This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
FOURS199.55 193.34 7499.29 198.35 1994.98 2598.49 15
region2R97.07 2396.84 2697.77 3899.46 293.79 5998.52 1398.24 3793.19 8797.14 4598.34 4391.59 5799.87 795.46 7399.59 1799.64 12
DVP-MVScopyleft97.91 397.81 398.22 1299.45 395.36 1398.21 4097.85 11694.92 2698.73 1098.87 695.08 899.84 2297.52 499.67 699.48 45
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.51 499.45 395.93 598.21 4098.28 2799.86 897.52 499.67 699.75 5
test072699.45 395.36 1398.31 2698.29 2594.92 2698.99 498.92 295.08 8
ACMMPR97.07 2396.84 2697.79 3599.44 693.88 5698.52 1398.31 2393.21 8497.15 4498.33 4691.35 6299.86 895.63 6599.59 1799.62 15
SED-MVS98.05 297.99 198.24 1099.42 795.30 1898.25 3398.27 3095.13 1799.19 198.89 495.54 599.85 1797.52 499.66 1099.56 26
IU-MVS99.42 795.39 1197.94 10590.40 18198.94 597.41 1199.66 1099.74 7
test_241102_ONE99.42 795.30 1898.27 3095.09 2199.19 198.81 1095.54 599.65 56
HFP-MVS97.14 2096.92 2197.83 2999.42 794.12 4998.52 1398.32 2193.21 8497.18 4298.29 5292.08 4299.83 2595.63 6599.59 1799.54 33
#test#97.02 2796.75 3497.83 2999.42 794.12 4998.15 4598.32 2192.57 11297.18 4298.29 5292.08 4299.83 2595.12 7999.59 1799.54 33
MSP-MVS97.59 897.54 697.73 4199.40 1293.77 6298.53 1298.29 2595.55 598.56 1497.81 8893.90 1599.65 5696.62 2599.21 7399.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mPP-MVS96.86 3896.60 4197.64 4999.40 1293.44 6998.50 1698.09 6693.27 8395.95 9298.33 4691.04 6999.88 495.20 7699.57 2499.60 18
MP-MVScopyleft96.77 4396.45 5197.72 4299.39 1493.80 5898.41 2198.06 7693.37 7995.54 10998.34 4390.59 7899.88 494.83 8999.54 2799.49 43
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
XVS97.18 1796.96 1997.81 3399.38 1594.03 5498.59 1098.20 4594.85 2896.59 6598.29 5291.70 5399.80 3095.66 6099.40 4999.62 15
X-MVStestdata91.71 20289.67 26297.81 3399.38 1594.03 5498.59 1098.20 4594.85 2896.59 6532.69 37191.70 5399.80 3095.66 6099.40 4999.62 15
ZNCC-MVS96.96 3196.67 3997.85 2899.37 1794.12 4998.49 1798.18 4992.64 11196.39 7598.18 6491.61 5599.88 495.59 7099.55 2599.57 23
zzz-MVS97.07 2396.77 3397.97 2599.37 1794.42 3697.15 14598.08 6795.07 2296.11 8298.59 1790.88 7399.90 196.18 4499.50 3699.58 21
MTAPA97.08 2296.78 3297.97 2599.37 1794.42 3697.24 13298.08 6795.07 2296.11 8298.59 1790.88 7399.90 196.18 4499.50 3699.58 21
GST-MVS96.85 3996.52 4697.82 3299.36 2094.14 4898.29 2898.13 5792.72 10896.70 5698.06 7091.35 6299.86 894.83 8999.28 6399.47 48
HPM-MVScopyleft96.69 4696.45 5197.40 5699.36 2093.11 7998.87 498.06 7691.17 15696.40 7497.99 7590.99 7099.58 7495.61 6799.61 1699.49 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PGM-MVS96.81 4196.53 4597.65 4799.35 2293.53 6797.65 9298.98 192.22 11997.14 4598.44 3091.17 6799.85 1794.35 9999.46 4299.57 23
CP-MVS97.02 2796.81 2997.64 4999.33 2393.54 6698.80 698.28 2792.99 9496.45 7398.30 5191.90 4899.85 1795.61 6799.68 499.54 33
test_one_060199.32 2495.20 2198.25 3595.13 1798.48 1698.87 695.16 7
HPM-MVS_fast96.51 5296.27 5597.22 6799.32 2492.74 8798.74 798.06 7690.57 17796.77 5398.35 4090.21 8299.53 9294.80 9299.63 1499.38 60
MCST-MVS97.18 1796.84 2698.20 1399.30 2695.35 1597.12 14798.07 7393.54 7196.08 8497.69 9693.86 1699.71 4196.50 2999.39 5199.55 30
test_part299.28 2795.74 898.10 21
CPTT-MVS95.57 7995.19 8296.70 8099.27 2891.48 12898.33 2598.11 6287.79 25495.17 11698.03 7287.09 12399.61 6593.51 11799.42 4799.02 90
TSAR-MVS + MP.97.42 997.33 1097.69 4599.25 2994.24 4398.07 5097.85 11693.72 6398.57 1398.35 4093.69 1899.40 11297.06 1299.46 4299.44 51
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG96.05 6595.91 6496.46 9699.24 3090.47 16698.30 2798.57 1189.01 21293.97 13797.57 11092.62 3199.76 3394.66 9599.27 6599.15 79
ACMMPcopyleft96.27 6095.93 6397.28 6299.24 3092.62 9298.25 3398.81 392.99 9494.56 12598.39 3788.96 9499.85 1794.57 9897.63 12899.36 62
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MP-MVS-pluss96.70 4596.27 5597.98 2499.23 3294.71 3096.96 16098.06 7690.67 16895.55 10798.78 1291.07 6899.86 896.58 2799.55 2599.38 60
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DP-MVS Recon95.68 7595.12 8597.37 5799.19 3394.19 4497.03 14998.08 6788.35 23695.09 11797.65 10189.97 8799.48 10292.08 14698.59 10398.44 144
DPE-MVScopyleft97.86 497.65 598.47 599.17 3495.78 797.21 13998.35 1995.16 1698.71 1298.80 1195.05 1099.89 396.70 2499.73 199.73 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS97.82 597.73 498.08 1899.15 3594.82 2998.81 598.30 2494.76 3798.30 1798.90 393.77 1799.68 5097.93 199.69 399.75 5
test117296.93 3496.86 2397.15 7099.10 3692.34 9997.96 6098.04 8493.79 6197.35 3798.53 2391.40 6099.56 8496.30 3499.30 6099.55 30
testtj96.93 3496.56 4498.05 2099.10 3694.66 3197.78 7598.22 4292.74 10797.59 2898.20 6391.96 4799.86 894.21 10199.25 6999.63 13
SR-MVS97.01 2996.86 2397.47 5499.09 3893.27 7697.98 5598.07 7393.75 6297.45 3298.48 2791.43 5999.59 7196.22 3899.27 6599.54 33
ACMMP_NAP97.20 1696.86 2398.23 1199.09 3895.16 2497.60 9998.19 4792.82 10497.93 2498.74 1391.60 5699.86 896.26 3599.52 2999.67 10
HPM-MVS++copyleft97.34 1496.97 1898.47 599.08 4096.16 497.55 10397.97 10295.59 496.61 6397.89 7892.57 3399.84 2295.95 5199.51 3399.40 57
114514_t93.95 12393.06 13596.63 8399.07 4191.61 12297.46 11397.96 10377.99 35293.00 15897.57 11086.14 13799.33 11789.22 20199.15 7798.94 102
SMA-MVScopyleft97.35 1397.03 1598.30 899.06 4295.42 1097.94 6198.18 4990.57 17798.85 998.94 193.33 2099.83 2596.72 2399.68 499.63 13
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ZD-MVS99.05 4394.59 3298.08 6789.22 20797.03 5198.10 6692.52 3599.65 5694.58 9799.31 59
APD-MVScopyleft96.95 3296.60 4198.01 2299.03 4494.93 2897.72 8498.10 6491.50 14098.01 2298.32 4892.33 3899.58 7494.85 8799.51 3399.53 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SR-MVS-dyc-post96.88 3796.80 3097.11 7399.02 4592.34 9997.98 5598.03 8793.52 7397.43 3598.51 2491.40 6099.56 8496.05 4799.26 6799.43 53
RE-MVS-def96.72 3699.02 4592.34 9997.98 5598.03 8793.52 7397.43 3598.51 2490.71 7696.05 4799.26 6799.43 53
SF-MVS97.39 1197.13 1298.17 1499.02 4595.28 2098.23 3798.27 3092.37 11698.27 1898.65 1593.33 2099.72 3896.49 3099.52 2999.51 38
APD-MVS_3200maxsize96.81 4196.71 3797.12 7299.01 4892.31 10297.98 5598.06 7693.11 9097.44 3398.55 2190.93 7199.55 8796.06 4699.25 6999.51 38
9.1496.75 3498.93 4997.73 8198.23 4191.28 15297.88 2698.44 3093.00 2499.65 5695.76 5899.47 40
CDPH-MVS95.97 6895.38 7797.77 3898.93 4994.44 3596.35 21697.88 11086.98 27396.65 6097.89 7891.99 4699.47 10392.26 13799.46 4299.39 58
xxxxxxxxxxxxxcwj97.36 1297.20 1197.83 2998.91 5194.28 3997.02 15297.22 19095.35 898.27 1898.65 1593.33 2099.72 3896.49 3099.52 2999.51 38
save fliter98.91 5194.28 3997.02 15298.02 9195.35 8
ETH3 D test640096.16 6395.52 7198.07 1998.90 5395.06 2697.03 14998.21 4388.16 24396.64 6197.70 9591.18 6699.67 5292.44 13699.47 4099.48 45
ETH3D-3000-0.197.07 2396.71 3798.14 1698.90 5395.33 1797.68 8898.24 3791.57 13897.90 2598.37 3892.61 3299.66 5595.59 7099.51 3399.43 53
