This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
zzz-MVS98.55 3098.25 3899.46 1299.76 198.64 2298.55 15398.74 10497.27 3498.02 9199.39 1494.81 7799.96 197.91 3999.79 1999.77 20
MTAPA98.58 2398.29 3599.46 1299.76 198.64 2298.90 7998.74 10497.27 3498.02 9199.39 1494.81 7799.96 197.91 3999.79 1999.77 20
MSP-MVS98.74 898.55 1099.29 3199.75 398.23 4999.26 1898.88 4997.52 1599.41 1198.78 11296.00 3499.79 9297.79 4999.59 7199.85 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MP-MVScopyleft98.33 5098.01 5299.28 3599.75 398.18 5399.22 2598.79 9296.13 8097.92 10499.23 4594.54 8499.94 396.74 11099.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS98.51 3598.26 3799.25 3999.75 398.04 6099.28 1698.81 7696.24 7498.35 7899.23 4595.46 5199.94 397.42 7599.81 1099.77 20
HPM-MVS_fast98.38 4398.13 4699.12 5799.75 397.86 6899.44 498.82 7094.46 15998.94 3999.20 5295.16 6999.74 10797.58 6699.85 399.77 20
region2R98.61 1798.38 2099.29 3199.74 798.16 5599.23 2198.93 3796.15 7898.94 3999.17 5695.91 3999.94 397.55 7099.79 1999.78 13
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5699.23 2198.95 3496.10 8398.93 4399.19 5595.70 4499.94 397.62 6299.79 1999.78 13
HPM-MVScopyleft98.36 4598.10 4899.13 5499.74 797.82 7299.53 198.80 8794.63 15298.61 6498.97 8795.13 7099.77 10197.65 6099.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft98.23 5497.95 5599.09 5999.74 797.62 7999.03 5599.41 695.98 8597.60 12599.36 2694.45 8999.93 1597.14 8398.85 12299.70 48
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ZNCC-MVS98.49 3698.20 4499.35 2299.73 1198.39 3499.19 3198.86 6195.77 9298.31 8199.10 6995.46 5199.93 1597.57 6999.81 1099.74 33
DVP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 6898.58 14797.62 1199.45 999.46 997.42 699.94 398.47 1599.81 1099.69 51
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.71 199.72 1299.35 198.97 6898.88 4999.94 398.47 1599.81 1099.84 4
test072699.72 1299.25 299.06 5198.88 4997.62 1199.56 599.50 497.42 6
GST-MVS98.43 4098.12 4799.34 2399.72 1298.38 3599.09 4698.82 7095.71 9598.73 5599.06 7895.27 6499.93 1597.07 8699.63 6499.72 40
MP-MVS-pluss98.31 5297.92 5799.49 999.72 1298.88 1498.43 16998.78 9594.10 16797.69 11699.42 1295.25 6699.92 2198.09 3299.80 1799.67 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4699.23 2198.96 3296.10 8398.94 3999.17 5696.06 3099.92 2197.62 6299.78 2399.75 28
#test#98.54 3298.27 3699.32 2899.72 1298.29 4698.98 6798.96 3295.65 9998.94 3999.17 5696.06 3099.92 2197.21 8299.78 2399.75 28
PGM-MVS98.49 3698.23 4299.27 3899.72 1298.08 5998.99 6499.49 595.43 10999.03 3399.32 3395.56 4799.94 396.80 10699.77 2699.78 13
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 5898.87 5597.65 999.73 199.48 697.53 499.94 398.43 1899.81 1099.70 48
IU-MVS99.71 2099.23 698.64 13795.28 11999.63 498.35 2499.81 1099.83 5
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 107
XVS98.70 998.49 1699.34 2399.70 2398.35 4399.29 1498.88 4997.40 2298.46 6999.20 5295.90 4099.89 3597.85 4599.74 4199.78 13
X-MVStestdata94.06 26392.30 28399.34 2399.70 2398.35 4399.29 1498.88 4997.40 2298.46 6943.50 35995.90 4099.89 3597.85 4599.74 4199.78 13
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4899.14 3698.66 13296.84 5299.56 599.31 3596.34 1999.70 11598.32 2599.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG97.85 6697.74 6298.20 11599.67 2695.16 18199.22 2599.32 793.04 22097.02 14298.92 9995.36 5899.91 3097.43 7499.64 6299.52 85
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6899.34 1198.87 5595.96 8698.60 6599.13 6496.05 3299.94 397.77 5099.86 199.77 20
CPTT-MVS97.72 7297.32 8498.92 6999.64 2897.10 10099.12 4198.81 7692.34 24598.09 8599.08 7693.01 10699.92 2196.06 13199.77 2699.75 28
test_part299.63 2999.18 899.27 17
ACMMP_NAP98.61 1798.30 3499.55 699.62 3098.95 1398.82 9898.81 7695.80 9199.16 2699.47 895.37 5799.92 2197.89 4299.75 3899.79 10
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 17298.68 12197.04 4798.52 6898.80 11096.78 1299.83 5697.93 3899.61 6799.74 33
DPE-MVScopyleft98.92 498.67 699.65 299.58 3299.20 798.42 17198.91 4397.58 1499.54 799.46 997.10 999.94 397.64 6199.84 899.83 5
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 598.93 3797.38 2599.41 1199.54 196.66 1399.84 5398.86 199.85 399.87 1
abl_698.30 5398.03 5199.13 5499.56 3497.76 7599.13 3998.82 7096.14 7999.26 1899.37 2293.33 10299.93 1596.96 9199.67 5499.69 51
SF-MVS98.59 2098.32 3399.41 1699.54 3598.71 1899.04 5398.81 7695.12 12899.32 1599.39 1496.22 2099.84 5397.72 5399.73 4399.67 61
test117298.56 2898.35 2499.16 5099.53 3697.94 6699.09 4698.83 6896.52 6599.05 3299.34 3195.34 5999.82 6497.86 4499.64 6299.73 36
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5399.09 4698.82 7096.58 6299.10 2999.32 3395.39 5599.82 6497.70 5899.63 6499.72 40
DP-MVS Recon97.86 6597.46 7799.06 6199.53 3698.35 4398.33 18098.89 4692.62 23498.05 8798.94 9695.34 5999.65 12496.04 13299.42 9699.19 132
SMA-MVScopyleft98.58 2398.25 3899.56 599.51 3999.04 1198.95 7298.80 8793.67 19799.37 1399.52 396.52 1799.89 3598.06 3399.81 1099.76 26
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APD-MVScopyleft98.35 4698.00 5399.42 1599.51 3998.72 1798.80 10598.82 7094.52 15699.23 2099.25 4395.54 4999.80 8096.52 11699.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft98.58 2398.25 3899.55 699.50 4199.08 998.72 12298.66 13297.51 1698.15 8298.83 10795.70 4499.92 2197.53 7299.67 5499.66 65
APD-MVS_3200maxsize98.53 3498.33 3299.15 5399.50 4197.92 6799.15 3598.81 7696.24 7499.20 2299.37 2295.30 6299.80 8097.73 5299.67 5499.72 40
114514_t96.93 11596.27 12898.92 6999.50 4197.63 7898.85 9198.90 4484.80 34097.77 10999.11 6792.84 10799.66 12394.85 16899.77 2699.47 98
PAPM_NR97.46 8797.11 9198.50 9399.50 4196.41 12998.63 13998.60 14095.18 12497.06 14098.06 18294.26 9399.57 13593.80 20598.87 12199.52 85
SR-MVS-dyc-post98.54 3298.35 2499.13 5499.49 4597.86 6899.11 4298.80 8796.49 6699.17 2499.35 2895.34 5999.82 6497.72 5399.65 5899.71 44
RE-MVS-def98.34 2899.49 4597.86 6899.11 4298.80 8796.49 6699.17 2499.35 2895.29 6397.72 5399.65 5899.71 44
testtj98.33 5097.95 5599.47 1199.49 4598.70 1998.83 9598.86 6195.48 10698.91 4599.17 5695.48 5099.93 1595.80 14199.53 8599.76 26
9.1498.06 4999.47 4898.71 12398.82 7094.36 16199.16 2699.29 3996.05 3299.81 7197.00 8799.71 50
ETH3D-3000-0.198.35 4698.00 5399.38 1799.47 4898.68 2198.67 13398.84 6594.66 15199.11 2899.25 4395.46 5199.81 7196.80 10699.73 4399.63 73
