This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
DELS-MVS96.06 5396.04 6096.07 5097.77 5699.25 2398.10 4293.26 5694.42 10492.79 4388.52 10893.48 7195.06 9198.51 1598.83 199.45 3199.28 26
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepC-MVS_fast96.13 198.13 2098.27 2597.97 2599.16 2799.03 3999.05 1897.24 2798.22 994.17 3295.82 3998.07 3998.69 1798.83 1098.80 299.52 1499.10 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator93.79 897.08 3797.20 4096.95 3899.09 2999.03 3998.20 4093.33 5497.99 1493.82 3390.61 9196.80 4997.82 3797.90 4598.78 399.47 2699.26 31
MSLP-MVS++98.04 2397.93 3298.18 1799.10 2899.09 3198.34 3696.99 3397.54 3096.60 1394.82 5098.45 3598.89 697.46 5698.77 499.17 8899.37 17
DeepPCF-MVS95.28 297.00 4098.35 2095.42 5897.30 6298.94 4794.82 11596.03 3998.24 892.11 4895.80 4098.64 3295.51 8698.95 698.66 596.78 18799.20 40
SMA-MVScopyleft98.66 698.89 698.39 999.60 199.41 899.00 2097.63 1297.78 1795.83 1998.33 1099.83 398.85 1098.93 798.56 699.41 4499.40 15
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
IS_MVSNet95.28 6396.43 5593.94 8695.30 8999.01 4395.90 9491.12 8794.13 10987.50 10191.23 8294.45 6794.17 10598.45 1898.50 799.65 299.23 35
DeepC-MVS94.87 496.76 4796.50 5397.05 3698.21 4999.28 1998.67 2797.38 2197.31 3590.36 6989.19 10193.58 7098.19 2798.31 2498.50 799.51 1999.36 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SteuartSystems-ACMMP98.38 1498.71 997.99 2499.34 2199.46 799.34 597.33 2597.31 3594.25 3098.06 1399.17 1898.13 2898.98 498.46 999.55 1299.54 9
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+93.91 797.23 3597.22 3997.24 3398.89 3698.85 5798.26 3993.25 5897.99 1495.56 2390.01 9798.03 4198.05 3297.91 4498.43 1099.44 3999.35 19
DVP-MVS98.86 398.97 298.75 299.43 1399.63 199.25 1297.81 198.62 197.69 197.59 2099.90 198.93 598.99 398.42 1199.37 5399.62 3
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS98.73 598.93 498.50 699.44 1299.57 399.36 397.65 898.14 1196.51 1598.49 699.65 798.67 1898.60 1398.42 1199.40 4799.63 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVS98.87 298.96 398.77 199.58 299.53 599.44 197.81 198.22 997.33 498.70 499.33 998.86 898.96 598.40 1399.63 399.57 8
APD-MVScopyleft98.36 1598.32 2298.41 899.47 699.26 2199.12 1597.77 696.73 5096.12 1797.27 2898.88 2498.46 2598.47 1798.39 1499.52 1499.22 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PHI-MVS97.78 2698.44 1797.02 3798.73 3899.25 2398.11 4195.54 4096.66 5392.79 4398.52 599.38 897.50 4497.84 4698.39 1499.45 3199.03 66
Vis-MVSNet (Re-imp)94.46 8096.24 5792.40 10595.23 9298.64 7195.56 10290.99 8894.42 10485.02 11190.88 8994.65 6688.01 17498.17 3298.37 1699.57 898.53 103
SED-MVS98.90 199.07 198.69 399.38 1999.61 299.33 797.80 398.25 797.60 298.87 399.89 298.67 1899.02 298.26 1799.36 5599.61 5
DPE-MVScopyleft98.75 498.91 598.57 499.21 2499.54 499.42 297.78 597.49 3196.84 998.94 199.82 498.59 2198.90 998.22 1899.56 1099.48 12
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
UA-Net93.96 8995.95 6291.64 11396.06 7698.59 7695.29 10490.00 9991.06 15482.87 11990.64 9098.06 4086.06 18598.14 3598.20 1999.58 696.96 159
QAPM96.78 4697.14 4396.36 4499.05 3099.14 3098.02 4393.26 5697.27 3790.84 6091.16 8397.31 4497.64 4297.70 5098.20 1999.33 5799.18 45
X-MVS97.84 2498.19 2797.42 3199.40 1599.35 1299.06 1797.25 2697.38 3490.85 5796.06 3698.72 2998.53 2498.41 2298.15 2199.46 2799.28 26
ACMMPR98.40 1298.49 1298.28 1499.41 1499.40 999.36 397.35 2298.30 595.02 2697.79 1798.39 3799.04 298.26 2898.10 2299.50 2299.22 37
CNVR-MVS98.47 1098.46 1598.48 799.40 1599.05 3299.02 1997.54 1797.73 1896.65 1297.20 2999.13 1998.85 1098.91 898.10 2299.41 4499.08 55
HFP-MVS98.48 998.62 1098.32 1299.39 1899.33 1699.27 1097.42 1998.27 695.25 2498.34 998.83 2699.08 198.26 2898.08 2499.48 2399.26 31
CANet96.84 4497.20 4096.42 4297.92 5499.24 2598.60 2993.51 5397.11 4193.07 3791.16 8397.24 4596.21 7398.24 3098.05 2599.22 7999.35 19
TSAR-MVS + MP.98.49 898.78 798.15 2098.14 5199.17 2899.34 597.18 3098.44 495.72 2097.84 1699.28 1198.87 799.05 198.05 2599.66 199.60 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CS-MVS96.45 4897.46 3795.28 6194.58 11098.63 7397.19 5790.59 9395.87 7491.74 5195.84 3896.55 5198.05 3298.04 4197.99 2799.51 1999.29 25
