13697.87 9091.42 16994.86 13997.70 17197.24 11584.88 18598.93 8475.74 19394.26 14298.25 7196.69 12998.52 8197.68 10799.10 18399.73 75
thres600view796.69 9696.43 14197.00 6996.28 9599.67 1298.41 7093.99 7197.85 15594.29 7095.96 12085.91 16999.19 4098.26 9197.63 10899.82 1199.73 75
PMMVS97.52 7098.39 6796.51 8295.82 10898.73 12497.80 9693.05 9398.76 10894.39 6999.07 3397.03 8698.55 7998.31 9097.61 10999.43 16399.21 158
IterMVS94.81 13897.71 9391.42 16994.83 14097.63 17897.38 10885.08 18298.93 8475.67 19494.02 14397.64 7796.66 13298.45 8497.60 11098.90 18699.72 86
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu95.74 11898.04 8393.06 14493.92 14799.16 9797.90 9388.16 16199.07 7182.02 16598.02 7494.32 11896.74 12898.53 8097.56 11199.61 11999.62 115
gm-plane-assit89.44 20092.82 19785.49 20391.37 19595.34 20979.55 21782.12 19291.68 21364.79 21587.98 18980.26 20195.66 15698.51 8397.56 11199.45 16098.41 182
LGP-MVS_train96.23 10796.89 12395.46 10497.32 7598.77 11798.81 5893.60 8098.58 11785.52 14399.08 3286.67 16197.83 10597.87 11997.51 11399.69 8299.73 75
ACMMPcopyleft98.74 3499.03 4798.40 3399.36 3999.64 2199.20 3697.75 3898.82 9895.24 5098.85 4499.87 3699.17 4498.74 6397.50 11499.71 7099.76 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CR-MVSNet94.57 14697.34 10891.33 17294.90 13798.59 13397.15 12079.14 20397.98 14680.42 17396.59 11093.50 12796.85 12598.10 9997.49 11599.50 15599.15 160
PatchT93.96 15597.36 10790.00 18894.76 14198.65 12890.11 20378.57 20897.96 14980.42 17396.07 11894.10 12296.85 12598.10 9997.49 11599.26 17799.15 160
FC-MVSNet-test96.07 11297.94 8893.89 12493.60 15698.67 12796.62 13490.30 13498.76 10888.62 12195.57 13197.63 7894.48 17997.97 11397.48 11799.71 7099.52 131
UniMVSNet_ETH3D93.15 16692.33 19994.11 12093.91 14898.61 13294.81 17090.98 12097.06 17587.51 13282.27 20776.33 21397.87 10394.79 19697.47 11899.56 14499.81 31
PCF-MVS97.50 698.18 5198.35 6997.99 4398.65 5699.36 7698.94 5198.14 2698.59 11693.62 8296.61 10799.76 4899.03 5497.77 12497.45 11999.57 14198.89 174
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PatchMatch-RL97.77 6298.25 7197.21 5899.11 4799.25 9097.06 12694.09 6898.72 11295.14 5298.47 5996.29 9298.43 8398.65 6797.44 12099.45 16098.94 169
TAMVS95.53 12296.50 13694.39 11793.86 15099.03 10296.67 13289.55 14597.33 16890.64 11493.02 15891.58 13796.21 14297.72 12897.43 12199.43 16399.36 149
LTVRE_ROB93.20 1692.84 17194.92 15890.43 18592.83 16098.63 12997.08 12587.87 16397.91 15168.42 21193.54 14879.46 20796.62 13397.55 13697.40 12299.74 4599.92 2
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_part195.56 12195.38 15495.78 9796.07 9998.16 15797.57 10390.78 12597.43 16593.04 9189.12 18089.41 14797.93 9796.38 16797.38 12399.29 17599.78 46
MVSTER97.16 8097.71 9396.52 8195.97 10498.48 13998.63 6392.10 9798.68 11395.96 4199.23 2091.79 13596.87 12498.76 6097.37 12499.57 14199.68 100
Baseline_NR-MVSNet93.87 15793.98 17993.75 12791.66 18497.02 19895.53 15491.52 11297.16 17487.77 12987.93 19183.69 18196.35 14095.10 19297.23 12599.68 9199.73 75