CNVR-MVS97.68 697.44 998.37 798.90 5395.86 697.27 13098.08 6795.81 397.87 2798.31 4994.26 1399.68 5097.02 1399.49 3899.57 23
abl_696.40 5696.21 5796.98 7798.89 5692.20 10797.89 6498.03 8793.34 8297.22 4198.42 3387.93 10899.72 3895.10 8099.07 8699.02 90
PAPM_NR95.01 9294.59 9596.26 11198.89 5690.68 15997.24 13297.73 12491.80 13392.93 16396.62 16489.13 9399.14 13489.21 20297.78 12598.97 98
OPU-MVS98.55 398.82 5896.86 398.25 3398.26 5696.04 299.24 12495.36 7499.59 1799.56 26
NCCC97.30 1597.03 1598.11 1798.77 5995.06 2697.34 12298.04 8495.96 297.09 4997.88 8093.18 2399.71 4195.84 5699.17 7699.56 26
DP-MVS92.76 17091.51 18996.52 8898.77 5990.99 14797.38 12096.08 26782.38 32989.29 24997.87 8183.77 16599.69 4781.37 31196.69 15498.89 108
MSLP-MVS++96.94 3397.06 1496.59 8698.72 6191.86 11797.67 8998.49 1294.66 4097.24 4098.41 3692.31 4098.94 15696.61 2699.46 4298.96 99
TEST998.70 6294.19 4496.41 20898.02 9188.17 24196.03 8697.56 11292.74 2799.59 71
train_agg96.30 5995.83 6797.72 4298.70 6294.19 4496.41 20898.02 9188.58 22996.03 8697.56 11292.73 2899.59 7195.04 8199.37 5699.39 58
DVP-MVS++98.06 197.99 198.28 998.67 6495.39 1199.29 198.28 2794.78 3598.93 698.87 696.04 299.86 897.45 899.58 2299.59 19
MSC_two_6792asdad98.86 198.67 6496.94 197.93 10699.86 897.68 299.67 699.77 1
No_MVS98.86 198.67 6496.94 197.93 10699.86 897.68 299.67 699.77 1
test_898.67 6494.06 5396.37 21598.01 9488.58 22995.98 9197.55 11492.73 2899.58 74
agg_prior196.22 6295.77 6897.56 5198.67 6493.79 5996.28 22498.00 9688.76 22695.68 10197.55 11492.70 3099.57 8295.01 8299.32 5799.32 64
agg_prior98.67 6493.79 5998.00 9695.68 10199.57 82
test_prior396.46 5496.20 5897.23 6598.67 6492.99 8196.35 21698.00 9692.80 10596.03 8697.59 10892.01 4499.41 11095.01 8299.38 5299.29 66
test_prior97.23 6598.67 6492.99 8198.00 9699.41 11099.29 66
DeepC-MVS_fast93.89 296.93 3496.64 4097.78 3698.64 7294.30 3897.41 11498.04 8494.81 3396.59 6598.37 3891.24 6499.64 6495.16 7799.52 2999.42 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
新几何197.32 5998.60 7393.59 6597.75 12181.58 33595.75 9897.85 8490.04 8599.67 5286.50 25399.13 7998.69 123
原ACMM196.38 10298.59 7491.09 14697.89 10887.41 26595.22 11597.68 9790.25 8099.54 8987.95 22199.12 8298.49 136
AdaColmapbinary94.34 10993.68 11596.31 10698.59 7491.68 12196.59 19997.81 11889.87 18892.15 17697.06 13583.62 16999.54 8989.34 19698.07 11897.70 180
PLCcopyleft91.00 694.11 11793.43 12696.13 11698.58 7691.15 14596.69 18697.39 17587.29 26891.37 19096.71 15088.39 10399.52 9687.33 24197.13 14697.73 178
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
112194.71 10593.83 11097.34 5898.57 7793.64 6496.04 23797.73 12481.56 33695.68 10197.85 8490.23 8199.65 5687.68 23199.12 8298.73 119
SD-MVS97.41 1097.53 797.06 7498.57 7794.46 3497.92 6398.14 5694.82 3299.01 398.55 2194.18 1497.41 30996.94 1499.64 1399.32 64
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test1297.65 4798.46 7994.26 4197.66 13595.52 11190.89 7299.46 10499.25 6999.22 74
MVS_111021_HR96.68 4896.58 4396.99 7698.46 7992.31 10296.20 23198.90 294.30 5095.86 9497.74 9392.33 3899.38 11596.04 4999.42 4799.28 69
OMC-MVS95.09 9194.70 9396.25 11398.46 7991.28 13496.43 20697.57 14692.04 12894.77 12197.96 7787.01 12499.09 14091.31 16396.77 15098.36 151
MG-MVS95.61 7795.38 7796.31 10698.42 8290.53 16496.04 23797.48 15493.47 7695.67 10498.10 6689.17 9299.25 12391.27 16498.77 9699.13 81
PHI-MVS96.77 4396.46 5097.71 4498.40 8394.07 5298.21 4098.45 1589.86 18997.11 4898.01 7492.52 3599.69 4796.03 5099.53 2899.36 62
F-COLMAP93.58 13692.98 13795.37 16098.40 8388.98 21597.18 14197.29 18687.75 25790.49 20797.10 13385.21 14699.50 10086.70 25096.72 15397.63 182
SteuartSystems-ACMMP97.62 797.53 797.87 2798.39 8594.25 4298.43 2098.27 3095.34 1098.11 2098.56 1994.53 1299.71 4196.57 2899.62 1599.65 11
Skip Steuart: Steuart Systems R&D Blog.
旧先验198.38 8693.38 7197.75 12198.09 6892.30 4199.01 8999.16 77
CNLPA94.28 11093.53 12096.52 8898.38 8692.55 9496.59 19996.88 22490.13 18591.91 18297.24 12585.21 14699.09 14087.64 23497.83 12397.92 168
Regformer-396.85 3996.80 3097.01 7598.34 8892.02 11396.96 16097.76 12095.01 2497.08 5098.42 3391.71 5299.54 8996.80 1999.13 7999.48 45
Regformer-496.97 3096.87 2297.25 6498.34 8892.66 9096.96 16098.01 9495.12 2097.14 4598.42 3391.82 4999.61 6596.90 1599.13 7999.50 41
TAPA-MVS90.10 792.30 18391.22 20095.56 14798.33 9089.60 18896.79 17697.65 13781.83 33391.52 18797.23 12687.94 10798.91 15971.31 35598.37 11098.17 158
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Regformer-197.10 2196.96 1997.54 5298.32 9193.48 6896.83 17297.99 10095.20 1397.46 3198.25 5792.48 3799.58 7496.79 2199.29 6199.55 30
Regformer-297.16 1996.99 1797.67 4698.32 9193.84 5796.83 17298.10 6495.24 1197.49 3098.25 5792.57 3399.61 6596.80 1999.29 6199.56 26
TSAR-MVS + GP.96.69 4696.49 4797.27 6398.31 9393.39 7096.79 17696.72 23394.17 5197.44 3397.66 10092.76 2699.33 11796.86 1797.76 12799.08 87
CHOSEN 1792x268894.15 11393.51 12296.06 11998.27 9489.38 20095.18 27798.48 1485.60 29393.76 14197.11 13283.15 17699.61 6591.33 16298.72 9899.19 75
PVSNet_BlendedMVS94.06 11993.92 10894.47 19898.27 9489.46 19796.73 18098.36 1690.17 18394.36 12895.24 23288.02 10599.58 7493.44 11990.72 24594.36 315
PVSNet_Blended94.87 10094.56 9695.81 13098.27 9489.46 19795.47 26398.36 1688.84 22094.36 12896.09 19188.02 10599.58 7493.44 11998.18 11598.40 147
ETH3D cwj APD-0.1696.56 5196.06 6098.05 2098.26 9795.19 2296.99 15798.05 8389.85 19197.26 3998.22 5991.80 5099.69 4794.84 8899.28 6399.27 71
Anonymous2023121190.63 25589.42 26694.27 20898.24 9889.19 21198.05 5197.89 10879.95 34488.25 27594.96 23972.56 31098.13 22589.70 18785.14 30195.49 251
EI-MVSNet-Vis-set96.51 5296.47 4896.63 8398.24 9891.20 14096.89 16797.73 12494.74 3896.49 6998.49 2690.88 7399.58 7496.44 3298.32 11199.13 81
test22298.24 9892.21 10595.33 26897.60 14279.22 34895.25 11397.84 8788.80 9799.15 7798.72 120
HyFIR lowres test93.66 13392.92 13995.87 12898.24 9889.88 18294.58 28598.49 1285.06 30293.78 14095.78 20782.86 18598.67 17991.77 15195.71 17299.07 89
MVS_111021_LR96.24 6196.19 5996.39 10198.23 10291.35 13396.24 22998.79 493.99 5595.80 9697.65 10189.92 8899.24 12495.87 5299.20 7498.58 127
EI-MVSNet-UG-set96.34 5896.30 5496.47 9498.20 10390.93 15196.86 16897.72 12894.67 3996.16 8198.46 2890.43 7999.58 7496.23 3797.96 12198.90 106
PVSNet_Blended_VisFu95.27 8594.91 8896.38 10298.20 10390.86 15397.27 13098.25 3590.21 18294.18 13297.27 12387.48 11799.73 3593.53 11697.77 12698.55 128
Anonymous20240521192.07 19490.83 21395.76 13298.19 10588.75 21997.58 10095.00 31086.00 28893.64 14297.45 11666.24 34699.53 9290.68 17392.71 21199.01 94
PatchMatch-RL92.90 16392.02 17095.56 14798.19 10590.80 15595.27 27397.18 19187.96 24791.86 18495.68 21480.44 22898.99 15384.01 28797.54 13096.89 205
testdata95.46 15898.18 10788.90 21797.66 13582.73 32897.03 5198.07 6990.06 8498.85 16389.67 18898.98 9098.64 126
Anonymous2024052991.98 19690.73 21895.73 13798.14 10889.40 19997.99 5497.72 12879.63 34693.54 14597.41 11969.94 32799.56 8491.04 16791.11 23898.22 156
