This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
HPM-MVS++copyleft79.88 980.14 979.10 2188.17 164.80 186.59 1283.70 6665.37 1378.78 2290.64 1958.63 2587.24 5479.00 1290.37 1485.26 131
CNVR-MVS79.84 1079.97 1079.45 1187.90 262.17 1784.37 3685.03 3766.96 577.58 2790.06 3659.47 2189.13 2278.67 1489.73 1687.03 60
test_0728_SECOND79.19 1687.82 359.11 6387.85 587.15 390.84 378.66 1590.61 1187.62 44
SED-MVS81.56 282.30 279.32 1387.77 458.90 6987.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 21
IU-MVS87.77 459.15 6085.53 2553.93 22884.64 379.07 1190.87 588.37 17
test_241102_ONE87.77 458.90 6986.78 1064.20 3185.97 191.34 1266.87 390.78 7
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6487.85 585.03 3764.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 120
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072687.75 759.07 6487.86 486.83 864.26 2984.19 791.92 564.82 8
test_one_060187.58 959.30 5786.84 765.01 2083.80 1191.86 664.03 11
test_part287.58 960.47 4283.42 12
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4267.01 190.33 1273.16 5491.15 488.23 21
NCCC78.58 1778.31 1979.39 1287.51 1262.61 1385.20 3184.42 4666.73 874.67 5389.38 4955.30 4489.18 2174.19 4687.34 4386.38 79
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 66
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6088.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 14
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 33
No_MVS79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 33
region2R77.67 2777.18 2979.15 1886.76 1762.95 686.29 1484.16 5162.81 5773.30 7090.58 2149.90 11488.21 3573.78 5087.03 4586.29 90
ACMMPR77.71 2577.23 2879.16 1786.75 1862.93 786.29 1484.24 4962.82 5573.55 6890.56 2249.80 11688.24 3474.02 4887.03 4586.32 87
HFP-MVS78.01 2477.65 2579.10 2186.71 1962.81 886.29 1484.32 4862.82 5573.96 6390.50 2453.20 7588.35 3274.02 4887.05 4486.13 93
MCST-MVS77.48 2877.45 2777.54 4586.67 2058.36 7683.22 5586.93 556.91 16174.91 4788.19 6259.15 2387.68 4873.67 5187.45 4286.57 76
ZD-MVS86.64 2160.38 4382.70 9257.95 14678.10 2490.06 3656.12 4088.84 2674.05 4787.00 48
APDe-MVScopyleft80.16 880.59 678.86 2886.64 2160.02 4588.12 386.42 1462.94 5182.40 1492.12 259.64 1989.76 1578.70 1388.32 3186.79 68
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3689.70 1679.85 591.48 188.19 23
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DP-MVS Recon72.15 9470.73 10676.40 5986.57 2457.99 7981.15 8882.96 8757.03 15866.78 18085.56 12644.50 18388.11 3751.77 21880.23 11683.10 199
MP-MVScopyleft78.35 2078.26 2178.64 3186.54 2563.47 486.02 2083.55 7063.89 3773.60 6790.60 2054.85 5086.72 6977.20 2588.06 3785.74 110
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS76.54 3675.93 4078.34 3686.47 2663.50 385.74 2582.28 9662.90 5271.77 10190.26 3146.61 16086.55 7671.71 6385.66 6284.97 140
APD-MVScopyleft78.02 2378.04 2377.98 4186.44 2760.81 3885.52 2784.36 4760.61 8979.05 2190.30 3055.54 4388.32 3373.48 5387.03 4584.83 143
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ZNCC-MVS78.82 1378.67 1779.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4290.47 2653.96 6188.68 2776.48 2889.63 2087.16 58
XVS77.17 3176.56 3479.00 2386.32 2962.62 1185.83 2283.92 5664.55 2372.17 9890.01 4047.95 13688.01 4071.55 6586.74 5286.37 81
X-MVStestdata70.21 12667.28 17579.00 2386.32 2962.62 1185.83 2283.92 5664.55 2372.17 986.49 40847.95 13688.01 4071.55 6586.74 5286.37 81
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2363.71 1289.23 2081.51 388.44 2788.09 27
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
114514_t70.83 11369.56 12474.64 9586.21 3154.63 13682.34 7081.81 10348.22 29463.01 24785.83 12240.92 22187.10 6157.91 16779.79 11882.18 216
save fliter86.17 3361.30 2883.98 4779.66 14759.00 123
DeepC-MVS_fast68.24 377.25 3076.63 3379.12 2086.15 3460.86 3684.71 3384.85 4161.98 7473.06 8088.88 5553.72 6989.06 2368.27 7988.04 3887.42 50
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PGM-MVS76.77 3576.06 3878.88 2786.14 3562.73 982.55 6783.74 6561.71 7672.45 9690.34 2948.48 13288.13 3672.32 5886.85 5085.78 104
FOURS186.12 3660.82 3788.18 183.61 6860.87 8481.50 16
MTAPA76.90 3476.42 3578.35 3586.08 3763.57 274.92 21180.97 13065.13 1575.77 3690.88 1748.63 12986.66 7177.23 2488.17 3384.81 144
GST-MVS78.14 2277.85 2478.99 2586.05 3861.82 2285.84 2185.21 2963.56 4174.29 5990.03 3852.56 8188.53 3074.79 4288.34 2986.63 75
CP-MVS77.12 3276.68 3278.43 3386.05 3863.18 587.55 1083.45 7462.44 6472.68 8990.50 2448.18 13487.34 5373.59 5285.71 6184.76 147
SR-MVS76.13 4275.70 4377.40 4885.87 4061.20 2985.52 2782.19 9759.99 10675.10 4190.35 2847.66 14186.52 7771.64 6482.99 8284.47 153
新几何170.76 19885.66 4161.13 3066.43 30644.68 33070.29 11486.64 9041.29 21675.23 28749.72 23381.75 10275.93 302
MG-MVS73.96 6673.89 6374.16 10985.65 4249.69 21981.59 8381.29 12061.45 7871.05 10888.11 6351.77 9687.73 4761.05 14983.09 8085.05 137
TEST985.58 4361.59 2481.62 8181.26 12155.65 19374.93 4588.81 5653.70 7084.68 120
train_agg76.27 3976.15 3776.64 5585.58 4361.59 2481.62 8181.26 12155.86 18274.93 4588.81 5653.70 7084.68 12075.24 3888.33 3083.65 184
ACMMP_NAP78.77 1578.78 1478.74 2985.44 4561.04 3183.84 4985.16 3262.88 5378.10 2491.26 1352.51 8288.39 3179.34 890.52 1386.78 69
test_885.40 4660.96 3481.54 8481.18 12455.86 18274.81 4988.80 5853.70 7084.45 124
原ACMM174.69 9185.39 4759.40 5483.42 7551.47 25470.27 11586.61 9348.61 13086.51 7853.85 20087.96 3978.16 276
CDPH-MVS76.31 3875.67 4478.22 3785.35 4859.14 6281.31 8684.02 5256.32 17474.05 6188.98 5453.34 7487.92 4369.23 7688.42 2887.59 45
ACMMPcopyleft76.02 4375.33 4678.07 3885.20 4961.91 2085.49 2984.44 4563.04 4969.80 12689.74 4645.43 17387.16 5972.01 6082.87 8785.14 133
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
agg_prior85.04 5059.96 4781.04 12874.68 5284.04 130
HPM-MVScopyleft77.28 2976.85 3078.54 3285.00 5160.81 3882.91 6085.08 3462.57 6073.09 7989.97 4150.90 10987.48 5275.30 3686.85 5087.33 56
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MP-MVS-pluss78.35 2078.46 1878.03 4084.96 5259.52 5382.93 5985.39 2662.15 6776.41 3491.51 1152.47 8486.78 6880.66 489.64 1987.80 36
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + MP.78.44 1978.28 2078.90 2684.96 5261.41 2684.03 4583.82 6459.34 11979.37 1989.76 4559.84 1687.62 5076.69 2786.74 5287.68 41
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
AdaColmapbinary69.99 13068.66 14373.97 11384.94 5457.83 8082.63 6578.71 16556.28 17664.34 22884.14 15341.57 21187.06 6346.45 26178.88 13577.02 293
DP-MVS65.68 21863.66 22971.75 17184.93 5556.87 9980.74 9273.16 25553.06 23559.09 29382.35 19036.79 26585.94 9132.82 35369.96 25572.45 337
DeepPCF-MVS69.58 179.03 1279.00 1379.13 1984.92 5660.32 4483.03 5785.33 2762.86 5480.17 1790.03 3861.76 1488.95 2474.21 4588.67 2688.12 26
CPTT-MVS72.78 7972.08 8474.87 8984.88 5761.41 2684.15 4377.86 18655.27 20067.51 16888.08 6541.93 20681.85 17969.04 7780.01 11781.35 232
test1277.76 4384.52 5858.41 7583.36 7872.93 8354.61 5388.05 3988.12 3586.81 67
SD-MVS77.70 2677.62 2677.93 4284.47 5961.88 2184.55 3483.87 6160.37 9679.89 1889.38 4954.97 4885.58 9976.12 3184.94 6686.33 85
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS_fast74.30 6373.46 6976.80 5284.45 6059.04 6683.65 5281.05 12760.15 10370.43 11289.84 4341.09 22085.59 9867.61 9182.90 8685.77 107
test_prior76.69 5384.20 6157.27 8884.88 4086.43 8086.38 79
CSCG76.92 3376.75 3177.41 4683.96 6259.60 5182.95 5886.50 1360.78 8775.27 3984.83 13860.76 1586.56 7567.86 8687.87 4186.06 95
DeepC-MVS69.38 278.56 1878.14 2279.83 783.60 6361.62 2384.17 4286.85 663.23 4673.84 6590.25 3257.68 2989.96 1474.62 4389.03 2287.89 30
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UA-Net73.13 7472.93 7473.76 11983.58 6451.66 18778.75 11977.66 19067.75 472.61 9189.42 4749.82 11583.29 14553.61 20283.14 7986.32 87
SR-MVS-dyc-post74.57 5973.90 6276.58 5783.49 6559.87 4984.29 3781.36 11358.07 14173.14 7690.07 3444.74 18085.84 9368.20 8081.76 10084.03 163
RE-MVS-def73.71 6683.49 6559.87 4984.29 3781.36 11358.07 14173.14 7690.07 3443.06 19568.20 8081.76 10084.03 163
LFMVS71.78 9771.59 8772.32 16183.40 6746.38 25679.75 10971.08 26964.18 3272.80 8788.64 5942.58 19983.72 13757.41 17184.49 7086.86 65
test22283.14 6858.68 7372.57 25063.45 32741.78 35167.56 16786.12 10937.13 26078.73 14074.98 314
9.1478.75 1583.10 6984.15 4388.26 159.90 10778.57 2390.36 2757.51 3286.86 6677.39 2389.52 21
旧先验183.04 7053.15 15867.52 29687.85 7144.08 18680.76 10678.03 281
MSLP-MVS++73.77 6873.47 6874.66 9383.02 7159.29 5882.30 7481.88 10159.34 11971.59 10486.83 8345.94 16483.65 13965.09 11385.22 6581.06 239
SteuartSystems-ACMMP79.48 1179.31 1179.98 383.01 7262.18 1687.60 985.83 1966.69 978.03 2690.98 1654.26 5590.06 1378.42 1989.02 2387.69 40
Skip Steuart: Steuart Systems R&D Blog.
