HPM-MVS++ |  | | 79.88 7 | 80.14 7 | 79.10 17 | 88.17 1 | 64.80 1 | 86.59 10 | 83.70 60 | 65.37 15 | 78.78 21 | 90.64 17 | 58.63 20 | 87.24 49 | 79.00 7 | 90.37 10 | 85.26 113 |
|
CNVR-MVS | | | 79.84 8 | 79.97 8 | 79.45 7 | 87.90 2 | 62.17 20 | 84.37 34 | 85.03 33 | 66.96 5 | 77.58 28 | 90.06 38 | 59.47 17 | 89.13 18 | 78.67 9 | 89.73 16 | 87.03 50 |
|
test_0728_SECOND | | | | | 79.19 12 | 87.82 3 | 59.11 66 | 87.85 3 | 87.15 6 | | | | | 90.84 1 | 78.66 10 | 90.61 7 | 87.62 32 |
|
SED-MVS | | | 81.56 1 | 82.30 1 | 79.32 9 | 87.77 4 | 58.90 72 | 87.82 5 | 86.78 12 | 64.18 33 | 85.97 1 | 91.84 6 | 66.87 2 | 90.83 2 | 78.63 12 | 90.87 3 | 88.23 10 |
|
IU-MVS | | | | | | 87.77 4 | 59.15 64 | | 85.53 25 | 53.93 212 | 84.64 3 | | | | 79.07 6 | 90.87 3 | 88.37 7 |
|
test_241102_ONE | | | | | | 87.77 4 | 58.90 72 | | 86.78 12 | 64.20 32 | 85.97 1 | 91.34 10 | 66.87 2 | 90.78 4 | | | |
|
DVP-MVS | | | 80.84 3 | 81.64 2 | 78.42 33 | 87.75 7 | 59.07 67 | 87.85 3 | 85.03 33 | 64.26 30 | 83.82 6 | 92.00 3 | 64.82 6 | 90.75 5 | 78.66 10 | 90.61 7 | 85.45 104 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 87.75 7 | 59.07 67 | 87.86 2 | 86.83 10 | 64.26 30 | 84.19 5 | 91.92 5 | 64.82 6 | | | | |
|
test_part2 | | | | | | 87.58 9 | 60.47 46 | | | | 83.42 9 | | | | | | |
|
OPU-MVS | | | | | 79.83 4 | 87.54 10 | 60.93 38 | 87.82 5 | | | | 89.89 45 | 67.01 1 | 90.33 8 | 73.16 45 | 91.15 2 | 88.23 10 |
|
NCCC | | | 78.58 15 | 78.31 19 | 79.39 8 | 87.51 11 | 62.61 16 | 85.20 29 | 84.42 42 | 66.73 9 | 74.67 49 | 89.38 53 | 55.30 43 | 89.18 17 | 74.19 35 | 87.34 44 | 86.38 63 |
|
DPE-MVS |  | | 80.56 4 | 80.98 4 | 79.29 11 | 87.27 12 | 60.56 45 | 85.71 24 | 86.42 16 | 63.28 44 | 83.27 10 | 91.83 8 | 64.96 5 | 90.47 7 | 76.41 24 | 89.67 18 | 86.84 54 |
|
testtj | | | 78.47 18 | 78.43 18 | 78.61 29 | 86.82 13 | 60.67 43 | 86.07 16 | 85.38 27 | 62.12 67 | 78.65 22 | 90.29 31 | 55.76 39 | 89.31 15 | 73.55 43 | 87.22 45 | 85.84 85 |
|
region2R | | | 77.67 30 | 77.18 33 | 79.15 14 | 86.76 14 | 62.95 8 | 86.29 12 | 84.16 48 | 62.81 56 | 73.30 68 | 90.58 19 | 49.90 98 | 88.21 32 | 73.78 39 | 87.03 48 | 86.29 75 |
|
ACMMPR | | | 77.71 28 | 77.23 32 | 79.16 13 | 86.75 15 | 62.93 9 | 86.29 12 | 84.24 46 | 62.82 54 | 73.55 66 | 90.56 20 | 49.80 100 | 88.24 31 | 74.02 37 | 87.03 48 | 86.32 72 |
|
HFP-MVS | | | 78.01 26 | 77.65 27 | 79.10 17 | 86.71 16 | 62.81 10 | 86.29 12 | 84.32 44 | 62.82 54 | 73.96 57 | 90.50 22 | 53.20 68 | 88.35 28 | 74.02 37 | 87.05 46 | 86.13 77 |
|
#test# | | | 77.83 27 | 77.41 30 | 79.10 17 | 86.71 16 | 62.81 10 | 85.69 25 | 84.32 44 | 61.61 77 | 73.96 57 | 90.50 22 | 53.20 68 | 88.35 28 | 73.68 40 | 87.05 46 | 86.13 77 |
|
MCST-MVS | | | 77.48 32 | 77.45 29 | 77.54 47 | 86.67 18 | 58.36 81 | 83.22 57 | 86.93 8 | 56.91 155 | 74.91 44 | 88.19 66 | 59.15 18 | 87.68 44 | 73.67 41 | 87.45 43 | 86.57 61 |
|
ZD-MVS | | | | | | 86.64 19 | 60.38 47 | | 82.70 85 | 57.95 142 | 78.10 24 | 90.06 38 | 56.12 37 | 88.84 23 | 74.05 36 | 87.00 51 | |
|
APDe-MVS | | | 80.16 6 | 80.59 5 | 78.86 25 | 86.64 19 | 60.02 50 | 88.12 1 | 86.42 16 | 62.94 50 | 82.40 11 | 92.12 2 | 59.64 15 | 89.76 11 | 78.70 8 | 88.32 32 | 86.79 57 |
|
SMA-MVS |  | | 80.28 5 | 80.39 6 | 79.95 3 | 86.60 21 | 61.95 22 | 86.33 11 | 85.75 23 | 62.49 61 | 82.20 12 | 92.28 1 | 56.53 31 | 89.70 12 | 79.85 3 | 91.48 1 | 88.19 12 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
DP-MVS Recon | | | 72.15 93 | 70.73 102 | 76.40 65 | 86.57 22 | 57.99 86 | 81.15 92 | 82.96 79 | 57.03 152 | 66.78 162 | 85.56 112 | 44.50 167 | 88.11 34 | 51.77 199 | 80.23 110 | 83.10 182 |
|
MP-MVS |  | | 78.35 21 | 78.26 21 | 78.64 28 | 86.54 23 | 63.47 5 | 86.02 18 | 83.55 63 | 63.89 38 | 73.60 65 | 90.60 18 | 54.85 48 | 86.72 66 | 77.20 18 | 88.06 37 | 85.74 93 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
mPP-MVS | | | 76.54 41 | 75.93 44 | 78.34 36 | 86.47 24 | 63.50 4 | 85.74 23 | 82.28 89 | 62.90 51 | 71.77 89 | 90.26 32 | 46.61 144 | 86.55 74 | 71.71 52 | 85.66 61 | 84.97 121 |
|
APD-MVS |  | | 78.02 24 | 78.04 25 | 77.98 41 | 86.44 25 | 60.81 40 | 85.52 26 | 84.36 43 | 60.61 89 | 79.05 19 | 90.30 30 | 55.54 42 | 88.32 30 | 73.48 44 | 87.03 48 | 84.83 124 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ZNCC-MVS | | | 78.82 12 | 78.67 16 | 79.30 10 | 86.43 26 | 62.05 21 | 86.62 9 | 86.01 19 | 63.32 43 | 75.08 39 | 90.47 25 | 53.96 57 | 88.68 24 | 76.48 23 | 89.63 20 | 87.16 47 |
|
ETH3 D test6400 | | | 79.14 10 | 79.32 9 | 78.61 29 | 86.34 27 | 58.11 84 | 84.65 32 | 87.66 4 | 58.56 132 | 78.87 20 | 89.54 50 | 63.67 10 | 89.57 13 | 74.60 33 | 89.98 13 | 88.14 13 |
|
XVS | | | 77.17 35 | 76.56 39 | 79.00 20 | 86.32 28 | 62.62 14 | 85.83 20 | 83.92 52 | 64.55 24 | 72.17 86 | 90.01 43 | 47.95 121 | 88.01 37 | 71.55 54 | 86.74 54 | 86.37 67 |
|
X-MVStestdata | | | 70.21 119 | 67.28 160 | 79.00 20 | 86.32 28 | 62.62 14 | 85.83 20 | 83.92 52 | 64.55 24 | 72.17 86 | 6.49 359 | 47.95 121 | 88.01 37 | 71.55 54 | 86.74 54 | 86.37 67 |
|
MSP-MVS | | | 81.06 2 | 81.40 3 | 80.02 1 | 86.21 30 | 62.73 12 | 86.09 15 | 86.83 10 | 65.51 14 | 83.81 8 | 90.51 21 | 63.71 9 | 89.23 16 | 81.51 1 | 88.44 28 | 88.09 15 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
114514_t | | | 70.83 106 | 69.56 116 | 74.64 99 | 86.21 30 | 54.63 138 | 82.34 73 | 81.81 98 | 48.22 267 | 63.01 220 | 85.83 108 | 40.92 206 | 87.10 55 | 57.91 154 | 79.79 112 | 82.18 196 |
|
xxxxxxxxxxxxxcwj | | | 78.37 20 | 78.25 22 | 78.76 26 | 86.17 32 | 61.30 31 | 83.98 46 | 79.95 140 | 59.00 123 | 79.16 16 | 90.75 15 | 57.96 22 | 87.09 56 | 77.08 20 | 90.18 11 | 87.87 21 |
|
save fliter | | | | | | 86.17 32 | 61.30 31 | 83.98 46 | 79.66 145 | 59.00 123 | | | | | | | |
|
DeepC-MVS_fast | | 68.24 3 | 77.25 34 | 76.63 38 | 79.12 16 | 86.15 34 | 60.86 39 | 84.71 31 | 84.85 38 | 61.98 73 | 73.06 75 | 88.88 61 | 53.72 62 | 89.06 19 | 68.27 70 | 88.04 38 | 87.42 40 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PGM-MVS | | | 76.77 40 | 76.06 42 | 78.88 24 | 86.14 35 | 62.73 12 | 82.55 70 | 83.74 59 | 61.71 75 | 72.45 85 | 90.34 29 | 48.48 117 | 88.13 33 | 72.32 48 | 86.85 52 | 85.78 87 |
|
zzz-MVS | | | 77.61 31 | 77.36 31 | 78.35 34 | 86.08 36 | 63.57 2 | 83.37 55 | 80.97 125 | 65.13 18 | 75.77 34 | 90.88 13 | 48.63 113 | 86.66 68 | 77.23 16 | 88.17 34 | 84.81 125 |
|
MTAPA | | | 76.90 38 | 76.42 40 | 78.35 34 | 86.08 36 | 63.57 2 | 74.92 200 | 80.97 125 | 65.13 18 | 75.77 34 | 90.88 13 | 48.63 113 | 86.66 68 | 77.23 16 | 88.17 34 | 84.81 125 |
|
GST-MVS | | | 78.14 23 | 77.85 26 | 78.99 22 | 86.05 38 | 61.82 25 | 85.84 19 | 85.21 29 | 63.56 42 | 74.29 54 | 90.03 41 | 52.56 71 | 88.53 26 | 74.79 31 | 88.34 30 | 86.63 60 |
|
CP-MVS | | | 77.12 36 | 76.68 37 | 78.43 32 | 86.05 38 | 63.18 7 | 87.55 8 | 83.45 66 | 62.44 63 | 72.68 79 | 90.50 22 | 48.18 119 | 87.34 48 | 73.59 42 | 85.71 60 | 84.76 129 |
|
SR-MVS | | | 76.13 45 | 75.70 46 | 77.40 51 | 85.87 40 | 61.20 33 | 85.52 26 | 82.19 90 | 59.99 106 | 75.10 38 | 90.35 27 | 47.66 125 | 86.52 75 | 71.64 53 | 82.99 75 | 84.47 135 |
|
新几何1 | | | | | 70.76 188 | 85.66 41 | 61.13 35 | | 66.43 290 | 44.68 299 | 70.29 100 | 86.64 86 | 41.29 202 | 75.23 268 | 49.72 212 | 81.75 93 | 75.93 277 |
|
MG-MVS | | | 73.96 70 | 73.89 65 | 74.16 110 | 85.65 42 | 49.69 205 | 81.59 86 | 81.29 115 | 61.45 78 | 71.05 95 | 88.11 67 | 51.77 82 | 87.73 43 | 61.05 136 | 83.09 73 | 85.05 118 |
|
1121 | | | 68.53 156 | 67.16 166 | 72.63 149 | 85.64 43 | 61.14 34 | 73.95 214 | 66.46 289 | 44.61 300 | 70.28 101 | 86.68 85 | 41.42 200 | 80.78 202 | 53.62 184 | 81.79 89 | 75.97 275 |
|
TEST9 | | | | | | 85.58 44 | 61.59 27 | 81.62 84 | 81.26 116 | 55.65 186 | 74.93 42 | 88.81 62 | 53.70 63 | 84.68 118 | | | |
|
train_agg | | | 76.27 44 | 76.15 41 | 76.64 62 | 85.58 44 | 61.59 27 | 81.62 84 | 81.26 116 | 55.86 178 | 74.93 42 | 88.81 62 | 53.70 63 | 84.68 118 | 75.24 29 | 88.33 31 | 83.65 166 |
|
test1172 | | | 75.36 53 | 74.81 55 | 77.02 55 | 85.47 46 | 60.79 42 | 83.94 49 | 81.63 102 | 59.52 117 | 74.66 50 | 90.18 34 | 44.74 163 | 85.84 91 | 70.63 60 | 82.52 84 | 84.42 136 |
|
ACMMP_NAP | | | 78.77 14 | 78.78 14 | 78.74 27 | 85.44 47 | 61.04 36 | 83.84 50 | 85.16 30 | 62.88 52 | 78.10 24 | 91.26 11 | 52.51 72 | 88.39 27 | 79.34 5 | 90.52 9 | 86.78 58 |
|
test_8 | | | | | | 85.40 48 | 60.96 37 | 81.54 87 | 81.18 119 | 55.86 178 | 74.81 45 | 88.80 64 | 53.70 63 | 84.45 123 | | | |
|
原ACMM1 | | | | | 74.69 95 | 85.39 49 | 59.40 59 | | 83.42 67 | 51.47 236 | 70.27 102 | 86.61 88 | 48.61 115 | 86.51 76 | 53.85 183 | 87.96 39 | 78.16 252 |
|
CDPH-MVS | | | 76.31 43 | 75.67 47 | 78.22 37 | 85.35 50 | 59.14 65 | 81.31 90 | 84.02 49 | 56.32 168 | 74.05 55 | 88.98 59 | 53.34 67 | 87.92 39 | 69.23 67 | 88.42 29 | 87.59 33 |
|
ACMMP |  | | 76.02 46 | 75.33 49 | 78.07 38 | 85.20 51 | 61.91 23 | 85.49 28 | 84.44 41 | 63.04 48 | 69.80 113 | 89.74 49 | 45.43 156 | 87.16 53 | 72.01 51 | 82.87 80 | 85.14 114 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
agg_prior1 | | | 75.94 47 | 76.01 43 | 75.72 76 | 85.04 52 | 59.96 51 | 81.44 88 | 81.04 122 | 56.14 174 | 74.68 47 | 88.90 60 | 53.91 59 | 84.04 130 | 75.01 30 | 87.92 41 | 83.16 181 |
|
agg_prior | | | | | | 85.04 52 | 59.96 51 | | 81.04 122 | | 74.68 47 | | | 84.04 130 | | | |
|
HPM-MVS |  | | 77.28 33 | 76.85 35 | 78.54 31 | 85.00 54 | 60.81 40 | 82.91 62 | 85.08 31 | 62.57 59 | 73.09 74 | 89.97 44 | 50.90 94 | 87.48 47 | 75.30 27 | 86.85 52 | 87.33 44 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
