region2R | | | 97.07 22 | 96.84 25 | 97.77 35 | 99.46 1 | 93.79 55 | 98.52 10 | 98.24 34 | 93.19 79 | 97.14 41 | 98.34 41 | 91.59 54 | 99.87 7 | 95.46 66 | 99.59 15 | 99.64 10 |
|
DVP-MVS | | | 97.91 2 | 97.81 2 | 98.22 9 | 99.45 2 | 95.36 10 | 98.21 34 | 97.85 112 | 94.92 23 | 98.73 8 | 98.87 6 | 95.08 5 | 99.84 19 | 97.52 2 | 99.67 6 | 99.48 41 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 98.51 2 | 99.45 2 | 95.93 3 | 98.21 34 | 98.28 26 | | | | | 99.86 8 | 97.52 2 | 99.67 6 | 99.75 3 |
|
test0726 | | | | | | 99.45 2 | 95.36 10 | 98.31 22 | 98.29 24 | 94.92 23 | 98.99 4 | 98.92 2 | 95.08 5 | | | | |
|
ACMMPR | | | 97.07 22 | 96.84 25 | 97.79 32 | 99.44 5 | 93.88 52 | 98.52 10 | 98.31 22 | 93.21 76 | 97.15 40 | 98.33 44 | 91.35 59 | 99.86 8 | 95.63 58 | 99.59 15 | 99.62 13 |
|
SED-MVS | | | 98.05 1 | 97.99 1 | 98.24 7 | 99.42 6 | 95.30 15 | 98.25 28 | 98.27 28 | 95.13 16 | 99.19 1 | 98.89 4 | 95.54 3 | 99.85 14 | 97.52 2 | 99.66 8 | 99.56 22 |
|
IU-MVS | | | | | | 99.42 6 | 95.39 9 | | 97.94 102 | 90.40 171 | 98.94 5 | | | | 97.41 7 | 99.66 8 | 99.74 5 |
|
test_241102_ONE | | | | | | 99.42 6 | 95.30 15 | | 98.27 28 | 95.09 19 | 99.19 1 | 98.81 8 | 95.54 3 | 99.65 53 | | | |
|
HFP-MVS | | | 97.14 19 | 96.92 20 | 97.83 26 | 99.42 6 | 94.12 45 | 98.52 10 | 98.32 20 | 93.21 76 | 97.18 38 | 98.29 50 | 92.08 39 | 99.83 22 | 95.63 58 | 99.59 15 | 99.54 29 |
|
#test# | | | 97.02 26 | 96.75 33 | 97.83 26 | 99.42 6 | 94.12 45 | 98.15 37 | 98.32 20 | 92.57 103 | 97.18 38 | 98.29 50 | 92.08 39 | 99.83 22 | 95.12 72 | 99.59 15 | 99.54 29 |
|
MSP-MVS | | | 97.59 7 | 97.54 5 | 97.73 38 | 99.40 11 | 93.77 58 | 98.53 9 | 98.29 24 | 95.55 5 | 98.56 12 | 97.81 82 | 93.90 12 | 99.65 53 | 96.62 20 | 99.21 69 | 99.77 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
mPP-MVS | | | 96.86 37 | 96.60 40 | 97.64 46 | 99.40 11 | 93.44 65 | 98.50 13 | 98.09 63 | 93.27 75 | 95.95 85 | 98.33 44 | 91.04 66 | 99.88 4 | 95.20 69 | 99.57 20 | 99.60 16 |
|
MP-MVS |  | | 96.77 42 | 96.45 49 | 97.72 39 | 99.39 13 | 93.80 54 | 98.41 18 | 98.06 73 | 93.37 71 | 95.54 102 | 98.34 41 | 90.59 75 | 99.88 4 | 94.83 82 | 99.54 23 | 99.49 39 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
XVS | | | 97.18 16 | 96.96 18 | 97.81 30 | 99.38 14 | 94.03 50 | 98.59 7 | 98.20 42 | 94.85 25 | 96.59 59 | 98.29 50 | 91.70 50 | 99.80 27 | 95.66 53 | 99.40 45 | 99.62 13 |
|
X-MVStestdata | | | 91.71 195 | 89.67 254 | 97.81 30 | 99.38 14 | 94.03 50 | 98.59 7 | 98.20 42 | 94.85 25 | 96.59 59 | 32.69 359 | 91.70 50 | 99.80 27 | 95.66 53 | 99.40 45 | 99.62 13 |
|
ZNCC-MVS | | | 96.96 30 | 96.67 38 | 97.85 25 | 99.37 16 | 94.12 45 | 98.49 14 | 98.18 46 | 92.64 102 | 96.39 69 | 98.18 58 | 91.61 52 | 99.88 4 | 95.59 63 | 99.55 21 | 99.57 19 |
|
zzz-MVS | | | 97.07 22 | 96.77 32 | 97.97 22 | 99.37 16 | 94.42 32 | 97.15 137 | 98.08 64 | 95.07 20 | 96.11 76 | 98.59 15 | 90.88 70 | 99.90 1 | 96.18 39 | 99.50 32 | 99.58 17 |
|
MTAPA | | | 97.08 21 | 96.78 31 | 97.97 22 | 99.37 16 | 94.42 32 | 97.24 124 | 98.08 64 | 95.07 20 | 96.11 76 | 98.59 15 | 90.88 70 | 99.90 1 | 96.18 39 | 99.50 32 | 99.58 17 |
|
GST-MVS | | | 96.85 38 | 96.52 45 | 97.82 29 | 99.36 19 | 94.14 44 | 98.29 24 | 98.13 54 | 92.72 99 | 96.70 51 | 98.06 64 | 91.35 59 | 99.86 8 | 94.83 82 | 99.28 59 | 99.47 44 |
|
HPM-MVS |  | | 96.69 45 | 96.45 49 | 97.40 53 | 99.36 19 | 93.11 74 | 98.87 1 | 98.06 73 | 91.17 147 | 96.40 68 | 97.99 69 | 90.99 67 | 99.58 71 | 95.61 60 | 99.61 14 | 99.49 39 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
PGM-MVS | | | 96.81 40 | 96.53 44 | 97.65 44 | 99.35 21 | 93.53 63 | 97.65 84 | 98.98 1 | 92.22 110 | 97.14 41 | 98.44 28 | 91.17 64 | 99.85 14 | 94.35 92 | 99.46 38 | 99.57 19 |
|
CP-MVS | | | 97.02 26 | 96.81 28 | 97.64 46 | 99.33 22 | 93.54 62 | 98.80 3 | 98.28 26 | 92.99 85 | 96.45 67 | 98.30 49 | 91.90 45 | 99.85 14 | 95.61 60 | 99.68 4 | 99.54 29 |
|
HPM-MVS_fast | | | 96.51 51 | 96.27 53 | 97.22 64 | 99.32 23 | 92.74 82 | 98.74 4 | 98.06 73 | 90.57 167 | 96.77 49 | 98.35 38 | 90.21 79 | 99.53 89 | 94.80 85 | 99.63 12 | 99.38 56 |
|
MCST-MVS | | | 97.18 16 | 96.84 25 | 98.20 10 | 99.30 24 | 95.35 12 | 97.12 139 | 98.07 70 | 93.54 66 | 96.08 78 | 97.69 90 | 93.86 13 | 99.71 38 | 96.50 24 | 99.39 47 | 99.55 26 |
|
test_part2 | | | | | | 99.28 25 | 95.74 6 | | | | 98.10 17 | | | | | | |
|
CPTT-MVS | | | 95.57 76 | 95.19 79 | 96.70 77 | 99.27 26 | 91.48 122 | 98.33 21 | 98.11 59 | 87.79 243 | 95.17 107 | 98.03 66 | 87.09 118 | 99.61 62 | 93.51 110 | 99.42 43 | 99.02 83 |
|
TSAR-MVS + MP. | | | 97.42 8 | 97.33 9 | 97.69 42 | 99.25 27 | 94.24 39 | 98.07 43 | 97.85 112 | 93.72 58 | 98.57 11 | 98.35 38 | 93.69 15 | 99.40 109 | 97.06 8 | 99.46 38 | 99.44 47 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
CSCG | | | 96.05 63 | 95.91 61 | 96.46 93 | 99.24 28 | 90.47 159 | 98.30 23 | 98.57 11 | 89.01 201 | 93.97 127 | 97.57 103 | 92.62 28 | 99.76 30 | 94.66 88 | 99.27 61 | 99.15 72 |
|
ACMMP |  | | 96.27 58 | 95.93 60 | 97.28 59 | 99.24 28 | 92.62 87 | 98.25 28 | 98.81 3 | 92.99 85 | 94.56 115 | 98.39 35 | 88.96 89 | 99.85 14 | 94.57 91 | 97.63 119 | 99.36 58 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
MP-MVS-pluss | | | 96.70 44 | 96.27 53 | 97.98 21 | 99.23 30 | 94.71 26 | 96.96 152 | 98.06 73 | 90.67 158 | 95.55 100 | 98.78 10 | 91.07 65 | 99.86 8 | 96.58 22 | 99.55 21 | 99.38 56 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
DP-MVS Recon | | | 95.68 72 | 95.12 82 | 97.37 54 | 99.19 31 | 94.19 40 | 97.03 141 | 98.08 64 | 88.35 225 | 95.09 109 | 97.65 94 | 89.97 83 | 99.48 99 | 92.08 136 | 98.59 97 | 98.44 135 |
|
DPE-MVS |  | | 97.86 3 | 97.65 4 | 98.47 3 | 99.17 32 | 95.78 5 | 97.21 131 | 98.35 19 | 95.16 15 | 98.71 10 | 98.80 9 | 95.05 7 | 99.89 3 | 96.70 19 | 99.73 1 | 99.73 7 |
|
APDe-MVS | | | 97.82 4 | 97.73 3 | 98.08 15 | 99.15 33 | 94.82 25 | 98.81 2 | 98.30 23 | 94.76 33 | 98.30 13 | 98.90 3 | 93.77 14 | 99.68 47 | 97.93 1 | 99.69 3 | 99.75 3 |
|
test1172 | | | 96.93 33 | 96.86 22 | 97.15 67 | 99.10 34 | 92.34 94 | 97.96 53 | 98.04 81 | 93.79 56 | 97.35 33 | 98.53 21 | 91.40 57 | 99.56 81 | 96.30 29 | 99.30 56 | 99.55 26 |
|
testtj | | | 96.93 33 | 96.56 43 | 98.05 17 | 99.10 34 | 94.66 27 | 97.78 68 | 98.22 39 | 92.74 98 | 97.59 24 | 98.20 57 | 91.96 44 | 99.86 8 | 94.21 94 | 99.25 65 | 99.63 11 |
|
SR-MVS | | | 97.01 28 | 96.86 22 | 97.47 51 | 99.09 36 | 93.27 71 | 97.98 48 | 98.07 70 | 93.75 57 | 97.45 28 | 98.48 25 | 91.43 56 | 99.59 68 | 96.22 33 | 99.27 61 | 99.54 29 |
|
ACMMP_NAP | | | 97.20 15 | 96.86 22 | 98.23 8 | 99.09 36 | 95.16 20 | 97.60 91 | 98.19 44 | 92.82 95 | 97.93 20 | 98.74 11 | 91.60 53 | 99.86 8 | 96.26 30 | 99.52 25 | 99.67 8 |
|
HPM-MVS++ |  | | 97.34 13 | 96.97 17 | 98.47 3 | 99.08 38 | 96.16 2 | 97.55 95 | 97.97 99 | 95.59 4 | 96.61 57 | 97.89 72 | 92.57 30 | 99.84 19 | 95.95 46 | 99.51 29 | 99.40 53 |
|
114514_t | | | 93.95 120 | 93.06 131 | 96.63 80 | 99.07 39 | 91.61 117 | 97.46 105 | 97.96 100 | 77.99 341 | 93.00 148 | 97.57 103 | 86.14 132 | 99.33 114 | 89.22 191 | 99.15 73 | 98.94 94 |
|
SMA-MVS |  | | 97.35 12 | 97.03 14 | 98.30 6 | 99.06 40 | 95.42 8 | 97.94 54 | 98.18 46 | 90.57 167 | 98.85 7 | 98.94 1 | 93.33 17 | 99.83 22 | 96.72 18 | 99.68 4 | 99.63 11 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ZD-MVS | | | | | | 99.05 41 | 94.59 28 | | 98.08 64 | 89.22 196 | 97.03 47 | 98.10 60 | 92.52 32 | 99.65 53 | 94.58 90 | 99.31 55 | |
|
APD-MVS |  | | 96.95 31 | 96.60 40 | 98.01 19 | 99.03 42 | 94.93 24 | 97.72 76 | 98.10 61 | 91.50 131 | 98.01 18 | 98.32 46 | 92.33 35 | 99.58 71 | 94.85 80 | 99.51 29 | 99.53 33 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
SR-MVS-dyc-post | | | 96.88 36 | 96.80 29 | 97.11 70 | 99.02 43 | 92.34 94 | 97.98 48 | 98.03 84 | 93.52 67 | 97.43 31 | 98.51 22 | 91.40 57 | 99.56 81 | 96.05 42 | 99.26 63 | 99.43 49 |
|
RE-MVS-def | | | | 96.72 35 | | 99.02 43 | 92.34 94 | 97.98 48 | 98.03 84 | 93.52 67 | 97.43 31 | 98.51 22 | 90.71 73 | | 96.05 42 | 99.26 63 | 99.43 49 |
|
SF-MVS | | | 97.39 10 | 97.13 11 | 98.17 11 | 99.02 43 | 95.28 17 | 98.23 31 | 98.27 28 | 92.37 107 | 98.27 14 | 98.65 13 | 93.33 17 | 99.72 35 | 96.49 25 | 99.52 25 | 99.51 34 |
|
APD-MVS_3200maxsize | | | 96.81 40 | 96.71 36 | 97.12 69 | 99.01 46 | 92.31 97 | 97.98 48 | 98.06 73 | 93.11 82 | 97.44 29 | 98.55 19 | 90.93 68 | 99.55 84 | 96.06 41 | 99.25 65 | 99.51 34 |
|
9.14 | | | | 96.75 33 | | 98.93 47 | | 97.73 73 | 98.23 38 | 91.28 143 | 97.88 22 | 98.44 28 | 93.00 21 | 99.65 53 | 95.76 52 | 99.47 36 | |
|
CDPH-MVS | | | 95.97 66 | 95.38 74 | 97.77 35 | 98.93 47 | 94.44 31 | 96.35 207 | 97.88 106 | 86.98 262 | 96.65 55 | 97.89 72 | 91.99 43 | 99.47 100 | 92.26 127 | 99.46 38 | 99.39 54 |
|
xxxxxxxxxxxxxcwj | | | 97.36 11 | 97.20 10 | 97.83 26 | 98.91 49 | 94.28 35 | 97.02 144 | 97.22 183 | 95.35 8 | 98.27 14 | 98.65 13 | 93.33 17 | 99.72 35 | 96.49 25 | 99.52 25 | 99.51 34 |
|
save fliter | | | | | | 98.91 49 | 94.28 35 | 97.02 144 | 98.02 88 | 95.35 8 | | | | | | | |
|
ETH3 D test6400 | | | 96.16 61 | 95.52 68 | 98.07 16 | 98.90 51 | 95.06 22 | 97.03 141 | 98.21 40 | 88.16 232 | 96.64 56 | 97.70 89 | 91.18 63 | 99.67 49 | 92.44 126 | 99.47 36 | 99.48 41 |
|
ETH3D-3000-0.1 | | | 97.07 22 | 96.71 36 | 98.14 13 | 98.90 51 | 95.33 14 | 97.68 80 | 98.24 34 | 91.57 129 | 97.90 21 | 98.37 36 | 92.61 29 | 99.66 52 | 95.59 63 | 99.51 29 | 99.43 49 |
|