SD-MVS98.52 798.77 898.23 1698.15 5099.26 2198.79 2697.59 1698.52 296.25 1697.99 1599.75 599.01 398.27 2797.97 2899.59 499.63 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_111021_HR97.04 3998.20 2695.69 5398.44 4699.29 1896.59 7593.20 5997.70 2289.94 7698.46 796.89 4796.71 6498.11 3897.95 2999.27 6899.01 69
canonicalmvs95.25 6595.45 6995.00 6595.27 9198.72 6596.89 6289.82 10396.51 5490.84 6093.72 5886.01 11697.66 4195.78 11597.94 3099.54 1399.50 11
CDPH-MVS96.84 4497.49 3496.09 4898.92 3498.85 5798.61 2895.09 4296.00 6987.29 10295.45 4597.42 4397.16 5197.83 4797.94 3099.44 3998.92 79
MVS_030496.31 5096.91 4895.62 5497.21 6499.20 2698.55 3193.10 6197.04 4589.73 7890.30 9396.35 5395.71 7998.14 3597.93 3299.38 5099.40 15
PGM-MVS97.81 2598.11 2897.46 3099.55 399.34 1599.32 894.51 4696.21 6193.07 3798.05 1497.95 4298.82 1298.22 3197.89 3399.48 2399.09 54
ACMMP_NAP98.20 1898.49 1297.85 2699.50 499.40 999.26 1197.64 1197.47 3392.62 4697.59 2099.09 2198.71 1698.82 1197.86 3499.40 4799.19 41
ETV-MVS96.31 5097.47 3694.96 6794.79 10298.78 6096.08 8891.41 8496.16 6290.50 6495.76 4196.20 5797.39 4598.42 2197.82 3599.57 899.18 45
TSAR-MVS + ACMM97.71 2898.60 1196.66 4198.64 4199.05 3298.85 2597.23 2898.45 389.40 8497.51 2499.27 1396.88 6098.53 1497.81 3698.96 11799.59 7
NCCC98.10 2198.05 3098.17 1999.38 1999.05 3299.00 2097.53 1898.04 1395.12 2594.80 5199.18 1798.58 2298.49 1697.78 3799.39 4998.98 73
MP-MVScopyleft98.09 2298.30 2497.84 2799.34 2199.19 2799.23 1397.40 2097.09 4293.03 4097.58 2298.85 2598.57 2398.44 2097.69 3899.48 2399.23 35
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVS98.32 1798.34 2198.29 1399.34 2199.30 1799.15 1497.35 2297.49 3195.58 2297.72 1898.62 3398.82 1298.29 2597.67 3999.51 1999.28 26
xxxxxxxxxxxxxcwj97.07 3895.99 6198.33 1099.45 999.05 3298.27 3797.65 897.73 1897.02 798.18 1181.99 14498.11 2998.15 3397.62 4099.45 3199.19 41
SF-MVS98.39 1398.45 1698.33 1099.45 999.05 3298.27 3797.65 897.73 1897.02 798.18 1199.25 1498.11 2998.15 3397.62 4099.45 3199.19 41
OpenMVScopyleft92.33 1195.50 5695.22 7395.82 5298.98 3198.97 4597.67 5193.04 6494.64 10089.18 8884.44 13694.79 6596.79 6197.23 6197.61 4299.24 7398.88 84
Vis-MVSNetpermissive92.77 10795.00 7990.16 13394.10 12198.79 5994.76 11788.26 12392.37 13979.95 13488.19 11091.58 7984.38 19597.59 5397.58 4399.52 1498.91 82
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
zzz-MVS98.43 1198.31 2398.57 499.48 599.40 999.32 897.62 1397.70 2296.67 1196.59 3299.09 2198.86 898.65 1297.56 4499.45 3199.17 47
CS-MVS-test95.94 5497.30 3894.36 8194.44 11498.51 7796.65 7288.71 11697.06 4488.76 9294.68 5395.44 6398.01 3598.29 2597.55 4599.56 1099.54 9
MAR-MVS95.50 5695.60 6595.39 5998.67 4098.18 8895.89 9689.81 10494.55 10291.97 4992.99 6290.21 8997.30 4796.79 7597.49 4698.72 14098.99 71
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MCST-MVS98.20 1898.36 1898.01 2399.40 1599.05 3299.00 2097.62 1397.59 2993.70 3497.42 2799.30 1098.77 1498.39 2397.48 4799.59 499.31 24
HPM-MVS++copyleft98.34 1698.47 1498.18 1799.46 899.15 2999.10 1697.69 797.67 2594.93 2797.62 1999.70 698.60 2098.45 1897.46 4899.31 6299.26 31
LS3D95.46 5995.14 7495.84 5197.91 5598.90 5498.58 3097.79 497.07 4383.65 11788.71 10488.64 10297.82 3797.49 5597.42 4999.26 7297.72 138
TSAR-MVS + GP.97.45 3198.36 1896.39 4395.56 8398.93 4997.74 4993.31 5597.61 2894.24 3198.44 899.19 1698.03 3497.60 5297.41 5099.44 3999.33 21
DPM-MVS96.86 4396.82 4996.91 3998.08 5298.20 8698.52 3397.20 2997.24 3891.42 5391.84 7698.45 3597.25 4897.07 6797.40 5198.95 11897.55 142
CSCG97.44 3297.18 4297.75 2899.47 699.52 698.55 3195.41 4197.69 2495.72 2094.29 5595.53 6298.10 3196.20 10397.38 5299.24 7399.62 3
PVSNet_BlendedMVS95.41 6195.28 7195.57 5597.42 6099.02 4195.89 9693.10 6196.16 6293.12 3591.99 7285.27 12194.66 9698.09 3997.34 5399.24 7399.08 55
PVSNet_Blended95.41 6195.28 7195.57 5597.42 6099.02 4195.89 9693.10 6196.16 6293.12 3591.99 7285.27 12194.66 9698.09 3997.34 5399.24 7399.08 55
casdiffmvs94.38 8494.15 9494.64 7794.70 10898.51 7796.03 9191.66 7995.70 7989.36 8586.48 12085.03 12696.60 6897.40 5797.30 5599.52 1498.67 95
PVSNet_Blended_VisFu94.77 7395.54 6793.87 8896.48 7198.97 4594.33 12491.84 7694.93 9690.37 6885.04 13194.99 6490.87 15298.12 3797.30 5599.30 6499.45 14
MVS_111021_LR97.16 3698.01 3196.16 4798.47 4498.98 4496.94 6193.89 4997.64 2791.44 5298.89 296.41 5297.20 5098.02 4297.29 5799.04 11298.85 88
