zzz-MVS | | | 98.55 30 | 98.25 38 | 99.46 12 | 99.76 1 | 98.64 22 | 98.55 153 | 98.74 104 | 97.27 34 | 98.02 91 | 99.39 14 | 94.81 77 | 99.96 1 | 97.91 39 | 99.79 19 | 99.77 20 |
|
MTAPA | | | 98.58 23 | 98.29 35 | 99.46 12 | 99.76 1 | 98.64 22 | 98.90 79 | 98.74 104 | 97.27 34 | 98.02 91 | 99.39 14 | 94.81 77 | 99.96 1 | 97.91 39 | 99.79 19 | 99.77 20 |
|
MSP-MVS | | | 98.74 8 | 98.55 10 | 99.29 31 | 99.75 3 | 98.23 49 | 99.26 18 | 98.88 49 | 97.52 15 | 99.41 11 | 98.78 112 | 96.00 34 | 99.79 92 | 97.79 49 | 99.59 71 | 99.85 2 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
MP-MVS |  | | 98.33 50 | 98.01 52 | 99.28 35 | 99.75 3 | 98.18 53 | 99.22 25 | 98.79 92 | 96.13 80 | 97.92 104 | 99.23 45 | 94.54 84 | 99.94 3 | 96.74 110 | 99.78 23 | 99.73 36 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
mPP-MVS | | | 98.51 35 | 98.26 37 | 99.25 39 | 99.75 3 | 98.04 60 | 99.28 16 | 98.81 76 | 96.24 74 | 98.35 78 | 99.23 45 | 95.46 51 | 99.94 3 | 97.42 75 | 99.81 10 | 99.77 20 |
|
HPM-MVS_fast | | | 98.38 43 | 98.13 46 | 99.12 57 | 99.75 3 | 97.86 68 | 99.44 4 | 98.82 70 | 94.46 159 | 98.94 39 | 99.20 52 | 95.16 69 | 99.74 107 | 97.58 66 | 99.85 3 | 99.77 20 |
|
region2R | | | 98.61 17 | 98.38 20 | 99.29 31 | 99.74 7 | 98.16 55 | 99.23 21 | 98.93 37 | 96.15 78 | 98.94 39 | 99.17 56 | 95.91 39 | 99.94 3 | 97.55 70 | 99.79 19 | 99.78 13 |
|
ACMMPR | | | 98.59 20 | 98.36 22 | 99.29 31 | 99.74 7 | 98.15 56 | 99.23 21 | 98.95 34 | 96.10 83 | 98.93 43 | 99.19 55 | 95.70 44 | 99.94 3 | 97.62 62 | 99.79 19 | 99.78 13 |
|
HPM-MVS |  | | 98.36 45 | 98.10 48 | 99.13 54 | 99.74 7 | 97.82 72 | 99.53 1 | 98.80 87 | 94.63 152 | 98.61 64 | 98.97 87 | 95.13 70 | 99.77 101 | 97.65 60 | 99.83 9 | 99.79 10 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
ACMMP |  | | 98.23 54 | 97.95 55 | 99.09 59 | 99.74 7 | 97.62 79 | 99.03 55 | 99.41 6 | 95.98 85 | 97.60 125 | 99.36 26 | 94.45 89 | 99.93 15 | 97.14 83 | 98.85 122 | 99.70 48 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
ZNCC-MVS | | | 98.49 36 | 98.20 44 | 99.35 22 | 99.73 11 | 98.39 34 | 99.19 31 | 98.86 61 | 95.77 92 | 98.31 81 | 99.10 69 | 95.46 51 | 99.93 15 | 97.57 69 | 99.81 10 | 99.74 33 |
|
DVP-MVS | | | 99.03 2 | 98.83 3 | 99.63 3 | 99.72 12 | 99.25 2 | 98.97 68 | 98.58 147 | 97.62 11 | 99.45 9 | 99.46 9 | 97.42 6 | 99.94 3 | 98.47 15 | 99.81 10 | 99.69 51 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 99.71 1 | 99.72 12 | 99.35 1 | 98.97 68 | 98.88 49 | | | | | 99.94 3 | 98.47 15 | 99.81 10 | 99.84 4 |
|
test0726 | | | | | | 99.72 12 | 99.25 2 | 99.06 51 | 98.88 49 | 97.62 11 | 99.56 5 | 99.50 4 | 97.42 6 | | | | |
|
GST-MVS | | | 98.43 40 | 98.12 47 | 99.34 23 | 99.72 12 | 98.38 35 | 99.09 46 | 98.82 70 | 95.71 95 | 98.73 55 | 99.06 78 | 95.27 64 | 99.93 15 | 97.07 86 | 99.63 64 | 99.72 40 |
|
MP-MVS-pluss | | | 98.31 52 | 97.92 57 | 99.49 9 | 99.72 12 | 98.88 14 | 98.43 169 | 98.78 95 | 94.10 167 | 97.69 116 | 99.42 12 | 95.25 66 | 99.92 21 | 98.09 32 | 99.80 17 | 99.67 61 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
HFP-MVS | | | 98.63 16 | 98.40 18 | 99.32 28 | 99.72 12 | 98.29 46 | 99.23 21 | 98.96 32 | 96.10 83 | 98.94 39 | 99.17 56 | 96.06 30 | 99.92 21 | 97.62 62 | 99.78 23 | 99.75 28 |
|
#test# | | | 98.54 32 | 98.27 36 | 99.32 28 | 99.72 12 | 98.29 46 | 98.98 67 | 98.96 32 | 95.65 99 | 98.94 39 | 99.17 56 | 96.06 30 | 99.92 21 | 97.21 82 | 99.78 23 | 99.75 28 |
|
PGM-MVS | | | 98.49 36 | 98.23 42 | 99.27 38 | 99.72 12 | 98.08 59 | 98.99 64 | 99.49 5 | 95.43 109 | 99.03 33 | 99.32 33 | 95.56 47 | 99.94 3 | 96.80 106 | 99.77 26 | 99.78 13 |
|
SED-MVS | | | 99.09 1 | 98.91 1 | 99.63 3 | 99.71 20 | 99.24 4 | 99.02 58 | 98.87 55 | 97.65 9 | 99.73 1 | 99.48 6 | 97.53 4 | 99.94 3 | 98.43 18 | 99.81 10 | 99.70 48 |
|
IU-MVS | | | | | | 99.71 20 | 99.23 6 | | 98.64 137 | 95.28 119 | 99.63 4 | | | | 98.35 24 | 99.81 10 | 99.83 5 |
|
test_241102_ONE | | | | | | 99.71 20 | 99.24 4 | | 98.87 55 | 97.62 11 | 99.73 1 | 99.39 14 | 97.53 4 | 99.74 107 | | | |
|
XVS | | | 98.70 9 | 98.49 16 | 99.34 23 | 99.70 23 | 98.35 43 | 99.29 14 | 98.88 49 | 97.40 22 | 98.46 69 | 99.20 52 | 95.90 40 | 99.89 35 | 97.85 45 | 99.74 41 | 99.78 13 |
|
X-MVStestdata | | | 94.06 263 | 92.30 283 | 99.34 23 | 99.70 23 | 98.35 43 | 99.29 14 | 98.88 49 | 97.40 22 | 98.46 69 | 43.50 359 | 95.90 40 | 99.89 35 | 97.85 45 | 99.74 41 | 99.78 13 |
|
TSAR-MVS + MP. | | | 98.78 6 | 98.62 7 | 99.24 40 | 99.69 25 | 98.28 48 | 99.14 36 | 98.66 132 | 96.84 52 | 99.56 5 | 99.31 35 | 96.34 19 | 99.70 115 | 98.32 25 | 99.73 43 | 99.73 36 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
CSCG | | | 97.85 66 | 97.74 62 | 98.20 115 | 99.67 26 | 95.16 181 | 99.22 25 | 99.32 7 | 93.04 220 | 97.02 142 | 98.92 99 | 95.36 58 | 99.91 30 | 97.43 74 | 99.64 62 | 99.52 85 |
|
CP-MVS | | | 98.57 26 | 98.36 22 | 99.19 43 | 99.66 27 | 97.86 68 | 99.34 11 | 98.87 55 | 95.96 86 | 98.60 65 | 99.13 64 | 96.05 32 | 99.94 3 | 97.77 50 | 99.86 1 | 99.77 20 |
|
CPTT-MVS | | | 97.72 72 | 97.32 84 | 98.92 69 | 99.64 28 | 97.10 100 | 99.12 41 | 98.81 76 | 92.34 245 | 98.09 85 | 99.08 76 | 93.01 106 | 99.92 21 | 96.06 131 | 99.77 26 | 99.75 28 |
|
test_part2 | | | | | | 99.63 29 | 99.18 8 | | | | 99.27 17 | | | | | | |
|
ACMMP_NAP | | | 98.61 17 | 98.30 34 | 99.55 6 | 99.62 30 | 98.95 13 | 98.82 98 | 98.81 76 | 95.80 91 | 99.16 26 | 99.47 8 | 95.37 57 | 99.92 21 | 97.89 42 | 99.75 38 | 99.79 10 |
|
MCST-MVS | | | 98.65 13 | 98.37 21 | 99.48 10 | 99.60 31 | 98.87 15 | 98.41 172 | 98.68 121 | 97.04 47 | 98.52 68 | 98.80 110 | 96.78 12 | 99.83 56 | 97.93 38 | 99.61 67 | 99.74 33 |
|
DPE-MVS |  | | 98.92 4 | 98.67 6 | 99.65 2 | 99.58 32 | 99.20 7 | 98.42 171 | 98.91 43 | 97.58 14 | 99.54 7 | 99.46 9 | 97.10 9 | 99.94 3 | 97.64 61 | 99.84 8 | 99.83 5 |
|
APDe-MVS | | | 99.02 3 | 98.84 2 | 99.55 6 | 99.57 33 | 98.96 12 | 99.39 5 | 98.93 37 | 97.38 25 | 99.41 11 | 99.54 1 | 96.66 13 | 99.84 53 | 98.86 1 | 99.85 3 | 99.87 1 |
|
abl_6 | | | 98.30 53 | 98.03 51 | 99.13 54 | 99.56 34 | 97.76 75 | 99.13 39 | 98.82 70 | 96.14 79 | 99.26 18 | 99.37 22 | 93.33 102 | 99.93 15 | 96.96 91 | 99.67 54 | 99.69 51 |
|
SF-MVS | | | 98.59 20 | 98.32 33 | 99.41 16 | 99.54 35 | 98.71 18 | 99.04 53 | 98.81 76 | 95.12 128 | 99.32 15 | 99.39 14 | 96.22 20 | 99.84 53 | 97.72 53 | 99.73 43 | 99.67 61 |
|
test1172 | | | 98.56 28 | 98.35 24 | 99.16 50 | 99.53 36 | 97.94 66 | 99.09 46 | 98.83 68 | 96.52 65 | 99.05 32 | 99.34 31 | 95.34 59 | 99.82 64 | 97.86 44 | 99.64 62 | 99.73 36 |
|
SR-MVS | | | 98.57 26 | 98.35 24 | 99.24 40 | 99.53 36 | 98.18 53 | 99.09 46 | 98.82 70 | 96.58 62 | 99.10 29 | 99.32 33 | 95.39 55 | 99.82 64 | 97.70 58 | 99.63 64 | 99.72 40 |
|
DP-MVS Recon | | | 97.86 65 | 97.46 77 | 99.06 61 | 99.53 36 | 98.35 43 | 98.33 180 | 98.89 46 | 92.62 234 | 98.05 87 | 98.94 96 | 95.34 59 | 99.65 124 | 96.04 132 | 99.42 96 | 99.19 132 |
|
SMA-MVS |  | | 98.58 23 | 98.25 38 | 99.56 5 | 99.51 39 | 99.04 11 | 98.95 72 | 98.80 87 | 93.67 197 | 99.37 13 | 99.52 3 | 96.52 17 | 99.89 35 | 98.06 33 | 99.81 10 | 99.76 26 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
APD-MVS |  | | 98.35 46 | 98.00 53 | 99.42 15 | 99.51 39 | 98.72 17 | 98.80 105 | 98.82 70 | 94.52 156 | 99.23 20 | 99.25 43 | 95.54 49 | 99.80 80 | 96.52 116 | 99.77 26 | 99.74 33 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
HPM-MVS++ |  | | 98.58 23 | 98.25 38 | 99.55 6 | 99.50 41 | 99.08 9 | 98.72 122 | 98.66 132 | 97.51 16 | 98.15 82 | 98.83 107 | 95.70 44 | 99.92 21 | 97.53 72 | 99.67 54 | 99.66 65 |
|
APD-MVS_3200maxsize | | | 98.53 34 | 98.33 32 | 99.15 53 | 99.50 41 | 97.92 67 | 99.15 35 | 98.81 76 | 96.24 74 | 99.20 22 | 99.37 22 | 95.30 62 | 99.80 80 | 97.73 52 | 99.67 54 | 99.72 40 |
|
114514_t | | | 96.93 115 | 96.27 128 | 98.92 69 | 99.50 41 | 97.63 78 | 98.85 91 | 98.90 44 | 84.80 340 | 97.77 109 | 99.11 67 | 92.84 107 | 99.66 123 | 94.85 168 | 99.77 26 | 99.47 98 |
|
PAPM_NR | | | 97.46 87 | 97.11 91 | 98.50 93 | 99.50 41 | 96.41 129 | 98.63 139 | 98.60 140 | 95.18 124 | 97.06 140 | 98.06 182 | 94.26 93 | 99.57 135 | 93.80 205 | 98.87 121 | 99.52 85 |
|
SR-MVS-dyc-post | | | 98.54 32 | 98.35 24 | 99.13 54 | 99.49 45 | 97.86 68 | 99.11 42 | 98.80 87 | 96.49 66 | 99.17 24 | 99.35 28 | 95.34 59 | 99.82 64 | 97.72 53 | 99.65 58 | 99.71 44 |
|
RE-MVS-def | | | | 98.34 28 | | 99.49 45 | 97.86 68 | 99.11 42 | 98.80 87 | 96.49 66 | 99.17 24 | 99.35 28 | 95.29 63 | | 97.72 53 | 99.65 58 | 99.71 44 |
|
testtj | | | 98.33 50 | 97.95 55 | 99.47 11 | 99.49 45 | 98.70 19 | 98.83 95 | 98.86 61 | 95.48 106 | 98.91 45 | 99.17 56 | 95.48 50 | 99.93 15 | 95.80 141 | 99.53 85 | 99.76 26 |
|
9.14 | | | | 98.06 49 | | 99.47 48 | | 98.71 123 | 98.82 70 | 94.36 161 | 99.16 26 | 99.29 39 | 96.05 32 | 99.81 71 | 97.00 87 | 99.71 50 | |
|
ETH3D-3000-0.1 | | | 98.35 46 | 98.00 53 | 99.38 17 | 99.47 48 | 98.68 21 | 98.67 133 | 98.84 65 | 94.66 151 | 99.11 28 | 99.25 43 | 95.46 51 | 99.81 71 | 96.80 106 | 99.73 43 | 99.63 73 |
|
CDPH-MVS | | | 97.94 62 | 97.49 75 | 99.28 35 | 99.47 48 | 98.44 31 | 97.91 233 | 98.67 129 | 92.57 237 | 98.77 51 | 98.85 104 | 95.93 38 | 99.72 109 | 95.56 151 | 99.69 52 | 99.68 57 |
|
ZD-MVS | | | | | | 99.46 51 | 98.70 19 | | 98.79 92 | 93.21 214 | 98.67 58 | 98.97 87 | 95.70 44 | 99.83 56 | 96.07 128 | 99.58 74 | |
|
