This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
test_0728_SECOND95.01 1598.79 186.43 4197.09 1197.49 599.61 395.62 599.08 798.99 5
DVP-MVS95.67 296.02 294.64 4098.78 285.93 5897.09 1196.73 7690.27 2897.04 898.05 691.47 699.55 1295.62 599.08 798.45 32
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.78 285.93 5897.19 697.47 890.27 2897.64 498.13 191.47 6
SED-MVS95.91 196.28 194.80 3398.77 485.99 5597.13 997.44 1290.31 2697.71 198.07 492.31 299.58 595.66 299.13 398.84 8
IU-MVS98.77 486.00 5496.84 6281.26 24497.26 695.50 799.13 399.03 4
test_241102_ONE98.77 485.99 5597.44 1290.26 3097.71 197.96 892.31 299.38 29
region2R94.43 2294.27 2494.92 2098.65 786.67 3296.92 1997.23 3288.60 7293.58 4797.27 2785.22 5699.54 1692.21 4898.74 2998.56 19
ACMMPR94.43 2294.28 2294.91 2298.63 886.69 3096.94 1597.32 2488.63 7093.53 5097.26 2985.04 5999.54 1692.35 4598.78 2198.50 22
HFP-MVS94.52 1794.40 1994.86 2598.61 986.81 2496.94 1597.34 1988.63 7093.65 4397.21 3286.10 4599.49 2392.35 4598.77 2498.30 41
#test#94.32 2894.14 3194.86 2598.61 986.81 2496.43 3297.34 1987.51 10493.65 4397.21 3286.10 4599.49 2391.68 7098.77 2498.30 41
test_part298.55 1187.22 1696.40 11
XVS94.45 2094.32 2094.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 6197.16 3785.02 6099.49 2391.99 5798.56 4798.47 28
X-MVStestdata88.31 16586.13 20794.85 2798.54 1286.60 3696.93 1797.19 3590.66 2392.85 6123.41 36485.02 6099.49 2391.99 5798.56 4798.47 28
ZNCC-MVS94.47 1894.28 2295.03 1498.52 1486.96 1796.85 2497.32 2488.24 8293.15 5597.04 4286.17 4499.62 192.40 4398.81 1898.52 20
mPP-MVS93.99 3893.78 4394.63 4198.50 1585.90 6396.87 2196.91 5688.70 6891.83 9297.17 3683.96 7499.55 1291.44 7598.64 4398.43 34
MSP-MVS95.42 595.56 594.98 1998.49 1686.52 3896.91 2097.47 891.73 896.10 1396.69 5889.90 999.30 3994.70 998.04 6699.13 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MP-MVScopyleft94.25 2994.07 3494.77 3598.47 1786.31 4796.71 2796.98 4889.04 6091.98 8697.19 3485.43 5499.56 792.06 5698.79 1998.44 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS94.45 2094.20 2895.19 998.46 1887.50 1395.00 11097.12 4087.13 11192.51 7596.30 7489.24 1499.34 3393.46 2198.62 4498.73 11
PGM-MVS93.96 4093.72 4594.68 3898.43 1986.22 5095.30 8697.78 187.45 10793.26 5197.33 2484.62 6599.51 2190.75 8798.57 4698.32 40
zzz-MVS94.47 1894.30 2195.00 1698.42 2086.95 1895.06 10896.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
MTAPA94.42 2494.22 2595.00 1698.42 2086.95 1894.36 15896.97 4991.07 1393.14 5697.56 1484.30 6799.56 793.43 2298.75 2798.47 28
GST-MVS94.21 3393.97 3894.90 2498.41 2286.82 2396.54 3197.19 3588.24 8293.26 5196.83 5185.48 5399.59 491.43 7698.40 5398.30 41
HPM-MVScopyleft94.02 3793.88 3994.43 5098.39 2385.78 6597.25 597.07 4486.90 11992.62 7296.80 5584.85 6399.17 5092.43 4198.65 4298.33 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS94.34 2694.21 2794.74 3798.39 2386.64 3497.60 197.24 3088.53 7492.73 6897.23 3085.20 5799.32 3792.15 5198.83 1798.25 50
DPE-MVScopyleft95.57 395.67 395.25 798.36 2587.28 1595.56 7697.51 489.13 5897.14 797.91 991.64 599.62 194.61 1199.17 298.86 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVS_fast93.40 5593.22 5593.94 6198.36 2584.83 7697.15 896.80 6885.77 14192.47 7697.13 3882.38 8899.07 5890.51 8998.40 5397.92 75
DP-MVS Recon91.95 7891.28 8493.96 6098.33 2785.92 6094.66 13396.66 8682.69 21090.03 11795.82 9582.30 9199.03 6484.57 15496.48 10296.91 118
APDe-MVS95.46 495.64 494.91 2298.26 2886.29 4997.46 297.40 1789.03 6196.20 1298.10 289.39 1399.34 3395.88 199.03 999.10 3
TSAR-MVS + MP.94.85 1294.94 1094.58 4398.25 2986.33 4596.11 4996.62 8988.14 8896.10 1396.96 4689.09 1598.94 8494.48 1298.68 3598.48 24
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft95.14 994.91 1195.83 298.25 2989.65 295.92 5996.96 5291.75 794.02 3596.83 5188.12 2199.55 1293.41 2498.94 1298.28 45
testtj94.39 2594.18 2995.00 1698.24 3186.77 2896.16 4497.23 3287.28 10994.85 2497.04 4286.99 3799.52 2091.54 7298.33 5698.71 12
CPTT-MVS91.99 7791.80 7892.55 10798.24 3181.98 15496.76 2696.49 9781.89 22990.24 11396.44 7178.59 13398.61 10789.68 9497.85 7497.06 110
SR-MVS94.23 3194.17 3094.43 5098.21 3385.78 6596.40 3496.90 5788.20 8594.33 2797.40 2184.75 6499.03 6493.35 2697.99 6798.48 24
MP-MVS-pluss94.21 3394.00 3794.85 2798.17 3486.65 3394.82 12297.17 3886.26 13292.83 6397.87 1085.57 5299.56 794.37 1498.92 1398.34 38
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ZD-MVS98.15 3586.62 3597.07 4483.63 18794.19 3096.91 4887.57 2999.26 4391.99 5798.44 51
SMA-MVScopyleft95.20 795.07 995.59 398.14 3688.48 696.26 4097.28 2885.90 13897.67 398.10 288.41 1799.56 794.66 1099.19 198.71 12
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test117293.97 3994.07 3493.66 7198.11 3783.45 11596.26 4096.84 6288.33 7894.19 3097.43 1884.24 6999.01 7093.26 2897.98 6898.52 20
CNVR-MVS95.40 695.37 695.50 598.11 3788.51 595.29 8996.96 5292.09 395.32 1997.08 4089.49 1299.33 3695.10 898.85 1598.66 14
114514_t89.51 13088.50 14092.54 10898.11 3781.99 15395.16 10096.36 10570.19 34285.81 18395.25 11176.70 15198.63 10582.07 18996.86 9297.00 114
ACMMPcopyleft93.24 5992.88 6494.30 5498.09 4085.33 7296.86 2397.45 1188.33 7890.15 11597.03 4481.44 10299.51 2190.85 8695.74 10898.04 66
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APD-MVScopyleft94.24 3094.07 3494.75 3698.06 4186.90 2195.88 6096.94 5485.68 14495.05 2397.18 3587.31 3199.07 5891.90 6598.61 4598.28 45
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CSCG93.23 6093.05 5993.76 6998.04 4284.07 9896.22 4297.37 1884.15 17690.05 11695.66 10087.77 2399.15 5389.91 9298.27 5898.07 63
ACMMP_NAP94.74 1494.56 1695.28 698.02 4387.70 1095.68 6997.34 1988.28 8195.30 2097.67 1385.90 4999.54 1693.91 1798.95 1198.60 17
OPU-MVS96.21 198.00 4490.85 197.13 997.08 4092.59 198.94 8492.25 4798.99 1098.84 8
SR-MVS-dyc-post93.82 4493.82 4093.82 6497.92 4584.57 8196.28 3896.76 7287.46 10593.75 4097.43 1884.24 6999.01 7092.73 3597.80 7597.88 77
RE-MVS-def93.68 4697.92 4584.57 8196.28 3896.76 7287.46 10593.75 4097.43 1882.94 8292.73 3597.80 7597.88 77
APD-MVS_3200maxsize93.78 4593.77 4493.80 6897.92 4584.19 9696.30 3696.87 6186.96 11593.92 3797.47 1683.88 7598.96 8392.71 3897.87 7398.26 49
xxxxxxxxxxxxxcwj94.65 1594.70 1494.48 4797.85 4885.63 6895.21 9595.47 17189.44 4795.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
save fliter97.85 4885.63 6895.21 9596.82 6689.44 47
SF-MVS94.97 1094.90 1295.20 897.84 5087.76 896.65 2997.48 787.76 9795.71 1597.70 1188.28 1999.35 3193.89 1898.78 2198.48 24
NCCC94.81 1394.69 1595.17 1097.83 5187.46 1495.66 7196.93 5592.34 293.94 3696.58 6587.74 2499.44 2792.83 3498.40 5398.62 16
ETH3 D test640093.64 4993.22 5594.92 2097.79 5286.84 2295.31 8397.26 2982.67 21193.81 3996.29 7587.29 3299.27 4289.87 9398.67 3798.65 15
9.1494.47 1797.79 5296.08 5097.44 1286.13 13695.10 2297.40 2188.34 1899.22 4693.25 2998.70 32