CNVR-MVS | | | 97.68 5 | 97.44 8 | 98.37 5 | 98.90 51 | 95.86 4 | 97.27 122 | 98.08 64 | 95.81 3 | 97.87 23 | 98.31 47 | 94.26 10 | 99.68 47 | 97.02 9 | 99.49 34 | 99.57 19 |
|
abl_6 | | | 96.40 54 | 96.21 55 | 96.98 74 | 98.89 54 | 92.20 102 | 97.89 57 | 98.03 84 | 93.34 74 | 97.22 37 | 98.42 31 | 87.93 103 | 99.72 35 | 95.10 73 | 99.07 80 | 99.02 83 |
|
PAPM_NR | | | 95.01 89 | 94.59 92 | 96.26 108 | 98.89 54 | 90.68 154 | 97.24 124 | 97.73 119 | 91.80 124 | 92.93 153 | 96.62 154 | 89.13 88 | 99.14 131 | 89.21 192 | 97.78 116 | 98.97 90 |
|
OPU-MVS | | | | | 98.55 1 | 98.82 56 | 96.86 1 | 98.25 28 | | | | 98.26 53 | 96.04 1 | 99.24 121 | 95.36 67 | 99.59 15 | 99.56 22 |
|
NCCC | | | 97.30 14 | 97.03 14 | 98.11 14 | 98.77 57 | 95.06 22 | 97.34 114 | 98.04 81 | 95.96 2 | 97.09 45 | 97.88 74 | 93.18 20 | 99.71 38 | 95.84 50 | 99.17 72 | 99.56 22 |
|
DP-MVS | | | 92.76 163 | 91.51 182 | 96.52 85 | 98.77 57 | 90.99 142 | 97.38 112 | 96.08 258 | 82.38 318 | 89.29 238 | 97.87 75 | 83.77 159 | 99.69 44 | 81.37 300 | 96.69 145 | 98.89 100 |
|
MSLP-MVS++ | | | 96.94 32 | 97.06 13 | 96.59 83 | 98.72 59 | 91.86 112 | 97.67 81 | 98.49 12 | 94.66 36 | 97.24 36 | 98.41 34 | 92.31 37 | 98.94 151 | 96.61 21 | 99.46 38 | 98.96 91 |
|
TEST9 | | | | | | 98.70 60 | 94.19 40 | 96.41 199 | 98.02 88 | 88.17 230 | 96.03 79 | 97.56 105 | 92.74 24 | 99.59 68 | | | |
|
train_agg | | | 96.30 57 | 95.83 63 | 97.72 39 | 98.70 60 | 94.19 40 | 96.41 199 | 98.02 88 | 88.58 218 | 96.03 79 | 97.56 105 | 92.73 25 | 99.59 68 | 95.04 74 | 99.37 52 | 99.39 54 |
|
test_8 | | | | | | 98.67 62 | 94.06 49 | 96.37 206 | 98.01 91 | 88.58 218 | 95.98 84 | 97.55 107 | 92.73 25 | 99.58 71 | | | |
|
agg_prior1 | | | 96.22 60 | 95.77 64 | 97.56 48 | 98.67 62 | 93.79 55 | 96.28 215 | 98.00 93 | 88.76 215 | 95.68 94 | 97.55 107 | 92.70 27 | 99.57 79 | 95.01 75 | 99.32 53 | 99.32 60 |
|
agg_prior | | | | | | 98.67 62 | 93.79 55 | | 98.00 93 | | 95.68 94 | | | 99.57 79 | | | |
|
test_prior3 | | | 96.46 53 | 96.20 56 | 97.23 62 | 98.67 62 | 92.99 76 | 96.35 207 | 98.00 93 | 92.80 96 | 96.03 79 | 97.59 101 | 92.01 41 | 99.41 107 | 95.01 75 | 99.38 48 | 99.29 62 |
|
test_prior | | | | | 97.23 62 | 98.67 62 | 92.99 76 | | 98.00 93 | | | | | 99.41 107 | | | 99.29 62 |
|
DeepC-MVS_fast | | 93.89 2 | 96.93 33 | 96.64 39 | 97.78 33 | 98.64 67 | 94.30 34 | 97.41 106 | 98.04 81 | 94.81 30 | 96.59 59 | 98.37 36 | 91.24 61 | 99.64 61 | 95.16 70 | 99.52 25 | 99.42 52 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
新几何1 | | | | | 97.32 56 | 98.60 68 | 93.59 61 | | 97.75 117 | 81.58 324 | 95.75 91 | 97.85 78 | 90.04 82 | 99.67 49 | 86.50 242 | 99.13 75 | 98.69 115 |
|
原ACMM1 | | | | | 96.38 99 | 98.59 69 | 91.09 141 | | 97.89 104 | 87.41 254 | 95.22 106 | 97.68 91 | 90.25 77 | 99.54 86 | 87.95 211 | 99.12 78 | 98.49 127 |
|
AdaColmap |  | | 94.34 106 | 93.68 112 | 96.31 103 | 98.59 69 | 91.68 116 | 96.59 190 | 97.81 114 | 89.87 178 | 92.15 166 | 97.06 127 | 83.62 162 | 99.54 86 | 89.34 186 | 98.07 109 | 97.70 171 |
|
PLC |  | 91.00 6 | 94.11 114 | 93.43 123 | 96.13 113 | 98.58 71 | 91.15 140 | 96.69 178 | 97.39 168 | 87.29 257 | 91.37 179 | 96.71 140 | 88.39 98 | 99.52 93 | 87.33 230 | 97.13 137 | 97.73 169 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
1121 | | | 94.71 102 | 93.83 107 | 97.34 55 | 98.57 72 | 93.64 60 | 96.04 228 | 97.73 119 | 81.56 325 | 95.68 94 | 97.85 78 | 90.23 78 | 99.65 53 | 87.68 220 | 99.12 78 | 98.73 111 |
|
SD-MVS | | | 97.41 9 | 97.53 6 | 97.06 71 | 98.57 72 | 94.46 30 | 97.92 56 | 98.14 53 | 94.82 29 | 99.01 3 | 98.55 19 | 94.18 11 | 97.41 298 | 96.94 10 | 99.64 11 | 99.32 60 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
test12 | | | | | 97.65 44 | 98.46 74 | 94.26 37 | | 97.66 129 | | 95.52 103 | | 90.89 69 | 99.46 101 | | 99.25 65 | 99.22 67 |
|
MVS_111021_HR | | | 96.68 47 | 96.58 42 | 96.99 73 | 98.46 74 | 92.31 97 | 96.20 222 | 98.90 2 | 94.30 45 | 95.86 87 | 97.74 87 | 92.33 35 | 99.38 112 | 96.04 44 | 99.42 43 | 99.28 65 |
|
OMC-MVS | | | 95.09 88 | 94.70 90 | 96.25 109 | 98.46 74 | 91.28 129 | 96.43 197 | 97.57 139 | 92.04 119 | 94.77 113 | 97.96 71 | 87.01 119 | 99.09 137 | 91.31 153 | 96.77 141 | 98.36 142 |
|
MG-MVS | | | 95.61 74 | 95.38 74 | 96.31 103 | 98.42 77 | 90.53 157 | 96.04 228 | 97.48 147 | 93.47 69 | 95.67 97 | 98.10 60 | 89.17 87 | 99.25 120 | 91.27 154 | 98.77 90 | 99.13 74 |
|
PHI-MVS | | | 96.77 42 | 96.46 48 | 97.71 41 | 98.40 78 | 94.07 48 | 98.21 34 | 98.45 15 | 89.86 179 | 97.11 44 | 98.01 68 | 92.52 32 | 99.69 44 | 96.03 45 | 99.53 24 | 99.36 58 |
|
F-COLMAP | | | 93.58 132 | 92.98 132 | 95.37 154 | 98.40 78 | 88.98 207 | 97.18 133 | 97.29 179 | 87.75 246 | 90.49 196 | 97.10 125 | 85.21 141 | 99.50 97 | 86.70 239 | 96.72 144 | 97.63 173 |
|
SteuartSystems-ACMMP | | | 97.62 6 | 97.53 6 | 97.87 24 | 98.39 80 | 94.25 38 | 98.43 17 | 98.27 28 | 95.34 10 | 98.11 16 | 98.56 17 | 94.53 9 | 99.71 38 | 96.57 23 | 99.62 13 | 99.65 9 |
Skip Steuart: Steuart Systems R&D Blog. |
旧先验1 | | | | | | 98.38 81 | 93.38 67 | | 97.75 117 | | | 98.09 62 | 92.30 38 | | | 99.01 83 | 99.16 70 |
|
CNLPA | | | 94.28 107 | 93.53 117 | 96.52 85 | 98.38 81 | 92.55 89 | 96.59 190 | 96.88 216 | 90.13 175 | 91.91 171 | 97.24 118 | 85.21 141 | 99.09 137 | 87.64 223 | 97.83 114 | 97.92 159 |
|
Regformer-3 | | | 96.85 38 | 96.80 29 | 97.01 72 | 98.34 83 | 92.02 108 | 96.96 152 | 97.76 116 | 95.01 22 | 97.08 46 | 98.42 31 | 91.71 49 | 99.54 86 | 96.80 14 | 99.13 75 | 99.48 41 |
|
Regformer-4 | | | 96.97 29 | 96.87 21 | 97.25 61 | 98.34 83 | 92.66 85 | 96.96 152 | 98.01 91 | 95.12 18 | 97.14 41 | 98.42 31 | 91.82 46 | 99.61 62 | 96.90 11 | 99.13 75 | 99.50 37 |
|
TAPA-MVS | | 90.10 7 | 92.30 176 | 91.22 193 | 95.56 141 | 98.33 85 | 89.60 180 | 96.79 168 | 97.65 131 | 81.83 322 | 91.52 176 | 97.23 119 | 87.94 102 | 98.91 154 | 71.31 343 | 98.37 101 | 98.17 149 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
Regformer-1 | | | 97.10 20 | 96.96 18 | 97.54 49 | 98.32 86 | 93.48 64 | 96.83 164 | 97.99 97 | 95.20 13 | 97.46 27 | 98.25 54 | 92.48 34 | 99.58 71 | 96.79 16 | 99.29 57 | 99.55 26 |
|
Regformer-2 | | | 97.16 18 | 96.99 16 | 97.67 43 | 98.32 86 | 93.84 53 | 96.83 164 | 98.10 61 | 95.24 11 | 97.49 26 | 98.25 54 | 92.57 30 | 99.61 62 | 96.80 14 | 99.29 57 | 99.56 22 |
|
TSAR-MVS + GP. | | | 96.69 45 | 96.49 46 | 97.27 60 | 98.31 88 | 93.39 66 | 96.79 168 | 96.72 225 | 94.17 46 | 97.44 29 | 97.66 93 | 92.76 23 | 99.33 114 | 96.86 13 | 97.76 118 | 99.08 80 |
|
CHOSEN 1792x2688 | | | 94.15 110 | 93.51 119 | 96.06 116 | 98.27 89 | 89.38 192 | 95.18 268 | 98.48 14 | 85.60 282 | 93.76 131 | 97.11 124 | 83.15 169 | 99.61 62 | 91.33 152 | 98.72 92 | 99.19 68 |
|
PVSNet_BlendedMVS | | | 94.06 116 | 93.92 105 | 94.47 190 | 98.27 89 | 89.46 189 | 96.73 172 | 98.36 16 | 90.17 173 | 94.36 118 | 95.24 221 | 88.02 100 | 99.58 71 | 93.44 112 | 90.72 235 | 94.36 304 |
|
PVSNet_Blended | | | 94.87 97 | 94.56 93 | 95.81 127 | 98.27 89 | 89.46 189 | 95.47 254 | 98.36 16 | 88.84 209 | 94.36 118 | 96.09 180 | 88.02 100 | 99.58 71 | 93.44 112 | 98.18 106 | 98.40 138 |
|
ETH3D cwj APD-0.16 | | | 96.56 50 | 96.06 58 | 98.05 17 | 98.26 92 | 95.19 18 | 96.99 149 | 98.05 80 | 89.85 181 | 97.26 35 | 98.22 56 | 91.80 47 | 99.69 44 | 94.84 81 | 99.28 59 | 99.27 66 |
|
Anonymous20231211 | | | 90.63 247 | 89.42 258 | 94.27 199 | 98.24 93 | 89.19 203 | 98.05 44 | 97.89 104 | 79.95 333 | 88.25 264 | 94.96 228 | 72.56 301 | 98.13 214 | 89.70 177 | 85.14 291 | 95.49 240 |
|
EI-MVSNet-Vis-set | | | 96.51 51 | 96.47 47 | 96.63 80 | 98.24 93 | 91.20 135 | 96.89 159 | 97.73 119 | 94.74 34 | 96.49 63 | 98.49 24 | 90.88 70 | 99.58 71 | 96.44 27 | 98.32 102 | 99.13 74 |
|
test222 | | | | | | 98.24 93 | 92.21 100 | 95.33 259 | 97.60 135 | 79.22 337 | 95.25 105 | 97.84 81 | 88.80 92 | | | 99.15 73 | 98.72 112 |
|
HyFIR lowres test | | | 93.66 129 | 92.92 134 | 95.87 125 | 98.24 93 | 89.88 175 | 94.58 276 | 98.49 12 | 85.06 291 | 93.78 130 | 95.78 196 | 82.86 178 | 98.67 174 | 91.77 141 | 95.71 162 | 99.07 82 |
|
MVS_111021_LR | | | 96.24 59 | 96.19 57 | 96.39 98 | 98.23 97 | 91.35 128 | 96.24 220 | 98.79 4 | 93.99 50 | 95.80 89 | 97.65 94 | 89.92 84 | 99.24 121 | 95.87 47 | 99.20 70 | 98.58 118 |
|
EI-MVSNet-UG-set | | | 96.34 56 | 96.30 52 | 96.47 91 | 98.20 98 | 90.93 146 | 96.86 160 | 97.72 122 | 94.67 35 | 96.16 75 | 98.46 26 | 90.43 76 | 99.58 71 | 96.23 32 | 97.96 112 | 98.90 98 |
|
PVSNet_Blended_VisFu | | | 95.27 82 | 94.91 85 | 96.38 99 | 98.20 98 | 90.86 148 | 97.27 122 | 98.25 33 | 90.21 172 | 94.18 122 | 97.27 116 | 87.48 112 | 99.73 32 | 93.53 109 | 97.77 117 | 98.55 119 |
|
Anonymous202405211 | | | 92.07 187 | 90.83 206 | 95.76 128 | 98.19 100 | 88.75 211 | 97.58 92 | 95.00 301 | 86.00 277 | 93.64 132 | 97.45 109 | 66.24 336 | 99.53 89 | 90.68 163 | 92.71 201 | 99.01 87 |
|
PatchMatch-RL | | | 92.90 156 | 92.02 163 | 95.56 141 | 98.19 100 | 90.80 150 | 95.27 264 | 97.18 184 | 87.96 236 | 91.86 173 | 95.68 203 | 80.44 221 | 98.99 147 | 84.01 276 | 97.54 121 | 96.89 194 |
|
testdata | | | | | 95.46 152 | 98.18 102 | 88.90 209 | | 97.66 129 | 82.73 317 | 97.03 47 | 98.07 63 | 90.06 81 | 98.85 158 | 89.67 178 | 98.98 84 | 98.64 117 |
|
Anonymous20240529 | | | 91.98 189 | 90.73 210 | 95.73 133 | 98.14 103 | 89.40 191 | 97.99 47 | 97.72 122 | 79.63 335 | 93.54 135 | 97.41 112 | 69.94 318 | 99.56 81 | 91.04 157 | 91.11 228 | 98.22 147 |