xxxxxxxxxxxxxcwj | | | 98.70 9 | 98.50 14 | 99.30 30 | 99.46 51 | 98.38 35 | 98.21 197 | 98.52 159 | 97.95 3 | 99.32 15 | 99.39 14 | 96.22 20 | 99.84 53 | 97.72 53 | 99.73 43 | 99.67 61 |
|
save fliter | | | | | | 99.46 51 | 98.38 35 | 98.21 197 | 98.71 114 | 97.95 3 | | | | | | | |
|
EI-MVSNet-Vis-set | | | 98.47 38 | 98.39 19 | 98.69 78 | 99.46 51 | 96.49 125 | 98.30 188 | 98.69 118 | 97.21 37 | 98.84 46 | 99.36 26 | 95.41 54 | 99.78 96 | 98.62 5 | 99.65 58 | 99.80 9 |
|
EI-MVSNet-UG-set | | | 98.41 41 | 98.34 28 | 98.61 83 | 99.45 55 | 96.32 133 | 98.28 191 | 98.68 121 | 97.17 40 | 98.74 53 | 99.37 22 | 95.25 66 | 99.79 92 | 98.57 7 | 99.54 84 | 99.73 36 |
|
F-COLMAP | | | 97.09 111 | 96.80 104 | 97.97 129 | 99.45 55 | 94.95 195 | 98.55 153 | 98.62 139 | 93.02 221 | 96.17 178 | 98.58 133 | 94.01 96 | 99.81 71 | 93.95 200 | 98.90 117 | 99.14 140 |
|
Regformer-3 | | | 98.59 20 | 98.50 14 | 98.86 73 | 99.43 57 | 97.05 101 | 98.40 173 | 98.68 121 | 97.43 21 | 99.06 31 | 99.31 35 | 95.80 43 | 99.77 101 | 98.62 5 | 99.76 32 | 99.78 13 |
|
Regformer-4 | | | 98.64 14 | 98.53 11 | 98.99 63 | 99.43 57 | 97.37 87 | 98.40 173 | 98.79 92 | 97.46 20 | 99.09 30 | 99.31 35 | 95.86 42 | 99.80 80 | 98.64 3 | 99.76 32 | 99.79 10 |
|
ETH3 D test6400 | | | 97.59 81 | 97.01 96 | 99.34 23 | 99.40 59 | 98.56 25 | 98.20 200 | 98.81 76 | 91.63 268 | 98.44 73 | 98.85 104 | 93.98 98 | 99.82 64 | 94.11 196 | 99.69 52 | 99.64 70 |
|
Regformer-1 | | | 98.66 12 | 98.51 13 | 99.12 57 | 99.35 60 | 97.81 74 | 98.37 175 | 98.76 99 | 97.49 17 | 99.20 22 | 99.21 48 | 96.08 29 | 99.79 92 | 98.42 20 | 99.73 43 | 99.75 28 |
|
Regformer-2 | | | 98.69 11 | 98.52 12 | 99.19 43 | 99.35 60 | 98.01 62 | 98.37 175 | 98.81 76 | 97.48 18 | 99.21 21 | 99.21 48 | 96.13 27 | 99.80 80 | 98.40 22 | 99.73 43 | 99.75 28 |
|
新几何1 | | | | | 99.16 50 | 99.34 62 | 98.01 62 | | 98.69 118 | 90.06 305 | 98.13 83 | 98.95 95 | 94.60 82 | 99.89 35 | 91.97 257 | 99.47 90 | 99.59 80 |
|
1121 | | | 97.37 97 | 96.77 111 | 99.16 50 | 99.34 62 | 97.99 65 | 98.19 204 | 98.68 121 | 90.14 304 | 98.01 95 | 98.97 87 | 94.80 79 | 99.87 44 | 93.36 217 | 99.46 93 | 99.61 75 |
|
DP-MVS | | | 96.59 127 | 95.93 138 | 98.57 85 | 99.34 62 | 96.19 139 | 98.70 127 | 98.39 185 | 89.45 315 | 94.52 207 | 99.35 28 | 91.85 128 | 99.85 50 | 92.89 233 | 98.88 119 | 99.68 57 |
|
SD-MVS | | | 98.64 14 | 98.68 5 | 98.53 91 | 99.33 65 | 98.36 42 | 98.90 79 | 98.85 64 | 97.28 30 | 99.72 3 | 99.39 14 | 96.63 15 | 97.60 319 | 98.17 28 | 99.85 3 | 99.64 70 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
HyFIR lowres test | | | 96.90 117 | 96.49 122 | 98.14 118 | 99.33 65 | 95.56 166 | 97.38 269 | 99.65 2 | 92.34 245 | 97.61 123 | 98.20 173 | 89.29 177 | 99.10 186 | 96.97 89 | 97.60 170 | 99.77 20 |
|
OMC-MVS | | | 97.55 85 | 97.34 83 | 98.20 115 | 99.33 65 | 95.92 155 | 98.28 191 | 98.59 142 | 95.52 105 | 97.97 98 | 99.10 69 | 93.28 104 | 99.49 146 | 95.09 164 | 98.88 119 | 99.19 132 |
|
原ACMM1 | | | | | 98.65 81 | 99.32 68 | 96.62 116 | | 98.67 129 | 93.27 213 | 97.81 108 | 98.97 87 | 95.18 68 | 99.83 56 | 93.84 203 | 99.46 93 | 99.50 91 |
|
CNVR-MVS | | | 98.78 6 | 98.56 9 | 99.45 14 | 99.32 68 | 98.87 15 | 98.47 163 | 98.81 76 | 97.72 6 | 98.76 52 | 99.16 61 | 97.05 10 | 99.78 96 | 98.06 33 | 99.66 57 | 99.69 51 |
|
TEST9 | | | | | | 99.31 70 | 98.50 29 | 97.92 231 | 98.73 108 | 92.63 233 | 97.74 112 | 98.68 122 | 96.20 23 | 99.80 80 | | | |
|
train_agg | | | 97.97 57 | 97.52 72 | 99.33 27 | 99.31 70 | 98.50 29 | 97.92 231 | 98.73 108 | 92.98 222 | 97.74 112 | 98.68 122 | 96.20 23 | 99.80 80 | 96.59 112 | 99.57 75 | 99.68 57 |
|
test_prior3 | | | 98.22 55 | 97.90 58 | 99.19 43 | 99.31 70 | 98.22 50 | 97.80 245 | 98.84 65 | 96.12 81 | 97.89 106 | 98.69 120 | 95.96 36 | 99.70 115 | 96.89 96 | 99.60 68 | 99.65 67 |
|
test_prior | | | | | 99.19 43 | 99.31 70 | 98.22 50 | | 98.84 65 | | | | | 99.70 115 | | | 99.65 67 |
|
PatchMatch-RL | | | 96.59 127 | 96.03 136 | 98.27 109 | 99.31 70 | 96.51 124 | 97.91 233 | 99.06 22 | 93.72 189 | 96.92 147 | 98.06 182 | 88.50 201 | 99.65 124 | 91.77 261 | 99.00 114 | 98.66 179 |
|
agg_prior1 | | | 97.95 61 | 97.51 74 | 99.28 35 | 99.30 75 | 98.38 35 | 97.81 244 | 98.72 110 | 93.16 217 | 97.57 126 | 98.66 125 | 96.14 26 | 99.81 71 | 96.63 111 | 99.56 80 | 99.66 65 |
|
agg_prior | | | | | | 99.30 75 | 98.38 35 | | 98.72 110 | | 97.57 126 | | | 99.81 71 | | | |
|
CHOSEN 1792x2688 | | | 97.12 109 | 96.80 104 | 98.08 123 | 99.30 75 | 94.56 214 | 98.05 220 | 99.71 1 | 93.57 201 | 97.09 136 | 98.91 100 | 88.17 207 | 99.89 35 | 96.87 102 | 99.56 80 | 99.81 8 |
|
test_8 | | | | | | 99.29 78 | 98.44 31 | 97.89 237 | 98.72 110 | 92.98 222 | 97.70 115 | 98.66 125 | 96.20 23 | 99.80 80 | | | |
|
旧先验1 | | | | | | 99.29 78 | 97.48 83 | | 98.70 117 | | | 99.09 74 | 95.56 47 | | | 99.47 90 | 99.61 75 |
|
PLC |  | 95.07 4 | 97.20 105 | 96.78 107 | 98.44 98 | 99.29 78 | 96.31 135 | 98.14 211 | 98.76 99 | 92.41 243 | 96.39 173 | 98.31 163 | 94.92 76 | 99.78 96 | 94.06 198 | 98.77 126 | 99.23 127 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
COLMAP_ROB |  | 93.27 12 | 95.33 183 | 94.87 184 | 96.71 204 | 99.29 78 | 93.24 259 | 98.58 145 | 98.11 233 | 89.92 307 | 93.57 251 | 99.10 69 | 86.37 245 | 99.79 92 | 90.78 275 | 98.10 153 | 97.09 225 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
NCCC | | | 98.61 17 | 98.35 24 | 99.38 17 | 99.28 82 | 98.61 24 | 98.45 164 | 98.76 99 | 97.82 5 | 98.45 72 | 98.93 97 | 96.65 14 | 99.83 56 | 97.38 77 | 99.41 97 | 99.71 44 |
|
PVSNet_Blended_VisFu | | | 97.70 73 | 97.46 77 | 98.44 98 | 99.27 83 | 95.91 156 | 98.63 139 | 99.16 17 | 94.48 158 | 97.67 117 | 98.88 102 | 92.80 108 | 99.91 30 | 97.11 84 | 99.12 110 | 99.50 91 |
|
MVS_111021_LR | | | 98.34 48 | 98.23 42 | 98.67 80 | 99.27 83 | 96.90 107 | 97.95 229 | 99.58 3 | 97.14 42 | 98.44 73 | 99.01 84 | 95.03 73 | 99.62 131 | 97.91 39 | 99.75 38 | 99.50 91 |
|
MSLP-MVS++ | | | 98.56 28 | 98.57 8 | 98.55 87 | 99.26 85 | 96.80 110 | 98.71 123 | 99.05 24 | 97.28 30 | 98.84 46 | 99.28 40 | 96.47 18 | 99.40 155 | 98.52 13 | 99.70 51 | 99.47 98 |
|
AllTest | | | 95.24 187 | 94.65 192 | 96.99 186 | 99.25 86 | 93.21 260 | 98.59 143 | 98.18 219 | 91.36 275 | 93.52 253 | 98.77 114 | 84.67 272 | 99.72 109 | 89.70 293 | 97.87 159 | 98.02 202 |
|
TestCases | | | | | 96.99 186 | 99.25 86 | 93.21 260 | | 98.18 219 | 91.36 275 | 93.52 253 | 98.77 114 | 84.67 272 | 99.72 109 | 89.70 293 | 97.87 159 | 98.02 202 |
|
PVSNet_BlendedMVS | | | 96.73 122 | 96.60 117 | 97.12 180 | 99.25 86 | 95.35 176 | 98.26 194 | 99.26 8 | 94.28 162 | 97.94 101 | 97.46 234 | 92.74 109 | 99.81 71 | 96.88 99 | 93.32 246 | 96.20 311 |
|
PVSNet_Blended | | | 97.38 96 | 97.12 90 | 98.14 118 | 99.25 86 | 95.35 176 | 97.28 280 | 99.26 8 | 93.13 218 | 97.94 101 | 98.21 172 | 92.74 109 | 99.81 71 | 96.88 99 | 99.40 99 | 99.27 124 |
|
DeepC-MVS | | 95.98 3 | 97.88 64 | 97.58 67 | 98.77 75 | 99.25 86 | 96.93 105 | 98.83 95 | 98.75 102 | 96.96 50 | 96.89 149 | 99.50 4 | 90.46 159 | 99.87 44 | 97.84 47 | 99.76 32 | 99.52 85 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DeepC-MVS_fast | | 96.70 1 | 98.55 30 | 98.34 28 | 99.18 47 | 99.25 86 | 98.04 60 | 98.50 160 | 98.78 95 | 97.72 6 | 98.92 44 | 99.28 40 | 95.27 64 | 99.82 64 | 97.55 70 | 99.77 26 | 99.69 51 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
OPU-MVS | | | | | 99.37 20 | 99.24 92 | 99.05 10 | 99.02 58 | | | | 99.16 61 | 97.81 2 | 99.37 158 | 97.24 80 | 99.73 43 | 99.70 48 |
|
test222 | | | | | | 99.23 93 | 97.17 98 | 97.40 267 | 98.66 132 | 88.68 321 | 98.05 87 | 98.96 93 | 94.14 94 | | | 99.53 85 | 99.61 75 |
|
TSAR-MVS + GP. | | | 98.38 43 | 98.24 41 | 98.81 74 | 99.22 94 | 97.25 95 | 98.11 216 | 98.29 205 | 97.19 39 | 98.99 38 | 99.02 80 | 96.22 20 | 99.67 122 | 98.52 13 | 98.56 135 | 99.51 89 |
|
SteuartSystems-ACMMP | | | 98.90 5 | 98.75 4 | 99.36 21 | 99.22 94 | 98.43 33 | 99.10 45 | 98.87 55 | 97.38 25 | 99.35 14 | 99.40 13 | 97.78 3 | 99.87 44 | 97.77 50 | 99.85 3 | 99.78 13 |
Skip Steuart: Steuart Systems R&D Blog. |
MVS_111021_HR | | | 98.47 38 | 98.34 28 | 98.88 72 | 99.22 94 | 97.32 88 | 97.91 233 | 99.58 3 | 97.20 38 | 98.33 79 | 99.00 85 | 95.99 35 | 99.64 126 | 98.05 35 | 99.76 32 | 99.69 51 |
|
testdata | | | | | 98.26 111 | 99.20 97 | 95.36 174 | | 98.68 121 | 91.89 260 | 98.60 65 | 99.10 69 | 94.44 90 | 99.82 64 | 94.27 190 | 99.44 95 | 99.58 82 |
|
PVSNet | | 91.96 18 | 96.35 135 | 96.15 132 | 96.96 190 | 99.17 98 | 92.05 274 | 96.08 325 | 98.68 121 | 93.69 193 | 97.75 111 | 97.80 209 | 88.86 192 | 99.69 120 | 94.26 191 | 99.01 113 | 99.15 138 |
|
test12 | | | | | 99.18 47 | 99.16 99 | 98.19 52 | | 98.53 157 | | 98.07 86 | | 95.13 70 | 99.72 109 | | 99.56 80 | 99.63 73 |
|
AdaColmap |  | | 97.15 108 | 96.70 112 | 98.48 95 | 99.16 99 | 96.69 115 | 98.01 224 | 98.89 46 | 94.44 160 | 96.83 150 | 98.68 122 | 90.69 156 | 99.76 103 | 94.36 185 | 99.29 105 | 98.98 156 |
|
PHI-MVS | | | 98.34 48 | 98.06 49 | 99.18 47 | 99.15 101 | 98.12 58 | 99.04 53 | 99.09 20 | 93.32 210 | 98.83 48 | 99.10 69 | 96.54 16 | 99.83 56 | 97.70 58 | 99.76 32 | 99.59 80 |
|
TAPA-MVS | | 93.98 7 | 95.35 181 | 94.56 196 | 97.74 145 | 99.13 102 | 94.83 200 | 98.33 180 | 98.64 137 | 86.62 329 | 96.29 175 | 98.61 128 | 94.00 97 | 99.29 163 | 80.00 343 | 99.41 97 | 99.09 145 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
MG-MVS | | | 97.81 67 | 97.60 66 | 98.44 98 | 99.12 103 | 95.97 148 | 97.75 249 | 98.78 95 | 96.89 51 | 98.46 69 | 99.22 47 | 93.90 99 | 99.68 121 | 94.81 171 | 99.52 87 | 99.67 61 |