train_agg97.65 2998.06 2997.18 3498.94 3398.91 5298.98 2497.07 3296.71 5190.66 6297.43 2699.08 2398.20 2697.96 4397.14 5899.22 7999.19 41
EIA-MVS95.50 5696.19 5894.69 7594.83 10198.88 5695.93 9391.50 8394.47 10389.43 8293.14 6192.72 7597.05 5697.82 4997.13 5999.43 4299.15 49
EPNet96.27 5296.97 4595.46 5798.47 4498.28 8297.41 5493.67 5195.86 7592.86 4297.51 2493.79 6991.76 13797.03 6997.03 6098.61 15099.28 26
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPP-MVSNet95.27 6496.18 5994.20 8494.88 10098.64 7194.97 11090.70 9195.34 8689.67 8091.66 7993.84 6895.42 8897.32 5997.00 6199.58 699.47 13
FMVSNet293.30 10393.36 10993.22 10191.34 15395.86 14896.22 8388.24 12495.15 9489.92 7781.64 14989.36 9494.40 10296.77 7696.98 6299.21 8297.79 131
CHOSEN 280x42095.46 5997.01 4493.66 9297.28 6397.98 9396.40 8185.39 15696.10 6691.07 5596.53 3396.34 5595.61 8397.65 5196.95 6396.21 18897.49 143
baseline194.59 7794.47 8494.72 7495.16 9497.97 9496.07 8991.94 7494.86 9789.98 7491.60 8085.87 11895.64 8197.07 6796.90 6499.52 1497.06 158
MVS_Test94.82 6995.66 6493.84 8994.79 10298.35 8196.49 7989.10 11496.12 6587.09 10492.58 6790.61 8696.48 6996.51 9196.89 6599.11 9998.54 102
gg-mvs-nofinetune86.17 18888.57 16283.36 19693.44 13198.15 8996.58 7672.05 21074.12 21449.23 21864.81 20890.85 8489.90 16797.83 4796.84 6698.97 11697.41 146
CANet_DTU93.92 9096.57 5290.83 12495.63 8198.39 8096.99 6087.38 13296.26 5871.97 17796.31 3493.02 7294.53 9997.38 5896.83 6798.49 15797.79 131
OMC-MVS97.00 4096.92 4797.09 3598.69 3998.66 6897.85 4795.02 4398.09 1294.47 2893.15 6096.90 4697.38 4697.16 6596.82 6899.13 9697.65 139
FMVSNet393.79 9494.17 9293.35 9991.21 15695.99 14196.62 7388.68 11795.23 9090.40 6586.39 12191.16 8094.11 10695.96 10896.67 6999.07 10497.79 131
CNLPA96.90 4296.28 5697.64 2998.56 4398.63 7396.85 6496.60 3797.73 1897.08 689.78 9996.28 5697.80 3996.73 7896.63 7098.94 11998.14 125
UGNet94.92 6696.63 5192.93 10296.03 7798.63 7394.53 12191.52 8296.23 6090.03 7392.87 6596.10 5986.28 18496.68 8096.60 7199.16 9199.32 23
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CHOSEN 1792x268892.66 10992.49 11992.85 10397.13 6598.89 5595.90 9488.50 12195.32 8783.31 11871.99 19388.96 10094.10 10796.69 7996.49 7298.15 16799.10 52
CDS-MVSNet92.77 10793.60 10491.80 11192.63 14396.80 11895.24 10689.14 11390.30 16384.58 11286.76 11590.65 8590.42 16095.89 11096.49 7298.79 13698.32 119
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
diffmvs94.31 8594.21 8994.42 8094.64 10998.28 8296.36 8291.56 8096.77 4988.89 9188.97 10284.23 13096.01 7796.05 10796.41 7499.05 11198.79 92
GBi-Net93.81 9294.18 9093.38 9791.34 15395.86 14896.22 8388.68 11795.23 9090.40 6586.39 12191.16 8094.40 10296.52 8896.30 7599.21 8297.79 131
test193.81 9294.18 9093.38 9791.34 15395.86 14896.22 8388.68 11795.23 9090.40 6586.39 12191.16 8094.40 10296.52 8896.30 7599.21 8297.79 131
FMVSNet191.54 12390.93 14492.26 10790.35 16395.27 17195.22 10787.16 13591.37 15187.62 10075.45 16983.84 13394.43 10096.52 8896.30 7598.82 12997.74 137
DI_MVS_plusplus_trai94.01 8893.63 10394.44 7994.54 11198.26 8497.51 5390.63 9295.88 7389.34 8680.54 15689.36 9495.48 8796.33 9796.27 7899.17 8898.78 93
AdaColmapbinary97.53 3096.93 4698.24 1599.21 2498.77 6198.47 3497.34 2496.68 5296.52 1495.11 4896.12 5898.72 1597.19 6496.24 7999.17 8898.39 114
Fast-Effi-MVS+91.87 11592.08 13091.62 11592.91 13897.21 10994.93 11184.60 16793.61 11781.49 12883.50 14178.95 15396.62 6696.55 8596.22 8099.16 9198.51 104
DROMVSNet91.87 11592.08 13091.62 11592.91 13897.21 10994.93 11184.60 16793.61 11781.49 12883.50 14178.95 15396.62 6696.55 8596.22 8099.16 9198.51 104
PLCcopyleft94.95 397.37 3396.77 5098.07 2198.97 3298.21 8597.94 4696.85 3697.66 2697.58 393.33 5996.84 4898.01 3597.13 6696.20 8299.09 10198.01 126
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
baseline94.83 6895.82 6393.68 9194.75 10597.80 9596.51 7888.53 12097.02 4789.34 8692.93 6392.18 7794.69 9595.78 11596.08 8398.27 16598.97 77
CPTT-MVS97.78 2697.54 3398.05 2298.91 3599.05 3299.00 2096.96 3497.14 4095.92 1895.50 4398.78 2898.99 497.20 6296.07 8498.54 15499.04 65
Effi-MVS+92.93 10693.86 9891.86 10994.07 12298.09 9195.59 10185.98 14894.27 10779.54 13891.12 8681.81 14596.71 6496.67 8196.06 8599.27 6898.98 73
gm-plane-assit83.26 19885.29 19580.89 19989.52 17689.89 20970.26 21578.24 19177.11 21258.01 21574.16 18066.90 20590.63 15897.20 6296.05 8698.66 14795.68 175
