This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
EPNet95.20 9094.56 9797.14 7192.80 33392.68 8997.85 7094.87 32096.64 192.46 16797.80 9286.23 13399.65 5793.72 11598.62 10399.10 87
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
NCCC97.30 1597.03 1798.11 1798.77 6095.06 2697.34 12298.04 8595.96 297.09 5097.88 8293.18 2499.71 4295.84 5899.17 7999.56 27
CNVR-MVS97.68 697.44 998.37 798.90 5495.86 697.27 13098.08 6895.81 397.87 2898.31 5094.26 1399.68 5197.02 1699.49 3999.57 24
HPM-MVS++copyleft97.34 1496.97 2098.47 599.08 4096.16 497.55 10397.97 10395.59 496.61 6697.89 8092.57 3499.84 2395.95 5399.51 3399.40 58
MSP-MVS97.59 897.54 697.73 4199.40 1293.77 6298.53 1398.29 2695.55 598.56 1497.81 9093.90 1599.65 5796.62 2799.21 7499.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepPCF-MVS93.97 196.61 5197.09 1495.15 16598.09 11386.63 27196.00 24298.15 5595.43 697.95 2498.56 2093.40 2099.36 11796.77 2499.48 4099.45 50
CANet96.39 6096.02 6497.50 5397.62 13993.38 7197.02 15297.96 10495.42 794.86 12097.81 9087.38 12099.82 2996.88 1999.20 7599.29 67
xxxxxxxxxxxxxcwj97.36 1297.20 1297.83 2998.91 5294.28 3997.02 15297.22 19195.35 898.27 1898.65 1693.33 2199.72 3996.49 3299.52 2999.51 39
save fliter98.91 5294.28 3997.02 15298.02 9295.35 8
SteuartSystems-ACMMP97.62 797.53 797.87 2798.39 8694.25 4298.43 2198.27 3195.34 1098.11 2098.56 2094.53 1299.71 4296.57 3099.62 1599.65 12
Skip Steuart: Steuart Systems R&D Blog.
CS-MVS-test96.47 5696.62 4396.01 12498.18 10890.40 16898.40 2397.65 13895.33 1197.02 5496.79 14789.98 8798.72 17797.06 1399.18 7798.91 106
CS-MVS96.79 4497.05 1696.00 12598.17 11090.38 17099.09 397.89 10995.31 1297.02 5498.02 7491.74 5298.71 17997.06 1399.18 7798.90 108
Regformer-297.16 1996.99 1997.67 4698.32 9293.84 5796.83 17398.10 6595.24 1397.49 3198.25 5892.57 3499.61 6696.80 2199.29 6299.56 27
DELS-MVS96.61 5196.38 5697.30 6097.79 12993.19 7795.96 24498.18 5095.23 1495.87 9597.65 10391.45 6099.70 4795.87 5499.44 4799.00 98
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Regformer-197.10 2196.96 2197.54 5298.32 9293.48 6896.83 17397.99 10195.20 1597.46 3298.25 5892.48 3899.58 7596.79 2399.29 6299.55 31
h-mvs3394.15 11493.52 12296.04 12197.81 12790.22 17297.62 9897.58 14695.19 1696.74 5797.45 11883.67 16899.61 6695.85 5679.73 34198.29 157
hse-mvs293.45 14192.99 13794.81 18397.02 16588.59 22396.69 18796.47 25295.19 1696.74 5796.16 18783.67 16898.48 20095.85 5679.13 34597.35 196
DPE-MVScopyleft97.86 497.65 598.47 599.17 3495.78 797.21 13998.35 2095.16 1898.71 1298.80 1195.05 1099.89 496.70 2699.73 199.73 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_one_060199.32 2495.20 2198.25 3695.13 1998.48 1698.87 695.16 7
SED-MVS98.05 297.99 198.24 1099.42 795.30 1898.25 3498.27 3195.13 1999.19 198.89 495.54 599.85 1897.52 599.66 1099.56 27
test_241102_TWO98.27 3195.13 1998.93 698.89 494.99 1199.85 1897.52 599.65 1299.74 7
Regformer-496.97 3096.87 2497.25 6498.34 8992.66 9096.96 16198.01 9595.12 2297.14 4698.42 3491.82 5099.61 6696.90 1899.13 8299.50 42
test_241102_ONE99.42 795.30 1898.27 3195.09 2399.19 198.81 1095.54 599.65 57
zzz-MVS97.07 2396.77 3597.97 2599.37 1794.42 3697.15 14598.08 6895.07 2496.11 8598.59 1890.88 7599.90 296.18 4699.50 3699.58 22
MTAPA97.08 2296.78 3497.97 2599.37 1794.42 3697.24 13298.08 6895.07 2496.11 8598.59 1890.88 7599.90 296.18 4699.50 3699.58 22
Regformer-396.85 3996.80 3297.01 7598.34 8992.02 11396.96 16197.76 12295.01 2697.08 5198.42 3491.71 5499.54 9096.80 2199.13 8299.48 46
FOURS199.55 193.34 7499.29 198.35 2094.98 2798.49 15
DVP-MVScopyleft97.91 397.81 398.22 1299.45 395.36 1398.21 4197.85 11894.92 2898.73 1098.87 695.08 899.84 2397.52 599.67 699.48 46
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.45 395.36 1398.31 2798.29 2694.92 2898.99 498.92 295.08 8
XVS97.18 1796.96 2197.81 3399.38 1594.03 5498.59 1198.20 4694.85 3096.59 6898.29 5391.70 5599.80 3195.66 6299.40 5099.62 16
X-MVStestdata91.71 20389.67 26397.81 3399.38 1594.03 5498.59 1198.20 4694.85 3096.59 6832.69 37291.70 5599.80 3195.66 6299.40 5099.62 16
HQP_MVS93.78 13193.43 12794.82 18196.21 20489.99 17797.74 7997.51 15394.85 3091.34 19296.64 15881.32 21698.60 18893.02 13192.23 21995.86 234
plane_prior297.74 7994.85 30
SD-MVS97.41 1097.53 797.06 7498.57 7894.46 3497.92 6498.14 5794.82 3499.01 398.55 2294.18 1497.41 31096.94 1799.64 1399.32 65
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
UA-Net95.95 7295.53 7197.20 6997.67 13492.98 8397.65 9298.13 5894.81 3596.61 6698.35 4188.87 9699.51 9890.36 17797.35 13999.11 86
DeepC-MVS_fast93.89 296.93 3496.64 4297.78 3698.64 7394.30 3897.41 11498.04 8594.81 3596.59 6898.37 3991.24 6699.64 6595.16 7899.52 2999.42 57
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DVP-MVS++98.06 197.99 198.28 998.67 6595.39 1199.29 198.28 2894.78 3798.93 698.87 696.04 299.86 997.45 999.58 2299.59 20
test_0728_THIRD94.78 3798.73 1098.87 695.87 499.84 2397.45 999.72 299.77 1
APDe-MVS97.82 597.73 498.08 1899.15 3594.82 2998.81 698.30 2594.76 3998.30 1798.90 393.77 1799.68 5197.93 199.69 399.75 5
EI-MVSNet-Vis-set96.51 5496.47 5196.63 8398.24 9991.20 14096.89 16897.73 12694.74 4096.49 7298.49 2790.88 7599.58 7596.44 3498.32 11299.13 82