|
Anonymous20231211 | | | 94.10 259 | 93.26 268 | 96.61 214 | 99.11 104 | 94.28 223 | 99.01 60 | 98.88 49 | 86.43 331 | 92.81 276 | 97.57 227 | 81.66 301 | 98.68 233 | 94.83 169 | 89.02 301 | 96.88 245 |
|
ETH3D cwj APD-0.16 | | | 97.96 58 | 97.52 72 | 99.29 31 | 99.05 105 | 98.52 27 | 98.33 180 | 98.68 121 | 93.18 215 | 98.68 57 | 99.13 64 | 94.62 81 | 99.83 56 | 96.45 118 | 99.55 83 | 99.52 85 |
|
CNLPA | | | 97.45 90 | 97.03 95 | 98.73 76 | 99.05 105 | 97.44 86 | 98.07 218 | 98.53 157 | 95.32 117 | 96.80 154 | 98.53 137 | 93.32 103 | 99.72 109 | 94.31 189 | 99.31 104 | 99.02 152 |
|
DPM-MVS | | | 97.55 85 | 96.99 98 | 99.23 42 | 99.04 107 | 98.55 26 | 97.17 288 | 98.35 191 | 94.85 142 | 97.93 103 | 98.58 133 | 95.07 72 | 99.71 114 | 92.60 237 | 99.34 102 | 99.43 106 |
|
hse-mvs3 | | | 96.17 142 | 95.62 151 | 97.81 139 | 99.03 108 | 94.45 216 | 98.64 138 | 98.75 102 | 97.48 18 | 98.67 58 | 98.72 119 | 89.76 169 | 99.86 49 | 97.95 37 | 81.59 339 | 99.11 143 |
|
Anonymous20240529 | | | 95.10 195 | 94.22 214 | 97.75 144 | 99.01 109 | 94.26 225 | 98.87 88 | 98.83 68 | 85.79 337 | 96.64 158 | 98.97 87 | 78.73 319 | 99.85 50 | 96.27 123 | 94.89 216 | 99.12 142 |
|
Anonymous202405211 | | | 95.28 185 | 94.49 199 | 97.67 152 | 99.00 110 | 93.75 239 | 98.70 127 | 97.04 307 | 90.66 292 | 96.49 169 | 98.80 110 | 78.13 324 | 99.83 56 | 96.21 126 | 95.36 215 | 99.44 105 |
|
DELS-MVS | | | 98.40 42 | 98.20 44 | 98.99 63 | 99.00 110 | 97.66 76 | 97.75 249 | 98.89 46 | 97.71 8 | 98.33 79 | 98.97 87 | 94.97 74 | 99.88 43 | 98.42 20 | 99.76 32 | 99.42 107 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
DeepPCF-MVS | | 96.37 2 | 97.93 63 | 98.48 17 | 96.30 243 | 99.00 110 | 89.54 313 | 97.43 266 | 98.87 55 | 98.16 2 | 99.26 18 | 99.38 21 | 96.12 28 | 99.64 126 | 98.30 26 | 99.77 26 | 99.72 40 |
|
thres100view900 | | | 95.38 177 | 94.70 190 | 97.41 166 | 98.98 113 | 94.92 196 | 98.87 88 | 96.90 316 | 95.38 112 | 96.61 160 | 96.88 284 | 84.29 277 | 99.56 137 | 88.11 307 | 96.29 199 | 97.76 207 |
|
thres600view7 | | | 95.49 169 | 94.77 186 | 97.67 152 | 98.98 113 | 95.02 188 | 98.85 91 | 96.90 316 | 95.38 112 | 96.63 159 | 96.90 283 | 84.29 277 | 99.59 133 | 88.65 306 | 96.33 197 | 98.40 190 |
|
tfpn200view9 | | | 95.32 184 | 94.62 193 | 97.43 165 | 98.94 115 | 94.98 192 | 98.68 130 | 96.93 314 | 95.33 115 | 96.55 164 | 96.53 300 | 84.23 280 | 99.56 137 | 88.11 307 | 96.29 199 | 97.76 207 |
|
thres400 | | | 95.38 177 | 94.62 193 | 97.65 155 | 98.94 115 | 94.98 192 | 98.68 130 | 96.93 314 | 95.33 115 | 96.55 164 | 96.53 300 | 84.23 280 | 99.56 137 | 88.11 307 | 96.29 199 | 98.40 190 |
|
MSDG | | | 95.93 151 | 95.30 166 | 97.83 136 | 98.90 117 | 95.36 174 | 96.83 312 | 98.37 188 | 91.32 279 | 94.43 214 | 98.73 118 | 90.27 163 | 99.60 132 | 90.05 286 | 98.82 124 | 98.52 186 |
|
RPSCF | | | 94.87 210 | 95.40 155 | 93.26 320 | 98.89 118 | 82.06 351 | 98.33 180 | 98.06 248 | 90.30 301 | 96.56 162 | 99.26 42 | 87.09 231 | 99.49 146 | 93.82 204 | 96.32 198 | 98.24 196 |
|
VNet | | | 97.79 69 | 97.40 81 | 98.96 67 | 98.88 119 | 97.55 81 | 98.63 139 | 98.93 37 | 96.74 56 | 99.02 34 | 98.84 106 | 90.33 162 | 99.83 56 | 98.53 9 | 96.66 186 | 99.50 91 |
|
LFMVS | | | 95.86 154 | 94.98 179 | 98.47 96 | 98.87 120 | 96.32 133 | 98.84 94 | 96.02 329 | 93.40 207 | 98.62 63 | 99.20 52 | 74.99 340 | 99.63 129 | 97.72 53 | 97.20 176 | 99.46 102 |
|
UA-Net | | | 97.96 58 | 97.62 64 | 98.98 65 | 98.86 121 | 97.47 84 | 98.89 83 | 99.08 21 | 96.67 59 | 98.72 56 | 99.54 1 | 93.15 105 | 99.81 71 | 94.87 167 | 98.83 123 | 99.65 67 |
|
WTY-MVS | | | 97.37 97 | 96.92 101 | 98.72 77 | 98.86 121 | 96.89 109 | 98.31 186 | 98.71 114 | 95.26 120 | 97.67 117 | 98.56 136 | 92.21 119 | 99.78 96 | 95.89 136 | 96.85 181 | 99.48 96 |
|
IS-MVSNet | | | 97.22 102 | 96.88 102 | 98.25 112 | 98.85 123 | 96.36 131 | 99.19 31 | 97.97 253 | 95.39 111 | 97.23 132 | 98.99 86 | 91.11 147 | 98.93 207 | 94.60 177 | 98.59 133 | 99.47 98 |
|
test_part1 | | | 94.82 211 | 93.82 241 | 97.82 138 | 98.84 124 | 97.82 72 | 99.03 55 | 98.81 76 | 92.31 249 | 92.51 288 | 97.89 197 | 81.96 298 | 98.67 234 | 94.80 172 | 88.24 308 | 96.98 231 |
|
VDD-MVS | | | 95.82 157 | 95.23 167 | 97.61 157 | 98.84 124 | 93.98 231 | 98.68 130 | 97.40 293 | 95.02 134 | 97.95 99 | 99.34 31 | 74.37 344 | 99.78 96 | 98.64 3 | 96.80 182 | 99.08 148 |
|
CHOSEN 280x420 | | | 97.18 106 | 97.18 89 | 97.20 174 | 98.81 126 | 93.27 257 | 95.78 332 | 99.15 18 | 95.25 121 | 96.79 155 | 98.11 179 | 92.29 115 | 99.07 189 | 98.56 8 | 99.85 3 | 99.25 126 |
|
thres200 | | | 95.25 186 | 94.57 195 | 97.28 171 | 98.81 126 | 94.92 196 | 98.20 200 | 97.11 303 | 95.24 123 | 96.54 166 | 96.22 312 | 84.58 274 | 99.53 143 | 87.93 311 | 96.50 193 | 97.39 218 |
|
XVG-OURS-SEG-HR | | | 96.51 130 | 96.34 125 | 97.02 185 | 98.77 128 | 93.76 237 | 97.79 247 | 98.50 167 | 95.45 108 | 96.94 144 | 99.09 74 | 87.87 217 | 99.55 142 | 96.76 109 | 95.83 212 | 97.74 209 |
|
XVG-OURS | | | 96.55 129 | 96.41 123 | 96.99 186 | 98.75 129 | 93.76 237 | 97.50 263 | 98.52 159 | 95.67 97 | 96.83 150 | 99.30 38 | 88.95 191 | 99.53 143 | 95.88 137 | 96.26 203 | 97.69 212 |
|
test_yl | | | 97.22 102 | 96.78 107 | 98.54 89 | 98.73 130 | 96.60 119 | 98.45 164 | 98.31 197 | 94.70 145 | 98.02 91 | 98.42 148 | 90.80 153 | 99.70 115 | 96.81 104 | 96.79 183 | 99.34 111 |
|
DCV-MVSNet | | | 97.22 102 | 96.78 107 | 98.54 89 | 98.73 130 | 96.60 119 | 98.45 164 | 98.31 197 | 94.70 145 | 98.02 91 | 98.42 148 | 90.80 153 | 99.70 115 | 96.81 104 | 96.79 183 | 99.34 111 |
|
CANet | | | 98.05 56 | 97.76 61 | 98.90 71 | 98.73 130 | 97.27 91 | 98.35 177 | 98.78 95 | 97.37 27 | 97.72 114 | 98.96 93 | 91.53 138 | 99.92 21 | 98.79 2 | 99.65 58 | 99.51 89 |
|
Vis-MVSNet (Re-imp) | | | 96.87 118 | 96.55 119 | 97.83 136 | 98.73 130 | 95.46 171 | 99.20 29 | 98.30 203 | 94.96 137 | 96.60 161 | 98.87 103 | 90.05 165 | 98.59 242 | 93.67 209 | 98.60 132 | 99.46 102 |
|
PAPR | | | 96.84 119 | 96.24 130 | 98.65 81 | 98.72 134 | 96.92 106 | 97.36 273 | 98.57 148 | 93.33 209 | 96.67 157 | 97.57 227 | 94.30 92 | 99.56 137 | 91.05 272 | 98.59 133 | 99.47 98 |
|
canonicalmvs | | | 97.67 74 | 97.23 87 | 98.98 65 | 98.70 135 | 98.38 35 | 99.34 11 | 98.39 185 | 96.76 55 | 97.67 117 | 97.40 240 | 92.26 116 | 99.49 146 | 98.28 27 | 96.28 202 | 99.08 148 |
|
API-MVS | | | 97.41 94 | 97.25 86 | 97.91 132 | 98.70 135 | 96.80 110 | 98.82 98 | 98.69 118 | 94.53 154 | 98.11 84 | 98.28 165 | 94.50 88 | 99.57 135 | 94.12 195 | 99.49 88 | 97.37 220 |
|
MAR-MVS | | | 96.91 116 | 96.40 124 | 98.45 97 | 98.69 137 | 96.90 107 | 98.66 136 | 98.68 121 | 92.40 244 | 97.07 139 | 97.96 190 | 91.54 137 | 99.75 105 | 93.68 207 | 98.92 116 | 98.69 175 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PS-MVSNAJ | | | 97.73 71 | 97.77 60 | 97.62 156 | 98.68 138 | 95.58 165 | 97.34 275 | 98.51 162 | 97.29 29 | 98.66 61 | 97.88 198 | 94.51 85 | 99.90 33 | 97.87 43 | 99.17 109 | 97.39 218 |
|
alignmvs | | | 97.56 84 | 97.07 94 | 99.01 62 | 98.66 139 | 98.37 41 | 98.83 95 | 98.06 248 | 96.74 56 | 98.00 97 | 97.65 219 | 90.80 153 | 99.48 150 | 98.37 23 | 96.56 190 | 99.19 132 |
|
Vis-MVSNet |  | | 97.42 93 | 97.11 91 | 98.34 106 | 98.66 139 | 96.23 136 | 99.22 25 | 99.00 27 | 96.63 61 | 98.04 89 | 99.21 48 | 88.05 212 | 99.35 159 | 96.01 134 | 99.21 106 | 99.45 104 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
EPP-MVSNet | | | 97.46 87 | 97.28 85 | 97.99 128 | 98.64 141 | 95.38 173 | 99.33 13 | 98.31 197 | 93.61 200 | 97.19 133 | 99.07 77 | 94.05 95 | 99.23 168 | 96.89 96 | 98.43 143 | 99.37 110 |
|
ab-mvs | | | 96.42 133 | 95.71 146 | 98.55 87 | 98.63 142 | 96.75 113 | 97.88 238 | 98.74 104 | 93.84 181 | 96.54 166 | 98.18 175 | 85.34 262 | 99.75 105 | 95.93 135 | 96.35 196 | 99.15 138 |
|
PCF-MVS | | 93.45 11 | 94.68 219 | 93.43 263 | 98.42 101 | 98.62 143 | 96.77 112 | 95.48 337 | 98.20 215 | 84.63 341 | 93.34 261 | 98.32 162 | 88.55 199 | 99.81 71 | 84.80 331 | 98.96 115 | 98.68 176 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
xiu_mvs_v2_base | | | 97.66 75 | 97.70 63 | 97.56 160 | 98.61 144 | 95.46 171 | 97.44 264 | 98.46 172 | 97.15 41 | 98.65 62 | 98.15 176 | 94.33 91 | 99.80 80 | 97.84 47 | 98.66 131 | 97.41 216 |
|
sss | | | 97.39 95 | 96.98 99 | 98.61 83 | 98.60 145 | 96.61 118 | 98.22 196 | 98.93 37 | 93.97 175 | 98.01 95 | 98.48 142 | 91.98 126 | 99.85 50 | 96.45 118 | 98.15 151 | 99.39 108 |
|
Test_1112_low_res | | | 96.34 136 | 95.66 150 | 98.36 105 | 98.56 146 | 95.94 151 | 97.71 251 | 98.07 243 | 92.10 255 | 94.79 201 | 97.29 245 | 91.75 130 | 99.56 137 | 94.17 193 | 96.50 193 | 99.58 82 |
|
1112_ss | | | 96.63 124 | 96.00 137 | 98.50 93 | 98.56 146 | 96.37 130 | 98.18 208 | 98.10 235 | 92.92 225 | 94.84 197 | 98.43 146 | 92.14 121 | 99.58 134 | 94.35 186 | 96.51 192 | 99.56 84 |
|
BH-untuned | | | 95.95 150 | 95.72 143 | 96.65 209 | 98.55 148 | 92.26 270 | 98.23 195 | 97.79 263 | 93.73 188 | 94.62 204 | 98.01 186 | 88.97 190 | 99.00 198 | 93.04 227 | 98.51 137 | 98.68 176 |
|
LS3D | | | 97.16 107 | 96.66 116 | 98.68 79 | 98.53 149 | 97.19 97 | 98.93 76 | 98.90 44 | 92.83 230 | 95.99 182 | 99.37 22 | 92.12 122 | 99.87 44 | 93.67 209 | 99.57 75 | 98.97 157 |
|
CS-MVS | | | 97.81 67 | 97.61 65 | 98.41 102 | 98.52 150 | 97.15 99 | 99.09 46 | 98.55 152 | 96.18 77 | 97.61 123 | 97.20 252 | 94.59 83 | 99.39 156 | 97.62 62 | 99.10 111 | 98.70 173 |