LFMVS93.60 13592.63 15096.52 8898.13 10991.27 13597.94 6193.39 34290.57 17796.29 7798.31 4969.00 32999.16 13194.18 10395.87 16799.12 84
DeepPCF-MVS93.97 196.61 4997.09 1395.15 16598.09 11086.63 27196.00 24198.15 5495.43 697.95 2398.56 1993.40 1999.36 11696.77 2299.48 3999.45 49
DPM-MVS95.69 7494.92 8798.01 2298.08 11195.71 995.27 27397.62 14190.43 18095.55 10797.07 13491.72 5199.50 10089.62 19098.94 9298.82 114
VNet95.89 7095.45 7497.21 6898.07 11292.94 8497.50 10698.15 5493.87 5797.52 2997.61 10785.29 14599.53 9295.81 5795.27 17899.16 77
MAR-MVS94.22 11193.46 12496.51 9198.00 11392.19 10897.67 8997.47 15788.13 24593.00 15895.84 20084.86 15199.51 9787.99 22098.17 11697.83 175
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DeepC-MVS93.07 396.06 6495.66 6997.29 6197.96 11493.17 7897.30 12898.06 7693.92 5693.38 15098.66 1486.83 12599.73 3595.60 6999.22 7298.96 99
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
COLMAP_ROBcopyleft87.81 1590.40 26089.28 26993.79 23297.95 11587.13 26096.92 16495.89 27382.83 32786.88 30497.18 12873.77 30499.29 12178.44 32893.62 20394.95 283
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AllTest90.23 26488.98 27393.98 21997.94 11686.64 26896.51 20395.54 28785.38 29685.49 31496.77 14770.28 32399.15 13280.02 31892.87 20896.15 224
TestCases93.98 21997.94 11686.64 26895.54 28785.38 29685.49 31496.77 14770.28 32399.15 13280.02 31892.87 20896.15 224
thres100view90092.43 17691.58 18494.98 17397.92 11889.37 20197.71 8694.66 32192.20 12193.31 15294.90 24378.06 27399.08 14281.40 30894.08 19596.48 216
thres600view792.49 17591.60 18395.18 16497.91 11989.47 19597.65 9294.66 32192.18 12593.33 15194.91 24278.06 27399.10 13781.61 30594.06 19896.98 200
API-MVS94.84 10194.49 10095.90 12797.90 12092.00 11497.80 7397.48 15489.19 20894.81 12096.71 15088.84 9699.17 13088.91 20898.76 9796.53 213
VDD-MVS93.82 12893.08 13496.02 12297.88 12189.96 18197.72 8495.85 27492.43 11495.86 9498.44 3068.42 33399.39 11396.31 3394.85 18498.71 122
tfpn200view992.38 17991.52 18794.95 17697.85 12289.29 20597.41 11494.88 31692.19 12393.27 15494.46 26678.17 26999.08 14281.40 30894.08 19596.48 216
thres40092.42 17791.52 18795.12 16897.85 12289.29 20597.41 11494.88 31692.19 12393.27 15494.46 26678.17 26999.08 14281.40 30894.08 19596.98 200
h-mvs3394.15 11393.52 12196.04 12197.81 12490.22 17297.62 9897.58 14595.19 1496.74 5497.45 11683.67 16799.61 6595.85 5479.73 34098.29 154
test_part192.21 19091.10 20495.51 15197.80 12592.66 9098.02 5397.68 13389.79 19488.80 26296.02 19276.85 28298.18 22190.86 16884.11 31895.69 247
DELS-MVS96.61 4996.38 5397.30 6097.79 12693.19 7795.96 24398.18 4995.23 1295.87 9397.65 10191.45 5899.70 4695.87 5299.44 4699.00 97
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet86.66 1892.24 18791.74 18093.73 23397.77 12783.69 31592.88 33096.72 23387.91 24993.00 15894.86 24578.51 26399.05 14886.53 25197.45 13598.47 139
test_yl94.78 10394.23 10596.43 9797.74 12891.22 13696.85 16997.10 19991.23 15495.71 9996.93 13884.30 15899.31 11993.10 12695.12 18098.75 116
DCV-MVSNet94.78 10394.23 10596.43 9797.74 12891.22 13696.85 16997.10 19991.23 15495.71 9996.93 13884.30 15899.31 11993.10 12695.12 18098.75 116
WTY-MVS94.71 10594.02 10796.79 7997.71 13092.05 11196.59 19997.35 18190.61 17494.64 12396.93 13886.41 13199.39 11391.20 16694.71 19098.94 102
UA-Net95.95 6995.53 7097.20 6997.67 13192.98 8397.65 9298.13 5794.81 3396.61 6398.35 4088.87 9599.51 9790.36 17697.35 13899.11 85
IS-MVSNet94.90 9894.52 9996.05 12097.67 13190.56 16298.44 1996.22 26293.21 8493.99 13597.74 9385.55 14398.45 20089.98 17997.86 12299.14 80
test250691.60 20690.78 21494.04 21697.66 13383.81 31098.27 3075.53 37593.43 7795.23 11498.21 6067.21 33999.07 14593.01 13298.49 10599.25 72
ECVR-MVScopyleft93.19 14992.73 14794.57 19697.66 13385.41 28998.21 4088.23 36493.43 7794.70 12298.21 6072.57 30999.07 14593.05 12998.49 10599.25 72
PAPR94.18 11293.42 12896.48 9397.64 13591.42 13295.55 25997.71 13288.99 21392.34 17295.82 20289.19 9199.11 13686.14 25997.38 13698.90 106
CANet96.39 5796.02 6197.50 5397.62 13693.38 7197.02 15297.96 10395.42 794.86 11997.81 8887.38 11999.82 2896.88 1699.20 7499.29 66
thres20092.23 18891.39 19094.75 18997.61 13789.03 21496.60 19895.09 30792.08 12793.28 15394.00 28978.39 26799.04 15181.26 31294.18 19496.19 221
Vis-MVSNet (Re-imp)94.15 11393.88 10994.95 17697.61 13787.92 24298.10 4795.80 27692.22 11993.02 15797.45 11684.53 15597.91 26588.24 21697.97 12099.02 90
canonicalmvs96.02 6695.45 7497.75 4097.59 13995.15 2598.28 2997.60 14294.52 4396.27 7896.12 18787.65 11299.18 12996.20 4394.82 18698.91 105
LS3D93.57 13792.61 15296.47 9497.59 13991.61 12297.67 8997.72 12885.17 30090.29 21298.34 4384.60 15399.73 3583.85 29198.27 11298.06 164
test111193.19 14992.82 14194.30 20797.58 14184.56 30398.21 4089.02 36393.53 7294.58 12498.21 6072.69 30899.05 14893.06 12898.48 10799.28 69
alignmvs95.87 7295.23 8197.78 3697.56 14295.19 2297.86 6697.17 19394.39 4796.47 7196.40 17585.89 13899.20 12696.21 4295.11 18298.95 101
EPP-MVSNet95.22 8895.04 8695.76 13297.49 14389.56 19098.67 897.00 21290.69 16794.24 13197.62 10689.79 8998.81 16693.39 12296.49 15998.92 104
PS-MVSNAJ95.37 8295.33 7995.49 15497.35 14490.66 16095.31 27097.48 15493.85 5896.51 6895.70 21388.65 9999.65 5694.80 9298.27 11296.17 222
ab-mvs93.57 13792.55 15496.64 8197.28 14591.96 11695.40 26597.45 16589.81 19393.22 15696.28 18079.62 24599.46 10490.74 17193.11 20798.50 134
xiu_mvs_v2_base95.32 8495.29 8095.40 15997.22 14690.50 16595.44 26497.44 16993.70 6596.46 7296.18 18388.59 10299.53 9294.79 9497.81 12496.17 222
BH-untuned92.94 16192.62 15193.92 22797.22 14686.16 28096.40 21196.25 26190.06 18689.79 23296.17 18583.19 17498.35 20787.19 24497.27 14197.24 197
baseline192.82 16891.90 17495.55 14997.20 14890.77 15797.19 14094.58 32492.20 12192.36 17096.34 17884.16 16198.21 21689.20 20383.90 32397.68 181
Vis-MVSNetpermissive95.23 8794.81 8996.51 9197.18 14991.58 12598.26 3298.12 5994.38 4894.90 11898.15 6582.28 19998.92 15791.45 16198.58 10499.01 94
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ETV-MVS96.02 6695.89 6596.40 9997.16 15092.44 9797.47 11197.77 11994.55 4296.48 7094.51 26191.23 6598.92 15795.65 6398.19 11497.82 176
BH-RMVSNet92.72 17191.97 17294.97 17497.16 15087.99 24196.15 23395.60 28490.62 17391.87 18397.15 13178.41 26698.57 19083.16 29397.60 12998.36 151
MSDG91.42 21890.24 23894.96 17597.15 15288.91 21693.69 31596.32 25785.72 29286.93 30296.47 17080.24 23298.98 15480.57 31495.05 18396.98 200
tttt051792.96 15992.33 16294.87 17997.11 15387.16 25997.97 5992.09 35190.63 17293.88 13997.01 13776.50 28499.06 14790.29 17895.45 17598.38 149
HY-MVS89.66 993.87 12692.95 13896.63 8397.10 15492.49 9695.64 25796.64 24289.05 21193.00 15895.79 20685.77 14199.45 10689.16 20594.35 19297.96 165
thisisatest053093.03 15692.21 16595.49 15497.07 15589.11 21397.49 11092.19 35090.16 18494.09 13396.41 17476.43 28799.05 14890.38 17595.68 17398.31 153