CDPH-MVS97.94 6297.49 7599.28 3599.47 4898.44 3197.91 23398.67 12992.57 23798.77 5198.85 10495.93 3899.72 10995.56 15199.69 5299.68 57
ZD-MVS99.46 5198.70 1998.79 9293.21 21498.67 5898.97 8795.70 4499.83 5696.07 12899.58 74
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 5198.38 3598.21 19798.52 15997.95 399.32 1599.39 1496.22 2099.84 5397.72 5399.73 4399.67 61
save fliter99.46 5198.38 3598.21 19798.71 11497.95 3
EI-MVSNet-Vis-set98.47 3898.39 1998.69 7899.46 5196.49 12598.30 18898.69 11897.21 3798.84 4699.36 2695.41 5499.78 9698.62 599.65 5899.80 9
EI-MVSNet-UG-set98.41 4198.34 2898.61 8399.45 5596.32 13398.28 19198.68 12197.17 4098.74 5399.37 2295.25 6699.79 9298.57 799.54 8499.73 36
F-COLMAP97.09 11196.80 10497.97 12999.45 5594.95 19598.55 15398.62 13993.02 22196.17 17898.58 13394.01 9699.81 7193.95 20098.90 11799.14 140
Regformer-398.59 2098.50 1498.86 7399.43 5797.05 10198.40 17398.68 12197.43 2199.06 3199.31 3595.80 4399.77 10198.62 599.76 3299.78 13
Regformer-498.64 1498.53 1198.99 6399.43 5797.37 8798.40 17398.79 9297.46 2099.09 3099.31 3595.86 4299.80 8098.64 399.76 3299.79 10
ETH3 D test640097.59 8197.01 9699.34 2399.40 5998.56 2598.20 20098.81 7691.63 26898.44 7398.85 10493.98 9899.82 6494.11 19699.69 5299.64 70
Regformer-198.66 1298.51 1399.12 5799.35 6097.81 7498.37 17598.76 9997.49 1799.20 2299.21 4896.08 2999.79 9298.42 2099.73 4399.75 28
Regformer-298.69 1198.52 1299.19 4399.35 6098.01 6298.37 17598.81 7697.48 1899.21 2199.21 4896.13 2799.80 8098.40 2299.73 4399.75 28
新几何199.16 5099.34 6298.01 6298.69 11890.06 30598.13 8398.95 9594.60 8299.89 3591.97 25799.47 9099.59 80
112197.37 9796.77 11199.16 5099.34 6297.99 6598.19 20498.68 12190.14 30498.01 9598.97 8794.80 7999.87 4493.36 21799.46 9399.61 75
DP-MVS96.59 12795.93 13898.57 8599.34 6296.19 13998.70 12798.39 18589.45 31594.52 20799.35 2891.85 12899.85 5092.89 23398.88 11999.68 57
SD-MVS98.64 1498.68 598.53 9199.33 6598.36 4298.90 7998.85 6497.28 3099.72 399.39 1496.63 1597.60 31998.17 2899.85 399.64 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HyFIR lowres test96.90 11796.49 12298.14 11899.33 6595.56 16697.38 26999.65 292.34 24597.61 12398.20 17389.29 17799.10 18696.97 8997.60 17099.77 20
OMC-MVS97.55 8597.34 8398.20 11599.33 6595.92 15598.28 19198.59 14295.52 10597.97 9899.10 6993.28 10499.49 14695.09 16498.88 11999.19 132
原ACMM198.65 8199.32 6896.62 11698.67 12993.27 21397.81 10898.97 8795.18 6899.83 5693.84 20399.46 9399.50 91
CNVR-MVS98.78 698.56 999.45 1499.32 6898.87 1598.47 16398.81 7697.72 698.76 5299.16 6197.05 1099.78 9698.06 3399.66 5799.69 51
TEST999.31 7098.50 2997.92 23198.73 10892.63 23397.74 11298.68 12296.20 2399.80 80
train_agg97.97 5797.52 7299.33 2799.31 7098.50 2997.92 23198.73 10892.98 22297.74 11298.68 12296.20 2399.80 8096.59 11299.57 7599.68 57
test_prior398.22 5597.90 5899.19 4399.31 7098.22 5097.80 24598.84 6596.12 8197.89 10698.69 12095.96 3699.70 11596.89 9699.60 6899.65 67
test_prior99.19 4399.31 7098.22 5098.84 6599.70 11599.65 67
PatchMatch-RL96.59 12796.03 13698.27 10999.31 7096.51 12497.91 23399.06 2293.72 18996.92 14798.06 18288.50 20199.65 12491.77 26199.00 11498.66 179
agg_prior197.95 6197.51 7499.28 3599.30 7598.38 3597.81 24498.72 11093.16 21797.57 12698.66 12596.14 2699.81 7196.63 11199.56 8099.66 65
agg_prior99.30 7598.38 3598.72 11097.57 12699.81 71
CHOSEN 1792x268897.12 10996.80 10498.08 12399.30 7594.56 21498.05 22099.71 193.57 20197.09 13698.91 10088.17 20799.89 3596.87 10299.56 8099.81 8
test_899.29 7898.44 3197.89 23798.72 11092.98 22297.70 11598.66 12596.20 2399.80 80
旧先验199.29 7897.48 8398.70 11799.09 7495.56 4799.47 9099.61 75
PLCcopyleft95.07 497.20 10596.78 10798.44 9899.29 7896.31 13598.14 21198.76 9992.41 24396.39 17398.31 16394.92 7699.78 9694.06 19898.77 12699.23 127
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
COLMAP_ROBcopyleft93.27 1295.33 18394.87 18496.71 20499.29 7893.24 25998.58 14598.11 23389.92 30793.57 25199.10 6986.37 24599.79 9290.78 27598.10 15397.09 225
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
NCCC98.61 1798.35 2499.38 1799.28 8298.61 2498.45 16498.76 9997.82 598.45 7298.93 9796.65 1499.83 5697.38 7799.41 9799.71 44
PVSNet_Blended_VisFu97.70 7397.46 7798.44 9899.27 8395.91 15698.63 13999.16 1794.48 15897.67 11798.88 10292.80 10899.91 3097.11 8499.12 11099.50 91
MVS_111021_LR98.34 4898.23 4298.67 8099.27 8396.90 10797.95 22999.58 397.14 4298.44 7399.01 8495.03 7399.62 13197.91 3999.75 3899.50 91
MSLP-MVS++98.56 2898.57 898.55 8799.26 8596.80 11098.71 12399.05 2497.28 3098.84 4699.28 4096.47 1899.40 15598.52 1399.70 5199.47 98
AllTest95.24 18794.65 19296.99 18699.25 8693.21 26098.59 14398.18 21991.36 27593.52 25398.77 11484.67 27299.72 10989.70 29397.87 15998.02 202
TestCases96.99 18699.25 8693.21 26098.18 21991.36 27593.52 25398.77 11484.67 27299.72 10989.70 29397.87 15998.02 202
PVSNet_BlendedMVS96.73 12296.60 11797.12 18099.25 8695.35 17698.26 19499.26 894.28 16297.94 10197.46 23492.74 10999.81 7196.88 9993.32 24696.20 311
PVSNet_Blended97.38 9697.12 9098.14 11899.25 8695.35 17697.28 28099.26 893.13 21897.94 10198.21 17292.74 10999.81 7196.88 9999.40 9999.27 124
DeepC-MVS95.98 397.88 6497.58 6798.77 7599.25 8696.93 10598.83 9598.75 10296.96 5096.89 14999.50 490.46 15999.87 4497.84 4799.76 3299.52 85
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast96.70 198.55 3098.34 2899.18 4799.25 8698.04 6098.50 16098.78 9597.72 698.92 4499.28 4095.27 6499.82 6497.55 7099.77 2699.69 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPU-MVS99.37 2099.24 9299.05 1099.02 5899.16 6197.81 299.37 15897.24 8099.73 4399.70 48
test22299.23 9397.17 9897.40 26798.66 13288.68 32198.05 8798.96 9394.14 9499.53 8599.61 75
TSAR-MVS + GP.98.38 4398.24 4198.81 7499.22 9497.25 9598.11 21698.29 20597.19 3998.99 3899.02 8096.22 2099.67 12298.52 1398.56 13599.51 89
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9498.43 3399.10 4598.87 5597.38 2599.35 1499.40 1397.78 399.87 4497.77 5099.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
MVS_111021_HR98.47 3898.34 2898.88 7299.22 9497.32 8897.91 23399.58 397.20 3898.33 7999.00 8595.99 3599.64 12698.05 3599.76 3299.69 51
testdata98.26 11199.20 9795.36 17498.68 12191.89 26098.60 6599.10 6994.44 9099.82 6494.27 19099.44 9599.58 82
PVSNet91.96 1896.35 13596.15 13296.96 19099.17 9892.05 27496.08 32598.68 12193.69 19397.75 11197.80 20988.86 19299.69 12094.26 19199.01 11399.15 138
test1299.18 4799.16 9998.19 5298.53 15798.07 8695.13 7099.72 10999.56 8099.63 73
