DVP-MVS++ | | | 98.92 1 | 99.18 1 | 98.61 4 | 99.47 6 | 99.61 2 | 99.39 3 | 97.82 1 | 98.80 1 | 96.86 9 | 98.90 2 | 99.92 1 | 98.67 18 | 99.02 2 | 98.20 19 | 99.43 46 | 99.82 1 |
|
DVP-MVS |  | | 98.86 4 | 98.97 3 | 98.75 2 | 99.43 14 | 99.63 1 | 99.25 13 | 97.81 2 | 98.62 2 | 97.69 1 | 97.59 21 | 99.90 2 | 98.93 5 | 98.99 4 | 98.42 11 | 99.37 58 | 99.62 4 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
SED-MVS | | | 98.90 2 | 99.07 2 | 98.69 3 | 99.38 20 | 99.61 2 | 99.33 8 | 97.80 4 | 98.25 8 | 97.60 2 | 98.87 4 | 99.89 3 | 98.67 18 | 99.02 2 | 98.26 17 | 99.36 60 | 99.61 6 |
|
SMA-MVS |  | | 98.66 7 | 98.89 7 | 98.39 10 | 99.60 1 | 99.41 10 | 99.00 21 | 97.63 13 | 97.78 18 | 95.83 20 | 98.33 11 | 99.83 4 | 98.85 10 | 98.93 8 | 98.56 6 | 99.41 49 | 99.40 18 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
DPE-MVS |  | | 98.75 5 | 98.91 6 | 98.57 5 | 99.21 25 | 99.54 5 | 99.42 2 | 97.78 6 | 97.49 32 | 96.84 10 | 98.94 1 | 99.82 5 | 98.59 22 | 98.90 10 | 98.22 18 | 99.56 15 | 99.48 14 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
SD-MVS | | | 98.52 8 | 98.77 9 | 98.23 17 | 98.15 51 | 99.26 25 | 98.79 27 | 97.59 17 | 98.52 3 | 96.25 17 | 97.99 16 | 99.75 6 | 99.01 3 | 98.27 33 | 97.97 32 | 99.59 6 | 99.63 2 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
HPM-MVS++ |  | | 98.34 17 | 98.47 15 | 98.18 18 | 99.46 9 | 99.15 33 | 99.10 17 | 97.69 8 | 97.67 26 | 94.93 28 | 97.62 20 | 99.70 7 | 98.60 21 | 98.45 19 | 97.46 53 | 99.31 67 | 99.26 33 |
|
MSP-MVS | | | 98.73 6 | 98.93 5 | 98.50 7 | 99.44 13 | 99.57 4 | 99.36 4 | 97.65 9 | 98.14 12 | 96.51 16 | 98.49 7 | 99.65 8 | 98.67 18 | 98.60 14 | 98.42 11 | 99.40 52 | 99.63 2 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
PHI-MVS | | | 97.78 27 | 98.44 18 | 97.02 38 | 98.73 39 | 99.25 27 | 98.11 42 | 95.54 41 | 96.66 55 | 92.79 45 | 98.52 6 | 99.38 9 | 97.50 46 | 97.84 51 | 98.39 14 | 99.45 35 | 99.03 68 |
|
APDe-MVS | | | 98.87 3 | 98.96 4 | 98.77 1 | 99.58 2 | 99.53 6 | 99.44 1 | 97.81 2 | 98.22 10 | 97.33 4 | 98.70 5 | 99.33 10 | 98.86 8 | 98.96 6 | 98.40 13 | 99.63 3 | 99.57 9 |
|
MCST-MVS | | | 98.20 19 | 98.36 19 | 98.01 24 | 99.40 16 | 99.05 36 | 99.00 21 | 97.62 14 | 97.59 30 | 93.70 36 | 97.42 28 | 99.30 11 | 98.77 14 | 98.39 27 | 97.48 52 | 99.59 6 | 99.31 27 |
|
9.14 | | | | | | | | | | | | | 99.28 12 | | | | | |
|
TSAR-MVS + MP. | | | 98.49 9 | 98.78 8 | 98.15 21 | 98.14 52 | 99.17 32 | 99.34 6 | 97.18 31 | 98.44 5 | 95.72 21 | 97.84 17 | 99.28 12 | 98.87 7 | 99.05 1 | 98.05 27 | 99.66 1 | 99.60 7 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
TSAR-MVS + ACMM | | | 97.71 29 | 98.60 12 | 96.66 42 | 98.64 42 | 99.05 36 | 98.85 26 | 97.23 29 | 98.45 4 | 89.40 89 | 97.51 25 | 99.27 14 | 96.88 62 | 98.53 15 | 97.81 41 | 98.96 121 | 99.59 8 |
|
SF-MVS | | | 98.39 14 | 98.45 17 | 98.33 11 | 99.45 10 | 99.05 36 | 98.27 38 | 97.65 9 | 97.73 19 | 97.02 7 | 98.18 12 | 99.25 15 | 98.11 33 | 98.15 39 | 97.62 46 | 99.45 35 | 99.19 43 |
|
SR-MVS | | | | | | 99.45 10 | | | 97.61 16 | | | | 99.20 16 | | | | | |
|
TSAR-MVS + GP. | | | 97.45 32 | 98.36 19 | 96.39 44 | 95.56 87 | 98.93 53 | 97.74 50 | 93.31 56 | 97.61 29 | 94.24 33 | 98.44 9 | 99.19 17 | 98.03 37 | 97.60 57 | 97.41 55 | 99.44 43 | 99.33 24 |
|
NCCC | | | 98.10 22 | 98.05 31 | 98.17 20 | 99.38 20 | 99.05 36 | 99.00 21 | 97.53 19 | 98.04 14 | 95.12 26 | 94.80 53 | 99.18 18 | 98.58 23 | 98.49 17 | 97.78 42 | 99.39 54 | 98.98 75 |
|
SteuartSystems-ACMMP | | | 98.38 15 | 98.71 10 | 97.99 25 | 99.34 22 | 99.46 8 | 99.34 6 | 97.33 26 | 97.31 36 | 94.25 32 | 98.06 14 | 99.17 19 | 98.13 32 | 98.98 5 | 98.46 9 | 99.55 17 | 99.54 11 |
Skip Steuart: Steuart Systems R&D Blog. |
CNVR-MVS | | | 98.47 11 | 98.46 16 | 98.48 8 | 99.40 16 | 99.05 36 | 99.02 20 | 97.54 18 | 97.73 19 | 96.65 13 | 97.20 30 | 99.13 20 | 98.85 10 | 98.91 9 | 98.10 24 | 99.41 49 | 99.08 57 |
|
MTAPA | | | | | | | | | | | 96.83 11 | | 99.12 21 | | | | | |
|
ACMMP_NAP | | | 98.20 19 | 98.49 13 | 97.85 27 | 99.50 4 | 99.40 11 | 99.26 12 | 97.64 12 | 97.47 34 | 92.62 48 | 97.59 21 | 99.09 22 | 98.71 16 | 98.82 12 | 97.86 39 | 99.40 52 | 99.19 43 |
|
zzz-MVS | | | 98.43 12 | 98.31 24 | 98.57 5 | 99.48 5 | 99.40 11 | 99.32 9 | 97.62 14 | 97.70 23 | 96.67 12 | 96.59 33 | 99.09 22 | 98.86 8 | 98.65 13 | 97.56 50 | 99.45 35 | 99.17 49 |
|
train_agg | | | 97.65 30 | 98.06 30 | 97.18 35 | 98.94 34 | 98.91 56 | 98.98 25 | 97.07 33 | 96.71 53 | 90.66 66 | 97.43 27 | 99.08 24 | 98.20 30 | 97.96 48 | 97.14 63 | 99.22 84 | 99.19 43 |
|
APD-MVS |  | | 98.36 16 | 98.32 23 | 98.41 9 | 99.47 6 | 99.26 25 | 99.12 16 | 97.77 7 | 96.73 52 | 96.12 18 | 97.27 29 | 98.88 25 | 98.46 26 | 98.47 18 | 98.39 14 | 99.52 19 | 99.22 39 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MP-MVS |  | | 98.09 23 | 98.30 25 | 97.84 28 | 99.34 22 | 99.19 31 | 99.23 14 | 97.40 21 | 97.09 43 | 93.03 42 | 97.58 23 | 98.85 26 | 98.57 24 | 98.44 21 | 97.69 44 | 99.48 27 | 99.23 37 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
MTMP | | | | | | | | | | | 97.18 5 | | 98.83 27 | | | | | |
|
HFP-MVS | | | 98.48 10 | 98.62 11 | 98.32 13 | 99.39 19 | 99.33 20 | 99.27 11 | 97.42 20 | 98.27 7 | 95.25 25 | 98.34 10 | 98.83 27 | 99.08 1 | 98.26 34 | 98.08 26 | 99.48 27 | 99.26 33 |
|
CPTT-MVS | | | 97.78 27 | 97.54 35 | 98.05 23 | 98.91 36 | 99.05 36 | 99.00 21 | 96.96 35 | 97.14 41 | 95.92 19 | 95.50 44 | 98.78 29 | 98.99 4 | 97.20 67 | 96.07 88 | 98.54 158 | 99.04 67 |
|
XVS | | | | | | 96.60 69 | 99.35 16 | 96.82 69 | | | 90.85 61 | | 98.72 30 | | | | 99.46 31 | |
|
X-MVStestdata | | | | | | 96.60 69 | 99.35 16 | 96.82 69 | | | 90.85 61 | | 98.72 30 | | | | 99.46 31 | |
|
X-MVS | | | 97.84 25 | 98.19 28 | 97.42 32 | 99.40 16 | 99.35 16 | 99.06 18 | 97.25 27 | 97.38 35 | 90.85 61 | 96.06 37 | 98.72 30 | 98.53 25 | 98.41 24 | 98.15 22 | 99.46 31 | 99.28 28 |
|
DeepPCF-MVS | | 95.28 2 | 97.00 41 | 98.35 21 | 95.42 61 | 97.30 63 | 98.94 51 | 94.82 119 | 96.03 40 | 98.24 9 | 92.11 51 | 95.80 41 | 98.64 33 | 95.51 87 | 98.95 7 | 98.66 5 | 96.78 191 | 99.20 42 |
|
