This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
DELS-MVS98.19 4898.77 5697.52 5098.29 6099.71 899.12 4094.58 6298.80 9995.38 4796.24 11498.24 7097.92 9399.06 3799.52 199.82 1099.79 38
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepC-MVS97.63 498.33 4598.57 5998.04 4198.62 5699.65 1699.45 2498.15 2399.51 1692.80 9395.74 12496.44 8899.46 2199.37 1899.50 299.78 2899.81 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator96.92 798.67 3699.05 4198.23 3799.57 2699.45 6099.11 4194.66 5899.69 396.80 3296.55 10999.61 5199.40 2598.87 5199.49 399.85 399.66 100
MSLP-MVS++99.15 1799.24 3099.04 1499.52 3199.49 5599.09 4398.07 2999.37 2498.47 897.79 7699.89 3399.50 1798.93 4499.45 499.61 11599.76 55
IS_MVSNet97.86 5798.86 5296.68 7396.02 9899.72 598.35 7493.37 8498.75 10894.01 7196.88 9898.40 6798.48 7899.09 3499.42 599.83 899.80 30
Vis-MVSNet (Re-imp)97.40 7398.89 5195.66 9995.99 10199.62 2897.82 9293.22 8798.82 9691.40 10796.94 9598.56 6595.70 15099.14 3299.41 699.79 2599.75 62
PHI-MVS99.08 2199.43 1798.67 2899.15 4599.59 4099.11 4197.35 3999.14 5497.30 2699.44 1099.96 1199.32 3098.89 4999.39 799.79 2599.58 114
APD-MVScopyleft99.25 1199.38 1999.09 1099.69 899.58 4399.56 1698.32 698.85 8997.87 1998.91 3899.92 2799.30 3399.45 1499.38 899.79 2599.58 114
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepPCF-MVS97.74 398.34 4499.46 1197.04 6298.82 5199.33 8196.28 13797.47 3899.58 894.70 5898.99 3299.85 3997.24 11199.55 999.34 997.73 19499.56 120
DeepC-MVS_fast98.34 199.17 1699.45 1298.85 2499.55 2899.37 7299.64 898.05 3199.53 1396.58 3498.93 3699.92 2799.49 1999.46 1399.32 1099.80 2499.64 107
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SMA-MVS99.38 499.60 299.12 899.76 299.62 2899.39 2898.23 1899.52 1598.03 1699.45 999.98 199.64 599.58 799.30 1199.68 8799.76 55
3Dnovator+96.92 798.71 3599.05 4198.32 3399.53 2999.34 7899.06 4594.61 5999.65 497.49 2396.75 9999.86 3699.44 2398.78 5699.30 1199.81 1699.67 96
QAPM98.62 3999.04 4498.13 3899.57 2699.48 5699.17 3794.78 5599.57 996.16 3796.73 10099.80 4299.33 2998.79 5599.29 1399.75 3999.64 107
APDe-MVS99.49 199.64 199.32 299.74 499.74 499.75 198.34 399.56 1098.72 699.57 599.97 699.53 1699.65 299.25 1499.84 599.77 51
ACMMPR99.30 899.54 599.03 1599.66 1599.64 2199.68 498.25 1399.56 1097.12 2999.19 1899.95 1699.72 199.43 1599.25 1499.72 5799.77 51
HFP-MVS99.32 699.53 799.07 1299.69 899.59 4099.63 1198.31 799.56 1097.37 2599.27 1599.97 699.70 399.35 2099.24 1699.71 6799.76 55
UA-Net97.13 7999.14 3494.78 10797.21 7899.38 7097.56 10092.04 9798.48 12188.03 12298.39 6199.91 3094.03 18099.33 2299.23 1799.81 1699.25 151
LS3D97.79 5898.25 6997.26 5698.40 5899.63 2499.53 1798.63 199.25 4188.13 12196.93 9694.14 11899.19 3799.14 3299.23 1799.69 7899.42 139
X-MVS98.93 2899.37 2098.42 3199.67 1299.62 2899.60 1498.15 2399.08 6493.81 7798.46 5899.95 1699.59 1099.49 1299.21 1999.68 8799.75 62
PGM-MVS98.86 3099.35 2498.29 3499.77 199.63 2499.67 595.63 4598.66 11195.27 4899.11 2499.82 4199.67 499.33 2299.19 2099.73 5199.74 66
SteuartSystems-ACMMP99.20 1499.51 998.83 2699.66 1599.66 1499.71 398.12 2799.14 5496.62 3399.16 2099.98 199.12 4499.63 399.19 2099.78 2899.83 22
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + MP.99.27 999.57 398.92 2298.78 5399.53 4999.72 298.11 2899.73 297.43 2499.15 2199.96 1199.59 1099.73 199.07 2299.88 199.82 23
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS99.25 1199.50 1098.96 2098.79 5299.55 4799.33 3198.29 1099.75 197.96 1899.15 2199.95 1699.61 699.17 3099.06 2399.81 1699.84 18
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSP-MVS99.45 299.54 599.35 199.72 799.76 199.63 1198.37 299.63 699.03 298.95 3599.98 199.60 799.60 599.05 2499.74 4499.79 38
DVP-MVS99.34 599.52 899.14 799.68 1199.75 399.64 898.31 799.44 1998.10 1399.28 1499.98 199.30 3399.34 2199.05 2499.81 1699.79 38
canonicalmvs97.31 7497.81 9096.72 7296.20 9799.45 6098.21 8091.60 10699.22 4395.39 4698.48 5690.95 13599.16 4297.66 12699.05 2499.76 3599.90 3
OpenMVScopyleft96.23 1197.95 5698.45 6497.35 5199.52 3199.42 6598.91 5294.61 5998.87 8692.24 10294.61 13599.05 6099.10 4698.64 6699.05 2499.74 4499.51 131
Vis-MVSNetpermissive96.16 10898.22 7393.75 12295.33 12799.70 1097.27 10990.85 12098.30 12885.51 13995.72 12696.45 8693.69 18698.70 6399.00 2899.84 599.69 90