MVS_111021_HR74.02 6473.46 6975.69 7383.01 7260.63 4077.29 15878.40 18061.18 8270.58 11185.97 11554.18 5784.00 13367.52 9382.98 8482.45 211
SF-MVS78.82 1379.22 1277.60 4482.88 7457.83 8084.99 3288.13 261.86 7579.16 2090.75 1857.96 2687.09 6277.08 2690.18 1587.87 32
VDDNet71.81 9671.33 9573.26 14382.80 7547.60 24778.74 12075.27 22559.59 11572.94 8289.40 4841.51 21483.91 13458.75 16582.99 8288.26 19
3Dnovator+66.72 475.84 4574.57 5479.66 982.40 7659.92 4885.83 2286.32 1666.92 767.80 16289.24 5142.03 20489.38 1964.07 11986.50 5689.69 2
dcpmvs_274.55 6075.23 4872.48 15682.34 7753.34 15577.87 13981.46 10957.80 15075.49 3786.81 8462.22 1377.75 25571.09 6782.02 9686.34 83
APD-MVS_3200maxsize74.96 4974.39 5676.67 5482.20 7858.24 7783.67 5183.29 8158.41 13573.71 6690.14 3345.62 16685.99 8969.64 7282.85 8885.78 104
MM80.20 780.28 879.99 282.19 7960.01 4686.19 1783.93 5573.19 177.08 3191.21 1557.23 3390.73 1083.35 188.12 3589.22 5
PVSNet_Blended_VisFu71.45 10470.39 11174.65 9482.01 8058.82 7179.93 10380.35 14055.09 20665.82 20282.16 19749.17 12382.64 16560.34 15378.62 14282.50 210
TSAR-MVS + GP.74.90 5074.15 5877.17 4982.00 8158.77 7281.80 7878.57 16958.58 13274.32 5884.51 14855.94 4187.22 5567.11 9684.48 7185.52 116
h-mvs3372.71 8171.49 9076.40 5981.99 8259.58 5276.92 16876.74 20660.40 9374.81 4985.95 11745.54 16985.76 9570.41 7070.61 24183.86 172
API-MVS72.17 9171.41 9274.45 10281.95 8357.22 8984.03 4580.38 13959.89 11068.40 14682.33 19149.64 11787.83 4651.87 21684.16 7578.30 274
MAR-MVS71.51 10270.15 11775.60 7781.84 8459.39 5581.38 8582.90 8954.90 21368.08 15478.70 26047.73 13985.51 10151.68 22084.17 7481.88 222
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM_NR72.63 8271.80 8575.13 8581.72 8553.42 15479.91 10483.28 8259.14 12166.31 19185.90 11951.86 9486.06 8657.45 17080.62 10785.91 100
VDD-MVS72.50 8372.09 8373.75 12181.58 8649.69 21977.76 14477.63 19163.21 4773.21 7389.02 5342.14 20383.32 14461.72 14382.50 9188.25 20
PS-MVSNAJ70.51 11969.70 12372.93 14781.52 8755.79 11674.92 21179.00 15855.04 21169.88 12478.66 26147.05 15382.19 17361.61 14479.58 12380.83 243
testdata64.66 28481.52 8752.93 16365.29 31446.09 31973.88 6487.46 7538.08 24866.26 33453.31 20578.48 14374.78 318
CHOSEN 1792x268865.08 22962.84 24071.82 16981.49 8956.26 10566.32 31074.20 24640.53 36163.16 24478.65 26241.30 21577.80 25445.80 26774.09 19081.40 229
HQP_MVS74.31 6273.73 6576.06 6581.41 9056.31 10284.22 4084.01 5364.52 2569.27 13486.10 11045.26 17787.21 5668.16 8280.58 10984.65 148
plane_prior781.41 9055.96 111
DPM-MVS75.47 4875.00 4976.88 5181.38 9259.16 5979.94 10285.71 2256.59 16972.46 9486.76 8556.89 3487.86 4566.36 10188.91 2583.64 185
CANet76.46 3775.93 4078.06 3981.29 9357.53 8582.35 6983.31 8067.78 370.09 11686.34 10354.92 4988.90 2572.68 5784.55 6987.76 38
Vis-MVSNetpermissive72.18 9071.37 9474.61 9681.29 9355.41 12680.90 8978.28 18260.73 8869.23 13788.09 6444.36 18582.65 16457.68 16881.75 10285.77 107
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
plane_prior181.27 95
xiu_mvs_v2_base70.52 11869.75 12172.84 14981.21 9655.63 12075.11 20578.92 16054.92 21269.96 12379.68 24647.00 15782.09 17561.60 14579.37 12680.81 244
plane_prior681.20 9756.24 10645.26 177
PAPR71.72 10070.82 10474.41 10381.20 9751.17 18979.55 11483.33 7955.81 18666.93 17984.61 14450.95 10786.06 8655.79 18279.20 13186.00 96
PLCcopyleft56.13 1465.09 22863.21 23670.72 20081.04 9954.87 13478.57 12577.47 19348.51 29055.71 31981.89 20333.71 29179.71 22141.66 30570.37 24577.58 285
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
NP-MVS80.98 10056.05 11085.54 129
iter_conf05_1173.52 7072.59 7776.30 6380.93 10151.97 18478.62 12383.48 7152.20 24571.53 10585.93 11854.01 5888.55 2861.08 14885.56 6488.39 16
MVS_030478.73 1678.75 1578.66 3080.82 10257.62 8385.31 3081.31 11870.51 274.17 6091.24 1454.99 4789.56 1782.29 288.13 3488.80 7
OPM-MVS74.73 5374.25 5776.19 6480.81 10359.01 6782.60 6683.64 6763.74 3972.52 9287.49 7447.18 15185.88 9269.47 7480.78 10583.66 183
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP-NCC80.66 10482.31 7162.10 6867.85 157
ACMP_Plane80.66 10482.31 7162.10 6867.85 157
HQP-MVS73.45 7172.80 7575.40 7980.66 10454.94 13182.31 7183.90 5862.10 6867.85 15785.54 12945.46 17186.93 6467.04 9780.35 11384.32 155
CS-MVS-test75.62 4775.31 4776.56 5880.63 10755.13 13083.88 4885.22 2862.05 7171.49 10686.03 11353.83 6586.36 8367.74 8886.91 4988.19 23
PHI-MVS75.87 4475.36 4577.41 4680.62 10855.91 11384.28 3985.78 2056.08 18073.41 6986.58 9550.94 10888.54 2970.79 6889.71 1787.79 37
ACMM61.98 770.80 11569.73 12274.02 11180.59 10958.59 7482.68 6482.02 10055.46 19767.18 17384.39 15038.51 24183.17 14860.65 15176.10 17380.30 251
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
bld_raw_dy_0_6474.00 6573.69 6774.93 8680.28 11050.00 21377.56 14885.20 3155.84 18472.52 9284.05 15653.90 6386.60 7267.59 9286.28 5988.18 25
Anonymous2023121169.28 15168.47 14871.73 17280.28 11047.18 25179.98 10082.37 9554.61 21667.24 17184.01 15839.43 23182.41 17155.45 18772.83 21485.62 114
ACMP63.53 672.30 8871.20 9875.59 7880.28 11057.54 8482.74 6382.84 9160.58 9065.24 21486.18 10739.25 23486.03 8866.95 9976.79 16683.22 193
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LPG-MVS_test72.74 8071.74 8675.76 7080.22 11357.51 8682.55 6783.40 7661.32 7966.67 18487.33 7739.15 23686.59 7367.70 8977.30 15983.19 195
LGP-MVS_train75.76 7080.22 11357.51 8683.40 7661.32 7966.67 18487.33 7739.15 23686.59 7367.70 8977.30 15983.19 195
WR-MVS68.47 16868.47 14868.44 23780.20 11539.84 31673.75 23576.07 21364.68 2268.11 15383.63 16650.39 11279.14 23549.78 23069.66 26386.34 83
Anonymous2024052969.91 13269.02 13572.56 15480.19 11647.65 24577.56 14880.99 12955.45 19869.88 12486.76 8539.24 23582.18 17454.04 19777.10 16387.85 33
Anonymous20240521166.84 20365.99 20269.40 22480.19 11642.21 29871.11 27271.31 26858.80 12667.90 15586.39 10229.83 32879.65 22249.60 23678.78 13886.33 85
CS-MVS76.25 4075.98 3977.06 5080.15 11855.63 12084.51 3583.90 5863.24 4573.30 7087.27 7955.06 4686.30 8571.78 6284.58 6889.25 4
BH-RMVSNet68.81 15867.42 16972.97 14680.11 11952.53 17274.26 22276.29 20958.48 13468.38 14784.20 15142.59 19883.83 13546.53 26075.91 17482.56 206
test_040263.25 24861.01 26369.96 21180.00 12054.37 13976.86 17172.02 26454.58 21858.71 29680.79 22835.00 27784.36 12526.41 38564.71 30771.15 355
HyFIR lowres test65.67 21963.01 23873.67 12579.97 12155.65 11969.07 29375.52 22142.68 34963.53 23977.95 27140.43 22381.64 18246.01 26571.91 22783.73 179