|
LFMVS | | | 93.60 131 | 92.63 143 | 96.52 85 | 98.13 104 | 91.27 130 | 97.94 54 | 93.39 333 | 90.57 167 | 96.29 71 | 98.31 47 | 69.00 320 | 99.16 128 | 94.18 96 | 95.87 157 | 99.12 77 |
|
DeepPCF-MVS | | 93.97 1 | 96.61 48 | 97.09 12 | 95.15 159 | 98.09 105 | 86.63 262 | 96.00 232 | 98.15 51 | 95.43 6 | 97.95 19 | 98.56 17 | 93.40 16 | 99.36 113 | 96.77 17 | 99.48 35 | 99.45 45 |
|
DPM-MVS | | | 95.69 71 | 94.92 84 | 98.01 19 | 98.08 106 | 95.71 7 | 95.27 264 | 97.62 134 | 90.43 170 | 95.55 100 | 97.07 126 | 91.72 48 | 99.50 97 | 89.62 180 | 98.94 86 | 98.82 106 |
|
VNet | | | 95.89 68 | 95.45 71 | 97.21 65 | 98.07 107 | 92.94 79 | 97.50 98 | 98.15 51 | 93.87 52 | 97.52 25 | 97.61 100 | 85.29 140 | 99.53 89 | 95.81 51 | 95.27 168 | 99.16 70 |
|
MAR-MVS | | | 94.22 108 | 93.46 121 | 96.51 88 | 98.00 108 | 92.19 103 | 97.67 81 | 97.47 150 | 88.13 234 | 93.00 148 | 95.84 189 | 84.86 146 | 99.51 94 | 87.99 210 | 98.17 107 | 97.83 166 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
DeepC-MVS | | 93.07 3 | 96.06 62 | 95.66 65 | 97.29 58 | 97.96 109 | 93.17 73 | 97.30 120 | 98.06 73 | 93.92 51 | 93.38 140 | 98.66 12 | 86.83 120 | 99.73 32 | 95.60 62 | 99.22 68 | 98.96 91 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
COLMAP_ROB |  | 87.81 15 | 90.40 252 | 89.28 261 | 93.79 222 | 97.95 110 | 87.13 251 | 96.92 156 | 95.89 264 | 82.83 316 | 86.88 293 | 97.18 120 | 73.77 297 | 99.29 118 | 78.44 317 | 93.62 193 | 94.95 272 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
AllTest | | | 90.23 256 | 88.98 265 | 93.98 209 | 97.94 111 | 86.64 259 | 96.51 194 | 95.54 278 | 85.38 285 | 85.49 303 | 96.77 138 | 70.28 314 | 99.15 129 | 80.02 307 | 92.87 198 | 96.15 213 |
|
TestCases | | | | | 93.98 209 | 97.94 111 | 86.64 259 | | 95.54 278 | 85.38 285 | 85.49 303 | 96.77 138 | 70.28 314 | 99.15 129 | 80.02 307 | 92.87 198 | 96.15 213 |
|
thres100view900 | | | 92.43 169 | 91.58 177 | 94.98 167 | 97.92 113 | 89.37 193 | 97.71 78 | 94.66 312 | 92.20 112 | 93.31 142 | 94.90 232 | 78.06 266 | 99.08 139 | 81.40 297 | 94.08 185 | 96.48 205 |
|
thres600view7 | | | 92.49 168 | 91.60 176 | 95.18 158 | 97.91 114 | 89.47 187 | 97.65 84 | 94.66 312 | 92.18 116 | 93.33 141 | 94.91 231 | 78.06 266 | 99.10 134 | 81.61 294 | 94.06 188 | 96.98 189 |
|
API-MVS | | | 94.84 98 | 94.49 97 | 95.90 124 | 97.90 115 | 92.00 109 | 97.80 66 | 97.48 147 | 89.19 197 | 94.81 112 | 96.71 140 | 88.84 91 | 99.17 127 | 88.91 198 | 98.76 91 | 96.53 202 |
|
VDD-MVS | | | 93.82 124 | 93.08 130 | 96.02 119 | 97.88 116 | 89.96 174 | 97.72 76 | 95.85 265 | 92.43 105 | 95.86 87 | 98.44 28 | 68.42 324 | 99.39 110 | 96.31 28 | 94.85 174 | 98.71 114 |
|
tfpn200view9 | | | 92.38 172 | 91.52 180 | 94.95 170 | 97.85 117 | 89.29 197 | 97.41 106 | 94.88 307 | 92.19 114 | 93.27 144 | 94.46 256 | 78.17 262 | 99.08 139 | 81.40 297 | 94.08 185 | 96.48 205 |
|
thres400 | | | 92.42 170 | 91.52 180 | 95.12 162 | 97.85 117 | 89.29 197 | 97.41 106 | 94.88 307 | 92.19 114 | 93.27 144 | 94.46 256 | 78.17 262 | 99.08 139 | 81.40 297 | 94.08 185 | 96.98 189 |
|
hse-mvs3 | | | 94.15 110 | 93.52 118 | 96.04 118 | 97.81 119 | 90.22 165 | 97.62 90 | 97.58 138 | 95.19 14 | 96.74 50 | 97.45 109 | 83.67 161 | 99.61 62 | 95.85 49 | 79.73 329 | 98.29 146 |
|
test_part1 | | | 92.21 183 | 91.10 197 | 95.51 145 | 97.80 120 | 92.66 85 | 98.02 46 | 97.68 127 | 89.79 184 | 88.80 251 | 96.02 181 | 76.85 275 | 98.18 210 | 90.86 158 | 84.11 307 | 95.69 236 |
|
DELS-MVS | | | 96.61 48 | 96.38 51 | 97.30 57 | 97.79 121 | 93.19 72 | 95.96 234 | 98.18 46 | 95.23 12 | 95.87 86 | 97.65 94 | 91.45 55 | 99.70 43 | 95.87 47 | 99.44 42 | 99.00 89 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
PVSNet | | 86.66 18 | 92.24 180 | 91.74 173 | 93.73 223 | 97.77 122 | 83.69 303 | 92.88 320 | 96.72 225 | 87.91 238 | 93.00 148 | 94.86 234 | 78.51 256 | 99.05 143 | 86.53 240 | 97.45 126 | 98.47 130 |
|
test_yl | | | 94.78 100 | 94.23 102 | 96.43 94 | 97.74 123 | 91.22 131 | 96.85 161 | 97.10 192 | 91.23 145 | 95.71 92 | 96.93 130 | 84.30 152 | 99.31 116 | 93.10 119 | 95.12 170 | 98.75 108 |
|
DCV-MVSNet | | | 94.78 100 | 94.23 102 | 96.43 94 | 97.74 123 | 91.22 131 | 96.85 161 | 97.10 192 | 91.23 145 | 95.71 92 | 96.93 130 | 84.30 152 | 99.31 116 | 93.10 119 | 95.12 170 | 98.75 108 |
|
WTY-MVS | | | 94.71 102 | 94.02 104 | 96.79 76 | 97.71 125 | 92.05 106 | 96.59 190 | 97.35 174 | 90.61 164 | 94.64 114 | 96.93 130 | 86.41 126 | 99.39 110 | 91.20 156 | 94.71 180 | 98.94 94 |
|
UA-Net | | | 95.95 67 | 95.53 67 | 97.20 66 | 97.67 126 | 92.98 78 | 97.65 84 | 98.13 54 | 94.81 30 | 96.61 57 | 98.35 38 | 88.87 90 | 99.51 94 | 90.36 166 | 97.35 129 | 99.11 78 |
|
IS-MVSNet | | | 94.90 95 | 94.52 96 | 96.05 117 | 97.67 126 | 90.56 156 | 98.44 16 | 96.22 253 | 93.21 76 | 93.99 125 | 97.74 87 | 85.55 138 | 98.45 191 | 89.98 169 | 97.86 113 | 99.14 73 |
|
PAPR | | | 94.18 109 | 93.42 125 | 96.48 90 | 97.64 128 | 91.42 127 | 95.55 250 | 97.71 126 | 88.99 202 | 92.34 162 | 95.82 191 | 89.19 86 | 99.11 133 | 86.14 248 | 97.38 127 | 98.90 98 |
|
CANet | | | 96.39 55 | 96.02 59 | 97.50 50 | 97.62 129 | 93.38 67 | 97.02 144 | 97.96 100 | 95.42 7 | 94.86 111 | 97.81 82 | 87.38 114 | 99.82 25 | 96.88 12 | 99.20 70 | 99.29 62 |
|
thres200 | | | 92.23 181 | 91.39 183 | 94.75 182 | 97.61 130 | 89.03 206 | 96.60 189 | 95.09 298 | 92.08 118 | 93.28 143 | 94.00 279 | 78.39 260 | 99.04 145 | 81.26 301 | 94.18 184 | 96.19 210 |
|
Vis-MVSNet (Re-imp) | | | 94.15 110 | 93.88 106 | 94.95 170 | 97.61 130 | 87.92 233 | 98.10 39 | 95.80 267 | 92.22 110 | 93.02 147 | 97.45 109 | 84.53 150 | 97.91 254 | 88.24 206 | 97.97 111 | 99.02 83 |
|
canonicalmvs | | | 96.02 64 | 95.45 71 | 97.75 37 | 97.59 132 | 95.15 21 | 98.28 25 | 97.60 135 | 94.52 39 | 96.27 72 | 96.12 176 | 87.65 107 | 99.18 126 | 96.20 38 | 94.82 176 | 98.91 97 |
|
LS3D | | | 93.57 133 | 92.61 145 | 96.47 91 | 97.59 132 | 91.61 117 | 97.67 81 | 97.72 122 | 85.17 289 | 90.29 201 | 98.34 41 | 84.60 148 | 99.73 32 | 83.85 280 | 98.27 103 | 98.06 155 |
|
alignmvs | | | 95.87 69 | 95.23 78 | 97.78 33 | 97.56 134 | 95.19 18 | 97.86 59 | 97.17 186 | 94.39 42 | 96.47 65 | 96.40 165 | 85.89 133 | 99.20 123 | 96.21 37 | 95.11 172 | 98.95 93 |
|
EPP-MVSNet | | | 95.22 85 | 95.04 83 | 95.76 128 | 97.49 135 | 89.56 182 | 98.67 5 | 97.00 205 | 90.69 157 | 94.24 121 | 97.62 99 | 89.79 85 | 98.81 161 | 93.39 115 | 96.49 149 | 98.92 96 |
|
PS-MVSNAJ | | | 95.37 79 | 95.33 76 | 95.49 148 | 97.35 136 | 90.66 155 | 95.31 261 | 97.48 147 | 93.85 53 | 96.51 62 | 95.70 202 | 88.65 94 | 99.65 53 | 94.80 85 | 98.27 103 | 96.17 211 |
|
CS-MVS | | | 95.80 70 | 95.65 66 | 96.24 110 | 97.32 137 | 91.43 126 | 98.10 39 | 97.91 103 | 93.38 70 | 95.16 108 | 94.57 249 | 90.21 79 | 98.98 148 | 95.53 65 | 98.67 94 | 98.30 145 |
|
ab-mvs | | | 93.57 133 | 92.55 147 | 96.64 78 | 97.28 138 | 91.96 111 | 95.40 256 | 97.45 158 | 89.81 183 | 93.22 146 | 96.28 170 | 79.62 238 | 99.46 101 | 90.74 161 | 93.11 197 | 98.50 125 |
|
xiu_mvs_v2_base | | | 95.32 81 | 95.29 77 | 95.40 153 | 97.22 139 | 90.50 158 | 95.44 255 | 97.44 162 | 93.70 60 | 96.46 66 | 96.18 173 | 88.59 97 | 99.53 89 | 94.79 87 | 97.81 115 | 96.17 211 |
|
BH-untuned | | | 92.94 154 | 92.62 144 | 93.92 217 | 97.22 139 | 86.16 271 | 96.40 202 | 96.25 252 | 90.06 176 | 89.79 221 | 96.17 175 | 83.19 167 | 98.35 197 | 87.19 233 | 97.27 132 | 97.24 186 |
|
baseline1 | | | 92.82 161 | 91.90 167 | 95.55 143 | 97.20 141 | 90.77 152 | 97.19 132 | 94.58 315 | 92.20 112 | 92.36 160 | 96.34 168 | 84.16 155 | 98.21 205 | 89.20 193 | 83.90 312 | 97.68 172 |
|
Vis-MVSNet |  | | 95.23 84 | 94.81 86 | 96.51 88 | 97.18 142 | 91.58 120 | 98.26 27 | 98.12 56 | 94.38 43 | 94.90 110 | 98.15 59 | 82.28 192 | 98.92 152 | 91.45 151 | 98.58 98 | 99.01 87 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
ETV-MVS | | | 96.02 64 | 95.89 62 | 96.40 96 | 97.16 143 | 92.44 92 | 97.47 103 | 97.77 115 | 94.55 38 | 96.48 64 | 94.51 251 | 91.23 62 | 98.92 152 | 95.65 56 | 98.19 105 | 97.82 167 |
|
BH-RMVSNet | | | 92.72 164 | 91.97 165 | 94.97 168 | 97.16 143 | 87.99 232 | 96.15 224 | 95.60 275 | 90.62 163 | 91.87 172 | 97.15 123 | 78.41 259 | 98.57 183 | 83.16 282 | 97.60 120 | 98.36 142 |
|
MSDG | | | 91.42 210 | 90.24 230 | 94.96 169 | 97.15 145 | 88.91 208 | 93.69 305 | 96.32 248 | 85.72 281 | 86.93 291 | 96.47 160 | 80.24 225 | 98.98 148 | 80.57 303 | 95.05 173 | 96.98 189 |
|
tttt0517 | | | 92.96 152 | 92.33 155 | 94.87 173 | 97.11 146 | 87.16 250 | 97.97 52 | 92.09 341 | 90.63 162 | 93.88 129 | 97.01 129 | 76.50 277 | 99.06 142 | 90.29 168 | 95.45 165 | 98.38 140 |
|
HY-MVS | | 89.66 9 | 93.87 122 | 92.95 133 | 96.63 80 | 97.10 147 | 92.49 91 | 95.64 248 | 96.64 234 | 89.05 200 | 93.00 148 | 95.79 195 | 85.77 136 | 99.45 103 | 89.16 195 | 94.35 182 | 97.96 156 |
|
thisisatest0530 | | | 93.03 149 | 92.21 158 | 95.49 148 | 97.07 148 | 89.11 205 | 97.49 102 | 92.19 340 | 90.16 174 | 94.09 123 | 96.41 164 | 76.43 280 | 99.05 143 | 90.38 165 | 95.68 163 | 98.31 144 |
|
XVG-OURS | | | 93.72 128 | 93.35 126 | 94.80 178 | 97.07 148 | 88.61 214 | 94.79 272 | 97.46 152 | 91.97 122 | 93.99 125 | 97.86 77 | 81.74 203 | 98.88 157 | 92.64 125 | 92.67 203 | 96.92 193 |
|
sss | | | 94.51 104 | 93.80 108 | 96.64 78 | 97.07 148 | 91.97 110 | 96.32 211 | 98.06 73 | 88.94 205 | 94.50 116 | 96.78 137 | 84.60 148 | 99.27 119 | 91.90 137 | 96.02 153 | 98.68 116 |