CDPH-MVS92.83 6592.30 7394.44 4897.79 5286.11 5294.06 17796.66 8680.09 25792.77 6596.63 6286.62 3999.04 6387.40 12198.66 4098.17 54
ETH3D-3000-0.194.61 1694.44 1895.12 1197.70 5587.71 995.98 5697.44 1286.67 12495.25 2197.31 2587.73 2599.24 4493.11 3298.76 2698.40 35
DP-MVS87.25 20385.36 23392.90 9197.65 5683.24 12094.81 12392.00 28474.99 31181.92 27495.00 11972.66 20799.05 6066.92 32592.33 16796.40 131
PAPM_NR91.22 9290.78 9592.52 10997.60 5781.46 16894.37 15796.24 11286.39 13087.41 15394.80 12882.06 9798.48 11382.80 17895.37 11697.61 88
TEST997.53 5886.49 3994.07 17596.78 6981.61 23792.77 6596.20 8087.71 2699.12 55
train_agg93.44 5393.08 5894.52 4597.53 5886.49 3994.07 17596.78 6981.86 23092.77 6596.20 8087.63 2799.12 5592.14 5298.69 3397.94 72
abl_693.18 6193.05 5993.57 7397.52 6084.27 9595.53 7796.67 8587.85 9493.20 5497.22 3180.35 10999.18 4991.91 6297.21 8597.26 100
test_897.49 6186.30 4894.02 18096.76 7281.86 23092.70 6996.20 8087.63 2799.02 68
DeepC-MVS_fast89.43 294.04 3693.79 4294.80 3397.48 6286.78 2695.65 7396.89 5889.40 5092.81 6496.97 4585.37 5599.24 4490.87 8598.69 3398.38 37
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary89.89 12289.07 12892.37 11897.41 6383.03 12694.42 14995.92 13582.81 20886.34 17694.65 13473.89 19099.02 6880.69 21595.51 11195.05 180
agg_prior193.29 5792.97 6294.26 5597.38 6485.92 6093.92 18696.72 7881.96 22492.16 8196.23 7887.85 2298.97 8091.95 6198.55 4997.90 76
agg_prior97.38 6485.92 6096.72 7892.16 8198.97 80
原ACMM192.01 12997.34 6681.05 18096.81 6778.89 27190.45 11195.92 9182.65 8598.84 9680.68 21698.26 5996.14 140
MSLP-MVS++93.72 4694.08 3392.65 10397.31 6783.43 11695.79 6497.33 2290.03 3393.58 4796.96 4684.87 6297.76 16692.19 5098.66 4096.76 121
新几何193.10 8197.30 6884.35 9495.56 16371.09 33991.26 10396.24 7782.87 8498.86 9179.19 23798.10 6396.07 147
test_prior393.60 5093.53 4993.82 6497.29 6984.49 8594.12 16896.88 5987.67 10092.63 7096.39 7286.62 3998.87 8891.50 7398.67 3798.11 61
test_prior93.82 6497.29 6984.49 8596.88 5998.87 8898.11 61
112190.42 10989.49 11593.20 7797.27 7184.46 8892.63 23495.51 16971.01 34091.20 10496.21 7982.92 8399.05 6080.56 21898.07 6596.10 145
PLCcopyleft84.53 789.06 14588.03 15392.15 12697.27 7182.69 14094.29 16095.44 17779.71 26284.01 24094.18 15176.68 15298.75 10077.28 25493.41 14895.02 181
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SD-MVS94.96 1195.33 793.88 6297.25 7386.69 3096.19 4397.11 4290.42 2596.95 1097.27 2789.53 1196.91 23994.38 1398.85 1598.03 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test1294.34 5397.13 7486.15 5196.29 10791.04 10685.08 5899.01 7098.13 6297.86 79
MG-MVS91.77 8191.70 8092.00 13197.08 7580.03 21093.60 19995.18 19187.85 9490.89 10896.47 7082.06 9798.36 12285.07 14697.04 8997.62 87
SteuartSystems-ACMMP95.20 795.32 894.85 2796.99 7686.33 4597.33 397.30 2691.38 1195.39 1897.46 1788.98 1699.40 2894.12 1598.89 1498.82 10
Skip Steuart: Steuart Systems R&D Blog.
MVS_111021_HR93.45 5293.31 5393.84 6396.99 7684.84 7593.24 21697.24 3088.76 6791.60 9795.85 9486.07 4798.66 10291.91 6298.16 6198.03 67
CNLPA89.07 14487.98 15592.34 11996.87 7884.78 7794.08 17493.24 25581.41 24084.46 22495.13 11675.57 16796.62 24977.21 25593.84 13995.61 165
PHI-MVS93.89 4393.65 4794.62 4296.84 7986.43 4196.69 2897.49 585.15 16093.56 4996.28 7685.60 5199.31 3892.45 4098.79 1998.12 59
旧先验196.79 8081.81 15895.67 15596.81 5386.69 3897.66 7996.97 115
ETH3D cwj APD-0.1693.91 4193.53 4995.06 1396.76 8187.78 794.92 11597.21 3484.33 17493.89 3897.09 3987.20 3399.29 4191.90 6598.44 5198.12 59
LFMVS90.08 11489.13 12792.95 8996.71 8282.32 14996.08 5089.91 33286.79 12092.15 8396.81 5362.60 29998.34 12587.18 12593.90 13798.19 53
Anonymous20240521187.68 18186.13 20792.31 12196.66 8380.74 19094.87 11991.49 29980.47 25389.46 12295.44 10454.72 33798.23 13182.19 18789.89 19197.97 70
TAPA-MVS84.62 688.16 16987.01 17791.62 15096.64 8480.65 19194.39 15296.21 11776.38 29686.19 17995.44 10479.75 11798.08 14662.75 34095.29 11896.13 141
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MAR-MVS90.30 11089.37 12093.07 8496.61 8584.48 8795.68 6995.67 15582.36 21587.85 14492.85 19976.63 15398.80 9880.01 22696.68 9595.91 152
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VNet92.24 7591.91 7793.24 7696.59 8683.43 11694.84 12196.44 9889.19 5694.08 3495.90 9277.85 14498.17 13588.90 10393.38 14998.13 58
TSAR-MVS + GP.93.66 4893.41 5294.41 5296.59 8686.78 2694.40 15093.93 24189.77 4094.21 2995.59 10387.35 3098.61 10792.72 3796.15 10597.83 81
test22296.55 8881.70 16092.22 24895.01 19868.36 34590.20 11496.14 8580.26 11297.80 7596.05 149
Anonymous2024052988.09 17186.59 19292.58 10696.53 8981.92 15795.99 5495.84 14374.11 31989.06 12895.21 11361.44 30798.81 9783.67 16687.47 22897.01 113
Anonymous2023121186.59 22685.13 23690.98 18196.52 9081.50 16496.14 4696.16 11873.78 32183.65 24992.15 22263.26 29797.37 20582.82 17781.74 28494.06 228
DeepPCF-MVS89.96 194.20 3594.77 1392.49 11096.52 9080.00 21294.00 18297.08 4390.05 3295.65 1797.29 2689.66 1098.97 8093.95 1698.71 3098.50 22
testdata90.49 19496.40 9277.89 25895.37 18372.51 33293.63 4596.69 5882.08 9697.65 17583.08 17097.39 8395.94 151
PVSNet_Blended_VisFu91.38 8890.91 9292.80 9496.39 9383.17 12294.87 11996.66 8683.29 19789.27 12494.46 14180.29 11199.17 5087.57 11995.37 11696.05 149
API-MVS90.66 10390.07 10592.45 11296.36 9484.57 8196.06 5295.22 19082.39 21389.13 12594.27 14980.32 11098.46 11580.16 22596.71 9494.33 216
F-COLMAP87.95 17486.80 18291.40 16096.35 9580.88 18694.73 12895.45 17579.65 26382.04 27294.61 13571.13 22198.50 11276.24 26591.05 17894.80 194
VDD-MVS90.74 9989.92 11193.20 7796.27 9683.02 12795.73 6693.86 24588.42 7792.53 7396.84 5062.09 30298.64 10490.95 8392.62 16397.93 74
OMC-MVS91.23 9190.62 9693.08 8296.27 9684.07 9893.52 20195.93 13486.95 11689.51 12096.13 8678.50 13598.35 12485.84 13992.90 15996.83 120
DPM-MVS92.58 6991.74 7995.08 1296.19 9889.31 392.66 23396.56 9583.44 19391.68 9695.04 11886.60 4298.99 7785.60 14297.92 7296.93 117
CHOSEN 1792x268888.84 15287.69 16092.30 12296.14 9981.42 17090.01 29195.86 14274.52 31687.41 15393.94 16075.46 16898.36 12280.36 22195.53 11097.12 108
thres100view90087.63 18686.71 18590.38 20096.12 10078.55 24095.03 10991.58 29587.15 11088.06 14092.29 21868.91 25698.10 13970.13 30491.10 17494.48 212
PVSNet_BlendedMVS89.98 11789.70 11290.82 18396.12 10081.25 17393.92 18696.83 6483.49 19289.10 12692.26 21981.04 10698.85 9486.72 13387.86 22692.35 298
PVSNet_Blended90.73 10090.32 9991.98 13296.12 10081.25 17392.55 23896.83 6482.04 22289.10 12692.56 20981.04 10698.85 9486.72 13395.91 10695.84 156
UA-Net92.83 6592.54 6993.68 7096.10 10384.71 7895.66 7196.39 10391.92 493.22 5396.49 6983.16 8098.87 8884.47 15595.47 11397.45 96