mamv474.72 5474.09 5976.61 5679.86 12253.06 16279.89 10585.13 3355.66 19172.81 8585.24 13453.83 6588.07 3867.77 8786.63 5588.71 9
EIA-MVS71.78 9770.60 10775.30 8379.85 12353.54 15077.27 15983.26 8357.92 14766.49 18679.39 25252.07 9186.69 7060.05 15579.14 13385.66 112
MVSMamba_pp74.64 5774.07 6076.35 6179.76 12453.09 16179.97 10185.21 2955.21 20372.81 8585.37 13353.93 6287.17 5867.93 8586.46 5788.80 7
BH-untuned68.27 17167.29 17471.21 18879.74 12553.22 15776.06 18577.46 19557.19 15666.10 19381.61 20945.37 17583.50 14245.42 27676.68 16876.91 297
VNet69.68 13970.19 11668.16 24079.73 12641.63 30570.53 27877.38 19660.37 9670.69 11086.63 9251.08 10577.09 26553.61 20281.69 10485.75 109
LS3D64.71 23162.50 24471.34 18679.72 12755.71 11779.82 10674.72 23748.50 29156.62 31284.62 14333.59 29482.34 17229.65 37475.23 18375.97 301
hse-mvs271.04 10869.86 12074.60 9779.58 12857.12 9673.96 22775.25 22660.40 9374.81 4981.95 20245.54 16982.90 15370.41 7066.83 29283.77 177
GeoE71.01 10970.15 11773.60 13179.57 12952.17 17878.93 11878.12 18358.02 14367.76 16583.87 16152.36 8682.72 16256.90 17375.79 17685.92 99
AUN-MVS68.45 16966.41 19274.57 9979.53 13057.08 9773.93 23075.23 22754.44 22166.69 18381.85 20437.10 26182.89 15462.07 13966.84 29183.75 178
test250665.33 22564.61 21867.50 24579.46 13134.19 36774.43 22151.92 37458.72 12766.75 18288.05 6625.99 35780.92 20151.94 21584.25 7287.39 51
ECVR-MVScopyleft67.72 18467.51 16668.35 23879.46 13136.29 35574.79 21466.93 30258.72 12767.19 17288.05 6636.10 26781.38 18852.07 21384.25 7287.39 51
BH-w/o66.85 20265.83 20469.90 21579.29 13352.46 17474.66 21776.65 20754.51 22064.85 22378.12 26745.59 16882.95 15243.26 29275.54 18074.27 323
1112_ss64.00 24063.36 23365.93 27079.28 13442.58 29471.35 26572.36 26146.41 31660.55 27577.89 27546.27 16373.28 29546.18 26369.97 25481.92 221
ETV-MVS74.46 6173.84 6476.33 6279.27 13555.24 12979.22 11685.00 3964.97 2172.65 9079.46 25153.65 7387.87 4467.45 9482.91 8585.89 101
test111167.21 19167.14 18267.42 24779.24 13634.76 36273.89 23265.65 31158.71 12966.96 17787.95 6936.09 26880.53 20852.03 21483.79 7786.97 61
UniMVSNet_NR-MVSNet71.11 10771.00 10271.44 18079.20 13744.13 27976.02 18882.60 9366.48 1168.20 14984.60 14556.82 3582.82 16054.62 19370.43 24387.36 55
VPNet67.52 18768.11 15565.74 27379.18 13836.80 34772.17 25672.83 25762.04 7267.79 16385.83 12248.88 12876.60 27751.30 22172.97 21383.81 173
TR-MVS66.59 21065.07 21571.17 19179.18 13849.63 22173.48 23775.20 22952.95 23667.90 15580.33 23439.81 22883.68 13843.20 29373.56 20180.20 252
TAMVS66.78 20565.27 21371.33 18779.16 14053.67 14673.84 23469.59 28252.32 24465.28 20981.72 20744.49 18477.40 26142.32 30078.66 14182.92 201
patch_mono-269.85 13371.09 10066.16 26479.11 14154.80 13571.97 25974.31 24353.50 23370.90 10984.17 15257.63 3163.31 34366.17 10282.02 9680.38 250
Test_1112_low_res62.32 25761.77 25264.00 28979.08 14239.53 32168.17 29770.17 27643.25 34459.03 29479.90 24044.08 18671.24 30643.79 28868.42 28081.25 233
CDS-MVSNet66.80 20465.37 21071.10 19378.98 14353.13 16073.27 24071.07 27052.15 24664.72 22480.23 23643.56 19177.10 26445.48 27478.88 13583.05 200
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
sasdasda74.67 5574.98 5073.71 12378.94 14450.56 20280.23 9583.87 6160.30 10077.15 2986.56 9659.65 1782.00 17666.01 10582.12 9388.58 12
canonicalmvs74.67 5574.98 5073.71 12378.94 14450.56 20280.23 9583.87 6160.30 10077.15 2986.56 9659.65 1782.00 17666.01 10582.12 9388.58 12
EC-MVSNet75.84 4575.87 4275.74 7278.86 14652.65 16883.73 5086.08 1763.47 4272.77 8887.25 8053.13 7687.93 4271.97 6185.57 6386.66 73
IS-MVSNet71.57 10171.00 10273.27 14278.86 14645.63 26780.22 9778.69 16664.14 3566.46 18787.36 7649.30 12085.60 9750.26 22983.71 7888.59 11
CLD-MVS73.33 7272.68 7675.29 8478.82 14853.33 15678.23 13084.79 4261.30 8170.41 11381.04 21952.41 8587.12 6064.61 11882.49 9285.41 124
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVSFormer71.50 10370.38 11274.88 8878.76 14957.15 9482.79 6178.48 17351.26 25869.49 12983.22 17243.99 18883.24 14666.06 10379.37 12684.23 158
lupinMVS69.57 14368.28 15373.44 13778.76 14957.15 9476.57 17473.29 25446.19 31869.49 12982.18 19443.99 18879.23 22964.66 11679.37 12683.93 167
CNLPA65.43 22264.02 22269.68 21878.73 15158.07 7877.82 14370.71 27351.49 25361.57 26983.58 16838.23 24670.82 30743.90 28670.10 25280.16 253
EPP-MVSNet72.16 9371.31 9674.71 9078.68 15249.70 21782.10 7581.65 10560.40 9365.94 19685.84 12151.74 9786.37 8255.93 17979.55 12588.07 29
TranMVSNet+NR-MVSNet70.36 12370.10 11971.17 19178.64 15342.97 29276.53 17581.16 12666.95 668.53 14585.42 13151.61 9983.07 14952.32 21069.70 26287.46 48
UniMVSNet (Re)70.63 11770.20 11571.89 16678.55 15445.29 27075.94 18982.92 8863.68 4068.16 15183.59 16753.89 6483.49 14353.97 19871.12 23686.89 64
Fast-Effi-MVS+70.28 12569.12 13473.73 12278.50 15551.50 18875.01 20879.46 15256.16 17968.59 14279.55 24953.97 6084.05 12953.34 20477.53 15385.65 113
PS-MVSNAJss72.24 8971.21 9775.31 8278.50 15555.93 11281.63 8082.12 9856.24 17770.02 12085.68 12547.05 15384.34 12665.27 11274.41 18885.67 111
EI-MVSNet-Vis-set72.42 8771.59 8774.91 8778.47 15754.02 14177.05 16479.33 15465.03 1871.68 10379.35 25452.75 7984.89 11666.46 10074.23 18985.83 103
FA-MVS(test-final)69.82 13468.48 14673.84 11578.44 15850.04 21175.58 19778.99 15958.16 13967.59 16682.14 19842.66 19785.63 9656.60 17476.19 17285.84 102
testing9164.46 23563.80 22666.47 25778.43 15940.06 31467.63 30169.59 28259.06 12263.18 24378.05 26934.05 28676.99 26748.30 24675.87 17582.37 213
testing1162.81 25261.90 25165.54 27578.38 16040.76 31167.59 30366.78 30455.48 19660.13 27777.11 28631.67 31776.79 27245.53 27274.45 18679.06 268
MVS_111021_LR69.50 14668.78 14071.65 17578.38 16059.33 5674.82 21370.11 27758.08 14067.83 16184.68 14041.96 20576.34 28265.62 11077.54 15279.30 267
test_yl69.69 13769.13 13271.36 18478.37 16245.74 26374.71 21580.20 14157.91 14870.01 12183.83 16242.44 20082.87 15654.97 18979.72 11985.48 118
DCV-MVSNet69.69 13769.13 13271.36 18478.37 16245.74 26374.71 21580.20 14157.91 14870.01 12183.83 16242.44 20082.87 15654.97 18979.72 11985.48 118
FIs70.82 11471.43 9168.98 23078.33 16438.14 33276.96 16683.59 6961.02 8367.33 17086.73 8755.07 4581.64 18254.61 19579.22 13087.14 59
UGNet68.81 15867.39 17073.06 14578.33 16454.47 13779.77 10775.40 22360.45 9263.22 24184.40 14932.71 30680.91 20251.71 21980.56 11183.81 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
jason69.65 14068.39 15273.43 13878.27 16656.88 9877.12 16273.71 25146.53 31569.34 13383.22 17243.37 19279.18 23064.77 11579.20 13184.23 158
jason: jason.
