This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
zzz-MVS98.55 2998.25 3599.46 1299.76 198.64 2198.55 14798.74 9897.27 3398.02 8699.39 1494.81 7399.96 197.91 3899.79 1999.77 20
MTAPA98.58 2398.29 3299.46 1299.76 198.64 2198.90 7498.74 9897.27 3398.02 8699.39 1494.81 7399.96 197.91 3899.79 1999.77 20
DVP-MVS98.74 898.55 1099.29 3199.75 398.23 4899.26 1898.88 4997.52 1599.41 1198.78 10896.00 3499.79 8797.79 4799.59 6899.85 2
MP-MVScopyleft98.33 4898.01 4999.28 3599.75 398.18 5299.22 2598.79 8896.13 7697.92 9999.23 4294.54 8099.94 396.74 10699.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS98.51 3398.26 3499.25 3999.75 398.04 5999.28 1698.81 7696.24 7098.35 7399.23 4295.46 5099.94 397.42 7199.81 1099.77 20
HPM-MVS_fast98.38 4198.13 4399.12 5599.75 397.86 6699.44 498.82 7094.46 15498.94 3699.20 4995.16 6599.74 10297.58 6299.85 399.77 20
region2R98.61 1798.38 2099.29 3199.74 798.16 5499.23 2198.93 3796.15 7498.94 3699.17 5395.91 3999.94 397.55 6699.79 1999.78 13
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5599.23 2198.95 3496.10 7998.93 4099.19 5295.70 4499.94 397.62 5899.79 1999.78 13
HPM-MVScopyleft98.36 4398.10 4599.13 5399.74 797.82 6899.53 198.80 8694.63 14798.61 5998.97 8495.13 6699.77 9697.65 5699.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft98.23 5297.95 5299.09 5799.74 797.62 7499.03 5299.41 695.98 8197.60 12099.36 2694.45 8599.93 1597.14 7998.85 11899.70 45
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ZNCC-MVS98.49 3498.20 4199.35 2299.73 1198.39 3399.19 3198.86 6195.77 8898.31 7699.10 6695.46 5099.93 1597.57 6599.81 1099.74 33
MSP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 6498.58 14197.62 1199.45 999.46 997.42 699.94 398.47 1599.81 1099.69 48
test_0728_SECOND99.71 199.72 1299.35 198.97 6498.88 4999.94 398.47 1599.81 1099.84 4
test072699.72 1299.25 299.06 4898.88 4997.62 1199.56 599.50 497.42 6
GST-MVS98.43 3898.12 4499.34 2399.72 1298.38 3499.09 4498.82 7095.71 9198.73 5299.06 7595.27 6099.93 1597.07 8299.63 6199.72 39
MP-MVS-pluss98.31 5097.92 5499.49 999.72 1298.88 1498.43 16398.78 9094.10 16297.69 11199.42 1295.25 6299.92 2198.09 3299.80 1799.67 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4599.23 2198.96 3296.10 7998.94 3699.17 5396.06 3099.92 2197.62 5899.78 2399.75 28
#test#98.54 3198.27 3399.32 2899.72 1298.29 4598.98 6398.96 3295.65 9598.94 3699.17 5396.06 3099.92 2197.21 7899.78 2399.75 28
PGM-MVS98.49 3498.23 3999.27 3899.72 1298.08 5898.99 6099.49 595.43 10499.03 3099.32 3095.56 4699.94 396.80 10299.77 2699.78 13
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 5498.87 5597.65 999.73 199.48 697.53 499.94 398.43 1899.81 1099.70 45
IU-MVS99.71 2099.23 698.64 13195.28 11499.63 498.35 2499.81 1099.83 5
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 102
XVS98.70 998.49 1699.34 2399.70 2398.35 4299.29 1498.88 4997.40 2198.46 6499.20 4995.90 4099.89 3597.85 4399.74 4199.78 13
X-MVStestdata94.06 25792.30 27699.34 2399.70 2398.35 4299.29 1498.88 4997.40 2198.46 6443.50 34795.90 4099.89 3597.85 4399.74 4199.78 13
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4799.14 3698.66 12696.84 5199.56 599.31 3296.34 1999.70 11098.32 2599.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG97.85 6497.74 5998.20 11399.67 2695.16 17799.22 2599.32 793.04 21397.02 13798.92 9595.36 5799.91 3097.43 7099.64 6099.52 82
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6699.34 1198.87 5595.96 8298.60 6099.13 6196.05 3299.94 397.77 4899.86 199.77 20
CPTT-MVS97.72 7097.32 8198.92 6799.64 2897.10 9599.12 4198.81 7692.34 23998.09 8099.08 7393.01 10299.92 2196.06 12599.77 2699.75 28
test_part299.63 2999.18 899.27 17
ACMMP_NAP98.61 1798.30 3199.55 699.62 3098.95 1398.82 9398.81 7695.80 8799.16 2499.47 895.37 5699.92 2197.89 4199.75 3899.79 10
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 16698.68 11597.04 4698.52 6398.80 10696.78 1299.83 5597.93 3799.61 6499.74 33
DPE-MVS98.92 498.67 699.65 299.58 3299.20 798.42 16598.91 4397.58 1499.54 799.46 997.10 999.94 397.64 5799.84 899.83 5
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 598.93 3797.38 2499.41 1199.54 196.66 1399.84 5298.86 199.85 399.87 1
abl_698.30 5198.03 4899.13 5399.56 3497.76 7099.13 3998.82 7096.14 7599.26 1899.37 2293.33 9899.93 1596.96 8799.67 5499.69 48
SF-MVS98.59 2098.32 3099.41 1699.54 3598.71 1899.04 5098.81 7695.12 12399.32 1599.39 1496.22 2099.84 5297.72 5199.73 4399.67 58
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5299.09 4498.82 7096.58 6199.10 2799.32 3095.39 5499.82 6297.70 5499.63 6199.72 39
DP-MVS Recon97.86 6397.46 7499.06 5999.53 3698.35 4298.33 17398.89 4692.62 22898.05 8298.94 9295.34 5899.65 11996.04 12699.42 9299.19 129
SMA-MVS98.58 2398.25 3599.56 599.51 3899.04 1198.95 6898.80 8693.67 19199.37 1399.52 396.52 1799.89 3598.06 3399.81 1099.76 26
APD-MVScopyleft98.35 4498.00 5099.42 1599.51 3898.72 1798.80 10098.82 7094.52 15199.23 2099.25 4095.54 4899.80 7596.52 11199.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft98.58 2398.25 3599.55 699.50 4099.08 998.72 11798.66 12697.51 1698.15 7798.83 10395.70 4499.92 2197.53 6899.67 5499.66 62
APD-MVS_3200maxsize98.53 3298.33 2999.15 5299.50 4097.92 6599.15 3598.81 7696.24 7099.20 2299.37 2295.30 5999.80 7597.73 5099.67 5499.72 39
114514_t96.93 11396.27 12598.92 6799.50 4097.63 7398.85 8698.90 4484.80 32897.77 10499.11 6492.84 10399.66 11894.85 16399.77 2699.47 95
PAPM_NR97.46 8597.11 8898.50 9199.50 4096.41 12498.63 13398.60 13495.18 11997.06 13598.06 17794.26 8999.57 13093.80 19898.87 11799.52 82
testtj98.33 4897.95 5299.47 1199.49 4498.70 1998.83 9098.86 6195.48 10198.91 4299.17 5395.48 4999.93 1595.80 13599.53 8199.76 26
9.1498.06 4699.47 4598.71 11898.82 7094.36 15699.16 2499.29 3696.05 3299.81 6697.00 8399.71 50
ETH3D-3000-0.198.35 4498.00 5099.38 1799.47 4598.68 2098.67 12898.84 6594.66 14699.11 2699.25 4095.46 5099.81 6696.80 10299.73 4399.63 70
CDPH-MVS97.94 6097.49 7299.28 3599.47 4598.44 3097.91 22598.67 12392.57 23198.77 4898.85 10095.93 3899.72 10495.56 14599.69 5299.68 54
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 4898.38 3498.21 19098.52 15397.95 399.32 1599.39 1496.22 2099.84 5297.72 5199.73 4399.67 58
save fliter99.46 4898.38 3498.21 19098.71 10897.95 3