thres600view787.65 18386.67 18790.59 18796.08 10478.72 23694.88 11891.58 29587.06 11388.08 13992.30 21768.91 25698.10 13970.05 30791.10 17494.96 185
DeepC-MVS88.79 393.31 5692.99 6194.26 5596.07 10585.83 6494.89 11796.99 4789.02 6289.56 11997.37 2382.51 8799.38 2992.20 4998.30 5797.57 91
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D87.89 17586.32 20292.59 10596.07 10582.92 13195.23 9394.92 20675.66 30382.89 26295.98 8972.48 21099.21 4768.43 31495.23 12195.64 164
hse-mvs390.80 9790.15 10392.75 9796.01 10782.66 14195.43 7995.53 16789.80 3793.08 5895.64 10175.77 16099.00 7592.07 5478.05 32296.60 126
HyFIR lowres test88.09 17186.81 18191.93 13696.00 10880.63 19290.01 29195.79 14773.42 32487.68 14992.10 22773.86 19197.96 15780.75 21491.70 17097.19 104
tfpn200view987.58 19086.64 18890.41 19795.99 10978.64 23894.58 13691.98 28686.94 11788.09 13791.77 23769.18 25398.10 13970.13 30491.10 17494.48 212
thres40087.62 18886.64 18890.57 18895.99 10978.64 23894.58 13691.98 28686.94 11788.09 13791.77 23769.18 25398.10 13970.13 30491.10 17494.96 185
MVS_111021_LR92.47 7292.29 7492.98 8795.99 10984.43 9293.08 22196.09 12288.20 8591.12 10595.72 9981.33 10497.76 16691.74 6897.37 8496.75 122
test_part189.00 14987.99 15492.04 12895.94 11283.81 10596.14 4696.05 12786.44 12885.69 18693.73 17471.57 21697.66 17385.80 14080.54 30394.66 197
PatchMatch-RL86.77 22285.54 22790.47 19695.88 11382.71 13990.54 28092.31 27579.82 26184.32 23291.57 24768.77 25896.39 26873.16 28893.48 14792.32 299
EPP-MVSNet91.70 8491.56 8192.13 12795.88 11380.50 19797.33 395.25 18786.15 13489.76 11895.60 10283.42 7898.32 12887.37 12393.25 15297.56 92
IS-MVSNet91.43 8791.09 8992.46 11195.87 11581.38 17196.95 1493.69 25089.72 4289.50 12195.98 8978.57 13497.77 16583.02 17296.50 10198.22 52
PAPR90.02 11689.27 12592.29 12395.78 11680.95 18492.68 23296.22 11481.91 22786.66 16993.75 17382.23 9298.44 11979.40 23694.79 12397.48 94
Vis-MVSNet (Re-imp)89.59 12889.44 11790.03 21495.74 11775.85 28995.61 7490.80 31787.66 10287.83 14595.40 10876.79 14996.46 26578.37 24296.73 9397.80 82
test_yl90.69 10190.02 10992.71 9995.72 11882.41 14794.11 17095.12 19385.63 14591.49 9894.70 13074.75 17598.42 12086.13 13792.53 16497.31 98
DCV-MVSNet90.69 10190.02 10992.71 9995.72 11882.41 14794.11 17095.12 19385.63 14591.49 9894.70 13074.75 17598.42 12086.13 13792.53 16497.31 98
canonicalmvs93.27 5892.75 6694.85 2795.70 12087.66 1196.33 3596.41 10190.00 3494.09 3394.60 13682.33 9098.62 10692.40 4392.86 16098.27 47
CANet93.54 5193.20 5794.55 4495.65 12185.73 6794.94 11396.69 8291.89 590.69 10995.88 9381.99 9999.54 1693.14 3197.95 7198.39 36
3Dnovator+87.14 492.42 7391.37 8295.55 495.63 12288.73 497.07 1396.77 7190.84 1684.02 23996.62 6375.95 15999.34 3387.77 11697.68 7898.59 18
alignmvs93.08 6392.50 7094.81 3295.62 12387.61 1295.99 5496.07 12489.77 4094.12 3294.87 12380.56 10898.66 10292.42 4293.10 15598.15 56
Regformer-194.22 3294.13 3294.51 4695.54 12486.36 4494.57 13896.44 9891.69 994.32 2896.56 6787.05 3699.03 6493.35 2697.65 8098.15 56
Regformer-294.33 2794.22 2594.68 3895.54 12486.75 2994.57 13896.70 8091.84 694.41 2596.56 6787.19 3499.13 5493.50 2097.65 8098.16 55
WTY-MVS89.60 12788.92 13291.67 14995.47 12681.15 17892.38 24294.78 21683.11 20089.06 12894.32 14478.67 13296.61 25281.57 20190.89 18097.24 101
DELS-MVS93.43 5493.25 5493.97 5995.42 12785.04 7493.06 22397.13 3990.74 2091.84 9095.09 11786.32 4399.21 4791.22 7798.45 5097.65 86
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Regformer-393.68 4793.64 4893.81 6795.36 12884.61 7994.68 13095.83 14491.27 1293.60 4696.71 5685.75 5098.86 9192.87 3396.65 9697.96 71
Regformer-493.91 4193.81 4194.19 5795.36 12885.47 7094.68 13096.41 10191.60 1093.75 4096.71 5685.95 4899.10 5793.21 3096.65 9698.01 69
thres20087.21 20786.24 20590.12 21095.36 12878.53 24193.26 21392.10 28086.42 12988.00 14291.11 26069.24 25298.00 15469.58 30891.04 17993.83 241
Vis-MVSNetpermissive91.75 8291.23 8593.29 7495.32 13183.78 10696.14 4695.98 13089.89 3590.45 11196.58 6575.09 17198.31 12984.75 15296.90 9097.78 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
BH-RMVSNet88.37 16387.48 16591.02 17695.28 13279.45 22292.89 22893.07 25985.45 15186.91 16494.84 12770.35 23597.76 16673.97 28394.59 12895.85 155
COLMAP_ROBcopyleft80.39 1683.96 26782.04 27489.74 22695.28 13279.75 21794.25 16292.28 27675.17 30978.02 31293.77 17158.60 32697.84 16365.06 33385.92 24091.63 309
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PS-MVSNAJ91.18 9390.92 9191.96 13495.26 13482.60 14492.09 25395.70 15386.27 13191.84 9092.46 21179.70 11998.99 7789.08 10195.86 10794.29 217
BH-untuned88.60 15988.13 15290.01 21695.24 13578.50 24393.29 21194.15 23584.75 16884.46 22493.40 17875.76 16297.40 20177.59 25194.52 13094.12 223
ETV-MVS92.74 6792.66 6792.97 8895.20 13684.04 10095.07 10596.51 9690.73 2192.96 6091.19 25484.06 7198.34 12591.72 6996.54 9996.54 130
GeoE90.05 11589.43 11891.90 13995.16 13780.37 19995.80 6394.65 22083.90 18187.55 15294.75 12978.18 13997.62 17981.28 20493.63 14197.71 85
EIA-MVS91.95 7891.94 7691.98 13295.16 13780.01 21195.36 8096.73 7688.44 7589.34 12392.16 22183.82 7798.45 11889.35 9897.06 8897.48 94
ab-mvs89.41 13688.35 14492.60 10495.15 13982.65 14292.20 24995.60 16283.97 18088.55 13293.70 17574.16 18698.21 13482.46 18389.37 19996.94 116
VDDNet89.56 12988.49 14292.76 9695.07 14082.09 15196.30 3693.19 25781.05 24991.88 8896.86 4961.16 31298.33 12788.43 10992.49 16697.84 80
AllTest83.42 27381.39 27989.52 23495.01 14177.79 26293.12 21890.89 31577.41 28876.12 32493.34 17954.08 34097.51 18568.31 31584.27 25393.26 264
TestCases89.52 23495.01 14177.79 26290.89 31577.41 28876.12 32493.34 17954.08 34097.51 18568.31 31584.27 25393.26 264
EI-MVSNet-Vis-set93.01 6492.92 6393.29 7495.01 14183.51 11494.48 14295.77 14890.87 1592.52 7496.67 6084.50 6699.00 7591.99 5794.44 13397.36 97
DROMVSNet93.18 6193.44 5192.40 11394.99 14481.96 15696.87 2196.69 8289.72 4292.47 7695.44 10483.30 7998.15 13693.40 2598.10 6397.10 109
xiu_mvs_v2_base91.13 9490.89 9391.86 14094.97 14582.42 14592.24 24795.64 16086.11 13791.74 9593.14 19079.67 12298.89 8789.06 10295.46 11494.28 218
tttt051788.61 15887.78 15991.11 17194.96 14677.81 26195.35 8189.69 33685.09 16288.05 14194.59 13766.93 27198.48 11383.27 16992.13 16997.03 112
baseline188.10 17087.28 17190.57 18894.96 14680.07 20694.27 16191.29 30486.74 12187.41 15394.00 15776.77 15096.20 27680.77 21379.31 31895.44 170
Test_1112_low_res87.65 18386.51 19591.08 17294.94 14879.28 23091.77 25894.30 22976.04 30183.51 25392.37 21477.86 14397.73 17078.69 24189.13 20596.22 137
1112_ss88.42 16187.33 16991.72 14794.92 14980.98 18292.97 22694.54 22178.16 28583.82 24493.88 16578.78 13097.91 16179.45 23289.41 19896.26 136
QAPM89.51 13088.15 15193.59 7294.92 14984.58 8096.82 2596.70 8078.43 28083.41 25596.19 8373.18 20299.30 3977.11 25796.54 9996.89 119