alignmvs73.86 6773.99 6173.45 13678.20 16750.50 20478.57 12582.43 9459.40 11776.57 3286.71 8956.42 3881.23 19365.84 10881.79 9988.62 10
xiu_mvs_v1_base_debu68.58 16467.28 17572.48 15678.19 16857.19 9175.28 20075.09 23251.61 24970.04 11781.41 21332.79 30279.02 23763.81 12577.31 15681.22 234
xiu_mvs_v1_base68.58 16467.28 17572.48 15678.19 16857.19 9175.28 20075.09 23251.61 24970.04 11781.41 21332.79 30279.02 23763.81 12577.31 15681.22 234
xiu_mvs_v1_base_debi68.58 16467.28 17572.48 15678.19 16857.19 9175.28 20075.09 23251.61 24970.04 11781.41 21332.79 30279.02 23763.81 12577.31 15681.22 234
testing9964.05 23863.29 23566.34 25978.17 17139.76 31867.33 30668.00 29558.60 13163.03 24678.10 26832.57 31176.94 26948.22 24775.58 17982.34 214
PAPM67.92 18066.69 18571.63 17678.09 17249.02 22777.09 16381.24 12351.04 26160.91 27383.98 15947.71 14084.99 11140.81 30879.32 12980.90 242
ACMH55.70 1565.20 22763.57 23070.07 21078.07 17352.01 18379.48 11579.69 14555.75 18856.59 31380.98 22127.12 34980.94 19942.90 29771.58 23177.25 291
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
iter_conf0573.64 6973.08 7275.33 8178.05 17450.61 19979.76 10884.74 4355.66 19172.19 9785.10 13553.98 5987.65 4968.56 7879.69 12187.73 39
DU-MVS70.01 12969.53 12671.44 18078.05 17444.13 27975.01 20881.51 10864.37 2868.20 14984.52 14649.12 12682.82 16054.62 19370.43 24387.37 53
NR-MVSNet69.54 14468.85 13771.59 17778.05 17443.81 28374.20 22380.86 13265.18 1462.76 24984.52 14652.35 8783.59 14150.96 22570.78 23887.37 53
EI-MVSNet-UG-set71.92 9571.06 10174.52 10177.98 17753.56 14976.62 17379.16 15564.40 2771.18 10778.95 25952.19 8984.66 12265.47 11173.57 20085.32 127
WR-MVS_H67.02 19966.92 18467.33 25077.95 17837.75 33677.57 14782.11 9962.03 7362.65 25282.48 18850.57 11079.46 22542.91 29664.01 31384.79 145
testing22262.29 25961.31 25865.25 28177.87 17938.53 32968.34 29666.31 30856.37 17363.15 24577.58 28328.47 33876.18 28537.04 32876.65 16981.05 240
Effi-MVS+73.31 7372.54 7975.62 7677.87 17953.64 14779.62 11379.61 14861.63 7772.02 10082.61 18256.44 3785.97 9063.99 12279.07 13487.25 57
DELS-MVS74.76 5274.46 5575.65 7577.84 18152.25 17775.59 19584.17 5063.76 3873.15 7582.79 17759.58 2086.80 6767.24 9586.04 6087.89 30
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ACMH+57.40 1166.12 21464.06 22172.30 16277.79 18252.83 16680.39 9478.03 18457.30 15457.47 30782.55 18427.68 34484.17 12745.54 27169.78 25979.90 257
MGCFI-Net72.45 8573.34 7169.81 21777.77 18343.21 28975.84 19281.18 12459.59 11575.45 3886.64 9057.74 2877.94 25063.92 12381.90 9888.30 18
3Dnovator64.47 572.49 8471.39 9375.79 6977.70 18458.99 6880.66 9383.15 8562.24 6665.46 20686.59 9442.38 20285.52 10059.59 16184.72 6782.85 204
EG-PatchMatch MVS64.71 23162.87 23970.22 20677.68 18553.48 15177.99 13778.82 16153.37 23456.03 31877.41 28524.75 36484.04 13046.37 26273.42 20573.14 329
UWE-MVS60.18 27559.78 27061.39 30877.67 18633.92 37069.04 29463.82 32448.56 28864.27 23177.64 28227.20 34870.40 31233.56 35076.24 17179.83 259
CP-MVSNet66.49 21166.41 19266.72 25377.67 18636.33 35276.83 17279.52 15062.45 6362.54 25583.47 17146.32 16178.37 24445.47 27563.43 32085.45 120
GBi-Net67.21 19166.55 18669.19 22677.63 18843.33 28677.31 15577.83 18756.62 16665.04 21982.70 17841.85 20780.33 21347.18 25572.76 21583.92 168
test167.21 19166.55 18669.19 22677.63 18843.33 28677.31 15577.83 18756.62 16665.04 21982.70 17841.85 20780.33 21347.18 25572.76 21583.92 168
FMVSNet266.93 20166.31 19768.79 23377.63 18842.98 29176.11 18377.47 19356.62 16665.22 21682.17 19641.85 20780.18 21947.05 25872.72 21883.20 194
PCF-MVS61.88 870.95 11169.49 12775.35 8077.63 18855.71 11776.04 18781.81 10350.30 26969.66 12785.40 13252.51 8284.89 11651.82 21780.24 11585.45 120
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVP-Stereo65.41 22363.80 22670.22 20677.62 19255.53 12476.30 17978.53 17150.59 26756.47 31678.65 26239.84 22782.68 16344.10 28472.12 22672.44 338
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FC-MVSNet-test69.80 13570.58 10967.46 24677.61 19334.73 36376.05 18683.19 8460.84 8565.88 20086.46 10054.52 5480.76 20652.52 20978.12 14786.91 63
mvsmamba71.15 10669.54 12575.99 6677.61 19353.46 15281.95 7775.11 23157.73 15166.95 17885.96 11637.14 25987.56 5167.94 8475.49 18186.97 61
PS-CasMVS66.42 21266.32 19666.70 25577.60 19536.30 35476.94 16779.61 14862.36 6562.43 25983.66 16545.69 16578.37 24445.35 27763.26 32185.42 123
testing356.54 30055.92 30258.41 32277.52 19627.93 38969.72 28756.36 36254.75 21558.63 29977.80 27720.88 37571.75 30425.31 38762.25 32975.53 307
FMVSNet166.70 20665.87 20369.19 22677.49 19743.33 28677.31 15577.83 18756.45 17164.60 22782.70 17838.08 24880.33 21346.08 26472.31 22383.92 168
ETVMVS59.51 28258.81 27661.58 30577.46 19834.87 35964.94 32659.35 34854.06 22661.08 27276.67 29329.54 32971.87 30332.16 35574.07 19178.01 282
VPA-MVSNet69.02 15569.47 12867.69 24477.42 19941.00 31074.04 22579.68 14660.06 10469.26 13684.81 13951.06 10677.58 25754.44 19674.43 18784.48 152
UniMVSNet_ETH3D67.60 18667.07 18369.18 22977.39 20042.29 29674.18 22475.59 21960.37 9666.77 18186.06 11237.64 25078.93 24252.16 21273.49 20286.32 87
FE-MVS65.91 21663.33 23473.63 12977.36 20151.95 18572.62 24875.81 21553.70 23065.31 20878.96 25828.81 33786.39 8143.93 28573.48 20382.55 207
thres100view90063.28 24762.41 24565.89 27177.31 20238.66 32772.65 24669.11 28957.07 15762.45 25881.03 22037.01 26379.17 23131.84 35973.25 20879.83 259
cascas65.98 21563.42 23273.64 12877.26 20352.58 17172.26 25577.21 19948.56 28861.21 27174.60 31932.57 31185.82 9450.38 22876.75 16782.52 209
thres600view763.30 24662.27 24666.41 25877.18 20438.87 32572.35 25369.11 28956.98 15962.37 26080.96 22237.01 26379.00 24031.43 36673.05 21281.36 230
SDMVSNet68.03 17668.10 15667.84 24277.13 20548.72 23365.32 32179.10 15658.02 14365.08 21782.55 18447.83 13873.40 29463.92 12373.92 19381.41 227
sd_testset64.46 23564.45 21964.51 28677.13 20542.25 29762.67 33572.11 26358.02 14365.08 21782.55 18441.22 21969.88 31547.32 25373.92 19381.41 227
PEN-MVS66.60 20866.45 18867.04 25177.11 20736.56 34977.03 16580.42 13862.95 5062.51 25784.03 15746.69 15979.07 23644.22 28063.08 32385.51 117
PatchMatch-RL56.25 30554.55 31261.32 30977.06 20856.07 10965.57 31554.10 37144.13 33753.49 34771.27 34225.20 36166.78 33036.52 33663.66 31661.12 376
PVSNet_BlendedMVS68.56 16767.72 15971.07 19477.03 20950.57 20074.50 21981.52 10653.66 23264.22 23479.72 24549.13 12482.87 15655.82 18073.92 19379.77 262
PVSNet_Blended68.59 16367.72 15971.19 18977.03 20950.57 20072.51 25181.52 10651.91 24764.22 23477.77 28049.13 12482.87 15655.82 18079.58 12380.14 254
F-COLMAP63.05 25160.87 26669.58 22276.99 21153.63 14878.12 13476.16 21047.97 29952.41 34981.61 20927.87 34278.11 24840.07 31166.66 29377.00 294
tfpn200view963.18 24962.18 24866.21 26376.85 21239.62 31971.96 26069.44 28556.63 16462.61 25379.83 24137.18 25679.17 23131.84 35973.25 20879.83 259
thres40063.31 24562.18 24866.72 25376.85 21239.62 31971.96 26069.44 28556.63 16462.61 25379.83 24137.18 25679.17 23131.84 35973.25 20881.36 230
tttt051767.83 18265.66 20774.33 10576.69 21450.82 19577.86 14073.99 24854.54 21964.64 22682.53 18735.06 27685.50 10255.71 18369.91 25686.67 72
ET-MVSNet_ETH3D67.96 17965.72 20674.68 9276.67 21555.62 12275.11 20574.74 23652.91 23760.03 27980.12 23733.68 29282.64 16561.86 14276.34 17085.78 104
TAPA-MVS59.36 1066.60 20865.20 21470.81 19776.63 21648.75 23176.52 17680.04 14350.64 26665.24 21484.93 13739.15 23678.54 24336.77 33076.88 16585.14 133
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OMC-MVS71.40 10570.60 10773.78 11776.60 21753.15 15879.74 11079.78 14458.37 13668.75 14186.45 10145.43 17380.60 20762.58 13477.73 15187.58 46
LTVRE_ROB55.42 1663.15 25061.23 26168.92 23176.57 21847.80 24259.92 35176.39 20854.35 22258.67 29782.46 18929.44 33281.49 18642.12 30171.14 23577.46 286
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