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CANet98.46 4199.16 3397.64 4898.48 5799.64 2199.35 3094.71 5799.53 1395.17 5097.63 8299.59 5298.38 8098.88 5098.99 2999.74 4499.86 15
CDPH-MVS98.41 4299.10 3797.61 4999.32 4299.36 7399.49 2096.15 4498.82 9691.82 10498.41 5999.66 5099.10 4698.93 4498.97 3099.75 3999.58 114
DPE-MVS99.39 399.55 499.20 399.63 2099.71 899.66 698.33 599.29 3398.40 1199.64 499.98 199.31 3199.56 898.96 3199.85 399.70 86
TSAR-MVS + ACMM98.77 3299.45 1297.98 4399.37 3699.46 5899.44 2698.13 2699.65 492.30 10098.91 3899.95 1699.05 4999.42 1698.95 3299.58 13399.82 23
EPP-MVSNet97.75 6198.71 5796.63 7795.68 11399.56 4697.51 10193.10 9199.22 4394.99 5497.18 9197.30 8098.65 7098.83 5298.93 3399.84 599.92 1
CHOSEN 280x42097.99 5599.24 3096.53 7998.34 5999.61 3398.36 7389.80 13799.27 3695.08 5299.81 198.58 6498.64 7199.02 3998.92 3498.93 18099.48 135
CSCG98.90 2998.93 5098.85 2499.75 399.72 599.49 2096.58 4299.38 2298.05 1598.97 3397.87 7399.49 1997.78 11998.92 3499.78 2899.90 3
CHOSEN 1792x268896.41 10196.99 11895.74 9798.01 6599.72 597.70 9890.78 12399.13 5990.03 11487.35 18795.36 10298.33 8198.59 7398.91 3699.59 12999.87 12
MVS_111021_LR98.67 3699.41 1897.81 4699.37 3699.53 4998.51 6595.52 4799.27 3694.85 5599.56 699.69 4999.04 5099.36 1998.88 3799.60 12399.58 114
MVS_030498.14 5099.03 4597.10 5998.05 6499.63 2499.27 3394.33 6499.63 693.06 8997.32 8599.05 6098.09 8798.82 5398.87 3899.81 1699.89 6
CP-MVS99.27 999.44 1599.08 1199.62 2299.58 4399.53 1798.16 2199.21 4597.79 2099.15 2199.96 1199.59 1099.54 1098.86 3999.78 2899.74 66
MAR-MVS97.71 6298.04 8197.32 5299.35 4098.91 10697.65 9991.68 10498.00 14097.01 3097.72 8094.83 10898.85 6498.44 8298.86 3999.41 16299.52 127
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
xxxxxxxxxxxxxcwj98.14 5097.38 10499.03 1599.65 1799.41 6798.87 5398.24 1699.14 5498.73 499.11 2486.38 15998.92 5799.22 2698.84 4199.76 3599.56 120
SF-MVS99.18 1599.32 2599.03 1599.65 1799.41 6798.87 5398.24 1699.14 5498.73 499.11 2499.92 2798.92 5799.22 2698.84 4199.76 3599.56 120
MVS_111021_HR98.59 4099.36 2197.68 4799.42 3499.61 3398.14 8394.81 5499.31 3095.00 5399.51 799.79 4499.00 5398.94 4398.83 4399.69 7899.57 119
CNLPA99.03 2699.05 4199.01 1999.27 4399.22 9199.03 4797.98 3299.34 2899.00 398.25 6599.71 4899.31 3198.80 5498.82 4499.48 15299.17 155
FMVSNet296.64 9797.50 9695.63 10093.81 14697.98 15598.09 8590.87 11998.99 7693.48 8393.17 15195.25 10397.89 9498.63 6798.80 4599.68 8799.67 96
MP-MVScopyleft99.07 2299.36 2198.74 2799.63 2099.57 4599.66 698.25 1399.00 7595.62 4298.97 3399.94 2499.54 1599.51 1198.79 4699.71 6799.73 70
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CS-MVS98.06 5299.12 3596.82 7195.83 10699.66 1498.93 5193.12 9098.95 7894.29 6898.55 5399.05 6098.94 5599.05 3898.78 4799.83 899.80 30
ETV-MVS98.05 5399.25 2996.65 7595.61 11599.61 3398.26 7993.52 8098.90 8593.74 8099.32 1399.20 5798.90 6099.21 2898.72 4899.87 299.79 38
TSAR-MVS + GP.98.66 3899.36 2197.85 4597.16 8099.46 5899.03 4794.59 6199.09 6297.19 2899.73 399.95 1699.39 2698.95 4298.69 4999.75 3999.65 103
ACMMP_NAP99.05 2499.45 1298.58 3099.73 599.60 3899.64 898.28 1199.23 4294.57 5999.35 1299.97 699.55 1499.63 398.66 5099.70 7699.74 66
OMC-MVS98.84 3199.01 4798.65 2999.39 3599.23 9099.22 3496.70 4199.40 2197.77 2197.89 7599.80 4299.21 3599.02 3998.65 5199.57 13799.07 162
FMVSNet397.02 8298.12 7895.73 9893.59 15297.98 15598.34 7591.32 11398.80 9993.92 7397.21 8895.94 9897.63 10398.61 6998.62 5299.61 11599.65 103
CNVR-MVS99.23 1399.28 2799.17 499.65 1799.34 7899.46 2398.21 1999.28 3498.47 898.89 4099.94 2499.50 1799.42 1698.61 5399.73 5199.52 127
baseline97.45 7198.70 5895.99 9395.89 10399.36 7398.29 7691.37 11299.21 4592.99 9198.40 6096.87 8597.96 9298.60 7198.60 5499.42 16199.86 15
zzz-MVS99.31 799.44 1599.16 599.73 599.65 1699.63 1198.26 1299.27 3698.01 1799.27 1599.97 699.60 799.59 698.58 5599.71 6799.73 70
MVS_Test97.30 7598.54 6095.87 9495.74 10999.28 8598.19 8191.40 11199.18 4991.59 10698.17 6796.18 9398.63 7298.61 6998.55 5699.66 10099.78 44
EPNet98.05 5398.86 5297.10 5999.02 4899.43 6498.47 6694.73 5699.05 7095.62 4298.93 3697.62 7795.48 15898.59 7398.55 5699.29 17199.84 18