FMVSNet595.42 12496.47 13794.20 11892.26 17095.99 20695.66 15187.15 16897.87 15393.46 8596.68 10493.79 12497.52 10997.10 15397.21 12699.11 18296.62 206
pm-mvs194.27 14895.57 15292.75 14792.58 16398.13 15894.87 16890.71 12896.70 18583.78 15089.94 17389.85 14594.96 17697.58 13597.07 12799.61 11999.72 86
Fast-Effi-MVS+-dtu95.38 12698.20 7692.09 15593.91 14898.87 11197.35 11085.01 18499.08 6681.09 16998.10 7096.36 9195.62 15898.43 8797.03 12899.55 14699.50 137
TransMVSNet (Re)93.45 16294.08 17592.72 14892.83 16097.62 18194.94 16491.54 11195.65 20283.06 15888.93 18183.53 18394.25 18297.41 14097.03 12899.67 9998.40 185
DU-MVS93.98 15494.44 16993.44 13791.66 18497.77 16895.03 16191.57 10997.17 17286.12 13793.13 15581.13 19796.60 13495.10 19297.01 13099.67 9999.80 33
TSAR-MVS + COLMAP96.79 9096.55 13097.06 6297.70 7098.46 14199.07 4596.23 4499.38 2491.32 11198.80 4585.61 17198.69 7297.64 13396.92 13199.37 17099.06 167
CLD-MVS96.74 9396.51 13497.01 6896.71 8698.62 13098.73 6094.38 6498.94 8394.46 6597.33 8687.03 15598.07 9297.20 14996.87 13299.72 5999.54 127
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TranMVSNet+NR-MVSNet93.67 16094.14 17293.13 14391.28 19897.58 18395.60 15391.97 10197.06 17584.05 14690.64 17082.22 19296.17 14594.94 19596.78 13399.69 8299.78 46
RPMNet94.66 14097.16 11691.75 16594.98 13698.59 13397.00 12778.37 20997.98 14683.78 15096.27 11594.09 12396.91 12397.36 14296.73 13499.48 15699.09 165
UniMVSNet_NR-MVSNet94.59 14495.47 15393.55 13491.85 17997.89 16695.03 16192.00 9997.33 16886.12 13793.19 15387.29 15296.60 13496.12 17696.70 13599.72 5999.80 33
ET-MVSNet_ETH3D96.17 10996.99 12195.21 10688.53 20798.54 13698.28 7992.61 9498.85 9193.60 8399.06 3490.39 14098.63 7595.98 18196.68 13699.61 11999.41 144
ACMH95.42 1495.27 13095.96 14694.45 11696.83 8598.78 11694.72 17391.67 10798.95 8186.82 13696.42 11383.67 18297.00 12097.48 13996.68 13699.69 8299.76 60
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OPM-MVS96.22 10895.85 15096.65 7697.75 6898.54 13699.00 5095.53 4796.88 17989.88 11895.95 12186.46 16498.07 9297.65 13296.63 13899.67 9998.83 176
ACMP96.25 1096.62 10196.72 12696.50 8396.96 8498.75 12197.80 9694.30 6698.85 9193.12 8998.78 4786.61 16297.23 11797.73 12796.61 13999.62 11799.71 89
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+95.51 1395.40 12596.00 14494.70 11196.33 9098.79 11496.79 13091.32 11598.77 10787.18 13395.60 13085.46 17296.97 12197.15 15096.59 14099.59 13399.65 108
CP-MVSNet93.25 16594.00 17892.38 15091.65 18697.56 18594.38 18289.20 14796.05 19683.16 15789.51 17581.97 19396.16 14696.43 16596.56 14199.71 7099.89 7
HQP-MVS96.37 10496.58 12896.13 9097.31 7798.44 14398.45 6995.22 5098.86 8988.58 12298.33 6587.00 15697.67 10797.23 14796.56 14199.56 14499.62 115
PS-CasMVS92.72 17693.36 19091.98 15991.62 18897.52 18794.13 18688.98 14995.94 19981.51 16887.35 19379.95 20495.91 15196.37 16896.49 14399.70 7999.89 7
Anonymous2023120690.70 19593.93 18086.92 20090.21 20596.79 20190.30 20286.61 17596.05 19669.25 20988.46 18584.86 17885.86 20797.11 15296.47 14499.30 17497.80 193