DCV-MVSNet94.76 7495.12 7694.35 8295.10 9795.81 15296.46 8089.49 10996.33 5790.16 7092.55 6890.26 8895.83 7895.52 12196.03 8799.06 10799.33 21
IterMVS-LS92.56 11093.18 11091.84 11093.90 12494.97 17894.99 10986.20 14594.18 10882.68 12085.81 12787.36 10994.43 10095.31 12796.02 8898.87 12598.60 99
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMMPcopyleft97.37 3397.48 3597.25 3298.88 3799.28 1998.47 3496.86 3597.04 4592.15 4797.57 2396.05 6097.67 4097.27 6095.99 8999.46 2799.14 51
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
thres100view90093.55 9992.47 12294.81 7295.33 8798.74 6296.78 6892.30 7092.63 13088.29 9387.21 11278.01 15996.78 6296.38 9395.92 9099.38 5098.40 113
thres20093.62 9692.54 11694.88 6995.36 8698.93 4996.75 6992.31 6792.84 12788.28 9586.99 11477.81 16197.13 5296.82 7295.92 9099.45 3198.49 107
TAPA-MVS94.18 596.38 4996.49 5496.25 4598.26 4898.66 6898.00 4494.96 4497.17 3989.48 8192.91 6496.35 5397.53 4396.59 8395.90 9299.28 6697.82 130
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MVSTER94.89 6795.07 7794.68 7694.71 10696.68 12497.00 5990.57 9495.18 9393.05 3995.21 4686.41 11393.72 11497.59 5395.88 9399.00 11398.50 106
tfpn200view993.64 9592.57 11594.89 6895.33 8798.94 4796.82 6592.31 6792.63 13088.29 9387.21 11278.01 15997.12 5496.82 7295.85 9499.45 3198.56 100
thres40093.56 9892.43 12394.87 7095.40 8598.91 5296.70 7192.38 6692.93 12688.19 9786.69 11777.35 16297.13 5296.75 7795.85 9499.42 4398.56 100
GeoE92.52 11192.64 11492.39 10693.96 12397.76 9696.01 9285.60 15393.23 12283.94 11481.56 15084.80 12795.63 8296.22 10195.83 9699.19 8699.07 59
Anonymous20240521192.18 12895.04 9898.20 8696.14 8691.79 7893.93 11074.60 17588.38 10596.48 6995.17 13195.82 9799.00 11399.15 49
LGP-MVS_train94.12 8694.62 8193.53 9396.44 7297.54 9997.40 5591.84 7694.66 9981.09 13195.70 4283.36 13795.10 9096.36 9695.71 9899.32 5999.03 66
thres600view793.49 10092.37 12694.79 7395.42 8498.93 4996.58 7692.31 6793.04 12487.88 9886.62 11876.94 16597.09 5596.82 7295.63 9999.45 3198.63 97
MSDG94.82 6993.73 10196.09 4898.34 4797.43 10497.06 5896.05 3895.84 7690.56 6386.30 12589.10 9995.55 8596.13 10695.61 10099.00 11395.73 174
EPNet_dtu92.45 11295.02 7889.46 14298.02 5395.47 16394.79 11692.62 6594.97 9570.11 18894.76 5292.61 7684.07 19895.94 10995.56 10197.15 18495.82 173
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HyFIR lowres test92.03 11391.55 13892.58 10497.13 6598.72 6594.65 11986.54 14193.58 11982.56 12167.75 20490.47 8795.67 8095.87 11195.54 10298.91 12298.93 78
Anonymous2023121193.49 10092.33 12794.84 7194.78 10498.00 9296.11 8791.85 7594.86 9790.91 5674.69 17489.18 9796.73 6394.82 13695.51 10398.67 14499.24 34
Effi-MVS+-dtu91.78 11893.59 10589.68 14192.44 14597.11 11194.40 12384.94 16392.43 13575.48 15991.09 8783.75 13493.55 11896.61 8295.47 10497.24 18398.67 95
GG-mvs-BLEND66.17 20994.91 8032.63 2151.32 22396.64 12591.40 1720.85 22194.39 1062.20 22490.15 9695.70 612.27 22096.39 9295.44 10597.78 17695.68 175
MIMVSNet88.99 15891.07 14286.57 18486.78 20495.62 15691.20 17775.40 20490.65 15976.57 15184.05 13882.44 14391.01 14795.84 11295.38 10698.48 15893.50 196
ET-MVSNet_ETH3D93.34 10294.33 8892.18 10883.26 21097.66 9896.72 7089.89 10295.62 8287.17 10396.00 3783.69 13596.99 5793.78 15195.34 10799.06 10798.18 124
FC-MVSNet-train93.85 9193.91 9693.78 9094.94 9996.79 12194.29 12591.13 8693.84 11488.26 9690.40 9285.23 12394.65 9896.54 8795.31 10899.38 5099.28 26
CVMVSNet89.77 14791.66 13687.56 17493.21 13695.45 16491.94 16889.22 11289.62 16769.34 19483.99 13985.90 11784.81 19394.30 14695.28 10996.85 18697.09 154
UniMVSNet_ETH3D88.47 16386.00 19391.35 11891.55 15096.29 13592.53 15088.81 11585.58 19782.33 12267.63 20566.87 20694.04 10891.49 18795.24 11098.84 12898.92 79
PatchMatch-RL94.69 7594.41 8595.02 6497.63 5998.15 8994.50 12291.99 7395.32 8791.31 5495.47 4483.44 13696.02 7696.56 8495.23 11198.69 14396.67 166
TSAR-MVS + COLMAP94.79 7194.51 8395.11 6296.50 7097.54 9997.99 4594.54 4597.81 1685.88 10896.73 3181.28 14896.99 5796.29 9895.21 11298.76 13996.73 165
test0.0.03 191.97 11493.91 9689.72 13893.31 13496.40 13391.34 17487.06 13693.86 11281.67 12691.15 8589.16 9886.02 18695.08 13295.09 11398.91 12296.64 168
baseline293.01 10594.17 9291.64 11392.83 14197.49 10193.40 13687.53 13093.67 11686.07 10791.83 7786.58 11091.36 14196.38 9395.06 11498.67 14498.20 123