CP-MVS | | | 98.32 18 | 98.34 22 | 98.29 14 | 99.34 22 | 99.30 21 | 99.15 15 | 97.35 23 | 97.49 32 | 95.58 23 | 97.72 19 | 98.62 34 | 98.82 12 | 98.29 29 | 97.67 45 | 99.51 24 | 99.28 28 |
|
abl_6 | | | | | 96.82 41 | 98.60 43 | 98.74 67 | 97.74 50 | 93.73 51 | 96.25 62 | 94.37 31 | 94.55 55 | 98.60 35 | 97.25 50 | | | 99.27 73 | 98.61 100 |
|
DPM-MVS | | | 96.86 44 | 96.82 51 | 96.91 40 | 98.08 53 | 98.20 90 | 98.52 34 | 97.20 30 | 97.24 39 | 91.42 56 | 91.84 78 | 98.45 36 | 97.25 50 | 97.07 72 | 97.40 56 | 98.95 122 | 97.55 146 |
|
MSLP-MVS++ | | | 98.04 24 | 97.93 33 | 98.18 18 | 99.10 29 | 99.09 35 | 98.34 37 | 96.99 34 | 97.54 31 | 96.60 14 | 94.82 52 | 98.45 36 | 98.89 6 | 97.46 61 | 98.77 4 | 99.17 93 | 99.37 20 |
|
ACMMPR | | | 98.40 13 | 98.49 13 | 98.28 15 | 99.41 15 | 99.40 11 | 99.36 4 | 97.35 23 | 98.30 6 | 95.02 27 | 97.79 18 | 98.39 38 | 99.04 2 | 98.26 34 | 98.10 24 | 99.50 26 | 99.22 39 |
|
mPP-MVS | | | | | | 99.21 25 | | | | | | | 98.29 39 | | | | | |
|
DeepC-MVS_fast | | 96.13 1 | 98.13 21 | 98.27 26 | 97.97 26 | 99.16 28 | 99.03 43 | 99.05 19 | 97.24 28 | 98.22 10 | 94.17 34 | 95.82 40 | 98.07 40 | 98.69 17 | 98.83 11 | 98.80 2 | 99.52 19 | 99.10 54 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
UA-Net | | | 93.96 93 | 95.95 64 | 91.64 118 | 96.06 80 | 98.59 81 | 95.29 109 | 90.00 103 | 91.06 158 | 82.87 124 | 90.64 93 | 98.06 41 | 86.06 189 | 98.14 41 | 98.20 19 | 99.58 10 | 96.96 163 |
|
3Dnovator+ | | 93.91 7 | 97.23 36 | 97.22 41 | 97.24 34 | 98.89 37 | 98.85 62 | 98.26 40 | 93.25 59 | 97.99 15 | 95.56 24 | 90.01 100 | 98.03 42 | 98.05 36 | 97.91 49 | 98.43 10 | 99.44 43 | 99.35 22 |
|
PGM-MVS | | | 97.81 26 | 98.11 29 | 97.46 31 | 99.55 3 | 99.34 19 | 99.32 9 | 94.51 47 | 96.21 64 | 93.07 39 | 98.05 15 | 97.95 43 | 98.82 12 | 98.22 37 | 97.89 38 | 99.48 27 | 99.09 56 |
|
CDPH-MVS | | | 96.84 45 | 97.49 36 | 96.09 49 | 98.92 35 | 98.85 62 | 98.61 29 | 95.09 43 | 96.00 72 | 87.29 107 | 95.45 46 | 97.42 44 | 97.16 53 | 97.83 52 | 97.94 35 | 99.44 43 | 98.92 81 |
|
QAPM | | | 96.78 47 | 97.14 45 | 96.36 45 | 99.05 31 | 99.14 34 | 98.02 44 | 93.26 57 | 97.27 38 | 90.84 64 | 91.16 86 | 97.31 45 | 97.64 44 | 97.70 55 | 98.20 19 | 99.33 62 | 99.18 47 |
|
CANet | | | 96.84 45 | 97.20 42 | 96.42 43 | 97.92 55 | 99.24 29 | 98.60 30 | 93.51 54 | 97.11 42 | 93.07 39 | 91.16 86 | 97.24 46 | 96.21 74 | 98.24 36 | 98.05 27 | 99.22 84 | 99.35 22 |
|
OMC-MVS | | | 97.00 41 | 96.92 49 | 97.09 36 | 98.69 40 | 98.66 74 | 97.85 48 | 95.02 44 | 98.09 13 | 94.47 29 | 93.15 62 | 96.90 47 | 97.38 48 | 97.16 70 | 96.82 73 | 99.13 100 | 97.65 143 |
|
MVS_111021_HR | | | 97.04 40 | 98.20 27 | 95.69 55 | 98.44 47 | 99.29 22 | 96.59 79 | 93.20 60 | 97.70 23 | 89.94 81 | 98.46 8 | 96.89 48 | 96.71 66 | 98.11 44 | 97.95 34 | 99.27 73 | 99.01 71 |
|
PLC |  | 94.95 3 | 97.37 34 | 96.77 52 | 98.07 22 | 98.97 33 | 98.21 89 | 97.94 47 | 96.85 37 | 97.66 27 | 97.58 3 | 93.33 61 | 96.84 49 | 98.01 38 | 97.13 71 | 96.20 86 | 99.09 105 | 98.01 130 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
3Dnovator | | 93.79 8 | 97.08 38 | 97.20 42 | 96.95 39 | 99.09 30 | 99.03 43 | 98.20 41 | 93.33 55 | 97.99 15 | 93.82 35 | 90.61 94 | 96.80 50 | 97.82 39 | 97.90 50 | 98.78 3 | 99.47 30 | 99.26 33 |
|
PCF-MVS | | 93.95 6 | 95.65 57 | 95.14 76 | 96.25 46 | 97.73 59 | 98.73 69 | 97.59 53 | 97.13 32 | 92.50 138 | 89.09 95 | 89.85 101 | 96.65 51 | 96.90 61 | 94.97 139 | 94.89 123 | 99.08 106 | 98.38 116 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
DROMVSNet | | | 96.49 49 | 97.63 34 | 95.16 65 | 94.75 109 | 98.69 72 | 97.39 57 | 88.97 119 | 96.34 59 | 92.02 52 | 96.04 38 | 96.46 52 | 98.21 28 | 98.41 24 | 97.96 33 | 99.61 5 | 99.55 10 |
|
MVS_111021_LR | | | 97.16 37 | 98.01 32 | 96.16 48 | 98.47 45 | 98.98 48 | 96.94 65 | 93.89 50 | 97.64 28 | 91.44 55 | 98.89 3 | 96.41 53 | 97.20 52 | 98.02 47 | 97.29 62 | 99.04 116 | 98.85 90 |
|
MVS_0304 | | | 96.31 51 | 96.91 50 | 95.62 56 | 97.21 65 | 99.20 30 | 98.55 32 | 93.10 62 | 97.04 45 | 89.73 83 | 90.30 96 | 96.35 54 | 95.71 80 | 98.14 41 | 97.93 37 | 99.38 55 | 99.40 18 |
|
TAPA-MVS | | 94.18 5 | 96.38 50 | 96.49 56 | 96.25 46 | 98.26 49 | 98.66 74 | 98.00 45 | 94.96 45 | 97.17 40 | 89.48 86 | 92.91 66 | 96.35 54 | 97.53 45 | 96.59 88 | 95.90 96 | 99.28 71 | 97.82 134 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CHOSEN 280x420 | | | 95.46 61 | 97.01 46 | 93.66 97 | 97.28 64 | 97.98 98 | 96.40 86 | 85.39 161 | 96.10 69 | 91.07 59 | 96.53 34 | 96.34 56 | 95.61 84 | 97.65 56 | 96.95 68 | 96.21 192 | 97.49 147 |
|
CNLPA | | | 96.90 43 | 96.28 58 | 97.64 30 | 98.56 44 | 98.63 79 | 96.85 68 | 96.60 38 | 97.73 19 | 97.08 6 | 89.78 102 | 96.28 57 | 97.80 41 | 96.73 83 | 96.63 75 | 98.94 123 | 98.14 126 |
|
CS-MVS | | | 96.14 55 | 97.39 39 | 94.68 81 | 94.63 115 | 98.89 59 | 96.46 84 | 90.44 99 | 96.88 48 | 88.52 97 | 93.58 60 | 96.27 58 | 98.41 27 | 98.43 22 | 98.14 23 | 99.63 3 | 99.52 12 |
|
ETV-MVS | | | 96.31 51 | 97.47 38 | 94.96 71 | 94.79 106 | 98.78 65 | 96.08 93 | 91.41 88 | 96.16 65 | 90.50 68 | 95.76 42 | 96.20 59 | 97.39 47 | 98.42 23 | 97.82 40 | 99.57 13 | 99.18 47 |
|
AdaColmap |  | | 97.53 31 | 96.93 48 | 98.24 16 | 99.21 25 | 98.77 66 | 98.47 35 | 97.34 25 | 96.68 54 | 96.52 15 | 95.11 50 | 96.12 60 | 98.72 15 | 97.19 69 | 96.24 84 | 99.17 93 | 98.39 115 |
|
UGNet | | | 94.92 68 | 96.63 53 | 92.93 107 | 96.03 81 | 98.63 79 | 94.53 125 | 91.52 86 | 96.23 63 | 90.03 78 | 92.87 67 | 96.10 61 | 86.28 188 | 96.68 85 | 96.60 76 | 99.16 96 | 99.32 26 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
ACMMP |  | | 97.37 34 | 97.48 37 | 97.25 33 | 98.88 38 | 99.28 23 | 98.47 35 | 96.86 36 | 97.04 45 | 92.15 50 | 97.57 24 | 96.05 62 | 97.67 42 | 97.27 65 | 95.99 93 | 99.46 31 | 99.14 53 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
GG-mvs-BLEND | | | 66.17 213 | 94.91 82 | 32.63 219 | 1.32 227 | 96.64 129 | 91.40 176 | 0.85 225 | 94.39 111 | 2.20 228 | 90.15 99 | 95.70 63 | 2.27 224 | 96.39 96 | 95.44 109 | 97.78 180 | 95.68 179 |
|
CSCG | | | 97.44 33 | 97.18 44 | 97.75 29 | 99.47 6 | 99.52 7 | 98.55 32 | 95.41 42 | 97.69 25 | 95.72 21 | 94.29 56 | 95.53 64 | 98.10 35 | 96.20 107 | 97.38 57 | 99.24 78 | 99.62 4 |