XVG-OURS93.72 13293.35 12994.80 18597.07 15588.61 22294.79 28197.46 15991.97 13193.99 13597.86 8381.74 21098.88 16292.64 13592.67 21396.92 204
sss94.51 10793.80 11196.64 8197.07 15591.97 11596.32 22098.06 7688.94 21694.50 12696.78 14684.60 15399.27 12291.90 14796.02 16398.68 124
EIA-MVS95.53 8095.47 7395.71 13997.06 15889.63 18697.82 7197.87 11293.57 6793.92 13895.04 23890.61 7798.95 15594.62 9698.68 10098.54 129
XVG-OURS-SEG-HR93.86 12793.55 11894.81 18297.06 15888.53 22695.28 27197.45 16591.68 13694.08 13497.68 9782.41 19798.90 16093.84 11292.47 21596.98 200
1112_ss93.37 14292.42 16096.21 11497.05 16090.99 14796.31 22196.72 23386.87 27689.83 23196.69 15486.51 12999.14 13488.12 21893.67 20198.50 134
Test_1112_low_res92.84 16791.84 17695.85 12997.04 16189.97 18095.53 26196.64 24285.38 29689.65 23795.18 23385.86 13999.10 13787.70 22893.58 20698.49 136
hse-mvs293.45 14092.99 13694.81 18297.02 16288.59 22396.69 18696.47 25195.19 1496.74 5496.16 18683.67 16798.48 19995.85 5479.13 34497.35 195
DROMVSNet96.42 5596.47 4896.26 11197.01 16391.52 12798.89 397.75 12194.42 4596.64 6197.68 9789.32 9098.60 18597.45 899.11 8498.67 125
AUN-MVS91.76 20190.75 21794.81 18297.00 16488.57 22496.65 19096.49 25089.63 19692.15 17696.12 18778.66 26198.50 19590.83 16979.18 34397.36 194
BH-w/o92.14 19391.75 17893.31 25496.99 16585.73 28495.67 25495.69 28088.73 22789.26 25194.82 24882.97 18398.07 23885.26 27496.32 16296.13 226
GeoE93.89 12593.28 13195.72 13896.96 16689.75 18598.24 3696.92 22089.47 20092.12 17897.21 12784.42 15698.39 20587.71 22796.50 15899.01 94
3Dnovator+91.43 495.40 8194.48 10198.16 1596.90 16795.34 1698.48 1897.87 11294.65 4188.53 26898.02 7383.69 16699.71 4193.18 12598.96 9199.44 51
UGNet94.04 12193.28 13196.31 10696.85 16891.19 14197.88 6597.68 13394.40 4693.00 15896.18 18373.39 30799.61 6591.72 15298.46 10898.13 159
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDDNet93.05 15592.07 16796.02 12296.84 16990.39 17098.08 4995.85 27486.22 28595.79 9798.46 2867.59 33699.19 12794.92 8694.85 18498.47 139
RPSCF90.75 25090.86 20990.42 32296.84 16976.29 35895.61 25896.34 25683.89 31691.38 18997.87 8176.45 28598.78 16887.16 24692.23 21896.20 220
MVS_Test94.89 9994.62 9495.68 14096.83 17189.55 19196.70 18497.17 19391.17 15695.60 10696.11 19087.87 10998.76 17193.01 13297.17 14598.72 120
LCM-MVSNet-Re92.50 17392.52 15792.44 27996.82 17281.89 32896.92 16493.71 33892.41 11584.30 32494.60 25985.08 14897.03 32091.51 15897.36 13798.40 147
baseline95.58 7895.42 7696.08 11796.78 17390.41 16997.16 14397.45 16593.69 6695.65 10597.85 8487.29 12098.68 17895.66 6097.25 14299.13 81
Fast-Effi-MVS+93.46 13992.75 14595.59 14596.77 17490.03 17496.81 17597.13 19688.19 23991.30 19494.27 27786.21 13498.63 18287.66 23396.46 16198.12 160
QAPM93.45 14092.27 16496.98 7796.77 17492.62 9298.39 2398.12 5984.50 31088.27 27497.77 9182.39 19899.81 2985.40 27298.81 9598.51 133
CS-MVS-test95.86 7395.88 6695.80 13196.76 17690.59 16198.40 2297.65 13793.52 7395.53 11096.79 14589.98 8698.59 18995.59 7098.69 9998.23 155
casdiffmvs95.64 7695.49 7296.08 11796.76 17690.45 16797.29 12997.44 16994.00 5495.46 11297.98 7687.52 11698.73 17395.64 6497.33 13999.08 87
CHOSEN 280x42093.12 15292.72 14894.34 20596.71 17887.27 25390.29 34997.72 12886.61 28091.34 19195.29 22984.29 16098.41 20193.25 12498.94 9297.35 195
Effi-MVS+94.93 9794.45 10296.36 10496.61 17991.47 12996.41 20897.41 17491.02 16194.50 12695.92 19687.53 11598.78 16893.89 11096.81 14998.84 113
thisisatest051592.29 18491.30 19595.25 16296.60 18088.90 21794.36 29492.32 34987.92 24893.43 14994.57 26077.28 28099.00 15289.42 19495.86 16897.86 172
PCF-MVS89.48 1191.56 21089.95 25096.36 10496.60 18092.52 9592.51 33697.26 18779.41 34788.90 25696.56 16684.04 16399.55 8777.01 33797.30 14097.01 199
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
xiu_mvs_v1_base_debu95.01 9294.76 9095.75 13496.58 18291.71 11896.25 22697.35 18192.99 9496.70 5696.63 16182.67 18999.44 10796.22 3897.46 13196.11 227
xiu_mvs_v1_base95.01 9294.76 9095.75 13496.58 18291.71 11896.25 22697.35 18192.99 9496.70 5696.63 16182.67 18999.44 10796.22 3897.46 13196.11 227
xiu_mvs_v1_base_debi95.01 9294.76 9095.75 13496.58 18291.71 11896.25 22697.35 18192.99 9496.70 5696.63 16182.67 18999.44 10796.22 3897.46 13196.11 227
MVSTER93.20 14892.81 14294.37 20396.56 18589.59 18997.06 14897.12 19791.24 15391.30 19495.96 19482.02 20498.05 24193.48 11890.55 24795.47 254
3Dnovator91.36 595.19 9094.44 10397.44 5596.56 18593.36 7398.65 998.36 1694.12 5289.25 25298.06 7082.20 20199.77 3293.41 12199.32 5799.18 76
FMVSNet391.78 20090.69 22095.03 17096.53 18792.27 10497.02 15296.93 21689.79 19489.35 24694.65 25777.01 28197.47 30386.12 26088.82 26295.35 265
GBi-Net91.35 22390.27 23694.59 19196.51 18891.18 14297.50 10696.93 21688.82 22289.35 24694.51 26173.87 30197.29 31586.12 26088.82 26295.31 267
test191.35 22390.27 23694.59 19196.51 18891.18 14297.50 10696.93 21688.82 22289.35 24694.51 26173.87 30197.29 31586.12 26088.82 26295.31 267
FMVSNet291.31 22690.08 24594.99 17196.51 18892.21 10597.41 11496.95 21488.82 22288.62 26594.75 25173.87 30197.42 30885.20 27588.55 26795.35 265
ACMH+87.92 1490.20 26589.18 27193.25 25696.48 19186.45 27396.99 15796.68 23988.83 22184.79 32196.22 18270.16 32598.53 19384.42 28588.04 26994.77 304
CANet_DTU94.37 10893.65 11696.55 8796.46 19292.13 10996.21 23096.67 24194.38 4893.53 14697.03 13679.34 24899.71 4190.76 17098.45 10997.82 176
CS-MVS95.88 7195.98 6295.58 14696.44 19390.56 16297.78 7597.73 12493.01 9396.07 8596.77 14790.13 8398.57 19096.83 1899.10 8597.60 187
mvs_anonymous93.82 12893.74 11294.06 21496.44 19385.41 28995.81 25097.05 20689.85 19190.09 22496.36 17787.44 11897.75 27993.97 10696.69 15499.02 90
diffmvs95.25 8695.13 8495.63 14296.43 19589.34 20295.99 24297.35 18192.83 10396.31 7697.37 12086.44 13098.67 17996.26 3597.19 14498.87 110
ET-MVSNet_ETH3D91.49 21590.11 24495.63 14296.40 19691.57 12695.34 26793.48 34090.60 17675.58 35695.49 22480.08 23596.79 32994.25 10089.76 25698.52 131
TR-MVS91.48 21690.59 22394.16 21196.40 19687.33 25195.67 25495.34 29687.68 25991.46 18895.52 22376.77 28398.35 20782.85 29793.61 20496.79 209
ACMP89.59 1092.62 17292.14 16694.05 21596.40 19688.20 23597.36 12197.25 18991.52 13988.30 27296.64 15778.46 26498.72 17691.86 15091.48 23295.23 275
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVSFormer95.37 8295.16 8395.99 12496.34 19991.21 13898.22 3897.57 14691.42 14496.22 7997.32 12186.20 13597.92 26294.07 10499.05 8798.85 111
lupinMVS94.99 9694.56 9696.29 10996.34 19991.21 13895.83 24996.27 25988.93 21796.22 7996.88 14386.20 13598.85 16395.27 7599.05 8798.82 114
ACMM89.79 892.96 15992.50 15894.35 20496.30 20188.71 22097.58 10097.36 18091.40 14790.53 20696.65 15679.77 24198.75 17291.24 16591.64 22895.59 250
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS-LS92.29 18491.94 17393.34 25396.25 20286.97 26396.57 20297.05 20690.67 16889.50 24394.80 24986.59 12697.64 28789.91 18186.11 28995.40 261