patch_mono-296.83 4197.44 995.01 17199.05 4385.39 29196.98 15998.77 594.70 4197.99 2398.66 1493.61 1999.91 197.67 499.50 3699.72 10
EI-MVSNet-UG-set96.34 6196.30 5796.47 9498.20 10490.93 15196.86 16997.72 12994.67 4296.16 8498.46 2990.43 8199.58 7596.23 3997.96 12298.90 108
MSLP-MVS++96.94 3397.06 1596.59 8698.72 6291.86 11797.67 8998.49 1394.66 4397.24 4198.41 3792.31 4198.94 15796.61 2899.46 4398.96 100
3Dnovator+91.43 495.40 8294.48 10298.16 1596.90 17095.34 1698.48 1997.87 11494.65 4488.53 26998.02 7483.69 16799.71 4293.18 12698.96 9399.44 52
ETV-MVS96.02 6995.89 6796.40 9997.16 15392.44 9797.47 11197.77 12194.55 4596.48 7394.51 26291.23 6798.92 15895.65 6598.19 11597.82 178
canonicalmvs96.02 6995.45 7597.75 4097.59 14295.15 2598.28 3097.60 14394.52 4696.27 8196.12 18887.65 11399.18 13096.20 4594.82 18798.91 106
plane_prior390.00 17594.46 4791.34 192
DROMVSNet96.42 5896.47 5196.26 11197.01 16691.52 12798.89 497.75 12394.42 4896.64 6497.68 9989.32 9198.60 18897.45 999.11 8798.67 128
UGNet94.04 12293.28 13296.31 10696.85 17191.19 14197.88 6697.68 13494.40 4993.00 15996.18 18473.39 30899.61 6691.72 15398.46 10998.13 161
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
alignmvs95.87 7495.23 8297.78 3697.56 14595.19 2297.86 6797.17 19494.39 5096.47 7496.40 17685.89 13999.20 12796.21 4495.11 18398.95 102
CANet_DTU94.37 10993.65 11796.55 8796.46 19492.13 10996.21 23196.67 24294.38 5193.53 14797.03 13879.34 24999.71 4290.76 17198.45 11097.82 178
Vis-MVSNetpermissive95.23 8894.81 9096.51 9197.18 15291.58 12598.26 3398.12 6094.38 5194.90 11998.15 6682.28 20098.92 15891.45 16298.58 10599.01 95
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS_111021_HR96.68 5096.58 4696.99 7698.46 8092.31 10296.20 23298.90 294.30 5395.86 9697.74 9592.33 3999.38 11696.04 5199.42 4899.28 70
TSAR-MVS + GP.96.69 4896.49 5097.27 6398.31 9493.39 7096.79 17796.72 23494.17 5497.44 3497.66 10292.76 2799.33 11896.86 2097.76 12899.08 88
3Dnovator91.36 595.19 9194.44 10497.44 5596.56 18793.36 7398.65 1098.36 1794.12 5589.25 25398.06 7182.20 20299.77 3393.41 12299.32 5899.18 77
plane_prior89.99 17797.24 13294.06 5692.16 223
casdiffmvs95.64 7795.49 7396.08 11796.76 17990.45 16597.29 12997.44 17094.00 5795.46 11397.98 7887.52 11798.73 17495.64 6697.33 14099.08 88
MVS_111021_LR96.24 6496.19 6296.39 10198.23 10391.35 13396.24 23098.79 493.99 5895.80 9897.65 10389.92 8999.24 12595.87 5499.20 7598.58 130
DeepC-MVS93.07 396.06 6795.66 7097.29 6197.96 11793.17 7897.30 12898.06 7793.92 5993.38 15198.66 1486.83 12699.73 3695.60 7199.22 7398.96 100
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VNet95.89 7395.45 7597.21 6898.07 11592.94 8497.50 10698.15 5593.87 6097.52 3097.61 10985.29 14699.53 9395.81 5995.27 17999.16 78
Effi-MVS+-dtu93.08 15493.21 13492.68 27796.02 21683.25 31997.14 14696.72 23493.85 6191.20 20293.44 30983.08 17998.30 21291.69 15695.73 17296.50 216
mvs-test193.63 13593.69 11593.46 24996.02 21684.61 30397.24 13296.72 23493.85 6192.30 17495.76 20983.08 17998.89 16291.69 15696.54 15896.87 207
PS-MVSNAJ95.37 8395.33 8095.49 15497.35 14790.66 16095.31 27197.48 15593.85 6196.51 7195.70 21488.65 10099.65 5794.80 9398.27 11396.17 223
test117296.93 3496.86 2597.15 7099.10 3692.34 9997.96 6198.04 8593.79 6497.35 3898.53 2491.40 6299.56 8596.30 3699.30 6199.55 31
SR-MVS97.01 2996.86 2597.47 5499.09 3893.27 7697.98 5698.07 7493.75 6597.45 3398.48 2891.43 6199.59 7296.22 4099.27 6699.54 34
TSAR-MVS + MP.97.42 997.33 1197.69 4599.25 2994.24 4398.07 5197.85 11893.72 6698.57 1398.35 4193.69 1899.40 11397.06 1399.46 4399.44 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPM-MVS93.28 14692.76 14494.82 18194.63 28690.77 15796.65 19197.18 19293.72 6691.68 18697.26 12679.33 25098.63 18592.13 14492.28 21895.07 280
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
xiu_mvs_v2_base95.32 8595.29 8195.40 15997.22 14990.50 16395.44 26597.44 17093.70 6896.46 7596.18 18488.59 10399.53 9394.79 9597.81 12596.17 223
baseline95.58 7995.42 7796.08 11796.78 17690.41 16797.16 14397.45 16693.69 6995.65 10797.85 8687.29 12198.68 18195.66 6297.25 14399.13 82
EIA-MVS95.53 8195.47 7495.71 14097.06 16189.63 18697.82 7297.87 11493.57 7093.92 13995.04 23990.61 7998.95 15694.62 9798.68 10198.54 132
HQP-NCC95.86 21996.65 19193.55 7190.14 216
ACMP_Plane95.86 21996.65 19193.55 7190.14 216
HQP-MVS93.19 15092.74 14794.54 19895.86 21989.33 20396.65 19197.39 17693.55 7190.14 21695.87 19980.95 21998.50 19692.13 14492.10 22495.78 241
MCST-MVS97.18 1796.84 2898.20 1399.30 2695.35 1597.12 14798.07 7493.54 7496.08 8797.69 9893.86 1699.71 4296.50 3199.39 5299.55 31
test111193.19 15092.82 14294.30 20897.58 14484.56 30498.21 4189.02 36493.53 7594.58 12598.21 6172.69 30999.05 14993.06 12998.48 10899.28 70
SR-MVS-dyc-post96.88 3796.80 3297.11 7399.02 4692.34 9997.98 5698.03 8893.52 7697.43 3698.51 2591.40 6299.56 8596.05 4999.26 6899.43 54
RE-MVS-def96.72 3899.02 4692.34 9997.98 5698.03 8893.52 7697.43 3698.51 2590.71 7896.05 4999.26 6899.43 54
MG-MVS95.61 7895.38 7896.31 10698.42 8390.53 16296.04 23897.48 15593.47 7895.67 10698.10 6789.17 9399.25 12491.27 16598.77 9899.13 82
test250691.60 20790.78 21594.04 21797.66 13683.81 31198.27 3175.53 37693.43 7995.23 11598.21 6167.21 34099.07 14693.01 13398.49 10699.25 73