|
EIA-MVS | | | 95.53 77 | 95.47 70 | 95.71 134 | 97.06 151 | 89.63 178 | 97.82 64 | 97.87 108 | 93.57 62 | 93.92 128 | 95.04 227 | 90.61 74 | 98.95 150 | 94.62 89 | 98.68 93 | 98.54 120 |
|
XVG-OURS-SEG-HR | | | 93.86 123 | 93.55 115 | 94.81 176 | 97.06 151 | 88.53 217 | 95.28 262 | 97.45 158 | 91.68 127 | 94.08 124 | 97.68 91 | 82.41 190 | 98.90 155 | 93.84 105 | 92.47 205 | 96.98 189 |
|
1112_ss | | | 93.37 137 | 92.42 153 | 96.21 111 | 97.05 153 | 90.99 142 | 96.31 212 | 96.72 225 | 86.87 265 | 89.83 220 | 96.69 144 | 86.51 124 | 99.14 131 | 88.12 208 | 93.67 191 | 98.50 125 |
|
Test_1112_low_res | | | 92.84 160 | 91.84 169 | 95.85 126 | 97.04 154 | 89.97 173 | 95.53 252 | 96.64 234 | 85.38 285 | 89.65 226 | 95.18 222 | 85.86 134 | 99.10 134 | 87.70 217 | 93.58 196 | 98.49 127 |
|
AUN-MVS | | | 91.76 194 | 90.75 209 | 94.81 176 | 97.00 155 | 88.57 215 | 96.65 181 | 96.49 242 | 89.63 186 | 92.15 166 | 96.12 176 | 78.66 254 | 98.50 187 | 90.83 159 | 79.18 332 | 97.36 184 |
|
BH-w/o | | | 92.14 186 | 91.75 171 | 93.31 244 | 96.99 156 | 85.73 275 | 95.67 245 | 95.69 271 | 88.73 216 | 89.26 240 | 94.82 237 | 82.97 176 | 98.07 227 | 85.26 263 | 96.32 152 | 96.13 215 |
|
3Dnovator+ | | 91.43 4 | 95.40 78 | 94.48 98 | 98.16 12 | 96.90 157 | 95.34 13 | 98.48 15 | 97.87 108 | 94.65 37 | 88.53 257 | 98.02 67 | 83.69 160 | 99.71 38 | 93.18 118 | 98.96 85 | 99.44 47 |
|
UGNet | | | 94.04 118 | 93.28 128 | 96.31 103 | 96.85 158 | 91.19 136 | 97.88 58 | 97.68 127 | 94.40 41 | 93.00 148 | 96.18 173 | 73.39 300 | 99.61 62 | 91.72 142 | 98.46 99 | 98.13 150 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
VDDNet | | | 93.05 148 | 92.07 160 | 96.02 119 | 96.84 159 | 90.39 163 | 98.08 42 | 95.85 265 | 86.22 274 | 95.79 90 | 98.46 26 | 67.59 327 | 99.19 124 | 94.92 79 | 94.85 174 | 98.47 130 |
|
RPSCF | | | 90.75 242 | 90.86 202 | 90.42 312 | 96.84 159 | 76.29 345 | 95.61 249 | 96.34 247 | 83.89 305 | 91.38 178 | 97.87 75 | 76.45 278 | 98.78 163 | 87.16 235 | 92.23 208 | 96.20 209 |
|
MVS_Test | | | 94.89 96 | 94.62 91 | 95.68 135 | 96.83 161 | 89.55 183 | 96.70 176 | 97.17 186 | 91.17 147 | 95.60 99 | 96.11 179 | 87.87 104 | 98.76 166 | 93.01 123 | 97.17 136 | 98.72 112 |
|
LCM-MVSNet-Re | | | 92.50 166 | 92.52 150 | 92.44 269 | 96.82 162 | 81.89 315 | 96.92 156 | 93.71 329 | 92.41 106 | 84.30 313 | 94.60 248 | 85.08 143 | 97.03 309 | 91.51 148 | 97.36 128 | 98.40 138 |
|
baseline | | | 95.58 75 | 95.42 73 | 96.08 114 | 96.78 163 | 90.41 162 | 97.16 135 | 97.45 158 | 93.69 61 | 95.65 98 | 97.85 78 | 87.29 115 | 98.68 173 | 95.66 53 | 97.25 133 | 99.13 74 |
|
Fast-Effi-MVS+ | | | 93.46 135 | 92.75 139 | 95.59 140 | 96.77 164 | 90.03 167 | 96.81 167 | 97.13 189 | 88.19 228 | 91.30 183 | 94.27 267 | 86.21 129 | 98.63 177 | 87.66 222 | 96.46 151 | 98.12 151 |
|
QAPM | | | 93.45 136 | 92.27 157 | 96.98 74 | 96.77 164 | 92.62 87 | 98.39 19 | 98.12 56 | 84.50 299 | 88.27 263 | 97.77 85 | 82.39 191 | 99.81 26 | 85.40 261 | 98.81 89 | 98.51 124 |
|
casdiffmvs | | | 95.64 73 | 95.49 69 | 96.08 114 | 96.76 166 | 90.45 160 | 97.29 121 | 97.44 162 | 94.00 49 | 95.46 104 | 97.98 70 | 87.52 111 | 98.73 168 | 95.64 57 | 97.33 130 | 99.08 80 |
|
CHOSEN 280x420 | | | 93.12 145 | 92.72 141 | 94.34 197 | 96.71 167 | 87.27 244 | 90.29 339 | 97.72 122 | 86.61 269 | 91.34 180 | 95.29 218 | 84.29 154 | 98.41 192 | 93.25 117 | 98.94 86 | 97.35 185 |
|
Effi-MVS+ | | | 94.93 94 | 94.45 99 | 96.36 101 | 96.61 168 | 91.47 123 | 96.41 199 | 97.41 167 | 91.02 152 | 94.50 116 | 95.92 185 | 87.53 110 | 98.78 163 | 93.89 103 | 96.81 140 | 98.84 105 |
|
thisisatest0515 | | | 92.29 177 | 91.30 188 | 95.25 156 | 96.60 169 | 88.90 209 | 94.36 285 | 92.32 339 | 87.92 237 | 93.43 139 | 94.57 249 | 77.28 273 | 99.00 146 | 89.42 184 | 95.86 158 | 97.86 163 |
|
PCF-MVS | | 89.48 11 | 91.56 202 | 89.95 242 | 96.36 101 | 96.60 169 | 92.52 90 | 92.51 326 | 97.26 180 | 79.41 336 | 88.90 245 | 96.56 156 | 84.04 157 | 99.55 84 | 77.01 326 | 97.30 131 | 97.01 188 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
xiu_mvs_v1_base_debu | | | 95.01 89 | 94.76 87 | 95.75 130 | 96.58 171 | 91.71 113 | 96.25 217 | 97.35 174 | 92.99 85 | 96.70 51 | 96.63 151 | 82.67 182 | 99.44 104 | 96.22 33 | 97.46 122 | 96.11 216 |
|
xiu_mvs_v1_base | | | 95.01 89 | 94.76 87 | 95.75 130 | 96.58 171 | 91.71 113 | 96.25 217 | 97.35 174 | 92.99 85 | 96.70 51 | 96.63 151 | 82.67 182 | 99.44 104 | 96.22 33 | 97.46 122 | 96.11 216 |
|
xiu_mvs_v1_base_debi | | | 95.01 89 | 94.76 87 | 95.75 130 | 96.58 171 | 91.71 113 | 96.25 217 | 97.35 174 | 92.99 85 | 96.70 51 | 96.63 151 | 82.67 182 | 99.44 104 | 96.22 33 | 97.46 122 | 96.11 216 |
|
MVSTER | | | 93.20 143 | 92.81 136 | 94.37 195 | 96.56 174 | 89.59 181 | 97.06 140 | 97.12 190 | 91.24 144 | 91.30 183 | 95.96 183 | 82.02 197 | 98.05 230 | 93.48 111 | 90.55 237 | 95.47 243 |
|
3Dnovator | | 91.36 5 | 95.19 87 | 94.44 100 | 97.44 52 | 96.56 174 | 93.36 69 | 98.65 6 | 98.36 16 | 94.12 47 | 89.25 241 | 98.06 64 | 82.20 194 | 99.77 29 | 93.41 114 | 99.32 53 | 99.18 69 |
|
FMVSNet3 | | | 91.78 193 | 90.69 212 | 95.03 164 | 96.53 176 | 92.27 99 | 97.02 144 | 96.93 209 | 89.79 184 | 89.35 235 | 94.65 246 | 77.01 274 | 97.47 292 | 86.12 249 | 88.82 252 | 95.35 254 |
|
GBi-Net | | | 91.35 215 | 90.27 228 | 94.59 184 | 96.51 177 | 91.18 137 | 97.50 98 | 96.93 209 | 88.82 211 | 89.35 235 | 94.51 251 | 73.87 294 | 97.29 304 | 86.12 249 | 88.82 252 | 95.31 256 |
|
test1 | | | 91.35 215 | 90.27 228 | 94.59 184 | 96.51 177 | 91.18 137 | 97.50 98 | 96.93 209 | 88.82 211 | 89.35 235 | 94.51 251 | 73.87 294 | 97.29 304 | 86.12 249 | 88.82 252 | 95.31 256 |
|
FMVSNet2 | | | 91.31 218 | 90.08 237 | 94.99 165 | 96.51 177 | 92.21 100 | 97.41 106 | 96.95 207 | 88.82 211 | 88.62 254 | 94.75 240 | 73.87 294 | 97.42 297 | 85.20 264 | 88.55 257 | 95.35 254 |
|
ACMH+ | | 87.92 14 | 90.20 257 | 89.18 263 | 93.25 246 | 96.48 180 | 86.45 264 | 96.99 149 | 96.68 231 | 88.83 210 | 84.79 310 | 96.22 172 | 70.16 316 | 98.53 185 | 84.42 274 | 88.04 259 | 94.77 293 |
|
CANet_DTU | | | 94.37 105 | 93.65 113 | 96.55 84 | 96.46 181 | 92.13 104 | 96.21 221 | 96.67 233 | 94.38 43 | 93.53 136 | 97.03 128 | 79.34 241 | 99.71 38 | 90.76 160 | 98.45 100 | 97.82 167 |
|
mvs_anonymous | | | 93.82 124 | 93.74 109 | 94.06 205 | 96.44 182 | 85.41 280 | 95.81 241 | 97.05 199 | 89.85 181 | 90.09 213 | 96.36 167 | 87.44 113 | 97.75 268 | 93.97 99 | 96.69 145 | 99.02 83 |
|
diffmvs | | | 95.25 83 | 95.13 81 | 95.63 137 | 96.43 183 | 89.34 194 | 95.99 233 | 97.35 174 | 92.83 94 | 96.31 70 | 97.37 113 | 86.44 125 | 98.67 174 | 96.26 30 | 97.19 135 | 98.87 102 |
|
ET-MVSNet_ETH3D | | | 91.49 207 | 90.11 236 | 95.63 137 | 96.40 184 | 91.57 121 | 95.34 258 | 93.48 331 | 90.60 166 | 75.58 345 | 95.49 213 | 80.08 228 | 96.79 318 | 94.25 93 | 89.76 246 | 98.52 122 |
|
TR-MVS | | | 91.48 208 | 90.59 215 | 94.16 202 | 96.40 184 | 87.33 242 | 95.67 245 | 95.34 287 | 87.68 248 | 91.46 177 | 95.52 212 | 76.77 276 | 98.35 197 | 82.85 286 | 93.61 194 | 96.79 198 |
|
ACMP | | 89.59 10 | 92.62 165 | 92.14 159 | 94.05 206 | 96.40 184 | 88.20 226 | 97.36 113 | 97.25 182 | 91.52 130 | 88.30 261 | 96.64 147 | 78.46 257 | 98.72 171 | 91.86 140 | 91.48 222 | 95.23 264 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
MVSFormer | | | 95.37 79 | 95.16 80 | 95.99 121 | 96.34 187 | 91.21 133 | 98.22 32 | 97.57 139 | 91.42 135 | 96.22 73 | 97.32 114 | 86.20 130 | 97.92 251 | 94.07 97 | 99.05 81 | 98.85 103 |
|
lupinMVS | | | 94.99 93 | 94.56 93 | 96.29 106 | 96.34 187 | 91.21 133 | 95.83 240 | 96.27 250 | 88.93 206 | 96.22 73 | 96.88 135 | 86.20 130 | 98.85 158 | 95.27 68 | 99.05 81 | 98.82 106 |
|
ACMM | | 89.79 8 | 92.96 152 | 92.50 151 | 94.35 196 | 96.30 189 | 88.71 212 | 97.58 92 | 97.36 173 | 91.40 138 | 90.53 195 | 96.65 146 | 79.77 234 | 98.75 167 | 91.24 155 | 91.64 218 | 95.59 239 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
IterMVS-LS | | | 92.29 177 | 91.94 166 | 93.34 243 | 96.25 190 | 86.97 254 | 96.57 193 | 97.05 199 | 90.67 158 | 89.50 232 | 94.80 238 | 86.59 121 | 97.64 276 | 89.91 171 | 86.11 279 | 95.40 250 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
HQP_MVS | | | 93.78 126 | 93.43 123 | 94.82 174 | 96.21 191 | 89.99 170 | 97.74 71 | 97.51 145 | 94.85 25 | 91.34 180 | 96.64 147 | 81.32 208 | 98.60 180 | 93.02 121 | 92.23 208 | 95.86 222 |
|
plane_prior7 | | | | | | 96.21 191 | 89.98 172 | | | | | | | | | | |
|
ACMH | | 87.59 16 | 90.53 249 | 89.42 258 | 93.87 218 | 96.21 191 | 87.92 233 | 97.24 124 | 96.94 208 | 88.45 222 | 83.91 320 | 96.27 171 | 71.92 302 | 98.62 179 | 84.43 273 | 89.43 248 | 95.05 270 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CDS-MVSNet | | | 94.14 113 | 93.54 116 | 95.93 122 | 96.18 194 | 91.46 124 | 96.33 210 | 97.04 201 | 88.97 204 | 93.56 133 | 96.51 158 | 87.55 109 | 97.89 255 | 89.80 174 | 95.95 155 | 98.44 135 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
LTVRE_ROB | | 88.41 13 | 90.99 232 | 89.92 243 | 94.19 200 | 96.18 194 | 89.55 183 | 96.31 212 | 97.09 194 | 87.88 239 | 85.67 301 | 95.91 186 | 78.79 253 | 98.57 183 | 81.50 295 | 89.98 243 | 94.44 302 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
LPG-MVS_test | | | 92.94 154 | 92.56 146 | 94.10 203 | 96.16 196 | 88.26 223 | 97.65 84 | 97.46 152 | 91.29 140 | 90.12 210 | 97.16 121 | 79.05 245 | 98.73 168 | 92.25 129 | 91.89 216 | 95.31 256 |