MVS-HIRNet92.51 17995.97 14588.48 19693.73 15498.37 14990.33 20175.36 21598.32 13277.78 18789.15 17894.87 10995.14 17397.62 13496.39 14598.51 18897.11 199
DTE-MVSNet92.42 18492.85 19591.91 16290.87 20196.97 19994.53 18189.81 13995.86 20181.59 16788.83 18277.88 21195.01 17594.34 19996.35 14699.64 11299.73 75
ACMM96.26 996.67 9896.69 12796.66 7597.29 7898.46 14196.48 13895.09 5199.21 4793.19 8898.78 4786.73 16098.17 8697.84 12196.32 14799.74 4599.49 138
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EU-MVSNet92.80 17394.76 16390.51 18391.88 17796.74 20392.48 19388.69 15396.21 19179.00 18291.51 16187.82 15091.83 20195.87 18396.27 14899.21 17898.92 173
PEN-MVS92.72 17693.20 19292.15 15491.29 19697.31 19594.67 17689.81 13996.19 19281.83 16688.58 18479.06 20895.61 15995.21 18996.27 14899.72 5999.82 26
TinyColmap94.00 15394.35 17093.60 13195.89 10598.26 15297.49 10688.82 15198.56 11983.21 15691.28 16480.48 20096.68 13097.34 14396.26 15099.53 15298.24 186
test-mter94.86 13797.32 11092.00 15892.41 16798.82 11396.18 14586.35 17798.05 14382.28 16396.48 11294.39 11795.46 16598.17 9796.20 15199.32 17399.13 164
NR-MVSNet94.01 15294.51 16793.44 13792.56 16497.77 16895.67 15091.57 10997.17 17285.84 14093.13 15580.53 19995.29 16997.01 15496.17 15299.69 8299.75 67
tfpnnormal93.85 15994.12 17493.54 13593.22 15998.24 15495.45 15691.96 10294.61 20583.91 14890.74 16781.75 19597.04 11997.49 13896.16 15399.68 9199.84 21
USDC94.26 14994.83 16193.59 13296.02 10098.44 14397.84 9488.65 15498.86 8982.73 16294.02 14380.56 19896.76 12797.28 14696.15 15499.55 14698.50 180
thisisatest053097.23 7898.25 7196.05 9195.60 11899.59 4096.96 12893.23 8799.17 5292.60 9898.75 5096.19 9498.17 8698.19 9696.10 15599.72 5999.77 54
tttt051797.23 7898.24 7496.04 9295.60 11899.60 3896.94 12993.23 8799.15 5392.56 9998.74 5196.12 9798.17 8698.21 9496.10 15599.73 5299.78 46
test-LLR95.50 12397.32 11093.37 13995.49 12498.74 12296.44 14090.82 12398.18 13882.75 16096.60 10894.67 11395.54 16198.09 10196.00 15799.20 17998.93 170
TESTMET0.1,194.95 13497.32 11092.20 15392.62 16298.74 12296.44 14086.67 17398.18 13882.75 16096.60 10894.67 11395.54 16198.09 10196.00 15799.20 17998.93 170
EG-PatchMatch MVS92.45 18093.92 18190.72 18292.56 16498.43 14594.88 16784.54 18797.18 17179.55 17986.12 20083.23 18693.15 19697.22 14896.00 15799.67 9999.27 154
UniMVSNet (Re)94.58 14595.34 15593.71 12992.25 17198.08 15994.97 16391.29 11997.03 17787.94 12693.97 14586.25 16796.07 14796.27 17395.97 16099.72 5999.79 40
anonymousdsp93.12 16795.86 14989.93 19091.09 19998.25 15395.12 16085.08 18297.44 16473.30 20190.89 16690.78 13995.25 17197.91 11695.96 16199.71 7099.82 26
WR-MVS_H93.54 16194.67 16592.22 15191.95 17597.91 16594.58 17988.75 15296.64 18683.88 14990.66 16985.13 17594.40 18096.54 16395.91 16299.73 5299.89 7
WR-MVS93.43 16494.48 16892.21 15291.52 19197.69 17394.66 17789.98 13696.86 18083.43 15490.12 17185.03 17693.94 18896.02 18095.82 16399.71 7099.82 26
IB-MVS93.96 1595.02 13396.44 14093.36 14097.05 8399.28 8890.43 20093.39 8398.02 14496.02 3994.92 13592.07 13483.52 20995.38 18695.82 16399.72 5999.59 117
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