MP-MVS-pluss | | | 78.35 21 | 78.46 17 | 78.03 40 | 84.96 55 | 59.52 58 | 82.93 61 | 85.39 26 | 62.15 66 | 76.41 32 | 91.51 9 | 52.47 74 | 86.78 65 | 80.66 2 | 89.64 19 | 87.80 24 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
TSAR-MVS + MP. | | | 78.44 19 | 78.28 20 | 78.90 23 | 84.96 55 | 61.41 29 | 84.03 44 | 83.82 58 | 59.34 120 | 79.37 15 | 89.76 48 | 59.84 13 | 87.62 46 | 76.69 22 | 86.74 54 | 87.68 29 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
AdaColmap |  | | 69.99 123 | 68.66 132 | 73.97 113 | 84.94 57 | 57.83 88 | 82.63 68 | 78.71 161 | 56.28 170 | 64.34 207 | 84.14 133 | 41.57 195 | 87.06 58 | 46.45 235 | 78.88 128 | 77.02 267 |
|
DP-MVS | | | 65.68 203 | 63.66 213 | 71.75 162 | 84.93 58 | 56.87 107 | 80.74 96 | 73.16 244 | 53.06 218 | 59.09 261 | 82.35 167 | 36.79 245 | 85.94 89 | 32.82 320 | 69.96 229 | 72.45 312 |
|
DeepPCF-MVS | | 69.58 1 | 79.03 11 | 79.00 12 | 79.13 15 | 84.92 59 | 60.32 48 | 83.03 59 | 85.33 28 | 62.86 53 | 80.17 13 | 90.03 41 | 61.76 11 | 88.95 20 | 74.21 34 | 88.67 27 | 88.12 14 |
|
CPTT-MVS | | | 72.78 80 | 72.08 84 | 74.87 93 | 84.88 60 | 61.41 29 | 84.15 41 | 77.86 181 | 55.27 191 | 67.51 154 | 88.08 69 | 41.93 189 | 81.85 177 | 69.04 69 | 80.01 111 | 81.35 210 |
|
test12 | | | | | 77.76 43 | 84.52 61 | 58.41 80 | | 83.36 70 | | 72.93 77 | | 54.61 50 | 88.05 36 | | 88.12 36 | 86.81 56 |
|
SD-MVS | | | 77.70 29 | 77.62 28 | 77.93 42 | 84.47 62 | 61.88 24 | 84.55 33 | 83.87 56 | 60.37 95 | 79.89 14 | 89.38 53 | 54.97 45 | 85.58 97 | 76.12 26 | 84.94 63 | 86.33 70 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
HPM-MVS_fast | | | 74.30 66 | 73.46 73 | 76.80 58 | 84.45 63 | 59.04 69 | 83.65 52 | 81.05 121 | 60.15 103 | 70.43 98 | 89.84 47 | 41.09 205 | 85.59 96 | 67.61 79 | 82.90 79 | 85.77 90 |
|
test_prior3 | | | 76.89 39 | 76.96 34 | 76.69 59 | 84.20 64 | 57.27 96 | 81.75 81 | 84.88 36 | 60.37 95 | 75.01 40 | 89.06 56 | 56.22 35 | 86.43 78 | 72.19 49 | 88.96 24 | 86.38 63 |
|
test_prior | | | | | 76.69 59 | 84.20 64 | 57.27 96 | | 84.88 36 | | | | | 86.43 78 | | | 86.38 63 |
|
CSCG | | | 76.92 37 | 76.75 36 | 77.41 49 | 83.96 66 | 59.60 56 | 82.95 60 | 86.50 15 | 60.78 87 | 75.27 37 | 84.83 120 | 60.76 12 | 86.56 73 | 67.86 76 | 87.87 42 | 86.06 80 |
|
DeepC-MVS | | 69.38 2 | 78.56 17 | 78.14 23 | 79.83 4 | 83.60 67 | 61.62 26 | 84.17 40 | 86.85 9 | 63.23 45 | 73.84 62 | 90.25 33 | 57.68 26 | 89.96 10 | 74.62 32 | 89.03 22 | 87.89 19 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
UA-Net | | | 73.13 77 | 72.93 77 | 73.76 118 | 83.58 68 | 51.66 176 | 78.75 122 | 77.66 185 | 67.75 4 | 72.61 81 | 89.42 51 | 49.82 99 | 83.29 146 | 53.61 186 | 83.14 72 | 86.32 72 |
|
SR-MVS-dyc-post | | | 74.57 62 | 73.90 64 | 76.58 63 | 83.49 69 | 59.87 54 | 84.29 35 | 81.36 109 | 58.07 140 | 73.14 71 | 90.07 36 | 44.74 163 | 85.84 91 | 68.20 71 | 81.76 91 | 84.03 146 |
|
RE-MVS-def | | | | 73.71 68 | | 83.49 69 | 59.87 54 | 84.29 35 | 81.36 109 | 58.07 140 | 73.14 71 | 90.07 36 | 43.06 179 | | 68.20 71 | 81.76 91 | 84.03 146 |
|
LFMVS | | | 71.78 96 | 71.59 87 | 72.32 156 | 83.40 71 | 46.38 240 | 79.75 112 | 71.08 256 | 64.18 33 | 72.80 78 | 88.64 65 | 42.58 182 | 83.72 138 | 57.41 157 | 84.49 67 | 86.86 53 |
|
test222 | | | | | | 83.14 72 | 58.68 76 | 72.57 235 | 63.45 306 | 41.78 320 | 67.56 153 | 86.12 99 | 37.13 240 | | | 78.73 133 | 74.98 288 |
|
9.14 | | | | 78.75 15 | | 83.10 73 | | 84.15 41 | 88.26 2 | 59.90 107 | 78.57 23 | 90.36 26 | 57.51 28 | 86.86 62 | 77.39 15 | 89.52 21 | |
|
ETH3D-3000-0.1 | | | 78.58 15 | 78.91 13 | 77.61 45 | 83.06 74 | 57.86 87 | 84.14 43 | 88.31 1 | 60.37 95 | 79.14 18 | 90.35 27 | 57.76 25 | 87.00 59 | 77.16 19 | 89.90 14 | 87.97 18 |
|
旧先验1 | | | | | | 83.04 75 | 53.15 154 | | 67.52 281 | | | 87.85 71 | 44.08 170 | | | 80.76 98 | 78.03 257 |
|
MSLP-MVS++ | | | 73.77 73 | 73.47 72 | 74.66 97 | 83.02 76 | 59.29 62 | 82.30 77 | 81.88 95 | 59.34 120 | 71.59 92 | 86.83 79 | 45.94 148 | 83.65 140 | 65.09 102 | 85.22 62 | 81.06 217 |
|
SteuartSystems-ACMMP | | | 79.48 9 | 79.31 10 | 79.98 2 | 83.01 77 | 62.18 19 | 87.60 7 | 85.83 21 | 66.69 10 | 78.03 27 | 90.98 12 | 54.26 53 | 90.06 9 | 78.42 14 | 89.02 23 | 87.69 28 |
Skip Steuart: Steuart Systems R&D Blog. |
MVS_111021_HR | | | 74.02 69 | 73.46 73 | 75.69 79 | 83.01 77 | 60.63 44 | 77.29 152 | 78.40 176 | 61.18 82 | 70.58 97 | 85.97 104 | 54.18 55 | 84.00 134 | 67.52 80 | 82.98 77 | 82.45 193 |
|
SF-MVS | | | 78.82 12 | 79.22 11 | 77.60 46 | 82.88 79 | 57.83 88 | 84.99 30 | 88.13 3 | 61.86 74 | 79.16 16 | 90.75 15 | 57.96 22 | 87.09 56 | 77.08 20 | 90.18 11 | 87.87 21 |
|
VDDNet | | | 71.81 95 | 71.33 94 | 73.26 138 | 82.80 80 | 47.60 231 | 78.74 123 | 75.27 218 | 59.59 116 | 72.94 76 | 89.40 52 | 41.51 199 | 83.91 135 | 58.75 152 | 82.99 75 | 88.26 8 |
|
abl_6 | | | 74.34 64 | 73.50 70 | 76.86 57 | 82.43 81 | 60.16 49 | 83.48 54 | 81.86 96 | 58.81 127 | 73.95 59 | 89.86 46 | 41.87 190 | 86.62 70 | 67.98 75 | 81.23 96 | 83.80 159 |
|
3Dnovator+ | | 66.72 4 | 75.84 49 | 74.57 57 | 79.66 6 | 82.40 82 | 59.92 53 | 85.83 20 | 86.32 18 | 66.92 8 | 67.80 150 | 89.24 55 | 42.03 187 | 89.38 14 | 64.07 108 | 86.50 57 | 89.69 1 |
|
APD-MVS_3200maxsize | | | 74.96 54 | 74.39 60 | 76.67 61 | 82.20 83 | 58.24 83 | 83.67 51 | 83.29 73 | 58.41 134 | 73.71 63 | 90.14 35 | 45.62 150 | 85.99 86 | 69.64 63 | 82.85 81 | 85.78 87 |
|
ETH3D cwj APD-0.16 | | | 78.02 24 | 78.13 24 | 77.71 44 | 82.10 84 | 58.65 77 | 82.72 66 | 87.55 5 | 58.33 137 | 78.05 26 | 90.06 38 | 58.35 21 | 87.65 45 | 76.15 25 | 89.86 15 | 86.82 55 |
|
PVSNet_Blended_VisFu | | | 71.45 102 | 70.39 107 | 74.65 98 | 82.01 85 | 58.82 74 | 79.93 108 | 80.35 136 | 55.09 196 | 65.82 183 | 82.16 174 | 49.17 107 | 82.64 165 | 60.34 141 | 78.62 135 | 82.50 192 |
|
TSAR-MVS + GP. | | | 74.90 55 | 74.15 62 | 77.17 53 | 82.00 86 | 58.77 75 | 81.80 80 | 78.57 165 | 58.58 130 | 74.32 53 | 84.51 129 | 55.94 38 | 87.22 50 | 67.11 83 | 84.48 68 | 85.52 100 |
|
hse-mvs3 | | | 72.71 82 | 71.49 89 | 76.40 65 | 81.99 87 | 59.58 57 | 76.92 161 | 76.74 201 | 60.40 93 | 74.81 45 | 85.95 105 | 45.54 153 | 85.76 94 | 70.41 61 | 70.61 217 | 83.86 154 |
|
API-MVS | | | 72.17 91 | 71.41 91 | 74.45 105 | 81.95 88 | 57.22 98 | 84.03 44 | 80.38 135 | 59.89 110 | 68.40 133 | 82.33 168 | 49.64 101 | 87.83 42 | 51.87 197 | 84.16 70 | 78.30 250 |
|
MAR-MVS | | | 71.51 100 | 70.15 111 | 75.60 82 | 81.84 89 | 59.39 60 | 81.38 89 | 82.90 82 | 54.90 202 | 68.08 142 | 78.70 241 | 47.73 123 | 85.51 100 | 51.68 201 | 84.17 69 | 81.88 202 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PAPM_NR | | | 72.63 83 | 71.80 85 | 75.13 89 | 81.72 90 | 53.42 151 | 79.91 109 | 83.28 74 | 59.14 122 | 66.31 173 | 85.90 106 | 51.86 81 | 86.06 83 | 57.45 156 | 80.62 99 | 85.91 83 |
|
test_part1 | | | 74.74 58 | 74.42 59 | 75.70 78 | 81.69 91 | 51.26 178 | 83.98 46 | 87.05 7 | 65.31 16 | 73.10 73 | 86.20 97 | 53.94 58 | 88.06 35 | 65.32 99 | 73.17 187 | 87.77 26 |
|
VDD-MVS | | | 72.50 84 | 72.09 83 | 73.75 120 | 81.58 92 | 49.69 205 | 77.76 140 | 77.63 186 | 63.21 46 | 73.21 69 | 89.02 58 | 42.14 186 | 83.32 145 | 61.72 131 | 82.50 85 | 88.25 9 |
|
PS-MVSNAJ | | | 70.51 112 | 69.70 115 | 72.93 142 | 81.52 93 | 55.79 122 | 74.92 200 | 79.00 155 | 55.04 200 | 69.88 111 | 78.66 242 | 47.05 137 | 82.19 172 | 61.61 132 | 79.58 116 | 80.83 220 |
|
testdata | | | | | 64.66 264 | 81.52 93 | 52.93 157 | | 65.29 296 | 46.09 289 | 73.88 61 | 87.46 74 | 38.08 230 | 66.26 308 | 53.31 189 | 78.48 136 | 74.78 292 |
|
CHOSEN 1792x2688 | | | 65.08 214 | 62.84 222 | 71.82 161 | 81.49 95 | 56.26 113 | 66.32 288 | 74.20 235 | 40.53 329 | 63.16 219 | 78.65 243 | 41.30 201 | 77.80 247 | 45.80 241 | 74.09 170 | 81.40 207 |
|
HQP_MVS | | | 74.31 65 | 73.73 67 | 76.06 69 | 81.41 96 | 56.31 110 | 84.22 38 | 84.01 50 | 64.52 26 | 69.27 121 | 86.10 100 | 45.26 160 | 87.21 51 | 68.16 73 | 80.58 101 | 84.65 130 |
|
plane_prior7 | | | | | | 81.41 96 | 55.96 119 | | | | | | | | | | |
|
DPM-MVS | | | 75.47 51 | 75.00 50 | 76.88 56 | 81.38 98 | 59.16 63 | 79.94 107 | 85.71 24 | 56.59 163 | 72.46 83 | 86.76 80 | 56.89 29 | 87.86 41 | 66.36 88 | 88.91 26 | 83.64 167 |
|
CANet | | | 76.46 42 | 75.93 44 | 78.06 39 | 81.29 99 | 57.53 93 | 82.35 72 | 83.31 72 | 67.78 3 | 70.09 103 | 86.34 95 | 54.92 46 | 88.90 21 | 72.68 47 | 84.55 66 | 87.76 27 |
|
Vis-MVSNet |  | | 72.18 90 | 71.37 93 | 74.61 100 | 81.29 99 | 55.41 131 | 80.90 93 | 78.28 178 | 60.73 88 | 69.23 124 | 88.09 68 | 44.36 169 | 82.65 164 | 57.68 155 | 81.75 93 | 85.77 90 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
plane_prior1 | | | | | | 81.27 101 | | | | | | | | | | | |
|
xiu_mvs_v2_base | | | 70.52 111 | 69.75 113 | 72.84 144 | 81.21 102 | 55.63 126 | 75.11 194 | 78.92 156 | 54.92 201 | 69.96 110 | 79.68 227 | 47.00 141 | 82.09 174 | 61.60 133 | 79.37 119 | 80.81 221 |
|
plane_prior6 | | | | | | 81.20 103 | 56.24 114 | | | | | | 45.26 160 | | | | |
|
PAPR | | | 71.72 98 | 70.82 101 | 74.41 106 | 81.20 103 | 51.17 179 | 79.55 116 | 83.33 71 | 55.81 181 | 66.93 161 | 84.61 125 | 50.95 92 | 86.06 83 | 55.79 166 | 79.20 124 | 86.00 81 |
|
PLC |  | 56.13 14 | 65.09 213 | 63.21 218 | 70.72 190 | 81.04 105 | 54.87 137 | 78.57 127 | 77.47 188 | 48.51 263 | 55.71 284 | 81.89 178 | 33.71 266 | 79.71 215 | 41.66 278 | 70.37 221 | 77.58 259 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
NP-MVS | | | | | | 80.98 106 | 56.05 118 | | | | | 85.54 114 | | | | | |
|