AdaColmapbinary97.15 10896.70 11298.48 9599.16 9996.69 11598.01 22498.89 4694.44 16096.83 15098.68 12290.69 15699.76 10394.36 18599.29 10598.98 156
PHI-MVS98.34 4898.06 4999.18 4799.15 10198.12 5899.04 5399.09 2093.32 21098.83 4899.10 6996.54 1699.83 5697.70 5899.76 3299.59 80
TAPA-MVS93.98 795.35 18194.56 19697.74 14599.13 10294.83 20098.33 18098.64 13786.62 32996.29 17598.61 12894.00 9799.29 16380.00 34399.41 9799.09 145
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MG-MVS97.81 6797.60 6698.44 9899.12 10395.97 14897.75 24998.78 9596.89 5198.46 6999.22 4793.90 9999.68 12194.81 17199.52 8799.67 61
Anonymous2023121194.10 25993.26 26896.61 21499.11 10494.28 22399.01 6098.88 4986.43 33192.81 27697.57 22781.66 30198.68 23394.83 16989.02 30196.88 245
ETH3D cwj APD-0.1697.96 5897.52 7299.29 3199.05 10598.52 2798.33 18098.68 12193.18 21598.68 5799.13 6494.62 8199.83 5696.45 11899.55 8399.52 85
CNLPA97.45 9097.03 9598.73 7699.05 10597.44 8698.07 21898.53 15795.32 11796.80 15498.53 13793.32 10399.72 10994.31 18999.31 10499.02 152
DPM-MVS97.55 8596.99 9899.23 4299.04 10798.55 2697.17 28898.35 19194.85 14297.93 10398.58 13395.07 7299.71 11492.60 23799.34 10299.43 106
hse-mvs396.17 14295.62 15197.81 13999.03 10894.45 21698.64 13898.75 10297.48 1898.67 5898.72 11989.76 16999.86 4997.95 3781.59 33999.11 143
Anonymous2024052995.10 19594.22 21497.75 14499.01 10994.26 22598.87 8898.83 6885.79 33796.64 15898.97 8778.73 31999.85 5096.27 12394.89 21699.12 142
Anonymous20240521195.28 18594.49 19997.67 15299.00 11093.75 23998.70 12797.04 30790.66 29296.49 16998.80 11078.13 32499.83 5696.21 12695.36 21599.44 105
DELS-MVS98.40 4298.20 4498.99 6399.00 11097.66 7697.75 24998.89 4697.71 898.33 7998.97 8794.97 7499.88 4398.42 2099.76 3299.42 107
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepPCF-MVS96.37 297.93 6398.48 1796.30 24399.00 11089.54 31397.43 26698.87 5598.16 299.26 1899.38 2196.12 2899.64 12698.30 2699.77 2699.72 40
thres100view90095.38 17794.70 19097.41 16698.98 11394.92 19698.87 8896.90 31695.38 11296.61 16096.88 28484.29 27799.56 13788.11 30796.29 19997.76 207
thres600view795.49 16994.77 18697.67 15298.98 11395.02 18898.85 9196.90 31695.38 11296.63 15996.90 28384.29 27799.59 13388.65 30696.33 19798.40 190
tfpn200view995.32 18494.62 19397.43 16598.94 11594.98 19298.68 13096.93 31495.33 11596.55 16496.53 30084.23 28099.56 13788.11 30796.29 19997.76 207
thres40095.38 17794.62 19397.65 15598.94 11594.98 19298.68 13096.93 31495.33 11596.55 16496.53 30084.23 28099.56 13788.11 30796.29 19998.40 190
MSDG95.93 15195.30 16697.83 13698.90 11795.36 17496.83 31298.37 18891.32 27994.43 21498.73 11890.27 16399.60 13290.05 28698.82 12498.52 186
RPSCF94.87 21095.40 15593.26 32098.89 11882.06 35198.33 18098.06 24890.30 30196.56 16299.26 4287.09 23199.49 14693.82 20496.32 19898.24 196
VNet97.79 6997.40 8198.96 6798.88 11997.55 8198.63 13998.93 3796.74 5699.02 3498.84 10690.33 16299.83 5698.53 996.66 18699.50 91
LFMVS95.86 15494.98 17998.47 9698.87 12096.32 13398.84 9496.02 32993.40 20798.62 6399.20 5274.99 34099.63 12997.72 5397.20 17699.46 102
UA-Net97.96 5897.62 6498.98 6598.86 12197.47 8498.89 8399.08 2196.67 5998.72 5699.54 193.15 10599.81 7194.87 16798.83 12399.65 67
WTY-MVS97.37 9796.92 10198.72 7798.86 12196.89 10998.31 18698.71 11495.26 12097.67 11798.56 13692.21 11999.78 9695.89 13696.85 18199.48 96
IS-MVSNet97.22 10296.88 10298.25 11298.85 12396.36 13199.19 3197.97 25395.39 11197.23 13298.99 8691.11 14798.93 20794.60 17798.59 13399.47 98
test_part194.82 21193.82 24197.82 13898.84 12497.82 7299.03 5598.81 7692.31 24992.51 28897.89 19781.96 29898.67 23494.80 17288.24 30896.98 231
VDD-MVS95.82 15795.23 16797.61 15798.84 12493.98 23198.68 13097.40 29395.02 13497.95 9999.34 3174.37 34499.78 9698.64 396.80 18299.08 148
CHOSEN 280x42097.18 10697.18 8997.20 17498.81 12693.27 25795.78 33299.15 1895.25 12196.79 15598.11 17992.29 11599.07 18998.56 899.85 399.25 126
thres20095.25 18694.57 19597.28 17198.81 12694.92 19698.20 20097.11 30395.24 12396.54 16696.22 31284.58 27499.53 14387.93 31196.50 19397.39 218
XVG-OURS-SEG-HR96.51 13096.34 12597.02 18598.77 12893.76 23797.79 24798.50 16795.45 10896.94 14499.09 7487.87 21799.55 14296.76 10995.83 21297.74 209
XVG-OURS96.55 12996.41 12396.99 18698.75 12993.76 23797.50 26398.52 15995.67 9796.83 15099.30 3888.95 19199.53 14395.88 13796.26 20397.69 212
test_yl97.22 10296.78 10798.54 8998.73 13096.60 11998.45 16498.31 19794.70 14598.02 9198.42 14890.80 15399.70 11596.81 10496.79 18399.34 111
DCV-MVSNet97.22 10296.78 10798.54 8998.73 13096.60 11998.45 16498.31 19794.70 14598.02 9198.42 14890.80 15399.70 11596.81 10496.79 18399.34 111
CANet98.05 5697.76 6198.90 7198.73 13097.27 9198.35 17798.78 9597.37 2797.72 11498.96 9391.53 13899.92 2198.79 299.65 5899.51 89
Vis-MVSNet (Re-imp)96.87 11896.55 11997.83 13698.73 13095.46 17199.20 2998.30 20394.96 13796.60 16198.87 10390.05 16598.59 24293.67 20998.60 13299.46 102
PAPR96.84 11996.24 13098.65 8198.72 13496.92 10697.36 27398.57 14893.33 20996.67 15797.57 22794.30 9299.56 13791.05 27298.59 13399.47 98
canonicalmvs97.67 7497.23 8798.98 6598.70 13598.38 3599.34 1198.39 18596.76 5597.67 11797.40 24092.26 11699.49 14698.28 2796.28 20299.08 148
API-MVS97.41 9497.25 8697.91 13298.70 13596.80 11098.82 9898.69 11894.53 15498.11 8498.28 16594.50 8899.57 13594.12 19599.49 8897.37 220
MAR-MVS96.91 11696.40 12498.45 9798.69 13796.90 10798.66 13698.68 12192.40 24497.07 13997.96 19091.54 13799.75 10593.68 20798.92 11698.69 175
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-MVSNAJ97.73 7197.77 6097.62 15698.68 13895.58 16597.34 27598.51 16297.29 2998.66 6197.88 19894.51 8599.90 3397.87 4399.17 10997.39 218
alignmvs97.56 8497.07 9499.01 6298.66 13998.37 4198.83 9598.06 24896.74 5698.00 9797.65 21990.80 15399.48 15098.37 2396.56 19099.19 132
Vis-MVSNetpermissive97.42 9397.11 9198.34 10698.66 13996.23 13699.22 2599.00 2796.63 6198.04 8999.21 4888.05 21299.35 15996.01 13499.21 10699.45 104
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPP-MVSNet97.46 8797.28 8597.99 12898.64 14195.38 17399.33 1398.31 19793.61 20097.19 13399.07 7794.05 9599.23 16896.89 9698.43 14399.37 110
ab-mvs96.42 13395.71 14698.55 8798.63 14296.75 11397.88 23898.74 10493.84 18196.54 16698.18 17585.34 26299.75 10595.93 13596.35 19699.15 138
PCF-MVS93.45 1194.68 21993.43 26398.42 10198.62 14396.77 11295.48 33798.20 21584.63 34193.34 26198.32 16288.55 19999.81 7184.80 33198.96 11598.68 176
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