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CVMVSNet95.33 12497.09 11493.27 13795.23 12898.39 14495.49 15092.58 9497.71 15583.00 15494.44 13893.28 12593.92 18397.79 11898.54 5899.41 16299.45 137
casdiffmvs96.93 8597.43 10296.34 8495.70 11199.50 5497.75 9693.22 8798.98 7792.64 9494.97 13191.71 13398.93 5698.62 6898.52 5999.82 1099.72 81
PVSNet_Blended_VisFu97.41 7298.49 6396.15 8797.49 7099.76 196.02 14193.75 7699.26 3993.38 8593.73 14399.35 5596.47 13398.96 4198.46 6099.77 3399.90 3
DCV-MVSNet97.56 6798.36 6696.62 7896.44 8898.36 14698.37 7191.73 10399.11 6094.80 5698.36 6296.28 9198.60 7498.12 9498.44 6199.76 3599.87 12
baseline197.58 6698.05 8097.02 6596.21 9699.45 6097.71 9793.71 7898.47 12295.75 4198.78 4493.20 12798.91 5998.52 7798.44 6199.81 1699.53 124
NCCC99.05 2499.08 3899.02 1899.62 2299.38 7099.43 2798.21 1999.36 2697.66 2297.79 7699.90 3199.45 2299.17 3098.43 6399.77 3399.51 131
PVSNet_BlendedMVS97.51 6997.71 9197.28 5498.06 6299.61 3397.31 10795.02 5199.08 6495.51 4498.05 6990.11 13898.07 8898.91 4798.40 6499.72 5799.78 44
PVSNet_Blended97.51 6997.71 9197.28 5498.06 6299.61 3397.31 10795.02 5199.08 6495.51 4498.05 6990.11 13898.07 8898.91 4798.40 6499.72 5799.78 44
train_agg98.73 3499.11 3698.28 3599.36 3899.35 7699.48 2297.96 3398.83 9493.86 7698.70 5099.86 3699.44 2399.08 3698.38 6699.61 11599.58 114
CDS-MVSNet96.59 10098.02 8394.92 10694.45 13998.96 10497.46 10391.75 10297.86 14990.07 11396.02 11797.25 8196.21 13798.04 10598.38 6699.60 12399.65 103
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HPM-MVS++copyleft99.10 2099.30 2698.86 2399.69 899.48 5699.59 1598.34 399.26 3996.55 3699.10 2799.96 1199.36 2799.25 2598.37 6899.64 10899.66 100
MCST-MVS99.11 1999.27 2898.93 2199.67 1299.33 8199.51 1998.31 799.28 3496.57 3599.10 2799.90 3199.71 299.19 2998.35 6999.82 1099.71 84
MSDG98.27 4798.29 6898.24 3699.20 4499.22 9199.20 3597.82 3599.37 2494.43 6495.90 12097.31 7999.12 4498.76 5898.35 6999.67 9599.14 159
test0.0.03 196.69 9498.12 7895.01 10595.49 12298.99 10195.86 14390.82 12198.38 12592.54 9896.66 10397.33 7895.75 14897.75 12298.34 7199.60 12399.40 143
GBi-Net96.98 8398.00 8495.78 9593.81 14697.98 15598.09 8591.32 11398.80 9993.92 7397.21 8895.94 9897.89 9498.07 10098.34 7199.68 8799.67 96
test196.98 8398.00 8495.78 9593.81 14697.98 15598.09 8591.32 11398.80 9993.92 7397.21 8895.94 9897.89 9498.07 10098.34 7199.68 8799.67 96
FMVSNet195.77 11496.41 13895.03 10493.42 15397.86 16297.11 11889.89 13498.53 11892.00 10389.17 17293.23 12698.15 8598.07 10098.34 7199.61 11599.69 90
EIA-MVS97.70 6398.78 5596.44 8395.72 11099.65 1698.14 8393.72 7798.30 12892.31 9998.63 5197.90 7298.97 5498.92 4698.30 7599.78 2899.80 30
UGNet97.66 6499.07 4096.01 9297.19 7999.65 1697.09 11993.39 8299.35 2794.40 6698.79 4399.59 5294.24 17798.04 10598.29 7699.73 5199.80 30
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS-LS96.12 10997.48 9894.53 11095.19 12997.56 17997.15 11589.19 14499.08 6488.23 12094.97 13194.73 11097.84 9997.86 11698.26 7799.60 12399.88 10
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous20240521197.40 10396.45 8799.54 4898.08 8893.79 7398.24 13293.55 14494.41 11498.88 6398.04 10598.24 7899.75 3999.76 55
EPNet_dtu96.30 10498.53 6193.70 12598.97 4998.24 15097.36 10594.23 6698.85 8979.18 17699.19 1898.47 6694.09 17997.89 11498.21 7998.39 18698.85 171
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CPTT-MVS99.14 1899.20 3299.06 1399.58 2599.53 4999.45 2497.80 3699.19 4898.32 1298.58 5299.95 1699.60 799.28 2498.20 8099.64 10899.69 90
HyFIR lowres test95.99 11196.56 12695.32 10297.99 6699.65 1696.54 13088.86 14698.44 12389.77 11784.14 19697.05 8399.03 5198.55 7598.19 8199.73 5199.86 15
diffmvs96.83 8797.33 10796.25 8595.76 10899.34 7898.06 8993.22 8799.43 2092.30 10096.90 9789.83 14298.55 7598.00 10898.14 8299.64 10899.70 86
TAPA-MVS97.53 598.41 4298.84 5497.91 4499.08 4799.33 8199.15 3897.13 4099.34 2893.20 8697.75 7899.19 5899.20 3698.66 6498.13 8399.66 10099.48 135
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PLCcopyleft97.93 299.02 2798.94 4999.11 999.46 3399.24 8999.06 4597.96 3399.31 3099.16 197.90 7499.79 4499.36 2798.71 6298.12 8499.65 10499.52 127