|
CS-MVS-test | | | 96.19 54 | 97.34 40 | 94.85 75 | 94.52 117 | 98.20 90 | 97.39 57 | 88.97 119 | 96.83 50 | 90.45 69 | 95.29 47 | 95.41 65 | 98.21 28 | 98.41 24 | 97.73 43 | 99.56 15 | 99.47 15 |
|
PVSNet_Blended_VisFu | | | 94.77 75 | 95.54 69 | 93.87 93 | 96.48 72 | 98.97 49 | 94.33 128 | 91.84 80 | 94.93 101 | 90.37 73 | 85.04 134 | 94.99 66 | 90.87 156 | 98.12 43 | 97.30 60 | 99.30 69 | 99.45 17 |
|
OpenMVS |  | 92.33 11 | 95.50 58 | 95.22 75 | 95.82 54 | 98.98 32 | 98.97 49 | 97.67 52 | 93.04 65 | 94.64 105 | 89.18 93 | 84.44 139 | 94.79 67 | 96.79 63 | 97.23 66 | 97.61 48 | 99.24 78 | 98.88 86 |
|
Vis-MVSNet (Re-imp) | | | 94.46 82 | 96.24 59 | 92.40 110 | 95.23 96 | 98.64 77 | 95.56 107 | 90.99 92 | 94.42 109 | 85.02 116 | 90.88 92 | 94.65 68 | 88.01 178 | 98.17 38 | 98.37 16 | 99.57 13 | 98.53 105 |
|
IS_MVSNet | | | 95.28 65 | 96.43 57 | 93.94 91 | 95.30 93 | 99.01 47 | 95.90 99 | 91.12 91 | 94.13 114 | 87.50 106 | 91.23 85 | 94.45 69 | 94.17 109 | 98.45 19 | 98.50 7 | 99.65 2 | 99.23 37 |
|
EPP-MVSNet | | | 95.27 66 | 96.18 61 | 94.20 89 | 94.88 104 | 98.64 77 | 94.97 115 | 90.70 95 | 95.34 88 | 89.67 85 | 91.66 81 | 93.84 70 | 95.42 89 | 97.32 64 | 97.00 66 | 99.58 10 | 99.47 15 |
|
EPNet | | | 96.27 53 | 96.97 47 | 95.46 60 | 98.47 45 | 98.28 86 | 97.41 55 | 93.67 52 | 95.86 77 | 92.86 44 | 97.51 25 | 93.79 71 | 91.76 141 | 97.03 74 | 97.03 65 | 98.61 154 | 99.28 28 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DeepC-MVS | | 94.87 4 | 96.76 48 | 96.50 55 | 97.05 37 | 98.21 50 | 99.28 23 | 98.67 28 | 97.38 22 | 97.31 36 | 90.36 74 | 89.19 104 | 93.58 72 | 98.19 31 | 98.31 28 | 98.50 7 | 99.51 24 | 99.36 21 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DELS-MVS | | | 96.06 56 | 96.04 62 | 96.07 51 | 97.77 57 | 99.25 27 | 98.10 43 | 93.26 57 | 94.42 109 | 92.79 45 | 88.52 111 | 93.48 73 | 95.06 94 | 98.51 16 | 98.83 1 | 99.45 35 | 99.28 28 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
CANet_DTU | | | 93.92 95 | 96.57 54 | 90.83 128 | 95.63 85 | 98.39 84 | 96.99 62 | 87.38 137 | 96.26 61 | 71.97 181 | 96.31 35 | 93.02 74 | 94.53 103 | 97.38 63 | 96.83 72 | 98.49 161 | 97.79 135 |
|
PMMVS | | | 94.61 78 | 95.56 68 | 93.50 99 | 94.30 122 | 96.74 126 | 94.91 117 | 89.56 112 | 95.58 86 | 87.72 104 | 96.15 36 | 92.86 75 | 96.06 75 | 95.47 127 | 95.02 120 | 98.43 166 | 97.09 158 |
|
RPSCF | | | 94.05 91 | 94.00 97 | 94.12 90 | 96.20 76 | 96.41 136 | 96.61 78 | 91.54 85 | 95.83 79 | 89.73 83 | 96.94 31 | 92.80 76 | 95.35 90 | 91.63 190 | 90.44 192 | 95.27 204 | 93.94 195 |
|
EIA-MVS | | | 95.50 58 | 96.19 60 | 94.69 80 | 94.83 105 | 98.88 61 | 95.93 98 | 91.50 87 | 94.47 108 | 89.43 87 | 93.14 63 | 92.72 77 | 97.05 58 | 97.82 54 | 97.13 64 | 99.43 46 | 99.15 51 |
|
EPNet_dtu | | | 92.45 117 | 95.02 80 | 89.46 146 | 98.02 54 | 95.47 167 | 94.79 120 | 92.62 69 | 94.97 100 | 70.11 192 | 94.76 54 | 92.61 78 | 84.07 202 | 95.94 113 | 95.56 105 | 97.15 188 | 95.82 177 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
baseline | | | 94.83 70 | 95.82 65 | 93.68 96 | 94.75 109 | 97.80 100 | 96.51 82 | 88.53 125 | 97.02 47 | 89.34 91 | 92.93 65 | 92.18 79 | 94.69 99 | 95.78 119 | 96.08 87 | 98.27 169 | 98.97 79 |
|
MS-PatchMatch | | | 91.82 121 | 92.51 122 | 91.02 124 | 95.83 84 | 96.88 118 | 95.05 113 | 84.55 174 | 93.85 118 | 82.01 128 | 82.51 149 | 91.71 80 | 90.52 163 | 95.07 137 | 93.03 168 | 98.13 172 | 94.52 186 |
|
Vis-MVSNet |  | | 92.77 112 | 95.00 81 | 90.16 137 | 94.10 126 | 98.79 64 | 94.76 121 | 88.26 128 | 92.37 143 | 79.95 138 | 88.19 113 | 91.58 81 | 84.38 199 | 97.59 58 | 97.58 49 | 99.52 19 | 98.91 84 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
GBi-Net | | | 93.81 97 | 94.18 92 | 93.38 102 | 91.34 157 | 95.86 152 | 96.22 88 | 88.68 122 | 95.23 92 | 90.40 70 | 86.39 124 | 91.16 82 | 94.40 106 | 96.52 92 | 96.30 80 | 99.21 87 | 97.79 135 |
|
test1 | | | 93.81 97 | 94.18 92 | 93.38 102 | 91.34 157 | 95.86 152 | 96.22 88 | 88.68 122 | 95.23 92 | 90.40 70 | 86.39 124 | 91.16 82 | 94.40 106 | 96.52 92 | 96.30 80 | 99.21 87 | 97.79 135 |
|
FMVSNet3 | | | 93.79 99 | 94.17 94 | 93.35 104 | 91.21 160 | 95.99 145 | 96.62 77 | 88.68 122 | 95.23 92 | 90.40 70 | 86.39 124 | 91.16 82 | 94.11 110 | 95.96 112 | 96.67 74 | 99.07 108 | 97.79 135 |
|
SCA | | | 90.92 134 | 93.04 114 | 88.45 156 | 93.72 134 | 97.33 111 | 92.77 149 | 76.08 205 | 96.02 71 | 78.26 146 | 91.96 76 | 90.86 85 | 93.99 113 | 90.98 194 | 90.04 195 | 95.88 196 | 94.06 194 |
|
gg-mvs-nofinetune | | | 86.17 192 | 88.57 166 | 83.36 200 | 93.44 136 | 98.15 94 | 96.58 80 | 72.05 214 | 74.12 218 | 49.23 222 | 64.81 212 | 90.85 86 | 89.90 171 | 97.83 52 | 96.84 71 | 98.97 120 | 97.41 150 |
|
CDS-MVSNet | | | 92.77 112 | 93.60 106 | 91.80 116 | 92.63 147 | 96.80 122 | 95.24 111 | 89.14 117 | 90.30 167 | 84.58 117 | 86.76 118 | 90.65 87 | 90.42 164 | 95.89 114 | 96.49 77 | 98.79 140 | 98.32 120 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
MVS_Test | | | 94.82 71 | 95.66 66 | 93.84 94 | 94.79 106 | 98.35 85 | 96.49 83 | 89.10 118 | 96.12 68 | 87.09 109 | 92.58 69 | 90.61 88 | 96.48 70 | 96.51 95 | 96.89 70 | 99.11 103 | 98.54 104 |
|
HyFIR lowres test | | | 92.03 118 | 91.55 142 | 92.58 109 | 97.13 66 | 98.72 70 | 94.65 123 | 86.54 146 | 93.58 123 | 82.56 126 | 67.75 208 | 90.47 89 | 95.67 81 | 95.87 115 | 95.54 106 | 98.91 126 | 98.93 80 |
|
DCV-MVSNet | | | 94.76 76 | 95.12 78 | 94.35 87 | 95.10 101 | 95.81 156 | 96.46 84 | 89.49 113 | 96.33 60 | 90.16 75 | 92.55 70 | 90.26 90 | 95.83 79 | 95.52 125 | 96.03 91 | 99.06 111 | 99.33 24 |
|
MAR-MVS | | | 95.50 58 | 95.60 67 | 95.39 62 | 98.67 41 | 98.18 93 | 95.89 101 | 89.81 108 | 94.55 107 | 91.97 53 | 92.99 64 | 90.21 91 | 97.30 49 | 96.79 80 | 97.49 51 | 98.72 144 | 98.99 73 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MDTV_nov1_ep13 | | | 91.57 126 | 93.18 112 | 89.70 143 | 93.39 137 | 96.97 116 | 93.53 137 | 80.91 191 | 95.70 81 | 81.86 129 | 92.40 71 | 89.93 92 | 93.25 127 | 91.97 187 | 90.80 190 | 95.25 205 | 94.46 188 |
|