OPM-MVS | | | 74.73 59 | 74.25 61 | 76.19 68 | 80.81 107 | 59.01 70 | 82.60 69 | 83.64 61 | 63.74 40 | 72.52 82 | 87.49 73 | 47.18 135 | 85.88 90 | 69.47 65 | 80.78 97 | 83.66 165 |
|
HQP-NCC | | | | | | 80.66 108 | | 82.31 74 | | 62.10 68 | 67.85 145 | | | | | | |
|
ACMP_Plane | | | | | | 80.66 108 | | 82.31 74 | | 62.10 68 | 67.85 145 | | | | | | |
|
HQP-MVS | | | 73.45 74 | 72.80 78 | 75.40 84 | 80.66 108 | 54.94 134 | 82.31 74 | 83.90 54 | 62.10 68 | 67.85 145 | 85.54 114 | 45.46 154 | 86.93 60 | 67.04 84 | 80.35 107 | 84.32 138 |
|
PHI-MVS | | | 75.87 48 | 75.36 48 | 77.41 49 | 80.62 111 | 55.91 121 | 84.28 37 | 85.78 22 | 56.08 176 | 73.41 67 | 86.58 90 | 50.94 93 | 88.54 25 | 70.79 58 | 89.71 17 | 87.79 25 |
|
ACMM | | 61.98 7 | 70.80 108 | 69.73 114 | 74.02 111 | 80.59 112 | 58.59 78 | 82.68 67 | 82.02 94 | 55.46 189 | 67.18 158 | 84.39 131 | 38.51 223 | 83.17 149 | 60.65 138 | 76.10 158 | 80.30 227 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Regformer-1 | | | 75.47 51 | 74.93 53 | 77.09 54 | 80.43 113 | 57.70 91 | 79.50 117 | 82.13 91 | 67.84 1 | 75.73 36 | 80.75 205 | 56.50 32 | 86.07 82 | 71.07 57 | 80.38 105 | 87.50 36 |
|
Regformer-2 | | | 75.63 50 | 74.99 51 | 77.54 47 | 80.43 113 | 58.32 82 | 79.50 117 | 82.92 80 | 67.84 1 | 75.94 33 | 80.75 205 | 55.73 40 | 86.80 63 | 71.44 56 | 80.38 105 | 87.50 36 |
|
Anonymous20231211 | | | 69.28 138 | 68.47 135 | 71.73 163 | 80.28 115 | 47.18 235 | 79.98 106 | 82.37 88 | 54.61 204 | 67.24 157 | 84.01 137 | 39.43 214 | 82.41 170 | 55.45 170 | 72.83 191 | 85.62 98 |
|
ACMP | | 63.53 6 | 72.30 88 | 71.20 97 | 75.59 83 | 80.28 115 | 57.54 92 | 82.74 65 | 82.84 84 | 60.58 90 | 65.24 194 | 86.18 98 | 39.25 216 | 86.03 85 | 66.95 86 | 76.79 154 | 83.22 176 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LPG-MVS_test | | | 72.74 81 | 71.74 86 | 75.76 74 | 80.22 117 | 57.51 94 | 82.55 70 | 83.40 68 | 61.32 79 | 66.67 165 | 87.33 76 | 39.15 218 | 86.59 71 | 67.70 77 | 77.30 147 | 83.19 178 |
|
LGP-MVS_train | | | | | 75.76 74 | 80.22 117 | 57.51 94 | | 83.40 68 | 61.32 79 | 66.67 165 | 87.33 76 | 39.15 218 | 86.59 71 | 67.70 77 | 77.30 147 | 83.19 178 |
|
WR-MVS | | | 68.47 157 | 68.47 135 | 68.44 225 | 80.20 119 | 39.84 295 | 73.75 221 | 76.07 207 | 64.68 23 | 68.11 141 | 83.63 145 | 50.39 97 | 79.14 229 | 49.78 209 | 69.66 237 | 86.34 69 |
|
Anonymous20240529 | | | 69.91 125 | 69.02 126 | 72.56 150 | 80.19 120 | 47.65 229 | 77.56 144 | 80.99 124 | 55.45 190 | 69.88 111 | 86.76 80 | 39.24 217 | 82.18 173 | 54.04 180 | 77.10 149 | 87.85 23 |
|
Anonymous202405211 | | | 66.84 189 | 65.99 188 | 69.40 213 | 80.19 120 | 42.21 280 | 71.11 257 | 71.31 255 | 58.80 128 | 67.90 143 | 86.39 94 | 29.83 301 | 79.65 216 | 49.60 215 | 78.78 131 | 86.33 70 |
|
BH-RMVSNet | | | 68.81 145 | 67.42 154 | 72.97 141 | 80.11 122 | 52.53 163 | 74.26 209 | 76.29 204 | 58.48 133 | 68.38 134 | 84.20 132 | 42.59 181 | 83.83 136 | 46.53 234 | 75.91 159 | 82.56 189 |
|
test_0402 | | | 63.25 230 | 61.01 243 | 69.96 201 | 80.00 123 | 54.37 140 | 76.86 163 | 72.02 251 | 54.58 206 | 58.71 264 | 80.79 204 | 35.00 254 | 84.36 124 | 26.41 346 | 64.71 281 | 71.15 324 |
|
HyFIR lowres test | | | 65.67 204 | 63.01 220 | 73.67 123 | 79.97 124 | 55.65 125 | 69.07 277 | 75.52 215 | 42.68 318 | 63.53 215 | 77.95 250 | 40.43 207 | 81.64 181 | 46.01 239 | 71.91 204 | 83.73 161 |
|
EIA-MVS | | | 71.78 96 | 70.60 103 | 75.30 87 | 79.85 125 | 53.54 148 | 77.27 153 | 83.26 75 | 57.92 143 | 66.49 168 | 79.39 233 | 52.07 79 | 86.69 67 | 60.05 143 | 79.14 126 | 85.66 95 |
|
Regformer-3 | | | 73.89 71 | 73.28 75 | 75.71 77 | 79.75 126 | 55.48 130 | 78.54 129 | 79.93 141 | 66.58 11 | 73.62 64 | 80.30 213 | 54.87 47 | 84.54 121 | 69.09 68 | 76.84 152 | 87.10 49 |
|
Regformer-4 | | | 74.25 67 | 73.48 71 | 76.57 64 | 79.75 126 | 56.54 109 | 78.54 129 | 81.49 106 | 66.93 7 | 73.90 60 | 80.30 213 | 53.84 61 | 85.98 87 | 69.76 62 | 76.84 152 | 87.17 46 |
|
BH-untuned | | | 68.27 160 | 67.29 159 | 71.21 178 | 79.74 128 | 53.22 153 | 76.06 178 | 77.46 190 | 57.19 150 | 66.10 175 | 81.61 184 | 45.37 158 | 83.50 143 | 45.42 249 | 76.68 156 | 76.91 271 |
|
VNet | | | 69.68 130 | 70.19 110 | 68.16 227 | 79.73 129 | 41.63 288 | 70.53 264 | 77.38 191 | 60.37 95 | 70.69 96 | 86.63 87 | 51.08 90 | 77.09 256 | 53.61 186 | 81.69 95 | 85.75 92 |
|
LS3D | | | 64.71 216 | 62.50 226 | 71.34 176 | 79.72 130 | 55.71 123 | 79.82 110 | 74.72 228 | 48.50 264 | 56.62 279 | 84.62 124 | 33.59 269 | 82.34 171 | 29.65 338 | 75.23 164 | 75.97 275 |
|
AUN-MVS | | | 68.45 158 | 66.41 178 | 74.57 102 | 79.53 131 | 57.08 105 | 73.93 217 | 75.23 219 | 54.44 209 | 66.69 164 | 81.85 179 | 37.10 241 | 82.89 155 | 62.07 127 | 66.84 266 | 83.75 160 |
|
BH-w/o | | | 66.85 188 | 65.83 190 | 69.90 205 | 79.29 132 | 52.46 166 | 74.66 205 | 76.65 202 | 54.51 208 | 64.85 202 | 78.12 248 | 45.59 152 | 82.95 154 | 43.26 264 | 75.54 162 | 74.27 297 |
|
1112_ss | | | 64.00 222 | 63.36 217 | 65.93 252 | 79.28 133 | 42.58 277 | 71.35 250 | 72.36 250 | 46.41 286 | 60.55 246 | 77.89 254 | 46.27 147 | 73.28 275 | 46.18 237 | 69.97 228 | 81.92 201 |
|
ETV-MVS | | | 74.46 63 | 73.84 66 | 76.33 67 | 79.27 134 | 55.24 133 | 79.22 120 | 85.00 35 | 64.97 22 | 72.65 80 | 79.46 232 | 53.65 66 | 87.87 40 | 67.45 81 | 82.91 78 | 85.89 84 |
|
UniMVSNet_NR-MVSNet | | | 71.11 104 | 71.00 99 | 71.44 170 | 79.20 135 | 44.13 264 | 76.02 181 | 82.60 86 | 66.48 13 | 68.20 136 | 84.60 126 | 56.82 30 | 82.82 161 | 54.62 176 | 70.43 219 | 87.36 43 |
|
VPNet | | | 67.52 174 | 68.11 142 | 65.74 255 | 79.18 136 | 36.80 320 | 72.17 241 | 72.83 246 | 62.04 71 | 67.79 151 | 85.83 108 | 48.88 112 | 76.60 261 | 51.30 202 | 72.97 190 | 83.81 155 |
|
TR-MVS | | | 66.59 196 | 65.07 201 | 71.17 181 | 79.18 136 | 49.63 207 | 73.48 223 | 75.20 221 | 52.95 219 | 67.90 143 | 80.33 212 | 39.81 211 | 83.68 139 | 43.20 265 | 73.56 178 | 80.20 228 |
|
TAMVS | | | 66.78 191 | 65.27 199 | 71.33 177 | 79.16 138 | 53.67 144 | 73.84 220 | 69.59 269 | 52.32 227 | 65.28 189 | 81.72 182 | 44.49 168 | 77.40 253 | 42.32 272 | 78.66 134 | 82.92 184 |
|
Test_1112_low_res | | | 62.32 238 | 61.77 233 | 64.00 268 | 79.08 139 | 39.53 299 | 68.17 279 | 70.17 263 | 43.25 313 | 59.03 262 | 79.90 220 | 44.08 170 | 71.24 284 | 43.79 260 | 68.42 254 | 81.25 211 |
|
CS-MVS | | | 74.18 68 | 73.60 69 | 75.92 71 | 78.99 140 | 52.53 163 | 80.61 98 | 85.93 20 | 61.17 83 | 71.15 94 | 79.34 236 | 54.52 51 | 88.86 22 | 66.07 89 | 84.67 65 | 86.38 63 |
|
CDS-MVSNet | | | 66.80 190 | 65.37 196 | 71.10 183 | 78.98 141 | 53.13 156 | 73.27 226 | 71.07 257 | 52.15 228 | 64.72 203 | 80.23 216 | 43.56 175 | 77.10 255 | 45.48 247 | 78.88 128 | 83.05 183 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
canonicalmvs | | | 74.67 60 | 74.98 52 | 73.71 122 | 78.94 142 | 50.56 191 | 80.23 102 | 83.87 56 | 60.30 101 | 77.15 29 | 86.56 91 | 59.65 14 | 82.00 175 | 66.01 92 | 82.12 87 | 88.58 6 |
|
IS-MVSNet | | | 71.57 99 | 71.00 99 | 73.27 137 | 78.86 143 | 45.63 253 | 80.22 103 | 78.69 162 | 64.14 36 | 66.46 169 | 87.36 75 | 49.30 104 | 85.60 95 | 50.26 208 | 83.71 71 | 88.59 5 |
|
CLD-MVS | | | 73.33 75 | 72.68 79 | 75.29 88 | 78.82 144 | 53.33 152 | 78.23 133 | 84.79 39 | 61.30 81 | 70.41 99 | 81.04 195 | 52.41 75 | 87.12 54 | 64.61 107 | 82.49 86 | 85.41 108 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
MVSFormer | | | 71.50 101 | 70.38 108 | 74.88 92 | 78.76 145 | 57.15 103 | 82.79 63 | 78.48 169 | 51.26 240 | 69.49 116 | 83.22 151 | 43.99 172 | 83.24 147 | 66.06 90 | 79.37 119 | 84.23 141 |
|
lupinMVS | | | 69.57 133 | 68.28 139 | 73.44 132 | 78.76 145 | 57.15 103 | 76.57 166 | 73.29 243 | 46.19 288 | 69.49 116 | 82.18 171 | 43.99 172 | 79.23 223 | 64.66 105 | 79.37 119 | 83.93 149 |
|
CNLPA | | | 65.43 208 | 64.02 206 | 69.68 207 | 78.73 147 | 58.07 85 | 77.82 139 | 70.71 260 | 51.49 235 | 61.57 241 | 83.58 147 | 38.23 228 | 70.82 285 | 43.90 258 | 70.10 227 | 80.16 229 |
|
EPP-MVSNet | | | 72.16 92 | 71.31 95 | 74.71 94 | 78.68 148 | 49.70 203 | 82.10 78 | 81.65 101 | 60.40 93 | 65.94 178 | 85.84 107 | 51.74 83 | 86.37 80 | 55.93 163 | 79.55 118 | 88.07 17 |
|
TranMVSNet+NR-MVSNet | | | 70.36 116 | 70.10 112 | 71.17 181 | 78.64 149 | 42.97 275 | 76.53 167 | 81.16 120 | 66.95 6 | 68.53 132 | 85.42 116 | 51.61 84 | 83.07 150 | 52.32 194 | 69.70 236 | 87.46 38 |
|
UniMVSNet (Re) | | | 70.63 110 | 70.20 109 | 71.89 159 | 78.55 150 | 45.29 255 | 75.94 182 | 82.92 80 | 63.68 41 | 68.16 139 | 83.59 146 | 53.89 60 | 83.49 144 | 53.97 181 | 71.12 212 | 86.89 52 |
|
Fast-Effi-MVS+ | | | 70.28 118 | 69.12 125 | 73.73 121 | 78.50 151 | 51.50 177 | 75.01 197 | 79.46 150 | 56.16 173 | 68.59 129 | 79.55 230 | 53.97 56 | 84.05 129 | 53.34 188 | 77.53 143 | 85.65 96 |
|
PS-MVSNAJss | | | 72.24 89 | 71.21 96 | 75.31 86 | 78.50 151 | 55.93 120 | 81.63 83 | 82.12 92 | 56.24 171 | 70.02 107 | 85.68 111 | 47.05 137 | 84.34 125 | 65.27 100 | 74.41 168 | 85.67 94 |
|
EI-MVSNet-Vis-set | | | 72.42 87 | 71.59 87 | 74.91 91 | 78.47 153 | 54.02 141 | 77.05 157 | 79.33 152 | 65.03 21 | 71.68 91 | 79.35 235 | 52.75 70 | 84.89 114 | 66.46 87 | 74.23 169 | 85.83 86 |
|
MVS_111021_LR | | | 69.50 135 | 68.78 130 | 71.65 166 | 78.38 154 | 59.33 61 | 74.82 202 | 70.11 264 | 58.08 139 | 67.83 149 | 84.68 122 | 41.96 188 | 76.34 264 | 65.62 97 | 77.54 142 | 79.30 244 |
|
test_yl | | | 69.69 128 | 69.13 123 | 71.36 174 | 78.37 155 | 45.74 249 | 74.71 203 | 80.20 137 | 57.91 144 | 70.01 108 | 83.83 140 | 42.44 183 | 82.87 157 | 54.97 172 | 79.72 113 | 85.48 102 |
|