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DPM-MVS98.31 4698.53 6198.05 4098.76 5498.77 11399.13 3998.07 2999.10 6194.27 7096.70 10199.84 4098.70 6797.90 11398.11 8599.40 16499.28 148
Anonymous2023121197.10 8097.06 11697.14 5896.32 9099.52 5298.16 8293.76 7498.84 9395.98 3990.92 16094.58 11398.90 6097.72 12498.10 8699.71 6799.75 62
gg-mvs-nofinetune90.85 18794.14 16687.02 19394.89 13499.25 8798.64 6176.29 20788.24 20757.50 21079.93 20295.45 10195.18 16798.77 5798.07 8799.62 11399.24 152
CANet_DTU96.64 9799.08 3893.81 12197.10 8199.42 6598.85 5590.01 13199.31 3079.98 17299.78 299.10 5997.42 10898.35 8498.05 8899.47 15499.53 124
Fast-Effi-MVS+95.38 12296.52 12994.05 11894.15 14199.14 9697.24 11186.79 16598.53 11887.62 12694.51 13687.06 14898.76 6598.60 7198.04 8999.72 5799.77 51
GG-mvs-BLEND69.11 20398.13 7735.26 2083.49 21798.20 15294.89 1612.38 21498.42 1245.82 21796.37 11298.60 635.97 21398.75 6097.98 9099.01 17998.61 173
Effi-MVS+95.81 11397.31 11194.06 11795.09 13099.35 7697.24 11188.22 15598.54 11785.38 14098.52 5488.68 14398.70 6798.32 8597.93 9199.74 4499.84 18
MIMVSNet94.49 14297.59 9590.87 17691.74 17698.70 12294.68 17078.73 20197.98 14183.71 14897.71 8194.81 10996.96 11797.97 10997.92 9299.40 16498.04 184
DI_MVS_plusplus_trai96.90 8697.49 9796.21 8695.61 11599.40 6998.72 6092.11 9599.14 5492.98 9293.08 15495.14 10498.13 8698.05 10497.91 9399.74 4499.73 70
testgi95.67 11697.48 9893.56 12895.07 13199.00 9995.33 15488.47 15298.80 9986.90 13097.30 8692.33 12995.97 14597.66 12697.91 9399.60 12399.38 144
thres100view90096.72 9296.47 13397.00 6896.31 9199.52 5298.28 7794.01 6897.35 15994.52 6095.90 12086.93 15199.09 4898.07 10097.87 9599.81 1699.63 109
COLMAP_ROBcopyleft96.15 1297.78 5998.17 7597.32 5298.84 5099.45 6099.28 3295.43 4899.48 1791.80 10594.83 13498.36 6898.90 6098.09 9797.85 9699.68 8799.15 156
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AdaColmapbinary99.06 2398.98 4899.15 699.60 2499.30 8499.38 2998.16 2199.02 7398.55 798.71 4999.57 5499.58 1399.09 3497.84 9799.64 10899.36 145
thres20096.76 8996.53 12897.03 6396.31 9199.67 1198.37 7193.99 7097.68 15694.49 6295.83 12386.77 15399.18 3998.26 8797.82 9899.82 1099.66 100
tfpn200view996.75 9096.51 13097.03 6396.31 9199.67 1198.41 6893.99 7097.35 15994.52 6095.90 12086.93 15199.14 4398.26 8797.80 9999.82 1099.70 86
thres40096.71 9396.45 13597.02 6596.28 9499.63 2498.41 6894.00 6997.82 15194.42 6595.74 12486.26 16099.18 3998.20 9197.79 10099.81 1699.70 86
FC-MVSNet-train97.04 8197.91 8796.03 9196.00 10098.41 14296.53 13293.42 8199.04 7293.02 9098.03 7194.32 11697.47 10797.93 11197.77 10199.75 3999.88 10
baseline296.36 10397.82 8994.65 10994.60 13899.09 9796.45 13489.63 13998.36 12691.29 10997.60 8394.13 11996.37 13498.45 8097.70 10299.54 14699.41 140
IterMVS-SCA-FT94.89 13197.87 8891.42 16494.86 13597.70 16697.24 11184.88 17998.93 8275.74 18894.26 13998.25 6996.69 12498.52 7797.68 10399.10 17899.73 70
thres600view796.69 9496.43 13797.00 6896.28 9499.67 1198.41 6893.99 7097.85 15094.29 6895.96 11885.91 16399.19 3798.26 8797.63 10499.82 1099.73 70
PMMVS97.52 6898.39 6596.51 8195.82 10798.73 12097.80 9393.05 9298.76 10694.39 6799.07 3097.03 8498.55 7598.31 8697.61 10599.43 15999.21 154
IterMVS94.81 13397.71 9191.42 16494.83 13697.63 17297.38 10485.08 17698.93 8275.67 18994.02 14097.64 7596.66 12798.45 8097.60 10698.90 18199.72 81
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu95.74 11598.04 8193.06 13993.92 14299.16 9497.90 9088.16 15799.07 6982.02 16098.02 7294.32 11696.74 12398.53 7697.56 10799.61 11599.62 110
gm-plane-assit89.44 19492.82 19185.49 19791.37 18995.34 20379.55 21082.12 18691.68 20664.79 20787.98 18380.26 19595.66 15198.51 7997.56 10799.45 15698.41 178
LGP-MVS_train96.23 10596.89 12095.46 10197.32 7498.77 11398.81 5793.60 7998.58 11485.52 13899.08 2986.67 15597.83 10097.87 11597.51 10999.69 7899.73 70
ACMMPcopyleft98.74 3399.03 4598.40 3299.36 3899.64 2199.20 3597.75 3798.82 9695.24 4998.85 4199.87 3599.17 4198.74 6197.50 11099.71 6799.76 55
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CR-MVSNet94.57 14197.34 10691.33 16794.90 13398.59 12997.15 11579.14 19797.98 14180.42 16896.59 10893.50 12496.85 12098.10 9597.49 11199.50 15199.15 156