CLD-MVS94.79 7194.36 8795.30 6095.21 9397.46 10297.23 5692.24 7196.43 5591.77 5092.69 6684.31 12996.06 7495.52 12195.03 11599.31 6299.06 60
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FC-MVSNet-test91.63 12093.82 10089.08 14692.02 14896.40 13393.26 13987.26 13393.72 11577.26 14688.61 10789.86 9185.50 18895.72 11995.02 11699.16 9197.44 145
PMMVS94.61 7695.56 6693.50 9494.30 11796.74 12294.91 11389.56 10895.58 8487.72 9996.15 3592.86 7396.06 7495.47 12395.02 11698.43 16297.09 154
OPM-MVS93.61 9792.43 12395.00 6596.94 6797.34 10597.78 4894.23 4789.64 16685.53 10988.70 10582.81 14096.28 7296.28 9995.00 11899.24 7397.22 151
PCF-MVS93.95 695.65 5595.14 7496.25 4597.73 5898.73 6497.59 5297.13 3192.50 13489.09 9089.85 9896.65 5096.90 5994.97 13594.89 11999.08 10298.38 115
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thisisatest053094.54 7895.47 6893.46 9594.51 11298.65 7094.66 11890.72 8995.69 8186.90 10593.80 5689.44 9394.74 9396.98 7194.86 12099.19 8698.85 88
tttt051794.52 7995.44 7093.44 9694.51 11298.68 6794.61 12090.72 8995.61 8386.84 10693.78 5789.26 9694.74 9397.02 7094.86 12099.20 8598.87 86
LTVRE_ROB87.32 1687.55 17688.25 16586.73 18290.66 15895.80 15393.05 14284.77 16483.35 20360.32 21183.12 14467.39 20493.32 12194.36 14594.86 12098.28 16498.87 86
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
HQP-MVS94.43 8194.57 8294.27 8396.41 7397.23 10896.89 6293.98 4895.94 7183.68 11695.01 4984.46 12895.58 8495.47 12394.85 12399.07 10499.00 70
ACMP92.88 994.43 8194.38 8694.50 7896.01 7897.69 9795.85 9992.09 7295.74 7889.12 8995.14 4782.62 14294.77 9295.73 11794.67 12499.14 9599.06 60
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM92.75 1094.41 8393.84 9995.09 6396.41 7396.80 11894.88 11493.54 5296.41 5690.16 7092.31 7083.11 13896.32 7196.22 10194.65 12599.22 7997.35 148
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Fast-Effi-MVS+-dtu91.19 12793.64 10288.33 15492.19 14796.46 13093.99 12881.52 18592.59 13271.82 17892.17 7185.54 11991.68 13895.73 11794.64 12698.80 13498.34 116
test_part191.21 12689.47 15493.24 10094.26 11895.45 16495.26 10588.36 12288.49 17690.04 7272.61 19082.82 13993.69 11693.25 16294.62 12797.84 17599.06 60
TAMVS90.54 13690.87 14690.16 13391.48 15196.61 12693.26 13986.08 14687.71 18381.66 12783.11 14584.04 13190.42 16094.54 13994.60 12898.04 17295.48 178
TranMVSNet+NR-MVSNet89.23 15488.48 16390.11 13789.07 18895.25 17292.91 14490.43 9690.31 16277.10 14876.62 16771.57 18791.83 13692.12 17894.59 12999.32 5998.92 79
DU-MVS89.67 14888.84 15990.63 12889.26 18295.61 15792.48 15189.91 10091.22 15279.57 13677.72 16471.18 18993.21 12492.53 17294.57 13099.35 5699.05 63
CR-MVSNet90.16 14291.96 13488.06 16093.32 13395.95 14593.36 13775.99 20292.40 13775.19 16383.18 14385.37 12092.05 13295.21 12994.56 13198.47 15997.08 156
PatchT89.13 15691.71 13586.11 18892.92 13795.59 15983.64 20475.09 20591.87 14675.19 16382.63 14685.06 12592.05 13295.21 12994.56 13197.76 17797.08 156
ACMH90.77 1391.51 12491.63 13791.38 11795.62 8296.87 11691.76 16989.66 10691.58 14978.67 14086.73 11678.12 15793.77 11394.59 13894.54 13398.78 13798.98 73
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet590.36 13790.93 14489.70 13987.99 19892.25 20392.03 16483.51 17492.20 14384.13 11385.59 12886.48 11192.43 12994.61 13794.52 13498.13 16890.85 204
pm-mvs189.19 15589.02 15889.38 14490.40 16195.74 15592.05 16388.10 12686.13 19377.70 14373.72 18379.44 15288.97 17195.81 11494.51 13599.08 10297.78 136
UniMVSNet_NR-MVSNet90.35 13889.96 15090.80 12589.66 17295.83 15192.48 15190.53 9590.96 15679.57 13679.33 16077.14 16393.21 12492.91 16894.50 13699.37 5399.05 63
IB-MVS89.56 1591.71 11992.50 11890.79 12695.94 7998.44 7987.05 19691.38 8593.15 12392.98 4184.78 13285.14 12478.27 20392.47 17494.44 13799.10 10099.08 55
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
IterMVS-SCA-FT90.24 13992.48 12187.63 17192.85 14094.30 19493.79 13081.47 18692.66 12969.95 18984.66 13488.38 10589.99 16595.39 12694.34 13897.74 18097.63 140
test-mter90.95 12993.54 10887.93 16690.28 16496.80 11891.44 17182.68 18092.15 14474.37 17089.57 10088.23 10790.88 15196.37 9594.31 13997.93 17497.37 147
anonymousdsp88.90 15991.00 14386.44 18588.74 19595.97 14390.40 18482.86 17888.77 17367.33 19781.18 15281.44 14790.22 16396.23 10094.27 14099.12 9899.16 48