ECVR-MVScopyleft93.19 15092.73 14894.57 19797.66 13685.41 28998.21 4188.23 36593.43 7994.70 12398.21 6172.57 31099.07 14693.05 13098.49 10699.25 73
FC-MVSNet-test93.94 12593.57 11895.04 16995.48 23591.45 13198.12 4798.71 693.37 8190.23 21496.70 15387.66 11297.85 26991.49 16090.39 25195.83 238
MP-MVScopyleft96.77 4596.45 5497.72 4299.39 1493.80 5898.41 2298.06 7793.37 8195.54 11198.34 4490.59 8099.88 594.83 9099.54 2799.49 44
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
FIs94.09 11993.70 11495.27 16195.70 22792.03 11298.10 4898.68 893.36 8390.39 21196.70 15387.63 11497.94 26092.25 14090.50 25095.84 237
abl_696.40 5996.21 6096.98 7798.89 5792.20 10797.89 6598.03 8893.34 8497.22 4298.42 3487.93 10999.72 3995.10 8199.07 8899.02 91
mPP-MVS96.86 3896.60 4497.64 4999.40 1293.44 6998.50 1798.09 6793.27 8595.95 9498.33 4791.04 7199.88 595.20 7799.57 2499.60 19
HFP-MVS97.14 2096.92 2397.83 2999.42 794.12 4998.52 1498.32 2293.21 8697.18 4398.29 5392.08 4399.83 2695.63 6799.59 1799.54 34
ACMMPR97.07 2396.84 2897.79 3599.44 693.88 5698.52 1498.31 2493.21 8697.15 4598.33 4791.35 6499.86 995.63 6799.59 1799.62 16
IS-MVSNet94.90 9994.52 10096.05 12097.67 13490.56 16198.44 2096.22 26393.21 8693.99 13697.74 9585.55 14498.45 20189.98 18097.86 12399.14 81
region2R97.07 2396.84 2897.77 3899.46 293.79 5998.52 1498.24 3893.19 8997.14 4698.34 4491.59 5999.87 895.46 7499.59 1799.64 13
EPNet_dtu91.71 20391.28 19792.99 26693.76 31283.71 31496.69 18795.28 29893.15 9087.02 30195.95 19683.37 17497.38 31279.46 32496.84 14997.88 173
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UniMVSNet (Re)93.31 14592.55 15595.61 14595.39 23893.34 7497.39 11898.71 693.14 9190.10 22494.83 24887.71 11198.03 24691.67 15883.99 32095.46 256
APD-MVS_3200maxsize96.81 4296.71 3997.12 7299.01 4992.31 10297.98 5698.06 7793.11 9297.44 3498.55 2290.93 7399.55 8896.06 4899.25 7099.51 39
testdata195.26 27693.10 93
DU-MVS92.90 16492.04 16995.49 15494.95 26892.83 8597.16 14398.24 3893.02 9490.13 22095.71 21283.47 17197.85 26991.71 15483.93 32195.78 241
xiu_mvs_v1_base_debu95.01 9394.76 9195.75 13596.58 18491.71 11896.25 22797.35 18292.99 9596.70 5996.63 16282.67 19099.44 10896.22 4097.46 13296.11 228
xiu_mvs_v1_base95.01 9394.76 9195.75 13596.58 18491.71 11896.25 22797.35 18292.99 9596.70 5996.63 16282.67 19099.44 10896.22 4097.46 13296.11 228
xiu_mvs_v1_base_debi95.01 9394.76 9195.75 13596.58 18491.71 11896.25 22797.35 18292.99 9596.70 5996.63 16282.67 19099.44 10896.22 4097.46 13296.11 228
CP-MVS97.02 2796.81 3197.64 4999.33 2393.54 6698.80 798.28 2892.99 9596.45 7698.30 5291.90 4999.85 1895.61 6999.68 499.54 34
ACMMPcopyleft96.27 6395.93 6597.28 6299.24 3092.62 9298.25 3498.81 392.99 9594.56 12698.39 3888.96 9599.85 1894.57 9997.63 12999.36 63
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
UniMVSNet_NR-MVSNet93.37 14392.67 15095.47 15795.34 24492.83 8597.17 14298.58 1192.98 10090.13 22095.80 20488.37 10597.85 26991.71 15483.93 32195.73 247
VPNet92.23 18991.31 19594.99 17295.56 23190.96 14997.22 13897.86 11792.96 10190.96 20396.62 16575.06 29698.20 21991.90 14883.65 32695.80 240
nrg03094.05 12193.31 13196.27 11095.22 25594.59 3298.34 2597.46 16092.93 10291.21 20196.64 15887.23 12398.22 21694.99 8685.80 29295.98 232
TranMVSNet+NR-MVSNet92.50 17491.63 18395.14 16694.76 27992.07 11097.53 10498.11 6392.90 10389.56 24196.12 18883.16 17697.60 29389.30 19883.20 33095.75 245
diffmvs95.25 8795.13 8595.63 14396.43 19689.34 20295.99 24397.35 18292.83 10496.31 7997.37 12286.44 13198.67 18296.26 3797.19 14598.87 113
ACMMP_NAP97.20 1696.86 2598.23 1199.09 3895.16 2497.60 9998.19 4892.82 10597.93 2598.74 1391.60 5899.86 996.26 3799.52 2999.67 11
test_prior396.46 5796.20 6197.23 6598.67 6592.99 8196.35 21798.00 9792.80 10696.03 8897.59 11092.01 4599.41 11195.01 8399.38 5399.29 67
test_prior296.35 21792.80 10696.03 8897.59 11092.01 4595.01 8399.38 53
testtj96.93 3496.56 4798.05 2099.10 3694.66 3197.78 7698.22 4392.74 10897.59 2998.20 6491.96 4899.86 994.21 10299.25 7099.63 14
GST-MVS96.85 3996.52 4997.82 3299.36 2094.14 4898.29 2998.13 5892.72 10996.70 5998.06 7191.35 6499.86 994.83 9099.28 6499.47 49
CLD-MVS92.98 15992.53 15794.32 20796.12 21389.20 20995.28 27297.47 15892.66 11089.90 22995.62 21780.58 22698.40 20392.73 13592.40 21795.38 264
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
NR-MVSNet92.34 18191.27 19895.53 15094.95 26893.05 8097.39 11898.07 7492.65 11184.46 32395.71 21285.00 15097.77 27989.71 18783.52 32795.78 241
ZNCC-MVS96.96 3196.67 4197.85 2899.37 1794.12 4998.49 1898.18 5092.64 11296.39 7898.18 6591.61 5799.88 595.59 7299.55 2599.57 24
#test#97.02 2796.75 3697.83 2999.42 794.12 4998.15 4698.32 2292.57 11397.18 4398.29 5392.08 4399.83 2695.12 8099.59 1799.54 34
PS-MVSNAJss93.74 13293.51 12394.44 20093.91 30789.28 20797.75 7897.56 15092.50 11489.94 22896.54 16888.65 10098.18 22293.83 11490.90 24495.86 234
VDD-MVS93.82 12993.08 13596.02 12297.88 12489.96 18197.72 8495.85 27592.43 11595.86 9698.44 3168.42 33499.39 11496.31 3594.85 18598.71 125
LCM-MVSNet-Re92.50 17492.52 15892.44 28096.82 17581.89 32996.92 16593.71 33992.41 11684.30 32594.60 26085.08 14997.03 32191.51 15997.36 13898.40 150