PatchT93.96 15097.36 10590.00 18394.76 13798.65 12490.11 19878.57 20297.96 14480.42 16896.07 11694.10 12096.85 12098.10 9597.49 11199.26 17299.15 156
FC-MVSNet-test96.07 11097.94 8693.89 11993.60 15198.67 12396.62 12990.30 13098.76 10688.62 11895.57 12997.63 7694.48 17397.97 10997.48 11399.71 6799.52 127
UniMVSNet_ETH3D93.15 16192.33 19394.11 11693.91 14398.61 12894.81 16590.98 11897.06 16887.51 12782.27 20076.33 20697.87 9894.79 19097.47 11499.56 14099.81 28
PCF-MVS97.50 698.18 4998.35 6797.99 4298.65 5599.36 7398.94 5098.14 2598.59 11393.62 8196.61 10599.76 4799.03 5197.77 12097.45 11599.57 13798.89 170
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PatchMatch-RL97.77 6098.25 6997.21 5799.11 4699.25 8797.06 12194.09 6798.72 10995.14 5198.47 5796.29 9098.43 7998.65 6597.44 11699.45 15698.94 165
TAMVS95.53 11896.50 13294.39 11393.86 14599.03 9896.67 12789.55 14197.33 16190.64 11193.02 15591.58 13496.21 13797.72 12497.43 11799.43 15999.36 145
LTVRE_ROB93.20 1692.84 16694.92 15390.43 18092.83 15598.63 12597.08 12087.87 15997.91 14668.42 20393.54 14579.46 20096.62 12897.55 13297.40 11899.74 4499.92 1
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVSTER97.16 7897.71 9196.52 8095.97 10298.48 13598.63 6292.10 9698.68 11095.96 4099.23 1791.79 13296.87 11998.76 5897.37 11999.57 13799.68 95
Baseline_NR-MVSNet93.87 15293.98 17393.75 12291.66 17897.02 19295.53 14991.52 11097.16 16787.77 12587.93 18583.69 17596.35 13595.10 18697.23 12099.68 8799.73 70
FMVSNet595.42 12096.47 13394.20 11492.26 16495.99 20095.66 14687.15 16397.87 14893.46 8496.68 10293.79 12297.52 10497.10 14897.21 12199.11 17796.62 200
pm-mvs194.27 14395.57 14892.75 14292.58 15898.13 15394.87 16390.71 12596.70 17883.78 14589.94 16889.85 14194.96 17197.58 13197.07 12299.61 11599.72 81
Fast-Effi-MVS+-dtu95.38 12298.20 7492.09 15093.91 14398.87 10797.35 10685.01 17899.08 6481.09 16498.10 6896.36 8995.62 15398.43 8397.03 12399.55 14299.50 133
TransMVSNet (Re)93.45 15794.08 16992.72 14392.83 15597.62 17594.94 15991.54 10995.65 19583.06 15388.93 17583.53 17794.25 17697.41 13697.03 12399.67 9598.40 180
DU-MVS93.98 14994.44 16393.44 13291.66 17897.77 16395.03 15691.57 10797.17 16586.12 13293.13 15281.13 19196.60 12995.10 18697.01 12599.67 9599.80 30
TSAR-MVS + COLMAP96.79 8896.55 12797.06 6197.70 6998.46 13799.07 4496.23 4399.38 2291.32 10898.80 4285.61 16598.69 6997.64 12996.92 12699.37 16699.06 163
CLD-MVS96.74 9196.51 13097.01 6796.71 8598.62 12698.73 5994.38 6398.94 8194.46 6397.33 8487.03 14998.07 8897.20 14496.87 12799.72 5799.54 123
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TranMVSNet+NR-MVSNet93.67 15594.14 16693.13 13891.28 19297.58 17795.60 14891.97 9997.06 16884.05 14190.64 16582.22 18696.17 14094.94 18996.78 12899.69 7899.78 44
RPMNet94.66 13597.16 11391.75 16094.98 13298.59 12997.00 12278.37 20397.98 14183.78 14596.27 11394.09 12196.91 11897.36 13896.73 12999.48 15299.09 161
UniMVSNet_NR-MVSNet94.59 13995.47 14993.55 12991.85 17397.89 16195.03 15692.00 9897.33 16186.12 13293.19 15087.29 14796.60 12996.12 17096.70 13099.72 5799.80 30
ET-MVSNet_ETH3D96.17 10796.99 11895.21 10388.53 20198.54 13298.28 7792.61 9398.85 8993.60 8299.06 3190.39 13798.63 7295.98 17596.68 13199.61 11599.41 140
ACMH95.42 1495.27 12595.96 14294.45 11296.83 8498.78 11294.72 16891.67 10598.95 7886.82 13196.42 11183.67 17697.00 11597.48 13596.68 13199.69 7899.76 55
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OPM-MVS96.22 10695.85 14696.65 7597.75 6798.54 13299.00 4995.53 4696.88 17289.88 11595.95 11986.46 15898.07 8897.65 12896.63 13399.67 9598.83 172
ACMP96.25 1096.62 9996.72 12396.50 8296.96 8398.75 11797.80 9394.30 6598.85 8993.12 8898.78 4486.61 15697.23 11297.73 12396.61 13499.62 11399.71 84
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+95.51 1395.40 12196.00 14094.70 10896.33 8998.79 11096.79 12591.32 11398.77 10587.18 12895.60 12885.46 16696.97 11697.15 14596.59 13599.59 12999.65 103
CP-MVSNet93.25 16094.00 17292.38 14591.65 18097.56 17994.38 17789.20 14396.05 18983.16 15289.51 17081.97 18796.16 14196.43 16096.56 13699.71 6799.89 6
HQP-MVS96.37 10296.58 12596.13 8897.31 7698.44 13998.45 6795.22 4998.86 8788.58 11998.33 6387.00 15097.67 10297.23 14296.56 13699.56 14099.62 110