QAPM70.05 12868.81 13973.78 11776.54 21953.43 15383.23 5483.48 7152.89 23865.90 19886.29 10441.55 21386.49 7951.01 22378.40 14581.42 226
FMVSNet366.32 21365.61 20868.46 23676.48 22042.34 29574.98 21077.15 20055.83 18565.04 21981.16 21639.91 22580.14 22047.18 25572.76 21582.90 203
casdiffmvs_mvgpermissive76.14 4176.30 3675.66 7476.46 22151.83 18679.67 11185.08 3465.02 1975.84 3588.58 6059.42 2285.08 11072.75 5683.93 7690.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thisisatest053067.92 18065.78 20574.33 10576.29 22251.03 19076.89 16974.25 24553.67 23165.59 20481.76 20635.15 27585.50 10255.94 17872.47 21986.47 78
baseline163.81 24163.87 22563.62 29076.29 22236.36 35071.78 26267.29 29956.05 18164.23 23382.95 17647.11 15274.41 29147.30 25461.85 33280.10 255
ab-mvs66.65 20766.42 19167.37 24876.17 22441.73 30270.41 28176.14 21253.99 22765.98 19583.51 16949.48 11876.24 28348.60 24373.46 20484.14 161
Effi-MVS+-dtu69.64 14167.53 16575.95 6776.10 22562.29 1580.20 9876.06 21459.83 11165.26 21377.09 28741.56 21284.02 13260.60 15271.09 23781.53 225
DTE-MVSNet65.58 22065.34 21166.31 26076.06 22634.79 36076.43 17779.38 15362.55 6161.66 26783.83 16245.60 16779.15 23441.64 30760.88 33885.00 138
EPNet73.09 7572.16 8275.90 6875.95 22756.28 10483.05 5672.39 26066.53 1065.27 21087.00 8150.40 11185.47 10462.48 13686.32 5885.94 98
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SixPastTwentyTwo61.65 26658.80 27870.20 20875.80 22847.22 25075.59 19569.68 28054.61 21654.11 33879.26 25527.07 35082.96 15143.27 29149.79 37680.41 249
baseline74.61 5874.70 5374.34 10475.70 22949.99 21477.54 15084.63 4462.73 5973.98 6287.79 7357.67 3083.82 13669.49 7382.74 9089.20 6
Baseline_NR-MVSNet67.05 19867.56 16265.50 27675.65 23037.70 33875.42 19874.65 23959.90 10768.14 15283.15 17549.12 12677.20 26352.23 21169.78 25981.60 224
jajsoiax68.25 17266.45 18873.66 12675.62 23155.49 12580.82 9078.51 17252.33 24364.33 22984.11 15428.28 34081.81 18163.48 12970.62 24083.67 181
mvs_tets68.18 17466.36 19473.63 12975.61 23255.35 12880.77 9178.56 17052.48 24264.27 23184.10 15527.45 34681.84 18063.45 13070.56 24283.69 180
casdiffmvspermissive74.80 5174.89 5274.53 10075.59 23350.37 20578.17 13385.06 3662.80 5874.40 5687.86 7057.88 2783.61 14069.46 7582.79 8989.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet50.76 1958.40 28757.39 28861.42 30675.53 23444.04 28161.43 34163.45 32747.04 31256.91 31073.61 32527.00 35164.76 33939.12 31772.40 22075.47 308
MVS67.37 18966.33 19570.51 20475.46 23550.94 19173.95 22881.85 10241.57 35562.54 25578.57 26547.98 13585.47 10452.97 20782.05 9575.14 310
nrg03072.96 7773.01 7372.84 14975.41 23650.24 20680.02 9982.89 9058.36 13774.44 5586.73 8758.90 2480.83 20365.84 10874.46 18587.44 49
thres20062.20 26061.16 26265.34 27975.38 23739.99 31569.60 28869.29 28755.64 19461.87 26476.99 28837.07 26278.96 24131.28 36773.28 20777.06 292
TransMVSNet (Re)64.72 23064.33 22065.87 27275.22 23838.56 32874.66 21775.08 23558.90 12561.79 26582.63 18151.18 10378.07 24943.63 28955.87 35980.99 241
MS-PatchMatch62.42 25661.46 25665.31 28075.21 23952.10 17972.05 25774.05 24746.41 31657.42 30974.36 32034.35 28477.57 25845.62 27073.67 19766.26 372
WB-MVSnew59.66 28059.69 27159.56 31275.19 24035.78 35769.34 29164.28 32146.88 31361.76 26675.79 30740.61 22265.20 33832.16 35571.21 23477.70 283
IB-MVS56.42 1265.40 22462.73 24273.40 13974.89 24152.78 16773.09 24275.13 23055.69 18958.48 30173.73 32432.86 30186.32 8450.63 22670.11 25181.10 238
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS_Test72.45 8572.46 8072.42 16074.88 24248.50 23576.28 18083.14 8659.40 11772.46 9484.68 14055.66 4281.12 19465.98 10779.66 12287.63 43
tt080567.77 18367.24 17969.34 22574.87 24340.08 31377.36 15481.37 11255.31 19966.33 19084.65 14237.35 25482.55 16755.65 18572.28 22485.39 125
CANet_DTU68.18 17467.71 16169.59 22074.83 24446.24 25878.66 12276.85 20359.60 11263.45 24082.09 20135.25 27477.41 26059.88 15878.76 13985.14 133
tfpnnormal62.47 25561.63 25464.99 28374.81 24539.01 32471.22 26873.72 25055.22 20260.21 27680.09 23941.26 21876.98 26830.02 37268.09 28278.97 271
Vis-MVSNet (Re-imp)63.69 24263.88 22463.14 29574.75 24631.04 38171.16 27063.64 32656.32 17459.80 28484.99 13644.51 18275.46 28639.12 31780.62 10782.92 201
HY-MVS56.14 1364.55 23463.89 22366.55 25674.73 24741.02 30769.96 28574.43 24049.29 28061.66 26780.92 22347.43 14776.68 27644.91 27971.69 22981.94 220
Syy-MVS56.00 30756.23 30055.32 33974.69 24826.44 39565.52 31657.49 35750.97 26256.52 31472.18 33139.89 22668.09 32224.20 38864.59 31071.44 351
myMVS_eth3d54.86 31654.61 31155.61 33874.69 24827.31 39265.52 31657.49 35750.97 26256.52 31472.18 33121.87 37368.09 32227.70 38064.59 31071.44 351
COLMAP_ROBcopyleft52.97 1761.27 27158.81 27668.64 23474.63 25052.51 17378.42 12873.30 25349.92 27450.96 35481.51 21223.06 36779.40 22631.63 36365.85 29874.01 326
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
LCM-MVSNet-Re61.88 26461.35 25763.46 29174.58 25131.48 38061.42 34258.14 35358.71 12953.02 34879.55 24943.07 19476.80 27145.69 26877.96 14982.11 219
test_djsdf69.45 14867.74 15874.58 9874.57 25254.92 13382.79 6178.48 17351.26 25865.41 20783.49 17038.37 24383.24 14666.06 10369.25 26985.56 115
EI-MVSNet69.27 15268.44 15071.73 17274.47 25349.39 22475.20 20378.45 17659.60 11269.16 13876.51 29851.29 10182.50 16859.86 16071.45 23383.30 190
CVMVSNet59.63 28159.14 27461.08 31074.47 25338.84 32675.20 20368.74 29131.15 37958.24 30276.51 29832.39 31368.58 32049.77 23165.84 29975.81 303
IterMVS-LS69.22 15468.48 14671.43 18274.44 25549.40 22376.23 18177.55 19259.60 11265.85 20181.59 21151.28 10281.58 18559.87 15969.90 25783.30 190
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
XVG-OURS-SEG-HR68.81 15867.47 16872.82 15174.40 25656.87 9970.59 27779.04 15754.77 21466.99 17686.01 11439.57 23078.21 24762.54 13573.33 20683.37 189
EGC-MVSNET42.47 35138.48 35954.46 34574.33 25748.73 23270.33 28251.10 3770.03 4110.18 41267.78 36313.28 38866.49 33218.91 39450.36 37448.15 391
XVG-OURS68.76 16167.37 17172.90 14874.32 25857.22 8970.09 28478.81 16255.24 20167.79 16385.81 12436.54 26678.28 24662.04 14075.74 17783.19 195
OpenMVScopyleft61.03 968.85 15767.56 16272.70 15374.26 25953.99 14281.21 8781.34 11752.70 23962.75 25085.55 12838.86 23984.14 12848.41 24583.01 8179.97 256
MIMVSNet57.35 29457.07 29058.22 32474.21 26037.18 34162.46 33660.88 34548.88 28555.29 32575.99 30531.68 31662.04 34831.87 35872.35 22175.43 309
SCA60.49 27358.38 28266.80 25274.14 26148.06 24063.35 33263.23 32949.13 28259.33 29272.10 33337.45 25274.27 29244.17 28162.57 32678.05 278
thisisatest051565.83 21763.50 23172.82 15173.75 26249.50 22271.32 26673.12 25649.39 27863.82 23676.50 30034.95 27884.84 11953.20 20675.49 18184.13 162
K. test v360.47 27457.11 28970.56 20273.74 26348.22 23875.10 20762.55 33358.27 13853.62 34476.31 30127.81 34381.59 18447.42 25139.18 38981.88 222
v1070.21 12669.02 13573.81 11673.51 26450.92 19378.74 12081.39 11160.05 10566.39 18981.83 20547.58 14385.41 10762.80 13368.86 27685.09 136
v114470.42 12269.31 13073.76 11973.22 26550.64 19877.83 14281.43 11058.58 13269.40 13281.16 21647.53 14485.29 10964.01 12170.64 23985.34 126
v119269.97 13168.68 14273.85 11473.19 26650.94 19177.68 14581.36 11357.51 15368.95 14080.85 22645.28 17685.33 10862.97 13270.37 24585.27 130
v870.33 12469.28 13173.49 13473.15 26750.22 20778.62 12380.78 13360.79 8666.45 18882.11 20049.35 11984.98 11363.58 12868.71 27785.28 129
v14419269.71 13668.51 14573.33 14173.10 26850.13 20977.54 15080.64 13456.65 16368.57 14480.55 22946.87 15884.96 11562.98 13169.66 26384.89 142
v192192069.47 14768.17 15473.36 14073.06 26950.10 21077.39 15380.56 13556.58 17068.59 14280.37 23144.72 18184.98 11362.47 13769.82 25885.00 138
PatchmatchNetpermissive59.84 27858.24 28364.65 28573.05 27046.70 25469.42 29062.18 33947.55 30458.88 29571.96 33534.49 28269.16 31742.99 29563.60 31778.07 277