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HQP_MVS93.78 13093.43 12694.82 18096.21 20389.99 17797.74 7997.51 15294.85 2891.34 19196.64 15781.32 21598.60 18593.02 13092.23 21895.86 233
plane_prior796.21 20389.98 179
ACMH87.59 1690.53 25789.42 26693.87 22896.21 20387.92 24297.24 13296.94 21588.45 23383.91 33196.27 18171.92 31198.62 18484.43 28489.43 25895.05 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CDS-MVSNet94.14 11693.54 11995.93 12596.18 20691.46 13096.33 21997.04 20888.97 21593.56 14396.51 16887.55 11497.89 26689.80 18495.95 16598.44 144
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
LTVRE_ROB88.41 1390.99 24089.92 25194.19 20996.18 20689.55 19196.31 22197.09 20187.88 25085.67 31295.91 19778.79 26098.57 19081.50 30689.98 25394.44 313
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LPG-MVS_test92.94 16192.56 15394.10 21296.16 20888.26 23297.65 9297.46 15991.29 14990.12 22197.16 12979.05 25298.73 17392.25 13991.89 22695.31 267
LGP-MVS_train94.10 21296.16 20888.26 23297.46 15991.29 14990.12 22197.16 12979.05 25298.73 17392.25 13991.89 22695.31 267
TAMVS94.01 12293.46 12495.64 14196.16 20890.45 16796.71 18396.89 22389.27 20693.46 14896.92 14187.29 12097.94 25988.70 21295.74 17098.53 130
plane_prior196.14 211
CLD-MVS92.98 15892.53 15694.32 20696.12 21289.20 20995.28 27197.47 15792.66 10989.90 22895.62 21680.58 22598.40 20292.73 13492.40 21695.38 263
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
plane_prior696.10 21390.00 17581.32 215
cl2291.21 23090.56 22693.14 26196.09 21486.80 26594.41 29296.58 24887.80 25388.58 26793.99 29080.85 22397.62 29089.87 18386.93 28094.99 282
Effi-MVS+-dtu93.08 15393.21 13392.68 27696.02 21583.25 31897.14 14696.72 23393.85 5891.20 20193.44 30883.08 17898.30 21191.69 15595.73 17196.50 215
mvs-test193.63 13493.69 11493.46 24896.02 21584.61 30297.24 13296.72 23393.85 5892.30 17395.76 20883.08 17898.89 16191.69 15596.54 15796.87 206
NP-MVS95.99 21789.81 18495.87 198
ADS-MVSNet289.45 27688.59 27892.03 28895.86 21882.26 32690.93 34594.32 33183.23 32591.28 19791.81 33279.01 25695.99 33779.52 32091.39 23497.84 173
ADS-MVSNet89.89 27188.68 27793.53 24495.86 21884.89 29990.93 34595.07 30883.23 32591.28 19791.81 33279.01 25697.85 26879.52 32091.39 23497.84 173
HQP-NCC95.86 21896.65 19093.55 6890.14 215
ACMP_Plane95.86 21896.65 19093.55 6890.14 215
HQP-MVS93.19 14992.74 14694.54 19795.86 21889.33 20396.65 19097.39 17593.55 6890.14 21595.87 19880.95 21898.50 19592.13 14392.10 22395.78 240
EI-MVSNet93.03 15692.88 14093.48 24695.77 22386.98 26296.44 20497.12 19790.66 17091.30 19497.64 10486.56 12798.05 24189.91 18190.55 24795.41 258
CVMVSNet91.23 22991.75 17889.67 32995.77 22374.69 36096.44 20494.88 31685.81 29092.18 17597.64 10479.07 25195.58 34688.06 21995.86 16898.74 118
RRT_test8_iter0591.19 23490.78 21492.41 28195.76 22583.14 31997.32 12597.46 15991.37 14889.07 25595.57 21870.33 32298.21 21693.56 11586.62 28595.89 232
FIs94.09 11893.70 11395.27 16195.70 22692.03 11298.10 4798.68 793.36 8190.39 21096.70 15287.63 11397.94 25992.25 13990.50 24995.84 236
VPA-MVSNet93.24 14692.48 15995.51 15195.70 22692.39 9897.86 6698.66 992.30 11792.09 18095.37 22780.49 22798.40 20293.95 10785.86 29095.75 244
SCA91.84 19991.18 20293.83 22995.59 22884.95 29894.72 28295.58 28690.82 16292.25 17493.69 29975.80 29098.10 23086.20 25795.98 16498.45 141
c3_l91.38 22090.89 20792.88 26995.58 22986.30 27594.68 28396.84 22988.17 24188.83 26194.23 28085.65 14297.47 30389.36 19584.63 30994.89 291
VPNet92.23 18891.31 19494.99 17195.56 23090.96 14997.22 13897.86 11592.96 10090.96 20296.62 16475.06 29598.20 21891.90 14783.65 32595.80 239
miper_ehance_all_eth91.59 20791.13 20392.97 26695.55 23186.57 27294.47 28896.88 22487.77 25588.88 25894.01 28886.22 13397.54 29689.49 19286.93 28094.79 301
IterMVS-SCA-FT90.31 26189.81 25691.82 29495.52 23284.20 30794.30 29796.15 26590.61 17487.39 29294.27 27775.80 29096.44 33287.34 24086.88 28494.82 296
jason94.84 10194.39 10496.18 11595.52 23290.93 15196.09 23596.52 24989.28 20596.01 9097.32 12184.70 15298.77 17095.15 7898.91 9498.85 111
jason: jason.
FC-MVSNet-test93.94 12493.57 11795.04 16995.48 23491.45 13198.12 4698.71 593.37 7990.23 21396.70 15287.66 11197.85 26891.49 15990.39 25095.83 237
IterMVS90.15 26789.67 26291.61 30195.48 23483.72 31294.33 29696.12 26689.99 18787.31 29594.15 28575.78 29296.27 33586.97 24886.89 28394.83 294
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet189.88 27288.31 28194.59 19195.41 23691.18 14297.50 10696.93 21686.62 27987.41 29194.51 26165.94 34897.29 31583.04 29587.43 27695.31 267
UniMVSNet (Re)93.31 14492.55 15495.61 14495.39 23793.34 7497.39 11898.71 593.14 8990.10 22394.83 24787.71 11098.03 24591.67 15783.99 31995.46 255
MVS-HIRNet82.47 32481.21 32686.26 34195.38 23869.21 36788.96 35789.49 36266.28 36180.79 34374.08 36568.48 33297.39 31071.93 35395.47 17492.18 348
PatchmatchNetpermissive91.91 19791.35 19193.59 24195.38 23884.11 30893.15 32695.39 29089.54 19792.10 17993.68 30182.82 18798.13 22584.81 27895.32 17798.52 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cl____90.96 24390.32 23292.89 26895.37 24086.21 27894.46 29096.64 24287.82 25188.15 27894.18 28382.98 18297.54 29687.70 22885.59 29294.92 289
DIV-MVS_self_test90.97 24290.33 23192.88 26995.36 24186.19 27994.46 29096.63 24587.82 25188.18 27794.23 28082.99 18197.53 29887.72 22585.57 29394.93 287
miper_enhance_ethall91.54 21391.01 20593.15 26095.35 24287.07 26193.97 30696.90 22186.79 27789.17 25393.43 31086.55 12897.64 28789.97 18086.93 28094.74 305
UniMVSNet_NR-MVSNet93.37 14292.67 14995.47 15795.34 24392.83 8597.17 14298.58 1092.98 9990.13 21995.80 20388.37 10497.85 26891.71 15383.93 32095.73 246
ITE_SJBPF92.43 28095.34 24385.37 29195.92 27091.47 14187.75 28696.39 17671.00 31897.96 25682.36 30289.86 25593.97 325
OpenMVScopyleft89.19 1292.86 16591.68 18196.40 9995.34 24392.73 8898.27 3098.12 5984.86 30585.78 31197.75 9278.89 25999.74 3487.50 23898.65 10196.73 210
eth_miper_zixun_eth91.02 23990.59 22392.34 28395.33 24684.35 30494.10 30396.90 22188.56 23188.84 26094.33 27284.08 16297.60 29288.77 21184.37 31595.06 280
miper_lstm_enhance90.50 25990.06 24891.83 29395.33 24683.74 31193.86 31096.70 23887.56 26287.79 28493.81 29683.45 17296.92 32687.39 23984.62 31094.82 296
131492.81 16992.03 16995.14 16695.33 24689.52 19496.04 23797.44 16987.72 25886.25 30895.33 22883.84 16498.79 16789.26 19997.05 14797.11 198
PAPM91.52 21490.30 23495.20 16395.30 24989.83 18393.38 32296.85 22886.26 28488.59 26695.80 20384.88 15098.15 22475.67 34195.93 16697.63 182
Fast-Effi-MVS+-dtu92.29 18491.99 17193.21 25995.27 25085.52 28797.03 14996.63 24592.09 12689.11 25495.14 23580.33 23198.08 23587.54 23794.74 18996.03 230
Patchmatch-test89.42 27787.99 28493.70 23695.27 25085.11 29488.98 35694.37 32981.11 33787.10 29893.69 29982.28 19997.50 30174.37 34594.76 18798.48 138
PVSNet_082.17 1985.46 31583.64 31890.92 31395.27 25079.49 34890.55 34895.60 28483.76 31983.00 33789.95 34471.09 31797.97 25282.75 29960.79 36695.31 267