EI-MVSNet-Vis-set98.47 3698.39 1998.69 7699.46 4896.49 12098.30 18198.69 11297.21 3698.84 4399.36 2695.41 5399.78 9198.62 599.65 5899.80 9
EI-MVSNet-UG-set98.41 3998.34 2698.61 8199.45 5196.32 12898.28 18498.68 11597.17 3998.74 5099.37 2295.25 6299.79 8798.57 799.54 8099.73 36
F-COLMAP97.09 10996.80 10197.97 12799.45 5194.95 19098.55 14798.62 13393.02 21496.17 17398.58 12894.01 9299.81 6693.95 19398.90 11399.14 137
Regformer-398.59 2098.50 1498.86 7199.43 5397.05 9698.40 16798.68 11597.43 2099.06 2999.31 3295.80 4399.77 9698.62 599.76 3299.78 13
Regformer-498.64 1498.53 1198.99 6199.43 5397.37 8298.40 16798.79 8897.46 1999.09 2899.31 3295.86 4299.80 7598.64 399.76 3299.79 10
ETH3 D test640097.59 7997.01 9399.34 2399.40 5598.56 2498.20 19398.81 7691.63 26198.44 6898.85 10093.98 9499.82 6294.11 18999.69 5299.64 67
Regformer-198.66 1298.51 1399.12 5599.35 5697.81 6998.37 16998.76 9497.49 1799.20 2299.21 4596.08 2999.79 8798.42 2099.73 4399.75 28
Regformer-298.69 1198.52 1299.19 4399.35 5698.01 6198.37 16998.81 7697.48 1899.21 2199.21 4596.13 2799.80 7598.40 2299.73 4399.75 28
新几何199.16 5099.34 5898.01 6198.69 11290.06 29698.13 7898.95 9194.60 7899.89 3591.97 25099.47 8699.59 77
112197.37 9596.77 10899.16 5099.34 5897.99 6498.19 19798.68 11590.14 29598.01 9098.97 8494.80 7599.87 4493.36 21099.46 8999.61 72
DP-MVS96.59 12595.93 13598.57 8399.34 5896.19 13498.70 12298.39 17989.45 30494.52 20099.35 2891.85 12499.85 4992.89 22698.88 11599.68 54
SD-MVS98.64 1498.68 598.53 8999.33 6198.36 4198.90 7498.85 6497.28 2999.72 399.39 1496.63 1597.60 31398.17 2899.85 399.64 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HyFIR lowres test96.90 11596.49 11998.14 11699.33 6195.56 16297.38 26299.65 292.34 23997.61 11898.20 16889.29 17299.10 18196.97 8597.60 16699.77 20
OMC-MVS97.55 8397.34 8098.20 11399.33 6195.92 15098.28 18498.59 13695.52 10097.97 9399.10 6693.28 10099.49 14195.09 15998.88 11599.19 129
原ACMM198.65 7999.32 6496.62 11198.67 12393.27 20797.81 10398.97 8495.18 6499.83 5593.84 19699.46 8999.50 88
CNVR-MVS98.78 698.56 999.45 1499.32 6498.87 1598.47 15798.81 7697.72 698.76 4999.16 5897.05 1099.78 9198.06 3399.66 5799.69 48
TEST999.31 6698.50 2897.92 22398.73 10292.63 22797.74 10798.68 11796.20 2399.80 75
train_agg97.97 5597.52 6999.33 2799.31 6698.50 2897.92 22398.73 10292.98 21697.74 10798.68 11796.20 2399.80 7596.59 10899.57 7199.68 54
test_prior398.22 5397.90 5599.19 4399.31 6698.22 4997.80 23798.84 6596.12 7797.89 10198.69 11595.96 3699.70 11096.89 9299.60 6599.65 64
test_prior99.19 4399.31 6698.22 4998.84 6599.70 11099.65 64
PatchMatch-RL96.59 12596.03 13398.27 10799.31 6696.51 11997.91 22599.06 2293.72 18396.92 14298.06 17788.50 19699.65 11991.77 25499.00 11098.66 175
agg_prior197.95 5997.51 7199.28 3599.30 7198.38 3497.81 23698.72 10493.16 21097.57 12198.66 12096.14 2699.81 6696.63 10799.56 7699.66 62
agg_prior99.30 7198.38 3498.72 10497.57 12199.81 66
CHOSEN 1792x268897.12 10796.80 10198.08 12199.30 7194.56 20998.05 21399.71 193.57 19597.09 13198.91 9688.17 20299.89 3596.87 9899.56 7699.81 8
test_899.29 7498.44 3097.89 22998.72 10492.98 21697.70 11098.66 12096.20 2399.80 75
旧先验199.29 7497.48 7898.70 11199.09 7195.56 4699.47 8699.61 72
PLCcopyleft95.07 497.20 10396.78 10498.44 9699.29 7496.31 13098.14 20498.76 9492.41 23796.39 16898.31 15894.92 7299.78 9194.06 19198.77 12299.23 124
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
COLMAP_ROBcopyleft93.27 1295.33 18094.87 18096.71 19899.29 7493.24 25298.58 13998.11 22789.92 29893.57 24499.10 6686.37 23999.79 8790.78 26898.10 14997.09 220
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
NCCC98.61 1798.35 2499.38 1799.28 7898.61 2398.45 15898.76 9497.82 598.45 6798.93 9396.65 1499.83 5597.38 7399.41 9399.71 43
PVSNet_Blended_VisFu97.70 7197.46 7498.44 9699.27 7995.91 15198.63 13399.16 1794.48 15397.67 11298.88 9892.80 10499.91 3097.11 8099.12 10699.50 88
MVS_111021_LR98.34 4698.23 3998.67 7899.27 7996.90 10297.95 22299.58 397.14 4198.44 6899.01 8195.03 6999.62 12697.91 3899.75 3899.50 88
MSLP-MVS++98.56 2898.57 898.55 8599.26 8196.80 10598.71 11899.05 2497.28 2998.84 4399.28 3796.47 1899.40 15098.52 1399.70 5199.47 95
AllTest95.24 18494.65 18896.99 18199.25 8293.21 25398.59 13798.18 21391.36 26893.52 24698.77 11084.67 26499.72 10489.70 28697.87 15598.02 197
TestCases96.99 18199.25 8293.21 25398.18 21391.36 26893.52 24698.77 11084.67 26499.72 10489.70 28697.87 15598.02 197
PVSNet_BlendedMVS96.73 12096.60 11497.12 17599.25 8295.35 17298.26 18799.26 894.28 15797.94 9697.46 22692.74 10599.81 6696.88 9593.32 24296.20 305
PVSNet_Blended97.38 9497.12 8798.14 11699.25 8295.35 17297.28 27399.26 893.13 21197.94 9698.21 16792.74 10599.81 6696.88 9599.40 9599.27 121
DeepC-MVS95.98 397.88 6297.58 6498.77 7399.25 8296.93 10098.83 9098.75 9796.96 4996.89 14499.50 490.46 15599.87 4497.84 4599.76 3299.52 82
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast96.70 198.55 2998.34 2699.18 4799.25 8298.04 5998.50 15498.78 9097.72 698.92 4199.28 3795.27 6099.82 6297.55 6699.77 2699.69 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPU-MVS99.37 2099.24 8899.05 1099.02 5499.16 5897.81 299.37 15397.24 7699.73 4399.70 45
test22299.23 8997.17 9397.40 26098.66 12688.68 31098.05 8298.96 8994.14 9099.53 8199.61 72
TSAR-MVS + GP.98.38 4198.24 3898.81 7299.22 9097.25 9098.11 20998.29 19997.19 3898.99 3599.02 7796.22 2099.67 11798.52 1398.56 13199.51 86
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9098.43 3299.10 4398.87 5597.38 2499.35 1499.40 1397.78 399.87 4497.77 4899.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
MVS_111021_HR98.47 3698.34 2698.88 7099.22 9097.32 8397.91 22599.58 397.20 3798.33 7499.00 8295.99 3599.64 12198.05 3599.76 3299.69 48
testdata98.26 10999.20 9395.36 17098.68 11591.89 25398.60 6099.10 6694.44 8699.82 6294.27 18399.44 9199.58 79
PVSNet91.96 1896.35 13396.15 12996.96 18599.17 9492.05 26796.08 31798.68 11593.69 18797.75 10697.80 20288.86 18799.69 11594.26 18499.01 10999.15 135
test1299.18 4799.16 9598.19 5198.53 15198.07 8195.13 6699.72 10499.56 7699.63 70
AdaColmapbinary97.15 10696.70 10998.48 9399.16 9596.69 11098.01 21798.89 4694.44 15596.83 14598.68 11790.69 15299.76 9894.36 17999.29 10198.98 152
PHI-MVS98.34 4698.06 4699.18 4799.15 9798.12 5799.04 5099.09 2093.32 20498.83 4599.10 6696.54 1699.83 5597.70 5499.76 3299.59 77