BH-w/o87.57 19187.05 17689.12 24394.90 15177.90 25792.41 24093.51 25282.89 20783.70 24791.34 24875.75 16397.07 22875.49 27093.49 14592.39 296
thisisatest053088.67 15687.61 16391.86 14094.87 15280.07 20694.63 13489.90 33384.00 17988.46 13493.78 17066.88 27398.46 11583.30 16892.65 16297.06 110
EI-MVSNet-UG-set92.74 6792.62 6893.12 8094.86 15383.20 12194.40 15095.74 15190.71 2292.05 8596.60 6484.00 7398.99 7791.55 7193.63 14197.17 105
HY-MVS83.01 1289.03 14687.94 15792.29 12394.86 15382.77 13392.08 25494.49 22281.52 23986.93 16292.79 20578.32 13898.23 13179.93 22790.55 18195.88 154
hse-mvs289.88 12389.34 12191.51 15594.83 15581.12 17993.94 18593.91 24489.80 3793.08 5893.60 17675.77 16097.66 17392.07 5477.07 32995.74 161
AUN-MVS87.78 17986.54 19491.48 15794.82 15681.05 18093.91 18993.93 24183.00 20386.93 16293.53 17769.50 24697.67 17286.14 13677.12 32895.73 162
Fast-Effi-MVS+89.41 13688.64 13791.71 14894.74 15780.81 18893.54 20095.10 19583.11 20086.82 16790.67 27279.74 11897.75 16980.51 22093.55 14396.57 128
ACMP84.23 889.01 14888.35 14490.99 17994.73 15881.27 17295.07 10595.89 14086.48 12683.67 24894.30 14569.33 24897.99 15587.10 13088.55 21093.72 250
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PVSNet78.82 1885.55 24484.65 24788.23 26894.72 15971.93 32187.12 32692.75 26678.80 27484.95 21590.53 27464.43 29396.71 24674.74 27893.86 13896.06 148
LCM-MVSNet-Re88.30 16688.32 14788.27 26594.71 16072.41 32093.15 21790.98 31187.77 9679.25 30691.96 23378.35 13795.75 29683.04 17195.62 10996.65 125
HQP_MVS90.60 10790.19 10191.82 14394.70 16182.73 13795.85 6196.22 11490.81 1786.91 16494.86 12474.23 18298.12 13788.15 11189.99 18794.63 198
plane_prior794.70 16182.74 136
ACMH+81.04 1485.05 25583.46 26389.82 22294.66 16379.37 22494.44 14794.12 23882.19 21878.04 31192.82 20258.23 32797.54 18373.77 28582.90 27092.54 290
ACMM84.12 989.14 14288.48 14391.12 16894.65 16481.22 17595.31 8396.12 12185.31 15585.92 18294.34 14270.19 23898.06 14885.65 14188.86 20894.08 227
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
plane_prior194.59 165
3Dnovator86.66 591.73 8390.82 9494.44 4894.59 16586.37 4397.18 797.02 4689.20 5584.31 23496.66 6173.74 19499.17 5086.74 13197.96 7097.79 83
plane_prior694.52 16782.75 13474.23 182
UGNet89.95 11988.95 13192.95 8994.51 16883.31 11995.70 6895.23 18889.37 5187.58 15093.94 16064.00 29498.78 9983.92 16196.31 10496.74 123
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LPG-MVS_test89.45 13388.90 13391.12 16894.47 16981.49 16695.30 8696.14 11986.73 12285.45 19995.16 11469.89 24098.10 13987.70 11789.23 20393.77 246
LGP-MVS_train91.12 16894.47 16981.49 16696.14 11986.73 12285.45 19995.16 11469.89 24098.10 13987.70 11789.23 20393.77 246
baseline92.39 7492.29 7492.69 10294.46 17181.77 15994.14 16796.27 10889.22 5491.88 8896.00 8882.35 8997.99 15591.05 7995.27 12098.30 41
ACMH80.38 1785.36 24783.68 25990.39 19894.45 17280.63 19294.73 12894.85 21082.09 21977.24 31692.65 20760.01 31997.58 18072.25 29284.87 24892.96 279
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB82.13 1386.26 23484.90 24290.34 20394.44 17381.50 16492.31 24694.89 20783.03 20279.63 30392.67 20669.69 24397.79 16471.20 29586.26 23991.72 307
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
casdiffmvs92.51 7192.43 7192.74 9894.41 17481.98 15494.54 14096.23 11389.57 4591.96 8796.17 8482.58 8698.01 15390.95 8395.45 11598.23 51
MVS_Test91.31 9091.11 8791.93 13694.37 17580.14 20393.46 20495.80 14686.46 12791.35 10293.77 17182.21 9398.09 14587.57 11994.95 12297.55 93
NP-MVS94.37 17582.42 14593.98 158
TR-MVS86.78 21985.76 22489.82 22294.37 17578.41 24592.47 23992.83 26381.11 24886.36 17592.40 21368.73 25997.48 18773.75 28689.85 19393.57 254
Effi-MVS+91.59 8691.11 8793.01 8694.35 17883.39 11894.60 13595.10 19587.10 11290.57 11093.10 19281.43 10398.07 14789.29 9994.48 13197.59 90
CLD-MVS89.47 13288.90 13391.18 16794.22 17982.07 15292.13 25196.09 12287.90 9285.37 20892.45 21274.38 18097.56 18287.15 12690.43 18293.93 233
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS92.55 7092.87 6591.58 15294.21 18080.54 19595.30 8696.68 8488.18 8792.09 8494.57 13984.06 7198.05 15092.56 3998.19 6096.15 138
HQP-NCC94.17 18194.39 15288.81 6485.43 202
ACMP_Plane94.17 18194.39 15288.81 6485.43 202
HQP-MVS89.80 12489.28 12491.34 16294.17 18181.56 16294.39 15296.04 12888.81 6485.43 20293.97 15973.83 19297.96 15787.11 12889.77 19494.50 209
CS-MVS-test92.16 7692.35 7291.57 15394.15 18481.18 17795.09 10496.62 8987.64 10390.92 10793.10 19283.86 7698.06 14891.82 6797.98 6895.49 167
XVG-OURS89.40 13888.70 13691.52 15494.06 18581.46 16891.27 26996.07 12486.14 13588.89 13095.77 9768.73 25997.26 21387.39 12289.96 18995.83 157
sss88.93 15088.26 15090.94 18294.05 18680.78 18991.71 26195.38 18181.55 23888.63 13193.91 16475.04 17295.47 30782.47 18291.61 17196.57 128
PCF-MVS84.11 1087.74 18086.08 21192.70 10194.02 18784.43 9289.27 30195.87 14173.62 32384.43 22694.33 14378.48 13698.86 9170.27 30094.45 13294.81 193
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GBi-Net87.26 20185.98 21491.08 17294.01 18883.10 12395.14 10194.94 20183.57 18884.37 22791.64 24066.59 27896.34 27278.23 24585.36 24493.79 242
test187.26 20185.98 21491.08 17294.01 18883.10 12395.14 10194.94 20183.57 18884.37 22791.64 24066.59 27896.34 27278.23 24585.36 24493.79 242
FMVSNet287.19 20885.82 22091.30 16394.01 18883.67 10994.79 12494.94 20183.57 18883.88 24292.05 23166.59 27896.51 26077.56 25285.01 24793.73 249
XVG-OURS-SEG-HR89.95 11989.45 11691.47 15894.00 19181.21 17691.87 25696.06 12685.78 14088.55 13295.73 9874.67 17897.27 21188.71 10689.64 19695.91 152
FIs90.51 10890.35 9890.99 17993.99 19280.98 18295.73 6697.54 389.15 5786.72 16894.68 13281.83 10197.24 21585.18 14588.31 21894.76 195
xiu_mvs_v1_base_debu90.64 10490.05 10692.40 11393.97 19384.46 8893.32 20695.46 17285.17 15792.25 7894.03 15270.59 23098.57 10990.97 8094.67 12494.18 219
xiu_mvs_v1_base90.64 10490.05 10692.40 11393.97 19384.46 8893.32 20695.46 17285.17 15792.25 7894.03 15270.59 23098.57 10990.97 8094.67 12494.18 219
xiu_mvs_v1_base_debi90.64 10490.05 10692.40 11393.97 19384.46 8893.32 20695.46 17285.17 15792.25 7894.03 15270.59 23098.57 10990.97 8094.67 12494.18 219
VPA-MVSNet89.62 12688.96 13091.60 15193.86 19682.89 13295.46 7897.33 2287.91 9188.43 13593.31 18274.17 18597.40 20187.32 12482.86 27194.52 207
MVSFormer91.68 8591.30 8392.80 9493.86 19683.88 10395.96 5795.90 13884.66 17091.76 9394.91 12177.92 14197.30 20789.64 9597.11 8697.24 101
lupinMVS90.92 9690.21 10093.03 8593.86 19683.88 10392.81 23093.86 24579.84 26091.76 9394.29 14677.92 14198.04 15190.48 9097.11 8697.17 105
IterMVS-LS88.36 16487.91 15889.70 22993.80 19978.29 24993.73 19395.08 19785.73 14284.75 21791.90 23579.88 11596.92 23883.83 16282.51 27293.89 234
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG84.86 25983.09 26690.14 20993.80 19980.05 20889.18 30493.09 25878.89 27178.19 30991.91 23465.86 28797.27 21168.47 31388.45 21493.11 274