xiu_mvs_v2_base97.66 7597.70 6397.56 16098.61 14495.46 17197.44 26498.46 17297.15 4198.65 6298.15 17694.33 9199.80 8097.84 4798.66 13197.41 216
sss97.39 9596.98 9998.61 8398.60 14596.61 11898.22 19698.93 3793.97 17598.01 9598.48 14291.98 12699.85 5096.45 11898.15 15199.39 108
Test_1112_low_res96.34 13695.66 15098.36 10598.56 14695.94 15197.71 25198.07 24392.10 25594.79 20197.29 24591.75 13099.56 13794.17 19396.50 19399.58 82
1112_ss96.63 12496.00 13798.50 9398.56 14696.37 13098.18 20898.10 23592.92 22594.84 19798.43 14692.14 12199.58 13494.35 18696.51 19299.56 84
BH-untuned95.95 15095.72 14396.65 20998.55 14892.26 27098.23 19597.79 26393.73 18894.62 20498.01 18688.97 19099.00 19893.04 22798.51 13798.68 176
LS3D97.16 10796.66 11698.68 7998.53 14997.19 9798.93 7698.90 4492.83 23095.99 18299.37 2292.12 12299.87 4493.67 20999.57 7598.97 157
CS-MVS97.81 6797.61 6598.41 10298.52 15097.15 9999.09 4698.55 15296.18 7797.61 12397.20 25294.59 8399.39 15697.62 6299.10 11198.70 173
AUN-MVS94.53 23293.73 25096.92 19498.50 15193.52 24898.34 17898.10 23593.83 18395.94 18497.98 18985.59 25799.03 19494.35 18680.94 34298.22 197
baseline195.84 15595.12 17298.01 12798.49 15295.98 14398.73 11897.03 30895.37 11496.22 17698.19 17489.96 16799.16 17494.60 17787.48 31698.90 163
HY-MVS93.96 896.82 12096.23 13198.57 8598.46 15397.00 10298.14 21198.21 21393.95 17696.72 15697.99 18891.58 13399.76 10394.51 18296.54 19198.95 160
ETV-MVS97.96 5897.81 5998.40 10398.42 15497.27 9198.73 11898.55 15296.84 5298.38 7697.44 23795.39 5599.35 15997.62 6298.89 11898.58 185
tttt051796.07 14495.51 15497.78 14198.41 15594.84 19899.28 1694.33 34894.26 16497.64 12198.64 12784.05 28499.47 15195.34 15597.60 17099.03 151
EIA-MVS97.75 7097.58 6798.27 10998.38 15696.44 12799.01 6098.60 14095.88 8897.26 13197.53 23094.97 7499.33 16197.38 7799.20 10799.05 150
thisisatest053096.01 14795.36 16097.97 12998.38 15695.52 16998.88 8694.19 35094.04 16997.64 12198.31 16383.82 29199.46 15295.29 15997.70 16798.93 161
xiu_mvs_v1_base_debu97.60 7897.56 6997.72 14698.35 15895.98 14397.86 24098.51 16297.13 4399.01 3598.40 15091.56 13499.80 8098.53 998.68 12797.37 220
xiu_mvs_v1_base97.60 7897.56 6997.72 14698.35 15895.98 14397.86 24098.51 16297.13 4399.01 3598.40 15091.56 13499.80 8098.53 998.68 12797.37 220
xiu_mvs_v1_base_debi97.60 7897.56 6997.72 14698.35 15895.98 14397.86 24098.51 16297.13 4399.01 3598.40 15091.56 13499.80 8098.53 998.68 12797.37 220
baseline97.64 7697.44 7998.25 11298.35 15896.20 13799.00 6298.32 19596.33 7398.03 9099.17 5691.35 14199.16 17498.10 3198.29 14999.39 108
BH-w/o95.38 17795.08 17496.26 24598.34 16291.79 27897.70 25297.43 29192.87 22894.24 22497.22 25088.66 19598.84 21991.55 26597.70 16798.16 199
MVS_Test97.28 10097.00 9798.13 12098.33 16395.97 14898.74 11498.07 24394.27 16398.44 7398.07 18192.48 11199.26 16496.43 12098.19 15099.16 137
casdiffmvs97.63 7797.41 8098.28 10898.33 16396.14 14098.82 9898.32 19596.38 7197.95 9999.21 4891.23 14599.23 16898.12 3098.37 14499.48 96
diffmvs97.58 8297.40 8198.13 12098.32 16595.81 16098.06 21998.37 18896.20 7698.74 5398.89 10191.31 14399.25 16598.16 2998.52 13699.34 111
BH-RMVSNet95.92 15295.32 16497.69 15098.32 16594.64 20698.19 20497.45 28994.56 15396.03 18098.61 12885.02 26599.12 18090.68 27799.06 11299.30 120
Fast-Effi-MVS+96.28 13995.70 14798.03 12698.29 16795.97 14898.58 14598.25 21191.74 26395.29 19097.23 24991.03 15099.15 17792.90 23197.96 15698.97 157
UGNet96.78 12196.30 12798.19 11798.24 16895.89 15898.88 8698.93 3797.39 2496.81 15397.84 20382.60 29599.90 3396.53 11599.49 8898.79 168
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVSTER96.06 14595.72 14397.08 18398.23 16995.93 15498.73 11898.27 20694.86 14195.07 19198.09 18088.21 20598.54 24696.59 11293.46 24196.79 254
ET-MVSNet_ETH3D94.13 25692.98 27197.58 15898.22 17096.20 13797.31 27895.37 33794.53 15479.56 34897.63 22386.51 24097.53 32296.91 9390.74 27699.02 152
GBi-Net94.49 23593.80 24396.56 22198.21 17195.00 18998.82 9898.18 21992.46 23894.09 23197.07 26381.16 30297.95 30592.08 25192.14 25796.72 263
test194.49 23593.80 24396.56 22198.21 17195.00 18998.82 9898.18 21992.46 23894.09 23197.07 26381.16 30297.95 30592.08 25192.14 25796.72 263
FMVSNet294.47 23793.61 25697.04 18498.21 17196.43 12898.79 10998.27 20692.46 23893.50 25697.09 26081.16 30298.00 30391.09 26891.93 26096.70 267
Effi-MVS+97.12 10996.69 11398.39 10498.19 17496.72 11497.37 27198.43 17993.71 19097.65 12098.02 18492.20 12099.25 16596.87 10297.79 16299.19 132
mvs_anonymous96.70 12396.53 12197.18 17698.19 17493.78 23698.31 18698.19 21694.01 17294.47 20998.27 16892.08 12498.46 25397.39 7697.91 15799.31 117
LCM-MVSNet-Re95.22 18895.32 16494.91 28998.18 17687.85 33798.75 11195.66 33595.11 12988.96 32596.85 28790.26 16497.65 31795.65 14998.44 14199.22 128
FMVSNet394.97 20494.26 21397.11 18198.18 17696.62 11698.56 15198.26 21093.67 19794.09 23197.10 25684.25 27998.01 30192.08 25192.14 25796.70 267
CANet_DTU96.96 11496.55 11998.21 11498.17 17896.07 14297.98 22798.21 21397.24 3697.13 13598.93 9786.88 23699.91 3095.00 16699.37 10198.66 179
thisisatest051595.61 16894.89 18397.76 14398.15 17995.15 18396.77 31394.41 34692.95 22497.18 13497.43 23884.78 27099.45 15394.63 17497.73 16698.68 176
IterMVS-LS95.46 17095.21 16896.22 24698.12 18093.72 24298.32 18598.13 23093.71 19094.26 22297.31 24492.24 11798.10 29394.63 17490.12 28296.84 250
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl-mvsnet294.68 21994.19 21696.13 25098.11 18193.60 24496.94 29998.31 19792.43 24293.32 26296.87 28686.51 24098.28 28394.10 19791.16 27196.51 295
VDDNet95.36 18094.53 19797.86 13498.10 18295.13 18598.85 9197.75 26590.46 29698.36 7799.39 1473.27 34699.64 12697.98 3696.58 18998.81 167
MVSFormer97.57 8397.49 7597.84 13598.07 18395.76 16199.47 298.40 18394.98 13598.79 4998.83 10792.34 11398.41 26596.91 9399.59 7199.34 111
lupinMVS97.44 9197.22 8898.12 12298.07 18395.76 16197.68 25397.76 26494.50 15798.79 4998.61 12892.34 11399.30 16297.58 6699.59 7199.31 117
TAMVS97.02 11296.79 10697.70 14998.06 18595.31 17898.52 15598.31 19793.95 17697.05 14198.61 12893.49 10198.52 24895.33 15697.81 16199.29 122
CDS-MVSNet96.99 11396.69 11397.90 13398.05 18695.98 14398.20 20098.33 19493.67 19796.95 14398.49 14193.54 10098.42 25895.24 16297.74 16599.31 117
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ADS-MVSNet294.58 22894.40 20895.11 28498.00 18788.74 32596.04 32697.30 29690.15 30296.47 17096.64 29787.89 21597.56 32190.08 28497.06 17799.02 152