DCV-MVSNet | | | 69.69 128 | 69.13 123 | 71.36 174 | 78.37 155 | 45.74 249 | 74.71 203 | 80.20 137 | 57.91 144 | 70.01 108 | 83.83 140 | 42.44 183 | 82.87 157 | 54.97 172 | 79.72 113 | 85.48 102 |
|
FIs | | | 70.82 107 | 71.43 90 | 68.98 218 | 78.33 157 | 38.14 309 | 76.96 159 | 83.59 62 | 61.02 84 | 67.33 156 | 86.73 82 | 55.07 44 | 81.64 181 | 54.61 178 | 79.22 123 | 87.14 48 |
|
UGNet | | | 68.81 145 | 67.39 155 | 73.06 140 | 78.33 157 | 54.47 139 | 79.77 111 | 75.40 217 | 60.45 92 | 63.22 217 | 84.40 130 | 32.71 281 | 80.91 199 | 51.71 200 | 80.56 103 | 83.81 155 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
jason | | | 69.65 131 | 68.39 138 | 73.43 133 | 78.27 159 | 56.88 106 | 77.12 155 | 73.71 240 | 46.53 285 | 69.34 120 | 83.22 151 | 43.37 176 | 79.18 224 | 64.77 104 | 79.20 124 | 84.23 141 |
jason: jason. |
alignmvs | | | 73.86 72 | 73.99 63 | 73.45 131 | 78.20 160 | 50.50 192 | 78.57 127 | 82.43 87 | 59.40 118 | 76.57 30 | 86.71 84 | 56.42 34 | 81.23 191 | 65.84 94 | 81.79 89 | 88.62 4 |
|
xiu_mvs_v1_base_debu | | | 68.58 152 | 67.28 160 | 72.48 152 | 78.19 161 | 57.19 100 | 75.28 189 | 75.09 223 | 51.61 231 | 70.04 104 | 81.41 188 | 32.79 277 | 79.02 231 | 63.81 112 | 77.31 144 | 81.22 212 |
|
xiu_mvs_v1_base | | | 68.58 152 | 67.28 160 | 72.48 152 | 78.19 161 | 57.19 100 | 75.28 189 | 75.09 223 | 51.61 231 | 70.04 104 | 81.41 188 | 32.79 277 | 79.02 231 | 63.81 112 | 77.31 144 | 81.22 212 |
|
xiu_mvs_v1_base_debi | | | 68.58 152 | 67.28 160 | 72.48 152 | 78.19 161 | 57.19 100 | 75.28 189 | 75.09 223 | 51.61 231 | 70.04 104 | 81.41 188 | 32.79 277 | 79.02 231 | 63.81 112 | 77.31 144 | 81.22 212 |
|
PAPM | | | 67.92 169 | 66.69 171 | 71.63 167 | 78.09 164 | 49.02 213 | 77.09 156 | 81.24 118 | 51.04 242 | 60.91 244 | 83.98 138 | 47.71 124 | 84.99 109 | 40.81 281 | 79.32 122 | 80.90 219 |
|
ACMH | | 55.70 15 | 65.20 212 | 63.57 214 | 70.07 200 | 78.07 165 | 52.01 174 | 79.48 119 | 79.69 143 | 55.75 183 | 56.59 280 | 80.98 197 | 27.12 319 | 80.94 197 | 42.90 269 | 71.58 208 | 77.25 265 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DU-MVS | | | 70.01 122 | 69.53 117 | 71.44 170 | 78.05 166 | 44.13 264 | 75.01 197 | 81.51 105 | 64.37 29 | 68.20 136 | 84.52 127 | 49.12 110 | 82.82 161 | 54.62 176 | 70.43 219 | 87.37 41 |
|
NR-MVSNet | | | 69.54 134 | 68.85 128 | 71.59 168 | 78.05 166 | 43.81 268 | 74.20 210 | 80.86 128 | 65.18 17 | 62.76 222 | 84.52 127 | 52.35 76 | 83.59 142 | 50.96 204 | 70.78 214 | 87.37 41 |
|
EI-MVSNet-UG-set | | | 71.92 94 | 71.06 98 | 74.52 104 | 77.98 168 | 53.56 147 | 76.62 165 | 79.16 153 | 64.40 28 | 71.18 93 | 78.95 240 | 52.19 77 | 84.66 120 | 65.47 98 | 73.57 177 | 85.32 110 |
|
WR-MVS_H | | | 67.02 185 | 66.92 168 | 67.33 235 | 77.95 169 | 37.75 312 | 77.57 143 | 82.11 93 | 62.03 72 | 62.65 225 | 82.48 165 | 50.57 95 | 79.46 219 | 42.91 268 | 64.01 285 | 84.79 127 |
|
Effi-MVS+ | | | 73.31 76 | 72.54 80 | 75.62 81 | 77.87 170 | 53.64 145 | 79.62 115 | 79.61 146 | 61.63 76 | 72.02 88 | 82.61 161 | 56.44 33 | 85.97 88 | 63.99 111 | 79.07 127 | 87.25 45 |
|
DELS-MVS | | | 74.76 57 | 74.46 58 | 75.65 80 | 77.84 171 | 52.25 169 | 75.59 185 | 84.17 47 | 63.76 39 | 73.15 70 | 82.79 156 | 59.58 16 | 86.80 63 | 67.24 82 | 86.04 59 | 87.89 19 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
ACMH+ | | 57.40 11 | 66.12 200 | 64.06 205 | 72.30 157 | 77.79 172 | 52.83 158 | 80.39 101 | 78.03 179 | 57.30 148 | 57.47 275 | 82.55 163 | 27.68 315 | 84.17 127 | 45.54 245 | 69.78 233 | 79.90 234 |
|
3Dnovator | | 64.47 5 | 72.49 85 | 71.39 92 | 75.79 73 | 77.70 173 | 58.99 71 | 80.66 97 | 83.15 77 | 62.24 65 | 65.46 187 | 86.59 89 | 42.38 185 | 85.52 99 | 59.59 148 | 84.72 64 | 82.85 187 |
|
EG-PatchMatch MVS | | | 64.71 216 | 62.87 221 | 70.22 196 | 77.68 174 | 53.48 149 | 77.99 136 | 78.82 157 | 53.37 216 | 56.03 283 | 77.41 261 | 24.75 333 | 84.04 130 | 46.37 236 | 73.42 181 | 73.14 304 |
|
CP-MVSNet | | | 66.49 197 | 66.41 178 | 66.72 238 | 77.67 175 | 36.33 325 | 76.83 164 | 79.52 148 | 62.45 62 | 62.54 228 | 83.47 150 | 46.32 145 | 78.37 238 | 45.47 248 | 63.43 291 | 85.45 104 |
|
GBi-Net | | | 67.21 178 | 66.55 172 | 69.19 214 | 77.63 176 | 43.33 271 | 77.31 149 | 77.83 182 | 56.62 160 | 65.04 198 | 82.70 157 | 41.85 191 | 80.33 210 | 47.18 229 | 72.76 193 | 83.92 150 |
|
test1 | | | 67.21 178 | 66.55 172 | 69.19 214 | 77.63 176 | 43.33 271 | 77.31 149 | 77.83 182 | 56.62 160 | 65.04 198 | 82.70 157 | 41.85 191 | 80.33 210 | 47.18 229 | 72.76 193 | 83.92 150 |
|
FMVSNet2 | | | 66.93 187 | 66.31 183 | 68.79 221 | 77.63 176 | 42.98 274 | 76.11 176 | 77.47 188 | 56.62 160 | 65.22 196 | 82.17 173 | 41.85 191 | 80.18 213 | 47.05 232 | 72.72 196 | 83.20 177 |
|
PCF-MVS | | 61.88 8 | 70.95 105 | 69.49 118 | 75.35 85 | 77.63 176 | 55.71 123 | 76.04 180 | 81.81 98 | 50.30 248 | 69.66 114 | 85.40 117 | 52.51 72 | 84.89 114 | 51.82 198 | 80.24 109 | 85.45 104 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
MVP-Stereo | | | 65.41 209 | 63.80 210 | 70.22 196 | 77.62 180 | 55.53 128 | 76.30 172 | 78.53 167 | 50.59 247 | 56.47 281 | 78.65 243 | 39.84 210 | 82.68 163 | 44.10 257 | 72.12 203 | 72.44 313 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
FC-MVSNet-test | | | 69.80 126 | 70.58 105 | 67.46 232 | 77.61 181 | 34.73 332 | 76.05 179 | 83.19 76 | 60.84 85 | 65.88 181 | 86.46 92 | 54.52 51 | 80.76 204 | 52.52 193 | 78.12 138 | 86.91 51 |
|
PS-CasMVS | | | 66.42 198 | 66.32 182 | 66.70 240 | 77.60 182 | 36.30 327 | 76.94 160 | 79.61 146 | 62.36 64 | 62.43 232 | 83.66 144 | 45.69 149 | 78.37 238 | 45.35 250 | 63.26 292 | 85.42 107 |
|
FMVSNet1 | | | 66.70 192 | 65.87 189 | 69.19 214 | 77.49 183 | 43.33 271 | 77.31 149 | 77.83 182 | 56.45 165 | 64.60 206 | 82.70 157 | 38.08 230 | 80.33 210 | 46.08 238 | 72.31 201 | 83.92 150 |
|
VPA-MVSNet | | | 69.02 142 | 69.47 119 | 67.69 231 | 77.42 184 | 41.00 292 | 74.04 212 | 79.68 144 | 60.06 104 | 69.26 123 | 84.81 121 | 51.06 91 | 77.58 250 | 54.44 179 | 74.43 167 | 84.48 134 |
|
UniMVSNet_ETH3D | | | 67.60 173 | 67.07 167 | 69.18 217 | 77.39 185 | 42.29 279 | 74.18 211 | 75.59 214 | 60.37 95 | 66.77 163 | 86.06 102 | 37.64 232 | 78.93 236 | 52.16 196 | 73.49 179 | 86.32 72 |
|
thres100view900 | | | 63.28 229 | 62.41 227 | 65.89 253 | 77.31 186 | 38.66 305 | 72.65 232 | 69.11 275 | 57.07 151 | 62.45 231 | 81.03 196 | 37.01 243 | 79.17 225 | 31.84 324 | 73.25 184 | 79.83 236 |
|
cascas | | | 65.98 201 | 63.42 216 | 73.64 126 | 77.26 187 | 52.58 162 | 72.26 240 | 77.21 194 | 48.56 262 | 61.21 243 | 74.60 293 | 32.57 285 | 85.82 93 | 50.38 207 | 76.75 155 | 82.52 191 |
|
thres600view7 | | | 63.30 228 | 62.27 228 | 66.41 242 | 77.18 188 | 38.87 303 | 72.35 238 | 69.11 275 | 56.98 153 | 62.37 233 | 80.96 198 | 37.01 243 | 79.00 234 | 31.43 331 | 73.05 189 | 81.36 208 |
|
PEN-MVS | | | 66.60 194 | 66.45 174 | 67.04 236 | 77.11 189 | 36.56 322 | 77.03 158 | 80.42 134 | 62.95 49 | 62.51 230 | 84.03 136 | 46.69 143 | 79.07 230 | 44.22 253 | 63.08 294 | 85.51 101 |
|
PatchMatch-RL | | | 56.25 280 | 54.55 285 | 61.32 287 | 77.06 190 | 56.07 117 | 65.57 293 | 54.10 341 | 44.13 307 | 53.49 311 | 71.27 312 | 25.20 330 | 66.78 305 | 36.52 306 | 63.66 288 | 61.12 340 |
|
PVSNet_BlendedMVS | | | 68.56 155 | 67.72 145 | 71.07 184 | 77.03 191 | 50.57 189 | 74.50 207 | 81.52 103 | 53.66 215 | 64.22 212 | 79.72 226 | 49.13 108 | 82.87 157 | 55.82 164 | 73.92 172 | 79.77 239 |
|
PVSNet_Blended | | | 68.59 151 | 67.72 145 | 71.19 179 | 77.03 191 | 50.57 189 | 72.51 236 | 81.52 103 | 51.91 229 | 64.22 212 | 77.77 258 | 49.13 108 | 82.87 157 | 55.82 164 | 79.58 116 | 80.14 230 |
|
F-COLMAP | | | 63.05 233 | 60.87 246 | 69.58 211 | 76.99 193 | 53.63 146 | 78.12 135 | 76.16 205 | 47.97 271 | 52.41 314 | 81.61 184 | 27.87 313 | 78.11 242 | 40.07 284 | 66.66 267 | 77.00 268 |
|
tfpn200view9 | | | 63.18 231 | 62.18 230 | 66.21 246 | 76.85 194 | 39.62 297 | 71.96 244 | 69.44 271 | 56.63 158 | 62.61 226 | 79.83 222 | 37.18 237 | 79.17 225 | 31.84 324 | 73.25 184 | 79.83 236 |
|
thres400 | | | 63.31 227 | 62.18 230 | 66.72 238 | 76.85 194 | 39.62 297 | 71.96 244 | 69.44 271 | 56.63 158 | 62.61 226 | 79.83 222 | 37.18 237 | 79.17 225 | 31.84 324 | 73.25 184 | 81.36 208 |
|
tttt0517 | | | 67.83 171 | 65.66 193 | 74.33 108 | 76.69 196 | 50.82 185 | 77.86 137 | 73.99 237 | 54.54 207 | 64.64 205 | 82.53 164 | 35.06 253 | 85.50 101 | 55.71 167 | 69.91 230 | 86.67 59 |
|
ET-MVSNet_ETH3D | | | 67.96 168 | 65.72 192 | 74.68 96 | 76.67 197 | 55.62 127 | 75.11 194 | 74.74 227 | 52.91 220 | 60.03 249 | 80.12 217 | 33.68 267 | 82.64 165 | 61.86 130 | 76.34 157 | 85.78 87 |
|
TAPA-MVS | | 59.36 10 | 66.60 194 | 65.20 200 | 70.81 187 | 76.63 198 | 48.75 217 | 76.52 168 | 80.04 139 | 50.64 246 | 65.24 194 | 84.93 119 | 39.15 218 | 78.54 237 | 36.77 300 | 76.88 151 | 85.14 114 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
OMC-MVS | | | 71.40 103 | 70.60 103 | 73.78 116 | 76.60 199 | 53.15 154 | 79.74 113 | 79.78 142 | 58.37 135 | 68.75 128 | 86.45 93 | 45.43 156 | 80.60 205 | 62.58 122 | 77.73 141 | 87.58 34 |
|
LTVRE_ROB | | 55.42 16 | 63.15 232 | 61.23 241 | 68.92 219 | 76.57 200 | 47.80 226 | 59.92 319 | 76.39 203 | 54.35 210 | 58.67 265 | 82.46 166 | 29.44 304 | 81.49 185 | 42.12 274 | 71.14 211 | 77.46 260 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
QAPM | | | 70.05 121 | 68.81 129 | 73.78 116 | 76.54 201 | 53.43 150 | 83.23 56 | 83.48 64 | 52.89 221 | 65.90 180 | 86.29 96 | 41.55 198 | 86.49 77 | 51.01 203 | 78.40 137 | 81.42 206 |
|