IterMVS90.20 14092.43 12387.61 17292.82 14294.31 19394.11 12681.54 18492.97 12569.90 19084.71 13388.16 10889.96 16695.25 12894.17 14197.31 18297.46 144
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
COLMAP_ROBcopyleft90.49 1493.27 10492.71 11393.93 8797.75 5797.44 10396.07 8993.17 6095.40 8583.86 11583.76 14088.72 10193.87 11094.25 14794.11 14298.87 12595.28 180
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test-LLR91.62 12193.56 10689.35 14593.31 13496.57 12792.02 16587.06 13692.34 14075.05 16690.20 9488.64 10290.93 14896.19 10494.07 14397.75 17896.90 162
TESTMET0.1,191.07 12893.56 10688.17 15690.43 16096.57 12792.02 16582.83 17992.34 14075.05 16690.20 9488.64 10290.93 14896.19 10494.07 14397.75 17896.90 162
tfpnnormal88.50 16287.01 18490.23 13191.36 15295.78 15492.74 14690.09 9883.65 20276.33 15471.46 19669.58 19791.84 13595.54 12094.02 14599.06 10799.03 66
NR-MVSNet89.34 15188.66 16090.13 13690.40 16195.61 15793.04 14389.91 10091.22 15278.96 13977.72 16468.90 20089.16 17094.24 14893.95 14699.32 5998.99 71
TransMVSNet (Re)87.73 17586.79 18688.83 14890.76 15794.40 19191.33 17589.62 10784.73 19975.41 16172.73 18871.41 18886.80 18094.53 14093.93 14799.06 10795.83 172
ACMH+90.88 1291.41 12591.13 14191.74 11295.11 9696.95 11393.13 14189.48 11092.42 13679.93 13585.13 13078.02 15893.82 11293.49 15893.88 14898.94 11997.99 127
UniMVSNet (Re)90.03 14589.61 15390.51 12989.97 16996.12 13992.32 15589.26 11190.99 15580.95 13278.25 16375.08 17291.14 14493.78 15193.87 14999.41 4499.21 39
RPMNet90.19 14192.03 13388.05 16193.46 13095.95 14593.41 13574.59 20792.40 13775.91 15784.22 13786.41 11392.49 12894.42 14393.85 15098.44 16096.96 159
Baseline_NR-MVSNet89.27 15388.01 16990.73 12789.26 18293.71 19892.71 14889.78 10590.73 15781.28 13073.53 18472.85 18192.30 13192.53 17293.84 15199.07 10498.88 84
testgi89.42 14991.50 13987.00 18192.40 14695.59 15989.15 19085.27 16092.78 12872.42 17591.75 7876.00 16884.09 19794.38 14493.82 15298.65 14896.15 169
GA-MVS89.28 15290.75 14787.57 17391.77 14996.48 12992.29 15787.58 12990.61 16065.77 19984.48 13576.84 16689.46 16895.84 11293.68 15398.52 15597.34 149
CP-MVSNet87.89 17387.27 17988.62 15089.30 18095.06 17590.60 18285.78 15087.43 18775.98 15674.60 17568.14 20390.76 15393.07 16693.60 15499.30 6498.98 73
PS-CasMVS87.33 18086.68 18988.10 15789.22 18794.93 18090.35 18585.70 15186.44 19274.01 17173.43 18566.59 20990.04 16492.92 16793.52 15599.28 6698.91 82
PEN-MVS87.22 18286.50 19188.07 15888.88 19194.44 19090.99 17986.21 14386.53 19173.66 17274.97 17266.56 21089.42 16991.20 18993.48 15699.24 7398.31 120
USDC90.69 13290.52 14890.88 12394.17 12096.43 13195.82 10086.76 13893.92 11176.27 15586.49 11974.30 17593.67 11795.04 13493.36 15798.61 15094.13 187
EG-PatchMatch MVS86.68 18487.24 18086.02 18990.58 15996.26 13691.08 17881.59 18384.96 19869.80 19271.35 19775.08 17284.23 19694.24 14893.35 15898.82 12995.46 179
WR-MVS87.93 17088.09 16787.75 16889.26 18295.28 16990.81 18086.69 13988.90 17075.29 16274.31 17973.72 17885.19 19192.26 17593.32 15999.27 6898.81 91
thisisatest051590.12 14392.06 13287.85 16790.03 16796.17 13887.83 19387.45 13191.71 14877.15 14785.40 12984.01 13285.74 18795.41 12593.30 16098.88 12498.43 109
TinyColmap89.42 14988.58 16190.40 13093.80 12895.45 16493.96 12986.54 14192.24 14276.49 15280.83 15370.44 19293.37 12094.45 14293.30 16098.26 16693.37 198
DTE-MVSNet86.67 18586.09 19287.35 17788.45 19794.08 19690.65 18186.05 14786.13 19372.19 17674.58 17766.77 20887.61 17790.31 19293.12 16299.13 9697.62 141
WR-MVS_H87.93 17087.85 17388.03 16389.62 17395.58 16190.47 18385.55 15487.20 18876.83 15074.42 17872.67 18386.37 18393.22 16393.04 16399.33 5798.83 90
MS-PatchMatch91.82 11792.51 11791.02 12095.83 8096.88 11495.05 10884.55 17093.85 11382.01 12382.51 14791.71 7890.52 15995.07 13393.03 16498.13 16894.52 182
v7n86.43 18686.52 19086.33 18687.91 19994.93 18090.15 18683.05 17686.57 19070.21 18771.48 19566.78 20787.72 17594.19 15092.96 16598.92 12198.76 94
v2v48288.25 16687.71 17688.88 14789.23 18695.28 16992.10 16187.89 12888.69 17473.31 17375.32 17071.64 18691.89 13492.10 18092.92 16698.86 12797.99 127
v1088.00 16887.96 17088.05 16189.44 17794.68 18592.36 15483.35 17589.37 16872.96 17473.98 18172.79 18291.35 14293.59 15392.88 16798.81 13298.42 111
pmmvs587.83 17488.09 16787.51 17689.59 17595.48 16289.75 18884.73 16586.07 19571.44 18080.57 15570.09 19590.74 15594.47 14192.87 16898.82 12997.10 153