PS-CasMVS92.72 17193.36 18491.98 15491.62 18297.52 18194.13 18188.98 14595.94 19281.51 16387.35 18779.95 19795.91 14696.37 16296.49 13899.70 7699.89 6
Anonymous2023120690.70 18993.93 17486.92 19490.21 19996.79 19590.30 19786.61 16996.05 18969.25 20288.46 17984.86 17285.86 20097.11 14796.47 13999.30 17097.80 187
MVS-HIRNet92.51 17495.97 14188.48 19093.73 14998.37 14590.33 19675.36 20998.32 12777.78 18289.15 17394.87 10795.14 16897.62 13096.39 14098.51 18397.11 193
DTE-MVSNet92.42 17892.85 18991.91 15790.87 19596.97 19394.53 17689.81 13595.86 19481.59 16288.83 17677.88 20495.01 17094.34 19296.35 14199.64 10899.73 70
ACMM96.26 996.67 9696.69 12496.66 7497.29 7798.46 13796.48 13395.09 5099.21 4593.19 8798.78 4486.73 15498.17 8297.84 11796.32 14299.74 4499.49 134
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EU-MVSNet92.80 16894.76 15890.51 17891.88 17196.74 19792.48 18888.69 14996.21 18479.00 17791.51 15687.82 14591.83 19595.87 17796.27 14399.21 17398.92 169
PEN-MVS92.72 17193.20 18692.15 14991.29 19097.31 18994.67 17189.81 13596.19 18581.83 16188.58 17879.06 20195.61 15495.21 18396.27 14399.72 5799.82 23
TinyColmap94.00 14894.35 16493.60 12695.89 10398.26 14897.49 10288.82 14798.56 11683.21 15191.28 15980.48 19496.68 12597.34 13996.26 14599.53 14898.24 181
test-mter94.86 13297.32 10892.00 15392.41 16198.82 10996.18 14086.35 17198.05 13882.28 15896.48 11094.39 11595.46 16098.17 9396.20 14699.32 16999.13 160
NR-MVSNet94.01 14794.51 16193.44 13292.56 15997.77 16395.67 14591.57 10797.17 16585.84 13593.13 15280.53 19395.29 16497.01 14996.17 14799.69 7899.75 62
tfpnnormal93.85 15494.12 16893.54 13093.22 15498.24 15095.45 15191.96 10094.61 19883.91 14390.74 16281.75 18997.04 11497.49 13496.16 14899.68 8799.84 18
USDC94.26 14494.83 15693.59 12796.02 9898.44 13997.84 9188.65 15098.86 8782.73 15794.02 14080.56 19296.76 12297.28 14196.15 14999.55 14298.50 176
thisisatest053097.23 7698.25 6996.05 8995.60 11799.59 4096.96 12393.23 8599.17 5092.60 9698.75 4796.19 9298.17 8298.19 9296.10 15099.72 5799.77 51
tttt051797.23 7698.24 7296.04 9095.60 11799.60 3896.94 12493.23 8599.15 5192.56 9798.74 4896.12 9598.17 8298.21 9096.10 15099.73 5199.78 44
test-LLR95.50 11997.32 10893.37 13495.49 12298.74 11896.44 13590.82 12198.18 13382.75 15596.60 10694.67 11195.54 15698.09 9796.00 15299.20 17498.93 166
TESTMET0.1,194.95 12997.32 10892.20 14892.62 15798.74 11896.44 13586.67 16798.18 13382.75 15596.60 10694.67 11195.54 15698.09 9796.00 15299.20 17498.93 166
EG-PatchMatch MVS92.45 17593.92 17590.72 17792.56 15998.43 14194.88 16284.54 18197.18 16479.55 17486.12 19483.23 18093.15 19097.22 14396.00 15299.67 9599.27 150
UniMVSNet (Re)94.58 14095.34 15093.71 12492.25 16598.08 15494.97 15891.29 11797.03 17087.94 12393.97 14286.25 16196.07 14296.27 16795.97 15599.72 5799.79 38
anonymousdsp93.12 16295.86 14589.93 18591.09 19398.25 14995.12 15585.08 17697.44 15873.30 19690.89 16190.78 13695.25 16697.91 11295.96 15699.71 6799.82 23
WR-MVS_H93.54 15694.67 15992.22 14691.95 16997.91 16094.58 17488.75 14896.64 17983.88 14490.66 16485.13 16994.40 17496.54 15895.91 15799.73 5199.89 6
WR-MVS93.43 15994.48 16292.21 14791.52 18597.69 16894.66 17289.98 13296.86 17383.43 14990.12 16685.03 17093.94 18296.02 17495.82 15899.71 6799.82 23
IB-MVS93.96 1595.02 12896.44 13693.36 13597.05 8299.28 8590.43 19593.39 8298.02 13996.02 3894.92 13392.07 13183.52 20295.38 18095.82 15899.72 5799.59 113
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
pmmvs691.90 18592.53 19291.17 17091.81 17497.63 17293.23 18388.37 15493.43 20380.61 16677.32 20487.47 14694.12 17896.58 15695.72 16098.88 18299.53 124
MS-PatchMatch95.99 11197.26 11294.51 11197.46 7198.76 11697.27 10986.97 16499.09 6289.83 11693.51 14697.78 7496.18 13997.53 13395.71 16199.35 16798.41 178
MDTV_nov1_ep1395.57 11797.48 9893.35 13695.43 12498.97 10397.19 11483.72 18598.92 8487.91 12497.75 7896.12 9597.88 9796.84 15395.64 16297.96 19098.10 183
MIMVSNet188.61 19590.68 19686.19 19681.56 20895.30 20487.78 20385.98 17394.19 20172.30 20078.84 20378.90 20290.06 19696.59 15595.47 16399.46 15595.49 202
RPSCF97.61 6598.16 7696.96 7098.10 6199.00 9998.84 5693.76 7499.45 1894.78 5799.39 1199.31 5698.53 7796.61 15495.43 16497.74 19297.93 186