|
LGP-MVS_train | | | | | 94.10 203 | 96.16 196 | 88.26 223 | | 97.46 152 | 91.29 140 | 90.12 210 | 97.16 121 | 79.05 245 | 98.73 168 | 92.25 129 | 91.89 216 | 95.31 256 |
|
TAMVS | | | 94.01 119 | 93.46 121 | 95.64 136 | 96.16 196 | 90.45 160 | 96.71 175 | 96.89 215 | 89.27 195 | 93.46 138 | 96.92 133 | 87.29 115 | 97.94 248 | 88.70 202 | 95.74 160 | 98.53 121 |
|
plane_prior1 | | | | | | 96.14 199 | | | | | | | | | | | |
|
CLD-MVS | | | 92.98 151 | 92.53 149 | 94.32 198 | 96.12 200 | 89.20 201 | 95.28 262 | 97.47 150 | 92.66 100 | 89.90 217 | 95.62 205 | 80.58 218 | 98.40 193 | 92.73 124 | 92.40 206 | 95.38 252 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
plane_prior6 | | | | | | 96.10 201 | 90.00 168 | | | | | | 81.32 208 | | | | |
|
cl-mvsnet2 | | | 91.21 222 | 90.56 218 | 93.14 251 | 96.09 202 | 86.80 256 | 94.41 283 | 96.58 240 | 87.80 242 | 88.58 256 | 93.99 280 | 80.85 216 | 97.62 279 | 89.87 173 | 86.93 270 | 94.99 271 |
|
Effi-MVS+-dtu | | | 93.08 146 | 93.21 129 | 92.68 266 | 96.02 203 | 83.25 306 | 97.14 138 | 96.72 225 | 93.85 53 | 91.20 190 | 93.44 298 | 83.08 171 | 98.30 200 | 91.69 145 | 95.73 161 | 96.50 204 |
|
mvs-test1 | | | 93.63 130 | 93.69 111 | 93.46 238 | 96.02 203 | 84.61 292 | 97.24 124 | 96.72 225 | 93.85 53 | 92.30 163 | 95.76 197 | 83.08 171 | 98.89 156 | 91.69 145 | 96.54 148 | 96.87 195 |
|
NP-MVS | | | | | | 95.99 205 | 89.81 177 | | | | | 95.87 187 | | | | | |
|
ADS-MVSNet2 | | | 89.45 268 | 88.59 270 | 92.03 278 | 95.86 206 | 82.26 314 | 90.93 335 | 94.32 322 | 83.23 314 | 91.28 186 | 91.81 322 | 79.01 249 | 95.99 326 | 79.52 309 | 91.39 224 | 97.84 164 |
|
ADS-MVSNet | | | 89.89 263 | 88.68 269 | 93.53 234 | 95.86 206 | 84.89 289 | 90.93 335 | 95.07 299 | 83.23 314 | 91.28 186 | 91.81 322 | 79.01 249 | 97.85 257 | 79.52 309 | 91.39 224 | 97.84 164 |
|
HQP-NCC | | | | | | 95.86 206 | | 96.65 181 | | 93.55 63 | 90.14 204 | | | | | | |
|
ACMP_Plane | | | | | | 95.86 206 | | 96.65 181 | | 93.55 63 | 90.14 204 | | | | | | |
|
HQP-MVS | | | 93.19 144 | 92.74 140 | 94.54 189 | 95.86 206 | 89.33 195 | 96.65 181 | 97.39 168 | 93.55 63 | 90.14 204 | 95.87 187 | 80.95 211 | 98.50 187 | 92.13 133 | 92.10 213 | 95.78 229 |
|
EI-MVSNet | | | 93.03 149 | 92.88 135 | 93.48 236 | 95.77 211 | 86.98 253 | 96.44 195 | 97.12 190 | 90.66 160 | 91.30 183 | 97.64 97 | 86.56 122 | 98.05 230 | 89.91 171 | 90.55 237 | 95.41 247 |
|
CVMVSNet | | | 91.23 221 | 91.75 171 | 89.67 319 | 95.77 211 | 74.69 347 | 96.44 195 | 94.88 307 | 85.81 279 | 92.18 165 | 97.64 97 | 79.07 244 | 95.58 335 | 88.06 209 | 95.86 158 | 98.74 110 |
|
RRT_test8_iter05 | | | 91.19 226 | 90.78 207 | 92.41 271 | 95.76 213 | 83.14 307 | 97.32 117 | 97.46 152 | 91.37 139 | 89.07 244 | 95.57 207 | 70.33 313 | 98.21 205 | 93.56 108 | 86.62 275 | 95.89 221 |
|
FIs | | | 94.09 115 | 93.70 110 | 95.27 155 | 95.70 214 | 92.03 107 | 98.10 39 | 98.68 7 | 93.36 73 | 90.39 199 | 96.70 142 | 87.63 108 | 97.94 248 | 92.25 129 | 90.50 239 | 95.84 225 |
|
VPA-MVSNet | | | 93.24 141 | 92.48 152 | 95.51 145 | 95.70 214 | 92.39 93 | 97.86 59 | 98.66 9 | 92.30 108 | 92.09 169 | 95.37 216 | 80.49 220 | 98.40 193 | 93.95 100 | 85.86 280 | 95.75 233 |
|
SCA | | | 91.84 192 | 91.18 195 | 93.83 219 | 95.59 216 | 84.95 288 | 94.72 273 | 95.58 277 | 90.82 153 | 92.25 164 | 93.69 289 | 75.80 283 | 98.10 219 | 86.20 246 | 95.98 154 | 98.45 132 |
|
cl_fuxian | | | 91.38 212 | 90.89 200 | 92.88 259 | 95.58 217 | 86.30 266 | 94.68 274 | 96.84 221 | 88.17 230 | 88.83 250 | 94.23 270 | 85.65 137 | 97.47 292 | 89.36 185 | 84.63 299 | 94.89 280 |
|
VPNet | | | 92.23 181 | 91.31 187 | 94.99 165 | 95.56 218 | 90.96 144 | 97.22 130 | 97.86 111 | 92.96 91 | 90.96 191 | 96.62 154 | 75.06 288 | 98.20 207 | 91.90 137 | 83.65 314 | 95.80 228 |
|
miper_ehance_all_eth | | | 91.59 199 | 91.13 196 | 92.97 256 | 95.55 219 | 86.57 263 | 94.47 279 | 96.88 216 | 87.77 244 | 88.88 247 | 94.01 278 | 86.22 128 | 97.54 285 | 89.49 182 | 86.93 270 | 94.79 290 |
|
IterMVS-SCA-FT | | | 90.31 253 | 89.81 248 | 91.82 284 | 95.52 220 | 84.20 296 | 94.30 288 | 96.15 256 | 90.61 164 | 87.39 281 | 94.27 267 | 75.80 283 | 96.44 321 | 87.34 229 | 86.88 274 | 94.82 285 |
|
jason | | | 94.84 98 | 94.39 101 | 96.18 112 | 95.52 220 | 90.93 146 | 96.09 226 | 96.52 241 | 89.28 194 | 96.01 83 | 97.32 114 | 84.70 147 | 98.77 165 | 95.15 71 | 98.91 88 | 98.85 103 |
jason: jason. |
FC-MVSNet-test | | | 93.94 121 | 93.57 114 | 95.04 163 | 95.48 222 | 91.45 125 | 98.12 38 | 98.71 5 | 93.37 71 | 90.23 202 | 96.70 142 | 87.66 106 | 97.85 257 | 91.49 149 | 90.39 240 | 95.83 226 |
|
IterMVS | | | 90.15 259 | 89.67 254 | 91.61 291 | 95.48 222 | 83.72 300 | 94.33 287 | 96.12 257 | 89.99 177 | 87.31 284 | 94.15 275 | 75.78 285 | 96.27 324 | 86.97 237 | 86.89 273 | 94.83 283 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FMVSNet1 | | | 89.88 264 | 88.31 273 | 94.59 184 | 95.41 224 | 91.18 137 | 97.50 98 | 96.93 209 | 86.62 268 | 87.41 280 | 94.51 251 | 65.94 338 | 97.29 304 | 83.04 284 | 87.43 266 | 95.31 256 |
|
UniMVSNet (Re) | | | 93.31 139 | 92.55 147 | 95.61 139 | 95.39 225 | 93.34 70 | 97.39 110 | 98.71 5 | 93.14 81 | 90.10 212 | 94.83 236 | 87.71 105 | 98.03 234 | 91.67 147 | 83.99 308 | 95.46 244 |
|
MVS-HIRNet | | | 82.47 316 | 81.21 318 | 86.26 331 | 95.38 226 | 69.21 354 | 88.96 347 | 89.49 351 | 66.28 350 | 80.79 332 | 74.08 353 | 68.48 323 | 97.39 299 | 71.93 341 | 95.47 164 | 92.18 337 |
|
PatchmatchNet |  | | 91.91 190 | 91.35 184 | 93.59 231 | 95.38 226 | 84.11 297 | 93.15 316 | 95.39 281 | 89.54 187 | 92.10 168 | 93.68 291 | 82.82 180 | 98.13 214 | 84.81 267 | 95.32 167 | 98.52 122 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
cl-mvsnet_ | | | 90.96 235 | 90.32 224 | 92.89 258 | 95.37 228 | 86.21 269 | 94.46 281 | 96.64 234 | 87.82 240 | 88.15 267 | 94.18 273 | 82.98 175 | 97.54 285 | 87.70 217 | 85.59 282 | 94.92 278 |
|
cl-mvsnet1 | | | 90.97 234 | 90.33 223 | 92.88 259 | 95.36 229 | 86.19 270 | 94.46 281 | 96.63 237 | 87.82 240 | 88.18 266 | 94.23 270 | 82.99 174 | 97.53 287 | 87.72 215 | 85.57 283 | 94.93 276 |
|
miper_enhance_ethall | | | 91.54 205 | 91.01 198 | 93.15 250 | 95.35 230 | 87.07 252 | 93.97 297 | 96.90 213 | 86.79 266 | 89.17 242 | 93.43 300 | 86.55 123 | 97.64 276 | 89.97 170 | 86.93 270 | 94.74 294 |
|
UniMVSNet_NR-MVSNet | | | 93.37 137 | 92.67 142 | 95.47 151 | 95.34 231 | 92.83 80 | 97.17 134 | 98.58 10 | 92.98 90 | 90.13 208 | 95.80 192 | 88.37 99 | 97.85 257 | 91.71 143 | 83.93 309 | 95.73 235 |
|
ITE_SJBPF | | | | | 92.43 270 | 95.34 231 | 85.37 281 | | 95.92 261 | 91.47 132 | 87.75 275 | 96.39 166 | 71.00 309 | 97.96 245 | 82.36 291 | 89.86 245 | 93.97 314 |
|
OpenMVS |  | 89.19 12 | 92.86 158 | 91.68 174 | 96.40 96 | 95.34 231 | 92.73 83 | 98.27 26 | 98.12 56 | 84.86 294 | 85.78 300 | 97.75 86 | 78.89 252 | 99.74 31 | 87.50 227 | 98.65 95 | 96.73 199 |
|
eth_miper_zixun_eth | | | 91.02 231 | 90.59 215 | 92.34 273 | 95.33 234 | 84.35 293 | 94.10 294 | 96.90 213 | 88.56 220 | 88.84 249 | 94.33 262 | 84.08 156 | 97.60 281 | 88.77 201 | 84.37 304 | 95.06 269 |
|
miper_lstm_enhance | | | 90.50 251 | 90.06 240 | 91.83 283 | 95.33 234 | 83.74 299 | 93.86 300 | 96.70 230 | 87.56 251 | 87.79 273 | 93.81 286 | 83.45 165 | 96.92 315 | 87.39 228 | 84.62 300 | 94.82 285 |
|
1314 | | | 92.81 162 | 92.03 162 | 95.14 160 | 95.33 234 | 89.52 186 | 96.04 228 | 97.44 162 | 87.72 247 | 86.25 297 | 95.33 217 | 83.84 158 | 98.79 162 | 89.26 189 | 97.05 138 | 97.11 187 |
|
PAPM | | | 91.52 206 | 90.30 226 | 95.20 157 | 95.30 237 | 89.83 176 | 93.38 312 | 96.85 220 | 86.26 273 | 88.59 255 | 95.80 192 | 84.88 145 | 98.15 213 | 75.67 330 | 95.93 156 | 97.63 173 |
|
Fast-Effi-MVS+-dtu | | | 92.29 177 | 91.99 164 | 93.21 249 | 95.27 238 | 85.52 278 | 97.03 141 | 96.63 237 | 92.09 117 | 89.11 243 | 95.14 224 | 80.33 224 | 98.08 224 | 87.54 226 | 94.74 179 | 96.03 219 |
|
Patchmatch-test | | | 89.42 269 | 87.99 276 | 93.70 226 | 95.27 238 | 85.11 284 | 88.98 346 | 94.37 320 | 81.11 326 | 87.10 287 | 93.69 289 | 82.28 192 | 97.50 290 | 74.37 334 | 94.76 177 | 98.48 129 |
|
PVSNet_0 | | 82.17 19 | 85.46 307 | 83.64 310 | 90.92 303 | 95.27 238 | 79.49 335 | 90.55 338 | 95.60 275 | 83.76 308 | 83.00 326 | 89.95 333 | 71.09 308 | 97.97 241 | 82.75 288 | 60.79 353 | 95.31 256 |
|
IB-MVS | | 87.33 17 | 89.91 262 | 88.28 274 | 94.79 179 | 95.26 241 | 87.70 239 | 95.12 270 | 93.95 328 | 89.35 193 | 87.03 288 | 92.49 310 | 70.74 311 | 99.19 124 | 89.18 194 | 81.37 325 | 97.49 182 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
nrg030 | | | 94.05 117 | 93.31 127 | 96.27 107 | 95.22 242 | 94.59 28 | 98.34 20 | 97.46 152 | 92.93 92 | 91.21 189 | 96.64 147 | 87.23 117 | 98.22 204 | 94.99 78 | 85.80 281 | 95.98 220 |
|
MDTV_nov1_ep13 | | | | 90.76 208 | | 95.22 242 | 80.33 327 | 93.03 319 | 95.28 288 | 88.14 233 | 92.84 154 | 93.83 283 | 81.34 207 | 98.08 224 | 82.86 285 | 94.34 183 | |
|
MVS | | | 91.71 195 | 90.44 220 | 95.51 145 | 95.20 244 | 91.59 119 | 96.04 228 | 97.45 158 | 73.44 348 | 87.36 282 | 95.60 206 | 85.42 139 | 99.10 134 | 85.97 253 | 97.46 122 | 95.83 226 |
|
tfpnnormal | | | 89.70 267 | 88.40 272 | 93.60 230 | 95.15 245 | 90.10 166 | 97.56 94 | 98.16 50 | 87.28 258 | 86.16 298 | 94.63 247 | 77.57 271 | 98.05 230 | 74.48 332 | 84.59 301 | 92.65 330 |
|