FC-MVSNet-test | | | 91.63 124 | 93.82 102 | 89.08 150 | 92.02 152 | 96.40 137 | 93.26 143 | 87.26 138 | 93.72 120 | 77.26 150 | 88.61 110 | 89.86 93 | 85.50 192 | 95.72 123 | 95.02 120 | 99.16 96 | 97.44 149 |
|
PatchmatchNet |  | | 90.56 138 | 92.49 124 | 88.31 159 | 93.83 132 | 96.86 121 | 92.42 157 | 76.50 202 | 95.96 73 | 78.31 145 | 91.96 76 | 89.66 94 | 93.48 123 | 90.04 199 | 89.20 198 | 95.32 202 | 93.73 199 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
thisisatest0530 | | | 94.54 80 | 95.47 70 | 93.46 100 | 94.51 118 | 98.65 76 | 94.66 122 | 90.72 93 | 95.69 83 | 86.90 110 | 93.80 57 | 89.44 95 | 94.74 97 | 96.98 76 | 94.86 124 | 99.19 91 | 98.85 90 |
|
DI_MVS_plusplus_trai | | | 94.01 92 | 93.63 105 | 94.44 85 | 94.54 116 | 98.26 88 | 97.51 54 | 90.63 96 | 95.88 76 | 89.34 91 | 80.54 160 | 89.36 96 | 95.48 88 | 96.33 101 | 96.27 83 | 99.17 93 | 98.78 95 |
|
FMVSNet2 | | | 93.30 108 | 93.36 111 | 93.22 106 | 91.34 157 | 95.86 152 | 96.22 88 | 88.24 129 | 95.15 98 | 89.92 82 | 81.64 151 | 89.36 96 | 94.40 106 | 96.77 81 | 96.98 67 | 99.21 87 | 97.79 135 |
|
tttt0517 | | | 94.52 81 | 95.44 72 | 93.44 101 | 94.51 118 | 98.68 73 | 94.61 124 | 90.72 93 | 95.61 85 | 86.84 111 | 93.78 58 | 89.26 98 | 94.74 97 | 97.02 75 | 94.86 124 | 99.20 90 | 98.87 88 |
|
Anonymous20231211 | | | 93.49 105 | 92.33 132 | 94.84 76 | 94.78 108 | 98.00 97 | 96.11 92 | 91.85 79 | 94.86 102 | 90.91 60 | 74.69 178 | 89.18 99 | 96.73 65 | 94.82 140 | 95.51 107 | 98.67 148 | 99.24 36 |
|
test0.0.03 1 | | | 91.97 119 | 93.91 98 | 89.72 142 | 93.31 139 | 96.40 137 | 91.34 178 | 87.06 141 | 93.86 117 | 81.67 131 | 91.15 88 | 89.16 100 | 86.02 190 | 95.08 136 | 95.09 117 | 98.91 126 | 96.64 172 |
|
MSDG | | | 94.82 71 | 93.73 103 | 96.09 49 | 98.34 48 | 97.43 109 | 97.06 60 | 96.05 39 | 95.84 78 | 90.56 67 | 86.30 128 | 89.10 101 | 95.55 86 | 96.13 110 | 95.61 104 | 99.00 117 | 95.73 178 |
|
CHOSEN 1792x2688 | | | 92.66 114 | 92.49 124 | 92.85 108 | 97.13 66 | 98.89 59 | 95.90 99 | 88.50 126 | 95.32 89 | 83.31 123 | 71.99 197 | 88.96 102 | 94.10 111 | 96.69 84 | 96.49 77 | 98.15 171 | 99.10 54 |
|
COLMAP_ROB |  | 90.49 14 | 93.27 109 | 92.71 118 | 93.93 92 | 97.75 58 | 97.44 108 | 96.07 94 | 93.17 61 | 95.40 87 | 83.86 120 | 83.76 143 | 88.72 103 | 93.87 114 | 94.25 151 | 94.11 146 | 98.87 129 | 95.28 184 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
test-LLR | | | 91.62 125 | 93.56 108 | 89.35 149 | 93.31 139 | 96.57 131 | 92.02 169 | 87.06 141 | 92.34 144 | 75.05 170 | 90.20 97 | 88.64 104 | 90.93 152 | 96.19 108 | 94.07 147 | 97.75 182 | 96.90 166 |
|
TESTMET0.1,1 | | | 91.07 132 | 93.56 108 | 88.17 160 | 90.43 164 | 96.57 131 | 92.02 169 | 82.83 183 | 92.34 144 | 75.05 170 | 90.20 97 | 88.64 104 | 90.93 152 | 96.19 108 | 94.07 147 | 97.75 182 | 96.90 166 |
|
LS3D | | | 95.46 61 | 95.14 76 | 95.84 53 | 97.91 56 | 98.90 58 | 98.58 31 | 97.79 5 | 97.07 44 | 83.65 122 | 88.71 107 | 88.64 104 | 97.82 39 | 97.49 60 | 97.42 54 | 99.26 77 | 97.72 142 |
|
Anonymous202405211 | | | | 92.18 133 | | 95.04 102 | 98.20 90 | 96.14 91 | 91.79 82 | 93.93 115 | | 74.60 179 | 88.38 107 | 96.48 70 | 95.17 135 | 95.82 101 | 99.00 117 | 99.15 51 |
|
IterMVS-SCA-FT | | | 90.24 143 | 92.48 126 | 87.63 175 | 92.85 144 | 94.30 198 | 93.79 134 | 81.47 190 | 92.66 133 | 69.95 193 | 84.66 137 | 88.38 107 | 89.99 169 | 95.39 130 | 94.34 142 | 97.74 184 | 97.63 144 |
|
test-mter | | | 90.95 133 | 93.54 110 | 87.93 170 | 90.28 168 | 96.80 122 | 91.44 175 | 82.68 184 | 92.15 148 | 74.37 174 | 89.57 103 | 88.23 109 | 90.88 155 | 96.37 99 | 94.31 143 | 97.93 178 | 97.37 151 |
|
IterMVS | | | 90.20 144 | 92.43 128 | 87.61 176 | 92.82 146 | 94.31 197 | 94.11 130 | 81.54 188 | 92.97 129 | 69.90 194 | 84.71 136 | 88.16 110 | 89.96 170 | 95.25 132 | 94.17 145 | 97.31 186 | 97.46 148 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-LS | | | 92.56 115 | 93.18 112 | 91.84 115 | 93.90 129 | 94.97 182 | 94.99 114 | 86.20 150 | 94.18 113 | 82.68 125 | 85.81 130 | 87.36 111 | 94.43 104 | 95.31 131 | 96.02 92 | 98.87 129 | 98.60 101 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
baseline2 | | | 93.01 110 | 94.17 94 | 91.64 118 | 92.83 145 | 97.49 106 | 93.40 140 | 87.53 135 | 93.67 121 | 86.07 112 | 91.83 79 | 86.58 112 | 91.36 145 | 96.38 97 | 95.06 118 | 98.67 148 | 98.20 124 |
|
FMVSNet5 | | | 90.36 141 | 90.93 148 | 89.70 143 | 87.99 202 | 92.25 207 | 92.03 168 | 83.51 178 | 92.20 147 | 84.13 118 | 85.59 131 | 86.48 113 | 92.43 133 | 94.61 141 | 94.52 138 | 98.13 172 | 90.85 208 |
|
EPMVS | | | 90.88 135 | 92.12 134 | 89.44 147 | 94.71 111 | 97.24 112 | 93.55 136 | 76.81 200 | 95.89 75 | 81.77 130 | 91.49 84 | 86.47 114 | 93.87 114 | 90.21 197 | 90.07 194 | 95.92 195 | 93.49 201 |
|
RPMNet | | | 90.19 145 | 92.03 137 | 88.05 165 | 93.46 135 | 95.95 149 | 93.41 139 | 74.59 211 | 92.40 141 | 75.91 161 | 84.22 140 | 86.41 115 | 92.49 132 | 94.42 147 | 93.85 154 | 98.44 164 | 96.96 163 |
|
MVSTER | | | 94.89 69 | 95.07 79 | 94.68 81 | 94.71 111 | 96.68 128 | 97.00 61 | 90.57 97 | 95.18 97 | 93.05 41 | 95.21 48 | 86.41 115 | 93.72 118 | 97.59 58 | 95.88 97 | 99.00 117 | 98.50 107 |
|
ADS-MVSNet | | | 89.80 150 | 91.33 144 | 88.00 168 | 94.43 120 | 96.71 127 | 92.29 161 | 74.95 210 | 96.07 70 | 77.39 149 | 88.67 109 | 86.09 117 | 93.26 126 | 88.44 203 | 89.57 197 | 95.68 198 | 93.81 198 |
|
canonicalmvs | | | 95.25 67 | 95.45 71 | 95.00 69 | 95.27 95 | 98.72 70 | 96.89 66 | 89.82 107 | 96.51 56 | 90.84 64 | 93.72 59 | 86.01 118 | 97.66 43 | 95.78 119 | 97.94 35 | 99.54 18 | 99.50 13 |
|
CVMVSNet | | | 89.77 151 | 91.66 140 | 87.56 178 | 93.21 141 | 95.45 168 | 91.94 172 | 89.22 116 | 89.62 171 | 69.34 198 | 83.99 142 | 85.90 119 | 84.81 197 | 94.30 150 | 95.28 113 | 96.85 190 | 97.09 158 |
|
baseline1 | | | 94.59 79 | 94.47 86 | 94.72 79 | 95.16 98 | 97.97 99 | 96.07 94 | 91.94 78 | 94.86 102 | 89.98 79 | 91.60 82 | 85.87 120 | 95.64 82 | 97.07 72 | 96.90 69 | 99.52 19 | 97.06 162 |
|
Fast-Effi-MVS+-dtu | | | 91.19 131 | 93.64 104 | 88.33 158 | 92.19 151 | 96.46 134 | 93.99 132 | 81.52 189 | 92.59 136 | 71.82 182 | 92.17 73 | 85.54 121 | 91.68 142 | 95.73 121 | 94.64 130 | 98.80 138 | 98.34 117 |