ADS-MVSNet95.00 20094.45 20496.63 21298.00 18791.91 27696.04 32697.74 26690.15 30296.47 17096.64 29787.89 21598.96 20290.08 28497.06 17799.02 152
IterMVS94.09 26093.85 24094.80 29597.99 18990.35 30597.18 28698.12 23193.68 19592.46 29197.34 24184.05 28497.41 32492.51 24491.33 26796.62 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PVSNet_088.72 1991.28 29690.03 30295.00 28797.99 18987.29 34094.84 34298.50 16792.06 25689.86 31895.19 32779.81 31399.39 15692.27 24869.79 35198.33 194
IterMVS-SCA-FT94.11 25893.87 23894.85 29297.98 19190.56 30397.18 28698.11 23393.75 18592.58 28497.48 23383.97 28697.41 32492.48 24691.30 26896.58 280
EI-MVSNet95.96 14995.83 14196.36 23997.93 19293.70 24398.12 21498.27 20693.70 19295.07 19199.02 8092.23 11898.54 24694.68 17393.46 24196.84 250
CVMVSNet95.43 17396.04 13593.57 31497.93 19283.62 34698.12 21498.59 14295.68 9696.56 16299.02 8087.51 22397.51 32393.56 21397.44 17299.60 78
PMMVS96.60 12596.33 12697.41 16697.90 19493.93 23297.35 27498.41 18192.84 22997.76 11097.45 23691.10 14899.20 17196.26 12497.91 15799.11 143
Effi-MVS+-dtu96.29 13796.56 11895.51 27197.89 19590.22 30698.80 10598.10 23596.57 6396.45 17296.66 29490.81 15198.91 20995.72 14497.99 15597.40 217
mvs-test196.60 12596.68 11596.37 23897.89 19591.81 27798.56 15198.10 23596.57 6396.52 16897.94 19290.81 15199.45 15395.72 14498.01 15497.86 206
QAPM96.29 13795.40 15598.96 6797.85 19797.60 8099.23 2198.93 3789.76 31093.11 27099.02 8089.11 18399.93 1591.99 25699.62 6699.34 111
3Dnovator+94.38 697.43 9296.78 10799.38 1797.83 19898.52 2799.37 798.71 11497.09 4692.99 27399.13 6489.36 17599.89 3596.97 8999.57 7599.71 44
ACMH+92.99 1494.30 24593.77 24695.88 26197.81 19992.04 27598.71 12398.37 18893.99 17490.60 31398.47 14380.86 30799.05 19092.75 23592.40 25696.55 286
3Dnovator94.51 597.46 8796.93 10099.07 6097.78 20097.64 7799.35 1099.06 2297.02 4893.75 24799.16 6189.25 17899.92 2197.22 8199.75 3899.64 70
miper_lstm_enhance94.33 24394.07 22495.11 28497.75 20190.97 29597.22 28398.03 25091.67 26792.76 27896.97 27690.03 16697.78 31592.51 24489.64 28896.56 284
cl_fuxian94.79 21494.43 20695.89 26097.75 20193.12 26397.16 28998.03 25092.23 25193.46 25897.05 26891.39 13998.01 30193.58 21289.21 29796.53 289
TR-MVS94.94 20794.20 21597.17 17797.75 20194.14 22897.59 25997.02 31092.28 25095.75 18597.64 22183.88 28898.96 20289.77 29096.15 20798.40 190
Fast-Effi-MVS+-dtu95.87 15395.85 14095.91 25897.74 20491.74 28198.69 12998.15 22795.56 10294.92 19597.68 21888.98 18998.79 22593.19 22297.78 16397.20 224
MIMVSNet93.26 27792.21 28496.41 23697.73 20593.13 26295.65 33497.03 30891.27 28394.04 23496.06 31575.33 33897.19 32786.56 31796.23 20598.92 162
miper_ehance_all_eth95.01 19994.69 19195.97 25597.70 20693.31 25697.02 29598.07 24392.23 25193.51 25596.96 27891.85 12898.15 28993.68 20791.16 27196.44 302
SCA95.46 17095.13 17196.46 23397.67 20791.29 29197.33 27697.60 27394.68 14896.92 14797.10 25683.97 28698.89 21392.59 23998.32 14899.20 129
ACMP93.49 1095.34 18294.98 17996.43 23597.67 20793.48 24998.73 11898.44 17694.94 14092.53 28698.53 13784.50 27699.14 17895.48 15494.00 23096.66 273
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
eth_miper_zixun_eth94.68 21994.41 20795.47 27397.64 20991.71 28296.73 31698.07 24392.71 23293.64 24897.21 25190.54 15898.17 28893.38 21589.76 28696.54 287
ACMH92.88 1694.55 23093.95 23396.34 24197.63 21093.26 25898.81 10498.49 17193.43 20689.74 31998.53 13781.91 29999.08 18893.69 20693.30 24796.70 267
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMM93.85 995.69 16395.38 15996.61 21497.61 21193.84 23598.91 7898.44 17695.25 12194.28 22198.47 14386.04 25299.12 18095.50 15393.95 23296.87 247
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Patchmatch-test94.42 23993.68 25496.63 21297.60 21291.76 27994.83 34397.49 28689.45 31594.14 22997.10 25688.99 18698.83 22185.37 32798.13 15299.29 122
RRT_test8_iter0594.56 22994.19 21695.67 26897.60 21291.34 28798.93 7698.42 18094.75 14493.39 25997.87 19979.00 31898.61 23896.78 10890.99 27497.07 226
cl-mvsnet_94.51 23494.01 22896.02 25297.58 21493.40 25397.05 29397.96 25591.73 26592.76 27897.08 26289.06 18598.13 29192.61 23690.29 28196.52 292
tpm cat193.36 27292.80 27495.07 28697.58 21487.97 33596.76 31497.86 26182.17 34593.53 25296.04 31686.13 24899.13 17989.24 30195.87 21198.10 200
MVS-HIRNet89.46 31388.40 31292.64 32397.58 21482.15 35094.16 34893.05 35575.73 35190.90 30982.52 35279.42 31598.33 27383.53 33598.68 12797.43 215
PatchmatchNetpermissive95.71 16195.52 15396.29 24497.58 21490.72 30096.84 31197.52 28294.06 16897.08 13796.96 27889.24 17998.90 21292.03 25598.37 14499.26 125
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cl-mvsnet194.52 23394.03 22595.99 25397.57 21893.38 25497.05 29397.94 25691.74 26392.81 27697.10 25689.12 18298.07 29792.60 23790.30 28096.53 289
tpmrst95.63 16595.69 14895.44 27597.54 21988.54 32896.97 29797.56 27593.50 20397.52 12896.93 28289.49 17199.16 17495.25 16196.42 19598.64 181
FMVSNet193.19 28092.07 28596.56 22197.54 21995.00 18998.82 9898.18 21990.38 29992.27 29497.07 26373.68 34597.95 30589.36 30091.30 26896.72 263
miper_enhance_ethall95.10 19594.75 18896.12 25197.53 22193.73 24196.61 31998.08 24192.20 25493.89 23996.65 29692.44 11298.30 27894.21 19291.16 27196.34 305
CLD-MVS95.62 16695.34 16196.46 23397.52 22293.75 23997.27 28198.46 17295.53 10394.42 21598.00 18786.21 24798.97 19996.25 12594.37 21796.66 273
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MDTV_nov1_ep1395.40 15597.48 22388.34 33196.85 31097.29 29793.74 18797.48 12997.26 24689.18 18099.05 19091.92 25897.43 173
IB-MVS91.98 1793.27 27691.97 28797.19 17597.47 22493.41 25297.09 29295.99 33093.32 21092.47 29095.73 32078.06 32599.53 14394.59 17982.98 33498.62 182
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS_030492.81 28492.01 28695.23 27997.46 22591.33 28998.17 20998.81 7691.13 28893.80 24595.68 32566.08 35398.06 29890.79 27496.13 20896.32 308
tpmvs94.60 22594.36 20995.33 27897.46 22588.60 32796.88 30897.68 26791.29 28193.80 24596.42 30588.58 19699.24 16791.06 27096.04 21098.17 198
LPG-MVS_test95.62 16695.34 16196.47 23097.46 22593.54 24698.99 6498.54 15594.67 14994.36 21798.77 11485.39 25999.11 18395.71 14694.15 22596.76 258
LGP-MVS_train96.47 23097.46 22593.54 24698.54 15594.67 14994.36 21798.77 11485.39 25999.11 18395.71 14694.15 22596.76 258
jason97.32 9997.08 9398.06 12597.45 22995.59 16497.87 23997.91 25994.79 14398.55 6798.83 10791.12 14699.23 16897.58 6699.60 6899.34 111
jason: jason.