pmmvs495.09 12695.90 14394.14 11592.29 16397.70 16695.45 15190.31 12898.60 11290.70 11093.25 14989.90 14096.67 12697.13 14695.42 16599.44 15899.28 148
GA-MVS93.93 15196.31 13991.16 17193.61 15098.79 11095.39 15390.69 12698.25 13173.28 19796.15 11588.42 14494.39 17597.76 12195.35 16699.58 13399.45 137
v1092.79 16994.06 17091.31 16891.78 17597.29 19194.87 16386.10 17296.97 17179.82 17388.16 18184.56 17395.63 15296.33 16595.31 16799.65 10499.80 30
v119292.43 17793.61 17991.05 17291.53 18497.43 18594.61 17387.99 15896.60 18076.72 18487.11 18982.74 18495.85 14796.35 16495.30 16899.60 12399.74 66
v114492.81 16794.03 17191.40 16691.68 17797.60 17694.73 16788.40 15396.71 17778.48 17988.14 18284.46 17495.45 16196.31 16695.22 16999.65 10499.76 55
v124091.99 18493.33 18590.44 17991.29 19097.30 19094.25 17986.79 16596.43 18375.49 19186.34 19381.85 18895.29 16496.42 16195.22 16999.52 14999.73 70
v14419292.38 17993.55 18291.00 17391.44 18697.47 18494.27 17887.41 16296.52 18278.03 18087.50 18682.65 18595.32 16395.82 17895.15 17199.55 14299.78 44
v192192092.36 18193.57 18090.94 17491.39 18897.39 18794.70 16987.63 16196.60 18076.63 18586.98 19082.89 18295.75 14896.26 16895.14 17299.55 14299.73 70
test20.0390.65 19093.71 17887.09 19290.44 19796.24 19889.74 20085.46 17595.59 19672.99 19890.68 16385.33 16784.41 20195.94 17695.10 17399.52 14997.06 195
pmmvs592.71 17394.27 16590.90 17591.42 18797.74 16593.23 18386.66 16895.99 19178.96 17891.45 15783.44 17895.55 15597.30 14095.05 17499.58 13398.93 166
v7n91.61 18692.95 18790.04 18290.56 19697.69 16893.74 18285.59 17495.89 19376.95 18386.60 19278.60 20393.76 18597.01 14994.99 17599.65 10499.87 12
v2v48292.77 17093.52 18391.90 15891.59 18397.63 17294.57 17590.31 12896.80 17679.22 17588.74 17781.55 19096.04 14495.26 18294.97 17699.66 10099.69 90
SCA94.95 12997.44 10192.04 15195.55 11999.16 9496.26 13879.30 19699.02 7385.73 13798.18 6697.13 8297.69 10196.03 17394.91 17797.69 19597.65 188
v892.87 16593.87 17791.72 16292.05 16797.50 18294.79 16688.20 15696.85 17480.11 17190.01 16782.86 18395.48 15895.15 18594.90 17899.66 10099.80 30
V4293.05 16393.90 17692.04 15191.91 17097.66 17094.91 16089.91 13396.85 17480.58 16789.66 16983.43 17995.37 16295.03 18894.90 17899.59 12999.78 44
SixPastTwentyTwo93.44 15895.32 15191.24 16992.11 16698.40 14392.77 18688.64 15198.09 13777.83 18193.51 14685.74 16496.52 13296.91 15194.89 18099.59 12999.73 70
tpm92.38 17994.79 15789.56 18694.30 14097.50 18294.24 18078.97 20097.72 15474.93 19397.97 7382.91 18196.60 12993.65 19494.81 18198.33 18798.98 164
EPMVS95.05 12796.86 12292.94 14195.84 10598.96 10496.68 12679.87 19299.05 7090.15 11297.12 9295.99 9797.49 10695.17 18494.75 18297.59 19696.96 196
thisisatest051594.61 13896.89 12091.95 15592.00 16898.47 13692.01 19090.73 12498.18 13383.96 14294.51 13695.13 10593.38 18797.38 13794.74 18399.61 11599.79 38
v14892.36 18192.88 18891.75 16091.63 18197.66 17092.64 18790.55 12796.09 18783.34 15088.19 18080.00 19692.74 19193.98 19394.58 18499.58 13399.69 90
TDRefinement93.04 16493.57 18092.41 14496.58 8698.77 11397.78 9591.96 10098.12 13680.84 16589.13 17479.87 19887.78 19896.44 15994.50 18599.54 14698.15 182
ADS-MVSNet94.65 13697.04 11791.88 15995.68 11398.99 10195.89 14279.03 19999.15 5185.81 13696.96 9498.21 7197.10 11394.48 19194.24 18697.74 19297.21 192
PatchmatchNetpermissive94.70 13497.08 11591.92 15695.53 12098.85 10895.77 14479.54 19498.95 7885.98 13498.52 5496.45 8697.39 10995.32 18194.09 18797.32 19897.38 191
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PM-MVS89.55 19390.30 19788.67 18987.06 20295.60 20190.88 19384.51 18296.14 18675.75 18786.89 19163.47 21294.64 17296.85 15293.89 18899.17 17699.29 147
pmmvs-eth3d89.81 19289.65 19890.00 18386.94 20395.38 20291.08 19186.39 17094.57 19982.27 15983.03 19964.94 20993.96 18196.57 15793.82 18999.35 16799.24 152
MDTV_nov1_ep13_2view92.44 17695.66 14788.68 18891.05 19497.92 15992.17 18979.64 19398.83 9476.20 18691.45 15793.51 12395.04 16995.68 17993.70 19097.96 19098.53 175
new_pmnet90.45 19192.84 19087.66 19188.96 20096.16 19988.71 20284.66 18097.56 15771.91 20185.60 19586.58 15793.28 18896.07 17293.54 19198.46 18494.39 204