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v124069.24 15367.91 15773.25 14473.02 27149.82 21577.21 16080.54 13656.43 17268.34 14880.51 23043.33 19384.99 11162.03 14169.77 26184.95 141
Fast-Effi-MVS+-dtu67.37 18965.33 21273.48 13572.94 27257.78 8277.47 15276.88 20257.60 15261.97 26276.85 29139.31 23280.49 21154.72 19270.28 24882.17 218
EPNet_dtu61.90 26361.97 25061.68 30372.89 27339.78 31775.85 19165.62 31255.09 20654.56 33479.36 25337.59 25167.02 32939.80 31476.95 16478.25 275
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm262.07 26160.10 26967.99 24172.79 27443.86 28271.05 27466.85 30343.14 34662.77 24875.39 31338.32 24480.80 20441.69 30468.88 27479.32 266
MDTV_nov1_ep1357.00 29172.73 27538.26 33165.02 32564.73 31844.74 32955.46 32172.48 32932.61 31070.47 30937.47 32467.75 285
MSDG61.81 26559.23 27369.55 22372.64 27652.63 17070.45 28075.81 21551.38 25553.70 34176.11 30229.52 33081.08 19737.70 32365.79 30074.93 315
gg-mvs-nofinetune57.86 29256.43 29862.18 30172.62 27735.35 35866.57 30756.33 36350.65 26557.64 30657.10 38630.65 32076.36 28137.38 32578.88 13574.82 317
v2v48270.50 12069.45 12973.66 12672.62 27750.03 21277.58 14680.51 13759.90 10769.52 12882.14 19847.53 14484.88 11865.07 11470.17 25086.09 94
baseline263.42 24461.26 26069.89 21672.55 27947.62 24671.54 26368.38 29350.11 27054.82 33075.55 31143.06 19580.96 19848.13 24867.16 29081.11 237
test_fmvsm_n_192071.73 9971.14 9973.50 13372.52 28056.53 10175.60 19476.16 21048.11 29677.22 2885.56 12653.10 7777.43 25974.86 4077.14 16186.55 77
v7n69.01 15667.36 17273.98 11272.51 28152.65 16878.54 12781.30 11960.26 10262.67 25181.62 20843.61 19084.49 12357.01 17268.70 27884.79 145
fmvsm_s_conf0.5_n_a69.54 14468.74 14171.93 16572.47 28253.82 14478.25 12962.26 33849.78 27573.12 7886.21 10652.66 8076.79 27275.02 3968.88 27485.18 132
pm-mvs165.24 22664.97 21666.04 26872.38 28339.40 32272.62 24875.63 21855.53 19562.35 26183.18 17447.45 14676.47 28049.06 24066.54 29482.24 215
XVG-ACMP-BASELINE64.36 23762.23 24770.74 19972.35 28452.45 17570.80 27678.45 17653.84 22959.87 28281.10 21816.24 38279.32 22855.64 18671.76 22880.47 247
WTY-MVS59.75 27960.39 26757.85 32872.32 28537.83 33561.05 34764.18 32245.95 32361.91 26379.11 25747.01 15660.88 35142.50 29969.49 26574.83 316
fmvsm_s_conf0.5_n69.58 14268.84 13871.79 17072.31 28652.90 16477.90 13862.43 33649.97 27372.85 8485.90 11952.21 8876.49 27875.75 3370.26 24985.97 97
tpm cat159.25 28356.95 29266.15 26572.19 28746.96 25268.09 29865.76 31040.03 36557.81 30570.56 34538.32 24474.51 29038.26 32161.50 33577.00 294
mvs_anonymous68.03 17667.51 16669.59 22072.08 28844.57 27771.99 25875.23 22751.67 24867.06 17582.57 18354.68 5277.94 25056.56 17575.71 17886.26 91
OurMVSNet-221017-061.37 27058.63 28069.61 21972.05 28948.06 24073.93 23072.51 25947.23 31054.74 33180.92 22321.49 37481.24 19248.57 24456.22 35879.53 264
IterMVS-SCA-FT62.49 25461.52 25565.40 27871.99 29050.80 19671.15 27169.63 28145.71 32460.61 27477.93 27237.45 25265.99 33555.67 18463.50 31979.42 265
CostFormer64.04 23962.51 24368.61 23571.88 29145.77 26271.30 26770.60 27447.55 30464.31 23076.61 29641.63 21079.62 22449.74 23269.00 27380.42 248
131464.61 23363.21 23668.80 23271.87 29247.46 24873.95 22878.39 18142.88 34859.97 28076.60 29738.11 24779.39 22754.84 19172.32 22279.55 263
tpm57.34 29558.16 28454.86 34271.80 29334.77 36167.47 30556.04 36648.20 29560.10 27876.92 28937.17 25853.41 38340.76 30965.01 30476.40 300
eth_miper_zixun_eth67.63 18566.28 19871.67 17471.60 29448.33 23773.68 23677.88 18555.80 18765.91 19778.62 26447.35 15082.88 15559.45 16266.25 29683.81 173
pmmvs461.48 26959.39 27267.76 24371.57 29553.86 14371.42 26465.34 31344.20 33559.46 28877.92 27335.90 26974.71 28943.87 28764.87 30674.71 319
fmvsm_l_conf0.5_n70.99 11070.82 10471.48 17871.45 29654.40 13877.18 16170.46 27548.67 28775.17 4086.86 8253.77 6876.86 27076.33 3077.51 15483.17 198
AllTest57.08 29754.65 31064.39 28771.44 29749.03 22569.92 28667.30 29745.97 32147.16 36879.77 24317.47 37767.56 32633.65 34759.16 34676.57 298
TestCases64.39 28771.44 29749.03 22567.30 29745.97 32147.16 36879.77 24317.47 37767.56 32633.65 34759.16 34676.57 298
lessismore_v069.91 21471.42 29947.80 24250.90 37950.39 36075.56 31027.43 34781.33 18945.91 26634.10 39580.59 246
gm-plane-assit71.40 30041.72 30448.85 28673.31 32682.48 17048.90 241
GG-mvs-BLEND62.34 30071.36 30137.04 34569.20 29257.33 35954.73 33265.48 37430.37 32277.82 25334.82 34374.93 18472.17 343
fmvsm_l_conf0.5_n_a70.50 12070.27 11471.18 19071.30 30254.09 14076.89 16969.87 27847.90 30074.37 5786.49 9953.07 7876.69 27575.41 3577.11 16282.76 205
test_fmvsmconf_n73.01 7672.59 7774.27 10771.28 30355.88 11478.21 13275.56 22054.31 22374.86 4887.80 7254.72 5180.23 21778.07 2178.48 14386.70 70
test_fmvsmvis_n_192070.84 11270.38 11272.22 16371.16 30455.39 12775.86 19072.21 26249.03 28373.28 7286.17 10851.83 9577.29 26275.80 3278.05 14883.98 166
fmvsm_s_conf0.1_n69.41 14968.60 14471.83 16871.07 30552.88 16577.85 14162.44 33549.58 27772.97 8186.22 10551.68 9876.48 27975.53 3470.10 25286.14 92
FMVSNet555.86 30854.93 30858.66 32171.05 30636.35 35164.18 33062.48 33446.76 31450.66 35974.73 31825.80 35864.04 34133.11 35165.57 30175.59 306
fmvsm_s_conf0.1_n_a69.32 15068.44 15071.96 16470.91 30753.78 14578.12 13462.30 33749.35 27973.20 7486.55 9851.99 9276.79 27274.83 4168.68 27985.32 127
c3_l68.33 17067.56 16270.62 20170.87 30846.21 25974.47 22078.80 16356.22 17866.19 19278.53 26651.88 9381.40 18762.08 13869.04 27284.25 157
GA-MVS65.53 22163.70 22871.02 19570.87 30848.10 23970.48 27974.40 24156.69 16264.70 22576.77 29233.66 29381.10 19555.42 18870.32 24783.87 171
pmmvs663.69 24262.82 24166.27 26270.63 31039.27 32373.13 24175.47 22252.69 24059.75 28682.30 19239.71 22977.03 26647.40 25264.35 31282.53 208
miper_ehance_all_eth68.03 17667.24 17970.40 20570.54 31146.21 25973.98 22678.68 16755.07 20966.05 19477.80 27752.16 9081.31 19061.53 14769.32 26683.67 181
OpenMVS_ROBcopyleft52.78 1860.03 27658.14 28565.69 27470.47 31244.82 27275.33 19970.86 27245.04 32756.06 31776.00 30326.89 35279.65 22235.36 34267.29 28872.60 334
v14868.24 17367.19 18171.40 18370.43 31347.77 24475.76 19377.03 20158.91 12467.36 16980.10 23848.60 13181.89 17860.01 15666.52 29584.53 150
XXY-MVS60.68 27261.67 25357.70 33070.43 31338.45 33064.19 32966.47 30548.05 29863.22 24180.86 22549.28 12160.47 35245.25 27867.28 28974.19 324
MVSTER67.16 19665.58 20971.88 16770.37 31549.70 21770.25 28378.45 17651.52 25269.16 13880.37 23138.45 24282.50 16860.19 15471.46 23283.44 188
cl____67.18 19466.26 19969.94 21270.20 31645.74 26373.30 23876.83 20455.10 20465.27 21079.57 24847.39 14880.53 20859.41 16469.22 27083.53 187
DIV-MVS_self_test67.18 19466.26 19969.94 21270.20 31645.74 26373.29 23976.83 20455.10 20465.27 21079.58 24747.38 14980.53 20859.43 16369.22 27083.54 186
tpmvs58.47 28656.95 29263.03 29770.20 31641.21 30667.90 30067.23 30049.62 27654.73 33270.84 34334.14 28576.24 28336.64 33461.29 33671.64 347
anonymousdsp67.00 20064.82 21773.57 13270.09 31956.13 10776.35 17877.35 19748.43 29264.99 22280.84 22733.01 29980.34 21264.66 11667.64 28684.23 158
MIMVSNet155.17 31454.31 31657.77 32970.03 32032.01 37865.68 31464.81 31649.19 28146.75 37176.00 30325.53 36064.04 34128.65 37762.13 33077.26 290
CR-MVSNet59.91 27757.90 28765.96 26969.96 32152.07 18065.31 32263.15 33042.48 35059.36 28974.84 31635.83 27070.75 30845.50 27364.65 30875.06 311
RPMNet61.53 26758.42 28170.86 19669.96 32152.07 18065.31 32281.36 11343.20 34559.36 28970.15 35035.37 27385.47 10436.42 33764.65 30875.06 311
test_fmvsmconf0.1_n72.81 7872.33 8174.24 10869.89 32355.81 11578.22 13175.40 22354.17 22575.00 4488.03 6853.82 6780.23 21778.08 2078.34 14686.69 71
cl2267.47 18866.45 18870.54 20369.85 32446.49 25573.85 23377.35 19755.07 20965.51 20577.92 27347.64 14281.10 19561.58 14669.32 26684.01 165
Anonymous2023120655.10 31555.30 30754.48 34469.81 32533.94 36962.91 33462.13 34041.08 35755.18 32675.65 30932.75 30556.59 37330.32 37167.86 28372.91 330