TAPA-MVS93.98 795.35 17894.56 19297.74 14199.13 9894.83 19598.33 17398.64 13186.62 31796.29 17098.61 12394.00 9399.29 15880.00 33199.41 9399.09 141
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MG-MVS97.81 6597.60 6398.44 9699.12 9995.97 14397.75 24198.78 9096.89 5098.46 6499.22 4493.90 9599.68 11694.81 16699.52 8399.67 58
Anonymous2023121194.10 25393.26 26196.61 20899.11 10094.28 21799.01 5698.88 4986.43 31992.81 26997.57 22081.66 29298.68 22794.83 16489.02 29696.88 239
ETH3D cwj APD-0.1697.96 5697.52 6999.29 3199.05 10198.52 2698.33 17398.68 11593.18 20898.68 5499.13 6194.62 7799.83 5596.45 11399.55 7999.52 82
CNLPA97.45 8897.03 9298.73 7499.05 10197.44 8198.07 21198.53 15195.32 11296.80 14998.53 13293.32 9999.72 10494.31 18299.31 10099.02 148
DPM-MVS97.55 8396.99 9599.23 4299.04 10398.55 2597.17 28198.35 18594.85 13797.93 9898.58 12895.07 6899.71 10992.60 23099.34 9899.43 103
Anonymous2024052995.10 19294.22 20997.75 14099.01 10494.26 21998.87 8398.83 6985.79 32596.64 15398.97 8478.73 30999.85 4996.27 11894.89 21299.12 139
Anonymous20240521195.28 18294.49 19597.67 14899.00 10593.75 23398.70 12297.04 29790.66 28596.49 16498.80 10678.13 31299.83 5596.21 12195.36 21199.44 102
DELS-MVS98.40 4098.20 4198.99 6199.00 10597.66 7197.75 24198.89 4697.71 898.33 7498.97 8494.97 7099.88 4398.42 2099.76 3299.42 104
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepPCF-MVS96.37 297.93 6198.48 1796.30 23899.00 10589.54 30497.43 25998.87 5598.16 299.26 1899.38 2196.12 2899.64 12198.30 2699.77 2699.72 39
thres100view90095.38 17494.70 18697.41 16298.98 10894.92 19198.87 8396.90 30695.38 10796.61 15596.88 27684.29 26999.56 13288.11 30096.29 19597.76 202
thres600view795.49 16694.77 18297.67 14898.98 10895.02 18398.85 8696.90 30695.38 10796.63 15496.90 27584.29 26999.59 12888.65 29996.33 19398.40 186
tfpn200view995.32 18194.62 18997.43 16198.94 11094.98 18798.68 12596.93 30495.33 11096.55 15996.53 29284.23 27299.56 13288.11 30096.29 19597.76 202
thres40095.38 17494.62 18997.65 15198.94 11094.98 18798.68 12596.93 30495.33 11096.55 15996.53 29284.23 27299.56 13288.11 30096.29 19598.40 186
MSDG95.93 14895.30 16297.83 13498.90 11295.36 17096.83 30598.37 18291.32 27294.43 20798.73 11490.27 15999.60 12790.05 27998.82 12098.52 182
RPSCF94.87 20695.40 15193.26 31198.89 11382.06 33998.33 17398.06 24090.30 29296.56 15799.26 3987.09 22599.49 14193.82 19796.32 19498.24 192
VNet97.79 6797.40 7898.96 6598.88 11497.55 7698.63 13398.93 3796.74 5599.02 3198.84 10290.33 15899.83 5598.53 996.66 18299.50 88
LFMVS95.86 15194.98 17598.47 9498.87 11596.32 12898.84 8996.02 31993.40 20198.62 5899.20 4974.99 32799.63 12497.72 5197.20 17299.46 99
UA-Net97.96 5697.62 6198.98 6398.86 11697.47 7998.89 7899.08 2196.67 5898.72 5399.54 193.15 10199.81 6694.87 16298.83 11999.65 64
WTY-MVS97.37 9596.92 9898.72 7598.86 11696.89 10498.31 17998.71 10895.26 11597.67 11298.56 13192.21 11599.78 9195.89 13096.85 17799.48 93
IS-MVSNet97.22 10096.88 9998.25 11098.85 11896.36 12699.19 3197.97 24695.39 10697.23 12798.99 8391.11 14398.93 20194.60 17198.59 12999.47 95
VDD-MVS95.82 15495.23 16397.61 15398.84 11993.98 22598.68 12597.40 28295.02 12997.95 9499.34 2974.37 33199.78 9198.64 396.80 17899.08 144
CHOSEN 280x42097.18 10497.18 8697.20 16998.81 12093.27 25095.78 32499.15 1895.25 11696.79 15098.11 17492.29 11199.07 18498.56 899.85 399.25 123
thres20095.25 18394.57 19197.28 16798.81 12094.92 19198.20 19397.11 29395.24 11896.54 16196.22 30484.58 26699.53 13887.93 30496.50 18997.39 213
XVG-OURS-SEG-HR96.51 12896.34 12297.02 18098.77 12293.76 23197.79 23998.50 16195.45 10396.94 13999.09 7187.87 21299.55 13796.76 10595.83 20897.74 204
XVG-OURS96.55 12796.41 12096.99 18198.75 12393.76 23197.50 25698.52 15395.67 9396.83 14599.30 3588.95 18699.53 13895.88 13196.26 19997.69 207
test_yl97.22 10096.78 10498.54 8798.73 12496.60 11498.45 15898.31 19194.70 14098.02 8698.42 14390.80 14999.70 11096.81 10096.79 17999.34 108
DCV-MVSNet97.22 10096.78 10498.54 8798.73 12496.60 11498.45 15898.31 19194.70 14098.02 8698.42 14390.80 14999.70 11096.81 10096.79 17999.34 108
CANet98.05 5497.76 5898.90 6998.73 12497.27 8698.35 17198.78 9097.37 2697.72 10998.96 8991.53 13499.92 2198.79 299.65 5899.51 86
Vis-MVSNet (Re-imp)96.87 11696.55 11697.83 13498.73 12495.46 16799.20 2998.30 19794.96 13296.60 15698.87 9990.05 16198.59 23593.67 20298.60 12899.46 99
PAPR96.84 11796.24 12798.65 7998.72 12896.92 10197.36 26698.57 14293.33 20396.67 15297.57 22094.30 8899.56 13291.05 26598.59 12999.47 95
canonicalmvs97.67 7297.23 8498.98 6398.70 12998.38 3499.34 1198.39 17996.76 5497.67 11297.40 23292.26 11299.49 14198.28 2796.28 19899.08 144
API-MVS97.41 9297.25 8397.91 13098.70 12996.80 10598.82 9398.69 11294.53 14998.11 7998.28 16094.50 8499.57 13094.12 18899.49 8497.37 215
MAR-MVS96.91 11496.40 12198.45 9598.69 13196.90 10298.66 13198.68 11592.40 23897.07 13497.96 18491.54 13399.75 10093.68 20098.92 11298.69 171
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-MVSNAJ97.73 6997.77 5797.62 15298.68 13295.58 16097.34 26898.51 15697.29 2898.66 5697.88 19194.51 8199.90 3397.87 4299.17 10597.39 213
alignmvs97.56 8297.07 9199.01 6098.66 13398.37 4098.83 9098.06 24096.74 5598.00 9297.65 21290.80 14999.48 14598.37 2396.56 18699.19 129
Vis-MVSNetpermissive97.42 9197.11 8898.34 10498.66 13396.23 13199.22 2599.00 2796.63 6098.04 8499.21 4588.05 20799.35 15496.01 12899.21 10299.45 101
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPP-MVSNet97.46 8597.28 8297.99 12698.64 13595.38 16999.33 1398.31 19193.61 19497.19 12899.07 7494.05 9199.23 16396.89 9298.43 13999.37 107
ab-mvs96.42 13195.71 14398.55 8598.63 13696.75 10897.88 23098.74 9893.84 17696.54 16198.18 17085.34 25599.75 10095.93 12996.35 19299.15 135
PCF-MVS93.45 1194.68 21493.43 25698.42 9998.62 13796.77 10795.48 32698.20 20984.63 32993.34 25498.32 15788.55 19499.81 6684.80 32298.96 11198.68 172
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
xiu_mvs_v2_base97.66 7397.70 6097.56 15698.61 13895.46 16797.44 25798.46 16697.15 4098.65 5798.15 17194.33 8799.80 7597.84 4598.66 12797.41 211
sss97.39 9396.98 9698.61 8198.60 13996.61 11398.22 18998.93 3793.97 17098.01 9098.48 13791.98 12299.85 4996.45 11398.15 14799.39 105