FMVSNet387.40 19886.11 20991.30 16393.79 20183.64 11094.20 16594.81 21483.89 18284.37 22791.87 23668.45 26296.56 25778.23 24585.36 24493.70 251
FC-MVSNet-test90.27 11190.18 10290.53 19093.71 20279.85 21695.77 6597.59 289.31 5286.27 17794.67 13381.93 10097.01 23384.26 15788.09 22294.71 196
TAMVS89.21 14188.29 14891.96 13493.71 20282.62 14393.30 21094.19 23382.22 21787.78 14793.94 16078.83 12896.95 23677.70 25092.98 15896.32 133
ET-MVSNet_ETH3D87.51 19385.91 21892.32 12093.70 20483.93 10192.33 24490.94 31384.16 17572.09 34292.52 21069.90 23995.85 29189.20 10088.36 21797.17 105
CDS-MVSNet89.45 13388.51 13992.29 12393.62 20583.61 11293.01 22494.68 21981.95 22587.82 14693.24 18678.69 13196.99 23480.34 22293.23 15396.28 135
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UniMVSNet (Re)89.80 12489.07 12892.01 12993.60 20684.52 8494.78 12597.47 889.26 5386.44 17492.32 21682.10 9597.39 20484.81 15180.84 29994.12 223
VPNet88.20 16887.47 16690.39 19893.56 20779.46 22194.04 17895.54 16688.67 6986.96 16194.58 13869.33 24897.15 22084.05 16080.53 30594.56 205
thisisatest051587.33 19985.99 21391.37 16193.49 20879.55 21990.63 27989.56 33980.17 25587.56 15190.86 26567.07 27098.28 13081.50 20293.02 15796.29 134
mvs_anonymous89.37 13989.32 12289.51 23693.47 20974.22 30091.65 26494.83 21282.91 20685.45 19993.79 16981.23 10596.36 27186.47 13594.09 13597.94 72
CANet_DTU90.26 11289.41 11992.81 9393.46 21083.01 12893.48 20294.47 22389.43 4987.76 14894.23 15070.54 23499.03 6484.97 14796.39 10396.38 132
UniMVSNet_NR-MVSNet89.92 12189.29 12391.81 14593.39 21183.72 10794.43 14897.12 4089.80 3786.46 17193.32 18183.16 8097.23 21684.92 14881.02 29594.49 211
Effi-MVS+-dtu88.65 15788.35 14489.54 23393.33 21276.39 28494.47 14594.36 22687.70 9885.43 20289.56 29473.45 19797.26 21385.57 14391.28 17394.97 182
mvs-test189.45 13389.14 12690.38 20093.33 21277.63 26794.95 11294.36 22687.70 9887.10 16092.81 20373.45 19798.03 15285.57 14393.04 15695.48 168
WR-MVS88.38 16287.67 16290.52 19293.30 21480.18 20193.26 21395.96 13288.57 7385.47 19892.81 20376.12 15596.91 23981.24 20582.29 27494.47 214
WR-MVS_H87.80 17887.37 16889.10 24493.23 21578.12 25295.61 7497.30 2687.90 9283.72 24692.01 23279.65 12396.01 28476.36 26280.54 30393.16 272
test_040281.30 29579.17 30387.67 27893.19 21678.17 25192.98 22591.71 29175.25 30876.02 32690.31 27859.23 32396.37 26950.22 35583.63 26088.47 345
OPM-MVS90.12 11389.56 11491.82 14393.14 21783.90 10294.16 16695.74 15188.96 6387.86 14395.43 10772.48 21097.91 16188.10 11490.18 18693.65 252
CP-MVSNet87.63 18687.26 17388.74 25493.12 21876.59 28195.29 8996.58 9388.43 7683.49 25492.98 19675.28 16995.83 29278.97 23881.15 29193.79 242
diffmvs91.37 8991.23 8591.77 14693.09 21980.27 20092.36 24395.52 16887.03 11491.40 10194.93 12080.08 11397.44 19292.13 5394.56 12997.61 88
nrg03091.08 9590.39 9793.17 7993.07 22086.91 2096.41 3396.26 10988.30 8088.37 13694.85 12682.19 9497.64 17791.09 7882.95 26694.96 185
PAPM86.68 22385.39 23190.53 19093.05 22179.33 22989.79 29494.77 21778.82 27381.95 27393.24 18676.81 14897.30 20766.94 32393.16 15494.95 188
DU-MVS89.34 14088.50 14091.85 14293.04 22283.72 10794.47 14596.59 9289.50 4686.46 17193.29 18477.25 14597.23 21684.92 14881.02 29594.59 202
NR-MVSNet88.58 16087.47 16691.93 13693.04 22284.16 9794.77 12696.25 11189.05 5980.04 29893.29 18479.02 12797.05 23081.71 20080.05 31094.59 202
jason90.80 9790.10 10492.90 9193.04 22283.53 11393.08 22194.15 23580.22 25491.41 10094.91 12176.87 14797.93 16090.28 9196.90 9097.24 101
jason: jason.
RRT_test8_iter0586.90 21486.36 19988.52 25993.00 22573.27 30894.32 15995.96 13285.50 15084.26 23592.86 19860.76 31497.70 17188.32 11082.29 27494.60 201
PS-CasMVS87.32 20086.88 17888.63 25792.99 22676.33 28695.33 8296.61 9188.22 8483.30 25993.07 19473.03 20495.79 29578.36 24381.00 29793.75 248
MVSTER88.84 15288.29 14890.51 19392.95 22780.44 19893.73 19395.01 19884.66 17087.15 15793.12 19172.79 20697.21 21887.86 11587.36 23193.87 237
RPSCF85.07 25484.27 25187.48 28492.91 22870.62 33391.69 26392.46 27176.20 30082.67 26595.22 11263.94 29597.29 21077.51 25385.80 24294.53 206
FMVSNet185.85 24084.11 25391.08 17292.81 22983.10 12395.14 10194.94 20181.64 23582.68 26491.64 24059.01 32596.34 27275.37 27283.78 25693.79 242
tfpnnormal84.72 26183.23 26589.20 24192.79 23080.05 20894.48 14295.81 14582.38 21481.08 28291.21 25369.01 25596.95 23661.69 34280.59 30290.58 329
OpenMVScopyleft83.78 1188.74 15587.29 17093.08 8292.70 23185.39 7196.57 3096.43 10078.74 27680.85 28496.07 8769.64 24499.01 7078.01 24896.65 9694.83 192
TranMVSNet+NR-MVSNet88.84 15287.95 15691.49 15692.68 23283.01 12894.92 11596.31 10689.88 3685.53 19293.85 16776.63 15396.96 23581.91 19379.87 31394.50 209
MVS87.44 19686.10 21091.44 15992.61 23383.62 11192.63 23495.66 15767.26 34681.47 27692.15 22277.95 14098.22 13379.71 22995.48 11292.47 293
CHOSEN 280x42085.15 25383.99 25588.65 25692.47 23478.40 24679.68 35392.76 26574.90 31381.41 27889.59 29269.85 24295.51 30379.92 22895.29 11892.03 303
UniMVSNet_ETH3D87.53 19286.37 19891.00 17892.44 23578.96 23594.74 12795.61 16184.07 17885.36 20994.52 14059.78 32197.34 20682.93 17387.88 22596.71 124
131487.51 19386.57 19390.34 20392.42 23679.74 21892.63 23495.35 18578.35 28180.14 29591.62 24474.05 18797.15 22081.05 20693.53 14494.12 223
cl-mvsnet286.78 21985.98 21489.18 24292.34 23777.62 26890.84 27694.13 23781.33 24283.97 24190.15 28173.96 18996.60 25484.19 15882.94 26793.33 262
PEN-MVS86.80 21886.27 20488.40 26192.32 23875.71 29195.18 9896.38 10487.97 8982.82 26393.15 18973.39 20095.92 28776.15 26679.03 32093.59 253
cl_fuxian87.14 21086.50 19689.04 24692.20 23977.26 27391.22 27194.70 21882.01 22384.34 23190.43 27678.81 12996.61 25283.70 16581.09 29293.25 266
SCA86.32 23385.18 23589.73 22892.15 24076.60 28091.12 27291.69 29383.53 19185.50 19588.81 30166.79 27496.48 26276.65 26090.35 18496.12 142
XXY-MVS87.65 18386.85 18090.03 21492.14 24180.60 19493.76 19295.23 18882.94 20584.60 21994.02 15574.27 18195.49 30681.04 20783.68 25994.01 231
miper_ehance_all_eth87.22 20686.62 19189.02 24792.13 24277.40 27290.91 27594.81 21481.28 24384.32 23290.08 28379.26 12596.62 24983.81 16382.94 26793.04 277
IB-MVS80.51 1585.24 25283.26 26491.19 16692.13 24279.86 21591.75 25991.29 30483.28 19880.66 28788.49 30761.28 30898.46 11580.99 21079.46 31695.25 176
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cascas86.43 23284.98 23990.80 18492.10 24480.92 18590.24 28595.91 13773.10 32783.57 25288.39 30865.15 28997.46 18984.90 15091.43 17294.03 230
Fast-Effi-MVS+-dtu87.44 19686.72 18489.63 23192.04 24577.68 26694.03 17993.94 24085.81 13982.42 26691.32 25170.33 23697.06 22980.33 22390.23 18594.14 222
cl-mvsnet____86.52 22885.78 22188.75 25292.03 24676.46 28290.74 27794.30 22981.83 23283.34 25790.78 26975.74 16596.57 25581.74 19881.54 28693.22 269