|
AUN-MVS | | | 94.53 232 | 93.73 250 | 96.92 194 | 98.50 151 | 93.52 248 | 98.34 178 | 98.10 235 | 93.83 183 | 95.94 184 | 97.98 189 | 85.59 257 | 99.03 194 | 94.35 186 | 80.94 342 | 98.22 197 |
|
baseline1 | | | 95.84 155 | 95.12 172 | 98.01 127 | 98.49 152 | 95.98 143 | 98.73 118 | 97.03 308 | 95.37 114 | 96.22 176 | 98.19 174 | 89.96 167 | 99.16 174 | 94.60 177 | 87.48 316 | 98.90 163 |
|
HY-MVS | | 93.96 8 | 96.82 120 | 96.23 131 | 98.57 85 | 98.46 153 | 97.00 102 | 98.14 211 | 98.21 213 | 93.95 176 | 96.72 156 | 97.99 188 | 91.58 133 | 99.76 103 | 94.51 182 | 96.54 191 | 98.95 160 |
|
ETV-MVS | | | 97.96 58 | 97.81 59 | 98.40 103 | 98.42 154 | 97.27 91 | 98.73 118 | 98.55 152 | 96.84 52 | 98.38 76 | 97.44 237 | 95.39 55 | 99.35 159 | 97.62 62 | 98.89 118 | 98.58 185 |
|
tttt0517 | | | 96.07 144 | 95.51 154 | 97.78 141 | 98.41 155 | 94.84 198 | 99.28 16 | 94.33 348 | 94.26 164 | 97.64 121 | 98.64 127 | 84.05 284 | 99.47 151 | 95.34 155 | 97.60 170 | 99.03 151 |
|
EIA-MVS | | | 97.75 70 | 97.58 67 | 98.27 109 | 98.38 156 | 96.44 127 | 99.01 60 | 98.60 140 | 95.88 88 | 97.26 131 | 97.53 230 | 94.97 74 | 99.33 161 | 97.38 77 | 99.20 107 | 99.05 150 |
|
thisisatest0530 | | | 96.01 147 | 95.36 160 | 97.97 129 | 98.38 156 | 95.52 169 | 98.88 86 | 94.19 350 | 94.04 169 | 97.64 121 | 98.31 163 | 83.82 291 | 99.46 152 | 95.29 159 | 97.70 167 | 98.93 161 |
|
xiu_mvs_v1_base_debu | | | 97.60 78 | 97.56 69 | 97.72 146 | 98.35 158 | 95.98 143 | 97.86 240 | 98.51 162 | 97.13 43 | 99.01 35 | 98.40 150 | 91.56 134 | 99.80 80 | 98.53 9 | 98.68 127 | 97.37 220 |
|
xiu_mvs_v1_base | | | 97.60 78 | 97.56 69 | 97.72 146 | 98.35 158 | 95.98 143 | 97.86 240 | 98.51 162 | 97.13 43 | 99.01 35 | 98.40 150 | 91.56 134 | 99.80 80 | 98.53 9 | 98.68 127 | 97.37 220 |
|
xiu_mvs_v1_base_debi | | | 97.60 78 | 97.56 69 | 97.72 146 | 98.35 158 | 95.98 143 | 97.86 240 | 98.51 162 | 97.13 43 | 99.01 35 | 98.40 150 | 91.56 134 | 99.80 80 | 98.53 9 | 98.68 127 | 97.37 220 |
|
baseline | | | 97.64 76 | 97.44 79 | 98.25 112 | 98.35 158 | 96.20 137 | 99.00 62 | 98.32 195 | 96.33 73 | 98.03 90 | 99.17 56 | 91.35 141 | 99.16 174 | 98.10 31 | 98.29 149 | 99.39 108 |
|
BH-w/o | | | 95.38 177 | 95.08 174 | 96.26 245 | 98.34 162 | 91.79 278 | 97.70 252 | 97.43 291 | 92.87 228 | 94.24 224 | 97.22 250 | 88.66 195 | 98.84 219 | 91.55 265 | 97.70 167 | 98.16 199 |
|
MVS_Test | | | 97.28 100 | 97.00 97 | 98.13 120 | 98.33 163 | 95.97 148 | 98.74 114 | 98.07 243 | 94.27 163 | 98.44 73 | 98.07 181 | 92.48 111 | 99.26 164 | 96.43 120 | 98.19 150 | 99.16 137 |
|
casdiffmvs | | | 97.63 77 | 97.41 80 | 98.28 108 | 98.33 163 | 96.14 140 | 98.82 98 | 98.32 195 | 96.38 71 | 97.95 99 | 99.21 48 | 91.23 145 | 99.23 168 | 98.12 30 | 98.37 144 | 99.48 96 |
|
diffmvs | | | 97.58 82 | 97.40 81 | 98.13 120 | 98.32 165 | 95.81 160 | 98.06 219 | 98.37 188 | 96.20 76 | 98.74 53 | 98.89 101 | 91.31 143 | 99.25 165 | 98.16 29 | 98.52 136 | 99.34 111 |
|
BH-RMVSNet | | | 95.92 152 | 95.32 164 | 97.69 150 | 98.32 165 | 94.64 206 | 98.19 204 | 97.45 289 | 94.56 153 | 96.03 180 | 98.61 128 | 85.02 265 | 99.12 180 | 90.68 277 | 99.06 112 | 99.30 120 |
|
Fast-Effi-MVS+ | | | 96.28 139 | 95.70 147 | 98.03 126 | 98.29 167 | 95.97 148 | 98.58 145 | 98.25 211 | 91.74 263 | 95.29 190 | 97.23 249 | 91.03 150 | 99.15 177 | 92.90 231 | 97.96 156 | 98.97 157 |
|
UGNet | | | 96.78 121 | 96.30 127 | 98.19 117 | 98.24 168 | 95.89 158 | 98.88 86 | 98.93 37 | 97.39 24 | 96.81 153 | 97.84 203 | 82.60 295 | 99.90 33 | 96.53 115 | 99.49 88 | 98.79 168 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
MVSTER | | | 96.06 145 | 95.72 143 | 97.08 183 | 98.23 169 | 95.93 154 | 98.73 118 | 98.27 206 | 94.86 141 | 95.07 191 | 98.09 180 | 88.21 205 | 98.54 246 | 96.59 112 | 93.46 241 | 96.79 254 |
|
ET-MVSNet_ETH3D | | | 94.13 256 | 92.98 271 | 97.58 158 | 98.22 170 | 96.20 137 | 97.31 278 | 95.37 337 | 94.53 154 | 79.56 348 | 97.63 223 | 86.51 240 | 97.53 322 | 96.91 93 | 90.74 276 | 99.02 152 |
|
GBi-Net | | | 94.49 235 | 93.80 243 | 96.56 221 | 98.21 171 | 95.00 189 | 98.82 98 | 98.18 219 | 92.46 238 | 94.09 231 | 97.07 263 | 81.16 302 | 97.95 305 | 92.08 251 | 92.14 257 | 96.72 263 |
|
test1 | | | 94.49 235 | 93.80 243 | 96.56 221 | 98.21 171 | 95.00 189 | 98.82 98 | 98.18 219 | 92.46 238 | 94.09 231 | 97.07 263 | 81.16 302 | 97.95 305 | 92.08 251 | 92.14 257 | 96.72 263 |
|
FMVSNet2 | | | 94.47 237 | 93.61 256 | 97.04 184 | 98.21 171 | 96.43 128 | 98.79 109 | 98.27 206 | 92.46 238 | 93.50 256 | 97.09 260 | 81.16 302 | 98.00 303 | 91.09 268 | 91.93 260 | 96.70 267 |
|
Effi-MVS+ | | | 97.12 109 | 96.69 113 | 98.39 104 | 98.19 174 | 96.72 114 | 97.37 271 | 98.43 179 | 93.71 190 | 97.65 120 | 98.02 184 | 92.20 120 | 99.25 165 | 96.87 102 | 97.79 162 | 99.19 132 |
|
mvs_anonymous | | | 96.70 123 | 96.53 121 | 97.18 176 | 98.19 174 | 93.78 236 | 98.31 186 | 98.19 216 | 94.01 172 | 94.47 209 | 98.27 168 | 92.08 124 | 98.46 253 | 97.39 76 | 97.91 157 | 99.31 117 |
|
LCM-MVSNet-Re | | | 95.22 188 | 95.32 164 | 94.91 289 | 98.18 176 | 87.85 337 | 98.75 111 | 95.66 335 | 95.11 129 | 88.96 325 | 96.85 287 | 90.26 164 | 97.65 317 | 95.65 149 | 98.44 141 | 99.22 128 |
|
FMVSNet3 | | | 94.97 204 | 94.26 213 | 97.11 181 | 98.18 176 | 96.62 116 | 98.56 151 | 98.26 210 | 93.67 197 | 94.09 231 | 97.10 256 | 84.25 279 | 98.01 301 | 92.08 251 | 92.14 257 | 96.70 267 |
|
CANet_DTU | | | 96.96 114 | 96.55 119 | 98.21 114 | 98.17 178 | 96.07 142 | 97.98 227 | 98.21 213 | 97.24 36 | 97.13 135 | 98.93 97 | 86.88 236 | 99.91 30 | 95.00 166 | 99.37 101 | 98.66 179 |
|
thisisatest0515 | | | 95.61 168 | 94.89 183 | 97.76 143 | 98.15 179 | 95.15 183 | 96.77 313 | 94.41 346 | 92.95 224 | 97.18 134 | 97.43 238 | 84.78 270 | 99.45 153 | 94.63 174 | 97.73 166 | 98.68 176 |
|
IterMVS-LS | | | 95.46 170 | 95.21 168 | 96.22 246 | 98.12 180 | 93.72 242 | 98.32 185 | 98.13 230 | 93.71 190 | 94.26 222 | 97.31 244 | 92.24 117 | 98.10 293 | 94.63 174 | 90.12 282 | 96.84 250 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
cl-mvsnet2 | | | 94.68 219 | 94.19 216 | 96.13 250 | 98.11 181 | 93.60 244 | 96.94 299 | 98.31 197 | 92.43 242 | 93.32 262 | 96.87 286 | 86.51 240 | 98.28 283 | 94.10 197 | 91.16 271 | 96.51 295 |
|
VDDNet | | | 95.36 180 | 94.53 197 | 97.86 134 | 98.10 182 | 95.13 185 | 98.85 91 | 97.75 265 | 90.46 296 | 98.36 77 | 99.39 14 | 73.27 346 | 99.64 126 | 97.98 36 | 96.58 189 | 98.81 167 |
|
MVSFormer | | | 97.57 83 | 97.49 75 | 97.84 135 | 98.07 183 | 95.76 161 | 99.47 2 | 98.40 183 | 94.98 135 | 98.79 49 | 98.83 107 | 92.34 113 | 98.41 265 | 96.91 93 | 99.59 71 | 99.34 111 |
|
lupinMVS | | | 97.44 91 | 97.22 88 | 98.12 122 | 98.07 183 | 95.76 161 | 97.68 253 | 97.76 264 | 94.50 157 | 98.79 49 | 98.61 128 | 92.34 113 | 99.30 162 | 97.58 66 | 99.59 71 | 99.31 117 |
|
TAMVS | | | 97.02 112 | 96.79 106 | 97.70 149 | 98.06 185 | 95.31 178 | 98.52 155 | 98.31 197 | 93.95 176 | 97.05 141 | 98.61 128 | 93.49 101 | 98.52 248 | 95.33 156 | 97.81 161 | 99.29 122 |
|
CDS-MVSNet | | | 96.99 113 | 96.69 113 | 97.90 133 | 98.05 186 | 95.98 143 | 98.20 200 | 98.33 194 | 93.67 197 | 96.95 143 | 98.49 141 | 93.54 100 | 98.42 258 | 95.24 162 | 97.74 165 | 99.31 117 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
ADS-MVSNet2 | | | 94.58 228 | 94.40 208 | 95.11 284 | 98.00 187 | 88.74 325 | 96.04 326 | 97.30 296 | 90.15 302 | 96.47 170 | 96.64 297 | 87.89 215 | 97.56 321 | 90.08 284 | 97.06 177 | 99.02 152 |
|
ADS-MVSNet | | | 95.00 200 | 94.45 204 | 96.63 212 | 98.00 187 | 91.91 276 | 96.04 326 | 97.74 266 | 90.15 302 | 96.47 170 | 96.64 297 | 87.89 215 | 98.96 202 | 90.08 284 | 97.06 177 | 99.02 152 |
|
IterMVS | | | 94.09 260 | 93.85 240 | 94.80 295 | 97.99 189 | 90.35 305 | 97.18 286 | 98.12 231 | 93.68 195 | 92.46 291 | 97.34 241 | 84.05 284 | 97.41 324 | 92.51 244 | 91.33 267 | 96.62 276 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PVSNet_0 | | 88.72 19 | 91.28 296 | 90.03 302 | 95.00 287 | 97.99 189 | 87.29 340 | 94.84 342 | 98.50 167 | 92.06 256 | 89.86 318 | 95.19 327 | 79.81 313 | 99.39 156 | 92.27 248 | 69.79 351 | 98.33 194 |
|
IterMVS-SCA-FT | | | 94.11 258 | 93.87 238 | 94.85 292 | 97.98 191 | 90.56 303 | 97.18 286 | 98.11 233 | 93.75 185 | 92.58 284 | 97.48 233 | 83.97 286 | 97.41 324 | 92.48 246 | 91.30 268 | 96.58 280 |
|
EI-MVSNet | | | 95.96 149 | 95.83 141 | 96.36 239 | 97.93 192 | 93.70 243 | 98.12 214 | 98.27 206 | 93.70 192 | 95.07 191 | 99.02 80 | 92.23 118 | 98.54 246 | 94.68 173 | 93.46 241 | 96.84 250 |
|
CVMVSNet | | | 95.43 173 | 96.04 135 | 93.57 314 | 97.93 192 | 83.62 346 | 98.12 214 | 98.59 142 | 95.68 96 | 96.56 162 | 99.02 80 | 87.51 223 | 97.51 323 | 93.56 213 | 97.44 172 | 99.60 78 |
|
PMMVS | | | 96.60 125 | 96.33 126 | 97.41 166 | 97.90 194 | 93.93 232 | 97.35 274 | 98.41 181 | 92.84 229 | 97.76 110 | 97.45 236 | 91.10 148 | 99.20 171 | 96.26 124 | 97.91 157 | 99.11 143 |
|
Effi-MVS+-dtu | | | 96.29 137 | 96.56 118 | 95.51 271 | 97.89 195 | 90.22 306 | 98.80 105 | 98.10 235 | 96.57 63 | 96.45 172 | 96.66 294 | 90.81 151 | 98.91 209 | 95.72 144 | 97.99 155 | 97.40 217 |
|
mvs-test1 | | | 96.60 125 | 96.68 115 | 96.37 238 | 97.89 195 | 91.81 277 | 98.56 151 | 98.10 235 | 96.57 63 | 96.52 168 | 97.94 192 | 90.81 151 | 99.45 153 | 95.72 144 | 98.01 154 | 97.86 206 |
|