tpmrst | | | 91.44 209 | 91.32 186 | 91.79 286 | 95.15 245 | 79.20 338 | 93.42 311 | 95.37 283 | 88.55 221 | 93.49 137 | 93.67 292 | 82.49 188 | 98.27 201 | 90.41 164 | 89.34 249 | 97.90 160 |
|
WR-MVS | | | 92.34 173 | 91.53 179 | 94.77 180 | 95.13 247 | 90.83 149 | 96.40 202 | 97.98 98 | 91.88 123 | 89.29 238 | 95.54 211 | 82.50 187 | 97.80 262 | 89.79 175 | 85.27 289 | 95.69 236 |
|
tpm cat1 | | | 88.36 282 | 87.21 285 | 91.81 285 | 95.13 247 | 80.55 325 | 92.58 325 | 95.70 270 | 74.97 345 | 87.45 278 | 91.96 320 | 78.01 268 | 98.17 212 | 80.39 305 | 88.74 255 | 96.72 200 |
|
WR-MVS_H | | | 92.00 188 | 91.35 184 | 93.95 213 | 95.09 249 | 89.47 187 | 98.04 45 | 98.68 7 | 91.46 133 | 88.34 259 | 94.68 244 | 85.86 134 | 97.56 283 | 85.77 256 | 84.24 305 | 94.82 285 |
|
CP-MVSNet | | | 91.89 191 | 91.24 191 | 93.82 220 | 95.05 250 | 88.57 215 | 97.82 64 | 98.19 44 | 91.70 126 | 88.21 265 | 95.76 197 | 81.96 198 | 97.52 289 | 87.86 212 | 84.65 298 | 95.37 253 |
|
DWT-MVSNet_test | | | 90.76 240 | 89.89 244 | 93.38 241 | 95.04 251 | 83.70 302 | 95.85 239 | 94.30 323 | 88.19 228 | 90.46 197 | 92.80 305 | 73.61 298 | 98.50 187 | 88.16 207 | 90.58 236 | 97.95 158 |
|
test_0402 | | | 86.46 296 | 84.79 304 | 91.45 294 | 95.02 252 | 85.55 277 | 96.29 214 | 94.89 306 | 80.90 327 | 82.21 327 | 93.97 281 | 68.21 325 | 97.29 304 | 62.98 351 | 88.68 256 | 91.51 341 |
|
cascas | | | 91.20 223 | 90.08 237 | 94.58 188 | 94.97 253 | 89.16 204 | 93.65 307 | 97.59 137 | 79.90 334 | 89.40 233 | 92.92 304 | 75.36 287 | 98.36 196 | 92.14 132 | 94.75 178 | 96.23 208 |
|
PS-CasMVS | | | 91.55 203 | 90.84 205 | 93.69 227 | 94.96 254 | 88.28 222 | 97.84 63 | 98.24 34 | 91.46 133 | 88.04 269 | 95.80 192 | 79.67 236 | 97.48 291 | 87.02 236 | 84.54 302 | 95.31 256 |
|
DU-MVS | | | 92.90 156 | 92.04 161 | 95.49 148 | 94.95 255 | 92.83 80 | 97.16 135 | 98.24 34 | 93.02 84 | 90.13 208 | 95.71 200 | 83.47 163 | 97.85 257 | 91.71 143 | 83.93 309 | 95.78 229 |
|
NR-MVSNet | | | 92.34 173 | 91.27 190 | 95.53 144 | 94.95 255 | 93.05 75 | 97.39 110 | 98.07 70 | 92.65 101 | 84.46 311 | 95.71 200 | 85.00 144 | 97.77 267 | 89.71 176 | 83.52 315 | 95.78 229 |
|
RRT_MVS | | | 93.21 142 | 92.32 156 | 95.91 123 | 94.92 257 | 94.15 43 | 96.92 156 | 96.86 219 | 91.42 135 | 91.28 186 | 96.43 162 | 79.66 237 | 98.10 219 | 93.29 116 | 90.06 242 | 95.46 244 |
|
tpmvs | | | 89.83 266 | 89.15 264 | 91.89 281 | 94.92 257 | 80.30 328 | 93.11 317 | 95.46 280 | 86.28 272 | 88.08 268 | 92.65 307 | 80.44 221 | 98.52 186 | 81.47 296 | 89.92 244 | 96.84 196 |
|
PMMVS | | | 92.86 158 | 92.34 154 | 94.42 194 | 94.92 257 | 86.73 258 | 94.53 278 | 96.38 246 | 84.78 296 | 94.27 120 | 95.12 226 | 83.13 170 | 98.40 193 | 91.47 150 | 96.49 149 | 98.12 151 |
|
tpm2 | | | 89.96 261 | 89.21 262 | 92.23 275 | 94.91 260 | 81.25 319 | 93.78 302 | 94.42 318 | 80.62 331 | 91.56 175 | 93.44 298 | 76.44 279 | 97.94 248 | 85.60 258 | 92.08 215 | 97.49 182 |
|
TinyColmap | | | 86.82 294 | 85.35 300 | 91.21 299 | 94.91 260 | 82.99 308 | 93.94 298 | 94.02 327 | 83.58 310 | 81.56 329 | 94.68 244 | 62.34 346 | 98.13 214 | 75.78 328 | 87.35 269 | 92.52 332 |
|
UniMVSNet_ETH3D | | | 91.34 217 | 90.22 233 | 94.68 183 | 94.86 262 | 87.86 236 | 97.23 129 | 97.46 152 | 87.99 235 | 89.90 217 | 96.92 133 | 66.35 334 | 98.23 203 | 90.30 167 | 90.99 231 | 97.96 156 |
|
CostFormer | | | 91.18 227 | 90.70 211 | 92.62 267 | 94.84 263 | 81.76 316 | 94.09 295 | 94.43 317 | 84.15 302 | 92.72 155 | 93.77 287 | 79.43 240 | 98.20 207 | 90.70 162 | 92.18 211 | 97.90 160 |
|
MIMVSNet | | | 88.50 281 | 86.76 289 | 93.72 225 | 94.84 263 | 87.77 238 | 91.39 330 | 94.05 325 | 86.41 271 | 87.99 271 | 92.59 309 | 63.27 343 | 95.82 331 | 77.44 320 | 92.84 200 | 97.57 180 |
|
FMVSNet5 | | | 87.29 291 | 85.79 295 | 91.78 287 | 94.80 265 | 87.28 243 | 95.49 253 | 95.28 288 | 84.09 303 | 83.85 321 | 91.82 321 | 62.95 344 | 94.17 344 | 78.48 316 | 85.34 288 | 93.91 315 |
|
TranMVSNet+NR-MVSNet | | | 92.50 166 | 91.63 175 | 95.14 160 | 94.76 266 | 92.07 105 | 97.53 96 | 98.11 59 | 92.90 93 | 89.56 229 | 96.12 176 | 83.16 168 | 97.60 281 | 89.30 187 | 83.20 318 | 95.75 233 |
|
XXY-MVS | | | 92.16 184 | 91.23 192 | 94.95 170 | 94.75 267 | 90.94 145 | 97.47 103 | 97.43 165 | 89.14 198 | 88.90 245 | 96.43 162 | 79.71 235 | 98.24 202 | 89.56 181 | 87.68 263 | 95.67 238 |
|
EPMVS | | | 90.70 245 | 89.81 248 | 93.37 242 | 94.73 268 | 84.21 295 | 93.67 306 | 88.02 352 | 89.50 189 | 92.38 159 | 93.49 296 | 77.82 270 | 97.78 265 | 86.03 252 | 92.68 202 | 98.11 154 |
|
D2MVS | | | 91.30 219 | 90.95 199 | 92.35 272 | 94.71 269 | 85.52 278 | 96.18 223 | 98.21 40 | 88.89 207 | 86.60 294 | 93.82 285 | 79.92 232 | 97.95 247 | 89.29 188 | 90.95 232 | 93.56 318 |
|
USDC | | | 88.94 273 | 87.83 278 | 92.27 274 | 94.66 270 | 84.96 287 | 93.86 300 | 95.90 263 | 87.34 256 | 83.40 322 | 95.56 209 | 67.43 328 | 98.19 209 | 82.64 290 | 89.67 247 | 93.66 317 |
|
MVS_0304 | | | 88.79 277 | 87.57 279 | 92.46 268 | 94.65 271 | 86.15 272 | 96.40 202 | 97.17 186 | 86.44 270 | 88.02 270 | 91.71 324 | 56.68 351 | 97.03 309 | 84.47 272 | 92.58 204 | 94.19 310 |
|
GA-MVS | | | 91.38 212 | 90.31 225 | 94.59 184 | 94.65 271 | 87.62 240 | 94.34 286 | 96.19 255 | 90.73 156 | 90.35 200 | 93.83 283 | 71.84 303 | 97.96 245 | 87.22 232 | 93.61 194 | 98.21 148 |
|
OPM-MVS | | | 93.28 140 | 92.76 137 | 94.82 174 | 94.63 273 | 90.77 152 | 96.65 181 | 97.18 184 | 93.72 58 | 91.68 174 | 97.26 117 | 79.33 242 | 98.63 177 | 92.13 133 | 92.28 207 | 95.07 268 |
|
test-LLR | | | 91.42 210 | 91.19 194 | 92.12 276 | 94.59 274 | 80.66 322 | 94.29 289 | 92.98 335 | 91.11 149 | 90.76 193 | 92.37 312 | 79.02 247 | 98.07 227 | 88.81 199 | 96.74 142 | 97.63 173 |
|
test-mter | | | 90.19 258 | 89.54 257 | 92.12 276 | 94.59 274 | 80.66 322 | 94.29 289 | 92.98 335 | 87.68 248 | 90.76 193 | 92.37 312 | 67.67 326 | 98.07 227 | 88.81 199 | 96.74 142 | 97.63 173 |
|
dp | | | 88.90 275 | 88.26 275 | 90.81 305 | 94.58 276 | 76.62 344 | 92.85 321 | 94.93 305 | 85.12 290 | 90.07 215 | 93.07 302 | 75.81 282 | 98.12 217 | 80.53 304 | 87.42 267 | 97.71 170 |
|
PEN-MVS | | | 91.20 223 | 90.44 220 | 93.48 236 | 94.49 277 | 87.91 235 | 97.76 69 | 98.18 46 | 91.29 140 | 87.78 274 | 95.74 199 | 80.35 223 | 97.33 302 | 85.46 260 | 82.96 319 | 95.19 266 |
|
gg-mvs-nofinetune | | | 87.82 287 | 85.61 296 | 94.44 191 | 94.46 278 | 89.27 200 | 91.21 334 | 84.61 357 | 80.88 328 | 89.89 219 | 74.98 351 | 71.50 305 | 97.53 287 | 85.75 257 | 97.21 134 | 96.51 203 |
|
CR-MVSNet | | | 90.82 239 | 89.77 250 | 93.95 213 | 94.45 279 | 87.19 248 | 90.23 340 | 95.68 273 | 86.89 264 | 92.40 157 | 92.36 315 | 80.91 213 | 97.05 308 | 81.09 302 | 93.95 189 | 97.60 178 |
|
RPMNet | | | 88.98 272 | 87.05 287 | 94.77 180 | 94.45 279 | 87.19 248 | 90.23 340 | 98.03 84 | 77.87 343 | 92.40 157 | 87.55 344 | 80.17 227 | 99.51 94 | 68.84 347 | 93.95 189 | 97.60 178 |
|
TESTMET0.1,1 | | | 90.06 260 | 89.42 258 | 91.97 279 | 94.41 281 | 80.62 324 | 94.29 289 | 91.97 343 | 87.28 258 | 90.44 198 | 92.47 311 | 68.79 321 | 97.67 273 | 88.50 205 | 96.60 147 | 97.61 177 |
|
TransMVSNet (Re) | | | 88.94 273 | 87.56 280 | 93.08 253 | 94.35 282 | 88.45 220 | 97.73 73 | 95.23 292 | 87.47 252 | 84.26 314 | 95.29 218 | 79.86 233 | 97.33 302 | 79.44 313 | 74.44 341 | 93.45 321 |
|
MS-PatchMatch | | | 90.27 254 | 89.77 250 | 91.78 287 | 94.33 283 | 84.72 291 | 95.55 250 | 96.73 224 | 86.17 275 | 86.36 296 | 95.28 220 | 71.28 307 | 97.80 262 | 84.09 275 | 98.14 108 | 92.81 327 |
|
baseline2 | | | 91.63 198 | 90.86 202 | 93.94 215 | 94.33 283 | 86.32 265 | 95.92 236 | 91.64 345 | 89.37 192 | 86.94 290 | 94.69 243 | 81.62 205 | 98.69 172 | 88.64 203 | 94.57 181 | 96.81 197 |
|
XVG-ACMP-BASELINE | | | 90.93 236 | 90.21 234 | 93.09 252 | 94.31 285 | 85.89 273 | 95.33 259 | 97.26 180 | 91.06 151 | 89.38 234 | 95.44 215 | 68.61 322 | 98.60 180 | 89.46 183 | 91.05 229 | 94.79 290 |
|
pm-mvs1 | | | 90.72 244 | 89.65 256 | 93.96 212 | 94.29 286 | 89.63 178 | 97.79 67 | 96.82 222 | 89.07 199 | 86.12 299 | 95.48 214 | 78.61 255 | 97.78 265 | 86.97 237 | 81.67 323 | 94.46 301 |
|
v8 | | | 91.29 220 | 90.53 219 | 93.57 233 | 94.15 287 | 88.12 230 | 97.34 114 | 97.06 198 | 88.99 202 | 88.32 260 | 94.26 269 | 83.08 171 | 98.01 236 | 87.62 224 | 83.92 311 | 94.57 299 |
|
v10 | | | 91.04 230 | 90.23 231 | 93.49 235 | 94.12 288 | 88.16 229 | 97.32 117 | 97.08 195 | 88.26 227 | 88.29 262 | 94.22 272 | 82.17 195 | 97.97 241 | 86.45 243 | 84.12 306 | 94.33 305 |
|
Patchmtry | | | 88.64 280 | 87.25 283 | 92.78 263 | 94.09 289 | 86.64 259 | 89.82 343 | 95.68 273 | 80.81 330 | 87.63 277 | 92.36 315 | 80.91 213 | 97.03 309 | 78.86 315 | 85.12 292 | 94.67 296 |
|
PatchT | | | 88.87 276 | 87.42 281 | 93.22 248 | 94.08 290 | 85.10 285 | 89.51 344 | 94.64 314 | 81.92 321 | 92.36 160 | 88.15 342 | 80.05 229 | 97.01 312 | 72.43 339 | 93.65 192 | 97.54 181 |
|
V42 | | | 91.58 201 | 90.87 201 | 93.73 223 | 94.05 291 | 88.50 218 | 97.32 117 | 96.97 206 | 88.80 214 | 89.71 222 | 94.33 262 | 82.54 186 | 98.05 230 | 89.01 196 | 85.07 293 | 94.64 298 |
|
DTE-MVSNet | | | 90.56 248 | 89.75 252 | 93.01 254 | 93.95 292 | 87.25 245 | 97.64 88 | 97.65 131 | 90.74 155 | 87.12 285 | 95.68 203 | 79.97 231 | 97.00 313 | 83.33 281 | 81.66 324 | 94.78 292 |
|
tpm | | | 90.25 255 | 89.74 253 | 91.76 289 | 93.92 293 | 79.73 334 | 93.98 296 | 93.54 330 | 88.28 226 | 91.99 170 | 93.25 301 | 77.51 272 | 97.44 295 | 87.30 231 | 87.94 260 | 98.12 151 |