|
CR-MVSNet | | | 90.16 146 | 91.96 138 | 88.06 164 | 93.32 138 | 95.95 149 | 93.36 141 | 75.99 206 | 92.40 141 | 75.19 167 | 83.18 145 | 85.37 122 | 92.05 136 | 95.21 133 | 94.56 135 | 98.47 163 | 97.08 160 |
|
PVSNet_BlendedMVS | | | 95.41 63 | 95.28 73 | 95.57 57 | 97.42 61 | 99.02 45 | 95.89 101 | 93.10 62 | 96.16 65 | 93.12 37 | 91.99 74 | 85.27 123 | 94.66 100 | 98.09 45 | 97.34 58 | 99.24 78 | 99.08 57 |
|
PVSNet_Blended | | | 95.41 63 | 95.28 73 | 95.57 57 | 97.42 61 | 99.02 45 | 95.89 101 | 93.10 62 | 96.16 65 | 93.12 37 | 91.99 74 | 85.27 123 | 94.66 100 | 98.09 45 | 97.34 58 | 99.24 78 | 99.08 57 |
|
FC-MVSNet-train | | | 93.85 96 | 93.91 98 | 93.78 95 | 94.94 103 | 96.79 125 | 94.29 129 | 91.13 90 | 93.84 119 | 88.26 101 | 90.40 95 | 85.23 125 | 94.65 102 | 96.54 91 | 95.31 112 | 99.38 55 | 99.28 28 |
|
IB-MVS | | 89.56 15 | 91.71 123 | 92.50 123 | 90.79 130 | 95.94 83 | 98.44 83 | 87.05 200 | 91.38 89 | 93.15 127 | 92.98 43 | 84.78 135 | 85.14 126 | 78.27 207 | 92.47 178 | 94.44 141 | 99.10 104 | 99.08 57 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
PatchT | | | 89.13 160 | 91.71 139 | 86.11 192 | 92.92 142 | 95.59 163 | 83.64 208 | 75.09 209 | 91.87 150 | 75.19 167 | 82.63 148 | 85.06 127 | 92.05 136 | 95.21 133 | 94.56 135 | 97.76 181 | 97.08 160 |
|
casdiffmvs | | | 94.38 86 | 94.15 96 | 94.64 83 | 94.70 113 | 98.51 82 | 96.03 96 | 91.66 83 | 95.70 81 | 89.36 90 | 86.48 123 | 85.03 128 | 96.60 69 | 97.40 62 | 97.30 60 | 99.52 19 | 98.67 97 |
|
GeoE | | | 92.52 116 | 92.64 119 | 92.39 111 | 93.96 128 | 97.76 101 | 96.01 97 | 85.60 158 | 93.23 126 | 83.94 119 | 81.56 152 | 84.80 129 | 95.63 83 | 96.22 105 | 95.83 100 | 99.19 91 | 99.07 61 |
|
HQP-MVS | | | 94.43 83 | 94.57 84 | 94.27 88 | 96.41 74 | 97.23 113 | 96.89 66 | 93.98 49 | 95.94 74 | 83.68 121 | 95.01 51 | 84.46 130 | 95.58 85 | 95.47 127 | 94.85 127 | 99.07 108 | 99.00 72 |
|
CLD-MVS | | | 94.79 73 | 94.36 89 | 95.30 63 | 95.21 97 | 97.46 107 | 97.23 59 | 92.24 75 | 96.43 57 | 91.77 54 | 92.69 68 | 84.31 131 | 96.06 75 | 95.52 125 | 95.03 119 | 99.31 67 | 99.06 62 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
diffmvs | | | 94.31 88 | 94.21 91 | 94.42 86 | 94.64 114 | 98.28 86 | 96.36 87 | 91.56 84 | 96.77 51 | 88.89 96 | 88.97 105 | 84.23 132 | 96.01 78 | 96.05 111 | 96.41 79 | 99.05 115 | 98.79 94 |
|
TAMVS | | | 90.54 140 | 90.87 150 | 90.16 137 | 91.48 155 | 96.61 130 | 93.26 143 | 86.08 151 | 87.71 187 | 81.66 132 | 83.11 147 | 84.04 133 | 90.42 164 | 94.54 143 | 94.60 132 | 98.04 176 | 95.48 182 |
|
thisisatest0515 | | | 90.12 147 | 92.06 136 | 87.85 171 | 90.03 171 | 96.17 142 | 87.83 197 | 87.45 136 | 91.71 152 | 77.15 151 | 85.40 132 | 84.01 134 | 85.74 191 | 95.41 129 | 93.30 164 | 98.88 128 | 98.43 110 |
|
FMVSNet1 | | | 91.54 127 | 90.93 148 | 92.26 112 | 90.35 167 | 95.27 175 | 95.22 112 | 87.16 140 | 91.37 155 | 87.62 105 | 75.45 173 | 83.84 135 | 94.43 104 | 96.52 92 | 96.30 80 | 98.82 133 | 97.74 141 |
|
Effi-MVS+-dtu | | | 91.78 122 | 93.59 107 | 89.68 145 | 92.44 149 | 97.11 115 | 94.40 127 | 84.94 168 | 92.43 139 | 75.48 163 | 91.09 90 | 83.75 136 | 93.55 122 | 96.61 87 | 95.47 108 | 97.24 187 | 98.67 97 |
|
ET-MVSNet_ETH3D | | | 93.34 107 | 94.33 90 | 92.18 113 | 83.26 214 | 97.66 103 | 96.72 75 | 89.89 106 | 95.62 84 | 87.17 108 | 96.00 39 | 83.69 137 | 96.99 59 | 93.78 155 | 95.34 111 | 99.06 111 | 98.18 125 |
|
PatchMatch-RL | | | 94.69 77 | 94.41 87 | 95.02 68 | 97.63 60 | 98.15 94 | 94.50 126 | 91.99 77 | 95.32 89 | 91.31 58 | 95.47 45 | 83.44 138 | 96.02 77 | 96.56 89 | 95.23 115 | 98.69 147 | 96.67 170 |
|
LGP-MVS_train | | | 94.12 90 | 94.62 83 | 93.53 98 | 96.44 73 | 97.54 104 | 97.40 56 | 91.84 80 | 94.66 104 | 81.09 135 | 95.70 43 | 83.36 139 | 95.10 93 | 96.36 100 | 95.71 102 | 99.32 64 | 99.03 68 |
|
ACMM | | 92.75 10 | 94.41 85 | 93.84 101 | 95.09 67 | 96.41 74 | 96.80 122 | 94.88 118 | 93.54 53 | 96.41 58 | 90.16 75 | 92.31 72 | 83.11 140 | 96.32 72 | 96.22 105 | 94.65 129 | 99.22 84 | 97.35 152 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
test_part1 | | | 91.21 130 | 89.47 158 | 93.24 105 | 94.26 123 | 95.45 168 | 95.26 110 | 88.36 127 | 88.49 180 | 90.04 77 | 72.61 194 | 82.82 141 | 93.69 120 | 93.25 166 | 94.62 131 | 97.84 179 | 99.06 62 |
|
OPM-MVS | | | 93.61 102 | 92.43 128 | 95.00 69 | 96.94 68 | 97.34 110 | 97.78 49 | 94.23 48 | 89.64 170 | 85.53 114 | 88.70 108 | 82.81 142 | 96.28 73 | 96.28 103 | 95.00 122 | 99.24 78 | 97.22 155 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
tpmrst | | | 88.86 165 | 89.62 156 | 87.97 169 | 94.33 121 | 95.98 146 | 92.62 153 | 76.36 203 | 94.62 106 | 76.94 153 | 85.98 129 | 82.80 143 | 92.80 131 | 86.90 209 | 87.15 205 | 94.77 209 | 93.93 196 |
|
ACMP | | 92.88 9 | 94.43 83 | 94.38 88 | 94.50 84 | 96.01 82 | 97.69 102 | 95.85 104 | 92.09 76 | 95.74 80 | 89.12 94 | 95.14 49 | 82.62 144 | 94.77 96 | 95.73 121 | 94.67 128 | 99.14 99 | 99.06 62 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
MIMVSNet | | | 88.99 162 | 91.07 146 | 86.57 188 | 86.78 208 | 95.62 160 | 91.20 181 | 75.40 208 | 90.65 163 | 76.57 155 | 84.05 141 | 82.44 145 | 91.01 151 | 95.84 116 | 95.38 110 | 98.48 162 | 93.50 200 |
|
xxxxxxxxxxxxxcwj | | | 97.07 39 | 95.99 63 | 98.33 11 | 99.45 10 | 99.05 36 | 98.27 38 | 97.65 9 | 97.73 19 | 97.02 7 | 98.18 12 | 81.99 146 | 98.11 33 | 98.15 39 | 97.62 46 | 99.45 35 | 99.19 43 |
|
Effi-MVS+ | | | 92.93 111 | 93.86 100 | 91.86 114 | 94.07 127 | 98.09 96 | 95.59 106 | 85.98 153 | 94.27 112 | 79.54 142 | 91.12 89 | 81.81 147 | 96.71 66 | 96.67 86 | 96.06 89 | 99.27 73 | 98.98 75 |
|
MVS-HIRNet | | | 85.36 196 | 86.89 189 | 83.57 199 | 90.13 170 | 94.51 193 | 83.57 209 | 72.61 213 | 88.27 183 | 71.22 186 | 68.97 204 | 81.81 147 | 88.91 176 | 93.08 169 | 91.94 185 | 94.97 208 | 89.64 211 |
|
anonymousdsp | | | 88.90 163 | 91.00 147 | 86.44 189 | 88.74 199 | 95.97 147 | 90.40 188 | 82.86 182 | 88.77 177 | 67.33 201 | 81.18 155 | 81.44 149 | 90.22 167 | 96.23 104 | 94.27 144 | 99.12 102 | 99.16 50 |