cl-mvsnet186.53 22785.78 22188.75 25292.02 24776.45 28390.74 27794.30 22981.83 23283.34 25790.82 26775.75 16396.57 25581.73 19981.52 28793.24 267
RRT_MVS88.86 15187.68 16192.39 11792.02 24786.09 5394.38 15694.94 20185.45 15187.14 15993.84 16865.88 28697.11 22488.73 10586.77 23893.98 232
eth_miper_zixun_eth86.50 22985.77 22388.68 25591.94 24975.81 29090.47 28194.89 20782.05 22084.05 23890.46 27575.96 15896.77 24382.76 17979.36 31793.46 260
PS-MVSNAJss89.97 11889.62 11391.02 17691.90 25080.85 18795.26 9295.98 13086.26 13286.21 17894.29 14679.70 11997.65 17588.87 10488.10 22094.57 204
ITE_SJBPF88.24 26791.88 25177.05 27692.92 26185.54 14880.13 29693.30 18357.29 32996.20 27672.46 29184.71 24991.49 311
EI-MVSNet89.10 14388.86 13589.80 22591.84 25278.30 24893.70 19695.01 19885.73 14287.15 15795.28 10979.87 11697.21 21883.81 16387.36 23193.88 236
CVMVSNet84.69 26284.79 24584.37 32191.84 25264.92 35293.70 19691.47 30066.19 34886.16 18095.28 10967.18 26893.33 33380.89 21290.42 18394.88 190
MVS-HIRNet73.70 32072.20 32378.18 33591.81 25456.42 35982.94 34882.58 35455.24 35468.88 34766.48 35655.32 33595.13 31158.12 34988.42 21583.01 350
PatchmatchNetpermissive85.85 24084.70 24689.29 23991.76 25575.54 29288.49 31391.30 30381.63 23685.05 21388.70 30571.71 21496.24 27574.61 28089.05 20696.08 146
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TransMVSNet (Re)84.43 26483.06 26788.54 25891.72 25678.44 24495.18 9892.82 26482.73 20979.67 30292.12 22473.49 19695.96 28671.10 29968.73 34691.21 318
IterMVS-SCA-FT85.45 24584.53 25088.18 26991.71 25776.87 27890.19 28892.65 26985.40 15381.44 27790.54 27366.79 27495.00 31581.04 20781.05 29392.66 288
TinyColmap79.76 30777.69 30985.97 30791.71 25773.12 30989.55 29590.36 32375.03 31072.03 34390.19 27946.22 35596.19 27863.11 33881.03 29488.59 344
MDTV_nov1_ep1383.56 26291.69 25969.93 33787.75 32191.54 29778.60 27884.86 21688.90 30069.54 24596.03 28270.25 30188.93 207
miper_enhance_ethall86.90 21486.18 20689.06 24591.66 26077.58 26990.22 28794.82 21379.16 26884.48 22389.10 29779.19 12696.66 24784.06 15982.94 26792.94 280
DTE-MVSNet86.11 23585.48 22987.98 27391.65 26174.92 29494.93 11495.75 15087.36 10882.26 26893.04 19572.85 20595.82 29374.04 28277.46 32693.20 270
MIMVSNet82.59 27980.53 28488.76 25191.51 26278.32 24786.57 32990.13 32679.32 26480.70 28688.69 30652.98 34493.07 33766.03 32888.86 20894.90 189
pm-mvs186.61 22485.54 22789.82 22291.44 26380.18 20195.28 9194.85 21083.84 18381.66 27592.62 20872.45 21296.48 26279.67 23078.06 32192.82 285
Baseline_NR-MVSNet87.07 21186.63 19088.40 26191.44 26377.87 25994.23 16492.57 27084.12 17785.74 18592.08 22877.25 14596.04 28182.29 18679.94 31191.30 315
IterMVS84.88 25883.98 25687.60 27991.44 26376.03 28890.18 28992.41 27283.24 19981.06 28390.42 27766.60 27794.28 32279.46 23180.98 29892.48 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DWT-MVSNet_test84.95 25783.68 25988.77 25091.43 26673.75 30491.74 26090.98 31180.66 25283.84 24387.36 32362.44 30097.11 22478.84 24085.81 24195.46 169
MS-PatchMatch85.05 25584.16 25287.73 27791.42 26778.51 24291.25 27093.53 25177.50 28780.15 29491.58 24561.99 30395.51 30375.69 26994.35 13489.16 339
tpm284.08 26682.94 26887.48 28491.39 26871.27 32589.23 30390.37 32271.95 33584.64 21889.33 29567.30 26596.55 25975.17 27487.09 23594.63 198
v887.50 19586.71 18589.89 21991.37 26979.40 22394.50 14195.38 18184.81 16783.60 25191.33 24976.05 15697.42 19482.84 17680.51 30792.84 284
ADS-MVSNet281.66 28879.71 29687.50 28291.35 27074.19 30183.33 34588.48 34272.90 32982.24 26985.77 33564.98 29093.20 33564.57 33483.74 25795.12 178
ADS-MVSNet81.56 29079.78 29486.90 29891.35 27071.82 32283.33 34589.16 34072.90 32982.24 26985.77 33564.98 29093.76 32864.57 33483.74 25795.12 178
GA-MVS86.61 22485.27 23490.66 18591.33 27278.71 23790.40 28293.81 24885.34 15485.12 21289.57 29361.25 30997.11 22480.99 21089.59 19796.15 138
miper_lstm_enhance85.27 25184.59 24987.31 28691.28 27374.63 29587.69 32294.09 23981.20 24781.36 27989.85 28974.97 17494.30 32181.03 20979.84 31493.01 278
XVG-ACMP-BASELINE86.00 23684.84 24489.45 23791.20 27478.00 25491.70 26295.55 16485.05 16382.97 26192.25 22054.49 33897.48 18782.93 17387.45 23092.89 282
v1087.25 20386.38 19789.85 22091.19 27579.50 22094.48 14295.45 17583.79 18483.62 25091.19 25475.13 17097.42 19481.94 19280.60 30192.63 289
FMVSNet581.52 29179.60 29787.27 28791.17 27677.95 25591.49 26692.26 27776.87 29376.16 32387.91 31751.67 34592.34 34167.74 31981.16 28991.52 310
USDC82.76 27681.26 28187.26 28891.17 27674.55 29689.27 30193.39 25478.26 28375.30 32992.08 22854.43 33996.63 24871.64 29385.79 24390.61 326
CostFormer85.77 24284.94 24188.26 26691.16 27872.58 31889.47 29991.04 31076.26 29986.45 17389.97 28670.74 22896.86 24282.35 18487.07 23695.34 175
baseline286.50 22985.39 23189.84 22191.12 27976.70 27991.88 25588.58 34182.35 21679.95 29990.95 26473.42 19997.63 17880.27 22489.95 19095.19 177
tpm cat181.96 28280.27 28887.01 29591.09 28071.02 32987.38 32591.53 29866.25 34780.17 29386.35 33168.22 26496.15 27969.16 30982.29 27493.86 239
tpmvs83.35 27582.07 27387.20 29391.07 28171.00 33088.31 31691.70 29278.91 27080.49 29087.18 32769.30 25197.08 22768.12 31883.56 26193.51 258
v114487.61 18986.79 18390.06 21391.01 28279.34 22693.95 18495.42 18083.36 19685.66 18891.31 25274.98 17397.42 19483.37 16782.06 27793.42 261
v2v48287.84 17687.06 17590.17 20690.99 28379.23 23394.00 18295.13 19284.87 16585.53 19292.07 23074.45 17997.45 19084.71 15381.75 28393.85 240
SixPastTwentyTwo83.91 26982.90 26986.92 29790.99 28370.67 33293.48 20291.99 28585.54 14877.62 31592.11 22660.59 31596.87 24176.05 26777.75 32393.20 270
test-LLR85.87 23985.41 23087.25 28990.95 28571.67 32389.55 29589.88 33483.41 19484.54 22187.95 31567.25 26695.11 31281.82 19593.37 15094.97 182
test-mter84.54 26383.64 26187.25 28990.95 28571.67 32389.55 29589.88 33479.17 26784.54 22187.95 31555.56 33395.11 31281.82 19593.37 15094.97 182
v14887.04 21286.32 20289.21 24090.94 28777.26 27393.71 19594.43 22484.84 16684.36 23090.80 26876.04 15797.05 23082.12 18879.60 31593.31 263
mvs_tets88.06 17387.28 17190.38 20090.94 28779.88 21495.22 9495.66 15785.10 16184.21 23793.94 16063.53 29697.40 20188.50 10888.40 21693.87 237
MVP-Stereo85.97 23784.86 24389.32 23890.92 28982.19 15092.11 25294.19 23378.76 27578.77 30891.63 24368.38 26396.56 25775.01 27793.95 13689.20 338
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Patchmatch-test81.37 29379.30 29987.58 28090.92 28974.16 30280.99 35187.68 34670.52 34176.63 32188.81 30171.21 22092.76 33960.01 34886.93 23795.83 157
jajsoiax88.24 16787.50 16490.48 19590.89 29180.14 20395.31 8395.65 15984.97 16484.24 23694.02 15565.31 28897.42 19488.56 10788.52 21293.89 234
tpmrst85.35 24884.99 23886.43 30390.88 29267.88 34488.71 31091.43 30180.13 25686.08 18188.80 30373.05 20396.02 28382.48 18183.40 26595.40 172