|
PS-MVSNAJss | | | 93.74 127 | 93.51 119 | 94.44 191 | 93.91 294 | 89.28 199 | 97.75 70 | 97.56 142 | 92.50 104 | 89.94 216 | 96.54 157 | 88.65 94 | 98.18 210 | 93.83 106 | 90.90 233 | 95.86 222 |
|
v1144 | | | 91.37 214 | 90.60 214 | 93.68 228 | 93.89 295 | 88.23 225 | 96.84 163 | 97.03 203 | 88.37 224 | 89.69 224 | 94.39 258 | 82.04 196 | 97.98 238 | 87.80 214 | 85.37 286 | 94.84 282 |
|
v2v482 | | | 91.59 199 | 90.85 204 | 93.80 221 | 93.87 296 | 88.17 228 | 96.94 155 | 96.88 216 | 89.54 187 | 89.53 230 | 94.90 232 | 81.70 204 | 98.02 235 | 89.25 190 | 85.04 295 | 95.20 265 |
|
v148 | | | 90.99 232 | 90.38 222 | 92.81 262 | 93.83 297 | 85.80 274 | 96.78 170 | 96.68 231 | 89.45 190 | 88.75 253 | 93.93 282 | 82.96 177 | 97.82 261 | 87.83 213 | 83.25 316 | 94.80 288 |
|
Baseline_NR-MVSNet | | | 91.20 223 | 90.62 213 | 92.95 257 | 93.83 297 | 88.03 231 | 97.01 148 | 95.12 297 | 88.42 223 | 89.70 223 | 95.13 225 | 83.47 163 | 97.44 295 | 89.66 179 | 83.24 317 | 93.37 322 |
|
EPNet_dtu | | | 91.71 195 | 91.28 189 | 92.99 255 | 93.76 299 | 83.71 301 | 96.69 178 | 95.28 288 | 93.15 80 | 87.02 289 | 95.95 184 | 83.37 166 | 97.38 300 | 79.46 312 | 96.84 139 | 97.88 162 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
v1192 | | | 91.07 228 | 90.23 231 | 93.58 232 | 93.70 300 | 87.82 237 | 96.73 172 | 97.07 196 | 87.77 244 | 89.58 227 | 94.32 264 | 80.90 215 | 97.97 241 | 86.52 241 | 85.48 284 | 94.95 272 |
|
GG-mvs-BLEND | | | | | 93.62 229 | 93.69 301 | 89.20 201 | 92.39 328 | 83.33 358 | | 87.98 272 | 89.84 335 | 71.00 309 | 96.87 316 | 82.08 293 | 95.40 166 | 94.80 288 |
|
v144192 | | | 91.06 229 | 90.28 227 | 93.39 240 | 93.66 302 | 87.23 247 | 96.83 164 | 97.07 196 | 87.43 253 | 89.69 224 | 94.28 266 | 81.48 206 | 98.00 237 | 87.18 234 | 84.92 297 | 94.93 276 |
|
v1921920 | | | 90.85 238 | 90.03 241 | 93.29 245 | 93.55 303 | 86.96 255 | 96.74 171 | 97.04 201 | 87.36 255 | 89.52 231 | 94.34 261 | 80.23 226 | 97.97 241 | 86.27 244 | 85.21 290 | 94.94 274 |
|
v7n | | | 90.76 240 | 89.86 245 | 93.45 239 | 93.54 304 | 87.60 241 | 97.70 79 | 97.37 171 | 88.85 208 | 87.65 276 | 94.08 277 | 81.08 210 | 98.10 219 | 84.68 269 | 83.79 313 | 94.66 297 |
|
JIA-IIPM | | | 88.26 284 | 87.04 288 | 91.91 280 | 93.52 305 | 81.42 318 | 89.38 345 | 94.38 319 | 80.84 329 | 90.93 192 | 80.74 349 | 79.22 243 | 97.92 251 | 82.76 287 | 91.62 219 | 96.38 207 |
|
v1240 | | | 90.70 245 | 89.85 246 | 93.23 247 | 93.51 306 | 86.80 256 | 96.61 187 | 97.02 204 | 87.16 260 | 89.58 227 | 94.31 265 | 79.55 239 | 97.98 238 | 85.52 259 | 85.44 285 | 94.90 279 |
|
test_djsdf | | | 93.07 147 | 92.76 137 | 94.00 208 | 93.49 307 | 88.70 213 | 98.22 32 | 97.57 139 | 91.42 135 | 90.08 214 | 95.55 210 | 82.85 179 | 97.92 251 | 94.07 97 | 91.58 220 | 95.40 250 |
|
SixPastTwentyTwo | | | 89.15 271 | 88.54 271 | 90.98 302 | 93.49 307 | 80.28 329 | 96.70 176 | 94.70 311 | 90.78 154 | 84.15 316 | 95.57 207 | 71.78 304 | 97.71 271 | 84.63 270 | 85.07 293 | 94.94 274 |
|
mvs_tets | | | 92.31 175 | 91.76 170 | 93.94 215 | 93.41 309 | 88.29 221 | 97.63 89 | 97.53 143 | 92.04 119 | 88.76 252 | 96.45 161 | 74.62 290 | 98.09 223 | 93.91 102 | 91.48 222 | 95.45 246 |
|
OurMVSNet-221017-0 | | | 90.51 250 | 90.19 235 | 91.44 295 | 93.41 309 | 81.25 319 | 96.98 151 | 96.28 249 | 91.68 127 | 86.55 295 | 96.30 169 | 74.20 293 | 97.98 238 | 88.96 197 | 87.40 268 | 95.09 267 |
|
pmmvs4 | | | 90.93 236 | 89.85 246 | 94.17 201 | 93.34 311 | 90.79 151 | 94.60 275 | 96.02 259 | 84.62 297 | 87.45 278 | 95.15 223 | 81.88 201 | 97.45 294 | 87.70 217 | 87.87 261 | 94.27 309 |
|
jajsoiax | | | 92.42 170 | 91.89 168 | 94.03 207 | 93.33 312 | 88.50 218 | 97.73 73 | 97.53 143 | 92.00 121 | 88.85 248 | 96.50 159 | 75.62 286 | 98.11 218 | 93.88 104 | 91.56 221 | 95.48 241 |
|
gm-plane-assit | | | | | | 93.22 313 | 78.89 341 | | | 84.82 295 | | 93.52 295 | | 98.64 176 | 87.72 215 | | |
|
MVP-Stereo | | | 90.74 243 | 90.08 237 | 92.71 264 | 93.19 314 | 88.20 226 | 95.86 238 | 96.27 250 | 86.07 276 | 84.86 309 | 94.76 239 | 77.84 269 | 97.75 268 | 83.88 279 | 98.01 110 | 92.17 338 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
EU-MVSNet | | | 88.72 279 | 88.90 266 | 88.20 324 | 93.15 315 | 74.21 348 | 96.63 186 | 94.22 324 | 85.18 288 | 87.32 283 | 95.97 182 | 76.16 281 | 94.98 339 | 85.27 262 | 86.17 277 | 95.41 247 |
|
MDA-MVSNet-bldmvs | | | 85.00 308 | 82.95 312 | 91.17 301 | 93.13 316 | 83.33 305 | 94.56 277 | 95.00 301 | 84.57 298 | 65.13 352 | 92.65 307 | 70.45 312 | 95.85 329 | 73.57 337 | 77.49 334 | 94.33 305 |
|
K. test v3 | | | 87.64 289 | 86.75 290 | 90.32 313 | 93.02 317 | 79.48 336 | 96.61 187 | 92.08 342 | 90.66 160 | 80.25 337 | 94.09 276 | 67.21 330 | 96.65 320 | 85.96 254 | 80.83 327 | 94.83 283 |
|
pmmvs5 | | | 89.86 265 | 88.87 267 | 92.82 261 | 92.86 318 | 86.23 268 | 96.26 216 | 95.39 281 | 84.24 301 | 87.12 285 | 94.51 251 | 74.27 292 | 97.36 301 | 87.61 225 | 87.57 264 | 94.86 281 |
|
testgi | | | 87.97 285 | 87.21 285 | 90.24 314 | 92.86 318 | 80.76 321 | 96.67 180 | 94.97 303 | 91.74 125 | 85.52 302 | 95.83 190 | 62.66 345 | 94.47 343 | 76.25 327 | 88.36 258 | 95.48 241 |
|
EPNet | | | 95.20 86 | 94.56 93 | 97.14 68 | 92.80 320 | 92.68 84 | 97.85 62 | 94.87 310 | 96.64 1 | 92.46 156 | 97.80 84 | 86.23 127 | 99.65 53 | 93.72 107 | 98.62 96 | 99.10 79 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
N_pmnet | | | 78.73 319 | 78.71 321 | 78.79 334 | 92.80 320 | 46.50 363 | 94.14 293 | 43.71 365 | 78.61 339 | 80.83 331 | 91.66 325 | 74.94 289 | 96.36 322 | 67.24 348 | 84.45 303 | 93.50 319 |
|
EG-PatchMatch MVS | | | 87.02 293 | 85.44 297 | 91.76 289 | 92.67 322 | 85.00 286 | 96.08 227 | 96.45 243 | 83.41 313 | 79.52 339 | 93.49 296 | 57.10 350 | 97.72 270 | 79.34 314 | 90.87 234 | 92.56 331 |
|
Gipuma |  | | 67.86 323 | 65.41 326 | 75.18 337 | 92.66 323 | 73.45 349 | 66.50 357 | 94.52 316 | 53.33 355 | 57.80 355 | 66.07 355 | 30.81 358 | 89.20 352 | 48.15 355 | 78.88 333 | 62.90 354 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
anonymousdsp | | | 92.16 184 | 91.55 178 | 93.97 211 | 92.58 324 | 89.55 183 | 97.51 97 | 97.42 166 | 89.42 191 | 88.40 258 | 94.84 235 | 80.66 217 | 97.88 256 | 91.87 139 | 91.28 226 | 94.48 300 |
|
test0.0.03 1 | | | 89.37 270 | 88.70 268 | 91.41 296 | 92.47 325 | 85.63 276 | 95.22 267 | 92.70 337 | 91.11 149 | 86.91 292 | 93.65 293 | 79.02 247 | 93.19 349 | 78.00 319 | 89.18 250 | 95.41 247 |
|
our_test_3 | | | 88.78 278 | 87.98 277 | 91.20 300 | 92.45 326 | 82.53 310 | 93.61 309 | 95.69 271 | 85.77 280 | 84.88 308 | 93.71 288 | 79.99 230 | 96.78 319 | 79.47 311 | 86.24 276 | 94.28 308 |
|
ppachtmachnet_test | | | 88.35 283 | 87.29 282 | 91.53 292 | 92.45 326 | 83.57 304 | 93.75 303 | 95.97 260 | 84.28 300 | 85.32 306 | 94.18 273 | 79.00 251 | 96.93 314 | 75.71 329 | 84.99 296 | 94.10 311 |
|
YYNet1 | | | 85.87 304 | 84.23 308 | 90.78 308 | 92.38 328 | 82.46 312 | 93.17 314 | 95.14 296 | 82.12 320 | 67.69 348 | 92.36 315 | 78.16 264 | 95.50 337 | 77.31 322 | 79.73 329 | 94.39 303 |
|
MDA-MVSNet_test_wron | | | 85.87 304 | 84.23 308 | 90.80 307 | 92.38 328 | 82.57 309 | 93.17 314 | 95.15 295 | 82.15 319 | 67.65 349 | 92.33 318 | 78.20 261 | 95.51 336 | 77.33 321 | 79.74 328 | 94.31 307 |
|
LF4IMVS | | | 87.94 286 | 87.25 283 | 89.98 316 | 92.38 328 | 80.05 332 | 94.38 284 | 95.25 291 | 87.59 250 | 84.34 312 | 94.74 241 | 64.31 341 | 97.66 275 | 84.83 266 | 87.45 265 | 92.23 335 |
|
lessismore_v0 | | | | | 90.45 311 | 91.96 331 | 79.09 340 | | 87.19 355 | | 80.32 336 | 94.39 258 | 66.31 335 | 97.55 284 | 84.00 277 | 76.84 336 | 94.70 295 |
|
bset_n11_16_dypcd | | | 91.55 203 | 90.59 215 | 94.44 191 | 91.51 332 | 90.25 164 | 92.70 323 | 93.42 332 | 92.27 109 | 90.22 203 | 94.74 241 | 78.42 258 | 97.80 262 | 94.19 95 | 87.86 262 | 95.29 263 |
|
pmmvs6 | | | 87.81 288 | 86.19 292 | 92.69 265 | 91.32 333 | 86.30 266 | 97.34 114 | 96.41 245 | 80.59 332 | 84.05 319 | 94.37 260 | 67.37 329 | 97.67 273 | 84.75 268 | 79.51 331 | 94.09 313 |
|
Anonymous20231206 | | | 87.09 292 | 86.14 293 | 89.93 317 | 91.22 334 | 80.35 326 | 96.11 225 | 95.35 284 | 83.57 311 | 84.16 315 | 93.02 303 | 73.54 299 | 95.61 333 | 72.16 340 | 86.14 278 | 93.84 316 |
|
KD-MVS_2432*1600 | | | 84.81 310 | 82.64 313 | 91.31 297 | 91.07 335 | 85.34 282 | 91.22 332 | 95.75 268 | 85.56 283 | 83.09 324 | 90.21 331 | 67.21 330 | 95.89 327 | 77.18 324 | 62.48 351 | 92.69 328 |
|
miper_refine_blended | | | 84.81 310 | 82.64 313 | 91.31 297 | 91.07 335 | 85.34 282 | 91.22 332 | 95.75 268 | 85.56 283 | 83.09 324 | 90.21 331 | 67.21 330 | 95.89 327 | 77.18 324 | 62.48 351 | 92.69 328 |
|
DeepMVS_CX |  | | | | 74.68 338 | 90.84 337 | 64.34 358 | | 81.61 360 | 65.34 351 | 67.47 350 | 88.01 343 | 48.60 355 | 80.13 357 | 62.33 352 | 73.68 343 | 79.58 351 |
|
Anonymous20240521 | | | 86.42 297 | 85.44 297 | 89.34 320 | 90.33 338 | 79.79 333 | 96.73 172 | 95.92 261 | 83.71 309 | 83.25 323 | 91.36 327 | 63.92 342 | 96.01 325 | 78.39 318 | 85.36 287 | 92.22 336 |
|
test20.03 | | | 86.14 301 | 85.40 299 | 88.35 322 | 90.12 339 | 80.06 331 | 95.90 237 | 95.20 293 | 88.59 217 | 81.29 330 | 93.62 294 | 71.43 306 | 92.65 350 | 71.26 344 | 81.17 326 | 92.34 334 |
|
OpenMVS_ROB |  | 81.14 20 | 84.42 312 | 82.28 315 | 90.83 304 | 90.06 340 | 84.05 298 | 95.73 244 | 94.04 326 | 73.89 347 | 80.17 338 | 91.53 326 | 59.15 348 | 97.64 276 | 66.92 349 | 89.05 251 | 90.80 344 |