|
TSAR-MVS + COLMAP | | | 94.79 73 | 94.51 85 | 95.11 66 | 96.50 71 | 97.54 104 | 97.99 46 | 94.54 46 | 97.81 17 | 85.88 113 | 96.73 32 | 81.28 150 | 96.99 59 | 96.29 102 | 95.21 116 | 98.76 143 | 96.73 169 |
|
ECVR-MVS |  | | 94.14 89 | 92.96 116 | 95.52 59 | 96.16 77 | 99.39 14 | 96.96 63 | 92.80 67 | 95.22 95 | 92.38 49 | 81.48 153 | 80.31 151 | 95.25 91 | 98.29 29 | 97.98 30 | 99.59 6 | 98.05 129 |
|
CostFormer | | | 90.69 136 | 90.48 153 | 90.93 126 | 94.18 124 | 96.08 144 | 94.03 131 | 78.20 196 | 93.47 124 | 89.96 80 | 90.97 91 | 80.30 152 | 93.72 118 | 87.66 207 | 88.75 199 | 95.51 201 | 96.12 174 |
|
MDTV_nov1_ep13_2view | | | 86.30 191 | 88.27 168 | 84.01 198 | 87.71 205 | 94.67 190 | 88.08 196 | 76.78 201 | 90.59 165 | 68.66 200 | 80.46 161 | 80.12 153 | 87.58 182 | 89.95 200 | 88.20 201 | 95.25 205 | 93.90 197 |
|
test1111 | | | 93.94 94 | 92.78 117 | 95.29 64 | 96.14 79 | 99.42 9 | 96.79 72 | 92.85 66 | 95.08 99 | 91.39 57 | 80.69 158 | 79.86 154 | 95.00 95 | 98.28 32 | 98.00 29 | 99.58 10 | 98.11 127 |
|
tpm cat1 | | | 88.90 163 | 87.78 179 | 90.22 136 | 93.88 131 | 95.39 171 | 93.79 134 | 78.11 197 | 92.55 137 | 89.43 87 | 81.31 154 | 79.84 155 | 91.40 144 | 84.95 210 | 86.34 208 | 94.68 211 | 94.09 192 |
|
pm-mvs1 | | | 89.19 159 | 89.02 162 | 89.38 148 | 90.40 165 | 95.74 159 | 92.05 167 | 88.10 131 | 86.13 197 | 77.70 147 | 73.72 187 | 79.44 156 | 88.97 175 | 95.81 118 | 94.51 139 | 99.08 106 | 97.78 140 |
|
Fast-Effi-MVS+ | | | 91.87 120 | 92.08 135 | 91.62 120 | 92.91 143 | 97.21 114 | 94.93 116 | 84.60 172 | 93.61 122 | 81.49 133 | 83.50 144 | 78.95 157 | 96.62 68 | 96.55 90 | 96.22 85 | 99.16 96 | 98.51 106 |
|
tmp_tt | | | | | 66.88 213 | 86.07 209 | 73.86 220 | 68.22 220 | 33.38 222 | 96.88 48 | 80.67 137 | 88.23 112 | 78.82 158 | 49.78 219 | 82.68 213 | 77.47 215 | 83.19 221 | |
|
dps | | | 90.11 148 | 89.37 161 | 90.98 125 | 93.89 130 | 96.21 141 | 93.49 138 | 77.61 198 | 91.95 149 | 92.74 47 | 88.85 106 | 78.77 159 | 92.37 134 | 87.71 206 | 87.71 203 | 95.80 197 | 94.38 189 |
|
ACMH | | 90.77 13 | 91.51 128 | 91.63 141 | 91.38 121 | 95.62 86 | 96.87 120 | 91.76 173 | 89.66 110 | 91.58 153 | 78.67 144 | 86.73 119 | 78.12 160 | 93.77 117 | 94.59 142 | 94.54 137 | 98.78 141 | 98.98 75 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMH+ | | 90.88 12 | 91.41 129 | 91.13 145 | 91.74 117 | 95.11 100 | 96.95 117 | 93.13 145 | 89.48 114 | 92.42 140 | 79.93 139 | 85.13 133 | 78.02 161 | 93.82 116 | 93.49 162 | 93.88 152 | 98.94 123 | 97.99 131 |
|
thres100view900 | | | 93.55 104 | 92.47 127 | 94.81 77 | 95.33 91 | 98.74 67 | 96.78 73 | 92.30 74 | 92.63 134 | 88.29 98 | 87.21 115 | 78.01 162 | 96.78 64 | 96.38 97 | 95.92 94 | 99.38 55 | 98.40 114 |
|
tfpn200view9 | | | 93.64 100 | 92.57 120 | 94.89 72 | 95.33 91 | 98.94 51 | 96.82 69 | 92.31 71 | 92.63 134 | 88.29 98 | 87.21 115 | 78.01 162 | 97.12 56 | 96.82 77 | 95.85 98 | 99.45 35 | 98.56 102 |
|
thres200 | | | 93.62 101 | 92.54 121 | 94.88 73 | 95.36 90 | 98.93 53 | 96.75 74 | 92.31 71 | 92.84 131 | 88.28 100 | 86.99 117 | 77.81 164 | 97.13 54 | 96.82 77 | 95.92 94 | 99.45 35 | 98.49 108 |
|
thres400 | | | 93.56 103 | 92.43 128 | 94.87 74 | 95.40 89 | 98.91 56 | 96.70 76 | 92.38 70 | 92.93 130 | 88.19 102 | 86.69 120 | 77.35 165 | 97.13 54 | 96.75 82 | 95.85 98 | 99.42 48 | 98.56 102 |
|
UniMVSNet_NR-MVSNet | | | 90.35 142 | 89.96 154 | 90.80 129 | 89.66 176 | 95.83 155 | 92.48 155 | 90.53 98 | 90.96 160 | 79.57 140 | 79.33 164 | 77.14 166 | 93.21 128 | 92.91 172 | 94.50 140 | 99.37 58 | 99.05 65 |
|
pmnet_mix02 | | | 86.12 193 | 87.12 187 | 84.96 196 | 89.82 174 | 94.12 199 | 84.88 206 | 86.63 145 | 91.78 151 | 65.60 204 | 80.76 157 | 76.98 167 | 86.61 186 | 87.29 208 | 84.80 211 | 96.21 192 | 94.09 192 |
|
thres600view7 | | | 93.49 105 | 92.37 131 | 94.79 78 | 95.42 88 | 98.93 53 | 96.58 80 | 92.31 71 | 93.04 128 | 87.88 103 | 86.62 121 | 76.94 168 | 97.09 57 | 96.82 77 | 95.63 103 | 99.45 35 | 98.63 99 |
|
GA-MVS | | | 89.28 156 | 90.75 151 | 87.57 177 | 91.77 153 | 96.48 133 | 92.29 161 | 87.58 134 | 90.61 164 | 65.77 203 | 84.48 138 | 76.84 169 | 89.46 172 | 95.84 116 | 93.68 157 | 98.52 159 | 97.34 153 |
|
pmmvs4 | | | 90.55 139 | 89.91 155 | 91.30 123 | 90.26 169 | 94.95 183 | 92.73 151 | 87.94 132 | 93.44 125 | 85.35 115 | 82.28 150 | 76.09 170 | 93.02 130 | 93.56 160 | 92.26 184 | 98.51 160 | 96.77 168 |
|
testgi | | | 89.42 153 | 91.50 143 | 87.00 185 | 92.40 150 | 95.59 163 | 89.15 194 | 85.27 165 | 92.78 132 | 72.42 179 | 91.75 80 | 76.00 171 | 84.09 201 | 94.38 148 | 93.82 156 | 98.65 152 | 96.15 173 |
|
pmmvs6 | | | 85.98 194 | 84.89 202 | 87.25 182 | 88.83 197 | 94.35 196 | 89.36 193 | 85.30 164 | 78.51 215 | 75.44 164 | 62.71 214 | 75.41 172 | 87.65 180 | 93.58 159 | 92.40 181 | 96.89 189 | 97.29 154 |
|
tpm | | | 87.95 173 | 89.44 160 | 86.21 191 | 92.53 148 | 94.62 192 | 91.40 176 | 76.36 203 | 91.46 154 | 69.80 196 | 87.43 114 | 75.14 173 | 91.55 143 | 89.85 201 | 90.60 191 | 95.61 199 | 96.96 163 |
|
EU-MVSNet | | | 85.62 195 | 87.65 181 | 83.24 201 | 88.54 200 | 92.77 206 | 87.12 199 | 85.32 162 | 86.71 193 | 64.54 206 | 78.52 166 | 75.11 174 | 78.35 206 | 92.25 180 | 92.28 183 | 95.58 200 | 95.93 175 |
|
UniMVSNet (Re) | | | 90.03 149 | 89.61 157 | 90.51 133 | 89.97 173 | 96.12 143 | 92.32 159 | 89.26 115 | 90.99 159 | 80.95 136 | 78.25 167 | 75.08 175 | 91.14 148 | 93.78 155 | 93.87 153 | 99.41 49 | 99.21 41 |
|
EG-PatchMatch MVS | | | 86.68 188 | 87.24 184 | 86.02 193 | 90.58 163 | 96.26 140 | 91.08 182 | 81.59 187 | 84.96 202 | 69.80 196 | 71.35 201 | 75.08 175 | 84.23 200 | 94.24 152 | 93.35 162 | 98.82 133 | 95.46 183 |
|
N_pmnet | | | 84.80 197 | 85.10 201 | 84.45 197 | 89.25 189 | 92.86 205 | 84.04 207 | 86.21 148 | 88.78 176 | 66.73 202 | 72.41 196 | 74.87 177 | 85.21 194 | 88.32 204 | 86.45 206 | 95.30 203 | 92.04 205 |
|
TDRefinement | | | 89.07 161 | 88.15 170 | 90.14 139 | 95.16 98 | 96.88 118 | 95.55 108 | 90.20 101 | 89.68 169 | 76.42 157 | 76.67 170 | 74.30 178 | 84.85 196 | 93.11 168 | 91.91 186 | 98.64 153 | 94.47 187 |
|