QAPM | | | 96.29 137 | 95.40 155 | 98.96 67 | 97.85 197 | 97.60 80 | 99.23 21 | 98.93 37 | 89.76 310 | 93.11 270 | 99.02 80 | 89.11 183 | 99.93 15 | 91.99 256 | 99.62 66 | 99.34 111 |
|
3Dnovator+ | | 94.38 6 | 97.43 92 | 96.78 107 | 99.38 17 | 97.83 198 | 98.52 27 | 99.37 7 | 98.71 114 | 97.09 46 | 92.99 273 | 99.13 64 | 89.36 175 | 99.89 35 | 96.97 89 | 99.57 75 | 99.71 44 |
|
ACMH+ | | 92.99 14 | 94.30 245 | 93.77 246 | 95.88 261 | 97.81 199 | 92.04 275 | 98.71 123 | 98.37 188 | 93.99 174 | 90.60 313 | 98.47 143 | 80.86 307 | 99.05 190 | 92.75 235 | 92.40 256 | 96.55 286 |
|
3Dnovator | | 94.51 5 | 97.46 87 | 96.93 100 | 99.07 60 | 97.78 200 | 97.64 77 | 99.35 10 | 99.06 22 | 97.02 48 | 93.75 247 | 99.16 61 | 89.25 178 | 99.92 21 | 97.22 81 | 99.75 38 | 99.64 70 |
|
miper_lstm_enhance | | | 94.33 243 | 94.07 224 | 95.11 284 | 97.75 201 | 90.97 295 | 97.22 283 | 98.03 250 | 91.67 267 | 92.76 278 | 96.97 276 | 90.03 166 | 97.78 315 | 92.51 244 | 89.64 288 | 96.56 284 |
|
cl_fuxian | | | 94.79 214 | 94.43 206 | 95.89 260 | 97.75 201 | 93.12 263 | 97.16 289 | 98.03 250 | 92.23 251 | 93.46 258 | 97.05 268 | 91.39 139 | 98.01 301 | 93.58 212 | 89.21 297 | 96.53 289 |
|
TR-MVS | | | 94.94 207 | 94.20 215 | 97.17 177 | 97.75 201 | 94.14 228 | 97.59 259 | 97.02 310 | 92.28 250 | 95.75 185 | 97.64 221 | 83.88 288 | 98.96 202 | 89.77 290 | 96.15 207 | 98.40 190 |
|
Fast-Effi-MVS+-dtu | | | 95.87 153 | 95.85 140 | 95.91 258 | 97.74 204 | 91.74 281 | 98.69 129 | 98.15 227 | 95.56 102 | 94.92 195 | 97.68 218 | 88.98 189 | 98.79 225 | 93.19 222 | 97.78 163 | 97.20 224 |
|
MIMVSNet | | | 93.26 277 | 92.21 284 | 96.41 236 | 97.73 205 | 93.13 262 | 95.65 334 | 97.03 308 | 91.27 283 | 94.04 234 | 96.06 315 | 75.33 338 | 97.19 327 | 86.56 317 | 96.23 205 | 98.92 162 |
|
miper_ehance_all_eth | | | 95.01 199 | 94.69 191 | 95.97 255 | 97.70 206 | 93.31 256 | 97.02 295 | 98.07 243 | 92.23 251 | 93.51 255 | 96.96 278 | 91.85 128 | 98.15 289 | 93.68 207 | 91.16 271 | 96.44 302 |
|
SCA | | | 95.46 170 | 95.13 171 | 96.46 233 | 97.67 207 | 91.29 291 | 97.33 276 | 97.60 273 | 94.68 148 | 96.92 147 | 97.10 256 | 83.97 286 | 98.89 213 | 92.59 239 | 98.32 148 | 99.20 129 |
|
ACMP | | 93.49 10 | 95.34 182 | 94.98 179 | 96.43 235 | 97.67 207 | 93.48 249 | 98.73 118 | 98.44 176 | 94.94 140 | 92.53 286 | 98.53 137 | 84.50 276 | 99.14 178 | 95.48 154 | 94.00 230 | 96.66 273 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
eth_miper_zixun_eth | | | 94.68 219 | 94.41 207 | 95.47 273 | 97.64 209 | 91.71 282 | 96.73 316 | 98.07 243 | 92.71 232 | 93.64 248 | 97.21 251 | 90.54 158 | 98.17 288 | 93.38 215 | 89.76 286 | 96.54 287 |
|
ACMH | | 92.88 16 | 94.55 230 | 93.95 233 | 96.34 241 | 97.63 210 | 93.26 258 | 98.81 104 | 98.49 171 | 93.43 206 | 89.74 319 | 98.53 137 | 81.91 299 | 99.08 188 | 93.69 206 | 93.30 247 | 96.70 267 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMM | | 93.85 9 | 95.69 163 | 95.38 159 | 96.61 214 | 97.61 211 | 93.84 235 | 98.91 78 | 98.44 176 | 95.25 121 | 94.28 221 | 98.47 143 | 86.04 252 | 99.12 180 | 95.50 153 | 93.95 232 | 96.87 247 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Patchmatch-test | | | 94.42 239 | 93.68 254 | 96.63 212 | 97.60 212 | 91.76 279 | 94.83 343 | 97.49 286 | 89.45 315 | 94.14 229 | 97.10 256 | 88.99 186 | 98.83 221 | 85.37 327 | 98.13 152 | 99.29 122 |
|
RRT_test8_iter05 | | | 94.56 229 | 94.19 216 | 95.67 268 | 97.60 212 | 91.34 287 | 98.93 76 | 98.42 180 | 94.75 144 | 93.39 259 | 97.87 199 | 79.00 318 | 98.61 238 | 96.78 108 | 90.99 274 | 97.07 226 |
|
cl-mvsnet_ | | | 94.51 234 | 94.01 228 | 96.02 252 | 97.58 214 | 93.40 253 | 97.05 293 | 97.96 255 | 91.73 265 | 92.76 278 | 97.08 262 | 89.06 185 | 98.13 291 | 92.61 236 | 90.29 281 | 96.52 292 |
|
tpm cat1 | | | 93.36 272 | 92.80 274 | 95.07 286 | 97.58 214 | 87.97 335 | 96.76 314 | 97.86 261 | 82.17 345 | 93.53 252 | 96.04 316 | 86.13 248 | 99.13 179 | 89.24 301 | 95.87 211 | 98.10 200 |
|
MVS-HIRNet | | | 89.46 313 | 88.40 312 | 92.64 323 | 97.58 214 | 82.15 350 | 94.16 348 | 93.05 355 | 75.73 351 | 90.90 309 | 82.52 352 | 79.42 315 | 98.33 273 | 83.53 335 | 98.68 127 | 97.43 215 |
|
PatchmatchNet |  | | 95.71 161 | 95.52 153 | 96.29 244 | 97.58 214 | 90.72 300 | 96.84 311 | 97.52 282 | 94.06 168 | 97.08 137 | 96.96 278 | 89.24 179 | 98.90 212 | 92.03 255 | 98.37 144 | 99.26 125 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
cl-mvsnet1 | | | 94.52 233 | 94.03 225 | 95.99 253 | 97.57 218 | 93.38 254 | 97.05 293 | 97.94 256 | 91.74 263 | 92.81 276 | 97.10 256 | 89.12 182 | 98.07 297 | 92.60 237 | 90.30 280 | 96.53 289 |
|
tpmrst | | | 95.63 165 | 95.69 148 | 95.44 275 | 97.54 219 | 88.54 328 | 96.97 297 | 97.56 275 | 93.50 203 | 97.52 128 | 96.93 282 | 89.49 171 | 99.16 174 | 95.25 161 | 96.42 195 | 98.64 181 |
|
FMVSNet1 | | | 93.19 280 | 92.07 285 | 96.56 221 | 97.54 219 | 95.00 189 | 98.82 98 | 98.18 219 | 90.38 299 | 92.27 294 | 97.07 263 | 73.68 345 | 97.95 305 | 89.36 300 | 91.30 268 | 96.72 263 |
|
miper_enhance_ethall | | | 95.10 195 | 94.75 188 | 96.12 251 | 97.53 221 | 93.73 241 | 96.61 319 | 98.08 241 | 92.20 254 | 93.89 239 | 96.65 296 | 92.44 112 | 98.30 278 | 94.21 192 | 91.16 271 | 96.34 305 |
|
CLD-MVS | | | 95.62 166 | 95.34 161 | 96.46 233 | 97.52 222 | 93.75 239 | 97.27 281 | 98.46 172 | 95.53 103 | 94.42 215 | 98.00 187 | 86.21 247 | 98.97 199 | 96.25 125 | 94.37 217 | 96.66 273 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
MDTV_nov1_ep13 | | | | 95.40 155 | | 97.48 223 | 88.34 331 | 96.85 310 | 97.29 297 | 93.74 187 | 97.48 129 | 97.26 246 | 89.18 180 | 99.05 190 | 91.92 258 | 97.43 173 | |
|
IB-MVS | | 91.98 17 | 93.27 276 | 91.97 287 | 97.19 175 | 97.47 224 | 93.41 252 | 97.09 292 | 95.99 330 | 93.32 210 | 92.47 290 | 95.73 320 | 78.06 325 | 99.53 143 | 94.59 179 | 82.98 334 | 98.62 182 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
MVS_0304 | | | 92.81 284 | 92.01 286 | 95.23 279 | 97.46 225 | 91.33 289 | 98.17 209 | 98.81 76 | 91.13 288 | 93.80 245 | 95.68 325 | 66.08 353 | 98.06 298 | 90.79 274 | 96.13 208 | 96.32 308 |
|
tpmvs | | | 94.60 225 | 94.36 209 | 95.33 278 | 97.46 225 | 88.60 327 | 96.88 308 | 97.68 267 | 91.29 281 | 93.80 245 | 96.42 305 | 88.58 196 | 99.24 167 | 91.06 270 | 96.04 210 | 98.17 198 |
|
LPG-MVS_test | | | 95.62 166 | 95.34 161 | 96.47 230 | 97.46 225 | 93.54 246 | 98.99 64 | 98.54 155 | 94.67 149 | 94.36 217 | 98.77 114 | 85.39 259 | 99.11 183 | 95.71 146 | 94.15 225 | 96.76 258 |
|
LGP-MVS_train | | | | | 96.47 230 | 97.46 225 | 93.54 246 | | 98.54 155 | 94.67 149 | 94.36 217 | 98.77 114 | 85.39 259 | 99.11 183 | 95.71 146 | 94.15 225 | 96.76 258 |
|
jason | | | 97.32 99 | 97.08 93 | 98.06 125 | 97.45 229 | 95.59 164 | 97.87 239 | 97.91 259 | 94.79 143 | 98.55 67 | 98.83 107 | 91.12 146 | 99.23 168 | 97.58 66 | 99.60 68 | 99.34 111 |
jason: jason. |
HQP_MVS | | | 96.14 143 | 95.90 139 | 96.85 197 | 97.42 230 | 94.60 212 | 98.80 105 | 98.56 150 | 97.28 30 | 95.34 187 | 98.28 165 | 87.09 231 | 99.03 194 | 96.07 128 | 94.27 219 | 96.92 236 |
|
plane_prior7 | | | | | | 97.42 230 | 94.63 207 | | | | | | | | | | |
|
ITE_SJBPF | | | | | 95.44 275 | 97.42 230 | 91.32 290 | | 97.50 284 | 95.09 132 | 93.59 249 | 98.35 156 | 81.70 300 | 98.88 215 | 89.71 292 | 93.39 245 | 96.12 313 |
|
LTVRE_ROB | | 92.95 15 | 94.60 225 | 93.90 236 | 96.68 208 | 97.41 233 | 94.42 218 | 98.52 155 | 98.59 142 | 91.69 266 | 91.21 306 | 98.35 156 | 84.87 268 | 99.04 193 | 91.06 270 | 93.44 244 | 96.60 278 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
plane_prior1 | | | | | | 97.37 234 | | | | | | | | | | | |
|
plane_prior6 | | | | | | 97.35 235 | 94.61 210 | | | | | | 87.09 231 | | | | |
|
DWT-MVSNet_test | | | 94.82 211 | 94.36 209 | 96.20 247 | 97.35 235 | 90.79 298 | 98.34 178 | 96.57 328 | 92.91 226 | 95.33 189 | 96.44 304 | 82.00 297 | 99.12 180 | 94.52 181 | 95.78 213 | 98.70 173 |
|
dp | | | 94.15 255 | 93.90 236 | 94.90 290 | 97.31 237 | 86.82 342 | 96.97 297 | 97.19 302 | 91.22 285 | 96.02 181 | 96.61 299 | 85.51 258 | 99.02 197 | 90.00 288 | 94.30 218 | 98.85 164 |
|
NP-MVS | | | | | | 97.28 238 | 94.51 215 | | | | | 97.73 212 | | | | | |
|
CostFormer | | | 94.95 205 | 94.73 189 | 95.60 270 | 97.28 238 | 89.06 320 | 97.53 262 | 96.89 318 | 89.66 312 | 96.82 152 | 96.72 292 | 86.05 250 | 98.95 206 | 95.53 152 | 96.13 208 | 98.79 168 |
|
VPA-MVSNet | | | 95.75 159 | 95.11 173 | 97.69 150 | 97.24 240 | 97.27 91 | 98.94 74 | 99.23 12 | 95.13 127 | 95.51 186 | 97.32 243 | 85.73 254 | 98.91 209 | 97.33 79 | 89.55 291 | 96.89 244 |
|
tpm2 | | | 94.19 252 | 93.76 248 | 95.46 274 | 97.23 241 | 89.04 321 | 97.31 278 | 96.85 321 | 87.08 328 | 96.21 177 | 96.79 290 | 83.75 292 | 98.74 228 | 92.43 247 | 96.23 205 | 98.59 183 |
|
EPMVS | | | 94.99 201 | 94.48 200 | 96.52 226 | 97.22 242 | 91.75 280 | 97.23 282 | 91.66 356 | 94.11 166 | 97.28 130 | 96.81 289 | 85.70 255 | 98.84 219 | 93.04 227 | 97.28 175 | 98.97 157 |
|
FMVSNet5 | | | 91.81 291 | 90.92 294 | 94.49 303 | 97.21 243 | 92.09 272 | 98.00 226 | 97.55 280 | 89.31 317 | 90.86 310 | 95.61 326 | 74.48 342 | 95.32 347 | 85.57 324 | 89.70 287 | 96.07 315 |
|
HQP-NCC | | | | | | 97.20 244 | | 98.05 220 | | 96.43 68 | 94.45 210 | | | | | | |
|
ACMP_Plane | | | | | | 97.20 244 | | 98.05 220 | | 96.43 68 | 94.45 210 | | | | | | |
|