v119287.51 17787.31 17887.74 16989.04 18994.87 18392.07 16285.03 16188.49 17670.32 18572.65 18970.35 19391.21 14393.59 15392.80 16998.78 13798.42 111
v114487.92 17287.79 17488.07 15889.27 18195.15 17492.17 16085.62 15288.52 17571.52 17973.80 18272.40 18491.06 14693.54 15792.80 16998.81 13298.33 117
V4288.31 16587.95 17188.73 14989.44 17795.34 16892.23 15987.21 13488.83 17174.49 16974.89 17373.43 18090.41 16292.08 18192.77 17198.60 15298.33 117
v888.21 16787.94 17288.51 15189.62 17395.01 17792.31 15684.99 16288.94 16974.70 16875.03 17173.51 17990.67 15692.11 17992.74 17298.80 13498.24 121
v124086.89 18386.75 18887.06 18088.75 19494.65 18791.30 17684.05 17187.49 18668.94 19571.96 19468.86 20190.65 15793.33 16092.72 17398.67 14498.24 121
v192192087.31 18187.13 18287.52 17588.87 19294.72 18491.96 16784.59 16988.28 17869.86 19172.50 19170.03 19691.10 14593.33 16092.61 17498.71 14198.44 108
v14419287.40 17987.20 18187.64 17088.89 19094.88 18291.65 17084.70 16687.80 18271.17 18373.20 18770.91 19090.75 15492.69 17092.49 17598.71 14198.43 109
Anonymous2023120683.84 19785.19 19682.26 19887.38 20292.87 20085.49 20083.65 17386.07 19563.44 20668.42 20169.01 19975.45 20693.34 15992.44 17698.12 17094.20 186
pmmvs685.98 19084.89 19887.25 17888.83 19394.35 19289.36 18985.30 15978.51 21175.44 16062.71 21075.41 16987.65 17693.58 15592.40 17796.89 18597.29 150
v14887.51 17786.79 18688.36 15389.39 17995.21 17389.84 18788.20 12587.61 18577.56 14473.38 18670.32 19486.80 18090.70 19192.31 17898.37 16397.98 129
EU-MVSNet85.62 19187.65 17783.24 19788.54 19692.77 20287.12 19585.32 15786.71 18964.54 20278.52 16275.11 17178.35 20292.25 17692.28 17995.58 19695.93 171
pmmvs490.55 13589.91 15191.30 11990.26 16594.95 17992.73 14787.94 12793.44 12185.35 11082.28 14876.09 16793.02 12693.56 15692.26 18098.51 15696.77 164
MVS-HIRNet85.36 19286.89 18583.57 19590.13 16694.51 18983.57 20572.61 20988.27 17971.22 18268.97 20081.81 14588.91 17293.08 16591.94 18194.97 20489.64 207
TDRefinement89.07 15788.15 16690.14 13595.16 9496.88 11495.55 10390.20 9789.68 16576.42 15376.67 16674.30 17584.85 19293.11 16491.91 18298.64 14994.47 183
SixPastTwentyTwo88.37 16489.47 15487.08 17990.01 16895.93 14787.41 19485.32 15790.26 16470.26 18686.34 12471.95 18590.93 14892.89 16991.72 18398.55 15397.22 151
MIMVSNet180.03 20280.93 20378.97 20372.46 21690.73 20780.81 20982.44 18180.39 20863.64 20457.57 21164.93 21176.37 20491.66 18591.55 18498.07 17189.70 206
test20.0382.92 19985.52 19479.90 20287.75 20091.84 20482.80 20682.99 17782.65 20760.32 21178.90 16170.50 19167.10 21092.05 18290.89 18598.44 16091.80 202
MDTV_nov1_ep1391.57 12293.18 11089.70 13993.39 13296.97 11293.53 13380.91 18795.70 7981.86 12492.40 6989.93 9093.25 12391.97 18390.80 18695.25 20194.46 184
tpm87.95 16989.44 15686.21 18792.53 14494.62 18891.40 17276.36 19991.46 15069.80 19287.43 11175.14 17091.55 13989.85 19790.60 18795.61 19596.96 159
RPSCF94.05 8794.00 9594.12 8596.20 7596.41 13296.61 7491.54 8195.83 7789.73 7896.94 3092.80 7495.35 8991.63 18690.44 18895.27 20093.94 191
pmmvs-eth3d84.33 19682.94 20185.96 19084.16 20790.94 20686.55 19783.79 17284.25 20075.85 15870.64 19856.43 21687.44 17992.20 17790.41 18997.97 17395.68 175
EPMVS90.88 13192.12 12989.44 14394.71 10697.24 10793.55 13276.81 19695.89 7281.77 12591.49 8186.47 11293.87 11090.21 19390.07 19095.92 19193.49 197
SCA90.92 13093.04 11288.45 15293.72 12997.33 10692.77 14576.08 20196.02 6878.26 14291.96 7490.86 8393.99 10990.98 19090.04 19195.88 19294.06 190
PM-MVS84.72 19584.47 19985.03 19184.67 20691.57 20586.27 19882.31 18287.65 18470.62 18476.54 16856.41 21788.75 17392.59 17189.85 19297.54 18196.66 167
ADS-MVSNet89.80 14691.33 14088.00 16494.43 11596.71 12392.29 15774.95 20696.07 6777.39 14588.67 10686.09 11593.26 12288.44 19989.57 19395.68 19493.81 194
PatchmatchNetpermissive90.56 13492.49 11988.31 15593.83 12796.86 11792.42 15376.50 19895.96 7078.31 14191.96 7489.66 9293.48 11990.04 19589.20 19495.32 19893.73 195
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CostFormer90.69 13290.48 14990.93 12294.18 11996.08 14094.03 12778.20 19293.47 12089.96 7590.97 8880.30 14993.72 11487.66 20388.75 19595.51 19796.12 170
pmmvs379.16 20380.12 20578.05 20579.36 21186.59 21278.13 21273.87 20876.42 21357.51 21670.59 19957.02 21584.66 19490.10 19488.32 19694.75 20691.77 203