our_test_356.49 30154.42 31362.68 29969.51 32645.48 26866.08 31161.49 34244.11 33850.73 35869.60 35533.05 29868.15 32138.38 32056.86 35474.40 321
ppachtmachnet_test58.06 29155.38 30666.10 26769.51 32648.99 22868.01 29966.13 30944.50 33254.05 33970.74 34432.09 31572.34 29936.68 33356.71 35776.99 296
diffmvspermissive70.69 11670.43 11071.46 17969.45 32848.95 22972.93 24378.46 17557.27 15571.69 10283.97 16051.48 10077.92 25270.70 6977.95 15087.53 47
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IterMVS62.79 25361.27 25967.35 24969.37 32952.04 18271.17 26968.24 29452.63 24159.82 28376.91 29037.32 25572.36 29852.80 20863.19 32277.66 284
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dmvs_re56.77 29956.83 29456.61 33369.23 33041.02 30758.37 35664.18 32250.59 26757.45 30871.42 33935.54 27258.94 36137.23 32667.45 28769.87 364
miper_enhance_ethall67.11 19766.09 20170.17 20969.21 33145.98 26172.85 24578.41 17951.38 25565.65 20375.98 30651.17 10481.25 19160.82 15069.32 26683.29 192
Patchmtry57.16 29656.47 29759.23 31569.17 33234.58 36462.98 33363.15 33044.53 33156.83 31174.84 31635.83 27068.71 31940.03 31260.91 33774.39 322
CL-MVSNet_self_test61.53 26760.94 26463.30 29368.95 33336.93 34667.60 30272.80 25855.67 19059.95 28176.63 29445.01 17972.22 30139.74 31562.09 33180.74 245
V4268.65 16267.35 17372.56 15468.93 33450.18 20872.90 24479.47 15156.92 16069.45 13180.26 23546.29 16282.99 15064.07 11967.82 28484.53 150
test-LLR58.15 29058.13 28658.22 32468.57 33544.80 27365.46 31857.92 35450.08 27155.44 32269.82 35232.62 30857.44 36749.66 23473.62 19872.41 339
test-mter56.42 30355.82 30358.22 32468.57 33544.80 27365.46 31857.92 35439.94 36655.44 32269.82 35221.92 37057.44 36749.66 23473.62 19872.41 339
MVS-HIRNet45.52 34644.48 34948.65 36468.49 33734.05 36859.41 35444.50 39227.03 38637.96 39250.47 39426.16 35664.10 34026.74 38459.52 34447.82 393
dp51.89 33051.60 32952.77 35568.44 33832.45 37762.36 33754.57 36844.16 33649.31 36367.91 36028.87 33656.61 37233.89 34654.89 36169.24 369
PatchT53.17 32653.44 32352.33 35768.29 33925.34 39958.21 35754.41 36944.46 33354.56 33469.05 35833.32 29660.94 35036.93 32961.76 33470.73 358
test_fmvsmconf0.01_n72.17 9171.50 8974.16 10967.96 34055.58 12378.06 13674.67 23854.19 22474.54 5488.23 6150.35 11380.24 21678.07 2177.46 15586.65 74
Patchmatch-RL test58.16 28955.49 30566.15 26567.92 34148.89 23060.66 34951.07 37847.86 30159.36 28962.71 38034.02 28872.27 30056.41 17659.40 34577.30 288
pmmvs-eth3d58.81 28556.31 29966.30 26167.61 34252.42 17672.30 25464.76 31743.55 34154.94 32974.19 32228.95 33472.60 29743.31 29057.21 35373.88 327
PVSNet_043.31 2047.46 34545.64 34852.92 35467.60 34344.65 27554.06 37254.64 36741.59 35446.15 37358.75 38330.99 31958.66 36232.18 35424.81 39855.46 386
CHOSEN 280x42047.83 34346.36 34752.24 35967.37 34449.78 21638.91 39843.11 39535.00 37443.27 38163.30 37928.95 33449.19 39036.53 33560.80 33957.76 383
tpmrst58.24 28858.70 27956.84 33266.97 34534.32 36569.57 28961.14 34447.17 31158.58 30071.60 33841.28 21760.41 35349.20 23862.84 32475.78 304
sss56.17 30656.57 29654.96 34166.93 34636.32 35357.94 35961.69 34141.67 35358.64 29875.32 31438.72 24056.25 37442.04 30266.19 29772.31 342
TinyColmap54.14 31751.72 32861.40 30766.84 34741.97 29966.52 30868.51 29244.81 32842.69 38275.77 30811.66 39172.94 29631.96 35756.77 35669.27 368
miper_lstm_enhance62.03 26260.88 26565.49 27766.71 34846.25 25756.29 36775.70 21750.68 26461.27 27075.48 31240.21 22468.03 32456.31 17765.25 30382.18 216
TESTMET0.1,155.28 31254.90 30956.42 33466.56 34943.67 28465.46 31856.27 36439.18 36853.83 34067.44 36424.21 36555.46 37848.04 24973.11 21170.13 362
dmvs_testset50.16 33751.90 32744.94 37066.49 35011.78 41061.01 34851.50 37551.17 26050.30 36267.44 36439.28 23360.29 35422.38 39057.49 35262.76 375
D2MVS62.30 25860.29 26868.34 23966.46 35148.42 23665.70 31373.42 25247.71 30258.16 30375.02 31530.51 32177.71 25653.96 19971.68 23078.90 272
MDA-MVSNet-bldmvs53.87 32050.81 33263.05 29666.25 35248.58 23456.93 36563.82 32448.09 29741.22 38370.48 34830.34 32368.00 32534.24 34545.92 38172.57 335
ITE_SJBPF62.09 30266.16 35344.55 27864.32 32047.36 30755.31 32480.34 23319.27 37662.68 34636.29 33862.39 32879.04 269
EPMVS53.96 31853.69 32154.79 34366.12 35431.96 37962.34 33849.05 38144.42 33455.54 32071.33 34130.22 32456.70 37041.65 30662.54 32775.71 305
ADS-MVSNet251.33 33348.76 34059.07 31866.02 35544.60 27650.90 38059.76 34736.90 36950.74 35666.18 37226.38 35363.11 34427.17 38154.76 36269.50 366
ADS-MVSNet48.48 34247.77 34350.63 36166.02 35529.92 38350.90 38050.87 38036.90 36950.74 35666.18 37226.38 35352.47 38527.17 38154.76 36269.50 366
EU-MVSNet55.61 31054.41 31459.19 31765.41 35733.42 37272.44 25271.91 26528.81 38151.27 35273.87 32324.76 36369.08 31843.04 29458.20 34975.06 311
RPSCF55.80 30954.22 31860.53 31165.13 35842.91 29364.30 32857.62 35636.84 37158.05 30482.28 19328.01 34156.24 37537.14 32758.61 34882.44 212
USDC56.35 30454.24 31762.69 29864.74 35940.31 31265.05 32473.83 24943.93 33947.58 36677.71 28115.36 38575.05 28838.19 32261.81 33372.70 333
JIA-IIPM51.56 33147.68 34563.21 29464.61 36050.73 19747.71 38658.77 35142.90 34748.46 36551.72 39024.97 36270.24 31436.06 33953.89 36568.64 370
Patchmatch-test49.08 34048.28 34251.50 36064.40 36130.85 38245.68 39048.46 38435.60 37346.10 37472.10 33334.47 28346.37 39427.08 38360.65 34177.27 289
TDRefinement53.44 32450.72 33361.60 30464.31 36246.96 25270.89 27565.27 31541.78 35144.61 37777.98 27011.52 39366.36 33328.57 37851.59 37071.49 350
test_vis1_n_192058.86 28459.06 27558.25 32363.76 36343.14 29067.49 30466.36 30740.22 36365.89 19971.95 33631.04 31859.75 35759.94 15764.90 30571.85 346
N_pmnet39.35 35840.28 35636.54 38163.76 3631.62 41849.37 3830.76 41734.62 37543.61 38066.38 37126.25 35542.57 39826.02 38651.77 36965.44 373
ambc65.13 28263.72 36537.07 34447.66 38778.78 16454.37 33771.42 33911.24 39480.94 19945.64 26953.85 36677.38 287
WB-MVS43.26 34943.41 35042.83 37463.32 36610.32 41258.17 35845.20 39045.42 32540.44 38667.26 36734.01 28958.98 36011.96 40324.88 39759.20 378
KD-MVS_2432*160053.45 32251.50 33059.30 31362.82 36737.14 34255.33 36871.79 26647.34 30855.09 32770.52 34621.91 37170.45 31035.72 34042.97 38470.31 360
miper_refine_blended53.45 32251.50 33059.30 31362.82 36737.14 34255.33 36871.79 26647.34 30855.09 32770.52 34621.91 37170.45 31035.72 34042.97 38470.31 360
test0.0.03 153.32 32553.59 32252.50 35662.81 36929.45 38459.51 35254.11 37050.08 27154.40 33674.31 32132.62 30855.92 37630.50 37063.95 31572.15 344
PMMVS53.96 31853.26 32456.04 33562.60 37050.92 19361.17 34556.09 36532.81 37753.51 34666.84 36934.04 28759.93 35644.14 28368.18 28157.27 384
SSC-MVS41.96 35341.99 35341.90 37562.46 3719.28 41457.41 36344.32 39343.38 34238.30 39166.45 37032.67 30758.42 36410.98 40421.91 40057.99 382
PM-MVS52.33 32850.19 33658.75 32062.10 37245.14 27165.75 31240.38 39743.60 34053.52 34572.65 3289.16 39965.87 33650.41 22754.18 36465.24 374
Gipumacopyleft34.77 36231.91 36743.33 37262.05 37337.87 33320.39 40367.03 30123.23 39118.41 40425.84 4044.24 40562.73 34514.71 39751.32 37129.38 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test20.0353.87 32054.02 31953.41 35261.47 37428.11 38861.30 34359.21 34951.34 25752.09 35077.43 28433.29 29758.55 36329.76 37360.27 34373.58 328
pmmvs556.47 30255.68 30458.86 31961.41 37536.71 34866.37 30962.75 33240.38 36253.70 34176.62 29534.56 28067.05 32840.02 31365.27 30272.83 332
MDA-MVSNet_test_wron50.71 33648.95 33856.00 33761.17 37641.84 30051.90 37856.45 36040.96 35844.79 37667.84 36130.04 32655.07 38036.71 33250.69 37371.11 356
YYNet150.73 33548.96 33756.03 33661.10 37741.78 30151.94 37756.44 36140.94 35944.84 37567.80 36230.08 32555.08 37936.77 33050.71 37271.22 353
dongtai34.52 36334.94 36333.26 38461.06 37816.00 40952.79 37623.78 41040.71 36039.33 39048.65 39816.91 38048.34 39112.18 40219.05 40235.44 401
CMPMVSbinary42.80 2157.81 29355.97 30163.32 29260.98 37947.38 24964.66 32769.50 28432.06 37846.83 37077.80 27729.50 33171.36 30548.68 24273.75 19671.21 354