IB-MVS87.33 1789.91 27088.28 28294.79 18695.26 25387.70 24895.12 27993.95 33789.35 20487.03 29992.49 32070.74 32099.19 12789.18 20481.37 33697.49 192
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
nrg03094.05 12093.31 13096.27 11095.22 25494.59 3298.34 2497.46 15992.93 10191.21 20096.64 15787.23 12298.22 21594.99 8585.80 29195.98 231
MDTV_nov1_ep1390.76 21695.22 25480.33 34093.03 32995.28 29788.14 24492.84 16493.83 29381.34 21498.08 23582.86 29694.34 193
MVS91.71 20290.44 22895.51 15195.20 25691.59 12496.04 23797.45 16573.44 35987.36 29395.60 21785.42 14499.10 13785.97 26497.46 13195.83 237
tfpnnormal89.70 27588.40 28093.60 24095.15 25790.10 17397.56 10298.16 5387.28 26986.16 30994.63 25877.57 27898.05 24174.48 34384.59 31192.65 341
tpmrst91.44 21791.32 19391.79 29695.15 25779.20 35193.42 32195.37 29288.55 23293.49 14793.67 30282.49 19598.27 21290.41 17489.34 25997.90 169
WR-MVS92.34 18091.53 18694.77 18795.13 25990.83 15496.40 21197.98 10191.88 13289.29 24995.54 22282.50 19497.80 27389.79 18585.27 29995.69 247
tpm cat188.36 29087.21 29391.81 29595.13 25980.55 33892.58 33595.70 27974.97 35687.45 28991.96 33078.01 27598.17 22380.39 31688.74 26596.72 211
WR-MVS_H92.00 19591.35 19193.95 22395.09 26189.47 19598.04 5298.68 791.46 14288.34 27094.68 25585.86 13997.56 29485.77 26784.24 31694.82 296
CP-MVSNet91.89 19891.24 19893.82 23095.05 26288.57 22497.82 7198.19 4791.70 13588.21 27695.76 20881.96 20597.52 30087.86 22284.65 30895.37 264
DWT-MVSNet_test90.76 24889.89 25293.38 25195.04 26383.70 31495.85 24894.30 33288.19 23990.46 20892.80 31573.61 30598.50 19588.16 21790.58 24697.95 167
test_040286.46 30484.79 31291.45 30495.02 26485.55 28696.29 22394.89 31580.90 33882.21 33893.97 29168.21 33497.29 31562.98 36388.68 26691.51 352
cascas91.20 23190.08 24594.58 19594.97 26589.16 21293.65 31797.59 14479.90 34589.40 24492.92 31475.36 29498.36 20692.14 14294.75 18896.23 219
PS-CasMVS91.55 21190.84 21293.69 23794.96 26688.28 23197.84 7098.24 3791.46 14288.04 28095.80 20379.67 24397.48 30287.02 24784.54 31395.31 267
DU-MVS92.90 16392.04 16895.49 15494.95 26792.83 8597.16 14398.24 3793.02 9290.13 21995.71 21183.47 17097.85 26891.71 15383.93 32095.78 240
NR-MVSNet92.34 18091.27 19795.53 15094.95 26793.05 8097.39 11898.07 7392.65 11084.46 32295.71 21185.00 14997.77 27889.71 18683.52 32695.78 240
RRT_MVS93.21 14792.32 16395.91 12694.92 26994.15 4796.92 16496.86 22791.42 14491.28 19796.43 17279.66 24498.10 23093.29 12390.06 25295.46 255
tpmvs89.83 27489.15 27291.89 29194.92 26980.30 34193.11 32795.46 28986.28 28388.08 27992.65 31780.44 22898.52 19481.47 30789.92 25496.84 207
PMMVS92.86 16592.34 16194.42 20294.92 26986.73 26794.53 28796.38 25584.78 30794.27 13095.12 23783.13 17798.40 20291.47 16096.49 15998.12 160
tpm289.96 26989.21 27092.23 28594.91 27281.25 33293.78 31294.42 32780.62 34291.56 18693.44 30876.44 28697.94 25985.60 26992.08 22597.49 192
TinyColmap86.82 30285.35 30891.21 30994.91 27282.99 32093.94 30894.02 33683.58 32181.56 34094.68 25562.34 35698.13 22575.78 33987.35 27992.52 343
UniMVSNet_ETH3D91.34 22590.22 24194.68 19094.86 27487.86 24597.23 13797.46 15987.99 24689.90 22896.92 14166.35 34498.23 21490.30 17790.99 24197.96 165
CostFormer91.18 23590.70 21992.62 27794.84 27581.76 32994.09 30494.43 32684.15 31392.72 16593.77 29779.43 24798.20 21890.70 17292.18 22197.90 169
MIMVSNet88.50 28986.76 29793.72 23594.84 27587.77 24791.39 34094.05 33486.41 28287.99 28292.59 31963.27 35395.82 34277.44 33192.84 21097.57 190
FMVSNet587.29 29985.79 30391.78 29794.80 27787.28 25295.49 26295.28 29784.09 31483.85 33291.82 33162.95 35494.17 35578.48 32785.34 29893.91 326
TranMVSNet+NR-MVSNet92.50 17391.63 18295.14 16694.76 27892.07 11097.53 10498.11 6292.90 10289.56 24096.12 18783.16 17597.60 29289.30 19783.20 32995.75 244
XXY-MVS92.16 19191.23 19994.95 17694.75 27990.94 15097.47 11197.43 17289.14 20988.90 25696.43 17279.71 24298.24 21389.56 19187.68 27395.67 249
EPMVS90.70 25389.81 25693.37 25294.73 28084.21 30693.67 31688.02 36589.50 19992.38 16993.49 30677.82 27797.78 27686.03 26392.68 21298.11 163
D2MVS91.30 22790.95 20692.35 28294.71 28185.52 28796.18 23298.21 4388.89 21886.60 30593.82 29579.92 23997.95 25889.29 19890.95 24293.56 329
USDC88.94 28187.83 28692.27 28494.66 28284.96 29793.86 31095.90 27287.34 26783.40 33395.56 22067.43 33798.19 22082.64 30189.67 25793.66 328
MVS_030488.79 28587.57 28792.46 27894.65 28386.15 28196.40 21197.17 19386.44 28188.02 28191.71 33456.68 36197.03 32084.47 28392.58 21494.19 321
GA-MVS91.38 22090.31 23394.59 19194.65 28387.62 24994.34 29596.19 26490.73 16690.35 21193.83 29371.84 31297.96 25687.22 24393.61 20498.21 157
OPM-MVS93.28 14592.76 14394.82 18094.63 28590.77 15796.65 19097.18 19193.72 6391.68 18597.26 12479.33 24998.63 18292.13 14392.28 21795.07 279
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test-LLR91.42 21891.19 20192.12 28694.59 28680.66 33594.29 29892.98 34491.11 15890.76 20492.37 32279.02 25498.07 23888.81 20996.74 15197.63 182
test-mter90.19 26689.54 26592.12 28694.59 28680.66 33594.29 29892.98 34487.68 25990.76 20492.37 32267.67 33598.07 23888.81 20996.74 15197.63 182
dp88.90 28388.26 28390.81 31594.58 28876.62 35792.85 33194.93 31485.12 30190.07 22693.07 31275.81 28998.12 22880.53 31587.42 27797.71 179
PEN-MVS91.20 23190.44 22893.48 24694.49 28987.91 24497.76 7798.18 4991.29 14987.78 28595.74 21080.35 23097.33 31385.46 27182.96 33095.19 277
gg-mvs-nofinetune87.82 29585.61 30494.44 19994.46 29089.27 20891.21 34484.61 37080.88 33989.89 23074.98 36371.50 31497.53 29885.75 26897.21 14396.51 214
CR-MVSNet90.82 24789.77 25893.95 22394.45 29187.19 25790.23 35095.68 28286.89 27592.40 16792.36 32580.91 22097.05 31981.09 31393.95 19997.60 187
RPMNet88.98 28087.05 29594.77 18794.45 29187.19 25790.23 35098.03 8777.87 35492.40 16787.55 35680.17 23499.51 9768.84 35993.95 19997.60 187
TESTMET0.1,190.06 26889.42 26691.97 28994.41 29380.62 33794.29 29891.97 35387.28 26990.44 20992.47 32168.79 33097.67 28488.50 21596.60 15697.61 186
TransMVSNet (Re)88.94 28187.56 28893.08 26394.35 29488.45 22997.73 8195.23 30187.47 26384.26 32595.29 22979.86 24097.33 31379.44 32474.44 35393.45 332
MS-PatchMatch90.27 26289.77 25891.78 29794.33 29584.72 30195.55 25996.73 23286.17 28686.36 30795.28 23171.28 31697.80 27384.09 28698.14 11792.81 338
baseline291.63 20590.86 20993.94 22594.33 29586.32 27495.92 24591.64 35589.37 20386.94 30194.69 25481.62 21298.69 17788.64 21394.57 19196.81 208
XVG-ACMP-BASELINE90.93 24490.21 24293.09 26294.31 29785.89 28295.33 26897.26 18791.06 16089.38 24595.44 22668.61 33198.60 18589.46 19391.05 23994.79 301
pm-mvs190.72 25289.65 26493.96 22294.29 29889.63 18697.79 7496.82 23089.07 21086.12 31095.48 22578.61 26297.78 27686.97 24881.67 33494.46 312
v891.29 22890.53 22793.57 24394.15 29988.12 23997.34 12297.06 20588.99 21388.32 27194.26 27983.08 17898.01 24787.62 23583.92 32294.57 310
v1091.04 23890.23 23993.49 24594.12 30088.16 23897.32 12597.08 20288.26 23888.29 27394.22 28282.17 20297.97 25286.45 25484.12 31794.33 316