HQP-MVS | | | 95.72 160 | 95.40 155 | 96.69 207 | 97.20 244 | 94.25 226 | 98.05 220 | 98.46 172 | 96.43 68 | 94.45 210 | 97.73 212 | 86.75 237 | 98.96 202 | 95.30 157 | 94.18 223 | 96.86 249 |
|
UniMVSNet_ETH3D | | | 94.24 249 | 93.33 265 | 96.97 189 | 97.19 247 | 93.38 254 | 98.74 114 | 98.57 148 | 91.21 286 | 93.81 244 | 98.58 133 | 72.85 347 | 98.77 227 | 95.05 165 | 93.93 233 | 98.77 170 |
|
OpenMVS |  | 93.04 13 | 95.83 156 | 95.00 177 | 98.32 107 | 97.18 248 | 97.32 88 | 99.21 28 | 98.97 30 | 89.96 306 | 91.14 307 | 99.05 79 | 86.64 239 | 99.92 21 | 93.38 215 | 99.47 90 | 97.73 210 |
|
VPNet | | | 94.99 201 | 94.19 216 | 97.40 168 | 97.16 249 | 96.57 121 | 98.71 123 | 98.97 30 | 95.67 97 | 94.84 197 | 98.24 171 | 80.36 310 | 98.67 234 | 96.46 117 | 87.32 319 | 96.96 233 |
|
GA-MVS | | | 94.81 213 | 94.03 225 | 97.14 178 | 97.15 250 | 93.86 234 | 96.76 314 | 97.58 274 | 94.00 173 | 94.76 202 | 97.04 269 | 80.91 305 | 98.48 250 | 91.79 260 | 96.25 204 | 99.09 145 |
|
FIs | | | 96.51 130 | 96.12 133 | 97.67 152 | 97.13 251 | 97.54 82 | 99.36 8 | 99.22 14 | 95.89 87 | 94.03 235 | 98.35 156 | 91.98 126 | 98.44 256 | 96.40 121 | 92.76 253 | 97.01 229 |
|
1314 | | | 96.25 141 | 95.73 142 | 97.79 140 | 97.13 251 | 95.55 168 | 98.19 204 | 98.59 142 | 93.47 204 | 92.03 299 | 97.82 207 | 91.33 142 | 99.49 146 | 94.62 176 | 98.44 141 | 98.32 195 |
|
D2MVS | | | 95.18 191 | 95.08 174 | 95.48 272 | 97.10 253 | 92.07 273 | 98.30 188 | 99.13 19 | 94.02 171 | 92.90 274 | 96.73 291 | 89.48 172 | 98.73 229 | 94.48 183 | 93.60 240 | 95.65 323 |
|
DeepMVS_CX |  | | | | 86.78 332 | 97.09 254 | 72.30 356 | | 95.17 341 | 75.92 350 | 84.34 344 | 95.19 327 | 70.58 348 | 95.35 345 | 79.98 344 | 89.04 300 | 92.68 348 |
|
RRT_MVS | | | 96.04 146 | 95.53 152 | 97.56 160 | 97.07 255 | 97.32 88 | 98.57 150 | 98.09 239 | 95.15 126 | 95.02 193 | 98.44 145 | 88.20 206 | 98.58 244 | 96.17 127 | 93.09 250 | 96.79 254 |
|
PAPM | | | 94.95 205 | 94.00 229 | 97.78 141 | 97.04 256 | 95.65 163 | 96.03 328 | 98.25 211 | 91.23 284 | 94.19 227 | 97.80 209 | 91.27 144 | 98.86 218 | 82.61 337 | 97.61 169 | 98.84 166 |
|
CR-MVSNet | | | 94.76 216 | 94.15 220 | 96.59 217 | 97.00 257 | 93.43 250 | 94.96 339 | 97.56 275 | 92.46 238 | 96.93 145 | 96.24 308 | 88.15 208 | 97.88 313 | 87.38 313 | 96.65 187 | 98.46 188 |
|
RPMNet | | | 92.81 284 | 91.34 292 | 97.24 172 | 97.00 257 | 93.43 250 | 94.96 339 | 98.80 87 | 82.27 344 | 96.93 145 | 92.12 346 | 86.98 234 | 99.82 64 | 76.32 351 | 96.65 187 | 98.46 188 |
|
UniMVSNet (Re) | | | 95.78 158 | 95.19 169 | 97.58 158 | 96.99 259 | 97.47 84 | 98.79 109 | 99.18 16 | 95.60 100 | 93.92 238 | 97.04 269 | 91.68 131 | 98.48 250 | 95.80 141 | 87.66 315 | 96.79 254 |
|
FC-MVSNet-test | | | 96.42 133 | 96.05 134 | 97.53 162 | 96.95 260 | 97.27 91 | 99.36 8 | 99.23 12 | 95.83 90 | 93.93 237 | 98.37 154 | 92.00 125 | 98.32 274 | 96.02 133 | 92.72 254 | 97.00 230 |
|
tfpnnormal | | | 93.66 268 | 92.70 277 | 96.55 224 | 96.94 261 | 95.94 151 | 98.97 68 | 99.19 15 | 91.04 289 | 91.38 305 | 97.34 241 | 84.94 267 | 98.61 238 | 85.45 326 | 89.02 301 | 95.11 331 |
|
TESTMET0.1,1 | | | 94.18 254 | 93.69 253 | 95.63 269 | 96.92 262 | 89.12 319 | 96.91 302 | 94.78 343 | 93.17 216 | 94.88 196 | 96.45 303 | 78.52 320 | 98.92 208 | 93.09 224 | 98.50 138 | 98.85 164 |
|
TinyColmap | | | 92.31 289 | 91.53 290 | 94.65 299 | 96.92 262 | 89.75 309 | 96.92 300 | 96.68 325 | 90.45 297 | 89.62 320 | 97.85 202 | 76.06 336 | 98.81 223 | 86.74 316 | 92.51 255 | 95.41 325 |
|
cascas | | | 94.63 224 | 93.86 239 | 96.93 192 | 96.91 264 | 94.27 224 | 96.00 329 | 98.51 162 | 85.55 338 | 94.54 206 | 96.23 310 | 84.20 282 | 98.87 216 | 95.80 141 | 96.98 180 | 97.66 213 |
|
nrg030 | | | 96.28 139 | 95.72 143 | 97.96 131 | 96.90 265 | 98.15 56 | 99.39 5 | 98.31 197 | 95.47 107 | 94.42 215 | 98.35 156 | 92.09 123 | 98.69 230 | 97.50 73 | 89.05 299 | 97.04 228 |
|
MVS | | | 94.67 222 | 93.54 259 | 98.08 123 | 96.88 266 | 96.56 122 | 98.19 204 | 98.50 167 | 78.05 349 | 92.69 281 | 98.02 184 | 91.07 149 | 99.63 129 | 90.09 283 | 98.36 146 | 98.04 201 |
|
WR-MVS_H | | | 95.05 198 | 94.46 202 | 96.81 199 | 96.86 267 | 95.82 159 | 99.24 20 | 99.24 10 | 93.87 180 | 92.53 286 | 96.84 288 | 90.37 160 | 98.24 285 | 93.24 220 | 87.93 312 | 96.38 304 |
|
UniMVSNet_NR-MVSNet | | | 95.71 161 | 95.15 170 | 97.40 168 | 96.84 268 | 96.97 103 | 98.74 114 | 99.24 10 | 95.16 125 | 93.88 240 | 97.72 214 | 91.68 131 | 98.31 276 | 95.81 139 | 87.25 320 | 96.92 236 |
|
USDC | | | 93.33 275 | 92.71 276 | 95.21 280 | 96.83 269 | 90.83 297 | 96.91 302 | 97.50 284 | 93.84 181 | 90.72 311 | 98.14 177 | 77.69 327 | 98.82 222 | 89.51 297 | 93.21 249 | 95.97 317 |
|
test-LLR | | | 95.10 195 | 94.87 184 | 95.80 263 | 96.77 270 | 89.70 310 | 96.91 302 | 95.21 338 | 95.11 129 | 94.83 199 | 95.72 322 | 87.71 219 | 98.97 199 | 93.06 225 | 98.50 138 | 98.72 171 |
|
test-mter | | | 94.08 261 | 93.51 260 | 95.80 263 | 96.77 270 | 89.70 310 | 96.91 302 | 95.21 338 | 92.89 227 | 94.83 199 | 95.72 322 | 77.69 327 | 98.97 199 | 93.06 225 | 98.50 138 | 98.72 171 |
|
Patchmtry | | | 93.22 278 | 92.35 282 | 95.84 262 | 96.77 270 | 93.09 264 | 94.66 344 | 97.56 275 | 87.37 327 | 92.90 274 | 96.24 308 | 88.15 208 | 97.90 309 | 87.37 314 | 90.10 283 | 96.53 289 |
|
gg-mvs-nofinetune | | | 92.21 290 | 90.58 297 | 97.13 179 | 96.75 273 | 95.09 186 | 95.85 330 | 89.40 359 | 85.43 339 | 94.50 208 | 81.98 353 | 80.80 308 | 98.40 271 | 92.16 249 | 98.33 147 | 97.88 204 |
|
XXY-MVS | | | 95.20 190 | 94.45 204 | 97.46 163 | 96.75 273 | 96.56 122 | 98.86 90 | 98.65 136 | 93.30 212 | 93.27 263 | 98.27 168 | 84.85 269 | 98.87 216 | 94.82 170 | 91.26 270 | 96.96 233 |
|
CP-MVSNet | | | 94.94 207 | 94.30 211 | 96.83 198 | 96.72 275 | 95.56 166 | 99.11 42 | 98.95 34 | 93.89 178 | 92.42 292 | 97.90 195 | 87.19 229 | 98.12 292 | 94.32 188 | 88.21 309 | 96.82 253 |
|
PatchT | | | 93.06 282 | 91.97 287 | 96.35 240 | 96.69 276 | 92.67 267 | 94.48 345 | 97.08 304 | 86.62 329 | 97.08 137 | 92.23 345 | 87.94 214 | 97.90 309 | 78.89 347 | 96.69 185 | 98.49 187 |
|
PS-CasMVS | | | 94.67 222 | 93.99 231 | 96.71 204 | 96.68 277 | 95.26 179 | 99.13 39 | 99.03 25 | 93.68 195 | 92.33 293 | 97.95 191 | 85.35 261 | 98.10 293 | 93.59 211 | 88.16 311 | 96.79 254 |
|
WR-MVS | | | 95.15 192 | 94.46 202 | 97.22 173 | 96.67 278 | 96.45 126 | 98.21 197 | 98.81 76 | 94.15 165 | 93.16 266 | 97.69 215 | 87.51 223 | 98.30 278 | 95.29 159 | 88.62 305 | 96.90 243 |
|
baseline2 | | | 95.11 194 | 94.52 198 | 96.87 196 | 96.65 279 | 93.56 245 | 98.27 193 | 94.10 352 | 93.45 205 | 92.02 300 | 97.43 238 | 87.45 227 | 99.19 172 | 93.88 202 | 97.41 174 | 97.87 205 |
|
test_0402 | | | 91.32 295 | 90.27 300 | 94.48 304 | 96.60 280 | 91.12 293 | 98.50 160 | 97.22 301 | 86.10 334 | 88.30 330 | 96.98 275 | 77.65 329 | 97.99 304 | 78.13 349 | 92.94 252 | 94.34 338 |
|
TransMVSNet (Re) | | | 92.67 286 | 91.51 291 | 96.15 248 | 96.58 281 | 94.65 205 | 98.90 79 | 96.73 322 | 90.86 291 | 89.46 323 | 97.86 200 | 85.62 256 | 98.09 295 | 86.45 318 | 81.12 340 | 95.71 321 |
|
XVG-ACMP-BASELINE | | | 94.54 231 | 94.14 221 | 95.75 266 | 96.55 282 | 91.65 283 | 98.11 216 | 98.44 176 | 94.96 137 | 94.22 225 | 97.90 195 | 79.18 317 | 99.11 183 | 94.05 199 | 93.85 234 | 96.48 299 |
|
DU-MVS | | | 95.42 174 | 94.76 187 | 97.40 168 | 96.53 283 | 96.97 103 | 98.66 136 | 98.99 29 | 95.43 109 | 93.88 240 | 97.69 215 | 88.57 197 | 98.31 276 | 95.81 139 | 87.25 320 | 96.92 236 |
|
NR-MVSNet | | | 94.98 203 | 94.16 219 | 97.44 164 | 96.53 283 | 97.22 96 | 98.74 114 | 98.95 34 | 94.96 137 | 89.25 324 | 97.69 215 | 89.32 176 | 98.18 287 | 94.59 179 | 87.40 318 | 96.92 236 |
|
tpm | | | 94.13 256 | 93.80 243 | 95.12 283 | 96.50 285 | 87.91 336 | 97.44 264 | 95.89 334 | 92.62 234 | 96.37 174 | 96.30 307 | 84.13 283 | 98.30 278 | 93.24 220 | 91.66 264 | 99.14 140 |
|
pm-mvs1 | | | 93.94 266 | 93.06 270 | 96.59 217 | 96.49 286 | 95.16 181 | 98.95 72 | 98.03 250 | 92.32 247 | 91.08 308 | 97.84 203 | 84.54 275 | 98.41 265 | 92.16 249 | 86.13 331 | 96.19 312 |
|
JIA-IIPM | | | 93.35 273 | 92.49 280 | 95.92 257 | 96.48 287 | 90.65 301 | 95.01 338 | 96.96 312 | 85.93 335 | 96.08 179 | 87.33 350 | 87.70 221 | 98.78 226 | 91.35 267 | 95.58 214 | 98.34 193 |
|
TranMVSNet+NR-MVSNet | | | 95.14 193 | 94.48 200 | 97.11 181 | 96.45 288 | 96.36 131 | 99.03 55 | 99.03 25 | 95.04 133 | 93.58 250 | 97.93 193 | 88.27 204 | 98.03 300 | 94.13 194 | 86.90 325 | 96.95 235 |
|
testgi | | | 93.06 282 | 92.45 281 | 94.88 291 | 96.43 289 | 89.90 307 | 98.75 111 | 97.54 281 | 95.60 100 | 91.63 304 | 97.91 194 | 74.46 343 | 97.02 329 | 86.10 320 | 93.67 236 | 97.72 211 |
|
v10 | | | 94.29 246 | 93.55 258 | 96.51 227 | 96.39 290 | 94.80 202 | 98.99 64 | 98.19 216 | 91.35 277 | 93.02 272 | 96.99 274 | 88.09 210 | 98.41 265 | 90.50 279 | 88.41 307 | 96.33 307 |
|
v8 | | | 94.47 237 | 93.77 246 | 96.57 220 | 96.36 291 | 94.83 200 | 99.05 52 | 98.19 216 | 91.92 259 | 93.16 266 | 96.97 276 | 88.82 194 | 98.48 250 | 91.69 263 | 87.79 313 | 96.39 303 |
|
GG-mvs-BLEND | | | | | 96.59 217 | 96.34 292 | 94.98 192 | 96.51 322 | 88.58 360 | | 93.10 271 | 94.34 337 | 80.34 311 | 98.05 299 | 89.53 296 | 96.99 179 | 96.74 260 |
|
V42 | | | 94.78 215 | 94.14 221 | 96.70 206 | 96.33 293 | 95.22 180 | 98.97 68 | 98.09 239 | 92.32 247 | 94.31 220 | 97.06 266 | 88.39 202 | 98.55 245 | 92.90 231 | 88.87 303 | 96.34 305 |
|