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UnsupCasMVSNet_bld50.07 33848.87 33953.66 34960.97 38033.67 37157.62 36264.56 31939.47 36747.38 36764.02 37827.47 34559.32 35834.69 34443.68 38367.98 371
Anonymous2024052155.30 31154.41 31457.96 32760.92 38141.73 30271.09 27371.06 27141.18 35648.65 36473.31 32616.93 37959.25 35942.54 29864.01 31372.90 331
testgi51.90 32952.37 32650.51 36260.39 38223.55 40258.42 35558.15 35249.03 28351.83 35179.21 25622.39 36855.59 37729.24 37662.64 32572.40 341
UnsupCasMVSNet_eth53.16 32752.47 32555.23 34059.45 38333.39 37359.43 35369.13 28845.98 32050.35 36172.32 33029.30 33358.26 36542.02 30344.30 38274.05 325
test_cas_vis1_n_192056.91 29856.71 29557.51 33159.13 38445.40 26963.58 33161.29 34336.24 37267.14 17471.85 33729.89 32756.69 37157.65 16963.58 31870.46 359
new-patchmatchnet47.56 34447.73 34447.06 36558.81 3859.37 41348.78 38459.21 34943.28 34344.22 37868.66 35925.67 35957.20 36931.57 36549.35 37774.62 320
FPMVS42.18 35241.11 35545.39 36758.03 38641.01 30949.50 38253.81 37230.07 38033.71 39464.03 37611.69 39052.08 38814.01 39855.11 36043.09 395
KD-MVS_self_test55.22 31353.89 32059.21 31657.80 38727.47 39157.75 36174.32 24247.38 30650.90 35570.00 35128.45 33970.30 31340.44 31057.92 35079.87 258
test_vis1_n49.89 33948.69 34153.50 35153.97 38837.38 34061.53 34047.33 38728.54 38259.62 28767.10 36813.52 38752.27 38649.07 23957.52 35170.84 357
test_fmvs151.32 33450.48 33453.81 34853.57 38937.51 33960.63 35051.16 37628.02 38563.62 23869.23 35716.41 38153.93 38251.01 22360.70 34069.99 363
kuosan29.62 37030.82 36926.02 38952.99 39016.22 40851.09 37922.71 41133.91 37633.99 39340.85 39915.89 38333.11 4067.59 41018.37 40328.72 403
test_fmvs1_n51.37 33250.35 33554.42 34652.85 39137.71 33761.16 34651.93 37328.15 38363.81 23769.73 35413.72 38653.95 38151.16 22260.65 34171.59 348
new_pmnet34.13 36434.29 36533.64 38352.63 39218.23 40744.43 39333.90 40322.81 39330.89 39653.18 38810.48 39735.72 40520.77 39239.51 38846.98 394
pmmvs344.92 34741.95 35453.86 34752.58 39343.55 28562.11 33946.90 38926.05 38840.63 38460.19 38211.08 39657.91 36631.83 36246.15 38060.11 377
DSMNet-mixed39.30 35938.72 35841.03 37651.22 39419.66 40545.53 39131.35 40415.83 40339.80 38867.42 36622.19 36945.13 39522.43 38952.69 36858.31 381
mvsany_test139.38 35738.16 36043.02 37349.05 39534.28 36644.16 39425.94 40822.74 39446.57 37262.21 38123.85 36641.16 40133.01 35235.91 39253.63 387
APD_test137.39 36034.94 36344.72 37148.88 39633.19 37452.95 37544.00 39419.49 39727.28 39858.59 3843.18 41052.84 38418.92 39341.17 38748.14 392
test_fmvs248.69 34147.49 34652.29 35848.63 39733.06 37557.76 36048.05 38525.71 38959.76 28569.60 35511.57 39252.23 38749.45 23756.86 35471.58 349
LF4IMVS42.95 35042.26 35245.04 36848.30 39832.50 37654.80 37048.49 38328.03 38440.51 38570.16 3499.24 39843.89 39731.63 36349.18 37858.72 380
wuyk23d13.32 37712.52 38015.71 39147.54 39926.27 39631.06 4021.98 4164.93 4085.18 4111.94 4110.45 41618.54 4106.81 41112.83 4072.33 408
test_vis1_rt41.35 35539.45 35747.03 36646.65 40037.86 33447.76 38538.65 39823.10 39244.21 37951.22 39211.20 39544.08 39639.27 31653.02 36759.14 379
test_fmvs344.30 34842.55 35149.55 36342.83 40127.15 39453.03 37444.93 39122.03 39653.69 34364.94 3754.21 40649.63 38947.47 25049.82 37571.88 345
LCM-MVSNet40.30 35635.88 36253.57 35042.24 40229.15 38545.21 39260.53 34622.23 39528.02 39750.98 3933.72 40861.78 34931.22 36838.76 39069.78 365
E-PMN23.77 37222.73 37626.90 38742.02 40320.67 40442.66 39535.70 40117.43 39910.28 40925.05 4056.42 40142.39 39910.28 40614.71 40517.63 404
testf131.46 36828.89 37239.16 37741.99 40428.78 38646.45 38837.56 39914.28 40421.10 40048.96 3951.48 41447.11 39213.63 39934.56 39341.60 396
APD_test231.46 36828.89 37239.16 37741.99 40428.78 38646.45 38837.56 39914.28 40421.10 40048.96 3951.48 41447.11 39213.63 39934.56 39341.60 396
EMVS22.97 37321.84 37726.36 38840.20 40619.53 40641.95 39634.64 40217.09 4009.73 41022.83 4067.29 40042.22 4009.18 40813.66 40617.32 405
ANet_high41.38 35437.47 36153.11 35339.73 40724.45 40056.94 36469.69 27947.65 30326.04 39952.32 38912.44 38962.38 34721.80 39110.61 40872.49 336
PMMVS227.40 37125.91 37431.87 38639.46 4086.57 41531.17 40128.52 40623.96 39020.45 40348.94 3974.20 40737.94 40216.51 39519.97 40151.09 388
PMVScopyleft28.69 2236.22 36133.29 36645.02 36936.82 40935.98 35654.68 37148.74 38226.31 38721.02 40251.61 3912.88 41160.10 3559.99 40747.58 37938.99 400
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
mvsany_test332.62 36530.57 37038.77 37936.16 41024.20 40138.10 39920.63 41219.14 39840.36 38757.43 3855.06 40336.63 40429.59 37528.66 39655.49 385
test_vis3_rt32.09 36630.20 37137.76 38035.36 41127.48 39040.60 39728.29 40716.69 40132.52 39540.53 4001.96 41237.40 40333.64 34942.21 38648.39 390
MVEpermissive17.77 2321.41 37417.77 37932.34 38534.34 41225.44 39816.11 40424.11 40911.19 40613.22 40631.92 4021.58 41330.95 40810.47 40517.03 40440.62 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_f31.86 36731.05 36834.28 38232.33 41321.86 40332.34 40030.46 40516.02 40239.78 38955.45 3874.80 40432.36 40730.61 36937.66 39148.64 389
DeepMVS_CXcopyleft12.03 39217.97 41410.91 41110.60 4157.46 40711.07 40828.36 4033.28 40911.29 4118.01 4099.74 41013.89 406
test_method19.68 37518.10 37824.41 39013.68 4153.11 41712.06 40642.37 3962.00 40911.97 40736.38 4015.77 40229.35 40915.06 39623.65 39940.76 398
tmp_tt9.43 37811.14 3814.30 3932.38 4164.40 41613.62 40516.08 4140.39 41015.89 40513.06 40715.80 3845.54 41212.63 40110.46 4092.95 407
testmvs4.52 3816.03 3840.01 3950.01 4170.00 42053.86 3730.00 4180.01 4120.04 4130.27 4120.00 4180.00 4130.04 4120.00 4110.03 410
test1234.73 3806.30 3830.02 3940.01 4170.01 41956.36 3660.00 4180.01 4120.04 4130.21 4130.01 4170.00 4130.03 4130.00 4110.04 409
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
eth-test20.00 419
eth-test0.00 419
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
cdsmvs_eth3d_5k17.50 37623.34 3750.00 3960.00 4190.00 4200.00 40778.63 1680.00 4140.00 41582.18 19449.25 1220.00 4130.00 4140.00 4110.00 411
pcd_1.5k_mvsjas3.92 3825.23 3850.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 41447.05 1530.00 4130.00 4140.00 4110.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
ab-mvs-re6.49 3798.65 3820.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 41577.89 2750.00 4180.00 4130.00 4140.00 4110.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4200.00 4070.00 4180.00 4140.00 4150.00 4140.00 4180.00 4130.00 4140.00 4110.00 411
WAC-MVS27.31 39227.77 379
PC_three_145255.09 20684.46 489.84 4366.68 589.41 1874.24 4491.38 288.42 14
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 42
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 27
GSMVS78.05 278
sam_mvs134.74 27978.05 278
sam_mvs33.43 295
MTGPAbinary80.97 130
test_post168.67 2953.64 40932.39 31369.49 31644.17 281
test_post3.55 41033.90 29066.52 331
patchmatchnet-post64.03 37634.50 28174.27 292
MTMP86.03 1917.08 413
test9_res75.28 3788.31 3283.81 173
agg_prior273.09 5587.93 4084.33 154
test_prior462.51 1482.08 76
test_prior281.75 7960.37 9675.01 4389.06 5256.22 3972.19 5988.96 24
旧先验276.08 18445.32 32676.55 3365.56 33758.75 165
新几何276.12 182
无先验79.66 11274.30 24448.40 29380.78 20553.62 20179.03 270
原ACMM279.02 117
testdata272.18 30246.95 259
segment_acmp54.23 56
testdata172.65 24660.50 91
plane_prior584.01 5387.21 5668.16 8280.58 10984.65 148
plane_prior486.10 110
plane_prior356.09 10863.92 3669.27 134
plane_prior284.22 4064.52 25
plane_prior56.31 10283.58 5363.19 4880.48 112
n20.00 418
nn0.00 418
door-mid47.19 388
test1183.47 73
door47.60 386
HQP5-MVS54.94 131
BP-MVS67.04 97
HQP4-MVS67.85 15786.93 6484.32 155
HQP3-MVS83.90 5880.35 113
HQP2-MVS45.46 171
MDTV_nov1_ep13_2view25.89 39761.22 34440.10 36451.10 35332.97 30038.49 31978.61 273
ACMMP++_ref74.07 191
ACMMP++72.16 225
Test By Simon48.33 133