Test_1112_low_res96.34 13495.66 14798.36 10398.56 14095.94 14697.71 24398.07 23692.10 24894.79 19597.29 23791.75 12699.56 13294.17 18696.50 18999.58 79
1112_ss96.63 12296.00 13498.50 9198.56 14096.37 12598.18 20198.10 22992.92 21994.84 19198.43 14192.14 11799.58 12994.35 18096.51 18899.56 81
BH-untuned95.95 14795.72 14096.65 20398.55 14292.26 26398.23 18897.79 25593.73 18294.62 19798.01 18188.97 18599.00 19293.04 22098.51 13398.68 172
LS3D97.16 10596.66 11398.68 7798.53 14397.19 9298.93 7198.90 4492.83 22495.99 17799.37 2292.12 11899.87 4493.67 20299.57 7198.97 153
CS-MVS97.81 6597.61 6298.41 10098.52 14497.15 9499.09 4498.55 14696.18 7397.61 11897.20 24494.59 7999.39 15197.62 5899.10 10798.70 169
baseline195.84 15295.12 16898.01 12598.49 14595.98 13898.73 11397.03 29895.37 10996.22 17198.19 16989.96 16399.16 16994.60 17187.48 31098.90 159
HY-MVS93.96 896.82 11896.23 12898.57 8398.46 14697.00 9798.14 20498.21 20793.95 17196.72 15197.99 18391.58 12999.76 9894.51 17696.54 18798.95 156
ETV-MVS97.96 5697.81 5698.40 10198.42 14797.27 8698.73 11398.55 14696.84 5198.38 7197.44 22995.39 5499.35 15497.62 5898.89 11498.58 181
tttt051796.07 14195.51 15097.78 13798.41 14894.84 19399.28 1694.33 33794.26 15997.64 11698.64 12284.05 27699.47 14695.34 15097.60 16699.03 147
EIA-MVS97.75 6897.58 6498.27 10798.38 14996.44 12299.01 5698.60 13495.88 8497.26 12697.53 22394.97 7099.33 15697.38 7399.20 10399.05 146
thisisatest053096.01 14495.36 15697.97 12798.38 14995.52 16598.88 8194.19 33994.04 16497.64 11698.31 15883.82 28399.46 14795.29 15497.70 16398.93 157
xiu_mvs_v1_base_debu97.60 7697.56 6697.72 14298.35 15195.98 13897.86 23298.51 15697.13 4299.01 3298.40 14591.56 13099.80 7598.53 998.68 12397.37 215
xiu_mvs_v1_base97.60 7697.56 6697.72 14298.35 15195.98 13897.86 23298.51 15697.13 4299.01 3298.40 14591.56 13099.80 7598.53 998.68 12397.37 215
xiu_mvs_v1_base_debi97.60 7697.56 6697.72 14298.35 15195.98 13897.86 23298.51 15697.13 4299.01 3298.40 14591.56 13099.80 7598.53 998.68 12397.37 215
baseline97.64 7497.44 7698.25 11098.35 15196.20 13299.00 5898.32 18996.33 6998.03 8599.17 5391.35 13799.16 16998.10 3198.29 14599.39 105
BH-w/o95.38 17495.08 17096.26 24098.34 15591.79 27197.70 24497.43 28092.87 22294.24 21797.22 24288.66 19098.84 21391.55 25897.70 16398.16 194
MVS_Test97.28 9897.00 9498.13 11898.33 15695.97 14398.74 10998.07 23694.27 15898.44 6898.07 17692.48 10799.26 15996.43 11598.19 14699.16 134
casdiffmvs97.63 7597.41 7798.28 10698.33 15696.14 13598.82 9398.32 18996.38 6797.95 9499.21 4591.23 14199.23 16398.12 3098.37 14099.48 93
diffmvs97.58 8097.40 7898.13 11898.32 15895.81 15598.06 21298.37 18296.20 7298.74 5098.89 9791.31 13999.25 16098.16 2998.52 13299.34 108
BH-RMVSNet95.92 14995.32 16097.69 14698.32 15894.64 20198.19 19797.45 27894.56 14896.03 17598.61 12385.02 25899.12 17590.68 27099.06 10899.30 117
Fast-Effi-MVS+96.28 13795.70 14498.03 12498.29 16095.97 14398.58 13998.25 20591.74 25695.29 18497.23 24191.03 14699.15 17292.90 22497.96 15298.97 153
UGNet96.78 11996.30 12498.19 11598.24 16195.89 15398.88 8198.93 3797.39 2396.81 14897.84 19682.60 28799.90 3396.53 11099.49 8498.79 164
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVSTER96.06 14295.72 14097.08 17898.23 16295.93 14998.73 11398.27 20094.86 13695.07 18598.09 17588.21 20098.54 23996.59 10893.46 23796.79 248
ET-MVSNet_ETH3D94.13 25092.98 26497.58 15498.22 16396.20 13297.31 27195.37 32694.53 14979.56 33597.63 21686.51 23497.53 31696.91 8990.74 27299.02 148
GBi-Net94.49 22993.80 23796.56 21698.21 16495.00 18498.82 9398.18 21392.46 23294.09 22497.07 25581.16 29397.95 29892.08 24492.14 25396.72 257
test194.49 22993.80 23796.56 21698.21 16495.00 18498.82 9398.18 21392.46 23294.09 22497.07 25581.16 29397.95 29892.08 24492.14 25396.72 257
FMVSNet294.47 23193.61 24997.04 17998.21 16496.43 12398.79 10498.27 20092.46 23293.50 24997.09 25281.16 29398.00 29691.09 26191.93 25796.70 261
Effi-MVS+97.12 10796.69 11098.39 10298.19 16796.72 10997.37 26498.43 17393.71 18497.65 11598.02 17992.20 11699.25 16096.87 9897.79 15899.19 129
mvs_anonymous96.70 12196.53 11897.18 17198.19 16793.78 23098.31 17998.19 21094.01 16794.47 20298.27 16392.08 12098.46 24697.39 7297.91 15399.31 114
LCM-MVSNet-Re95.22 18595.32 16094.91 28498.18 16987.85 32598.75 10695.66 32595.11 12488.96 31496.85 27990.26 16097.65 31195.65 14398.44 13799.22 125
FMVSNet394.97 20194.26 20897.11 17698.18 16996.62 11198.56 14598.26 20493.67 19194.09 22497.10 24884.25 27198.01 29492.08 24492.14 25396.70 261
CANet_DTU96.96 11296.55 11698.21 11298.17 17196.07 13797.98 22098.21 20797.24 3597.13 13098.93 9386.88 23099.91 3095.00 16199.37 9798.66 175
thisisatest051595.61 16594.89 17997.76 13998.15 17295.15 17996.77 30694.41 33592.95 21897.18 12997.43 23084.78 26399.45 14894.63 16897.73 16298.68 172
IterMVS-LS95.46 16795.21 16496.22 24198.12 17393.72 23698.32 17898.13 22493.71 18494.26 21597.31 23692.24 11398.10 28694.63 16890.12 27896.84 244
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl-mvsnet294.68 21494.19 21196.13 24598.11 17493.60 23896.94 29298.31 19192.43 23693.32 25596.87 27886.51 23498.28 27694.10 19091.16 26796.51 289
VDDNet95.36 17794.53 19397.86 13298.10 17595.13 18098.85 8697.75 25790.46 28898.36 7299.39 1473.27 33399.64 12197.98 3696.58 18598.81 163
MVSFormer97.57 8197.49 7297.84 13398.07 17695.76 15699.47 298.40 17794.98 13098.79 4698.83 10392.34 10998.41 25996.91 8999.59 6899.34 108
lupinMVS97.44 8997.22 8598.12 12098.07 17695.76 15697.68 24697.76 25694.50 15298.79 4698.61 12392.34 10999.30 15797.58 6299.59 6899.31 114
TAMVS97.02 11096.79 10397.70 14598.06 17895.31 17498.52 14998.31 19193.95 17197.05 13698.61 12393.49 9798.52 24195.33 15197.81 15799.29 119
CDS-MVSNet96.99 11196.69 11097.90 13198.05 17995.98 13898.20 19398.33 18893.67 19196.95 13898.49 13693.54 9698.42 25295.24 15797.74 16199.31 114
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ADS-MVSNet294.58 22394.40 20495.11 27998.00 18088.74 31596.04 31897.30 28590.15 29396.47 16596.64 28987.89 21097.56 31590.08 27797.06 17399.02 148
ADS-MVSNet95.00 19794.45 20096.63 20698.00 18091.91 26996.04 31897.74 25890.15 29396.47 16596.64 28987.89 21098.96 19690.08 27797.06 17399.02 148
IterMVS94.09 25493.85 23594.80 29097.99 18290.35 29697.18 27998.12 22593.68 18992.46 28397.34 23384.05 27697.41 31892.51 23791.33 26396.62 270