gg-mvs-nofinetune81.77 28579.37 29888.99 24890.85 29377.73 26586.29 33079.63 36074.88 31483.19 26069.05 35560.34 31696.11 28075.46 27194.64 12793.11 274
D2MVS85.90 23885.09 23788.35 26390.79 29477.42 27191.83 25795.70 15380.77 25180.08 29790.02 28466.74 27696.37 26981.88 19487.97 22491.26 316
OurMVSNet-221017-085.35 24884.64 24887.49 28390.77 29572.59 31794.01 18194.40 22584.72 16979.62 30493.17 18861.91 30496.72 24481.99 19181.16 28993.16 272
v119287.25 20386.33 20190.00 21790.76 29679.04 23493.80 19095.48 17082.57 21285.48 19791.18 25673.38 20197.42 19482.30 18582.06 27793.53 255
test_djsdf89.03 14688.64 13790.21 20590.74 29779.28 23095.96 5795.90 13884.66 17085.33 21092.94 19774.02 18897.30 20789.64 9588.53 21194.05 229
v7n86.81 21785.76 22489.95 21890.72 29879.25 23295.07 10595.92 13584.45 17382.29 26790.86 26572.60 20997.53 18479.42 23580.52 30693.08 276
PVSNet_073.20 2077.22 31674.83 32184.37 32190.70 29971.10 32883.09 34789.67 33772.81 33173.93 33683.13 34360.79 31393.70 32968.54 31250.84 35788.30 346
v14419287.19 20886.35 20089.74 22690.64 30078.24 25093.92 18695.43 17881.93 22685.51 19491.05 26274.21 18497.45 19082.86 17581.56 28593.53 255
MVS_030483.46 27281.92 27588.10 27190.63 30177.49 27093.26 21393.75 24980.04 25880.44 29187.24 32647.94 35295.55 30075.79 26888.16 21991.26 316
V4287.68 18186.86 17990.15 20890.58 30280.14 20394.24 16395.28 18683.66 18685.67 18791.33 24974.73 17797.41 19984.43 15681.83 28192.89 282
CR-MVSNet85.35 24883.76 25890.12 21090.58 30279.34 22685.24 33691.96 28878.27 28285.55 19087.87 31871.03 22395.61 29873.96 28489.36 20095.40 172
RPMNet83.95 26881.53 27891.21 16590.58 30279.34 22685.24 33696.76 7271.44 33785.55 19082.97 34470.87 22698.91 8661.01 34489.36 20095.40 172
v192192086.97 21386.06 21289.69 23090.53 30578.11 25393.80 19095.43 17881.90 22885.33 21091.05 26272.66 20797.41 19982.05 19081.80 28293.53 255
v124086.78 21985.85 21989.56 23290.45 30677.79 26293.61 19895.37 18381.65 23485.43 20291.15 25871.50 21897.43 19381.47 20382.05 27993.47 259
tpm84.73 26084.02 25486.87 30090.33 30768.90 34089.06 30589.94 33180.85 25085.75 18489.86 28868.54 26195.97 28577.76 24984.05 25595.75 160
EG-PatchMatch MVS82.37 28180.34 28788.46 26090.27 30879.35 22592.80 23194.33 22877.14 29273.26 33990.18 28047.47 35496.72 24470.25 30187.32 23389.30 336
EPNet_dtu86.49 23185.94 21788.14 27090.24 30972.82 31294.11 17092.20 27886.66 12579.42 30592.36 21573.52 19595.81 29471.26 29493.66 14095.80 159
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPMVS83.90 27082.70 27287.51 28190.23 31072.67 31488.62 31281.96 35681.37 24185.01 21488.34 30966.31 28194.45 31775.30 27387.12 23495.43 171
EPNet91.79 8091.02 9094.10 5890.10 31185.25 7396.03 5392.05 28292.83 187.39 15695.78 9679.39 12499.01 7088.13 11397.48 8298.05 65
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchT82.68 27881.27 28086.89 29990.09 31270.94 33184.06 34290.15 32574.91 31285.63 18983.57 34169.37 24794.87 31665.19 33088.50 21394.84 191
Patchmtry82.71 27780.93 28388.06 27290.05 31376.37 28584.74 34091.96 28872.28 33481.32 28087.87 31871.03 22395.50 30568.97 31080.15 30992.32 299
pmmvs485.43 24683.86 25790.16 20790.02 31482.97 13090.27 28392.67 26875.93 30280.73 28591.74 23971.05 22295.73 29778.85 23983.46 26391.78 306
TESTMET0.1,183.74 27182.85 27086.42 30489.96 31571.21 32789.55 29587.88 34377.41 28883.37 25687.31 32456.71 33093.65 33080.62 21792.85 16194.40 215
dp81.47 29280.23 28985.17 31689.92 31665.49 35086.74 32790.10 32776.30 29881.10 28187.12 32862.81 29895.92 28768.13 31779.88 31294.09 226
K. test v381.59 28980.15 29185.91 31089.89 31769.42 33992.57 23787.71 34585.56 14773.44 33889.71 29155.58 33295.52 30277.17 25669.76 34092.78 286
MDA-MVSNet-bldmvs78.85 31276.31 31586.46 30289.76 31873.88 30388.79 30990.42 32079.16 26859.18 35488.33 31060.20 31794.04 32462.00 34168.96 34491.48 312
GG-mvs-BLEND87.94 27589.73 31977.91 25687.80 31978.23 36280.58 28883.86 33959.88 32095.33 30971.20 29592.22 16890.60 328
gm-plane-assit89.60 32068.00 34277.28 29188.99 29897.57 18179.44 233
anonymousdsp87.84 17687.09 17490.12 21089.13 32180.54 19594.67 13295.55 16482.05 22083.82 24492.12 22471.47 21997.15 22087.15 12687.80 22792.67 287
N_pmnet68.89 32368.44 32670.23 33989.07 32228.79 36988.06 31719.50 37069.47 34371.86 34484.93 33761.24 31091.75 34654.70 35277.15 32790.15 330
pmmvs584.21 26582.84 27188.34 26488.95 32376.94 27792.41 24091.91 29075.63 30480.28 29291.18 25664.59 29295.57 29977.09 25883.47 26292.53 291
PMMVS85.71 24384.96 24087.95 27488.90 32477.09 27588.68 31190.06 32872.32 33386.47 17090.76 27072.15 21394.40 31881.78 19793.49 14592.36 297
JIA-IIPM81.04 29678.98 30687.25 28988.64 32573.48 30681.75 35089.61 33873.19 32682.05 27173.71 35266.07 28595.87 29071.18 29784.60 25092.41 295
Gipumacopyleft57.99 32854.91 33067.24 34188.51 32665.59 34952.21 36190.33 32443.58 35942.84 36051.18 36120.29 36685.07 35634.77 36070.45 33951.05 359
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EU-MVSNet81.32 29480.95 28282.42 33088.50 32763.67 35393.32 20691.33 30264.02 35080.57 28992.83 20161.21 31192.27 34276.34 26380.38 30891.32 314
our_test_381.93 28380.46 28686.33 30588.46 32873.48 30688.46 31491.11 30676.46 29476.69 32088.25 31166.89 27294.36 31968.75 31179.08 31991.14 320
ppachtmachnet_test81.84 28480.07 29287.15 29488.46 32874.43 29989.04 30692.16 27975.33 30777.75 31388.99 29866.20 28295.37 30865.12 33277.60 32491.65 308
lessismore_v086.04 30688.46 32868.78 34180.59 35873.01 34090.11 28255.39 33496.43 26775.06 27665.06 34892.90 281
test0.0.03 182.41 28081.69 27684.59 31988.23 33172.89 31190.24 28587.83 34483.41 19479.86 30089.78 29067.25 26688.99 35265.18 33183.42 26491.90 305
bset_n11_16_dypcd86.83 21685.55 22690.65 18688.22 33281.70 16088.88 30890.42 32085.26 15685.49 19690.69 27167.11 26997.02 23289.51 9784.39 25193.23 268
MDA-MVSNet_test_wron79.21 31177.19 31385.29 31488.22 33272.77 31385.87 33290.06 32874.34 31762.62 35387.56 32166.14 28391.99 34466.90 32673.01 33491.10 323
YYNet179.22 31077.20 31285.28 31588.20 33472.66 31585.87 33290.05 33074.33 31862.70 35287.61 32066.09 28492.03 34366.94 32372.97 33591.15 319
pmmvs683.42 27381.60 27788.87 24988.01 33577.87 25994.96 11194.24 23274.67 31578.80 30791.09 26160.17 31896.49 26177.06 25975.40 33292.23 301
testgi80.94 29980.20 29083.18 32687.96 33666.29 34791.28 26890.70 31983.70 18578.12 31092.84 20051.37 34690.82 34963.34 33782.46 27392.43 294
Anonymous2023120681.03 29779.77 29584.82 31887.85 33770.26 33591.42 26792.08 28173.67 32277.75 31389.25 29662.43 30193.08 33661.50 34382.00 28091.12 321
OpenMVS_ROBcopyleft74.94 1979.51 30877.03 31486.93 29687.00 33876.23 28792.33 24490.74 31868.93 34474.52 33388.23 31249.58 34996.62 24957.64 35084.29 25287.94 347
LF4IMVS80.37 30279.07 30584.27 32386.64 33969.87 33889.39 30091.05 30976.38 29674.97 33190.00 28547.85 35394.25 32374.55 28180.82 30088.69 343