FMVSNet3 | | | 66.32 199 | 65.61 194 | 68.46 224 | 76.48 202 | 42.34 278 | 74.98 199 | 77.15 195 | 55.83 180 | 65.04 198 | 81.16 192 | 39.91 209 | 80.14 214 | 47.18 229 | 72.76 193 | 82.90 186 |
|
thisisatest0530 | | | 67.92 169 | 65.78 191 | 74.33 108 | 76.29 203 | 51.03 180 | 76.89 162 | 74.25 234 | 53.67 214 | 65.59 185 | 81.76 181 | 35.15 252 | 85.50 101 | 55.94 162 | 72.47 197 | 86.47 62 |
|
baseline1 | | | 63.81 223 | 63.87 209 | 63.62 269 | 76.29 203 | 36.36 323 | 71.78 246 | 67.29 284 | 56.05 177 | 64.23 211 | 82.95 155 | 47.11 136 | 74.41 272 | 47.30 228 | 61.85 302 | 80.10 231 |
|
ab-mvs | | | 66.65 193 | 66.42 177 | 67.37 233 | 76.17 205 | 41.73 285 | 70.41 267 | 76.14 206 | 53.99 211 | 65.98 177 | 83.51 148 | 49.48 102 | 76.24 265 | 48.60 221 | 73.46 180 | 84.14 144 |
|
Effi-MVS+-dtu | | | 69.64 132 | 67.53 151 | 75.95 70 | 76.10 206 | 62.29 18 | 80.20 104 | 76.06 208 | 59.83 111 | 65.26 193 | 77.09 262 | 41.56 196 | 84.02 133 | 60.60 139 | 71.09 213 | 81.53 205 |
|
mvs-test1 | | | 70.44 114 | 68.19 140 | 77.18 52 | 76.10 206 | 63.22 6 | 80.59 99 | 76.06 208 | 59.83 111 | 66.32 172 | 79.87 221 | 41.56 196 | 85.53 98 | 60.60 139 | 72.77 192 | 82.80 188 |
|
DTE-MVSNet | | | 65.58 205 | 65.34 197 | 66.31 243 | 76.06 208 | 34.79 330 | 76.43 169 | 79.38 151 | 62.55 60 | 61.66 239 | 83.83 140 | 45.60 151 | 79.15 228 | 41.64 280 | 60.88 308 | 85.00 119 |
|
EPNet | | | 73.09 78 | 72.16 82 | 75.90 72 | 75.95 209 | 56.28 112 | 83.05 58 | 72.39 249 | 66.53 12 | 65.27 190 | 87.00 78 | 50.40 96 | 85.47 103 | 62.48 124 | 86.32 58 | 85.94 82 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
RRT_MVS | | | 68.77 148 | 66.71 170 | 74.95 90 | 75.93 210 | 58.55 79 | 80.50 100 | 75.84 210 | 56.09 175 | 68.17 138 | 83.74 143 | 28.50 309 | 82.98 152 | 65.67 96 | 65.91 272 | 83.33 172 |
|
RRT_test8_iter05 | | | 68.17 165 | 66.86 169 | 72.07 158 | 75.81 211 | 46.33 241 | 76.41 170 | 81.81 98 | 56.43 166 | 66.52 167 | 81.30 191 | 31.90 289 | 84.25 126 | 63.77 115 | 67.83 259 | 85.64 97 |
|
SixPastTwentyTwo | | | 61.65 247 | 58.80 255 | 70.20 198 | 75.80 212 | 47.22 234 | 75.59 185 | 69.68 267 | 54.61 204 | 54.11 303 | 79.26 237 | 27.07 320 | 82.96 153 | 43.27 263 | 49.79 338 | 80.41 226 |
|
baseline | | | 74.61 61 | 74.70 56 | 74.34 107 | 75.70 213 | 49.99 200 | 77.54 145 | 84.63 40 | 62.73 58 | 73.98 56 | 87.79 72 | 57.67 27 | 83.82 137 | 69.49 64 | 82.74 83 | 89.20 3 |
|
Baseline_NR-MVSNet | | | 67.05 184 | 67.56 148 | 65.50 257 | 75.65 214 | 37.70 313 | 75.42 187 | 74.65 229 | 59.90 107 | 68.14 140 | 83.15 154 | 49.12 110 | 77.20 254 | 52.23 195 | 69.78 233 | 81.60 204 |
|
jajsoiax | | | 68.25 161 | 66.45 174 | 73.66 124 | 75.62 215 | 55.49 129 | 80.82 94 | 78.51 168 | 52.33 226 | 64.33 208 | 84.11 134 | 28.28 311 | 81.81 179 | 63.48 117 | 70.62 216 | 83.67 163 |
|
mvs_tets | | | 68.18 163 | 66.36 180 | 73.63 127 | 75.61 216 | 55.35 132 | 80.77 95 | 78.56 166 | 52.48 225 | 64.27 210 | 84.10 135 | 27.45 317 | 81.84 178 | 63.45 118 | 70.56 218 | 83.69 162 |
|
casdiffmvs | | | 74.80 56 | 74.89 54 | 74.53 103 | 75.59 217 | 50.37 193 | 78.17 134 | 85.06 32 | 62.80 57 | 74.40 52 | 87.86 70 | 57.88 24 | 83.61 141 | 69.46 66 | 82.79 82 | 89.59 2 |
|
PVSNet | | 50.76 19 | 58.40 265 | 57.39 265 | 61.42 285 | 75.53 218 | 44.04 266 | 61.43 312 | 63.45 306 | 47.04 283 | 56.91 277 | 73.61 300 | 27.00 321 | 64.76 312 | 39.12 289 | 72.40 198 | 75.47 282 |
|
MVS | | | 67.37 176 | 66.33 181 | 70.51 194 | 75.46 219 | 50.94 181 | 73.95 214 | 81.85 97 | 41.57 324 | 62.54 228 | 78.57 246 | 47.98 120 | 85.47 103 | 52.97 191 | 82.05 88 | 75.14 284 |
|
nrg030 | | | 72.96 79 | 73.01 76 | 72.84 144 | 75.41 220 | 50.24 194 | 80.02 105 | 82.89 83 | 58.36 136 | 74.44 51 | 86.73 82 | 58.90 19 | 80.83 200 | 65.84 94 | 74.46 166 | 87.44 39 |
|
thres200 | | | 62.20 240 | 61.16 242 | 65.34 260 | 75.38 221 | 39.99 294 | 69.60 272 | 69.29 273 | 55.64 187 | 61.87 237 | 76.99 263 | 37.07 242 | 78.96 235 | 31.28 332 | 73.28 183 | 77.06 266 |
|
TransMVSNet (Re) | | | 64.72 215 | 64.33 204 | 65.87 254 | 75.22 222 | 38.56 306 | 74.66 205 | 75.08 226 | 58.90 126 | 61.79 238 | 82.63 160 | 51.18 88 | 78.07 243 | 43.63 261 | 55.87 324 | 80.99 218 |
|
MS-PatchMatch | | | 62.42 237 | 61.46 237 | 65.31 261 | 75.21 223 | 52.10 170 | 72.05 242 | 74.05 236 | 46.41 286 | 57.42 276 | 74.36 294 | 34.35 261 | 77.57 251 | 45.62 244 | 73.67 174 | 66.26 337 |
|
IB-MVS | | 56.42 12 | 65.40 210 | 62.73 224 | 73.40 134 | 74.89 224 | 52.78 159 | 73.09 228 | 75.13 222 | 55.69 184 | 58.48 269 | 73.73 299 | 32.86 276 | 86.32 81 | 50.63 205 | 70.11 226 | 81.10 216 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
MVS_Test | | | 72.45 86 | 72.46 81 | 72.42 155 | 74.88 225 | 48.50 219 | 76.28 173 | 83.14 78 | 59.40 118 | 72.46 83 | 84.68 122 | 55.66 41 | 81.12 192 | 65.98 93 | 79.66 115 | 87.63 31 |
|
CANet_DTU | | | 68.18 163 | 67.71 147 | 69.59 209 | 74.83 226 | 46.24 243 | 78.66 125 | 76.85 198 | 59.60 113 | 63.45 216 | 82.09 177 | 35.25 251 | 77.41 252 | 59.88 145 | 78.76 132 | 85.14 114 |
|
tfpnnormal | | | 62.47 236 | 61.63 235 | 64.99 263 | 74.81 227 | 39.01 302 | 71.22 253 | 73.72 239 | 55.22 193 | 60.21 247 | 80.09 219 | 41.26 204 | 76.98 258 | 30.02 336 | 68.09 256 | 78.97 247 |
|
Vis-MVSNet (Re-imp) | | | 63.69 224 | 63.88 208 | 63.14 274 | 74.75 228 | 31.04 345 | 71.16 255 | 63.64 305 | 56.32 168 | 59.80 254 | 84.99 118 | 44.51 166 | 75.46 267 | 39.12 289 | 80.62 99 | 82.92 184 |
|
HY-MVS | | 56.14 13 | 64.55 219 | 63.89 207 | 66.55 241 | 74.73 229 | 41.02 290 | 69.96 270 | 74.43 230 | 49.29 256 | 61.66 239 | 80.92 199 | 47.43 131 | 76.68 260 | 44.91 252 | 71.69 206 | 81.94 200 |
|
COLMAP_ROB |  | 52.97 17 | 61.27 252 | 58.81 254 | 68.64 222 | 74.63 230 | 52.51 165 | 78.42 132 | 73.30 242 | 49.92 253 | 50.96 319 | 81.51 187 | 23.06 335 | 79.40 220 | 31.63 328 | 65.85 273 | 74.01 300 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
LCM-MVSNet-Re | | | 61.88 245 | 61.35 238 | 63.46 270 | 74.58 231 | 31.48 344 | 61.42 313 | 58.14 326 | 58.71 129 | 53.02 313 | 79.55 230 | 43.07 178 | 76.80 259 | 45.69 242 | 77.96 139 | 82.11 199 |
|
test_djsdf | | | 69.45 137 | 67.74 144 | 74.58 101 | 74.57 232 | 54.92 136 | 82.79 63 | 78.48 169 | 51.26 240 | 65.41 188 | 83.49 149 | 38.37 225 | 83.24 147 | 66.06 90 | 69.25 243 | 85.56 99 |
|
EI-MVSNet | | | 69.27 139 | 68.44 137 | 71.73 163 | 74.47 233 | 49.39 210 | 75.20 192 | 78.45 172 | 59.60 113 | 69.16 125 | 76.51 272 | 51.29 86 | 82.50 167 | 59.86 147 | 71.45 210 | 83.30 173 |
|
CVMVSNet | | | 59.63 260 | 59.14 253 | 61.08 288 | 74.47 233 | 38.84 304 | 75.20 192 | 68.74 277 | 31.15 344 | 58.24 270 | 76.51 272 | 32.39 286 | 68.58 297 | 49.77 210 | 65.84 274 | 75.81 278 |
|
IterMVS-LS | | | 69.22 141 | 68.48 134 | 71.43 172 | 74.44 235 | 49.40 209 | 76.23 174 | 77.55 187 | 59.60 113 | 65.85 182 | 81.59 186 | 51.28 87 | 81.58 184 | 59.87 146 | 69.90 231 | 83.30 173 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
XVG-OURS-SEG-HR | | | 68.81 145 | 67.47 153 | 72.82 146 | 74.40 236 | 56.87 107 | 70.59 263 | 79.04 154 | 54.77 203 | 66.99 160 | 86.01 103 | 39.57 213 | 78.21 241 | 62.54 123 | 73.33 182 | 83.37 171 |
|
XVG-OURS | | | 68.76 149 | 67.37 156 | 72.90 143 | 74.32 237 | 57.22 98 | 70.09 269 | 78.81 158 | 55.24 192 | 67.79 151 | 85.81 110 | 36.54 246 | 78.28 240 | 62.04 128 | 75.74 160 | 83.19 178 |
|
OpenMVS |  | 61.03 9 | 68.85 144 | 67.56 148 | 72.70 148 | 74.26 238 | 53.99 142 | 81.21 91 | 81.34 113 | 52.70 222 | 62.75 223 | 85.55 113 | 38.86 221 | 84.14 128 | 48.41 223 | 83.01 74 | 79.97 233 |
|
MIMVSNet | | | 57.35 272 | 57.07 268 | 58.22 299 | 74.21 239 | 37.18 314 | 62.46 308 | 60.88 319 | 48.88 260 | 55.29 290 | 75.99 280 | 31.68 290 | 62.04 320 | 31.87 323 | 72.35 199 | 75.43 283 |
|
SCA | | | 60.49 254 | 58.38 259 | 66.80 237 | 74.14 240 | 48.06 224 | 63.35 305 | 63.23 308 | 49.13 258 | 59.33 260 | 72.10 306 | 37.45 234 | 74.27 273 | 44.17 254 | 62.57 297 | 78.05 254 |
|
thisisatest0515 | | | 65.83 202 | 63.50 215 | 72.82 146 | 73.75 241 | 49.50 208 | 71.32 251 | 73.12 245 | 49.39 255 | 63.82 214 | 76.50 274 | 34.95 255 | 84.84 117 | 53.20 190 | 75.49 163 | 84.13 145 |
|
K. test v3 | | | 60.47 255 | 57.11 267 | 70.56 192 | 73.74 242 | 48.22 222 | 75.10 196 | 62.55 312 | 58.27 138 | 53.62 308 | 76.31 276 | 27.81 314 | 81.59 183 | 47.42 226 | 39.18 349 | 81.88 202 |
|
v10 | | | 70.21 119 | 69.02 126 | 73.81 115 | 73.51 243 | 50.92 183 | 78.74 123 | 81.39 108 | 60.05 105 | 66.39 171 | 81.83 180 | 47.58 127 | 85.41 106 | 62.80 121 | 68.86 250 | 85.09 117 |
|
v1144 | | | 70.42 115 | 69.31 121 | 73.76 118 | 73.22 244 | 50.64 188 | 77.83 138 | 81.43 107 | 58.58 130 | 69.40 119 | 81.16 192 | 47.53 128 | 85.29 108 | 64.01 110 | 70.64 215 | 85.34 109 |
|
v1192 | | | 69.97 124 | 68.68 131 | 73.85 114 | 73.19 245 | 50.94 181 | 77.68 141 | 81.36 109 | 57.51 147 | 68.95 127 | 80.85 202 | 45.28 159 | 85.33 107 | 62.97 120 | 70.37 221 | 85.27 112 |
|
v8 | | | 70.33 117 | 69.28 122 | 73.49 129 | 73.15 246 | 50.22 195 | 78.62 126 | 80.78 129 | 60.79 86 | 66.45 170 | 82.11 176 | 49.35 103 | 84.98 111 | 63.58 116 | 68.71 251 | 85.28 111 |
|
v144192 | | | 69.71 127 | 68.51 133 | 73.33 136 | 73.10 247 | 50.13 197 | 77.54 145 | 80.64 130 | 56.65 157 | 68.57 131 | 80.55 207 | 46.87 142 | 84.96 113 | 62.98 119 | 69.66 237 | 84.89 123 |
|
v1921920 | | | 69.47 136 | 68.17 141 | 73.36 135 | 73.06 248 | 50.10 198 | 77.39 148 | 80.56 131 | 56.58 164 | 68.59 129 | 80.37 209 | 44.72 165 | 84.98 111 | 62.47 125 | 69.82 232 | 85.00 119 |