USDC | | | 90.69 136 | 90.52 152 | 90.88 127 | 94.17 125 | 96.43 135 | 95.82 105 | 86.76 143 | 93.92 116 | 76.27 159 | 86.49 122 | 74.30 178 | 93.67 121 | 95.04 138 | 93.36 161 | 98.61 154 | 94.13 191 |
|
CMPMVS |  | 65.18 17 | 84.76 198 | 83.10 204 | 86.69 187 | 95.29 94 | 95.05 180 | 88.37 195 | 85.51 160 | 80.27 213 | 71.31 185 | 68.37 206 | 73.85 180 | 85.25 193 | 87.72 205 | 87.75 202 | 94.38 212 | 88.70 212 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
WR-MVS | | | 87.93 174 | 88.09 171 | 87.75 172 | 89.26 186 | 95.28 173 | 90.81 184 | 86.69 144 | 88.90 174 | 75.29 166 | 74.31 183 | 73.72 181 | 85.19 195 | 92.26 179 | 93.32 163 | 99.27 73 | 98.81 93 |
|
v8 | | | 88.21 171 | 87.94 176 | 88.51 155 | 89.62 177 | 95.01 181 | 92.31 160 | 84.99 167 | 88.94 173 | 74.70 172 | 75.03 175 | 73.51 182 | 90.67 160 | 92.11 183 | 92.74 176 | 98.80 138 | 98.24 122 |
|
V42 | | | 88.31 169 | 87.95 175 | 88.73 153 | 89.44 181 | 95.34 172 | 92.23 163 | 87.21 139 | 88.83 175 | 74.49 173 | 74.89 177 | 73.43 183 | 90.41 166 | 92.08 185 | 92.77 175 | 98.60 156 | 98.33 118 |
|
Baseline_NR-MVSNet | | | 89.27 157 | 88.01 173 | 90.73 131 | 89.26 186 | 93.71 202 | 92.71 152 | 89.78 109 | 90.73 161 | 81.28 134 | 73.53 188 | 72.85 184 | 92.30 135 | 92.53 176 | 93.84 155 | 99.07 108 | 98.88 86 |
|
v10 | | | 88.00 172 | 87.96 174 | 88.05 165 | 89.44 181 | 94.68 189 | 92.36 158 | 83.35 179 | 89.37 172 | 72.96 178 | 73.98 185 | 72.79 185 | 91.35 146 | 93.59 157 | 92.88 171 | 98.81 136 | 98.42 112 |
|
WR-MVS_H | | | 87.93 174 | 87.85 177 | 88.03 167 | 89.62 177 | 95.58 165 | 90.47 187 | 85.55 159 | 87.20 192 | 76.83 154 | 74.42 182 | 72.67 186 | 86.37 187 | 93.22 167 | 93.04 167 | 99.33 62 | 98.83 92 |
|
v1144 | | | 87.92 176 | 87.79 178 | 88.07 162 | 89.27 185 | 95.15 178 | 92.17 164 | 85.62 157 | 88.52 179 | 71.52 183 | 73.80 186 | 72.40 187 | 91.06 150 | 93.54 161 | 92.80 173 | 98.81 136 | 98.33 118 |
|
SixPastTwentyTwo | | | 88.37 168 | 89.47 158 | 87.08 183 | 90.01 172 | 95.93 151 | 87.41 198 | 85.32 162 | 90.26 168 | 70.26 190 | 86.34 127 | 71.95 188 | 90.93 152 | 92.89 173 | 91.72 187 | 98.55 157 | 97.22 155 |
|
v2v482 | | | 88.25 170 | 87.71 180 | 88.88 151 | 89.23 190 | 95.28 173 | 92.10 165 | 87.89 133 | 88.69 178 | 73.31 177 | 75.32 174 | 71.64 189 | 91.89 138 | 92.10 184 | 92.92 170 | 98.86 131 | 97.99 131 |
|
TranMVSNet+NR-MVSNet | | | 89.23 158 | 88.48 167 | 90.11 141 | 89.07 192 | 95.25 176 | 92.91 148 | 90.43 100 | 90.31 166 | 77.10 152 | 76.62 171 | 71.57 190 | 91.83 140 | 92.12 182 | 94.59 133 | 99.32 64 | 98.92 81 |
|
TransMVSNet (Re) | | | 87.73 179 | 86.79 190 | 88.83 152 | 90.76 161 | 94.40 195 | 91.33 179 | 89.62 111 | 84.73 203 | 75.41 165 | 72.73 192 | 71.41 191 | 86.80 184 | 94.53 144 | 93.93 151 | 99.06 111 | 95.83 176 |
|
DU-MVS | | | 89.67 152 | 88.84 163 | 90.63 132 | 89.26 186 | 95.61 161 | 92.48 155 | 89.91 104 | 91.22 156 | 79.57 140 | 77.72 168 | 71.18 192 | 93.21 128 | 92.53 176 | 94.57 134 | 99.35 61 | 99.05 65 |
|
v144192 | | | 87.40 183 | 87.20 185 | 87.64 174 | 88.89 194 | 94.88 186 | 91.65 174 | 84.70 171 | 87.80 186 | 71.17 187 | 73.20 191 | 70.91 193 | 90.75 158 | 92.69 174 | 92.49 179 | 98.71 145 | 98.43 110 |
|
test20.03 | | | 82.92 203 | 85.52 198 | 79.90 206 | 87.75 204 | 91.84 208 | 82.80 210 | 82.99 181 | 82.65 211 | 60.32 215 | 78.90 165 | 70.50 194 | 67.10 214 | 92.05 186 | 90.89 189 | 98.44 164 | 91.80 206 |
|
test2506 | | | 94.32 87 | 93.00 115 | 95.87 52 | 96.16 77 | 99.39 14 | 96.96 63 | 92.80 67 | 95.22 95 | 94.47 29 | 91.55 83 | 70.45 195 | 95.25 91 | 98.29 29 | 97.98 30 | 99.59 6 | 98.10 128 |
|
TinyColmap | | | 89.42 153 | 88.58 165 | 90.40 134 | 93.80 133 | 95.45 168 | 93.96 133 | 86.54 146 | 92.24 146 | 76.49 156 | 80.83 156 | 70.44 196 | 93.37 124 | 94.45 146 | 93.30 164 | 98.26 170 | 93.37 202 |
|
v1192 | | | 87.51 181 | 87.31 182 | 87.74 173 | 89.04 193 | 94.87 187 | 92.07 166 | 85.03 166 | 88.49 180 | 70.32 189 | 72.65 193 | 70.35 197 | 91.21 147 | 93.59 157 | 92.80 173 | 98.78 141 | 98.42 112 |
|
v148 | | | 87.51 181 | 86.79 190 | 88.36 157 | 89.39 183 | 95.21 177 | 89.84 191 | 88.20 130 | 87.61 189 | 77.56 148 | 73.38 190 | 70.32 198 | 86.80 184 | 90.70 195 | 92.31 182 | 98.37 167 | 97.98 133 |
|
pmmvs5 | | | 87.83 178 | 88.09 171 | 87.51 180 | 89.59 179 | 95.48 166 | 89.75 192 | 84.73 170 | 86.07 199 | 71.44 184 | 80.57 159 | 70.09 199 | 90.74 159 | 94.47 145 | 92.87 172 | 98.82 133 | 97.10 157 |
|
v1921920 | | | 87.31 185 | 87.13 186 | 87.52 179 | 88.87 196 | 94.72 188 | 91.96 171 | 84.59 173 | 88.28 182 | 69.86 195 | 72.50 195 | 70.03 200 | 91.10 149 | 93.33 164 | 92.61 178 | 98.71 145 | 98.44 109 |
|
tfpnnormal | | | 88.50 166 | 87.01 188 | 90.23 135 | 91.36 156 | 95.78 158 | 92.74 150 | 90.09 102 | 83.65 206 | 76.33 158 | 71.46 200 | 69.58 201 | 91.84 139 | 95.54 124 | 94.02 149 | 99.06 111 | 99.03 68 |
|
new_pmnet | | | 81.53 204 | 82.68 206 | 80.20 204 | 83.47 213 | 89.47 214 | 82.21 212 | 78.36 194 | 87.86 185 | 60.14 217 | 67.90 207 | 69.43 202 | 82.03 204 | 89.22 202 | 87.47 204 | 94.99 207 | 87.39 213 |
|
Anonymous20231206 | | | 83.84 201 | 85.19 200 | 82.26 202 | 87.38 206 | 92.87 204 | 85.49 204 | 83.65 177 | 86.07 199 | 63.44 210 | 68.42 205 | 69.01 203 | 75.45 210 | 93.34 163 | 92.44 180 | 98.12 174 | 94.20 190 |
|
NR-MVSNet | | | 89.34 155 | 88.66 164 | 90.13 140 | 90.40 165 | 95.61 161 | 93.04 147 | 89.91 104 | 91.22 156 | 78.96 143 | 77.72 168 | 68.90 204 | 89.16 174 | 94.24 152 | 93.95 150 | 99.32 64 | 98.99 73 |
|
v1240 | | | 86.89 187 | 86.75 192 | 87.06 184 | 88.75 198 | 94.65 191 | 91.30 180 | 84.05 175 | 87.49 190 | 68.94 199 | 71.96 198 | 68.86 205 | 90.65 161 | 93.33 164 | 92.72 177 | 98.67 148 | 98.24 122 |
|
test_method | | | 72.96 210 | 78.68 210 | 66.28 214 | 50.17 224 | 64.90 222 | 75.45 218 | 50.90 221 | 87.89 184 | 62.54 211 | 62.98 213 | 68.34 206 | 70.45 212 | 91.90 188 | 82.41 212 | 88.19 218 | 92.35 203 |
|
CP-MVSNet | | | 87.89 177 | 87.27 183 | 88.62 154 | 89.30 184 | 95.06 179 | 90.60 186 | 85.78 155 | 87.43 191 | 75.98 160 | 74.60 179 | 68.14 207 | 90.76 157 | 93.07 170 | 93.60 158 | 99.30 69 | 98.98 75 |