MDTV_nov1_ep13_2view86.30 18788.27 16484.01 19487.71 20194.67 18688.08 19276.78 19790.59 16168.66 19680.46 15780.12 15087.58 17889.95 19688.20 19795.25 20193.90 193
CMPMVSbinary65.18 1784.76 19483.10 20086.69 18395.29 9095.05 17688.37 19185.51 15580.27 20971.31 18168.37 20273.85 17785.25 18987.72 20187.75 19894.38 20888.70 208
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
dps90.11 14489.37 15790.98 12193.89 12596.21 13793.49 13477.61 19491.95 14592.74 4588.85 10378.77 15692.37 13087.71 20287.71 19995.80 19394.38 185
new_pmnet81.53 20082.68 20280.20 20083.47 20989.47 21082.21 20878.36 19087.86 18160.14 21367.90 20369.43 19882.03 20089.22 19887.47 20094.99 20387.39 209
tpmrst88.86 16189.62 15287.97 16594.33 11695.98 14292.62 14976.36 19994.62 10176.94 14985.98 12682.80 14192.80 12786.90 20587.15 20194.77 20593.93 192
N_pmnet84.80 19385.10 19784.45 19389.25 18592.86 20184.04 20386.21 14388.78 17266.73 19872.41 19274.87 17485.21 19088.32 20086.45 20295.30 19992.04 201
MDA-MVSNet-bldmvs80.11 20180.24 20479.94 20177.01 21393.21 19978.86 21185.94 14982.71 20660.86 20879.71 15951.77 21983.71 19975.60 21186.37 20393.28 20992.35 199
tpm cat188.90 15987.78 17590.22 13293.88 12695.39 16793.79 13078.11 19392.55 13389.43 8281.31 15179.84 15191.40 14084.95 20686.34 20494.68 20794.09 188
Gipumacopyleft68.35 20766.71 21070.27 20774.16 21568.78 21763.93 21871.77 21183.34 20454.57 21734.37 21531.88 22168.69 20983.30 20885.53 20588.48 21379.78 213
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ambc73.83 20976.23 21485.13 21382.27 20784.16 20165.58 20152.82 21323.31 22473.55 20791.41 18885.26 20692.97 21094.70 181
pmnet_mix0286.12 18987.12 18384.96 19289.82 17094.12 19584.88 20286.63 14091.78 14765.60 20080.76 15476.98 16486.61 18287.29 20484.80 20796.21 18894.09 188
test_method72.96 20678.68 20666.28 21050.17 22064.90 21875.45 21450.90 21787.89 18062.54 20762.98 20968.34 20270.45 20891.90 18482.41 20888.19 21492.35 199
new-patchmatchnet78.49 20478.19 20778.84 20484.13 20890.06 20877.11 21380.39 18879.57 21059.64 21466.01 20655.65 21875.62 20584.55 20780.70 20996.14 19090.77 205
PMMVS264.36 21065.94 21262.52 21167.37 21777.44 21564.39 21769.32 21561.47 21634.59 21946.09 21441.03 22048.02 21774.56 21378.23 21091.43 21182.76 211
tmp_tt66.88 20986.07 20573.86 21668.22 21633.38 21896.88 4880.67 13388.23 10978.82 15549.78 21582.68 20977.47 21183.19 217
MVEpermissive50.86 1949.54 21351.43 21347.33 21444.14 22159.20 22036.45 22260.59 21641.47 21931.14 22029.58 21617.06 22548.52 21662.22 21574.63 21263.12 22075.87 215
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
FPMVS75.84 20574.59 20877.29 20686.92 20383.89 21485.01 20180.05 18982.91 20560.61 21065.25 20760.41 21363.86 21175.60 21173.60 21387.29 21580.47 212
PMVScopyleft63.12 1867.27 20866.39 21168.30 20877.98 21260.24 21959.53 21976.82 19566.65 21560.74 20954.39 21259.82 21451.24 21473.92 21470.52 21483.48 21679.17 214
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN50.67 21147.85 21453.96 21264.13 21950.98 22238.06 22069.51 21351.40 21824.60 22129.46 21824.39 22356.07 21348.17 21659.70 21571.40 21870.84 216
EMVS49.98 21246.76 21553.74 21364.96 21851.29 22137.81 22169.35 21451.83 21722.69 22229.57 21725.06 22257.28 21244.81 21756.11 21670.32 21968.64 217
testmvs12.09 21416.94 2166.42 2163.15 2226.08 2239.51 2243.84 21921.46 2205.31 22327.49 2196.76 22610.89 21817.06 21815.01 2175.84 22124.75 218
test1239.58 21513.53 2174.97 2171.31 2245.47 2248.32 2252.95 22018.14 2212.03 22520.82 2202.34 22710.60 21910.00 21914.16 2184.60 22223.77 219
uanet_test0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
sosnet-low-res0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
sosnet0.00 2160.00 2180.00 2180.00 2250.00 2250.00 2260.00 2220.00 2220.00 2260.00 2210.00 2280.00 2210.00 2200.00 2190.00 2230.00 220
RE-MVS-def63.50 205
9.1499.28 11
SR-MVS99.45 997.61 1599.20 15
our_test_389.78 17193.84 19785.59 199
MTAPA96.83 1099.12 20
MTMP97.18 598.83 26
Patchmatch-RL test34.61 223
XVS96.60 6899.35 1296.82 6590.85 5798.72 2999.46 27
X-MVStestdata96.60 6899.35 1296.82 6590.85 5798.72 2999.46 27
abl_696.82 4098.60 4298.74 6297.74 4993.73 5096.25 5994.37 2994.55 5498.60 3497.25 4899.27 6898.61 98
mPP-MVS99.21 2498.29 38
NP-MVS95.32 87
Patchmtry95.96 14493.36 13775.99 20275.19 163
DeepMVS_CXcopyleft86.86 21179.50 21070.43 21290.73 15763.66 20380.36 15860.83 21279.68 20176.23 21089.46 21286.53 210