|
PatchmatchNet |  | | 59.84 258 | 58.24 260 | 64.65 265 | 73.05 249 | 46.70 238 | 69.42 274 | 62.18 314 | 47.55 275 | 58.88 263 | 71.96 308 | 34.49 259 | 69.16 294 | 42.99 267 | 63.60 289 | 78.07 253 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
v1240 | | | 69.24 140 | 67.91 143 | 73.25 139 | 73.02 250 | 49.82 201 | 77.21 154 | 80.54 132 | 56.43 166 | 68.34 135 | 80.51 208 | 43.33 177 | 84.99 109 | 62.03 129 | 69.77 235 | 84.95 122 |
|
Fast-Effi-MVS+-dtu | | | 67.37 176 | 65.33 198 | 73.48 130 | 72.94 251 | 57.78 90 | 77.47 147 | 76.88 197 | 57.60 146 | 61.97 235 | 76.85 266 | 39.31 215 | 80.49 208 | 54.72 175 | 70.28 224 | 82.17 198 |
|
EPNet_dtu | | | 61.90 243 | 61.97 232 | 61.68 283 | 72.89 252 | 39.78 296 | 75.85 183 | 65.62 293 | 55.09 196 | 54.56 299 | 79.36 234 | 37.59 233 | 67.02 304 | 39.80 287 | 76.95 150 | 78.25 251 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
tpm2 | | | 62.07 241 | 60.10 249 | 67.99 228 | 72.79 253 | 43.86 267 | 71.05 259 | 66.85 287 | 43.14 315 | 62.77 221 | 75.39 287 | 38.32 226 | 80.80 201 | 41.69 277 | 68.88 249 | 79.32 243 |
|
MDTV_nov1_ep13 | | | | 57.00 269 | | 72.73 254 | 38.26 308 | 65.02 300 | 64.73 300 | 44.74 298 | 55.46 286 | 72.48 304 | 32.61 284 | 70.47 287 | 37.47 296 | 67.75 261 | |
|
MSDG | | | 61.81 246 | 59.23 252 | 69.55 212 | 72.64 255 | 52.63 161 | 70.45 266 | 75.81 211 | 51.38 237 | 53.70 306 | 76.11 277 | 29.52 302 | 81.08 195 | 37.70 295 | 65.79 275 | 74.93 289 |
|
gg-mvs-nofinetune | | | 57.86 270 | 56.43 274 | 62.18 280 | 72.62 256 | 35.35 329 | 66.57 285 | 56.33 333 | 50.65 245 | 57.64 274 | 57.10 345 | 30.65 293 | 76.36 263 | 37.38 297 | 78.88 128 | 74.82 291 |
|
v2v482 | | | 70.50 113 | 69.45 120 | 73.66 124 | 72.62 256 | 50.03 199 | 77.58 142 | 80.51 133 | 59.90 107 | 69.52 115 | 82.14 175 | 47.53 128 | 84.88 116 | 65.07 103 | 70.17 225 | 86.09 79 |
|
baseline2 | | | 63.42 226 | 61.26 240 | 69.89 206 | 72.55 258 | 47.62 230 | 71.54 247 | 68.38 279 | 50.11 249 | 54.82 295 | 75.55 285 | 43.06 179 | 80.96 196 | 48.13 224 | 67.16 265 | 81.11 215 |
|
v7n | | | 69.01 143 | 67.36 157 | 73.98 112 | 72.51 259 | 52.65 160 | 78.54 129 | 81.30 114 | 60.26 102 | 62.67 224 | 81.62 183 | 43.61 174 | 84.49 122 | 57.01 158 | 68.70 252 | 84.79 127 |
|
pm-mvs1 | | | 65.24 211 | 64.97 202 | 66.04 250 | 72.38 260 | 39.40 300 | 72.62 234 | 75.63 213 | 55.53 188 | 62.35 234 | 83.18 153 | 47.45 130 | 76.47 262 | 49.06 218 | 66.54 268 | 82.24 195 |
|
XVG-ACMP-BASELINE | | | 64.36 220 | 62.23 229 | 70.74 189 | 72.35 261 | 52.45 167 | 70.80 262 | 78.45 172 | 53.84 213 | 59.87 252 | 81.10 194 | 16.24 347 | 79.32 222 | 55.64 169 | 71.76 205 | 80.47 224 |
|
WTY-MVS | | | 59.75 259 | 60.39 247 | 57.85 303 | 72.32 262 | 37.83 311 | 61.05 317 | 64.18 303 | 45.95 293 | 61.91 236 | 79.11 239 | 47.01 140 | 60.88 323 | 42.50 271 | 69.49 239 | 74.83 290 |
|
tpm cat1 | | | 59.25 261 | 56.95 270 | 66.15 247 | 72.19 263 | 46.96 236 | 68.09 280 | 65.76 292 | 40.03 332 | 57.81 273 | 70.56 316 | 38.32 226 | 74.51 271 | 38.26 293 | 61.50 305 | 77.00 268 |
|
mvs_anonymous | | | 68.03 166 | 67.51 152 | 69.59 209 | 72.08 264 | 44.57 262 | 71.99 243 | 75.23 219 | 51.67 230 | 67.06 159 | 82.57 162 | 54.68 49 | 77.94 244 | 56.56 159 | 75.71 161 | 86.26 76 |
|
OurMVSNet-221017-0 | | | 61.37 251 | 58.63 257 | 69.61 208 | 72.05 265 | 48.06 224 | 73.93 217 | 72.51 248 | 47.23 281 | 54.74 296 | 80.92 199 | 21.49 342 | 81.24 190 | 48.57 222 | 56.22 323 | 79.53 241 |
|
IterMVS-SCA-FT | | | 62.49 235 | 61.52 236 | 65.40 259 | 71.99 266 | 50.80 186 | 71.15 256 | 69.63 268 | 45.71 294 | 60.61 245 | 77.93 251 | 37.45 234 | 65.99 309 | 55.67 168 | 63.50 290 | 79.42 242 |
|
DWT-MVSNet_test | | | 61.90 243 | 59.93 250 | 67.83 229 | 71.98 267 | 46.09 246 | 71.03 260 | 69.71 265 | 50.09 250 | 58.51 268 | 70.62 315 | 30.21 298 | 77.63 249 | 49.28 216 | 67.91 257 | 79.78 238 |
|
CostFormer | | | 64.04 221 | 62.51 225 | 68.61 223 | 71.88 268 | 45.77 248 | 71.30 252 | 70.60 261 | 47.55 275 | 64.31 209 | 76.61 270 | 41.63 194 | 79.62 218 | 49.74 211 | 69.00 248 | 80.42 225 |
|
1314 | | | 64.61 218 | 63.21 218 | 68.80 220 | 71.87 269 | 47.46 232 | 73.95 214 | 78.39 177 | 42.88 317 | 59.97 250 | 76.60 271 | 38.11 229 | 79.39 221 | 54.84 174 | 72.32 200 | 79.55 240 |
|
tpm | | | 57.34 273 | 58.16 261 | 54.86 313 | 71.80 270 | 34.77 331 | 67.47 284 | 56.04 336 | 48.20 268 | 60.10 248 | 76.92 264 | 37.17 239 | 53.41 347 | 40.76 282 | 65.01 279 | 76.40 274 |
|
eth_miper_zixun_eth | | | 67.63 172 | 66.28 184 | 71.67 165 | 71.60 271 | 48.33 221 | 73.68 222 | 77.88 180 | 55.80 182 | 65.91 179 | 78.62 245 | 47.35 134 | 82.88 156 | 59.45 149 | 66.25 270 | 83.81 155 |
|
pmmvs4 | | | 61.48 250 | 59.39 251 | 67.76 230 | 71.57 272 | 53.86 143 | 71.42 248 | 65.34 295 | 44.20 305 | 59.46 256 | 77.92 252 | 35.90 247 | 74.71 270 | 43.87 259 | 64.87 280 | 74.71 293 |
|
AllTest | | | 57.08 275 | 54.65 284 | 64.39 266 | 71.44 273 | 49.03 211 | 69.92 271 | 67.30 282 | 45.97 291 | 47.16 332 | 79.77 224 | 17.47 344 | 67.56 301 | 33.65 317 | 59.16 314 | 76.57 272 |
|
TestCases | | | | | 64.39 266 | 71.44 273 | 49.03 211 | | 67.30 282 | 45.97 291 | 47.16 332 | 79.77 224 | 17.47 344 | 67.56 301 | 33.65 317 | 59.16 314 | 76.57 272 |
|
lessismore_v0 | | | | | 69.91 204 | 71.42 275 | 47.80 226 | | 50.90 344 | | 50.39 325 | 75.56 284 | 27.43 318 | 81.33 187 | 45.91 240 | 34.10 351 | 80.59 223 |
|
gm-plane-assit | | | | | | 71.40 276 | 41.72 287 | | | 48.85 261 | | 73.31 301 | | 82.48 169 | 48.90 219 | | |
|
GG-mvs-BLEND | | | | | 62.34 279 | 71.36 277 | 37.04 318 | 69.20 276 | 57.33 330 | | 54.73 297 | 65.48 337 | 30.37 295 | 77.82 246 | 34.82 313 | 74.93 165 | 72.17 318 |
|
FMVSNet5 | | | 55.86 282 | 54.93 282 | 58.66 298 | 71.05 278 | 36.35 324 | 64.18 304 | 62.48 313 | 46.76 284 | 50.66 324 | 74.73 292 | 25.80 327 | 64.04 314 | 33.11 319 | 65.57 276 | 75.59 281 |
|
cl_fuxian | | | 68.33 159 | 67.56 148 | 70.62 191 | 70.87 279 | 46.21 244 | 74.47 208 | 78.80 159 | 56.22 172 | 66.19 174 | 78.53 247 | 51.88 80 | 81.40 186 | 62.08 126 | 69.04 246 | 84.25 140 |
|
GA-MVS | | | 65.53 207 | 63.70 211 | 71.02 185 | 70.87 279 | 48.10 223 | 70.48 265 | 74.40 231 | 56.69 156 | 64.70 204 | 76.77 267 | 33.66 268 | 81.10 193 | 55.42 171 | 70.32 223 | 83.87 153 |
|
bset_n11_16_dypcd | | | 65.57 206 | 63.69 212 | 71.19 179 | 70.84 281 | 51.79 175 | 71.37 249 | 70.48 262 | 53.33 217 | 65.19 197 | 76.41 275 | 31.46 291 | 81.76 180 | 65.12 101 | 69.04 246 | 80.01 232 |
|
pmmvs6 | | | 63.69 224 | 62.82 223 | 66.27 245 | 70.63 282 | 39.27 301 | 73.13 227 | 75.47 216 | 52.69 223 | 59.75 255 | 82.30 169 | 39.71 212 | 77.03 257 | 47.40 227 | 64.35 284 | 82.53 190 |
|
miper_ehance_all_eth | | | 68.03 166 | 67.24 164 | 70.40 195 | 70.54 283 | 46.21 244 | 73.98 213 | 78.68 163 | 55.07 198 | 66.05 176 | 77.80 256 | 52.16 78 | 81.31 188 | 61.53 135 | 69.32 240 | 83.67 163 |
|
OpenMVS_ROB |  | 52.78 18 | 60.03 256 | 58.14 262 | 65.69 256 | 70.47 284 | 44.82 257 | 75.33 188 | 70.86 259 | 45.04 296 | 56.06 282 | 76.00 278 | 26.89 322 | 79.65 216 | 35.36 312 | 67.29 263 | 72.60 309 |
|
v148 | | | 68.24 162 | 67.19 165 | 71.40 173 | 70.43 285 | 47.77 228 | 75.76 184 | 77.03 196 | 58.91 125 | 67.36 155 | 80.10 218 | 48.60 116 | 81.89 176 | 60.01 144 | 66.52 269 | 84.53 132 |
|
XXY-MVS | | | 60.68 253 | 61.67 234 | 57.70 305 | 70.43 285 | 38.45 307 | 64.19 303 | 66.47 288 | 48.05 270 | 63.22 217 | 80.86 201 | 49.28 105 | 60.47 324 | 45.25 251 | 67.28 264 | 74.19 298 |
|
MVSTER | | | 67.16 182 | 65.58 195 | 71.88 160 | 70.37 287 | 49.70 203 | 70.25 268 | 78.45 172 | 51.52 234 | 69.16 125 | 80.37 209 | 38.45 224 | 82.50 167 | 60.19 142 | 71.46 209 | 83.44 170 |
|
cl-mvsnet_ | | | 67.18 180 | 66.26 185 | 69.94 202 | 70.20 288 | 45.74 249 | 73.30 224 | 76.83 199 | 55.10 194 | 65.27 190 | 79.57 229 | 47.39 132 | 80.53 206 | 59.41 151 | 69.22 244 | 83.53 169 |
|
cl-mvsnet1 | | | 67.18 180 | 66.26 185 | 69.94 202 | 70.20 288 | 45.74 249 | 73.29 225 | 76.83 199 | 55.10 194 | 65.27 190 | 79.58 228 | 47.38 133 | 80.53 206 | 59.43 150 | 69.22 244 | 83.54 168 |
|
tpmvs | | | 58.47 264 | 56.95 270 | 63.03 276 | 70.20 288 | 41.21 289 | 67.90 282 | 67.23 285 | 49.62 254 | 54.73 297 | 70.84 313 | 34.14 262 | 76.24 265 | 36.64 304 | 61.29 306 | 71.64 320 |
|
anonymousdsp | | | 67.00 186 | 64.82 203 | 73.57 128 | 70.09 291 | 56.13 115 | 76.35 171 | 77.35 192 | 48.43 265 | 64.99 201 | 80.84 203 | 33.01 274 | 80.34 209 | 64.66 105 | 67.64 262 | 84.23 141 |
|
MVS_0304 | | | 58.51 263 | 57.36 266 | 61.96 282 | 70.04 292 | 41.83 283 | 69.40 275 | 65.46 294 | 50.73 243 | 53.30 312 | 74.06 297 | 22.65 336 | 70.18 292 | 42.16 273 | 68.44 253 | 73.86 302 |
|
MIMVSNet1 | | | 55.17 288 | 54.31 289 | 57.77 304 | 70.03 293 | 32.01 342 | 65.68 292 | 64.81 298 | 49.19 257 | 46.75 335 | 76.00 278 | 25.53 329 | 64.04 314 | 28.65 340 | 62.13 300 | 77.26 264 |
|
CR-MVSNet | | | 59.91 257 | 57.90 264 | 65.96 251 | 69.96 294 | 52.07 171 | 65.31 297 | 63.15 309 | 42.48 319 | 59.36 257 | 74.84 290 | 35.83 248 | 70.75 286 | 45.50 246 | 64.65 282 | 75.06 285 |
|
RPMNet | | | 61.53 248 | 58.42 258 | 70.86 186 | 69.96 294 | 52.07 171 | 65.31 297 | 81.36 109 | 43.20 314 | 59.36 257 | 70.15 321 | 35.37 250 | 85.47 103 | 36.42 307 | 64.65 282 | 75.06 285 |
|
cl-mvsnet2 | | | 67.47 175 | 66.45 174 | 70.54 193 | 69.85 296 | 46.49 239 | 73.85 219 | 77.35 192 | 55.07 198 | 65.51 186 | 77.92 252 | 47.64 126 | 81.10 193 | 61.58 134 | 69.32 240 | 84.01 148 |