|
LTVRE_ROB | | 87.32 16 | 87.55 180 | 88.25 169 | 86.73 186 | 90.66 162 | 95.80 157 | 93.05 146 | 84.77 169 | 83.35 207 | 60.32 215 | 83.12 146 | 67.39 208 | 93.32 125 | 94.36 149 | 94.86 124 | 98.28 168 | 98.87 88 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
gm-plane-assit | | | 83.26 202 | 85.29 199 | 80.89 203 | 89.52 180 | 89.89 213 | 70.26 219 | 78.24 195 | 77.11 216 | 58.01 219 | 74.16 184 | 66.90 209 | 90.63 162 | 97.20 67 | 96.05 90 | 98.66 151 | 95.68 179 |
|
UniMVSNet_ETH3D | | | 88.47 167 | 86.00 197 | 91.35 122 | 91.55 154 | 96.29 139 | 92.53 154 | 88.81 121 | 85.58 201 | 82.33 127 | 67.63 209 | 66.87 210 | 94.04 112 | 91.49 191 | 95.24 114 | 98.84 132 | 98.92 81 |
|
v7n | | | 86.43 190 | 86.52 194 | 86.33 190 | 87.91 203 | 94.93 184 | 90.15 190 | 83.05 180 | 86.57 194 | 70.21 191 | 71.48 199 | 66.78 211 | 87.72 179 | 94.19 154 | 92.96 169 | 98.92 125 | 98.76 96 |
|
DTE-MVSNet | | | 86.67 189 | 86.09 196 | 87.35 181 | 88.45 201 | 94.08 200 | 90.65 185 | 86.05 152 | 86.13 197 | 72.19 180 | 74.58 181 | 66.77 212 | 87.61 181 | 90.31 196 | 93.12 166 | 99.13 100 | 97.62 145 |
|
PS-CasMVS | | | 87.33 184 | 86.68 193 | 88.10 161 | 89.22 191 | 94.93 184 | 90.35 189 | 85.70 156 | 86.44 196 | 74.01 175 | 73.43 189 | 66.59 213 | 90.04 168 | 92.92 171 | 93.52 159 | 99.28 71 | 98.91 84 |
|
PEN-MVS | | | 87.22 186 | 86.50 195 | 88.07 162 | 88.88 195 | 94.44 194 | 90.99 183 | 86.21 148 | 86.53 195 | 73.66 176 | 74.97 176 | 66.56 214 | 89.42 173 | 91.20 193 | 93.48 160 | 99.24 78 | 98.31 121 |
|
MIMVSNet1 | | | 80.03 206 | 80.93 207 | 78.97 207 | 72.46 220 | 90.73 211 | 80.81 213 | 82.44 185 | 80.39 212 | 63.64 208 | 57.57 215 | 64.93 215 | 76.37 208 | 91.66 189 | 91.55 188 | 98.07 175 | 89.70 210 |
|
DeepMVS_CX |  | | | | | | 86.86 215 | 79.50 214 | 70.43 216 | 90.73 161 | 63.66 207 | 80.36 162 | 60.83 216 | 79.68 205 | 76.23 214 | | 89.46 216 | 86.53 214 |
|
FPMVS | | | 75.84 209 | 74.59 212 | 77.29 210 | 86.92 207 | 83.89 218 | 85.01 205 | 80.05 193 | 82.91 209 | 60.61 214 | 65.25 211 | 60.41 217 | 63.86 215 | 75.60 215 | 73.60 217 | 87.29 219 | 80.47 216 |
|
PMVS |  | 63.12 18 | 67.27 212 | 66.39 215 | 68.30 212 | 77.98 216 | 60.24 223 | 59.53 223 | 76.82 199 | 66.65 219 | 60.74 213 | 54.39 216 | 59.82 218 | 51.24 218 | 73.92 218 | 70.52 218 | 83.48 220 | 79.17 218 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
pmmvs3 | | | 79.16 207 | 80.12 209 | 78.05 209 | 79.36 215 | 86.59 216 | 78.13 216 | 73.87 212 | 76.42 217 | 57.51 220 | 70.59 203 | 57.02 219 | 84.66 198 | 90.10 198 | 88.32 200 | 94.75 210 | 91.77 207 |
|
pmmvs-eth3d | | | 84.33 200 | 82.94 205 | 85.96 194 | 84.16 211 | 90.94 210 | 86.55 201 | 83.79 176 | 84.25 204 | 75.85 162 | 70.64 202 | 56.43 220 | 87.44 183 | 92.20 181 | 90.41 193 | 97.97 177 | 95.68 179 |
|
PM-MVS | | | 84.72 199 | 84.47 203 | 85.03 195 | 84.67 210 | 91.57 209 | 86.27 202 | 82.31 186 | 87.65 188 | 70.62 188 | 76.54 172 | 56.41 221 | 88.75 177 | 92.59 175 | 89.85 196 | 97.54 185 | 96.66 171 |
|
new-patchmatchnet | | | 78.49 208 | 78.19 211 | 78.84 208 | 84.13 212 | 90.06 212 | 77.11 217 | 80.39 192 | 79.57 214 | 59.64 218 | 66.01 210 | 55.65 222 | 75.62 209 | 84.55 211 | 80.70 213 | 96.14 194 | 90.77 209 |
|
MDA-MVSNet-bldmvs | | | 80.11 205 | 80.24 208 | 79.94 205 | 77.01 217 | 93.21 203 | 78.86 215 | 85.94 154 | 82.71 210 | 60.86 212 | 79.71 163 | 51.77 223 | 83.71 203 | 75.60 215 | 86.37 207 | 93.28 213 | 92.35 203 |
|
PMMVS2 | | | 64.36 214 | 65.94 216 | 62.52 215 | 67.37 221 | 77.44 219 | 64.39 221 | 69.32 219 | 61.47 220 | 34.59 223 | 46.09 218 | 41.03 224 | 48.02 221 | 74.56 217 | 78.23 214 | 91.43 215 | 82.76 215 |
|
Gipuma |  | | 68.35 211 | 66.71 214 | 70.27 211 | 74.16 219 | 68.78 221 | 63.93 222 | 71.77 215 | 83.34 208 | 54.57 221 | 34.37 219 | 31.88 225 | 68.69 213 | 83.30 212 | 85.53 209 | 88.48 217 | 79.78 217 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
EMVS | | | 49.98 216 | 46.76 219 | 53.74 217 | 64.96 222 | 51.29 225 | 37.81 225 | 69.35 218 | 51.83 221 | 22.69 226 | 29.57 221 | 25.06 226 | 57.28 216 | 44.81 221 | 56.11 220 | 70.32 223 | 68.64 221 |
|
E-PMN | | | 50.67 215 | 47.85 218 | 53.96 216 | 64.13 223 | 50.98 226 | 38.06 224 | 69.51 217 | 51.40 222 | 24.60 225 | 29.46 222 | 24.39 227 | 56.07 217 | 48.17 220 | 59.70 219 | 71.40 222 | 70.84 220 |
|
ambc | | | | 73.83 213 | | 76.23 218 | 85.13 217 | 82.27 211 | | 84.16 205 | 65.58 205 | 52.82 217 | 23.31 228 | 73.55 211 | 91.41 192 | 85.26 210 | 92.97 214 | 94.70 185 |
|
MVE |  | 50.86 19 | 49.54 217 | 51.43 217 | 47.33 218 | 44.14 225 | 59.20 224 | 36.45 226 | 60.59 220 | 41.47 223 | 31.14 224 | 29.58 220 | 17.06 229 | 48.52 220 | 62.22 219 | 74.63 216 | 63.12 224 | 75.87 219 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
testmvs | | | 12.09 218 | 16.94 220 | 6.42 220 | 3.15 226 | 6.08 227 | 9.51 228 | 3.84 223 | 21.46 224 | 5.31 227 | 27.49 223 | 6.76 230 | 10.89 222 | 17.06 222 | 15.01 221 | 5.84 225 | 24.75 222 |
|
test123 | | | 9.58 219 | 13.53 221 | 4.97 221 | 1.31 228 | 5.47 228 | 8.32 229 | 2.95 224 | 18.14 225 | 2.03 229 | 20.82 224 | 2.34 231 | 10.60 223 | 10.00 223 | 14.16 222 | 4.60 226 | 23.77 223 |
|
uanet_test | | | 0.00 220 | 0.00 222 | 0.00 222 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 226 | 0.00 226 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
sosnet-low-res | | | 0.00 220 | 0.00 222 | 0.00 222 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 226 | 0.00 226 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
sosnet | | | 0.00 220 | 0.00 222 | 0.00 222 | 0.00 229 | 0.00 229 | 0.00 230 | 0.00 226 | 0.00 226 | 0.00 230 | 0.00 225 | 0.00 232 | 0.00 225 | 0.00 224 | 0.00 223 | 0.00 227 | 0.00 224 |
|
RE-MVS-def | | | | | | | | | | | 63.50 209 | | | | | | | |
|
our_test_3 | | | | | | 89.78 175 | 93.84 201 | 85.59 203 | | | | | | | | | | |
|
Patchmatch-RL test | | | | | | | | 34.61 227 | | | | | | | | | | |
|
NP-MVS | | | | | | | | | | 95.32 89 | | | | | | | | |
|
Patchmtry | | | | | | | 95.96 148 | 93.36 141 | 75.99 206 | | 75.19 167 | | | | | | | |
|