SF-MVS97.39 1197.13 1398.17 1499.02 4695.28 2098.23 3898.27 3192.37 11798.27 1898.65 1693.33 2199.72 3996.49 3299.52 2999.51 39
VPA-MVSNet93.24 14792.48 16095.51 15195.70 22792.39 9897.86 6798.66 1092.30 11892.09 18195.37 22880.49 22898.40 20393.95 10885.86 29195.75 245
bset_n11_16_dypcd91.55 21290.59 22494.44 20091.51 34690.25 17192.70 33493.42 34292.27 11990.22 21594.74 25378.42 26697.80 27494.19 10387.86 27395.29 275
PGM-MVS96.81 4296.53 4897.65 4799.35 2293.53 6797.65 9298.98 192.22 12097.14 4698.44 3191.17 6999.85 1894.35 10099.46 4399.57 24
Vis-MVSNet (Re-imp)94.15 11493.88 11094.95 17797.61 14087.92 24298.10 4895.80 27792.22 12093.02 15897.45 11884.53 15697.91 26688.24 21797.97 12199.02 91
thres100view90092.43 17791.58 18594.98 17497.92 12189.37 20197.71 8694.66 32292.20 12293.31 15394.90 24478.06 27499.08 14381.40 30994.08 19696.48 217
baseline192.82 16991.90 17595.55 14997.20 15190.77 15797.19 14094.58 32592.20 12292.36 17196.34 17984.16 16298.21 21789.20 20483.90 32497.68 183
tfpn200view992.38 18091.52 18894.95 17797.85 12589.29 20597.41 11494.88 31792.19 12493.27 15594.46 26778.17 27099.08 14381.40 30994.08 19696.48 217
thres40092.42 17891.52 18895.12 16897.85 12589.29 20597.41 11494.88 31792.19 12493.27 15594.46 26778.17 27099.08 14381.40 30994.08 19696.98 201
thres600view792.49 17691.60 18495.18 16497.91 12289.47 19597.65 9294.66 32292.18 12693.33 15294.91 24378.06 27499.10 13881.61 30694.06 19996.98 201
Fast-Effi-MVS+-dtu92.29 18591.99 17293.21 26095.27 25185.52 28797.03 14996.63 24692.09 12789.11 25595.14 23680.33 23298.08 23687.54 23894.74 19096.03 231
thres20092.23 18991.39 19194.75 19097.61 14089.03 21496.60 19995.09 30892.08 12893.28 15494.00 29078.39 26899.04 15281.26 31394.18 19596.19 222
mvs_tets92.31 18391.76 17893.94 22693.41 32288.29 23097.63 9797.53 15192.04 12988.76 26496.45 17274.62 29898.09 23593.91 11091.48 23395.45 258
OMC-MVS95.09 9294.70 9496.25 11398.46 8091.28 13496.43 20797.57 14792.04 12994.77 12297.96 7987.01 12599.09 14191.31 16496.77 15198.36 154
jajsoiax92.42 17891.89 17694.03 21893.33 32588.50 22797.73 8197.53 15192.00 13188.85 26096.50 17075.62 29498.11 23093.88 11291.56 23295.48 253
XVG-OURS93.72 13393.35 13094.80 18697.07 15888.61 22294.79 28297.46 16091.97 13293.99 13697.86 8581.74 21198.88 16392.64 13692.67 21496.92 205
WR-MVS92.34 18191.53 18794.77 18895.13 26090.83 15496.40 21297.98 10291.88 13389.29 25095.54 22382.50 19597.80 27489.79 18685.27 30095.69 248
PAPM_NR95.01 9394.59 9696.26 11198.89 5790.68 15997.24 13297.73 12691.80 13492.93 16496.62 16589.13 9499.14 13589.21 20397.78 12698.97 99
testgi87.97 29487.21 29490.24 32592.86 33180.76 33596.67 19094.97 31391.74 13585.52 31495.83 20262.66 35694.47 35576.25 33988.36 26995.48 253
CP-MVSNet91.89 19991.24 19993.82 23195.05 26388.57 22497.82 7298.19 4891.70 13688.21 27795.76 20981.96 20697.52 30187.86 22384.65 30995.37 265
XVG-OURS-SEG-HR93.86 12893.55 11994.81 18397.06 16188.53 22695.28 27297.45 16691.68 13794.08 13597.68 9982.41 19898.90 16193.84 11392.47 21696.98 201
OurMVSNet-221017-090.51 25990.19 24491.44 30693.41 32281.25 33396.98 15996.28 25991.68 13786.55 30796.30 18074.20 30197.98 25088.96 20887.40 27995.09 279
ETH3D-3000-0.197.07 2396.71 3998.14 1698.90 5495.33 1797.68 8898.24 3891.57 13997.90 2698.37 3992.61 3399.66 5695.59 7299.51 3399.43 54
ACMP89.59 1092.62 17392.14 16794.05 21696.40 19788.20 23597.36 12197.25 19091.52 14088.30 27396.64 15878.46 26598.72 17791.86 15191.48 23395.23 276
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
APD-MVScopyleft96.95 3296.60 4498.01 2299.03 4594.93 2897.72 8498.10 6591.50 14198.01 2298.32 4992.33 3999.58 7594.85 8899.51 3399.53 38
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ITE_SJBPF92.43 28195.34 24485.37 29295.92 27191.47 14287.75 28796.39 17771.00 31997.96 25782.36 30389.86 25693.97 326
PS-CasMVS91.55 21290.84 21393.69 23894.96 26788.28 23197.84 7198.24 3891.46 14388.04 28195.80 20479.67 24497.48 30387.02 24884.54 31495.31 268
WR-MVS_H92.00 19691.35 19293.95 22495.09 26289.47 19598.04 5398.68 891.46 14388.34 27194.68 25685.86 14097.56 29585.77 26884.24 31794.82 297
RRT_MVS93.21 14892.32 16495.91 12894.92 27094.15 4796.92 16596.86 22891.42 14591.28 19896.43 17379.66 24598.10 23193.29 12490.06 25395.46 256
MVSFormer95.37 8395.16 8495.99 12696.34 20091.21 13898.22 3997.57 14791.42 14596.22 8297.32 12386.20 13697.92 26394.07 10599.05 8998.85 114
test_djsdf93.07 15592.76 14494.00 21993.49 32088.70 22198.22 3997.57 14791.42 14590.08 22695.55 22282.85 18797.92 26394.07 10591.58 23195.40 262
ACMM89.79 892.96 16092.50 15994.35 20596.30 20288.71 22097.58 10097.36 18191.40 14890.53 20796.65 15779.77 24298.75 17391.24 16691.64 22995.59 251
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
RRT_test8_iter0591.19 23590.78 21592.41 28295.76 22683.14 32097.32 12597.46 16091.37 14989.07 25695.57 21970.33 32398.21 21793.56 11686.62 28695.89 233
PEN-MVS91.20 23290.44 22993.48 24794.49 29087.91 24497.76 7798.18 5091.29 15087.78 28695.74 21180.35 23197.33 31485.46 27282.96 33195.19 278
LPG-MVS_test92.94 16292.56 15494.10 21396.16 20988.26 23297.65 9297.46 16091.29 15090.12 22297.16 13179.05 25398.73 17492.25 14091.89 22795.31 268