Patchmtry88.64 28887.25 29192.78 27394.09 30186.64 26889.82 35395.68 28280.81 34187.63 28892.36 32580.91 22097.03 32078.86 32685.12 30294.67 307
PatchT88.87 28487.42 28993.22 25894.08 30285.10 29589.51 35494.64 32381.92 33292.36 17088.15 35380.05 23697.01 32372.43 35193.65 20297.54 191
V4291.58 20990.87 20893.73 23394.05 30388.50 22797.32 12596.97 21388.80 22589.71 23394.33 27282.54 19398.05 24189.01 20685.07 30394.64 309
DTE-MVSNet90.56 25689.75 26093.01 26493.95 30487.25 25497.64 9697.65 13790.74 16587.12 29695.68 21479.97 23897.00 32483.33 29281.66 33594.78 303
tpm90.25 26389.74 26191.76 29993.92 30579.73 34793.98 30593.54 33988.28 23791.99 18193.25 31177.51 27997.44 30687.30 24287.94 27098.12 160
PS-MVSNAJss93.74 13193.51 12294.44 19993.91 30689.28 20797.75 7897.56 14992.50 11389.94 22796.54 16788.65 9998.18 22193.83 11390.90 24395.86 233
v114491.37 22290.60 22293.68 23893.89 30788.23 23496.84 17197.03 21088.37 23589.69 23594.39 26882.04 20397.98 24987.80 22485.37 29694.84 293
v2v48291.59 20790.85 21193.80 23193.87 30888.17 23796.94 16396.88 22489.54 19789.53 24194.90 24381.70 21198.02 24689.25 20085.04 30595.20 276
v14890.99 24090.38 23092.81 27293.83 30985.80 28396.78 17896.68 23989.45 20188.75 26493.93 29282.96 18497.82 27287.83 22383.25 32794.80 299
Baseline_NR-MVSNet91.20 23190.62 22192.95 26793.83 30988.03 24097.01 15695.12 30688.42 23489.70 23495.13 23683.47 17097.44 30689.66 18983.24 32893.37 333
EPNet_dtu91.71 20291.28 19692.99 26593.76 31183.71 31396.69 18695.28 29793.15 8887.02 30095.95 19583.37 17397.38 31179.46 32396.84 14897.88 171
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v119291.07 23690.23 23993.58 24293.70 31287.82 24696.73 18097.07 20387.77 25589.58 23894.32 27480.90 22297.97 25286.52 25285.48 29494.95 283
GG-mvs-BLEND93.62 23993.69 31389.20 20992.39 33883.33 37187.98 28389.84 34671.00 31896.87 32782.08 30495.40 17694.80 299
v14419291.06 23790.28 23593.39 25093.66 31487.23 25696.83 17297.07 20387.43 26489.69 23594.28 27681.48 21398.00 24887.18 24584.92 30794.93 287
v192192090.85 24690.03 24993.29 25593.55 31586.96 26496.74 17997.04 20887.36 26689.52 24294.34 27180.23 23397.97 25286.27 25585.21 30094.94 285
v7n90.76 24889.86 25393.45 24993.54 31687.60 25097.70 8797.37 17888.85 21987.65 28794.08 28781.08 21798.10 23084.68 28083.79 32494.66 308
JIA-IIPM88.26 29287.04 29691.91 29093.52 31781.42 33189.38 35594.38 32880.84 34090.93 20380.74 36179.22 25097.92 26282.76 29891.62 22996.38 218
v124090.70 25389.85 25493.23 25793.51 31886.80 26596.61 19697.02 21187.16 27189.58 23894.31 27579.55 24697.98 24985.52 27085.44 29594.90 290
test_djsdf93.07 15492.76 14394.00 21893.49 31988.70 22198.22 3897.57 14691.42 14490.08 22595.55 22182.85 18697.92 26294.07 10491.58 23095.40 261
SixPastTwentyTwo89.15 27988.54 27990.98 31293.49 31980.28 34296.70 18494.70 32090.78 16384.15 32795.57 21871.78 31397.71 28284.63 28185.07 30394.94 285
mvs_tets92.31 18291.76 17793.94 22593.41 32188.29 23097.63 9797.53 15092.04 12888.76 26396.45 17174.62 29798.09 23493.91 10991.48 23295.45 257
OurMVSNet-221017-090.51 25890.19 24391.44 30593.41 32181.25 33296.98 15996.28 25891.68 13686.55 30696.30 17974.20 30097.98 24988.96 20787.40 27895.09 278
pmmvs490.93 24489.85 25494.17 21093.34 32390.79 15694.60 28496.02 26884.62 30887.45 28995.15 23481.88 20897.45 30587.70 22887.87 27194.27 320
jajsoiax92.42 17791.89 17594.03 21793.33 32488.50 22797.73 8197.53 15092.00 13088.85 25996.50 16975.62 29398.11 22993.88 11191.56 23195.48 252
gm-plane-assit93.22 32578.89 35484.82 30693.52 30598.64 18187.72 225
MVP-Stereo90.74 25190.08 24592.71 27493.19 32688.20 23595.86 24796.27 25986.07 28784.86 32094.76 25077.84 27697.75 27983.88 29098.01 11992.17 349
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EU-MVSNet88.72 28788.90 27488.20 33493.15 32774.21 36196.63 19594.22 33385.18 29987.32 29495.97 19376.16 28894.98 35085.27 27386.17 28795.41 258
MDA-MVSNet-bldmvs85.00 31682.95 32091.17 31193.13 32883.33 31794.56 28695.00 31084.57 30965.13 36492.65 31770.45 32195.85 34073.57 34877.49 34694.33 316
K. test v387.64 29786.75 29890.32 32393.02 32979.48 34996.61 19692.08 35290.66 17080.25 34894.09 28667.21 33996.65 33185.96 26580.83 33894.83 294
pmmvs589.86 27388.87 27592.82 27192.86 33086.23 27796.26 22595.39 29084.24 31287.12 29694.51 26174.27 29997.36 31287.61 23687.57 27494.86 292
testgi87.97 29387.21 29390.24 32492.86 33080.76 33496.67 18994.97 31291.74 13485.52 31395.83 20162.66 35594.47 35476.25 33888.36 26895.48 252
EPNet95.20 8994.56 9697.14 7192.80 33292.68 8997.85 6994.87 31996.64 192.46 16697.80 9086.23 13299.65 5693.72 11498.62 10299.10 86
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
N_pmnet78.73 32778.71 32978.79 34592.80 33246.50 37694.14 30243.71 37978.61 35080.83 34291.66 33574.94 29696.36 33367.24 36084.45 31493.50 330
EG-PatchMatch MVS87.02 30185.44 30591.76 29992.67 33485.00 29696.08 23696.45 25283.41 32479.52 35093.49 30657.10 36097.72 28179.34 32590.87 24492.56 342
Gipumacopyleft67.86 33265.41 33475.18 34892.66 33573.45 36266.50 36794.52 32553.33 36657.80 36766.07 36730.81 37089.20 36448.15 36878.88 34562.90 367
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
anonymousdsp92.16 19191.55 18593.97 22192.58 33689.55 19197.51 10597.42 17389.42 20288.40 26994.84 24680.66 22497.88 26791.87 14991.28 23694.48 311
EGC-MVSNET68.77 33163.01 33686.07 34292.49 33782.24 32793.96 30790.96 3590.71 3762.62 37790.89 33853.66 36393.46 35857.25 36584.55 31282.51 362
test0.0.03 189.37 27888.70 27691.41 30692.47 33885.63 28595.22 27692.70 34791.11 15886.91 30393.65 30379.02 25493.19 36178.00 33089.18 26095.41 258
our_test_388.78 28687.98 28591.20 31092.45 33982.53 32293.61 31995.69 28085.77 29184.88 31993.71 29879.99 23796.78 33079.47 32286.24 28694.28 319
ppachtmachnet_test88.35 29187.29 29091.53 30292.45 33983.57 31693.75 31395.97 26984.28 31185.32 31794.18 28379.00 25896.93 32575.71 34084.99 30694.10 322
YYNet185.87 31284.23 31690.78 31892.38 34182.46 32493.17 32495.14 30582.12 33167.69 35992.36 32578.16 27195.50 34877.31 33379.73 34094.39 314
MDA-MVSNet_test_wron85.87 31284.23 31690.80 31792.38 34182.57 32193.17 32495.15 30482.15 33067.65 36092.33 32878.20 26895.51 34777.33 33279.74 33994.31 318
LF4IMVS87.94 29487.25 29189.98 32692.38 34180.05 34594.38 29395.25 30087.59 26184.34 32394.74 25264.31 35197.66 28684.83 27787.45 27592.23 346
lessismore_v090.45 32191.96 34479.09 35387.19 36880.32 34794.39 26866.31 34597.55 29584.00 28876.84 34894.70 306
bset_n11_16_dypcd91.55 21190.59 22394.44 19991.51 34590.25 17192.70 33393.42 34192.27 11890.22 21494.74 25278.42 26597.80 27394.19 10287.86 27295.29 274
pmmvs687.81 29686.19 30092.69 27591.32 34686.30 27597.34 12296.41 25480.59 34384.05 33094.37 27067.37 33897.67 28484.75 27979.51 34294.09 324
Anonymous2023120687.09 30086.14 30189.93 32791.22 34780.35 33996.11 23495.35 29383.57 32284.16 32693.02 31373.54 30695.61 34472.16 35286.14 28893.84 327
KD-MVS_2432*160084.81 31882.64 32191.31 30791.07 34885.34 29291.22 34295.75 27785.56 29483.09 33590.21 34267.21 33995.89 33877.18 33562.48 36492.69 339