pmmvs691.90 19192.53 19891.17 17591.81 18097.63 17893.23 18888.37 15893.43 21080.61 17177.32 21187.47 15194.12 18496.58 16195.72 16598.88 18799.53 128
MS-PatchMatch95.99 11397.26 11494.51 11497.46 7298.76 12097.27 11386.97 16999.09 6489.83 11993.51 14997.78 7696.18 14497.53 13795.71 16699.35 17198.41 182
MDTV_nov1_ep1395.57 12097.48 10093.35 14195.43 12798.97 10797.19 11983.72 19198.92 8687.91 12797.75 8096.12 9797.88 10296.84 15895.64 16797.96 19698.10 188
MIMVSNet188.61 20190.68 20386.19 20281.56 21495.30 21087.78 20985.98 17994.19 20872.30 20778.84 21078.90 20990.06 20296.59 16095.47 16899.46 15995.49 208
RPSCF97.61 6798.16 7896.96 7198.10 6299.00 10398.84 5793.76 7599.45 2094.78 5899.39 1299.31 5898.53 8196.61 15995.43 16997.74 19897.93 192
pmmvs495.09 13195.90 14794.14 11992.29 16997.70 17195.45 15690.31 13298.60 11590.70 11393.25 15289.90 14496.67 13197.13 15195.42 17099.44 16299.28 152
GA-MVS93.93 15696.31 14391.16 17693.61 15598.79 11495.39 15890.69 12998.25 13673.28 20296.15 11788.42 14994.39 18197.76 12595.35 17199.58 13799.45 141
v1092.79 17494.06 17691.31 17391.78 18197.29 19794.87 16886.10 17896.97 17879.82 17888.16 18784.56 17995.63 15796.33 17195.31 17299.65 10899.80 33
v119292.43 18393.61 18591.05 17791.53 19097.43 19194.61 17887.99 16296.60 18776.72 18987.11 19582.74 19095.85 15296.35 17095.30 17399.60 12799.74 71
test_method87.27 20491.58 20082.25 20775.65 21887.52 21786.81 21172.60 21697.51 16373.20 20385.07 20279.97 20388.69 20497.31 14495.24 17496.53 21098.41 182
v114492.81 17294.03 17791.40 17191.68 18397.60 18294.73 17288.40 15796.71 18478.48 18488.14 18884.46 18095.45 16696.31 17295.22 17599.65 10899.76 60
v124091.99 19093.33 19190.44 18491.29 19697.30 19694.25 18486.79 17096.43 19075.49 19686.34 19981.85 19495.29 16996.42 16695.22 17599.52 15399.73 75
v14419292.38 18593.55 18891.00 17891.44 19297.47 19094.27 18387.41 16796.52 18978.03 18587.50 19282.65 19195.32 16895.82 18495.15 17799.55 14699.78 46
v192192092.36 18793.57 18690.94 17991.39 19497.39 19394.70 17487.63 16696.60 18776.63 19086.98 19682.89 18895.75 15396.26 17495.14 17899.55 14699.73 75
test20.0390.65 19693.71 18487.09 19890.44 20396.24 20489.74 20685.46 18195.59 20372.99 20590.68 16885.33 17384.41 20895.94 18295.10 17999.52 15397.06 201
pmmvs592.71 17894.27 17190.90 18091.42 19397.74 17093.23 18886.66 17495.99 19878.96 18391.45 16283.44 18495.55 16097.30 14595.05 18099.58 13798.93 170
v7n91.61 19292.95 19390.04 18790.56 20297.69 17393.74 18785.59 18095.89 20076.95 18886.60 19878.60 21093.76 19197.01 15494.99 18199.65 10899.87 13
v2v48292.77 17593.52 18991.90 16391.59 18997.63 17894.57 18090.31 13296.80 18379.22 18088.74 18381.55 19696.04 14995.26 18894.97 18299.66 10499.69 95
SCA94.95 13497.44 10392.04 15695.55 12099.16 9796.26 14379.30 20299.02 7585.73 14298.18 6897.13 8497.69 10696.03 17994.91 18397.69 20197.65 194
v892.87 17093.87 18391.72 16792.05 17397.50 18894.79 17188.20 16096.85 18180.11 17690.01 17282.86 18995.48 16395.15 19194.90 18499.66 10499.80 33