PEN-MVS | | | 94.42 239 | 93.73 250 | 96.49 228 | 96.28 294 | 94.84 198 | 99.17 33 | 99.00 27 | 93.51 202 | 92.23 295 | 97.83 206 | 86.10 249 | 97.90 309 | 92.55 242 | 86.92 324 | 96.74 260 |
|
v1144 | | | 94.59 227 | 93.92 234 | 96.60 216 | 96.21 295 | 94.78 204 | 98.59 143 | 98.14 229 | 91.86 262 | 94.21 226 | 97.02 271 | 87.97 213 | 98.41 265 | 91.72 262 | 89.57 289 | 96.61 277 |
|
Baseline_NR-MVSNet | | | 94.35 242 | 93.81 242 | 95.96 256 | 96.20 296 | 94.05 230 | 98.61 142 | 96.67 326 | 91.44 273 | 93.85 242 | 97.60 224 | 88.57 197 | 98.14 290 | 94.39 184 | 86.93 323 | 95.68 322 |
|
MS-PatchMatch | | | 93.84 267 | 93.63 255 | 94.46 306 | 96.18 297 | 89.45 314 | 97.76 248 | 98.27 206 | 92.23 251 | 92.13 297 | 97.49 232 | 79.50 314 | 98.69 230 | 89.75 291 | 99.38 100 | 95.25 327 |
|
v2v482 | | | 94.69 217 | 94.03 225 | 96.65 209 | 96.17 298 | 94.79 203 | 98.67 133 | 98.08 241 | 92.72 231 | 94.00 236 | 97.16 254 | 87.69 222 | 98.45 254 | 92.91 230 | 88.87 303 | 96.72 263 |
|
EPNet_dtu | | | 95.21 189 | 94.95 181 | 95.99 253 | 96.17 298 | 90.45 304 | 98.16 210 | 97.27 299 | 96.77 54 | 93.14 269 | 98.33 161 | 90.34 161 | 98.42 258 | 85.57 324 | 98.81 125 | 99.09 145 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
OPM-MVS | | | 95.69 163 | 95.33 163 | 96.76 201 | 96.16 300 | 94.63 207 | 98.43 169 | 98.39 185 | 96.64 60 | 95.02 193 | 98.78 112 | 85.15 264 | 99.05 190 | 95.21 163 | 94.20 222 | 96.60 278 |
|
v1192 | | | 94.32 244 | 93.58 257 | 96.53 225 | 96.10 301 | 94.45 216 | 98.50 160 | 98.17 224 | 91.54 270 | 94.19 227 | 97.06 266 | 86.95 235 | 98.43 257 | 90.14 282 | 89.57 289 | 96.70 267 |
|
v148 | | | 94.29 246 | 93.76 248 | 95.91 258 | 96.10 301 | 92.93 265 | 98.58 145 | 97.97 253 | 92.59 236 | 93.47 257 | 96.95 280 | 88.53 200 | 98.32 274 | 92.56 241 | 87.06 322 | 96.49 298 |
|
v144192 | | | 94.39 241 | 93.70 252 | 96.48 229 | 96.06 303 | 94.35 222 | 98.58 145 | 98.16 226 | 91.45 272 | 94.33 219 | 97.02 271 | 87.50 225 | 98.45 254 | 91.08 269 | 89.11 298 | 96.63 275 |
|
DTE-MVSNet | | | 93.98 265 | 93.26 268 | 96.14 249 | 96.06 303 | 94.39 220 | 99.20 29 | 98.86 61 | 93.06 219 | 91.78 301 | 97.81 208 | 85.87 253 | 97.58 320 | 90.53 278 | 86.17 329 | 96.46 301 |
|
v1240 | | | 94.06 263 | 93.29 267 | 96.34 241 | 96.03 305 | 93.90 233 | 98.44 167 | 98.17 224 | 91.18 287 | 94.13 230 | 97.01 273 | 86.05 250 | 98.42 258 | 89.13 303 | 89.50 293 | 96.70 267 |
|
v1921920 | | | 94.20 251 | 93.47 262 | 96.40 237 | 95.98 306 | 94.08 229 | 98.52 155 | 98.15 227 | 91.33 278 | 94.25 223 | 97.20 252 | 86.41 244 | 98.42 258 | 90.04 287 | 89.39 295 | 96.69 272 |
|
EU-MVSNet | | | 93.66 268 | 94.14 221 | 92.25 326 | 95.96 307 | 83.38 347 | 98.52 155 | 98.12 231 | 94.69 147 | 92.61 283 | 98.13 178 | 87.36 228 | 96.39 342 | 91.82 259 | 90.00 284 | 96.98 231 |
|
v7n | | | 94.19 252 | 93.43 263 | 96.47 230 | 95.90 308 | 94.38 221 | 99.26 18 | 98.34 193 | 91.99 257 | 92.76 278 | 97.13 255 | 88.31 203 | 98.52 248 | 89.48 298 | 87.70 314 | 96.52 292 |
|
gm-plane-assit | | | | | | 95.88 309 | 87.47 338 | | | 89.74 311 | | 96.94 281 | | 99.19 172 | 93.32 219 | | |
|
LF4IMVS | | | 93.14 281 | 92.79 275 | 94.20 309 | 95.88 309 | 88.67 326 | 97.66 255 | 97.07 305 | 93.81 184 | 91.71 302 | 97.65 219 | 77.96 326 | 98.81 223 | 91.47 266 | 91.92 261 | 95.12 330 |
|
PS-MVSNAJss | | | 96.43 132 | 96.26 129 | 96.92 194 | 95.84 311 | 95.08 187 | 99.16 34 | 98.50 167 | 95.87 89 | 93.84 243 | 98.34 160 | 94.51 85 | 98.61 238 | 96.88 99 | 93.45 243 | 97.06 227 |
|
pmmvs4 | | | 94.69 217 | 93.99 231 | 96.81 199 | 95.74 312 | 95.94 151 | 97.40 267 | 97.67 268 | 90.42 298 | 93.37 260 | 97.59 225 | 89.08 184 | 98.20 286 | 92.97 229 | 91.67 263 | 96.30 309 |
|
test_djsdf | | | 96.00 148 | 95.69 148 | 96.93 192 | 95.72 313 | 95.49 170 | 99.47 2 | 98.40 183 | 94.98 135 | 94.58 205 | 97.86 200 | 89.16 181 | 98.41 265 | 96.91 93 | 94.12 227 | 96.88 245 |
|
SixPastTwentyTwo | | | 93.34 274 | 92.86 273 | 94.75 296 | 95.67 314 | 89.41 316 | 98.75 111 | 96.67 326 | 93.89 178 | 90.15 317 | 98.25 170 | 80.87 306 | 98.27 284 | 90.90 273 | 90.64 277 | 96.57 282 |
|
K. test v3 | | | 92.55 287 | 91.91 289 | 94.48 304 | 95.64 315 | 89.24 317 | 99.07 50 | 94.88 342 | 94.04 169 | 86.78 335 | 97.59 225 | 77.64 330 | 97.64 318 | 92.08 251 | 89.43 294 | 96.57 282 |
|
OurMVSNet-221017-0 | | | 94.21 250 | 94.00 229 | 94.85 292 | 95.60 316 | 89.22 318 | 98.89 83 | 97.43 291 | 95.29 118 | 92.18 296 | 98.52 140 | 82.86 294 | 98.59 242 | 93.46 214 | 91.76 262 | 96.74 260 |
|
mvs_tets | | | 95.41 176 | 95.00 177 | 96.65 209 | 95.58 317 | 94.42 218 | 99.00 62 | 98.55 152 | 95.73 94 | 93.21 265 | 98.38 153 | 83.45 293 | 98.63 237 | 97.09 85 | 94.00 230 | 96.91 241 |
|
Gipuma |  | | 78.40 321 | 76.75 324 | 83.38 336 | 95.54 318 | 80.43 352 | 79.42 357 | 97.40 293 | 64.67 354 | 73.46 351 | 80.82 354 | 45.65 358 | 93.14 352 | 66.32 354 | 87.43 317 | 76.56 355 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
test0.0.03 1 | | | 94.08 261 | 93.51 260 | 95.80 263 | 95.53 319 | 92.89 266 | 97.38 269 | 95.97 331 | 95.11 129 | 92.51 288 | 96.66 294 | 87.71 219 | 96.94 331 | 87.03 315 | 93.67 236 | 97.57 214 |
|
pmmvs5 | | | 93.65 270 | 92.97 272 | 95.68 267 | 95.49 320 | 92.37 269 | 98.20 200 | 97.28 298 | 89.66 312 | 92.58 284 | 97.26 246 | 82.14 296 | 98.09 295 | 93.18 223 | 90.95 275 | 96.58 280 |
|
N_pmnet | | | 87.12 318 | 87.77 317 | 85.17 335 | 95.46 321 | 61.92 360 | 97.37 271 | 70.66 365 | 85.83 336 | 88.73 329 | 96.04 316 | 85.33 263 | 97.76 316 | 80.02 342 | 90.48 278 | 95.84 319 |
|
our_test_3 | | | 93.65 270 | 93.30 266 | 94.69 297 | 95.45 322 | 89.68 312 | 96.91 302 | 97.65 269 | 91.97 258 | 91.66 303 | 96.88 284 | 89.67 170 | 97.93 308 | 88.02 310 | 91.49 265 | 96.48 299 |
|
ppachtmachnet_test | | | 93.22 278 | 92.63 278 | 94.97 288 | 95.45 322 | 90.84 296 | 96.88 308 | 97.88 260 | 90.60 293 | 92.08 298 | 97.26 246 | 88.08 211 | 97.86 314 | 85.12 328 | 90.33 279 | 96.22 310 |
|
jajsoiax | | | 95.45 172 | 95.03 176 | 96.73 203 | 95.42 324 | 94.63 207 | 99.14 36 | 98.52 159 | 95.74 93 | 93.22 264 | 98.36 155 | 83.87 289 | 98.65 236 | 96.95 92 | 94.04 228 | 96.91 241 |
|
MDA-MVSNet-bldmvs | | | 89.97 308 | 88.35 313 | 94.83 294 | 95.21 325 | 91.34 287 | 97.64 256 | 97.51 283 | 88.36 323 | 71.17 354 | 96.13 314 | 79.22 316 | 96.63 339 | 83.65 334 | 86.27 328 | 96.52 292 |
|
anonymousdsp | | | 95.42 174 | 94.91 182 | 96.94 191 | 95.10 326 | 95.90 157 | 99.14 36 | 98.41 181 | 93.75 185 | 93.16 266 | 97.46 234 | 87.50 225 | 98.41 265 | 95.63 150 | 94.03 229 | 96.50 297 |
|
EPNet | | | 97.28 100 | 96.87 103 | 98.51 92 | 94.98 327 | 96.14 140 | 98.90 79 | 97.02 310 | 98.28 1 | 95.99 182 | 99.11 67 | 91.36 140 | 99.89 35 | 96.98 88 | 99.19 108 | 99.50 91 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MVP-Stereo | | | 94.28 248 | 93.92 234 | 95.35 277 | 94.95 328 | 92.60 268 | 97.97 228 | 97.65 269 | 91.61 269 | 90.68 312 | 97.09 260 | 86.32 246 | 98.42 258 | 89.70 293 | 99.34 102 | 95.02 334 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
lessismore_v0 | | | | | 94.45 307 | 94.93 329 | 88.44 330 | | 91.03 357 | | 86.77 336 | 97.64 221 | 76.23 335 | 98.42 258 | 90.31 281 | 85.64 332 | 96.51 295 |
|
MDA-MVSNet_test_wron | | | 90.71 302 | 89.38 307 | 94.68 298 | 94.83 330 | 90.78 299 | 97.19 285 | 97.46 287 | 87.60 325 | 72.41 353 | 95.72 322 | 86.51 240 | 96.71 337 | 85.92 322 | 86.80 326 | 96.56 284 |
|
YYNet1 | | | 90.70 303 | 89.39 306 | 94.62 300 | 94.79 331 | 90.65 301 | 97.20 284 | 97.46 287 | 87.54 326 | 72.54 352 | 95.74 319 | 86.51 240 | 96.66 338 | 86.00 321 | 86.76 327 | 96.54 287 |
|
EG-PatchMatch MVS | | | 91.13 298 | 90.12 301 | 94.17 311 | 94.73 332 | 89.00 322 | 98.13 213 | 97.81 262 | 89.22 318 | 85.32 342 | 96.46 302 | 67.71 350 | 98.42 258 | 87.89 312 | 93.82 235 | 95.08 332 |
|
pmmvs6 | | | 91.77 292 | 90.63 296 | 95.17 282 | 94.69 333 | 91.24 292 | 98.67 133 | 97.92 258 | 86.14 333 | 89.62 320 | 97.56 229 | 75.79 337 | 98.34 272 | 90.75 276 | 84.56 333 | 95.94 318 |
|
bset_n11_16_dypcd | | | 94.89 209 | 94.27 212 | 96.76 201 | 94.41 334 | 95.15 183 | 95.67 333 | 95.64 336 | 95.53 103 | 94.65 203 | 97.52 231 | 87.10 230 | 98.29 281 | 96.58 114 | 91.35 266 | 96.83 252 |
|
new_pmnet | | | 90.06 307 | 89.00 311 | 93.22 321 | 94.18 335 | 88.32 332 | 96.42 324 | 96.89 318 | 86.19 332 | 85.67 341 | 93.62 339 | 77.18 332 | 97.10 328 | 81.61 339 | 89.29 296 | 94.23 339 |
|
DSMNet-mixed | | | 92.52 288 | 92.58 279 | 92.33 325 | 94.15 336 | 82.65 349 | 98.30 188 | 94.26 349 | 89.08 319 | 92.65 282 | 95.73 320 | 85.01 266 | 95.76 344 | 86.24 319 | 97.76 164 | 98.59 183 |
|
UnsupCasMVSNet_eth | | | 90.99 300 | 89.92 303 | 94.19 310 | 94.08 337 | 89.83 308 | 97.13 291 | 98.67 129 | 93.69 193 | 85.83 340 | 96.19 313 | 75.15 339 | 96.74 334 | 89.14 302 | 79.41 343 | 96.00 316 |
|
KD-MVS_2432*1600 | | | 89.61 311 | 87.96 315 | 94.54 301 | 94.06 338 | 91.59 284 | 95.59 335 | 97.63 271 | 89.87 308 | 88.95 326 | 94.38 335 | 78.28 322 | 96.82 332 | 84.83 329 | 68.05 352 | 95.21 328 |
|
miper_refine_blended | | | 89.61 311 | 87.96 315 | 94.54 301 | 94.06 338 | 91.59 284 | 95.59 335 | 97.63 271 | 89.87 308 | 88.95 326 | 94.38 335 | 78.28 322 | 96.82 332 | 84.83 329 | 68.05 352 | 95.21 328 |
|
Anonymous20231206 | | | 91.66 293 | 91.10 293 | 93.33 318 | 94.02 340 | 87.35 339 | 98.58 145 | 97.26 300 | 90.48 295 | 90.16 316 | 96.31 306 | 83.83 290 | 96.53 340 | 79.36 345 | 89.90 285 | 96.12 313 |