LGP-MVS_train94.10 21396.16 20988.26 23297.46 16091.29 15090.12 22297.16 13179.05 25398.73 17492.25 14091.89 22795.31 268
9.1496.75 3698.93 5097.73 8198.23 4291.28 15397.88 2798.44 3193.00 2599.65 5795.76 6099.47 41
MVSTER93.20 14992.81 14394.37 20496.56 18789.59 18997.06 14897.12 19891.24 15491.30 19595.96 19582.02 20598.05 24293.48 11990.55 24895.47 255
test_yl94.78 10494.23 10696.43 9797.74 13191.22 13696.85 17097.10 20091.23 15595.71 10196.93 14084.30 15999.31 12093.10 12795.12 18198.75 119
DCV-MVSNet94.78 10494.23 10696.43 9797.74 13191.22 13696.85 17097.10 20091.23 15595.71 10196.93 14084.30 15999.31 12093.10 12795.12 18198.75 119
MVS_Test94.89 10094.62 9595.68 14196.83 17489.55 19196.70 18597.17 19491.17 15795.60 10896.11 19187.87 11098.76 17293.01 13397.17 14698.72 123
HPM-MVScopyleft96.69 4896.45 5497.40 5699.36 2093.11 7998.87 598.06 7791.17 15796.40 7797.99 7790.99 7299.58 7595.61 6999.61 1699.49 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test-LLR91.42 21991.19 20292.12 28794.59 28780.66 33694.29 29992.98 34591.11 15990.76 20592.37 32379.02 25598.07 23988.81 21096.74 15297.63 184
test0.0.03 189.37 27988.70 27791.41 30792.47 33985.63 28595.22 27792.70 34891.11 15986.91 30493.65 30479.02 25593.19 36278.00 33189.18 26195.41 259
XVG-ACMP-BASELINE90.93 24590.21 24393.09 26394.31 29885.89 28295.33 26997.26 18891.06 16189.38 24695.44 22768.61 33298.60 18889.46 19491.05 24094.79 302
Effi-MVS+94.93 9894.45 10396.36 10496.61 18191.47 12996.41 20997.41 17591.02 16294.50 12795.92 19787.53 11698.78 16993.89 11196.81 15098.84 116
SCA91.84 20091.18 20393.83 23095.59 22984.95 29994.72 28395.58 28790.82 16392.25 17593.69 30075.80 29198.10 23186.20 25895.98 16598.45 144
SixPastTwentyTwo89.15 28088.54 28090.98 31393.49 32080.28 34396.70 18594.70 32190.78 16484.15 32895.57 21971.78 31497.71 28384.63 28285.07 30494.94 286
PC_three_145290.77 16598.89 898.28 5696.24 198.35 20895.76 6099.58 2299.59 20
DTE-MVSNet90.56 25789.75 26193.01 26593.95 30587.25 25497.64 9697.65 13890.74 16687.12 29795.68 21579.97 23997.00 32583.33 29381.66 33694.78 304
GA-MVS91.38 22190.31 23494.59 19294.65 28487.62 24994.34 29696.19 26590.73 16790.35 21293.83 29471.84 31397.96 25787.22 24493.61 20598.21 159
EPP-MVSNet95.22 8995.04 8795.76 13397.49 14689.56 19098.67 997.00 21390.69 16894.24 13297.62 10889.79 9098.81 16793.39 12396.49 16098.92 105
MP-MVS-pluss96.70 4796.27 5897.98 2499.23 3294.71 3096.96 16198.06 7790.67 16995.55 10998.78 1291.07 7099.86 996.58 2999.55 2599.38 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
IterMVS-LS92.29 18591.94 17493.34 25496.25 20386.97 26396.57 20397.05 20790.67 16989.50 24494.80 25086.59 12797.64 28889.91 18286.11 29095.40 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet93.03 15792.88 14193.48 24795.77 22486.98 26296.44 20597.12 19890.66 17191.30 19597.64 10686.56 12898.05 24289.91 18290.55 24895.41 259
K. test v387.64 29886.75 29990.32 32493.02 33079.48 35096.61 19792.08 35390.66 17180.25 34994.09 28767.21 34096.65 33285.96 26680.83 33994.83 295
tttt051792.96 16092.33 16394.87 18097.11 15687.16 25997.97 6092.09 35290.63 17393.88 14097.01 13976.50 28599.06 14890.29 17995.45 17698.38 152
BH-RMVSNet92.72 17291.97 17394.97 17597.16 15387.99 24196.15 23495.60 28590.62 17491.87 18497.15 13378.41 26798.57 19283.16 29497.60 13098.36 154
IterMVS-SCA-FT90.31 26289.81 25791.82 29595.52 23384.20 30894.30 29896.15 26690.61 17587.39 29394.27 27875.80 29196.44 33387.34 24186.88 28594.82 297
WTY-MVS94.71 10694.02 10896.79 7997.71 13392.05 11196.59 20097.35 18290.61 17594.64 12496.93 14086.41 13299.39 11491.20 16794.71 19198.94 103
ET-MVSNet_ETH3D91.49 21690.11 24595.63 14396.40 19791.57 12695.34 26893.48 34190.60 17775.58 35795.49 22580.08 23696.79 33094.25 10189.76 25798.52 134
SMA-MVScopyleft97.35 1397.03 1798.30 899.06 4295.42 1097.94 6298.18 5090.57 17898.85 998.94 193.33 2199.83 2696.72 2599.68 499.63 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
LFMVS93.60 13692.63 15196.52 8898.13 11291.27 13597.94 6293.39 34390.57 17896.29 8098.31 5069.00 33099.16 13294.18 10495.87 16899.12 85
HPM-MVS_fast96.51 5496.27 5897.22 6799.32 2492.74 8798.74 898.06 7790.57 17896.77 5698.35 4190.21 8499.53 9394.80 9399.63 1499.38 61
DPM-MVS95.69 7594.92 8898.01 2298.08 11495.71 995.27 27497.62 14290.43 18195.55 10997.07 13691.72 5399.50 10189.62 19198.94 9498.82 117
IU-MVS99.42 795.39 1197.94 10690.40 18298.94 597.41 1299.66 1099.74 7
PVSNet_Blended_VisFu95.27 8694.91 8996.38 10298.20 10490.86 15397.27 13098.25 3690.21 18394.18 13397.27 12587.48 11899.73 3693.53 11797.77 12798.55 131
PVSNet_BlendedMVS94.06 12093.92 10994.47 19998.27 9589.46 19796.73 18198.36 1790.17 18494.36 12995.24 23388.02 10699.58 7593.44 12090.72 24694.36 316
thisisatest053093.03 15792.21 16695.49 15497.07 15889.11 21397.49 11092.19 35190.16 18594.09 13496.41 17576.43 28899.05 14990.38 17695.68 17498.31 156
CNLPA94.28 11193.53 12196.52 8898.38 8792.55 9496.59 20096.88 22590.13 18691.91 18397.24 12785.21 14799.09 14187.64 23597.83 12497.92 170
BH-untuned92.94 16292.62 15293.92 22897.22 14986.16 28096.40 21296.25 26290.06 18789.79 23396.17 18683.19 17598.35 20887.19 24597.27 14297.24 198