MIMVSNet179.38 30977.28 31185.69 31186.35 34073.67 30591.61 26592.75 26678.11 28672.64 34188.12 31348.16 35191.97 34560.32 34577.49 32591.43 313
KD-MVS_2432*160078.50 31376.02 31885.93 30886.22 34174.47 29784.80 33892.33 27379.29 26576.98 31885.92 33353.81 34293.97 32567.39 32057.42 35489.36 334
miper_refine_blended78.50 31376.02 31885.93 30886.22 34174.47 29784.80 33892.33 27379.29 26576.98 31885.92 33353.81 34293.97 32567.39 32057.42 35489.36 334
CL-MVSNet_2432*160081.74 28680.53 28485.36 31385.96 34372.45 31990.25 28493.07 25981.24 24579.85 30187.29 32570.93 22592.52 34066.95 32269.23 34291.11 322
test20.0379.95 30579.08 30482.55 32985.79 34467.74 34591.09 27391.08 30781.23 24674.48 33489.96 28761.63 30590.15 35060.08 34676.38 33089.76 332
Anonymous2024052180.44 30179.21 30184.11 32485.75 34567.89 34392.86 22993.23 25675.61 30575.59 32887.47 32250.03 34794.33 32071.14 29881.21 28890.12 331
DIV-MVS_2432*160080.20 30379.24 30083.07 32785.64 34665.29 35191.01 27493.93 24178.71 27776.32 32286.40 33059.20 32492.93 33872.59 29069.35 34191.00 324
Patchmatch-RL test81.67 28779.96 29386.81 30185.42 34771.23 32682.17 34987.50 34778.47 27977.19 31782.50 34570.81 22793.48 33182.66 18072.89 33695.71 163
UnsupCasMVSNet_eth80.07 30478.27 30885.46 31285.24 34872.63 31688.45 31594.87 20982.99 20471.64 34588.07 31456.34 33191.75 34673.48 28763.36 35192.01 304
pmmvs-eth3d80.97 29878.72 30787.74 27684.99 34979.97 21390.11 29091.65 29475.36 30673.51 33786.03 33259.45 32293.96 32775.17 27472.21 33789.29 337
CMPMVSbinary59.16 2180.52 30079.20 30284.48 32083.98 35067.63 34689.95 29393.84 24764.79 34966.81 35091.14 25957.93 32895.17 31076.25 26488.10 22090.65 325
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UnsupCasMVSNet_bld76.23 31973.27 32285.09 31783.79 35172.92 31085.65 33593.47 25371.52 33668.84 34879.08 34949.77 34893.21 33466.81 32760.52 35389.13 341
PM-MVS78.11 31576.12 31784.09 32583.54 35270.08 33688.97 30785.27 35179.93 25974.73 33286.43 32934.70 35993.48 33179.43 23472.06 33888.72 342
DSMNet-mixed76.94 31776.29 31678.89 33383.10 35356.11 36087.78 32079.77 35960.65 35275.64 32788.71 30461.56 30688.34 35360.07 34789.29 20292.21 302
new_pmnet72.15 32170.13 32478.20 33482.95 35465.68 34883.91 34382.40 35562.94 35164.47 35179.82 34842.85 35786.26 35557.41 35174.44 33382.65 352
new-patchmatchnet76.41 31875.17 32080.13 33282.65 35559.61 35587.66 32391.08 30778.23 28469.85 34683.22 34254.76 33691.63 34864.14 33664.89 34989.16 339
ambc83.06 32879.99 35663.51 35477.47 35492.86 26274.34 33584.45 33828.74 36095.06 31473.06 28968.89 34590.61 326
TDRefinement79.81 30677.34 31087.22 29279.24 35775.48 29393.12 21892.03 28376.45 29575.01 33091.58 24549.19 35096.44 26670.22 30369.18 34389.75 333
pmmvs371.81 32268.71 32581.11 33175.86 35870.42 33486.74 32783.66 35358.95 35368.64 34980.89 34736.93 35889.52 35163.10 33963.59 35083.39 349
DeepMVS_CXcopyleft56.31 34574.23 35951.81 36256.67 36844.85 35848.54 35875.16 35027.87 36258.74 36540.92 35852.22 35658.39 358
FPMVS64.63 32562.55 32770.88 33870.80 36056.71 35784.42 34184.42 35251.78 35649.57 35681.61 34623.49 36381.48 35840.61 35976.25 33174.46 355
PMMVS259.60 32656.40 32969.21 34068.83 36146.58 36473.02 35877.48 36355.07 35549.21 35772.95 35417.43 36880.04 35949.32 35644.33 35980.99 354
wuyk23d21.27 33620.48 33923.63 34968.59 36236.41 36749.57 3626.85 3719.37 3657.89 3674.46 3694.03 37231.37 36617.47 36516.07 3653.12 363
E-PMN43.23 33242.29 33446.03 34665.58 36337.41 36673.51 35664.62 36433.99 36128.47 36547.87 36219.90 36767.91 36222.23 36324.45 36132.77 360
LCM-MVSNet66.00 32462.16 32877.51 33664.51 36458.29 35683.87 34490.90 31448.17 35754.69 35573.31 35316.83 36986.75 35465.47 32961.67 35287.48 348
EMVS42.07 33341.12 33544.92 34763.45 36535.56 36873.65 35563.48 36533.05 36226.88 36645.45 36321.27 36567.14 36319.80 36423.02 36332.06 361
MVEpermissive39.65 2343.39 33138.59 33757.77 34356.52 36648.77 36355.38 36058.64 36729.33 36328.96 36452.65 3604.68 37164.62 36428.11 36233.07 36059.93 357
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high58.88 32754.22 33172.86 33756.50 36756.67 35880.75 35286.00 34873.09 32837.39 36164.63 35822.17 36479.49 36043.51 35723.96 36282.43 353
test_method50.52 33048.47 33256.66 34452.26 36818.98 37141.51 36381.40 35710.10 36444.59 35975.01 35128.51 36168.16 36153.54 35349.31 35882.83 351
PMVScopyleft47.18 2252.22 32948.46 33363.48 34245.72 36946.20 36573.41 35778.31 36141.03 36030.06 36365.68 3576.05 37083.43 35730.04 36165.86 34760.80 356
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt35.64 33439.24 33624.84 34814.87 37023.90 37062.71 35951.51 3696.58 36636.66 36262.08 35944.37 35630.34 36752.40 35422.00 36420.27 362
testmvs8.92 33711.52 3401.12 3511.06 3710.46 37386.02 3310.65 3720.62 3672.74 3689.52 3670.31 3740.45 3692.38 3660.39 3662.46 365
test1238.76 33811.22 3411.39 3500.85 3720.97 37285.76 3340.35 3730.54 3682.45 3698.14 3680.60 3730.48 3682.16 3670.17 3672.71 364
eth-test20.00 373
eth-test0.00 373
uanet_test0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
cdsmvs_eth3d_5k22.14 33529.52 3380.00 3520.00 3730.00 3740.00 36495.76 1490.00 3690.00 37094.29 14675.66 1660.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas6.64 3408.86 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 37079.70 1190.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
ab-mvs-re7.82 33910.43 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37093.88 1650.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
test_241102_TWO97.44 1290.31 2697.62 598.07 491.46 899.58 595.66 299.12 698.98 6
test_0728_THIRD90.75 1997.04 898.05 692.09 499.55 1295.64 499.13 399.13 1
GSMVS96.12 142
sam_mvs171.70 21596.12 142
sam_mvs70.60 229
MTGPAbinary96.97 49
test_post188.00 3189.81 36669.31 25095.53 30176.65 260
test_post10.29 36570.57 23395.91 289
patchmatchnet-post83.76 34071.53 21796.48 262
MTMP96.16 4460.64 366
test9_res91.91 6298.71 3098.07 63
agg_prior290.54 8898.68 3598.27 47
test_prior485.96 5794.11 170
test_prior294.12 16887.67 10092.63 7096.39 7286.62 3991.50 7398.67 37
旧先验293.36 20571.25 33894.37 2697.13 22386.74 131
新几何293.11 220
无先验93.28 21296.26 10973.95 32099.05 6080.56 21896.59 127
原ACMM292.94 227
testdata298.75 10078.30 244
segment_acmp87.16 35
testdata192.15 25087.94 90
plane_prior596.22 11498.12 13788.15 11189.99 18794.63 198
plane_prior494.86 124
plane_prior382.75 13490.26 3086.91 164
plane_prior295.85 6190.81 17
plane_prior82.73 13795.21 9589.66 4489.88 192
n20.00 374
nn0.00 374
door-mid85.49 349
test1196.57 94
door85.33 350
HQP5-MVS81.56 162
BP-MVS87.11 128
HQP4-MVS85.43 20297.96 15794.51 208
HQP3-MVS96.04 12889.77 194
HQP2-MVS73.83 192
MDTV_nov1_ep13_2view55.91 36187.62 32473.32 32584.59 22070.33 23674.65 27995.50 166
ACMMP++_ref87.47 228
ACMMP++88.01 223
Test By Simon80.02 114