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PVSNet_088.72 1991.28 29090.03 29495.00 28297.99 18287.29 32894.84 33198.50 16192.06 24989.86 30895.19 31979.81 30399.39 15192.27 24169.79 34198.33 190
IterMVS-SCA-FT94.11 25293.87 23394.85 28797.98 18490.56 29497.18 27998.11 22793.75 17992.58 27797.48 22583.97 27897.41 31892.48 23991.30 26496.58 274
EI-MVSNet95.96 14695.83 13896.36 23497.93 18593.70 23798.12 20798.27 20093.70 18695.07 18599.02 7792.23 11498.54 23994.68 16793.46 23796.84 244
CVMVSNet95.43 17096.04 13293.57 30797.93 18583.62 33498.12 20798.59 13695.68 9296.56 15799.02 7787.51 21897.51 31793.56 20697.44 16899.60 75
PMMVS96.60 12396.33 12397.41 16297.90 18793.93 22697.35 26798.41 17592.84 22397.76 10597.45 22891.10 14499.20 16696.26 11997.91 15399.11 140
Effi-MVS+-dtu96.29 13596.56 11595.51 26697.89 18890.22 29798.80 10098.10 22996.57 6296.45 16796.66 28690.81 14798.91 20395.72 13897.99 15197.40 212
mvs-test196.60 12396.68 11296.37 23397.89 18891.81 27098.56 14598.10 22996.57 6296.52 16397.94 18690.81 14799.45 14895.72 13898.01 15097.86 201
QAPM96.29 13595.40 15198.96 6597.85 19097.60 7599.23 2198.93 3789.76 29993.11 26399.02 7789.11 17899.93 1591.99 24999.62 6399.34 108
3Dnovator+94.38 697.43 9096.78 10499.38 1797.83 19198.52 2699.37 798.71 10897.09 4592.99 26699.13 6189.36 17099.89 3596.97 8599.57 7199.71 43
ACMH+92.99 1494.30 23993.77 24095.88 25697.81 19292.04 26898.71 11898.37 18293.99 16990.60 30598.47 13880.86 29899.05 18592.75 22892.40 25296.55 280
3Dnovator94.51 597.46 8596.93 9799.07 5897.78 19397.64 7299.35 1099.06 2297.02 4793.75 24099.16 5889.25 17399.92 2197.22 7799.75 3899.64 67
miper_lstm_enhance94.33 23794.07 21995.11 27997.75 19490.97 28697.22 27698.03 24391.67 26092.76 27196.97 26890.03 16297.78 30992.51 23789.64 28496.56 278
cl_fuxian94.79 20994.43 20295.89 25597.75 19493.12 25697.16 28298.03 24392.23 24493.46 25197.05 26091.39 13598.01 29493.58 20589.21 29296.53 283
TR-MVS94.94 20494.20 21097.17 17297.75 19494.14 22297.59 25297.02 30092.28 24395.75 17997.64 21483.88 28098.96 19689.77 28396.15 20398.40 186
Fast-Effi-MVS+-dtu95.87 15095.85 13795.91 25397.74 19791.74 27498.69 12498.15 22195.56 9894.92 18997.68 21188.98 18498.79 21993.19 21597.78 15997.20 219
MIMVSNet93.26 27192.21 27796.41 23197.73 19893.13 25595.65 32597.03 29891.27 27694.04 22796.06 30775.33 32597.19 32186.56 31096.23 20198.92 158
miper_ehance_all_eth95.01 19694.69 18795.97 25097.70 19993.31 24997.02 28898.07 23692.23 24493.51 24896.96 27091.85 12498.15 28293.68 20091.16 26796.44 296
SCA95.46 16795.13 16796.46 22897.67 20091.29 28297.33 26997.60 26394.68 14396.92 14297.10 24883.97 27898.89 20792.59 23298.32 14499.20 126
ACMP93.49 1095.34 17994.98 17596.43 23097.67 20093.48 24298.73 11398.44 17094.94 13592.53 27998.53 13284.50 26899.14 17395.48 14894.00 22696.66 267
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
eth_miper_zixun_eth94.68 21494.41 20395.47 26897.64 20291.71 27596.73 30998.07 23692.71 22693.64 24197.21 24390.54 15498.17 28193.38 20889.76 28296.54 281
ACMH92.88 1694.55 22593.95 22896.34 23697.63 20393.26 25198.81 9998.49 16593.43 20089.74 30998.53 13281.91 29099.08 18393.69 19993.30 24396.70 261
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMM93.85 995.69 16095.38 15596.61 20897.61 20493.84 22998.91 7398.44 17095.25 11694.28 21498.47 13886.04 24699.12 17595.50 14793.95 22896.87 241
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Patchmatch-test94.42 23393.68 24796.63 20697.60 20591.76 27294.83 33297.49 27589.45 30494.14 22297.10 24888.99 18198.83 21585.37 32098.13 14899.29 119
RRT_test8_iter0594.56 22494.19 21195.67 26397.60 20591.34 27898.93 7198.42 17494.75 13993.39 25297.87 19279.00 30898.61 23196.78 10490.99 27097.07 221
cl-mvsnet_94.51 22894.01 22396.02 24797.58 20793.40 24697.05 28697.96 24891.73 25892.76 27197.08 25489.06 18098.13 28492.61 22990.29 27796.52 286
tpm cat193.36 26692.80 26795.07 28197.58 20787.97 32396.76 30797.86 25382.17 33393.53 24596.04 30886.13 24299.13 17489.24 29495.87 20798.10 195
MVS-HIRNet89.46 30388.40 30392.64 31397.58 20782.15 33894.16 33793.05 34475.73 33990.90 30182.52 34079.42 30598.33 26783.53 32498.68 12397.43 210
PatchmatchNetpermissive95.71 15895.52 14996.29 23997.58 20790.72 29196.84 30497.52 27194.06 16397.08 13296.96 27089.24 17498.90 20692.03 24898.37 14099.26 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cl-mvsnet194.52 22794.03 22095.99 24897.57 21193.38 24797.05 28697.94 24991.74 25692.81 26997.10 24889.12 17798.07 29092.60 23090.30 27696.53 283
tpmrst95.63 16295.69 14595.44 27097.54 21288.54 31896.97 29097.56 26593.50 19797.52 12396.93 27489.49 16699.16 16995.25 15696.42 19198.64 177
FMVSNet193.19 27492.07 27896.56 21697.54 21295.00 18498.82 9398.18 21390.38 29192.27 28697.07 25573.68 33297.95 29889.36 29391.30 26496.72 257
miper_enhance_ethall95.10 19294.75 18496.12 24697.53 21493.73 23596.61 31298.08 23492.20 24793.89 23296.65 28892.44 10898.30 27294.21 18591.16 26796.34 299
CLD-MVS95.62 16395.34 15796.46 22897.52 21593.75 23397.27 27498.46 16695.53 9994.42 20898.00 18286.21 24198.97 19396.25 12094.37 21396.66 267
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MDTV_nov1_ep1395.40 15197.48 21688.34 32096.85 30397.29 28693.74 18197.48 12497.26 23889.18 17599.05 18591.92 25197.43 169
IB-MVS91.98 1793.27 27091.97 28097.19 17097.47 21793.41 24597.09 28595.99 32093.32 20492.47 28295.73 31278.06 31399.53 13894.59 17382.98 32898.62 178
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS_030492.81 27892.01 27995.23 27497.46 21891.33 28098.17 20298.81 7691.13 28193.80 23895.68 31766.08 34098.06 29190.79 26796.13 20496.32 302
tpmvs94.60 22094.36 20595.33 27397.46 21888.60 31796.88 30197.68 25991.29 27493.80 23896.42 29788.58 19199.24 16291.06 26396.04 20698.17 193
LPG-MVS_test95.62 16395.34 15796.47 22597.46 21893.54 24098.99 6098.54 14994.67 14494.36 21098.77 11085.39 25299.11 17895.71 14094.15 22196.76 252
LGP-MVS_train96.47 22597.46 21893.54 24098.54 14994.67 14494.36 21098.77 11085.39 25299.11 17895.71 14094.15 22196.76 252
jason97.32 9797.08 9098.06 12397.45 22295.59 15997.87 23197.91 25194.79 13898.55 6298.83 10391.12 14299.23 16397.58 6299.60 6599.34 108
jason: jason.