IterMVS90.15 26889.67 26391.61 30295.48 23583.72 31394.33 29796.12 26789.99 18887.31 29694.15 28675.78 29396.27 33686.97 24986.89 28494.83 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AdaColmapbinary94.34 11093.68 11696.31 10698.59 7591.68 12196.59 20097.81 12089.87 18992.15 17797.06 13783.62 17099.54 9089.34 19798.07 11997.70 182
UnsupCasMVSNet_eth85.99 31184.45 31590.62 32089.97 35582.40 32693.62 31997.37 17989.86 19078.59 35492.37 32365.25 35195.35 35082.27 30470.75 35994.10 323
PHI-MVS96.77 4596.46 5397.71 4498.40 8494.07 5298.21 4198.45 1689.86 19097.11 4998.01 7692.52 3699.69 4896.03 5299.53 2899.36 63
ETH3D cwj APD-0.1696.56 5396.06 6398.05 2098.26 9895.19 2296.99 15798.05 8489.85 19297.26 4098.22 6091.80 5199.69 4894.84 8999.28 6499.27 72
mvs_anonymous93.82 12993.74 11394.06 21596.44 19585.41 28995.81 25197.05 20789.85 19290.09 22596.36 17887.44 11997.75 28093.97 10796.69 15599.02 91
ab-mvs93.57 13892.55 15596.64 8197.28 14891.96 11695.40 26697.45 16689.81 19493.22 15796.28 18179.62 24699.46 10590.74 17293.11 20898.50 137
test_part192.21 19191.10 20595.51 15197.80 12892.66 9098.02 5497.68 13489.79 19588.80 26396.02 19376.85 28398.18 22290.86 16984.11 31995.69 248
FMVSNet391.78 20190.69 22195.03 17096.53 18992.27 10497.02 15296.93 21789.79 19589.35 24794.65 25877.01 28297.47 30486.12 26188.82 26395.35 266
AUN-MVS91.76 20290.75 21894.81 18397.00 16788.57 22496.65 19196.49 25189.63 19792.15 17796.12 18878.66 26298.50 19690.83 17079.18 34497.36 195
v2v48291.59 20890.85 21293.80 23293.87 30988.17 23796.94 16496.88 22589.54 19889.53 24294.90 24481.70 21298.02 24789.25 20185.04 30695.20 277
PatchmatchNetpermissive91.91 19891.35 19293.59 24295.38 23984.11 30993.15 32795.39 29189.54 19892.10 18093.68 30282.82 18898.13 22684.81 27995.32 17898.52 134
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS90.70 25489.81 25793.37 25394.73 28184.21 30793.67 31788.02 36689.50 20092.38 17093.49 30777.82 27897.78 27786.03 26492.68 21398.11 165
GeoE93.89 12693.28 13295.72 13996.96 16989.75 18598.24 3796.92 22189.47 20192.12 17997.21 12984.42 15798.39 20687.71 22896.50 15999.01 95
v14890.99 24190.38 23192.81 27393.83 31085.80 28396.78 17996.68 24089.45 20288.75 26593.93 29382.96 18597.82 27387.83 22483.25 32894.80 300
anonymousdsp92.16 19291.55 18693.97 22292.58 33789.55 19197.51 10597.42 17489.42 20388.40 27094.84 24780.66 22597.88 26891.87 15091.28 23794.48 312
baseline291.63 20690.86 21093.94 22694.33 29686.32 27495.92 24691.64 35689.37 20486.94 30294.69 25581.62 21398.69 18088.64 21494.57 19296.81 209
IB-MVS87.33 1789.91 27188.28 28394.79 18795.26 25487.70 24895.12 28093.95 33889.35 20587.03 30092.49 32170.74 32199.19 12889.18 20581.37 33797.49 193
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
jason94.84 10294.39 10596.18 11595.52 23390.93 15196.09 23696.52 25089.28 20696.01 9297.32 12384.70 15398.77 17195.15 7998.91 9698.85 114
jason: jason.
TAMVS94.01 12393.46 12595.64 14296.16 20990.45 16596.71 18496.89 22489.27 20793.46 14996.92 14387.29 12197.94 26088.70 21395.74 17198.53 133
ZD-MVS99.05 4394.59 3298.08 6889.22 20897.03 5298.10 6792.52 3699.65 5794.58 9899.31 60
API-MVS94.84 10294.49 10195.90 12997.90 12392.00 11497.80 7497.48 15589.19 20994.81 12196.71 15188.84 9799.17 13188.91 20998.76 9996.53 214
XXY-MVS92.16 19291.23 20094.95 17794.75 28090.94 15097.47 11197.43 17389.14 21088.90 25796.43 17379.71 24398.24 21489.56 19287.68 27495.67 250
pm-mvs190.72 25389.65 26593.96 22394.29 29989.63 18697.79 7596.82 23189.07 21186.12 31195.48 22678.61 26397.78 27786.97 24981.67 33594.46 313
HY-MVS89.66 993.87 12792.95 13996.63 8397.10 15792.49 9695.64 25896.64 24389.05 21293.00 15995.79 20785.77 14299.45 10789.16 20694.35 19397.96 167
CSCG96.05 6895.91 6696.46 9699.24 3090.47 16498.30 2898.57 1289.01 21393.97 13897.57 11292.62 3299.76 3494.66 9699.27 6699.15 80
v891.29 22990.53 22893.57 24494.15 30088.12 23997.34 12297.06 20688.99 21488.32 27294.26 28083.08 17998.01 24887.62 23683.92 32394.57 311
PAPR94.18 11393.42 12996.48 9397.64 13891.42 13295.55 26097.71 13388.99 21492.34 17395.82 20389.19 9299.11 13786.14 26097.38 13798.90 108
CDS-MVSNet94.14 11793.54 12095.93 12796.18 20791.46 13096.33 22097.04 20988.97 21693.56 14496.51 16987.55 11597.89 26789.80 18595.95 16698.44 147
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
sss94.51 10893.80 11296.64 8197.07 15891.97 11596.32 22198.06 7788.94 21794.50 12796.78 14884.60 15499.27 12391.90 14896.02 16498.68 127
lupinMVS94.99 9794.56 9796.29 10996.34 20091.21 13895.83 25096.27 26088.93 21896.22 8296.88 14586.20 13698.85 16495.27 7699.05 8998.82 117
D2MVS91.30 22890.95 20792.35 28394.71 28285.52 28796.18 23398.21 4488.89 21986.60 30693.82 29679.92 24097.95 25989.29 19990.95 24393.56 330
v7n90.76 24989.86 25493.45 25093.54 31787.60 25097.70 8797.37 17988.85 22087.65 28894.08 28881.08 21898.10 23184.68 28183.79 32594.66 309
PVSNet_Blended94.87 10194.56 9795.81 13298.27 9589.46 19795.47 26498.36 1788.84 22194.36 12996.09 19288.02 10699.58 7593.44 12098.18 11698.40 150
ACMH+87.92 1490.20 26689.18 27293.25 25796.48 19386.45 27396.99 15796.68 24088.83 22284.79 32296.22 18370.16 32698.53 19484.42 28688.04 27094.77 305
GBi-Net91.35 22490.27 23794.59 19296.51 19091.18 14297.50 10696.93 21788.82 22389.35 24794.51 26273.87 30297.29 31686.12 26188.82 26395.31 268