|
Anonymous20240521 | | | 91.18 297 | 90.44 298 | 93.42 315 | 93.70 341 | 88.47 329 | 98.94 74 | 97.56 275 | 88.46 322 | 89.56 322 | 95.08 330 | 77.15 333 | 96.97 330 | 83.92 333 | 89.55 291 | 94.82 336 |
|
test20.03 | | | 90.89 301 | 90.38 299 | 92.43 324 | 93.48 342 | 88.14 334 | 98.33 180 | 97.56 275 | 93.40 207 | 87.96 331 | 96.71 293 | 80.69 309 | 94.13 351 | 79.15 346 | 86.17 329 | 95.01 335 |
|
CMPMVS |  | 66.06 21 | 89.70 309 | 89.67 305 | 89.78 330 | 93.19 343 | 76.56 353 | 97.00 296 | 98.35 191 | 80.97 346 | 81.57 347 | 97.75 211 | 74.75 341 | 98.61 238 | 89.85 289 | 93.63 238 | 94.17 340 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
OpenMVS_ROB |  | 86.42 20 | 89.00 314 | 87.43 319 | 93.69 313 | 93.08 344 | 89.42 315 | 97.91 233 | 96.89 318 | 78.58 348 | 85.86 339 | 94.69 332 | 69.48 349 | 98.29 281 | 77.13 350 | 93.29 248 | 93.36 347 |
|
DIV-MVS_2432*1600 | | | 90.38 304 | 89.38 307 | 93.40 317 | 92.85 345 | 88.94 323 | 97.95 229 | 97.94 256 | 90.35 300 | 90.25 315 | 93.96 338 | 79.82 312 | 95.94 343 | 84.62 332 | 76.69 346 | 95.33 326 |
|
MIMVSNet1 | | | 89.67 310 | 88.28 314 | 93.82 312 | 92.81 346 | 91.08 294 | 98.01 224 | 97.45 289 | 87.95 324 | 87.90 332 | 95.87 318 | 67.63 351 | 94.56 350 | 78.73 348 | 88.18 310 | 95.83 320 |
|
UnsupCasMVSNet_bld | | | 87.17 317 | 85.12 321 | 93.31 319 | 91.94 347 | 88.77 324 | 94.92 341 | 98.30 203 | 84.30 342 | 82.30 346 | 90.04 347 | 63.96 355 | 97.25 326 | 85.85 323 | 74.47 350 | 93.93 345 |
|
CL-MVSNet_2432*1600 | | | 90.11 306 | 89.14 309 | 93.02 322 | 91.86 348 | 88.23 333 | 96.51 322 | 98.07 243 | 90.49 294 | 90.49 314 | 94.41 333 | 84.75 271 | 95.34 346 | 80.79 341 | 74.95 348 | 95.50 324 |
|
Patchmatch-RL test | | | 91.49 294 | 90.85 295 | 93.41 316 | 91.37 349 | 84.40 344 | 92.81 349 | 95.93 333 | 91.87 261 | 87.25 333 | 94.87 331 | 88.99 186 | 96.53 340 | 92.54 243 | 82.00 336 | 99.30 120 |
|
pmmvs-eth3d | | | 90.36 305 | 89.05 310 | 94.32 308 | 91.10 350 | 92.12 271 | 97.63 258 | 96.95 313 | 88.86 320 | 84.91 343 | 93.13 341 | 78.32 321 | 96.74 334 | 88.70 305 | 81.81 338 | 94.09 342 |
|
PM-MVS | | | 87.77 316 | 86.55 320 | 91.40 329 | 91.03 351 | 83.36 348 | 96.92 300 | 95.18 340 | 91.28 282 | 86.48 338 | 93.42 340 | 53.27 356 | 96.74 334 | 89.43 299 | 81.97 337 | 94.11 341 |
|
new-patchmatchnet | | | 88.50 315 | 87.45 318 | 91.67 328 | 90.31 352 | 85.89 343 | 97.16 289 | 97.33 295 | 89.47 314 | 83.63 345 | 92.77 342 | 76.38 334 | 95.06 349 | 82.70 336 | 77.29 345 | 94.06 343 |
|
pmmvs3 | | | 86.67 319 | 84.86 322 | 92.11 327 | 88.16 353 | 87.19 341 | 96.63 318 | 94.75 344 | 79.88 347 | 87.22 334 | 92.75 343 | 66.56 352 | 95.20 348 | 81.24 340 | 76.56 347 | 93.96 344 |
|
ambc | | | | | 89.49 331 | 86.66 354 | 75.78 354 | 92.66 350 | 96.72 323 | | 86.55 337 | 92.50 344 | 46.01 357 | 97.90 309 | 90.32 280 | 82.09 335 | 94.80 337 |
|
TDRefinement | | | 91.06 299 | 89.68 304 | 95.21 280 | 85.35 355 | 91.49 286 | 98.51 159 | 97.07 305 | 91.47 271 | 88.83 328 | 97.84 203 | 77.31 331 | 99.09 187 | 92.79 234 | 77.98 344 | 95.04 333 |
|
PMMVS2 | | | 77.95 322 | 75.44 326 | 85.46 334 | 82.54 356 | 74.95 355 | 94.23 347 | 93.08 354 | 72.80 352 | 74.68 350 | 87.38 349 | 36.36 362 | 91.56 354 | 73.95 352 | 63.94 354 | 89.87 349 |
|
E-PMN | | | 64.94 327 | 64.25 329 | 67.02 342 | 82.28 357 | 59.36 363 | 91.83 352 | 85.63 361 | 52.69 357 | 60.22 357 | 77.28 356 | 41.06 360 | 80.12 359 | 46.15 358 | 41.14 356 | 61.57 357 |
|
EMVS | | | 64.07 328 | 63.26 331 | 66.53 343 | 81.73 358 | 58.81 364 | 91.85 351 | 84.75 362 | 51.93 359 | 59.09 358 | 75.13 357 | 43.32 359 | 79.09 360 | 42.03 359 | 39.47 357 | 61.69 356 |
|
FPMVS | | | 77.62 323 | 77.14 323 | 79.05 338 | 79.25 359 | 60.97 361 | 95.79 331 | 95.94 332 | 65.96 353 | 67.93 355 | 94.40 334 | 37.73 361 | 88.88 356 | 68.83 353 | 88.46 306 | 87.29 350 |
|
wuyk23d | | | 30.17 330 | 30.18 334 | 30.16 344 | 78.61 360 | 43.29 366 | 66.79 358 | 14.21 366 | 17.31 361 | 14.82 364 | 11.93 364 | 11.55 367 | 41.43 362 | 37.08 360 | 19.30 360 | 5.76 360 |
|
LCM-MVSNet | | | 78.70 320 | 76.24 325 | 86.08 333 | 77.26 361 | 71.99 357 | 94.34 346 | 96.72 323 | 61.62 355 | 76.53 349 | 89.33 348 | 33.91 363 | 92.78 353 | 81.85 338 | 74.60 349 | 93.46 346 |
|
MVE |  | 62.14 22 | 63.28 329 | 59.38 332 | 74.99 339 | 74.33 362 | 65.47 359 | 85.55 355 | 80.50 364 | 52.02 358 | 51.10 359 | 75.00 358 | 10.91 368 | 80.50 358 | 51.60 357 | 53.40 355 | 78.99 353 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
ANet_high | | | 69.08 324 | 65.37 328 | 80.22 337 | 65.99 363 | 71.96 358 | 90.91 353 | 90.09 358 | 82.62 343 | 49.93 360 | 78.39 355 | 29.36 364 | 81.75 357 | 62.49 355 | 38.52 358 | 86.95 352 |
|
PMVS |  | 61.03 23 | 65.95 326 | 63.57 330 | 73.09 341 | 57.90 364 | 51.22 365 | 85.05 356 | 93.93 353 | 54.45 356 | 44.32 361 | 83.57 351 | 13.22 365 | 89.15 355 | 58.68 356 | 81.00 341 | 78.91 354 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
tmp_tt | | | 68.90 325 | 66.97 327 | 74.68 340 | 50.78 365 | 59.95 362 | 87.13 354 | 83.47 363 | 38.80 360 | 62.21 356 | 96.23 310 | 64.70 354 | 76.91 361 | 88.91 304 | 30.49 359 | 87.19 351 |
|
testmvs | | | 21.48 332 | 24.95 335 | 11.09 346 | 14.89 366 | 6.47 368 | 96.56 320 | 9.87 367 | 7.55 362 | 17.93 362 | 39.02 360 | 9.43 369 | 5.90 364 | 16.56 362 | 12.72 361 | 20.91 359 |
|
test123 | | | 20.95 333 | 23.72 336 | 12.64 345 | 13.54 367 | 8.19 367 | 96.55 321 | 6.13 368 | 7.48 363 | 16.74 363 | 37.98 361 | 12.97 366 | 6.05 363 | 16.69 361 | 5.43 362 | 23.68 358 |
|
uanet_test | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
cdsmvs_eth3d_5k | | | 23.98 331 | 31.98 333 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 98.59 142 | 0.00 364 | 0.00 365 | 98.61 128 | 90.60 157 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
pcd_1.5k_mvsjas | | | 7.88 335 | 10.50 338 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 94.51 85 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
sosnet-low-res | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
sosnet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
uncertanet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
Regformer | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
ab-mvs-re | | | 8.20 334 | 10.94 337 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 98.43 146 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
uanet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
test_241102_TWO | | | | | | | | | 98.87 55 | 97.65 9 | 99.53 8 | 99.48 6 | 97.34 8 | 99.94 3 | 98.43 18 | 99.80 17 | 99.83 5 |
|
test_0728_THIRD | | | | | | | | | | 97.32 28 | 99.45 9 | 99.46 9 | 97.88 1 | 99.94 3 | 98.47 15 | 99.86 1 | 99.85 2 |
|
GSMVS | | | | | | | | | | | | | | | | | 99.20 129 |
|
sam_mvs1 | | | | | | | | | | | | | 89.45 173 | | | | 99.20 129 |
|
sam_mvs | | | | | | | | | | | | | 88.99 186 | | | | |
|
MTGPA |  | | | | | | | | 98.74 104 | | | | | | | | |
|
test_post1 | | | | | | | | 96.68 317 | | | | 30.43 363 | 87.85 218 | 98.69 230 | 92.59 239 | | |
|
test_post | | | | | | | | | | | | 31.83 362 | 88.83 193 | 98.91 209 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 95.10 329 | 89.42 174 | 98.89 213 | | | |
|
MTMP | | | | | | | | 98.89 83 | 94.14 351 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 96.39 122 | 99.57 75 | 99.69 51 |
|
agg_prior2 | | | | | | | | | | | | | | | 95.87 138 | 99.57 75 | 99.68 57 |
|
test_prior4 | | | | | | | 98.01 62 | 97.86 240 | | | | | | | | | |
|
test_prior2 | | | | | | | | 97.80 245 | | 96.12 81 | 97.89 106 | 98.69 120 | 95.96 36 | | 96.89 96 | 99.60 68 | |
|
旧先验2 | | | | | | | | 97.57 261 | | 91.30 280 | 98.67 58 | | | 99.80 80 | 95.70 148 | | |
|
新几何2 | | | | | | | | 97.64 256 | | | | | | | | | |
|
无先验 | | | | | | | | 97.58 260 | 98.72 110 | 91.38 274 | | | | 99.87 44 | 93.36 217 | | 99.60 78 |
|
原ACMM2 | | | | | | | | 97.67 254 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.89 35 | 91.65 264 | | |
|
segment_acmp | | | | | | | | | | | | | 96.85 11 | | | | |
|
testdata1 | | | | | | | | 97.32 277 | | 96.34 72 | | | | | | | |
|
plane_prior5 | | | | | | | | | 98.56 150 | | | | | 99.03 194 | 96.07 128 | 94.27 219 | 96.92 236 |
|
plane_prior4 | | | | | | | | | | | | 98.28 165 | | | | | |
|
plane_prior3 | | | | | | | 94.61 210 | | | 97.02 48 | 95.34 187 | | | | | | |
|
plane_prior2 | | | | | | | | 98.80 105 | | 97.28 30 | | | | | | | |
|
plane_prior | | | | | | | 94.60 212 | 98.44 167 | | 96.74 56 | | | | | | 94.22 221 | |
|
n2 | | | | | | | | | 0.00 369 | | | | | | | | |
|
nn | | | | | | | | | 0.00 369 | | | | | | | | |
|
door-mid | | | | | | | | | 94.37 347 | | | | | | | | |
|
test11 | | | | | | | | | 98.66 132 | | | | | | | | |
|
door | | | | | | | | | 94.64 345 | | | | | | | | |
|
HQP5-MVS | | | | | | | 94.25 226 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 95.30 157 | | |
|
HQP4-MVS | | | | | | | | | | | 94.45 210 | | | 98.96 202 | | | 96.87 247 |
|
HQP3-MVS | | | | | | | | | 98.46 172 | | | | | | | 94.18 223 | |
|
HQP2-MVS | | | | | | | | | | | | | 86.75 237 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 84.26 345 | 96.89 307 | | 90.97 290 | 97.90 105 | | 89.89 168 | | 93.91 201 | | 99.18 136 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 92.97 251 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 93.61 239 | |
|
Test By Simon | | | | | | | | | | | | | 94.64 80 | | | | |
|