N_pmnet92.21 18394.60 16089.42 18791.88 17197.38 18889.15 20189.74 13897.89 14773.75 19587.94 18492.23 13093.85 18496.10 17193.20 19298.15 18997.43 190
CostFormer94.25 14594.88 15593.51 13195.43 12498.34 14796.21 13980.64 18997.94 14594.01 7198.30 6486.20 16297.52 10492.71 19692.69 19397.23 20198.02 185
pmmvs388.19 19691.27 19484.60 19985.60 20593.66 20685.68 20581.13 18792.36 20563.66 20989.51 17077.10 20593.22 18996.37 16292.40 19498.30 18897.46 189
tpmrst93.86 15395.88 14491.50 16395.69 11298.62 12695.64 14779.41 19598.80 9983.76 14795.63 12796.13 9497.25 11092.92 19592.31 19597.27 19996.74 197
MDA-MVSNet-bldmvs87.84 19789.22 19986.23 19581.74 20796.77 19683.74 20689.57 14094.50 20072.83 19996.64 10464.47 21192.71 19281.43 20692.28 19696.81 20398.47 177
Gipumacopyleft81.40 20081.78 20280.96 20283.21 20685.61 21179.73 20976.25 20897.33 16164.21 20855.32 20855.55 21386.04 19992.43 19992.20 19796.32 20593.99 205
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ambc80.99 20380.04 21090.84 20790.91 19296.09 18774.18 19462.81 20730.59 21882.44 20396.25 16991.77 19895.91 20698.56 174
dps94.63 13795.31 15293.84 12095.53 12098.71 12196.54 13080.12 19197.81 15397.21 2796.98 9392.37 12896.34 13692.46 19891.77 19897.26 20097.08 194
tpm cat194.06 14694.90 15493.06 13995.42 12698.52 13496.64 12880.67 18897.82 15192.63 9593.39 14895.00 10696.06 14391.36 20191.58 20096.98 20296.66 199
CMPMVSbinary70.31 1890.74 18891.06 19590.36 18197.32 7497.43 18592.97 18587.82 16093.50 20275.34 19283.27 19884.90 17192.19 19492.64 19791.21 20196.50 20494.46 203
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new-patchmatchnet86.12 19887.30 20084.74 19886.92 20495.19 20583.57 20784.42 18392.67 20465.66 20480.32 20164.72 21089.41 19792.33 20089.21 20298.43 18596.69 198
PMMVS277.26 20179.47 20474.70 20476.00 21188.37 21074.22 21176.34 20678.31 20954.13 21169.96 20652.50 21470.14 20884.83 20488.71 20397.35 19793.58 206
MVEpermissive67.97 1965.53 20667.43 20863.31 20759.33 21474.20 21253.09 21670.43 21066.27 21243.13 21245.98 21230.62 21770.65 20779.34 20886.30 20483.25 21389.33 207
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt82.25 20197.73 6888.71 20980.18 20868.65 21199.15 5186.98 12999.47 885.31 16868.35 20987.51 20383.81 20591.64 208
E-PMN68.30 20468.43 20668.15 20574.70 21371.56 21455.64 21477.24 20477.48 21139.46 21351.95 21141.68 21673.28 20670.65 20979.51 20688.61 21186.20 210
FPMVS83.82 19984.61 20182.90 20090.39 19890.71 20890.85 19484.10 18495.47 19765.15 20583.44 19774.46 20775.48 20481.63 20579.42 20791.42 20987.14 208
PMVScopyleft72.60 1776.39 20277.66 20574.92 20381.04 20969.37 21568.47 21280.54 19085.39 20865.07 20673.52 20572.91 20865.67 21080.35 20776.81 20888.71 21085.25 211
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS68.12 20568.11 20768.14 20675.51 21271.76 21355.38 21577.20 20577.78 21037.79 21453.59 20943.61 21574.72 20567.05 21076.70 20988.27 21286.24 209
testmvs31.24 20740.15 20920.86 20912.61 21517.99 21625.16 21713.30 21248.42 21324.82 21553.07 21030.13 21928.47 21142.73 21137.65 21020.79 21451.04 212
test12326.75 20834.25 21018.01 2107.93 21617.18 21724.85 21812.36 21344.83 21416.52 21641.80 21318.10 22028.29 21233.08 21234.79 21118.10 21549.95 213
uanet_test0.00 2090.00 2110.00 2110.00 2180.00 2180.00 2190.00 2150.00 2150.00 2180.00 2140.00 2210.00 2140.00 2130.00 2120.00 2160.00 214
sosnet-low-res0.00 2090.00 2110.00 2110.00 2180.00 2180.00 2190.00 2150.00 2150.00 2180.00 2140.00 2210.00 2140.00 2130.00 2120.00 2160.00 214
sosnet0.00 2090.00 2110.00 2110.00 2180.00 2180.00 2190.00 2150.00 2150.00 2180.00 2140.00 2210.00 2140.00 2130.00 2120.00 2160.00 214
9.1499.79 44
SR-MVS99.67 1298.25 1399.94 24
our_test_392.30 16297.58 17790.09 199
test_part199.62 110
MTAPA98.09 1499.97 6
MTMP98.46 1099.96 11
Patchmatch-RL test66.86 213
XVS97.42 7299.62 2898.59 6393.81 7799.95 1699.69 78
X-MVStestdata97.42 7299.62 2898.59 6393.81 7799.95 1699.69 78
abl_698.09 3999.33 4199.22 9198.79 5894.96 5398.52 12097.00 3197.30 8699.86 3698.76 6599.69 7899.41 140
mPP-MVS99.53 2999.89 33
NP-MVS98.57 115
Patchmtry98.59 12997.15 11579.14 19780.42 168
DeepMVS_CXcopyleft96.85 19487.43 20489.27 14298.30 12875.55 19095.05 13079.47 19992.62 19389.48 20295.18 20795.96 201