test191.35 22490.27 23794.59 19296.51 19091.18 14297.50 10696.93 21788.82 22389.35 24794.51 26273.87 30297.29 31686.12 26188.82 26395.31 268
FMVSNet291.31 22790.08 24694.99 17296.51 19092.21 10597.41 11496.95 21588.82 22388.62 26694.75 25273.87 30297.42 30985.20 27688.55 26895.35 266
V4291.58 21090.87 20993.73 23494.05 30488.50 22797.32 12596.97 21488.80 22689.71 23494.33 27382.54 19498.05 24289.01 20785.07 30494.64 310
agg_prior196.22 6595.77 6997.56 5198.67 6593.79 5996.28 22598.00 9788.76 22795.68 10397.55 11692.70 3199.57 8395.01 8399.32 5899.32 65
BH-w/o92.14 19491.75 17993.31 25596.99 16885.73 28495.67 25595.69 28188.73 22889.26 25294.82 24982.97 18498.07 23985.26 27596.32 16396.13 227
test20.0386.14 31085.40 30888.35 33390.12 35380.06 34595.90 24795.20 30388.59 22981.29 34293.62 30571.43 31692.65 36371.26 35781.17 33892.34 346
train_agg96.30 6295.83 6897.72 4298.70 6394.19 4496.41 20998.02 9288.58 23096.03 8897.56 11492.73 2999.59 7295.04 8299.37 5799.39 59
test_898.67 6594.06 5396.37 21698.01 9588.58 23095.98 9397.55 11692.73 2999.58 75
eth_miper_zixun_eth91.02 24090.59 22492.34 28495.33 24784.35 30594.10 30496.90 22288.56 23288.84 26194.33 27384.08 16397.60 29388.77 21284.37 31695.06 281
tpmrst91.44 21891.32 19491.79 29795.15 25879.20 35293.42 32295.37 29388.55 23393.49 14893.67 30382.49 19698.27 21390.41 17589.34 26097.90 171
ACMH87.59 1690.53 25889.42 26793.87 22996.21 20487.92 24297.24 13296.94 21688.45 23483.91 33296.27 18271.92 31298.62 18784.43 28589.43 25995.05 282
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Baseline_NR-MVSNet91.20 23290.62 22292.95 26893.83 31088.03 24097.01 15695.12 30788.42 23589.70 23595.13 23783.47 17197.44 30789.66 19083.24 32993.37 334
v114491.37 22390.60 22393.68 23993.89 30888.23 23496.84 17297.03 21188.37 23689.69 23694.39 26982.04 20497.98 25087.80 22585.37 29794.84 294
DP-MVS Recon95.68 7695.12 8697.37 5799.19 3394.19 4497.03 14998.08 6888.35 23795.09 11897.65 10389.97 8899.48 10392.08 14798.59 10498.44 147
tpm90.25 26489.74 26291.76 30093.92 30679.73 34893.98 30693.54 34088.28 23891.99 18293.25 31277.51 28097.44 30787.30 24387.94 27198.12 162
v1091.04 23990.23 24093.49 24694.12 30188.16 23897.32 12597.08 20388.26 23988.29 27494.22 28382.17 20397.97 25386.45 25584.12 31894.33 317
Fast-Effi-MVS+93.46 14092.75 14695.59 14696.77 17790.03 17496.81 17697.13 19788.19 24091.30 19594.27 27886.21 13598.63 18587.66 23496.46 16298.12 162
DWT-MVSNet_test90.76 24989.89 25393.38 25295.04 26483.70 31595.85 24994.30 33388.19 24090.46 20992.80 31673.61 30698.50 19688.16 21890.58 24797.95 169
c3_l91.38 22190.89 20892.88 27095.58 23086.30 27594.68 28496.84 23088.17 24288.83 26294.23 28185.65 14397.47 30489.36 19684.63 31094.89 292
TEST998.70 6394.19 4496.41 20998.02 9288.17 24296.03 8897.56 11492.74 2899.59 72
ETH3 D test640096.16 6695.52 7298.07 1998.90 5495.06 2697.03 14998.21 4488.16 24496.64 6497.70 9791.18 6899.67 5392.44 13799.47 4199.48 46
MDTV_nov1_ep1390.76 21795.22 25580.33 34193.03 33095.28 29888.14 24592.84 16593.83 29481.34 21598.08 23682.86 29794.34 194
MAR-MVS94.22 11293.46 12596.51 9198.00 11692.19 10897.67 8997.47 15888.13 24693.00 15995.84 20184.86 15299.51 9887.99 22198.17 11797.83 177
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
UniMVSNet_ETH3D91.34 22690.22 24294.68 19194.86 27587.86 24597.23 13797.46 16087.99 24789.90 22996.92 14366.35 34598.23 21590.30 17890.99 24297.96 167
PatchMatch-RL92.90 16492.02 17195.56 14798.19 10690.80 15595.27 27497.18 19287.96 24891.86 18595.68 21580.44 22998.99 15484.01 28897.54 13196.89 206
thisisatest051592.29 18591.30 19695.25 16296.60 18288.90 21794.36 29592.32 35087.92 24993.43 15094.57 26177.28 28199.00 15389.42 19595.86 16997.86 174
PVSNet86.66 1892.24 18891.74 18193.73 23497.77 13083.69 31692.88 33196.72 23487.91 25093.00 15994.86 24678.51 26499.05 14986.53 25297.45 13698.47 142
LTVRE_ROB88.41 1390.99 24189.92 25294.19 21096.18 20789.55 19196.31 22297.09 20287.88 25185.67 31395.91 19878.79 26198.57 19281.50 30789.98 25494.44 314
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
cl____90.96 24490.32 23392.89 26995.37 24186.21 27894.46 29196.64 24387.82 25288.15 27994.18 28482.98 18397.54 29787.70 22985.59 29394.92 290
DIV-MVS_self_test90.97 24390.33 23292.88 27095.36 24286.19 27994.46 29196.63 24687.82 25288.18 27894.23 28182.99 18297.53 29987.72 22685.57 29494.93 288
cl2291.21 23190.56 22793.14 26296.09 21586.80 26594.41 29396.58 24987.80 25488.58 26893.99 29180.85 22497.62 29189.87 18486.93 28194.99 283
CPTT-MVS95.57 8095.19 8396.70 8099.27 2891.48 12898.33 2698.11 6387.79 25595.17 11798.03 7387.09 12499.61 6693.51 11899.42 4899.02 91
miper_ehance_all_eth91.59 20891.13 20492.97 26795.55 23286.57 27294.47 28996.88 22587.77 25688.88 25994.01 28986.22 13497.54 29789.49 19386.93 28194.79 302
v119291.07 23790.23 24093.58 24393.70 31387.82 24696.73 18197.07 20487.77 25689.58 23994.32 27580.90 22397.97 25386.52 25385.48 29594.95 284
F-COLMAP93.58 13792.98 13895.37 16098.40 8488.98 21597.18 14197.29 18787.75 25890.49 20897.10 13585.21 14799.50 10186.70 25196.72 15497.63 184
131492.81 17092.03 17095.14 16695.33 24789.52 19496.04 23897.44 17087.72 25986.25 30995.33 22983.84 16598.79 16889.26 20097.05 14897.11 199