HQP_MVS96.14 14395.90 13996.85 19797.42 23094.60 21298.80 10598.56 15097.28 3095.34 18798.28 16587.09 23199.03 19496.07 12894.27 21996.92 236
plane_prior797.42 23094.63 207
ITE_SJBPF95.44 27597.42 23091.32 29097.50 28495.09 13293.59 24998.35 15681.70 30098.88 21589.71 29293.39 24596.12 313
LTVRE_ROB92.95 1594.60 22593.90 23696.68 20897.41 23394.42 21898.52 15598.59 14291.69 26691.21 30698.35 15684.87 26899.04 19391.06 27093.44 24496.60 278
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
plane_prior197.37 234
plane_prior697.35 23594.61 21087.09 231
DWT-MVSNet_test94.82 21194.36 20996.20 24797.35 23590.79 29898.34 17896.57 32892.91 22695.33 18996.44 30482.00 29799.12 18094.52 18195.78 21398.70 173
dp94.15 25593.90 23694.90 29097.31 23786.82 34296.97 29797.19 30291.22 28596.02 18196.61 29985.51 25899.02 19790.00 28894.30 21898.85 164
NP-MVS97.28 23894.51 21597.73 212
CostFormer94.95 20594.73 18995.60 27097.28 23889.06 32097.53 26296.89 31889.66 31296.82 15296.72 29286.05 25098.95 20695.53 15296.13 20898.79 168
VPA-MVSNet95.75 15995.11 17397.69 15097.24 24097.27 9198.94 7499.23 1295.13 12795.51 18697.32 24385.73 25498.91 20997.33 7989.55 29196.89 244
tpm294.19 25293.76 24895.46 27497.23 24189.04 32197.31 27896.85 32187.08 32896.21 17796.79 29083.75 29298.74 22892.43 24796.23 20598.59 183
EPMVS94.99 20194.48 20096.52 22697.22 24291.75 28097.23 28291.66 35694.11 16697.28 13096.81 28985.70 25598.84 21993.04 22797.28 17598.97 157
FMVSNet591.81 29190.92 29494.49 30397.21 24392.09 27298.00 22697.55 28089.31 31790.86 31095.61 32674.48 34295.32 34785.57 32489.70 28796.07 315
HQP-NCC97.20 24498.05 22096.43 6894.45 210
ACMP_Plane97.20 24498.05 22096.43 6894.45 210
HQP-MVS95.72 16095.40 15596.69 20797.20 24494.25 22698.05 22098.46 17296.43 6894.45 21097.73 21286.75 23798.96 20295.30 15794.18 22396.86 249
UniMVSNet_ETH3D94.24 24993.33 26596.97 18997.19 24793.38 25498.74 11498.57 14891.21 28693.81 24498.58 13372.85 34798.77 22795.05 16593.93 23398.77 170
OpenMVScopyleft93.04 1395.83 15695.00 17798.32 10797.18 24897.32 8899.21 2898.97 3089.96 30691.14 30799.05 7986.64 23999.92 2193.38 21599.47 9097.73 210
VPNet94.99 20194.19 21697.40 16897.16 24996.57 12198.71 12398.97 3095.67 9794.84 19798.24 17180.36 31098.67 23496.46 11787.32 31996.96 233
GA-MVS94.81 21394.03 22597.14 17897.15 25093.86 23496.76 31497.58 27494.00 17394.76 20297.04 26980.91 30598.48 25091.79 26096.25 20499.09 145
FIs96.51 13096.12 13397.67 15297.13 25197.54 8299.36 899.22 1495.89 8794.03 23598.35 15691.98 12698.44 25696.40 12192.76 25397.01 229
131496.25 14195.73 14297.79 14097.13 25195.55 16898.19 20498.59 14293.47 20492.03 29997.82 20791.33 14299.49 14694.62 17698.44 14198.32 195
D2MVS95.18 19195.08 17495.48 27297.10 25392.07 27398.30 18899.13 1994.02 17192.90 27496.73 29189.48 17298.73 22994.48 18393.60 24095.65 323
DeepMVS_CXcopyleft86.78 33297.09 25472.30 35695.17 34175.92 35084.34 34495.19 32770.58 34895.35 34579.98 34489.04 30092.68 348
RRT_MVS96.04 14695.53 15297.56 16097.07 25597.32 8898.57 15098.09 23995.15 12695.02 19398.44 14588.20 20698.58 24496.17 12793.09 25096.79 254
PAPM94.95 20594.00 22997.78 14197.04 25695.65 16396.03 32898.25 21191.23 28494.19 22797.80 20991.27 14498.86 21882.61 33797.61 16998.84 166
CR-MVSNet94.76 21694.15 22096.59 21797.00 25793.43 25094.96 33997.56 27592.46 23896.93 14596.24 30888.15 20897.88 31387.38 31396.65 18798.46 188
RPMNet92.81 28491.34 29297.24 17297.00 25793.43 25094.96 33998.80 8782.27 34496.93 14592.12 34686.98 23499.82 6476.32 35196.65 18798.46 188
UniMVSNet (Re)95.78 15895.19 16997.58 15896.99 25997.47 8498.79 10999.18 1695.60 10093.92 23897.04 26991.68 13198.48 25095.80 14187.66 31596.79 254
FC-MVSNet-test96.42 13396.05 13497.53 16296.95 26097.27 9199.36 899.23 1295.83 9093.93 23798.37 15492.00 12598.32 27496.02 13392.72 25497.00 230
tfpnnormal93.66 26892.70 27796.55 22496.94 26195.94 15198.97 6899.19 1591.04 28991.38 30597.34 24184.94 26798.61 23885.45 32689.02 30195.11 331
TESTMET0.1,194.18 25493.69 25395.63 26996.92 26289.12 31996.91 30294.78 34393.17 21694.88 19696.45 30378.52 32098.92 20893.09 22498.50 13898.85 164
TinyColmap92.31 28991.53 29094.65 29996.92 26289.75 30996.92 30096.68 32590.45 29789.62 32097.85 20276.06 33698.81 22386.74 31692.51 25595.41 325
cascas94.63 22493.86 23996.93 19296.91 26494.27 22496.00 32998.51 16285.55 33894.54 20696.23 31084.20 28298.87 21695.80 14196.98 18097.66 213
nrg03096.28 13995.72 14397.96 13196.90 26598.15 5699.39 598.31 19795.47 10794.42 21598.35 15692.09 12398.69 23097.50 7389.05 29997.04 228
MVS94.67 22293.54 25998.08 12396.88 26696.56 12298.19 20498.50 16778.05 34992.69 28198.02 18491.07 14999.63 12990.09 28398.36 14698.04 201
WR-MVS_H95.05 19894.46 20296.81 19996.86 26795.82 15999.24 2099.24 1093.87 18092.53 28696.84 28890.37 16098.24 28593.24 22087.93 31296.38 304
UniMVSNet_NR-MVSNet95.71 16195.15 17097.40 16896.84 26896.97 10398.74 11499.24 1095.16 12593.88 24097.72 21491.68 13198.31 27695.81 13987.25 32096.92 236
USDC93.33 27592.71 27695.21 28096.83 26990.83 29796.91 30297.50 28493.84 18190.72 31198.14 17777.69 32798.82 22289.51 29793.21 24995.97 317
test-LLR95.10 19594.87 18495.80 26396.77 27089.70 31096.91 30295.21 33895.11 12994.83 19995.72 32287.71 21998.97 19993.06 22598.50 13898.72 171
test-mter94.08 26193.51 26095.80 26396.77 27089.70 31096.91 30295.21 33892.89 22794.83 19995.72 32277.69 32798.97 19993.06 22598.50 13898.72 171
Patchmtry93.22 27892.35 28295.84 26296.77 27093.09 26494.66 34497.56 27587.37 32792.90 27496.24 30888.15 20897.90 30987.37 31490.10 28396.53 289
gg-mvs-nofinetune92.21 29090.58 29797.13 17996.75 27395.09 18695.85 33089.40 35985.43 33994.50 20881.98 35380.80 30898.40 27192.16 24998.33 14797.88 204
XXY-MVS95.20 19094.45 20497.46 16396.75 27396.56 12298.86 9098.65 13693.30 21293.27 26398.27 16884.85 26998.87 21694.82 17091.26 27096.96 233
CP-MVSNet94.94 20794.30 21196.83 19896.72 27595.56 16699.11 4298.95 3493.89 17892.42 29297.90 19587.19 22998.12 29294.32 18888.21 30996.82 253
PatchT93.06 28291.97 28796.35 24096.69 27692.67 26794.48 34597.08 30486.62 32997.08 13792.23 34587.94 21497.90 30978.89 34796.69 18598.49 187
PS-CasMVS94.67 22293.99 23196.71 20496.68 27795.26 17999.13 3999.03 2593.68 19592.33 29397.95 19185.35 26198.10 29393.59 21188.16 31196.79 254
WR-MVS95.15 19294.46 20297.22 17396.67 27896.45 12698.21 19798.81 7694.15 16593.16 26697.69 21587.51 22398.30 27895.29 15988.62 30596.90 243
baseline295.11 19494.52 19896.87 19696.65 27993.56 24598.27 19394.10 35293.45 20592.02 30097.43 23887.45 22799.19 17293.88 20297.41 17497.87 205
test_040291.32 29590.27 30094.48 30496.60 28091.12 29398.50 16097.22 30186.10 33488.30 33096.98 27577.65 32997.99 30478.13 34992.94 25294.34 338
TransMVSNet (Re)92.67 28691.51 29196.15 24896.58 28194.65 20598.90 7996.73 32290.86 29189.46 32397.86 20085.62 25698.09 29586.45 31881.12 34095.71 321
XVG-ACMP-BASELINE94.54 23194.14 22195.75 26696.55 28291.65 28398.11 21698.44 17694.96 13794.22 22597.90 19579.18 31799.11 18394.05 19993.85 23496.48 299
DU-MVS95.42 17494.76 18797.40 16896.53 28396.97 10398.66 13698.99 2995.43 10993.88 24097.69 21588.57 19798.31 27695.81 13987.25 32096.92 236