miper_refine_blended84.81 31882.64 32191.31 30791.07 34885.34 29291.22 34295.75 27785.56 29483.09 33590.21 34267.21 33995.89 33877.18 33562.48 36492.69 339
DeepMVS_CXcopyleft74.68 34990.84 35064.34 37181.61 37365.34 36267.47 36188.01 35548.60 36680.13 37062.33 36473.68 35579.58 364
Anonymous2024052186.42 30585.44 30589.34 33090.33 35179.79 34696.73 18095.92 27083.71 32083.25 33491.36 33763.92 35296.01 33678.39 32985.36 29792.22 347
test20.0386.14 30985.40 30788.35 33290.12 35280.06 34495.90 24695.20 30288.59 22881.29 34193.62 30471.43 31592.65 36271.26 35681.17 33792.34 345
OpenMVS_ROBcopyleft81.14 2084.42 32082.28 32390.83 31490.06 35384.05 30995.73 25394.04 33573.89 35880.17 34991.53 33659.15 35897.64 28766.92 36189.05 26190.80 356
UnsupCasMVSNet_eth85.99 31084.45 31490.62 31989.97 35482.40 32593.62 31897.37 17889.86 18978.59 35392.37 32265.25 35095.35 34982.27 30370.75 35894.10 322
DSMNet-mixed86.34 30686.12 30287.00 33989.88 35570.43 36494.93 28090.08 36177.97 35385.42 31692.78 31674.44 29893.96 35674.43 34495.14 17996.62 212
new_pmnet82.89 32381.12 32788.18 33589.63 35680.18 34391.77 33992.57 34876.79 35575.56 35788.23 35261.22 35794.48 35371.43 35482.92 33189.87 358
MIMVSNet184.93 31783.05 31990.56 32089.56 35784.84 30095.40 26595.35 29383.91 31580.38 34692.21 32957.23 35993.34 36070.69 35882.75 33393.50 330
KD-MVS_self_test85.95 31184.95 31088.96 33189.55 35879.11 35295.13 27896.42 25385.91 28984.07 32990.48 34070.03 32694.82 35180.04 31772.94 35692.94 336
CMPMVSbinary62.92 2185.62 31484.92 31187.74 33689.14 35973.12 36394.17 30196.80 23173.98 35773.65 35894.93 24166.36 34397.61 29183.95 28991.28 23692.48 344
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CL-MVSNet_self_test86.31 30785.15 30989.80 32888.83 36081.74 33093.93 30996.22 26286.67 27885.03 31890.80 33978.09 27294.50 35274.92 34271.86 35793.15 334
Patchmatch-RL test87.38 29886.24 29990.81 31588.74 36178.40 35588.12 35893.17 34387.11 27282.17 33989.29 34881.95 20695.60 34588.64 21377.02 34798.41 146
pmmvs-eth3d86.22 30884.45 31491.53 30288.34 36287.25 25494.47 28895.01 30983.47 32379.51 35189.61 34769.75 32895.71 34383.13 29476.73 34991.64 350
UnsupCasMVSNet_bld82.13 32579.46 32890.14 32588.00 36382.47 32390.89 34796.62 24778.94 34975.61 35584.40 35956.63 36296.31 33477.30 33466.77 36291.63 351
PM-MVS83.48 32181.86 32588.31 33387.83 36477.59 35693.43 32091.75 35486.91 27480.63 34489.91 34544.42 36795.84 34185.17 27676.73 34991.50 353
new-patchmatchnet83.18 32281.87 32487.11 33886.88 36575.99 35993.70 31495.18 30385.02 30377.30 35488.40 35065.99 34793.88 35774.19 34770.18 35991.47 354
ambc86.56 34083.60 36670.00 36685.69 36094.97 31280.60 34588.45 34937.42 36996.84 32882.69 30075.44 35192.86 337
pmmvs379.97 32677.50 33087.39 33782.80 36779.38 35092.70 33390.75 36070.69 36078.66 35287.47 35751.34 36593.40 35973.39 34969.65 36089.38 359
TDRefinement86.53 30384.76 31391.85 29282.23 36884.25 30596.38 21495.35 29384.97 30484.09 32894.94 24065.76 34998.34 21084.60 28274.52 35292.97 335
PMMVS270.19 33066.92 33380.01 34476.35 36965.67 36986.22 35987.58 36764.83 36362.38 36580.29 36226.78 37488.49 36563.79 36254.07 36785.88 360
FPMVS71.27 32969.85 33175.50 34774.64 37059.03 37291.30 34191.50 35658.80 36457.92 36688.28 35129.98 37285.53 36753.43 36682.84 33281.95 363
E-PMN53.28 33652.56 34055.43 35374.43 37147.13 37583.63 36376.30 37442.23 36842.59 37062.22 36928.57 37374.40 37131.53 37131.51 36944.78 368
wuyk23d25.11 34024.57 34426.74 35673.98 37239.89 37957.88 3699.80 38012.27 37310.39 3746.97 3767.03 37836.44 37525.43 37317.39 3733.89 373
test_method66.11 33364.89 33569.79 35072.62 37335.23 38065.19 36892.83 34620.35 37165.20 36388.08 35443.14 36882.70 36873.12 35063.46 36391.45 355
EMVS52.08 33851.31 34154.39 35472.62 37345.39 37783.84 36275.51 37641.13 36940.77 37159.65 37030.08 37173.60 37228.31 37229.90 37144.18 369
LCM-MVSNet72.55 32869.39 33282.03 34370.81 37565.42 37090.12 35294.36 33055.02 36565.88 36281.72 36024.16 37689.96 36374.32 34668.10 36190.71 357
MVEpermissive50.73 2353.25 33748.81 34266.58 35265.34 37657.50 37372.49 36670.94 37740.15 37039.28 37263.51 3686.89 37973.48 37338.29 37042.38 36868.76 366
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high63.94 33459.58 33777.02 34661.24 37766.06 36885.66 36187.93 36678.53 35142.94 36971.04 36625.42 37580.71 36952.60 36730.83 37084.28 361
PMVScopyleft53.92 2258.58 33555.40 33868.12 35151.00 37848.64 37478.86 36487.10 36946.77 36735.84 37374.28 3648.76 37786.34 36642.07 36973.91 35469.38 365
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt51.94 33953.82 33946.29 35533.73 37945.30 37878.32 36567.24 37818.02 37250.93 36887.05 35852.99 36453.11 37470.76 35725.29 37240.46 370
testmvs13.36 34216.33 3454.48 3585.04 3802.26 38293.18 3233.28 3812.70 3748.24 37521.66 3722.29 3812.19 3767.58 3742.96 3749.00 372
test12313.04 34315.66 3465.18 3574.51 3813.45 38192.50 3371.81 3822.50 3757.58 37620.15 3733.67 3802.18 3777.13 3751.07 3759.90 371
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
eth-test20.00 382
eth-test0.00 382
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k23.24 34130.99 3430.00 3590.00 3820.00 3830.00 37097.63 1400.00 3770.00 37896.88 14384.38 1570.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas7.39 3459.85 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37788.65 990.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re8.06 34410.74 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37896.69 1540.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
PC_three_145290.77 16498.89 898.28 5596.24 198.35 20795.76 5899.58 2299.59 19
test_241102_TWO98.27 3095.13 1798.93 698.89 494.99 1199.85 1797.52 499.65 1299.74 7
test_0728_THIRD94.78 3598.73 1098.87 695.87 499.84 2297.45 899.72 299.77 1
GSMVS98.45 141
sam_mvs182.76 18898.45 141
sam_mvs81.94 207
MTGPAbinary98.08 67
test_post192.81 33216.58 37580.53 22697.68 28386.20 257
test_post17.58 37481.76 20998.08 235
patchmatchnet-post90.45 34182.65 19298.10 230
MTMP97.86 6682.03 372
test9_res94.81 9199.38 5299.45 49
agg_prior293.94 10899.38 5299.50 41
test_prior493.66 6396.42 207
test_prior296.35 21692.80 10596.03 8697.59 10892.01 4495.01 8299.38 52
旧先验295.94 24481.66 33497.34 3898.82 16592.26 137
新几何295.79 251
无先验95.79 25197.87 11283.87 31899.65 5687.68 23198.89 108
原ACMM295.67 254
testdata299.67 5285.96 265
segment_acmp92.89 25
testdata195.26 27593.10 91
plane_prior597.51 15298.60 18593.02 13092.23 21895.86 233
plane_prior496.64 157
plane_prior390.00 17594.46 4491.34 191
plane_prior297.74 7994.85 28
plane_prior89.99 17797.24 13294.06 5392.16 222
n20.00 383
nn0.00 383
door-mid91.06 358
test1197.88 110
door91.13 357
HQP5-MVS89.33 203
BP-MVS92.13 143
HQP4-MVS90.14 21598.50 19595.78 240
HQP3-MVS97.39 17592.10 223
HQP2-MVS80.95 218
MDTV_nov1_ep13_2view70.35 36593.10 32883.88 31793.55 14482.47 19686.25 25698.38 149
ACMMP++_ref90.30 251
ACMMP++91.02 240
Test By Simon88.73 98