|
Anonymous20231206 | | | 55.10 289 | 55.30 281 | 54.48 315 | 69.81 297 | 33.94 336 | 62.91 307 | 62.13 315 | 41.08 326 | 55.18 291 | 75.65 283 | 32.75 280 | 56.59 339 | 30.32 335 | 67.86 258 | 72.91 305 |
|
our_test_3 | | | 56.49 276 | 54.42 286 | 62.68 278 | 69.51 298 | 45.48 254 | 66.08 289 | 61.49 317 | 44.11 308 | 50.73 323 | 69.60 325 | 33.05 273 | 68.15 298 | 38.38 292 | 56.86 320 | 74.40 295 |
|
ppachtmachnet_test | | | 58.06 269 | 55.38 280 | 66.10 249 | 69.51 298 | 48.99 214 | 68.01 281 | 66.13 291 | 44.50 302 | 54.05 304 | 70.74 314 | 32.09 288 | 72.34 279 | 36.68 303 | 56.71 322 | 76.99 270 |
|
diffmvs | | | 70.69 109 | 70.43 106 | 71.46 169 | 69.45 300 | 48.95 215 | 72.93 229 | 78.46 171 | 57.27 149 | 71.69 90 | 83.97 139 | 51.48 85 | 77.92 245 | 70.70 59 | 77.95 140 | 87.53 35 |
|
IterMVS | | | 62.79 234 | 61.27 239 | 67.35 234 | 69.37 301 | 52.04 173 | 71.17 254 | 68.24 280 | 52.63 224 | 59.82 253 | 76.91 265 | 37.32 236 | 72.36 278 | 52.80 192 | 63.19 293 | 77.66 258 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
miper_enhance_ethall | | | 67.11 183 | 66.09 187 | 70.17 199 | 69.21 302 | 45.98 247 | 72.85 231 | 78.41 175 | 51.38 237 | 65.65 184 | 75.98 281 | 51.17 89 | 81.25 189 | 60.82 137 | 69.32 240 | 83.29 175 |
|
Patchmtry | | | 57.16 274 | 56.47 273 | 59.23 292 | 69.17 303 | 34.58 333 | 62.98 306 | 63.15 309 | 44.53 301 | 56.83 278 | 74.84 290 | 35.83 248 | 68.71 296 | 40.03 285 | 60.91 307 | 74.39 296 |
|
CL-MVSNet_2432*1600 | | | 61.53 248 | 60.94 244 | 63.30 272 | 68.95 304 | 36.93 319 | 67.60 283 | 72.80 247 | 55.67 185 | 59.95 251 | 76.63 268 | 45.01 162 | 72.22 281 | 39.74 288 | 62.09 301 | 80.74 222 |
|
V42 | | | 68.65 150 | 67.35 158 | 72.56 150 | 68.93 305 | 50.18 196 | 72.90 230 | 79.47 149 | 56.92 154 | 69.45 118 | 80.26 215 | 46.29 146 | 82.99 151 | 64.07 108 | 67.82 260 | 84.53 132 |
|
test-LLR | | | 58.15 268 | 58.13 263 | 58.22 299 | 68.57 306 | 44.80 258 | 65.46 294 | 57.92 327 | 50.08 251 | 55.44 287 | 69.82 323 | 32.62 282 | 57.44 334 | 49.66 213 | 73.62 175 | 72.41 314 |
|
test-mter | | | 56.42 278 | 55.82 277 | 58.22 299 | 68.57 306 | 44.80 258 | 65.46 294 | 57.92 327 | 39.94 333 | 55.44 287 | 69.82 323 | 21.92 339 | 57.44 334 | 49.66 213 | 73.62 175 | 72.41 314 |
|
MVS-HIRNet | | | 45.52 314 | 44.48 317 | 48.65 329 | 68.49 308 | 34.05 335 | 59.41 322 | 44.50 353 | 27.03 348 | 37.96 349 | 50.47 351 | 26.16 326 | 64.10 313 | 26.74 345 | 59.52 312 | 47.82 348 |
|
dp | | | 51.89 303 | 51.60 301 | 52.77 322 | 68.44 309 | 32.45 341 | 62.36 309 | 54.57 338 | 44.16 306 | 49.31 327 | 67.91 328 | 28.87 308 | 56.61 338 | 33.89 316 | 54.89 326 | 69.24 334 |
|
PatchT | | | 53.17 299 | 53.44 296 | 52.33 324 | 68.29 310 | 25.34 355 | 58.21 324 | 54.41 339 | 44.46 303 | 54.56 299 | 69.05 326 | 33.32 271 | 60.94 322 | 36.93 299 | 61.76 304 | 70.73 326 |
|
Patchmatch-RL test | | | 58.16 267 | 55.49 279 | 66.15 247 | 67.92 311 | 48.89 216 | 60.66 318 | 51.07 343 | 47.86 272 | 59.36 257 | 62.71 342 | 34.02 264 | 72.27 280 | 56.41 160 | 59.40 313 | 77.30 262 |
|
pmmvs-eth3d | | | 58.81 262 | 56.31 275 | 66.30 244 | 67.61 312 | 52.42 168 | 72.30 239 | 64.76 299 | 43.55 311 | 54.94 294 | 74.19 296 | 28.95 306 | 72.60 277 | 43.31 262 | 57.21 319 | 73.88 301 |
|
PVSNet_0 | | 43.31 20 | 47.46 313 | 45.64 316 | 52.92 321 | 67.60 313 | 44.65 260 | 54.06 336 | 54.64 337 | 41.59 323 | 46.15 336 | 58.75 344 | 30.99 292 | 58.66 330 | 32.18 321 | 24.81 352 | 55.46 346 |
|
CHOSEN 280x420 | | | 47.83 311 | 46.36 315 | 52.24 325 | 67.37 314 | 49.78 202 | 38.91 353 | 43.11 354 | 35.00 340 | 43.27 343 | 63.30 341 | 28.95 306 | 49.19 350 | 36.53 305 | 60.80 309 | 57.76 344 |
|
tpmrst | | | 58.24 266 | 58.70 256 | 56.84 306 | 66.97 315 | 34.32 334 | 69.57 273 | 61.14 318 | 47.17 282 | 58.58 267 | 71.60 309 | 41.28 203 | 60.41 325 | 49.20 217 | 62.84 295 | 75.78 279 |
|
sss | | | 56.17 281 | 56.57 272 | 54.96 312 | 66.93 316 | 36.32 326 | 57.94 325 | 61.69 316 | 41.67 322 | 58.64 266 | 75.32 288 | 38.72 222 | 56.25 340 | 42.04 275 | 66.19 271 | 72.31 317 |
|
TinyColmap | | | 54.14 290 | 51.72 300 | 61.40 286 | 66.84 317 | 41.97 281 | 66.52 286 | 68.51 278 | 44.81 297 | 42.69 344 | 75.77 282 | 11.66 352 | 72.94 276 | 31.96 322 | 56.77 321 | 69.27 333 |
|
miper_lstm_enhance | | | 62.03 242 | 60.88 245 | 65.49 258 | 66.71 318 | 46.25 242 | 56.29 331 | 75.70 212 | 50.68 244 | 61.27 242 | 75.48 286 | 40.21 208 | 68.03 299 | 56.31 161 | 65.25 278 | 82.18 196 |
|
TESTMET0.1,1 | | | 55.28 286 | 54.90 283 | 56.42 307 | 66.56 319 | 43.67 269 | 65.46 294 | 56.27 334 | 39.18 335 | 53.83 305 | 67.44 331 | 24.21 334 | 55.46 344 | 48.04 225 | 73.11 188 | 70.13 329 |
|
D2MVS | | | 62.30 239 | 60.29 248 | 68.34 226 | 66.46 320 | 48.42 220 | 65.70 291 | 73.42 241 | 47.71 273 | 58.16 271 | 75.02 289 | 30.51 294 | 77.71 248 | 53.96 182 | 71.68 207 | 78.90 248 |
|
MDA-MVSNet-bldmvs | | | 53.87 293 | 50.81 304 | 63.05 275 | 66.25 321 | 48.58 218 | 56.93 329 | 63.82 304 | 48.09 269 | 41.22 345 | 70.48 319 | 30.34 296 | 68.00 300 | 34.24 315 | 45.92 343 | 72.57 310 |
|
ITE_SJBPF | | | | | 62.09 281 | 66.16 322 | 44.55 263 | | 64.32 302 | 47.36 278 | 55.31 289 | 80.34 211 | 19.27 343 | 62.68 318 | 36.29 308 | 62.39 299 | 79.04 245 |
|
EPMVS | | | 53.96 291 | 53.69 294 | 54.79 314 | 66.12 323 | 31.96 343 | 62.34 310 | 49.05 346 | 44.42 304 | 55.54 285 | 71.33 311 | 30.22 297 | 56.70 337 | 41.65 279 | 62.54 298 | 75.71 280 |
|
ADS-MVSNet2 | | | 51.33 305 | 48.76 310 | 59.07 295 | 66.02 324 | 44.60 261 | 50.90 340 | 59.76 321 | 36.90 336 | 50.74 321 | 66.18 335 | 26.38 323 | 63.11 316 | 27.17 342 | 54.76 327 | 69.50 331 |
|
ADS-MVSNet | | | 48.48 310 | 47.77 312 | 50.63 327 | 66.02 324 | 29.92 347 | 50.90 340 | 50.87 345 | 36.90 336 | 50.74 321 | 66.18 335 | 26.38 323 | 52.47 348 | 27.17 342 | 54.76 327 | 69.50 331 |
|
EU-MVSNet | | | 55.61 284 | 54.41 287 | 59.19 294 | 65.41 326 | 33.42 338 | 72.44 237 | 71.91 252 | 28.81 346 | 51.27 317 | 73.87 298 | 24.76 332 | 69.08 295 | 43.04 266 | 58.20 317 | 75.06 285 |
|
RPSCF | | | 55.80 283 | 54.22 291 | 60.53 289 | 65.13 327 | 42.91 276 | 64.30 302 | 57.62 329 | 36.84 338 | 58.05 272 | 82.28 170 | 28.01 312 | 56.24 341 | 37.14 298 | 58.61 316 | 82.44 194 |
|
USDC | | | 56.35 279 | 54.24 290 | 62.69 277 | 64.74 328 | 40.31 293 | 65.05 299 | 73.83 238 | 43.93 309 | 47.58 330 | 77.71 259 | 15.36 349 | 75.05 269 | 38.19 294 | 61.81 303 | 72.70 308 |
|
JIA-IIPM | | | 51.56 304 | 47.68 314 | 63.21 273 | 64.61 329 | 50.73 187 | 47.71 345 | 58.77 324 | 42.90 316 | 48.46 329 | 51.72 348 | 24.97 331 | 70.24 291 | 36.06 309 | 53.89 330 | 68.64 335 |
|
Patchmatch-test | | | 49.08 309 | 48.28 311 | 51.50 326 | 64.40 330 | 30.85 346 | 45.68 347 | 48.46 349 | 35.60 339 | 46.10 337 | 72.10 306 | 34.47 260 | 46.37 351 | 27.08 344 | 60.65 310 | 77.27 263 |
|
TDRefinement | | | 53.44 297 | 50.72 305 | 61.60 284 | 64.31 331 | 46.96 236 | 70.89 261 | 65.27 297 | 41.78 320 | 44.61 340 | 77.98 249 | 11.52 353 | 66.36 307 | 28.57 341 | 51.59 334 | 71.49 321 |
|
N_pmnet | | | 39.35 320 | 40.28 321 | 36.54 336 | 63.76 332 | 1.62 366 | 49.37 343 | 0.76 366 | 34.62 341 | 43.61 342 | 66.38 334 | 26.25 325 | 42.57 354 | 26.02 347 | 51.77 333 | 65.44 338 |
|
ambc | | | | | 65.13 262 | 63.72 333 | 37.07 317 | 47.66 346 | 78.78 160 | | 54.37 302 | 71.42 310 | 11.24 354 | 80.94 197 | 45.64 243 | 53.85 331 | 77.38 261 |
|
KD-MVS_2432*1600 | | | 53.45 295 | 51.50 302 | 59.30 290 | 62.82 334 | 37.14 315 | 55.33 332 | 71.79 253 | 47.34 279 | 55.09 292 | 70.52 317 | 21.91 340 | 70.45 288 | 35.72 310 | 42.97 346 | 70.31 327 |
|
miper_refine_blended | | | 53.45 295 | 51.50 302 | 59.30 290 | 62.82 334 | 37.14 315 | 55.33 332 | 71.79 253 | 47.34 279 | 55.09 292 | 70.52 317 | 21.91 340 | 70.45 288 | 35.72 310 | 42.97 346 | 70.31 327 |
|
test0.0.03 1 | | | 53.32 298 | 53.59 295 | 52.50 323 | 62.81 336 | 29.45 348 | 59.51 320 | 54.11 340 | 50.08 251 | 54.40 301 | 74.31 295 | 32.62 282 | 55.92 342 | 30.50 334 | 63.95 287 | 72.15 319 |
|
PMMVS | | | 53.96 291 | 53.26 297 | 56.04 308 | 62.60 337 | 50.92 183 | 61.17 316 | 56.09 335 | 32.81 342 | 53.51 310 | 66.84 333 | 34.04 263 | 59.93 327 | 44.14 256 | 68.18 255 | 57.27 345 |
|
PM-MVS | | | 52.33 301 | 50.19 306 | 58.75 297 | 62.10 338 | 45.14 256 | 65.75 290 | 40.38 355 | 43.60 310 | 53.52 309 | 72.65 303 | 9.16 358 | 65.87 310 | 50.41 206 | 54.18 329 | 65.24 339 |
|
Gipuma |  | | 34.77 323 | 31.91 327 | 43.33 334 | 62.05 339 | 37.87 310 | 20.39 356 | 67.03 286 | 23.23 352 | 18.41 356 | 25.84 355 | 4.24 361 | 62.73 317 | 14.71 352 | 51.32 335 | 29.38 353 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
test20.03 | | | 53.87 293 | 54.02 292 | 53.41 319 | 61.47 340 | 28.11 350 | 61.30 314 | 59.21 322 | 51.34 239 | 52.09 315 | 77.43 260 | 33.29 272 | 58.55 331 | 29.76 337 | 60.27 311 | 73.58 303 |
|
pmmvs5 | | | 56.47 277 | 55.68 278 | 58.86 296 | 61.41 341 | 36.71 321 | 66.37 287 | 62.75 311 | 40.38 330 | 53.70 306 | 76.62 269 | 34.56 257 | 67.05 303 | 40.02 286 | 65.27 277 | 72.83 307 |
|
MDA-MVSNet_test_wron | | | 50.71 307 | 48.95 308 | 56.00 310 | 61.17 342 | 41.84 282 | 51.90 339 | 56.45 331 | 40.96 327 | 44.79 339 | 67.84 329 | 30.04 300 | 55.07 346 | 36.71 302 | 50.69 337 | 71.11 325 |
|
YYNet1 | | | 50.73 306 | 48.96 307 | 56.03 309 | 61.10 343 | 41.78 284 | 51.94 338 | 56.44 332 | 40.94 328 | 44.84 338 | 67.80 330 | 30.08 299 | 55.08 345 | 36.77 300 | 50.71 336 | 71.22 322 |
|