NR-MVSNet94.98 20394.16 21997.44 16496.53 28397.22 9698.74 11498.95 3494.96 13789.25 32497.69 21589.32 17698.18 28794.59 17987.40 31896.92 236
tpm94.13 25693.80 24395.12 28396.50 28587.91 33697.44 26495.89 33492.62 23496.37 17496.30 30784.13 28398.30 27893.24 22091.66 26499.14 140
pm-mvs193.94 26693.06 27096.59 21796.49 28695.16 18198.95 7298.03 25092.32 24791.08 30897.84 20384.54 27598.41 26592.16 24986.13 33196.19 312
JIA-IIPM93.35 27392.49 28095.92 25796.48 28790.65 30195.01 33896.96 31285.93 33596.08 17987.33 35087.70 22198.78 22691.35 26795.58 21498.34 193
TranMVSNet+NR-MVSNet95.14 19394.48 20097.11 18196.45 28896.36 13199.03 5599.03 2595.04 13393.58 25097.93 19388.27 20498.03 30094.13 19486.90 32596.95 235
testgi93.06 28292.45 28194.88 29196.43 28989.90 30798.75 11197.54 28195.60 10091.63 30497.91 19474.46 34397.02 32986.10 32093.67 23697.72 211
v1094.29 24693.55 25896.51 22796.39 29094.80 20298.99 6498.19 21691.35 27793.02 27296.99 27488.09 21098.41 26590.50 27988.41 30796.33 307
v894.47 23793.77 24696.57 22096.36 29194.83 20099.05 5298.19 21691.92 25993.16 26696.97 27688.82 19498.48 25091.69 26387.79 31396.39 303
GG-mvs-BLEND96.59 21796.34 29294.98 19296.51 32288.58 36093.10 27194.34 33780.34 31198.05 29989.53 29696.99 17996.74 260
V4294.78 21594.14 22196.70 20696.33 29395.22 18098.97 6898.09 23992.32 24794.31 22097.06 26688.39 20298.55 24592.90 23188.87 30396.34 305
PEN-MVS94.42 23993.73 25096.49 22896.28 29494.84 19899.17 3399.00 2793.51 20292.23 29597.83 20686.10 24997.90 30992.55 24286.92 32496.74 260
v114494.59 22793.92 23496.60 21696.21 29594.78 20498.59 14398.14 22991.86 26294.21 22697.02 27187.97 21398.41 26591.72 26289.57 28996.61 277
Baseline_NR-MVSNet94.35 24293.81 24295.96 25696.20 29694.05 23098.61 14296.67 32691.44 27393.85 24297.60 22488.57 19798.14 29094.39 18486.93 32395.68 322
MS-PatchMatch93.84 26793.63 25594.46 30696.18 29789.45 31497.76 24898.27 20692.23 25192.13 29797.49 23279.50 31498.69 23089.75 29199.38 10095.25 327
v2v48294.69 21794.03 22596.65 20996.17 29894.79 20398.67 13398.08 24192.72 23194.00 23697.16 25487.69 22298.45 25492.91 23088.87 30396.72 263
EPNet_dtu95.21 18994.95 18195.99 25396.17 29890.45 30498.16 21097.27 29996.77 5493.14 26998.33 16190.34 16198.42 25885.57 32498.81 12599.09 145
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS95.69 16395.33 16396.76 20196.16 30094.63 20798.43 16998.39 18596.64 6095.02 19398.78 11285.15 26499.05 19095.21 16394.20 22296.60 278
v119294.32 24493.58 25796.53 22596.10 30194.45 21698.50 16098.17 22491.54 27094.19 22797.06 26686.95 23598.43 25790.14 28289.57 28996.70 267
v14894.29 24693.76 24895.91 25896.10 30192.93 26598.58 14597.97 25392.59 23693.47 25796.95 28088.53 20098.32 27492.56 24187.06 32296.49 298
v14419294.39 24193.70 25296.48 22996.06 30394.35 22298.58 14598.16 22691.45 27294.33 21997.02 27187.50 22598.45 25491.08 26989.11 29896.63 275
DTE-MVSNet93.98 26593.26 26896.14 24996.06 30394.39 22099.20 2998.86 6193.06 21991.78 30197.81 20885.87 25397.58 32090.53 27886.17 32996.46 301
v124094.06 26393.29 26796.34 24196.03 30593.90 23398.44 16798.17 22491.18 28794.13 23097.01 27386.05 25098.42 25889.13 30389.50 29396.70 267
v192192094.20 25193.47 26296.40 23795.98 30694.08 22998.52 15598.15 22791.33 27894.25 22397.20 25286.41 24498.42 25890.04 28789.39 29596.69 272
EU-MVSNet93.66 26894.14 22192.25 32695.96 30783.38 34798.52 15598.12 23194.69 14792.61 28398.13 17887.36 22896.39 34291.82 25990.00 28496.98 231
v7n94.19 25293.43 26396.47 23095.90 30894.38 22199.26 1898.34 19391.99 25792.76 27897.13 25588.31 20398.52 24889.48 29887.70 31496.52 292
gm-plane-assit95.88 30987.47 33889.74 31196.94 28199.19 17293.32 219
LF4IMVS93.14 28192.79 27594.20 30995.88 30988.67 32697.66 25597.07 30593.81 18491.71 30297.65 21977.96 32698.81 22391.47 26691.92 26195.12 330
PS-MVSNAJss96.43 13296.26 12996.92 19495.84 31195.08 18799.16 3498.50 16795.87 8993.84 24398.34 16094.51 8598.61 23896.88 9993.45 24397.06 227
pmmvs494.69 21793.99 23196.81 19995.74 31295.94 15197.40 26797.67 26890.42 29893.37 26097.59 22589.08 18498.20 28692.97 22991.67 26396.30 309
test_djsdf96.00 14895.69 14896.93 19295.72 31395.49 17099.47 298.40 18394.98 13594.58 20597.86 20089.16 18198.41 26596.91 9394.12 22796.88 245
SixPastTwentyTwo93.34 27492.86 27394.75 29695.67 31489.41 31698.75 11196.67 32693.89 17890.15 31798.25 17080.87 30698.27 28490.90 27390.64 27796.57 282
K. test v392.55 28791.91 28994.48 30495.64 31589.24 31799.07 5094.88 34294.04 16986.78 33597.59 22577.64 33097.64 31892.08 25189.43 29496.57 282
OurMVSNet-221017-094.21 25094.00 22994.85 29295.60 31689.22 31898.89 8397.43 29195.29 11892.18 29698.52 14082.86 29498.59 24293.46 21491.76 26296.74 260
mvs_tets95.41 17695.00 17796.65 20995.58 31794.42 21899.00 6298.55 15295.73 9493.21 26598.38 15383.45 29398.63 23797.09 8594.00 23096.91 241
Gipumacopyleft78.40 32176.75 32483.38 33695.54 31880.43 35279.42 35797.40 29364.67 35473.46 35180.82 35445.65 35893.14 35266.32 35487.43 31776.56 355
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test0.0.03 194.08 26193.51 26095.80 26395.53 31992.89 26697.38 26995.97 33195.11 12992.51 28896.66 29487.71 21996.94 33187.03 31593.67 23697.57 214
pmmvs593.65 27092.97 27295.68 26795.49 32092.37 26998.20 20097.28 29889.66 31292.58 28497.26 24682.14 29698.09 29593.18 22390.95 27596.58 280
N_pmnet87.12 31887.77 31785.17 33595.46 32161.92 36097.37 27170.66 36585.83 33688.73 32996.04 31685.33 26397.76 31680.02 34290.48 27895.84 319
our_test_393.65 27093.30 26694.69 29795.45 32289.68 31296.91 30297.65 26991.97 25891.66 30396.88 28489.67 17097.93 30888.02 31091.49 26596.48 299
ppachtmachnet_test93.22 27892.63 27894.97 28895.45 32290.84 29696.88 30897.88 26090.60 29392.08 29897.26 24688.08 21197.86 31485.12 32890.33 27996.22 310
jajsoiax95.45 17295.03 17696.73 20395.42 32494.63 20799.14 3698.52 15995.74 9393.22 26498.36 15583.87 28998.65 23696.95 9294.04 22896.91 241
MDA-MVSNet-bldmvs89.97 30888.35 31394.83 29495.21 32591.34 28797.64 25697.51 28388.36 32371.17 35496.13 31479.22 31696.63 33983.65 33486.27 32896.52 292
anonymousdsp95.42 17494.91 18296.94 19195.10 32695.90 15799.14 3698.41 18193.75 18593.16 26697.46 23487.50 22598.41 26595.63 15094.03 22996.50 297
EPNet97.28 10096.87 10398.51 9294.98 32796.14 14098.90 7997.02 31098.28 195.99 18299.11 6791.36 14099.89 3596.98 8899.19 10899.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVP-Stereo94.28 24893.92 23495.35 27794.95 32892.60 26897.97 22897.65 26991.61 26990.68 31297.09 26086.32 24698.42 25889.70 29399.34 10295.02 334
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
lessismore_v094.45 30794.93 32988.44 33091.03 35786.77 33697.64 22176.23 33598.42 25890.31 28185.64 33296.51 295
MDA-MVSNet_test_wron90.71 30289.38 30794.68 29894.83 33090.78 29997.19 28597.46 28787.60 32572.41 35395.72 32286.51 24096.71 33785.92 32286.80 32696.56 284
YYNet190.70 30389.39 30694.62 30094.79 33190.65 30197.20 28497.46 28787.54 32672.54 35295.74 31986.51 24096.66 33886.00 32186.76 32796.54 287
EG-PatchMatch MVS91.13 29890.12 30194.17 31194.73 33289.00 32298.13 21397.81 26289.22 31885.32 34296.46 30267.71 35098.42 25887.89 31293.82 23595.08 332
pmmvs691.77 29290.63 29695.17 28294.69 33391.24 29298.67 13397.92 25886.14 33389.62 32097.56 22975.79 33798.34 27290.75 27684.56 33395.94 318