HQP_MVS96.14 14095.90 13696.85 19297.42 22394.60 20798.80 10098.56 14497.28 2995.34 18198.28 16087.09 22599.03 18996.07 12394.27 21596.92 230
plane_prior797.42 22394.63 202
ITE_SJBPF95.44 27097.42 22391.32 28197.50 27395.09 12793.59 24298.35 15181.70 29198.88 20989.71 28593.39 24196.12 307
LTVRE_ROB92.95 1594.60 22093.90 23196.68 20297.41 22694.42 21298.52 14998.59 13691.69 25991.21 29898.35 15184.87 26199.04 18891.06 26393.44 24096.60 272
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
plane_prior197.37 227
plane_prior697.35 22894.61 20587.09 225
DWT-MVSNet_test94.82 20794.36 20596.20 24297.35 22890.79 28998.34 17296.57 31892.91 22095.33 18396.44 29682.00 28999.12 17594.52 17595.78 20998.70 169
dp94.15 24993.90 23194.90 28597.31 23086.82 33096.97 29097.19 29291.22 27896.02 17696.61 29185.51 25199.02 19190.00 28194.30 21498.85 160
NP-MVS97.28 23194.51 21097.73 205
CostFormer94.95 20294.73 18595.60 26597.28 23189.06 31197.53 25596.89 30889.66 30196.82 14796.72 28486.05 24498.95 20095.53 14696.13 20498.79 164
VPA-MVSNet95.75 15695.11 16997.69 14697.24 23397.27 8698.94 7099.23 1295.13 12295.51 18097.32 23585.73 24898.91 20397.33 7589.55 28796.89 238
tpm294.19 24693.76 24295.46 26997.23 23489.04 31297.31 27196.85 31187.08 31696.21 17296.79 28283.75 28498.74 22292.43 24096.23 20198.59 179
EPMVS94.99 19894.48 19696.52 22197.22 23591.75 27397.23 27591.66 34594.11 16197.28 12596.81 28185.70 24998.84 21393.04 22097.28 17198.97 153
FMVSNet591.81 28590.92 28794.49 29697.21 23692.09 26598.00 21997.55 26989.31 30690.86 30295.61 31874.48 32995.32 33685.57 31789.70 28396.07 309
HQP-NCC97.20 23798.05 21396.43 6494.45 203
ACMP_Plane97.20 23798.05 21396.43 6494.45 203
HQP-MVS95.72 15795.40 15196.69 20197.20 23794.25 22098.05 21398.46 16696.43 6494.45 20397.73 20586.75 23198.96 19695.30 15294.18 21996.86 243
UniMVSNet_ETH3D94.24 24393.33 25896.97 18497.19 24093.38 24798.74 10998.57 14291.21 27993.81 23798.58 12872.85 33498.77 22195.05 16093.93 22998.77 166
OpenMVScopyleft93.04 1395.83 15395.00 17398.32 10597.18 24197.32 8399.21 2898.97 3089.96 29791.14 29999.05 7686.64 23399.92 2193.38 20899.47 8697.73 205
VPNet94.99 19894.19 21197.40 16497.16 24296.57 11698.71 11898.97 3095.67 9394.84 19198.24 16680.36 30198.67 22896.46 11287.32 31396.96 227
GA-MVS94.81 20894.03 22097.14 17397.15 24393.86 22896.76 30797.58 26494.00 16894.76 19697.04 26180.91 29698.48 24391.79 25396.25 20099.09 141
FIs96.51 12896.12 13097.67 14897.13 24497.54 7799.36 899.22 1495.89 8394.03 22898.35 15191.98 12298.44 24996.40 11692.76 24997.01 224
131496.25 13995.73 13997.79 13697.13 24495.55 16498.19 19798.59 13693.47 19892.03 29197.82 20091.33 13899.49 14194.62 17098.44 13798.32 191
D2MVS95.18 18895.08 17095.48 26797.10 24692.07 26698.30 18199.13 1994.02 16692.90 26796.73 28389.48 16798.73 22394.48 17793.60 23695.65 317
DeepMVS_CXcopyleft86.78 32297.09 24772.30 34495.17 33075.92 33884.34 33195.19 31970.58 33595.35 33579.98 33289.04 29592.68 337
RRT_MVS96.04 14395.53 14897.56 15697.07 24897.32 8398.57 14498.09 23295.15 12195.02 18798.44 14088.20 20198.58 23796.17 12293.09 24696.79 248
PAPM94.95 20294.00 22497.78 13797.04 24995.65 15896.03 32098.25 20591.23 27794.19 22097.80 20291.27 14098.86 21282.61 32697.61 16598.84 162
CR-MVSNet94.76 21194.15 21596.59 21197.00 25093.43 24394.96 32897.56 26592.46 23296.93 14096.24 30088.15 20397.88 30687.38 30696.65 18398.46 184
RPMNet92.52 28191.17 28596.59 21197.00 25093.43 24394.96 32897.26 28982.27 33296.93 14092.12 33486.98 22897.88 30676.32 33996.65 18398.46 184
UniMVSNet (Re)95.78 15595.19 16597.58 15496.99 25297.47 7998.79 10499.18 1695.60 9693.92 23197.04 26191.68 12798.48 24395.80 13587.66 30996.79 248
FC-MVSNet-test96.42 13196.05 13197.53 15896.95 25397.27 8699.36 899.23 1295.83 8693.93 23098.37 14992.00 12198.32 26896.02 12792.72 25097.00 225
tfpnnormal93.66 26292.70 27096.55 21996.94 25495.94 14698.97 6499.19 1591.04 28291.38 29797.34 23384.94 26098.61 23185.45 31989.02 29695.11 321
TESTMET0.1,194.18 24893.69 24695.63 26496.92 25589.12 31096.91 29594.78 33293.17 20994.88 19096.45 29578.52 31098.92 20293.09 21798.50 13498.85 160
TinyColmap92.31 28391.53 28394.65 29496.92 25589.75 30096.92 29396.68 31590.45 28989.62 31097.85 19576.06 32398.81 21786.74 30992.51 25195.41 318
cascas94.63 21993.86 23496.93 18896.91 25794.27 21896.00 32198.51 15685.55 32694.54 19996.23 30284.20 27498.87 21095.80 13596.98 17697.66 208
nrg03096.28 13795.72 14097.96 12996.90 25898.15 5599.39 598.31 19195.47 10294.42 20898.35 15192.09 11998.69 22497.50 6989.05 29497.04 223
MVS94.67 21793.54 25298.08 12196.88 25996.56 11798.19 19798.50 16178.05 33792.69 27498.02 17991.07 14599.63 12490.09 27698.36 14298.04 196
WR-MVS_H95.05 19594.46 19896.81 19496.86 26095.82 15499.24 2099.24 1093.87 17592.53 27996.84 28090.37 15698.24 27893.24 21387.93 30696.38 298
UniMVSNet_NR-MVSNet95.71 15895.15 16697.40 16496.84 26196.97 9898.74 10999.24 1095.16 12093.88 23397.72 20791.68 12798.31 27095.81 13387.25 31496.92 230
USDC93.33 26992.71 26995.21 27596.83 26290.83 28896.91 29597.50 27393.84 17690.72 30398.14 17277.69 31598.82 21689.51 29093.21 24595.97 311
test-LLR95.10 19294.87 18095.80 25896.77 26389.70 30196.91 29595.21 32795.11 12494.83 19395.72 31487.71 21498.97 19393.06 21898.50 13498.72 167
test-mter94.08 25593.51 25395.80 25896.77 26389.70 30196.91 29595.21 32792.89 22194.83 19395.72 31477.69 31598.97 19393.06 21898.50 13498.72 167
Patchmtry93.22 27292.35 27595.84 25796.77 26393.09 25794.66 33397.56 26587.37 31592.90 26796.24 30088.15 20397.90 30287.37 30790.10 27996.53 283
gg-mvs-nofinetune92.21 28490.58 29097.13 17496.75 26695.09 18195.85 32289.40 34885.43 32794.50 20181.98 34180.80 29998.40 26592.16 24298.33 14397.88 199
XXY-MVS95.20 18794.45 20097.46 15996.75 26696.56 11798.86 8598.65 13093.30 20693.27 25698.27 16384.85 26298.87 21094.82 16591.26 26696.96 227
CP-MVSNet94.94 20494.30 20796.83 19396.72 26895.56 16299.11 4298.95 3493.89 17392.42 28497.90 18987.19 22498.12 28594.32 18188.21 30396.82 247
PatchT93.06 27691.97 28096.35 23596.69 26992.67 26094.48 33497.08 29486.62 31797.08 13292.23 33387.94 20997.90 30278.89 33596.69 18198.49 183
PS-CasMVS94.67 21793.99 22696.71 19896.68 27095.26 17599.13 3999.03 2593.68 18992.33 28597.95 18585.35 25498.10 28693.59 20488.16 30596.79 248
WR-MVS95.15 18994.46 19897.22 16896.67 27196.45 12198.21 19098.81 7694.15 16093.16 25997.69 20887.51 21898.30 27295.29 15488.62 30096.90 237
baseline295.11 19194.52 19496.87 19196.65 27293.56 23998.27 18694.10 34193.45 19992.02 29297.43 23087.45 22299.19 16793.88 19597.41 17097.87 200
test_040291.32 28990.27 29294.48 29796.60 27391.12 28498.50 15497.22 29186.10 32288.30 31796.98 26777.65 31797.99 29778.13 33792.94 24894.34 327
TransMVSNet (Re)92.67 27991.51 28496.15 24396.58 27494.65 20098.90 7496.73 31290.86 28489.46 31297.86 19385.62 25098.09 28886.45 31181.12 33395.71 315