CMPMVS |  | 42.80 21 | 57.81 271 | 55.97 276 | 63.32 271 | 60.98 344 | 47.38 233 | 64.66 301 | 69.50 270 | 32.06 343 | 46.83 334 | 77.80 256 | 29.50 303 | 71.36 283 | 48.68 220 | 73.75 173 | 71.21 323 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
UnsupCasMVSNet_bld | | | 50.07 308 | 48.87 309 | 53.66 317 | 60.97 345 | 33.67 337 | 57.62 327 | 64.56 301 | 39.47 334 | 47.38 331 | 64.02 340 | 27.47 316 | 59.32 328 | 34.69 314 | 43.68 345 | 67.98 336 |
|
Anonymous20240521 | | | 55.30 285 | 54.41 287 | 57.96 302 | 60.92 346 | 41.73 285 | 71.09 258 | 71.06 258 | 41.18 325 | 48.65 328 | 73.31 301 | 16.93 346 | 59.25 329 | 42.54 270 | 64.01 285 | 72.90 306 |
|
testgi | | | 51.90 302 | 52.37 299 | 50.51 328 | 60.39 347 | 23.55 357 | 58.42 323 | 58.15 325 | 49.03 259 | 51.83 316 | 79.21 238 | 22.39 337 | 55.59 343 | 29.24 339 | 62.64 296 | 72.40 316 |
|
UnsupCasMVSNet_eth | | | 53.16 300 | 52.47 298 | 55.23 311 | 59.45 348 | 33.39 339 | 59.43 321 | 69.13 274 | 45.98 290 | 50.35 326 | 72.32 305 | 29.30 305 | 58.26 332 | 42.02 276 | 44.30 344 | 74.05 299 |
|
new-patchmatchnet | | | 47.56 312 | 47.73 313 | 47.06 330 | 58.81 349 | 9.37 363 | 48.78 344 | 59.21 322 | 43.28 312 | 44.22 341 | 68.66 327 | 25.67 328 | 57.20 336 | 31.57 330 | 49.35 339 | 74.62 294 |
|
FPMVS | | | 42.18 317 | 41.11 320 | 45.39 331 | 58.03 350 | 41.01 291 | 49.50 342 | 53.81 342 | 30.07 345 | 33.71 350 | 64.03 338 | 11.69 351 | 52.08 349 | 14.01 353 | 55.11 325 | 43.09 350 |
|
DIV-MVS_2432*1600 | | | 55.22 287 | 53.89 293 | 59.21 293 | 57.80 351 | 27.47 351 | 57.75 326 | 74.32 232 | 47.38 277 | 50.90 320 | 70.00 322 | 28.45 310 | 70.30 290 | 40.44 283 | 57.92 318 | 79.87 235 |
|
new_pmnet | | | 34.13 324 | 34.29 325 | 33.64 337 | 52.63 352 | 18.23 361 | 44.43 350 | 33.90 358 | 22.81 353 | 30.89 351 | 53.18 346 | 10.48 356 | 35.72 358 | 20.77 350 | 39.51 348 | 46.98 349 |
|
pmmvs3 | | | 44.92 315 | 41.95 319 | 53.86 316 | 52.58 353 | 43.55 270 | 62.11 311 | 46.90 352 | 26.05 350 | 40.63 346 | 60.19 343 | 11.08 355 | 57.91 333 | 31.83 327 | 46.15 342 | 60.11 341 |
|
DSMNet-mixed | | | 39.30 321 | 38.72 322 | 41.03 335 | 51.22 354 | 19.66 359 | 45.53 348 | 31.35 359 | 15.83 357 | 39.80 348 | 67.42 332 | 22.19 338 | 45.13 352 | 22.43 348 | 52.69 332 | 58.31 343 |
|
LF4IMVS | | | 42.95 316 | 42.26 318 | 45.04 332 | 48.30 355 | 32.50 340 | 54.80 334 | 48.49 348 | 28.03 347 | 40.51 347 | 70.16 320 | 9.24 357 | 43.89 353 | 31.63 328 | 49.18 340 | 58.72 342 |
|
wuyk23d | | | 13.32 330 | 12.52 333 | 15.71 342 | 47.54 356 | 26.27 352 | 31.06 355 | 1.98 365 | 4.93 360 | 5.18 362 | 1.94 362 | 0.45 367 | 18.54 360 | 6.81 360 | 12.83 357 | 2.33 358 |
|
LCM-MVSNet | | | 40.30 319 | 35.88 324 | 53.57 318 | 42.24 357 | 29.15 349 | 45.21 349 | 60.53 320 | 22.23 354 | 28.02 352 | 50.98 350 | 3.72 363 | 61.78 321 | 31.22 333 | 38.76 350 | 69.78 330 |
|
E-PMN | | | 23.77 326 | 22.73 330 | 26.90 340 | 42.02 358 | 20.67 358 | 42.66 351 | 35.70 356 | 17.43 355 | 10.28 360 | 25.05 356 | 6.42 360 | 42.39 355 | 10.28 356 | 14.71 355 | 17.63 354 |
|
EMVS | | | 22.97 327 | 21.84 331 | 26.36 341 | 40.20 359 | 19.53 360 | 41.95 352 | 34.64 357 | 17.09 356 | 9.73 361 | 22.83 357 | 7.29 359 | 42.22 356 | 9.18 358 | 13.66 356 | 17.32 355 |
|
ANet_high | | | 41.38 318 | 37.47 323 | 53.11 320 | 39.73 360 | 24.45 356 | 56.94 328 | 69.69 266 | 47.65 274 | 26.04 353 | 52.32 347 | 12.44 350 | 62.38 319 | 21.80 349 | 10.61 358 | 72.49 311 |
|
PMMVS2 | | | 27.40 325 | 25.91 328 | 31.87 339 | 39.46 361 | 6.57 364 | 31.17 354 | 28.52 360 | 23.96 351 | 20.45 355 | 48.94 352 | 4.20 362 | 37.94 357 | 16.51 351 | 19.97 353 | 51.09 347 |
|
PMVS |  | 28.69 22 | 36.22 322 | 33.29 326 | 45.02 333 | 36.82 362 | 35.98 328 | 54.68 335 | 48.74 347 | 26.31 349 | 21.02 354 | 51.61 349 | 2.88 365 | 60.10 326 | 9.99 357 | 47.58 341 | 38.99 352 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVE |  | 17.77 23 | 21.41 328 | 17.77 332 | 32.34 338 | 34.34 363 | 25.44 354 | 16.11 357 | 24.11 361 | 11.19 358 | 13.22 358 | 31.92 353 | 1.58 366 | 30.95 359 | 10.47 355 | 17.03 354 | 40.62 351 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
DeepMVS_CX |  | | | | 12.03 343 | 17.97 364 | 10.91 362 | | 10.60 364 | 7.46 359 | 11.07 359 | 28.36 354 | 3.28 364 | 11.29 361 | 8.01 359 | 9.74 360 | 13.89 356 |
|
tmp_tt | | | 9.43 331 | 11.14 334 | 4.30 344 | 2.38 365 | 4.40 365 | 13.62 358 | 16.08 363 | 0.39 361 | 15.89 357 | 13.06 358 | 15.80 348 | 5.54 362 | 12.63 354 | 10.46 359 | 2.95 357 |
|
testmvs | | | 4.52 334 | 6.03 337 | 0.01 346 | 0.01 366 | 0.00 368 | 53.86 337 | 0.00 367 | 0.01 362 | 0.04 363 | 0.27 363 | 0.00 369 | 0.00 363 | 0.04 361 | 0.00 361 | 0.03 360 |
|
test123 | | | 4.73 333 | 6.30 336 | 0.02 345 | 0.01 366 | 0.01 367 | 56.36 330 | 0.00 367 | 0.01 362 | 0.04 363 | 0.21 364 | 0.01 368 | 0.00 363 | 0.03 362 | 0.00 361 | 0.04 359 |
|
uanet_test | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 368 | 0.00 359 | 0.00 367 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 369 | 0.00 363 | 0.00 363 | 0.00 361 | 0.00 361 |
|
cdsmvs_eth3d_5k | | | 17.50 329 | 23.34 329 | 0.00 347 | 0.00 368 | 0.00 368 | 0.00 359 | 78.63 164 | 0.00 364 | 0.00 365 | 82.18 171 | 49.25 106 | 0.00 363 | 0.00 363 | 0.00 361 | 0.00 361 |
|
pcd_1.5k_mvsjas | | | 3.92 335 | 5.23 338 | 0.00 347 | 0.00 368 | 0.00 368 | 0.00 359 | 0.00 367 | 0.00 364 | 0.00 365 | 0.00 365 | 47.05 137 | 0.00 363 | 0.00 363 | 0.00 361 | 0.00 361 |
|
sosnet-low-res | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 368 | 0.00 359 | 0.00 367 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 369 | 0.00 363 | 0.00 363 | 0.00 361 | 0.00 361 |
|
sosnet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 368 | 0.00 359 | 0.00 367 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 369 | 0.00 363 | 0.00 363 | 0.00 361 | 0.00 361 |
|
uncertanet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 368 | 0.00 359 | 0.00 367 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 369 | 0.00 363 | 0.00 363 | 0.00 361 | 0.00 361 |
|
Regformer | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 368 | 0.00 359 | 0.00 367 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 369 | 0.00 363 | 0.00 363 | 0.00 361 | 0.00 361 |
|
ab-mvs-re | | | 6.49 332 | 8.65 335 | 0.00 347 | 0.00 368 | 0.00 368 | 0.00 359 | 0.00 367 | 0.00 364 | 0.00 365 | 77.89 254 | 0.00 369 | 0.00 363 | 0.00 363 | 0.00 361 | 0.00 361 |
|
uanet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 368 | 0.00 359 | 0.00 367 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 369 | 0.00 363 | 0.00 363 | 0.00 361 | 0.00 361 |
|
test_241102_TWO | | | | | | | | | 86.73 14 | 64.18 33 | 84.26 4 | 91.84 6 | 65.19 4 | 90.83 2 | 78.63 12 | 90.70 5 | 87.65 30 |
|
test_0728_THIRD | | | | | | | | | | 65.04 20 | 83.82 6 | 92.00 3 | 64.69 8 | 90.75 5 | 79.48 4 | 90.63 6 | 88.09 15 |
|
GSMVS | | | | | | | | | | | | | | | | | 78.05 254 |
|
sam_mvs1 | | | | | | | | | | | | | 34.74 256 | | | | 78.05 254 |
|
sam_mvs | | | | | | | | | | | | | 33.43 270 | | | | |
|
MTGPA |  | | | | | | | | 80.97 125 | | | | | | | | |
|
test_post1 | | | | | | | | 68.67 278 | | | | 3.64 360 | 32.39 286 | 69.49 293 | 44.17 254 | | |
|
test_post | | | | | | | | | | | | 3.55 361 | 33.90 265 | 66.52 306 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 64.03 338 | 34.50 258 | 74.27 273 | | | |
|
MTMP | | | | | | | | 86.03 17 | 17.08 362 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 75.28 28 | 88.31 33 | 83.81 155 |
|
agg_prior2 | | | | | | | | | | | | | | | 73.09 46 | 87.93 40 | 84.33 137 |
|
test_prior4 | | | | | | | 62.51 17 | 82.08 79 | | | | | | | | | |
|
test_prior2 | | | | | | | | 81.75 81 | | 60.37 95 | 75.01 40 | 89.06 56 | 56.22 35 | | 72.19 49 | 88.96 24 | |
|
旧先验2 | | | | | | | | 76.08 177 | | 45.32 295 | 76.55 31 | | | 65.56 311 | 58.75 152 | | |
|
新几何2 | | | | | | | | 76.12 175 | | | | | | | | | |
|
无先验 | | | | | | | | 79.66 114 | 74.30 233 | 48.40 266 | | | | 80.78 202 | 53.62 184 | | 79.03 246 |
|
原ACMM2 | | | | | | | | 79.02 121 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 72.18 282 | 46.95 233 | | |
|
segment_acmp | | | | | | | | | | | | | 54.23 54 | | | | |
|
testdata1 | | | | | | | | 72.65 232 | | 60.50 91 | | | | | | | |
|
plane_prior5 | | | | | | | | | 84.01 50 | | | | | 87.21 51 | 68.16 73 | 80.58 101 | 84.65 130 |
|
plane_prior4 | | | | | | | | | | | | 86.10 100 | | | | | |
|
plane_prior3 | | | | | | | 56.09 116 | | | 63.92 37 | 69.27 121 | | | | | | |
|
plane_prior2 | | | | | | | | 84.22 38 | | 64.52 26 | | | | | | | |
|
plane_prior | | | | | | | 56.31 110 | 83.58 53 | | 63.19 47 | | | | | | 80.48 104 | |
|
n2 | | | | | | | | | 0.00 367 | | | | | | | | |
|
nn | | | | | | | | | 0.00 367 | | | | | | | | |
|
door-mid | | | | | | | | | 47.19 351 | | | | | | | | |
|
test11 | | | | | | | | | 83.47 65 | | | | | | | | |
|
door | | | | | | | | | 47.60 350 | | | | | | | | |
|
HQP5-MVS | | | | | | | 54.94 134 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 67.04 84 | | |
|
HQP4-MVS | | | | | | | | | | | 67.85 145 | | | 86.93 60 | | | 84.32 138 |
|
HQP3-MVS | | | | | | | | | 83.90 54 | | | | | | | 80.35 107 | |
|
HQP2-MVS | | | | | | | | | | | | | 45.46 154 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 25.89 353 | 61.22 315 | | 40.10 331 | 51.10 318 | | 32.97 275 | | 38.49 291 | | 78.61 249 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 74.07 171 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 72.16 202 | |
|
Test By Simon | | | | | | | | | | | | | 48.33 118 | | | | |
|