V4293.05 16893.90 18292.04 15691.91 17697.66 17594.91 16589.91 13796.85 18180.58 17289.66 17483.43 18595.37 16795.03 19494.90 18499.59 13399.78 46
SixPastTwentyTwo93.44 16395.32 15691.24 17492.11 17298.40 14792.77 19188.64 15598.09 14277.83 18693.51 14985.74 17096.52 13796.91 15694.89 18699.59 13399.73 75
tpm92.38 18594.79 16289.56 19294.30 14497.50 18894.24 18578.97 20697.72 15974.93 19897.97 7582.91 18796.60 13493.65 20194.81 18798.33 19298.98 168
EPMVS95.05 13296.86 12592.94 14695.84 10798.96 10896.68 13179.87 19899.05 7290.15 11597.12 9495.99 9997.49 11195.17 19094.75 18897.59 20296.96 202
thisisatest051594.61 14396.89 12391.95 16092.00 17498.47 14092.01 19590.73 12798.18 13883.96 14794.51 13895.13 10793.38 19397.38 14194.74 18999.61 11999.79 40
v14892.36 18792.88 19491.75 16591.63 18797.66 17592.64 19290.55 13096.09 19483.34 15588.19 18680.00 20292.74 19793.98 20094.58 19099.58 13799.69 95
TDRefinement93.04 16993.57 18692.41 14996.58 8798.77 11797.78 9891.96 10298.12 14180.84 17089.13 17979.87 20587.78 20596.44 16494.50 19199.54 15098.15 187
ADS-MVSNet94.65 14197.04 12091.88 16495.68 11498.99 10595.89 14779.03 20599.15 5385.81 14196.96 9698.21 7397.10 11894.48 19894.24 19297.74 19897.21 198
PatchmatchNetpermissive94.70 13997.08 11891.92 16195.53 12198.85 11295.77 14979.54 20098.95 8185.98 13998.52 5696.45 8897.39 11495.32 18794.09 19397.32 20497.38 197
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PM-MVS89.55 19990.30 20488.67 19587.06 20895.60 20790.88 19884.51 18896.14 19375.75 19286.89 19763.47 21994.64 17896.85 15793.89 19499.17 18199.29 151
pmmvs-eth3d89.81 19889.65 20590.00 18886.94 20995.38 20891.08 19686.39 17694.57 20682.27 16483.03 20664.94 21693.96 18796.57 16293.82 19599.35 17199.24 156
MDTV_nov1_ep13_2view92.44 18195.66 15188.68 19491.05 20097.92 16492.17 19479.64 19998.83 9676.20 19191.45 16293.51 12695.04 17495.68 18593.70 19697.96 19698.53 179
new_pmnet90.45 19792.84 19687.66 19788.96 20696.16 20588.71 20884.66 18697.56 16271.91 20885.60 20186.58 16393.28 19496.07 17893.54 19798.46 18994.39 210
N_pmnet92.21 18994.60 16689.42 19391.88 17797.38 19489.15 20789.74 14297.89 15273.75 20087.94 19092.23 13393.85 19096.10 17793.20 19898.15 19597.43 196
CostFormer94.25 15094.88 16093.51 13695.43 12798.34 15196.21 14480.64 19597.94 15094.01 7298.30 6686.20 16897.52 10992.71 20392.69 19997.23 20798.02 190
pmmvs388.19 20291.27 20184.60 20585.60 21193.66 21285.68 21281.13 19392.36 21263.66 21789.51 17577.10 21293.22 19596.37 16892.40 20098.30 19397.46 195
tpmrst93.86 15895.88 14891.50 16895.69 11398.62 13095.64 15279.41 20198.80 10183.76 15295.63 12996.13 9697.25 11592.92 20292.31 20197.27 20596.74 203
MDA-MVSNet-bldmvs87.84 20389.22 20686.23 20181.74 21396.77 20283.74 21389.57 14494.50 20772.83 20696.64 10664.47 21892.71 19881.43 21392.28 20296.81 20998.47 181
Gipumacopyleft81.40 20781.78 20980.96 20983.21 21285.61 21879.73 21676.25 21497.33 16864.21 21655.32 21555.55 22086.04 20692.43 20692.20 20396.32 21293.99 211
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmnet_mix0292.44 18194.68 16489.83 19192.46 16697.65 17789.92 20590.49 13198.76 10873.05 20491.78 16090.08 14394.86 17794.53 19791.94 20498.21 19498.01 191