|
UnsupCasMVSNet_eth | | | 85.99 302 | 84.45 306 | 90.62 309 | 89.97 341 | 82.40 313 | 93.62 308 | 97.37 171 | 89.86 179 | 78.59 342 | 92.37 312 | 65.25 340 | 95.35 338 | 82.27 292 | 70.75 346 | 94.10 311 |
|
DSMNet-mixed | | | 86.34 298 | 86.12 294 | 87.00 329 | 89.88 342 | 70.43 351 | 94.93 271 | 90.08 350 | 77.97 342 | 85.42 305 | 92.78 306 | 74.44 291 | 93.96 345 | 74.43 333 | 95.14 169 | 96.62 201 |
|
new_pmnet | | | 82.89 315 | 81.12 319 | 88.18 325 | 89.63 343 | 80.18 330 | 91.77 329 | 92.57 338 | 76.79 344 | 75.56 346 | 88.23 341 | 61.22 347 | 94.48 342 | 71.43 342 | 82.92 320 | 89.87 346 |
|
MIMVSNet1 | | | 84.93 309 | 83.05 311 | 90.56 310 | 89.56 344 | 84.84 290 | 95.40 256 | 95.35 284 | 83.91 304 | 80.38 335 | 92.21 319 | 57.23 349 | 93.34 348 | 70.69 346 | 82.75 322 | 93.50 319 |
|
DIV-MVS_2432*1600 | | | 85.95 303 | 84.95 302 | 88.96 321 | 89.55 345 | 79.11 339 | 95.13 269 | 96.42 244 | 85.91 278 | 84.07 318 | 90.48 329 | 70.03 317 | 94.82 340 | 80.04 306 | 72.94 344 | 92.94 325 |
|
CMPMVS |  | 62.92 21 | 85.62 306 | 84.92 303 | 87.74 326 | 89.14 346 | 73.12 350 | 94.17 292 | 96.80 223 | 73.98 346 | 73.65 347 | 94.93 230 | 66.36 333 | 97.61 280 | 83.95 278 | 91.28 226 | 92.48 333 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
CL-MVSNet_2432*1600 | | | 86.31 299 | 85.15 301 | 89.80 318 | 88.83 347 | 81.74 317 | 93.93 299 | 96.22 253 | 86.67 267 | 85.03 307 | 90.80 328 | 78.09 265 | 94.50 341 | 74.92 331 | 71.86 345 | 93.15 323 |
|
Patchmatch-RL test | | | 87.38 290 | 86.24 291 | 90.81 305 | 88.74 348 | 78.40 342 | 88.12 348 | 93.17 334 | 87.11 261 | 82.17 328 | 89.29 337 | 81.95 199 | 95.60 334 | 88.64 203 | 77.02 335 | 98.41 137 |
|
pmmvs-eth3d | | | 86.22 300 | 84.45 306 | 91.53 292 | 88.34 349 | 87.25 245 | 94.47 279 | 95.01 300 | 83.47 312 | 79.51 340 | 89.61 336 | 69.75 319 | 95.71 332 | 83.13 283 | 76.73 337 | 91.64 339 |
|
UnsupCasMVSNet_bld | | | 82.13 317 | 79.46 320 | 90.14 315 | 88.00 350 | 82.47 311 | 90.89 337 | 96.62 239 | 78.94 338 | 75.61 344 | 84.40 347 | 56.63 352 | 96.31 323 | 77.30 323 | 66.77 350 | 91.63 340 |
|
PM-MVS | | | 83.48 313 | 81.86 317 | 88.31 323 | 87.83 351 | 77.59 343 | 93.43 310 | 91.75 344 | 86.91 263 | 80.63 333 | 89.91 334 | 44.42 356 | 95.84 330 | 85.17 265 | 76.73 337 | 91.50 342 |
|
new-patchmatchnet | | | 83.18 314 | 81.87 316 | 87.11 328 | 86.88 352 | 75.99 346 | 93.70 304 | 95.18 294 | 85.02 292 | 77.30 343 | 88.40 339 | 65.99 337 | 93.88 346 | 74.19 336 | 70.18 347 | 91.47 343 |
|
ambc | | | | | 86.56 330 | 83.60 353 | 70.00 353 | 85.69 350 | 94.97 303 | | 80.60 334 | 88.45 338 | 37.42 357 | 96.84 317 | 82.69 289 | 75.44 339 | 92.86 326 |
|
pmmvs3 | | | 79.97 318 | 77.50 322 | 87.39 327 | 82.80 354 | 79.38 337 | 92.70 323 | 90.75 349 | 70.69 349 | 78.66 341 | 87.47 345 | 51.34 354 | 93.40 347 | 73.39 338 | 69.65 348 | 89.38 347 |
|
TDRefinement | | | 86.53 295 | 84.76 305 | 91.85 282 | 82.23 355 | 84.25 294 | 96.38 205 | 95.35 284 | 84.97 293 | 84.09 317 | 94.94 229 | 65.76 339 | 98.34 199 | 84.60 271 | 74.52 340 | 92.97 324 |
|
PMMVS2 | | | 70.19 322 | 66.92 325 | 80.01 333 | 76.35 356 | 65.67 356 | 86.22 349 | 87.58 354 | 64.83 352 | 62.38 353 | 80.29 350 | 26.78 362 | 88.49 353 | 63.79 350 | 54.07 354 | 85.88 348 |
|
FPMVS | | | 71.27 321 | 69.85 323 | 75.50 336 | 74.64 357 | 59.03 359 | 91.30 331 | 91.50 346 | 58.80 353 | 57.92 354 | 88.28 340 | 29.98 360 | 85.53 355 | 53.43 353 | 82.84 321 | 81.95 350 |
|
E-PMN | | | 53.28 326 | 52.56 330 | 55.43 341 | 74.43 358 | 47.13 362 | 83.63 353 | 76.30 361 | 42.23 357 | 42.59 358 | 62.22 357 | 28.57 361 | 74.40 358 | 31.53 358 | 31.51 356 | 44.78 355 |
|
wuyk23d | | | 25.11 330 | 24.57 334 | 26.74 344 | 73.98 359 | 39.89 366 | 57.88 358 | 9.80 366 | 12.27 361 | 10.39 362 | 6.97 364 | 7.03 366 | 36.44 362 | 25.43 360 | 17.39 360 | 3.89 360 |
|
EMVS | | | 52.08 328 | 51.31 331 | 54.39 342 | 72.62 360 | 45.39 364 | 83.84 352 | 75.51 362 | 41.13 358 | 40.77 359 | 59.65 358 | 30.08 359 | 73.60 359 | 28.31 359 | 29.90 358 | 44.18 356 |
|
LCM-MVSNet | | | 72.55 320 | 69.39 324 | 82.03 332 | 70.81 361 | 65.42 357 | 90.12 342 | 94.36 321 | 55.02 354 | 65.88 351 | 81.72 348 | 24.16 364 | 89.96 351 | 74.32 335 | 68.10 349 | 90.71 345 |
|
MVE |  | 50.73 23 | 53.25 327 | 48.81 332 | 66.58 340 | 65.34 362 | 57.50 360 | 72.49 356 | 70.94 363 | 40.15 359 | 39.28 360 | 63.51 356 | 6.89 367 | 73.48 360 | 38.29 357 | 42.38 355 | 68.76 353 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
ANet_high | | | 63.94 324 | 59.58 327 | 77.02 335 | 61.24 363 | 66.06 355 | 85.66 351 | 87.93 353 | 78.53 340 | 42.94 357 | 71.04 354 | 25.42 363 | 80.71 356 | 52.60 354 | 30.83 357 | 84.28 349 |
|
PMVS |  | 53.92 22 | 58.58 325 | 55.40 328 | 68.12 339 | 51.00 364 | 48.64 361 | 78.86 354 | 87.10 356 | 46.77 356 | 35.84 361 | 74.28 352 | 8.76 365 | 86.34 354 | 42.07 356 | 73.91 342 | 69.38 352 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
tmp_tt | | | 51.94 329 | 53.82 329 | 46.29 343 | 33.73 365 | 45.30 365 | 78.32 355 | 67.24 364 | 18.02 360 | 50.93 356 | 87.05 346 | 52.99 353 | 53.11 361 | 70.76 345 | 25.29 359 | 40.46 357 |
|
testmvs | | | 13.36 332 | 16.33 335 | 4.48 346 | 5.04 366 | 2.26 368 | 93.18 313 | 3.28 367 | 2.70 362 | 8.24 363 | 21.66 360 | 2.29 369 | 2.19 363 | 7.58 361 | 2.96 361 | 9.00 359 |
|
test123 | | | 13.04 333 | 15.66 336 | 5.18 345 | 4.51 367 | 3.45 367 | 92.50 327 | 1.81 368 | 2.50 363 | 7.58 364 | 20.15 361 | 3.67 368 | 2.18 364 | 7.13 362 | 1.07 362 | 9.90 358 |
|
uanet_test | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
cdsmvs_eth3d_5k | | | 23.24 331 | 30.99 333 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 97.63 133 | 0.00 364 | 0.00 365 | 96.88 135 | 84.38 151 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
pcd_1.5k_mvsjas | | | 7.39 335 | 9.85 338 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 88.65 94 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
sosnet-low-res | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
sosnet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
uncertanet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
Regformer | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
ab-mvs-re | | | 8.06 334 | 10.74 337 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 96.69 144 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
uanet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
test_241102_TWO | | | | | | | | | 98.27 28 | 95.13 16 | 98.93 6 | 98.89 4 | 94.99 8 | 99.85 14 | 97.52 2 | 99.65 10 | 99.74 5 |
|
test_0728_THIRD | | | | | | | | | | 94.78 32 | 98.73 8 | 98.87 6 | 95.87 2 | 99.84 19 | 97.45 6 | 99.72 2 | 99.77 1 |
|
GSMVS | | | | | | | | | | | | | | | | | 98.45 132 |
|
sam_mvs1 | | | | | | | | | | | | | 82.76 181 | | | | 98.45 132 |
|
sam_mvs | | | | | | | | | | | | | 81.94 200 | | | | |
|
MTGPA |  | | | | | | | | 98.08 64 | | | | | | | | |
|
test_post1 | | | | | | | | 92.81 322 | | | | 16.58 363 | 80.53 219 | 97.68 272 | 86.20 246 | | |
|
test_post | | | | | | | | | | | | 17.58 362 | 81.76 202 | 98.08 224 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 90.45 330 | 82.65 185 | 98.10 219 | | | |
|
MTMP | | | | | | | | 97.86 59 | 82.03 359 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 94.81 84 | 99.38 48 | 99.45 45 |
|
agg_prior2 | | | | | | | | | | | | | | | 93.94 101 | 99.38 48 | 99.50 37 |
|
test_prior4 | | | | | | | 93.66 59 | 96.42 198 | | | | | | | | | |
|
test_prior2 | | | | | | | | 96.35 207 | | 92.80 96 | 96.03 79 | 97.59 101 | 92.01 41 | | 95.01 75 | 99.38 48 | |
|
旧先验2 | | | | | | | | 95.94 235 | | 81.66 323 | 97.34 34 | | | 98.82 160 | 92.26 127 | | |
|
新几何2 | | | | | | | | 95.79 242 | | | | | | | | | |
|
无先验 | | | | | | | | 95.79 242 | 97.87 108 | 83.87 307 | | | | 99.65 53 | 87.68 220 | | 98.89 100 |
|
原ACMM2 | | | | | | | | 95.67 245 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.67 49 | 85.96 254 | | |
|
segment_acmp | | | | | | | | | | | | | 92.89 22 | | | | |
|
testdata1 | | | | | | | | 95.26 266 | | 93.10 83 | | | | | | | |
|
plane_prior5 | | | | | | | | | 97.51 145 | | | | | 98.60 180 | 93.02 121 | 92.23 208 | 95.86 222 |
|
plane_prior4 | | | | | | | | | | | | 96.64 147 | | | | | |
|
plane_prior3 | | | | | | | 90.00 168 | | | 94.46 40 | 91.34 180 | | | | | | |
|
plane_prior2 | | | | | | | | 97.74 71 | | 94.85 25 | | | | | | | |
|
plane_prior | | | | | | | 89.99 170 | 97.24 124 | | 94.06 48 | | | | | | 92.16 212 | |
|
n2 | | | | | | | | | 0.00 369 | | | | | | | | |
|
nn | | | | | | | | | 0.00 369 | | | | | | | | |
|
door-mid | | | | | | | | | 91.06 348 | | | | | | | | |
|
test11 | | | | | | | | | 97.88 106 | | | | | | | | |
|
door | | | | | | | | | 91.13 347 | | | | | | | | |
|
HQP5-MVS | | | | | | | 89.33 195 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 92.13 133 | | |
|
HQP4-MVS | | | | | | | | | | | 90.14 204 | | | 98.50 187 | | | 95.78 229 |
|
HQP3-MVS | | | | | | | | | 97.39 168 | | | | | | | 92.10 213 | |
|
HQP2-MVS | | | | | | | | | | | | | 80.95 211 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 70.35 352 | 93.10 318 | | 83.88 306 | 93.55 134 | | 82.47 189 | | 86.25 245 | | 98.38 140 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 90.30 241 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 91.02 230 | |
|
Test By Simon | | | | | | | | | | | | | 88.73 93 | | | | |
|