XVG-ACMP-BASELINE94.54 22694.14 21695.75 26196.55 27591.65 27698.11 20998.44 17094.96 13294.22 21897.90 18979.18 30799.11 17894.05 19293.85 23096.48 293
DU-MVS95.42 17194.76 18397.40 16496.53 27696.97 9898.66 13198.99 2995.43 10493.88 23397.69 20888.57 19298.31 27095.81 13387.25 31496.92 230
NR-MVSNet94.98 20094.16 21497.44 16096.53 27697.22 9198.74 10998.95 3494.96 13289.25 31397.69 20889.32 17198.18 28094.59 17387.40 31296.92 230
tpm94.13 25093.80 23795.12 27896.50 27887.91 32497.44 25795.89 32492.62 22896.37 16996.30 29984.13 27598.30 27293.24 21391.66 26199.14 137
pm-mvs193.94 26093.06 26396.59 21196.49 27995.16 17798.95 6898.03 24392.32 24191.08 30097.84 19684.54 26798.41 25992.16 24286.13 32596.19 306
JIA-IIPM93.35 26792.49 27395.92 25296.48 28090.65 29295.01 32796.96 30285.93 32396.08 17487.33 33887.70 21698.78 22091.35 26095.58 21098.34 189
TranMVSNet+NR-MVSNet95.14 19094.48 19697.11 17696.45 28196.36 12699.03 5299.03 2595.04 12893.58 24397.93 18788.27 19998.03 29394.13 18786.90 31996.95 229
testgi93.06 27692.45 27494.88 28696.43 28289.90 29898.75 10697.54 27095.60 9691.63 29697.91 18874.46 33097.02 32386.10 31393.67 23297.72 206
v1094.29 24093.55 25196.51 22296.39 28394.80 19798.99 6098.19 21091.35 27093.02 26596.99 26688.09 20598.41 25990.50 27288.41 30296.33 301
v894.47 23193.77 24096.57 21596.36 28494.83 19599.05 4998.19 21091.92 25293.16 25996.97 26888.82 18998.48 24391.69 25687.79 30796.39 297
GG-mvs-BLEND96.59 21196.34 28594.98 18796.51 31588.58 34993.10 26494.34 32580.34 30298.05 29289.53 28996.99 17596.74 254
V4294.78 21094.14 21696.70 20096.33 28695.22 17698.97 6498.09 23292.32 24194.31 21397.06 25888.39 19798.55 23892.90 22488.87 29896.34 299
PEN-MVS94.42 23393.73 24496.49 22396.28 28794.84 19399.17 3399.00 2793.51 19692.23 28797.83 19986.10 24397.90 30292.55 23586.92 31896.74 254
v114494.59 22293.92 22996.60 21096.21 28894.78 19998.59 13798.14 22391.86 25594.21 21997.02 26387.97 20898.41 25991.72 25589.57 28596.61 271
Baseline_NR-MVSNet94.35 23693.81 23695.96 25196.20 28994.05 22498.61 13696.67 31691.44 26693.85 23597.60 21788.57 19298.14 28394.39 17886.93 31795.68 316
MS-PatchMatch93.84 26193.63 24894.46 29996.18 29089.45 30597.76 24098.27 20092.23 24492.13 28997.49 22479.50 30498.69 22489.75 28499.38 9695.25 319
v2v48294.69 21294.03 22096.65 20396.17 29194.79 19898.67 12898.08 23492.72 22594.00 22997.16 24687.69 21798.45 24792.91 22388.87 29896.72 257
EPNet_dtu95.21 18694.95 17795.99 24896.17 29190.45 29598.16 20397.27 28896.77 5393.14 26298.33 15690.34 15798.42 25285.57 31798.81 12199.09 141
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS95.69 16095.33 15996.76 19696.16 29394.63 20298.43 16398.39 17996.64 5995.02 18798.78 10885.15 25799.05 18595.21 15894.20 21896.60 272
v119294.32 23893.58 25096.53 22096.10 29494.45 21198.50 15498.17 21891.54 26394.19 22097.06 25886.95 22998.43 25190.14 27589.57 28596.70 261
v14894.29 24093.76 24295.91 25396.10 29492.93 25898.58 13997.97 24692.59 23093.47 25096.95 27288.53 19598.32 26892.56 23487.06 31696.49 292
v14419294.39 23593.70 24596.48 22496.06 29694.35 21698.58 13998.16 22091.45 26594.33 21297.02 26387.50 22098.45 24791.08 26289.11 29396.63 269
DTE-MVSNet93.98 25993.26 26196.14 24496.06 29694.39 21499.20 2998.86 6193.06 21291.78 29397.81 20185.87 24797.58 31490.53 27186.17 32396.46 295
v124094.06 25793.29 26096.34 23696.03 29893.90 22798.44 16198.17 21891.18 28094.13 22397.01 26586.05 24498.42 25289.13 29689.50 28896.70 261
v192192094.20 24593.47 25596.40 23295.98 29994.08 22398.52 14998.15 22191.33 27194.25 21697.20 24486.41 23898.42 25290.04 28089.39 29096.69 266
EU-MVSNet93.66 26294.14 21692.25 31695.96 30083.38 33598.52 14998.12 22594.69 14292.61 27698.13 17387.36 22396.39 33391.82 25290.00 28096.98 226
v7n94.19 24693.43 25696.47 22595.90 30194.38 21599.26 1898.34 18791.99 25092.76 27197.13 24788.31 19898.52 24189.48 29187.70 30896.52 286
gm-plane-assit95.88 30287.47 32689.74 30096.94 27399.19 16793.32 212
LF4IMVS93.14 27592.79 26894.20 30295.88 30288.67 31697.66 24897.07 29593.81 17891.71 29497.65 21277.96 31498.81 21791.47 25991.92 25895.12 320
PS-MVSNAJss96.43 13096.26 12696.92 19095.84 30495.08 18299.16 3498.50 16195.87 8593.84 23698.34 15594.51 8198.61 23196.88 9593.45 23997.06 222
pmmvs494.69 21293.99 22696.81 19495.74 30595.94 14697.40 26097.67 26090.42 29093.37 25397.59 21889.08 17998.20 27992.97 22291.67 26096.30 303
test_djsdf96.00 14595.69 14596.93 18895.72 30695.49 16699.47 298.40 17794.98 13094.58 19897.86 19389.16 17698.41 25996.91 8994.12 22396.88 239
SixPastTwentyTwo93.34 26892.86 26694.75 29195.67 30789.41 30798.75 10696.67 31693.89 17390.15 30798.25 16580.87 29798.27 27790.90 26690.64 27396.57 276
K. test v392.55 28091.91 28294.48 29795.64 30889.24 30899.07 4794.88 33194.04 16486.78 32297.59 21877.64 31897.64 31292.08 24489.43 28996.57 276
OurMVSNet-221017-094.21 24494.00 22494.85 28795.60 30989.22 30998.89 7897.43 28095.29 11392.18 28898.52 13582.86 28698.59 23593.46 20791.76 25996.74 254
mvs_tets95.41 17395.00 17396.65 20395.58 31094.42 21299.00 5898.55 14695.73 9093.21 25898.38 14883.45 28598.63 23097.09 8194.00 22696.91 235
Gipumacopyleft78.40 31176.75 31383.38 32695.54 31180.43 34079.42 34697.40 28264.67 34273.46 33980.82 34245.65 34693.14 34166.32 34287.43 31176.56 344
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test0.0.03 194.08 25593.51 25395.80 25895.53 31292.89 25997.38 26295.97 32195.11 12492.51 28196.66 28687.71 21496.94 32487.03 30893.67 23297.57 209
pmmvs593.65 26492.97 26595.68 26295.49 31392.37 26298.20 19397.28 28789.66 30192.58 27797.26 23882.14 28898.09 28893.18 21690.95 27196.58 274
N_pmnet87.12 30887.77 30685.17 32595.46 31461.92 34897.37 26470.66 35485.83 32488.73 31696.04 30885.33 25697.76 31080.02 33090.48 27495.84 313
our_test_393.65 26493.30 25994.69 29295.45 31589.68 30396.91 29597.65 26191.97 25191.66 29596.88 27689.67 16597.93 30188.02 30391.49 26296.48 293
ppachtmachnet_test93.22 27292.63 27194.97 28395.45 31590.84 28796.88 30197.88 25290.60 28692.08 29097.26 23888.08 20697.86 30885.12 32190.33 27596.22 304
jajsoiax95.45 16995.03 17296.73 19795.42 31794.63 20299.14 3698.52 15395.74 8993.22 25798.36 15083.87 28198.65 22996.95 8894.04 22496.91 235
MDA-MVSNet-bldmvs89.97 30088.35 30494.83 28995.21 31891.34 27897.64 24997.51 27288.36 31171.17 34296.13 30679.22 30696.63 33083.65 32386.27 32296.52 286
anonymousdsp95.42 17194.91 17896.94 18795.10 31995.90 15299.14 3698.41 17593.75 17993.16 25997.46 22687.50 22098.41 25995.63 14494.03 22596.50 291
EPNet97.28 9896.87 10098.51 9094.98 32096.14 13598.90 7497.02 30098.28 195.99 17799.11 6491.36 13699.89 3596.98 8499.19 10499.50 88
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVP-Stereo94.28 24293.92 22995.35 27294.95 32192.60 26197.97 22197.65 26191.61 26290.68 30497.09 25286.32 24098.42 25289.70 28699.34 9895.02 324
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