ambc80.99 21080.04 21690.84 21390.91 19796.09 19474.18 19962.81 21430.59 22582.44 21096.25 17591.77 20595.91 21398.56 178
dps94.63 14295.31 15793.84 12595.53 12198.71 12596.54 13580.12 19797.81 15897.21 2896.98 9592.37 13196.34 14192.46 20591.77 20597.26 20697.08 200
tpm cat194.06 15194.90 15993.06 14495.42 12998.52 13896.64 13380.67 19497.82 15692.63 9793.39 15195.00 10896.06 14891.36 20891.58 20796.98 20896.66 205
CMPMVSbinary70.31 1890.74 19491.06 20290.36 18697.32 7597.43 19192.97 19087.82 16593.50 20975.34 19783.27 20584.90 17792.19 20092.64 20491.21 20896.50 21194.46 209
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new-patchmatchnet86.12 20587.30 20784.74 20486.92 21095.19 21183.57 21484.42 18992.67 21165.66 21280.32 20864.72 21789.41 20392.33 20789.21 20998.43 19096.69 204
PMMVS277.26 20879.47 21174.70 21176.00 21788.37 21674.22 21876.34 21278.31 21654.13 21969.96 21352.50 22170.14 21584.83 21188.71 21097.35 20393.58 212
MVEpermissive67.97 1965.53 21367.43 21563.31 21459.33 22174.20 21953.09 22370.43 21766.27 21943.13 22045.98 21930.62 22470.65 21479.34 21586.30 21183.25 22089.33 213
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt82.25 20797.73 6988.71 21580.18 21568.65 21899.15 5386.98 13499.47 985.31 17468.35 21687.51 21083.81 21291.64 215
E-PMN68.30 21168.43 21368.15 21274.70 22071.56 22155.64 22177.24 21077.48 21839.46 22151.95 21841.68 22373.28 21370.65 21679.51 21388.61 21886.20 216
FPMVS83.82 20684.61 20882.90 20690.39 20490.71 21490.85 19984.10 19095.47 20465.15 21383.44 20474.46 21475.48 21181.63 21279.42 21491.42 21687.14 214
PMVScopyleft72.60 1776.39 20977.66 21274.92 21081.04 21569.37 22268.47 21980.54 19685.39 21565.07 21473.52 21272.91 21565.67 21780.35 21476.81 21588.71 21785.25 217
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS68.12 21268.11 21468.14 21375.51 21971.76 22055.38 22277.20 21177.78 21737.79 22253.59 21643.61 22274.72 21267.05 21776.70 21688.27 21986.24 215
testmvs31.24 21440.15 21620.86 21612.61 22217.99 22325.16 22413.30 21948.42 22024.82 22353.07 21730.13 22628.47 21842.73 21837.65 21720.79 22151.04 218
test12326.75 21534.25 21718.01 2177.93 22317.18 22424.85 22512.36 22044.83 22116.52 22441.80 22018.10 22728.29 21933.08 21934.79 21818.10 22249.95 219
uanet_test0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
sosnet-low-res0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
sosnet0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
RE-MVS-def69.05 210
9.1499.79 45
SR-MVS99.67 1398.25 1499.94 25
our_test_392.30 16897.58 18390.09 204
MTAPA98.09 1599.97 7
MTMP98.46 1199.96 12
Patchmatch-RL test66.86 220
XVS97.42 7399.62 2898.59 6593.81 7899.95 1799.69 82
X-MVStestdata97.42 7399.62 2898.59 6593.81 7899.95 1799.69 82
abl_698.09 4099.33 4299.22 9498.79 5994.96 5498.52 12497.00 3297.30 8899.86 3798.76 6799.69 8299.41 144
mPP-MVS99.53 3099.89 34
NP-MVS98.57 118
Patchmtry98.59 13397.15 12079.14 20380.42 173
DeepMVS_CXcopyleft96.85 20087.43 21089.27 14698.30 13375.55 19595.05 13279.47 20692.62 19989.48 20995.18 21495.96 207