bset_n11_16_dypcd94.89 20994.27 21296.76 20194.41 33495.15 18395.67 33395.64 33695.53 10394.65 20397.52 23187.10 23098.29 28196.58 11491.35 26696.83 252
new_pmnet90.06 30789.00 31193.22 32194.18 33588.32 33296.42 32496.89 31886.19 33285.67 34193.62 33977.18 33297.10 32881.61 33989.29 29694.23 339
DSMNet-mixed92.52 28892.58 27992.33 32594.15 33682.65 34998.30 18894.26 34989.08 31992.65 28295.73 32085.01 26695.76 34486.24 31997.76 16498.59 183
UnsupCasMVSNet_eth90.99 30089.92 30394.19 31094.08 33789.83 30897.13 29198.67 12993.69 19385.83 34096.19 31375.15 33996.74 33489.14 30279.41 34396.00 316
KD-MVS_2432*160089.61 31187.96 31594.54 30194.06 33891.59 28495.59 33597.63 27189.87 30888.95 32694.38 33578.28 32296.82 33284.83 32968.05 35295.21 328
miper_refine_blended89.61 31187.96 31594.54 30194.06 33891.59 28495.59 33597.63 27189.87 30888.95 32694.38 33578.28 32296.82 33284.83 32968.05 35295.21 328
Anonymous2023120691.66 29391.10 29393.33 31894.02 34087.35 33998.58 14597.26 30090.48 29590.16 31696.31 30683.83 29096.53 34079.36 34589.90 28596.12 313
Anonymous2024052191.18 29790.44 29893.42 31593.70 34188.47 32998.94 7497.56 27588.46 32289.56 32295.08 33077.15 33396.97 33083.92 33389.55 29194.82 336
test20.0390.89 30190.38 29992.43 32493.48 34288.14 33498.33 18097.56 27593.40 20787.96 33196.71 29380.69 30994.13 35179.15 34686.17 32995.01 335
CMPMVSbinary66.06 2189.70 30989.67 30589.78 33093.19 34376.56 35397.00 29698.35 19180.97 34681.57 34797.75 21174.75 34198.61 23889.85 28993.63 23894.17 340
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OpenMVS_ROBcopyleft86.42 2089.00 31487.43 31993.69 31393.08 34489.42 31597.91 23396.89 31878.58 34885.86 33994.69 33269.48 34998.29 28177.13 35093.29 24893.36 347
DIV-MVS_2432*160090.38 30489.38 30793.40 31792.85 34588.94 32397.95 22997.94 25690.35 30090.25 31593.96 33879.82 31295.94 34384.62 33276.69 34695.33 326
MIMVSNet189.67 31088.28 31493.82 31292.81 34691.08 29498.01 22497.45 28987.95 32487.90 33295.87 31867.63 35194.56 35078.73 34888.18 31095.83 320
UnsupCasMVSNet_bld87.17 31785.12 32193.31 31991.94 34788.77 32494.92 34198.30 20384.30 34282.30 34690.04 34763.96 35597.25 32685.85 32374.47 35093.93 345
CL-MVSNet_2432*160090.11 30689.14 30993.02 32291.86 34888.23 33396.51 32298.07 24390.49 29490.49 31494.41 33384.75 27195.34 34680.79 34174.95 34895.50 324
Patchmatch-RL test91.49 29490.85 29593.41 31691.37 34984.40 34492.81 34995.93 33391.87 26187.25 33394.87 33188.99 18696.53 34092.54 24382.00 33699.30 120
pmmvs-eth3d90.36 30589.05 31094.32 30891.10 35092.12 27197.63 25896.95 31388.86 32084.91 34393.13 34178.32 32196.74 33488.70 30581.81 33894.09 342
PM-MVS87.77 31686.55 32091.40 32991.03 35183.36 34896.92 30095.18 34091.28 28286.48 33893.42 34053.27 35696.74 33489.43 29981.97 33794.11 341
new-patchmatchnet88.50 31587.45 31891.67 32890.31 35285.89 34397.16 28997.33 29589.47 31483.63 34592.77 34276.38 33495.06 34982.70 33677.29 34594.06 343
pmmvs386.67 31984.86 32292.11 32788.16 35387.19 34196.63 31894.75 34479.88 34787.22 33492.75 34366.56 35295.20 34881.24 34076.56 34793.96 344
ambc89.49 33186.66 35475.78 35492.66 35096.72 32386.55 33792.50 34446.01 35797.90 30990.32 28082.09 33594.80 337
TDRefinement91.06 29989.68 30495.21 28085.35 35591.49 28698.51 15997.07 30591.47 27188.83 32897.84 20377.31 33199.09 18792.79 23477.98 34495.04 333
PMMVS277.95 32275.44 32685.46 33482.54 35674.95 35594.23 34793.08 35472.80 35274.68 35087.38 34936.36 36291.56 35473.95 35263.94 35489.87 349
E-PMN64.94 32764.25 32967.02 34282.28 35759.36 36391.83 35285.63 36152.69 35760.22 35777.28 35641.06 36080.12 35946.15 35841.14 35661.57 357
EMVS64.07 32863.26 33166.53 34381.73 35858.81 36491.85 35184.75 36251.93 35959.09 35875.13 35743.32 35979.09 36042.03 35939.47 35761.69 356
FPMVS77.62 32377.14 32379.05 33879.25 35960.97 36195.79 33195.94 33265.96 35367.93 35594.40 33437.73 36188.88 35668.83 35388.46 30687.29 350
wuyk23d30.17 33030.18 33430.16 34478.61 36043.29 36666.79 35814.21 36617.31 36114.82 36411.93 36411.55 36741.43 36237.08 36019.30 3605.76 360
LCM-MVSNet78.70 32076.24 32586.08 33377.26 36171.99 35794.34 34696.72 32361.62 35576.53 34989.33 34833.91 36392.78 35381.85 33874.60 34993.46 346
MVEpermissive62.14 2263.28 32959.38 33274.99 33974.33 36265.47 35985.55 35580.50 36452.02 35851.10 35975.00 35810.91 36880.50 35851.60 35753.40 35578.99 353
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high69.08 32465.37 32880.22 33765.99 36371.96 35890.91 35390.09 35882.62 34349.93 36078.39 35529.36 36481.75 35762.49 35538.52 35886.95 352
PMVScopyleft61.03 2365.95 32663.57 33073.09 34157.90 36451.22 36585.05 35693.93 35354.45 35644.32 36183.57 35113.22 36589.15 35558.68 35681.00 34178.91 354
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt68.90 32566.97 32774.68 34050.78 36559.95 36287.13 35483.47 36338.80 36062.21 35696.23 31064.70 35476.91 36188.91 30430.49 35987.19 351
testmvs21.48 33224.95 33511.09 34614.89 3666.47 36896.56 3209.87 3677.55 36217.93 36239.02 3609.43 3695.90 36416.56 36212.72 36120.91 359
test12320.95 33323.72 33612.64 34513.54 3678.19 36796.55 3216.13 3687.48 36316.74 36337.98 36112.97 3666.05 36316.69 3615.43 36223.68 358
uanet_test0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
cdsmvs_eth3d_5k23.98 33131.98 3330.00 3470.00 3680.00 3690.00 35998.59 1420.00 3640.00 36598.61 12890.60 1570.00 3650.00 3630.00 3630.00 361
pcd_1.5k_mvsjas7.88 33510.50 3380.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 36594.51 850.00 3650.00 3630.00 3630.00 361
sosnet-low-res0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
sosnet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
uncertanet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
Regformer0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
ab-mvs-re8.20 33410.94 3370.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 36598.43 1460.00 3700.00 3650.00 3630.00 3630.00 361
uanet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 1899.80 1799.83 5
test_0728_THIRD97.32 2899.45 999.46 997.88 199.94 398.47 1599.86 199.85 2
GSMVS99.20 129
sam_mvs189.45 17399.20 129
sam_mvs88.99 186
MTGPAbinary98.74 104
test_post196.68 31730.43 36387.85 21898.69 23092.59 239
test_post31.83 36288.83 19398.91 209
patchmatchnet-post95.10 32989.42 17498.89 213
MTMP98.89 8394.14 351
test9_res96.39 12299.57 7599.69 51
agg_prior295.87 13899.57 7599.68 57
test_prior498.01 6297.86 240
test_prior297.80 24596.12 8197.89 10698.69 12095.96 3696.89 9699.60 68
旧先验297.57 26191.30 28098.67 5899.80 8095.70 148
新几何297.64 256
无先验97.58 26098.72 11091.38 27499.87 4493.36 21799.60 78
原ACMM297.67 254
testdata299.89 3591.65 264
segment_acmp96.85 11
testdata197.32 27796.34 72
plane_prior598.56 15099.03 19496.07 12894.27 21996.92 236
plane_prior498.28 165
plane_prior394.61 21097.02 4895.34 187
plane_prior298.80 10597.28 30
plane_prior94.60 21298.44 16796.74 5694.22 221
n20.00 369
nn0.00 369
door-mid94.37 347
test1198.66 132
door94.64 345
HQP5-MVS94.25 226
BP-MVS95.30 157
HQP4-MVS94.45 21098.96 20296.87 247
HQP3-MVS98.46 17294.18 223
HQP2-MVS86.75 237
MDTV_nov1_ep13_2view84.26 34596.89 30790.97 29097.90 10589.89 16893.91 20199.18 136
ACMMP++_ref92.97 251
ACMMP++93.61 239
Test By Simon94.64 80