lessismore_v094.45 30094.93 32288.44 31991.03 34686.77 32397.64 21476.23 32298.42 25290.31 27485.64 32696.51 289
MDA-MVSNet_test_wron90.71 29589.38 29994.68 29394.83 32390.78 29097.19 27897.46 27687.60 31372.41 34195.72 31486.51 23496.71 32885.92 31586.80 32096.56 278
YYNet190.70 29689.39 29894.62 29594.79 32490.65 29297.20 27797.46 27687.54 31472.54 34095.74 31186.51 23496.66 32986.00 31486.76 32196.54 281
EG-PatchMatch MVS91.13 29190.12 29394.17 30494.73 32589.00 31398.13 20697.81 25489.22 30785.32 32996.46 29467.71 33798.42 25287.89 30593.82 23195.08 322
pmmvs691.77 28690.63 28995.17 27794.69 32691.24 28398.67 12897.92 25086.14 32189.62 31097.56 22275.79 32498.34 26690.75 26984.56 32795.94 312
new_pmnet90.06 29989.00 30193.22 31294.18 32788.32 32196.42 31696.89 30886.19 32085.67 32893.62 32677.18 32097.10 32281.61 32889.29 29194.23 328
DSMNet-mixed92.52 28192.58 27292.33 31594.15 32882.65 33798.30 18194.26 33889.08 30892.65 27595.73 31285.01 25995.76 33486.24 31297.76 16098.59 179
UnsupCasMVSNet_eth90.99 29389.92 29594.19 30394.08 32989.83 29997.13 28498.67 12393.69 18785.83 32796.19 30575.15 32696.74 32589.14 29579.41 33596.00 310
Anonymous2023120691.66 28791.10 28693.33 30994.02 33087.35 32798.58 13997.26 28990.48 28790.16 30696.31 29883.83 28296.53 33179.36 33389.90 28196.12 307
test20.0390.89 29490.38 29192.43 31493.48 33188.14 32298.33 17397.56 26593.40 20187.96 31896.71 28580.69 30094.13 34079.15 33486.17 32395.01 325
CMPMVSbinary66.06 2189.70 30189.67 29789.78 32093.19 33276.56 34197.00 28998.35 18580.97 33481.57 33497.75 20474.75 32898.61 23189.85 28293.63 23494.17 329
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OpenMVS_ROBcopyleft86.42 2089.00 30487.43 30893.69 30693.08 33389.42 30697.91 22596.89 30878.58 33685.86 32694.69 32369.48 33698.29 27577.13 33893.29 24493.36 336
MIMVSNet189.67 30288.28 30593.82 30592.81 33491.08 28598.01 21797.45 27887.95 31287.90 31995.87 31067.63 33894.56 33978.73 33688.18 30495.83 314
UnsupCasMVSNet_bld87.17 30785.12 31093.31 31091.94 33588.77 31494.92 33098.30 19784.30 33082.30 33390.04 33563.96 34297.25 32085.85 31674.47 34093.93 334
Patchmatch-RL test91.49 28890.85 28893.41 30891.37 33684.40 33292.81 33895.93 32391.87 25487.25 32094.87 32288.99 18196.53 33192.54 23682.00 33099.30 117
pmmvs-eth3d90.36 29889.05 30094.32 30191.10 33792.12 26497.63 25196.95 30388.86 30984.91 33093.13 32878.32 31196.74 32588.70 29881.81 33294.09 331
PM-MVS87.77 30686.55 30991.40 31991.03 33883.36 33696.92 29395.18 32991.28 27586.48 32593.42 32753.27 34496.74 32589.43 29281.97 33194.11 330
new-patchmatchnet88.50 30587.45 30791.67 31890.31 33985.89 33197.16 28297.33 28489.47 30383.63 33292.77 32976.38 32195.06 33882.70 32577.29 33794.06 332
testing_290.61 29788.50 30296.95 18690.08 34095.57 16197.69 24598.06 24093.02 21476.55 33692.48 33261.18 34398.44 24995.45 14991.98 25696.84 244
pmmvs386.67 30984.86 31192.11 31788.16 34187.19 32996.63 31194.75 33379.88 33587.22 32192.75 33066.56 33995.20 33781.24 32976.56 33893.96 333
ambc89.49 32186.66 34275.78 34292.66 33996.72 31386.55 32492.50 33146.01 34597.90 30290.32 27382.09 32994.80 326
TDRefinement91.06 29289.68 29695.21 27585.35 34391.49 27798.51 15397.07 29591.47 26488.83 31597.84 19677.31 31999.09 18292.79 22777.98 33695.04 323
PMMVS277.95 31275.44 31585.46 32482.54 34474.95 34394.23 33693.08 34372.80 34074.68 33887.38 33736.36 35091.56 34373.95 34063.94 34289.87 338
E-PMN64.94 31764.25 31867.02 33282.28 34559.36 35191.83 34185.63 35052.69 34560.22 34577.28 34441.06 34880.12 34846.15 34641.14 34461.57 346
EMVS64.07 31863.26 32066.53 33381.73 34658.81 35291.85 34084.75 35151.93 34759.09 34675.13 34543.32 34779.09 34942.03 34739.47 34561.69 345
FPMVS77.62 31377.14 31279.05 32879.25 34760.97 34995.79 32395.94 32265.96 34167.93 34394.40 32437.73 34988.88 34568.83 34188.46 30187.29 339
wuyk23d30.17 32030.18 32330.16 33478.61 34843.29 35466.79 34714.21 35517.31 34914.82 35211.93 35211.55 35541.43 35137.08 34819.30 3485.76 349
LCM-MVSNet78.70 31076.24 31486.08 32377.26 34971.99 34594.34 33596.72 31361.62 34376.53 33789.33 33633.91 35192.78 34281.85 32774.60 33993.46 335
MVEpermissive62.14 2263.28 31959.38 32174.99 32974.33 35065.47 34785.55 34480.50 35352.02 34651.10 34775.00 34610.91 35680.50 34751.60 34553.40 34378.99 342
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high69.08 31465.37 31780.22 32765.99 35171.96 34690.91 34290.09 34782.62 33149.93 34878.39 34329.36 35281.75 34662.49 34338.52 34686.95 341
PMVScopyleft61.03 2365.95 31663.57 31973.09 33157.90 35251.22 35385.05 34593.93 34254.45 34444.32 34983.57 33913.22 35389.15 34458.68 34481.00 33478.91 343
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt68.90 31566.97 31674.68 33050.78 35359.95 35087.13 34383.47 35238.80 34862.21 34496.23 30264.70 34176.91 35088.91 29730.49 34787.19 340
testmvs21.48 32224.95 32411.09 33614.89 3546.47 35696.56 3139.87 3567.55 35017.93 35039.02 3489.43 3575.90 35316.56 35012.72 34920.91 348
test12320.95 32323.72 32512.64 33513.54 3558.19 35596.55 3146.13 3577.48 35116.74 35137.98 34912.97 3546.05 35216.69 3495.43 35023.68 347
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
cdsmvs_eth3d_5k23.98 32131.98 3220.00 3370.00 3560.00 3570.00 34898.59 1360.00 3520.00 35398.61 12390.60 1530.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas7.88 32510.50 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35394.51 810.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re8.20 32410.94 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35398.43 1410.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 1899.80 1799.83 5
test_0728_THIRD97.32 2799.45 999.46 997.88 199.94 398.47 1599.86 199.85 2
GSMVS99.20 126
test_part10.00 3370.00 3570.00 34898.84 650.00 3580.00 3540.00 3510.00 3510.00 350
sam_mvs189.45 16899.20 126
sam_mvs88.99 181
MTGPAbinary98.74 98
test_post196.68 31030.43 35187.85 21398.69 22492.59 232
test_post31.83 35088.83 18898.91 203
patchmatchnet-post95.10 32189.42 16998.89 207
MTMP98.89 7894.14 340
test9_res96.39 11799.57 7199.69 48
agg_prior295.87 13299.57 7199.68 54
test_prior498.01 6197.86 232
test_prior297.80 23796.12 7797.89 10198.69 11595.96 3696.89 9299.60 65
旧先验297.57 25491.30 27398.67 5599.80 7595.70 142
新几何297.64 249
无先验97.58 25398.72 10491.38 26799.87 4493.36 21099.60 75
原ACMM297.67 247
testdata299.89 3591.65 257
segment_acmp96.85 11
testdata197.32 27096.34 68
plane_prior598.56 14499.03 18996.07 12394.27 21596.92 230
plane_prior498.28 160
plane_prior394.61 20597.02 4795.34 181
plane_prior298.80 10097.28 29
plane_prior94.60 20798.44 16196.74 5594.22 217
n20.00 358
nn0.00 358
door-mid94.37 336
test1198.66 126
door94.64 334
HQP5-MVS94.25 220
BP-MVS95.30 152
HQP4-MVS94.45 20398.96 19696.87 241
HQP3-MVS98.46 16694.18 219
HQP2-MVS86.75 231
MDTV_nov1_ep13_2view84.26 33396.89 30090.97 28397.90 10089.89 16493.91 19499.18 133
ACMMP++_ref92.97 247
ACMMP++93.61 235
Test By Simon94.64 76