test-mter90.19 26789.54 26692.12 28794.59 28780.66 33694.29 29992.98 34587.68 26090.76 20592.37 32367.67 33698.07 23988.81 21096.74 15297.63 184
TR-MVS91.48 21790.59 22494.16 21296.40 19787.33 25195.67 25595.34 29787.68 26091.46 18995.52 22476.77 28498.35 20882.85 29893.61 20596.79 210
LF4IMVS87.94 29587.25 29289.98 32792.38 34280.05 34694.38 29495.25 30187.59 26284.34 32494.74 25364.31 35297.66 28784.83 27887.45 27692.23 347
miper_lstm_enhance90.50 26090.06 24991.83 29495.33 24783.74 31293.86 31196.70 23987.56 26387.79 28593.81 29783.45 17396.92 32787.39 24084.62 31194.82 297
TransMVSNet (Re)88.94 28287.56 28993.08 26494.35 29588.45 22997.73 8195.23 30287.47 26484.26 32695.29 23079.86 24197.33 31479.44 32574.44 35493.45 333
v14419291.06 23890.28 23693.39 25193.66 31587.23 25696.83 17397.07 20487.43 26589.69 23694.28 27781.48 21498.00 24987.18 24684.92 30894.93 288
原ACMM196.38 10298.59 7591.09 14697.89 10987.41 26695.22 11697.68 9990.25 8299.54 9087.95 22299.12 8598.49 139
v192192090.85 24790.03 25093.29 25693.55 31686.96 26496.74 18097.04 20987.36 26789.52 24394.34 27280.23 23497.97 25386.27 25685.21 30194.94 286
USDC88.94 28287.83 28792.27 28594.66 28384.96 29893.86 31195.90 27387.34 26883.40 33495.56 22167.43 33898.19 22182.64 30289.67 25893.66 329
PLCcopyleft91.00 694.11 11893.43 12796.13 11698.58 7791.15 14596.69 18797.39 17687.29 26991.37 19196.71 15188.39 10499.52 9787.33 24297.13 14797.73 180
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tfpnnormal89.70 27688.40 28193.60 24195.15 25890.10 17397.56 10298.16 5487.28 27086.16 31094.63 25977.57 27998.05 24274.48 34484.59 31292.65 342
TESTMET0.1,190.06 26989.42 26791.97 29094.41 29480.62 33894.29 29991.97 35487.28 27090.44 21092.47 32268.79 33197.67 28588.50 21696.60 15797.61 188
v124090.70 25489.85 25593.23 25893.51 31986.80 26596.61 19797.02 21287.16 27289.58 23994.31 27679.55 24797.98 25085.52 27185.44 29694.90 291
Patchmatch-RL test87.38 29986.24 30090.81 31688.74 36278.40 35688.12 35993.17 34487.11 27382.17 34089.29 34981.95 20795.60 34688.64 21477.02 34898.41 149
CDPH-MVS95.97 7195.38 7897.77 3898.93 5094.44 3596.35 21797.88 11286.98 27496.65 6397.89 8091.99 4799.47 10492.26 13899.46 4399.39 59
PM-MVS83.48 32281.86 32688.31 33487.83 36577.59 35793.43 32191.75 35586.91 27580.63 34589.91 34644.42 36895.84 34285.17 27776.73 35091.50 354
CR-MVSNet90.82 24889.77 25993.95 22494.45 29287.19 25790.23 35195.68 28386.89 27692.40 16892.36 32680.91 22197.05 32081.09 31493.95 20097.60 189
1112_ss93.37 14392.42 16196.21 11497.05 16390.99 14796.31 22296.72 23486.87 27789.83 23296.69 15586.51 13099.14 13588.12 21993.67 20298.50 137
miper_enhance_ethall91.54 21491.01 20693.15 26195.35 24387.07 26193.97 30796.90 22286.79 27889.17 25493.43 31186.55 12997.64 28889.97 18186.93 28194.74 306
CL-MVSNet_self_test86.31 30885.15 31089.80 32988.83 36181.74 33193.93 31096.22 26386.67 27985.03 31990.80 34078.09 27394.50 35374.92 34371.86 35893.15 335
FMVSNet189.88 27388.31 28294.59 19295.41 23791.18 14297.50 10696.93 21786.62 28087.41 29294.51 26265.94 34997.29 31683.04 29687.43 27795.31 268
CHOSEN 280x42093.12 15392.72 14994.34 20696.71 18087.27 25390.29 35097.72 12986.61 28191.34 19295.29 23084.29 16198.41 20293.25 12598.94 9497.35 196
MVS_030488.79 28687.57 28892.46 27994.65 28486.15 28196.40 21297.17 19486.44 28288.02 28291.71 33556.68 36297.03 32184.47 28492.58 21594.19 322
MIMVSNet88.50 29086.76 29893.72 23694.84 27687.77 24791.39 34194.05 33586.41 28387.99 28392.59 32063.27 35495.82 34377.44 33292.84 21197.57 191
tpmvs89.83 27589.15 27391.89 29294.92 27080.30 34293.11 32895.46 29086.28 28488.08 28092.65 31880.44 22998.52 19581.47 30889.92 25596.84 208
PAPM91.52 21590.30 23595.20 16395.30 25089.83 18393.38 32396.85 22986.26 28588.59 26795.80 20484.88 15198.15 22575.67 34295.93 16797.63 184
VDDNet93.05 15692.07 16896.02 12296.84 17290.39 16998.08 5095.85 27586.22 28695.79 9998.46 2967.59 33799.19 12894.92 8794.85 18598.47 142
MS-PatchMatch90.27 26389.77 25991.78 29894.33 29684.72 30295.55 26096.73 23386.17 28786.36 30895.28 23271.28 31797.80 27484.09 28798.14 11892.81 339
MVP-Stereo90.74 25290.08 24692.71 27593.19 32788.20 23595.86 24896.27 26086.07 28884.86 32194.76 25177.84 27797.75 28083.88 29198.01 12092.17 350
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Anonymous20240521192.07 19590.83 21495.76 13398.19 10688.75 21997.58 10095.00 31186.00 28993.64 14397.45 11866.24 34799.53 9390.68 17492.71 21299.01 95
KD-MVS_self_test85.95 31284.95 31188.96 33289.55 35979.11 35395.13 27996.42 25485.91 29084.07 33090.48 34170.03 32794.82 35280.04 31872.94 35792.94 337
CVMVSNet91.23 23091.75 17989.67 33095.77 22474.69 36196.44 20594.88 31785.81 29192.18 17697.64 10679.07 25295.58 34788.06 22095.86 16998.74 121
our_test_388.78 28787.98 28691.20 31192.45 34082.53 32393.61 32095.69 28185.77 29284.88 32093.71 29979.99 23896.78 33179.47 32386.24 28794.28 320
MSDG91.42 21990.24 23994.96 17697.15 15588.91 21693.69 31696.32 25885.72 29386.93 30396.47 17180.24 23398.98 15580.57 31595.05 18496.98 201
CHOSEN 1792x268894.15 11493.51 12396.06 11998.27 9589.38 20095.18 27898.48 1585.60 29493.76 14297.11 13483.15 17799.61 6691.33 16398.72 10099.19 76
KD-MVS_2432*160084.81 31982.64 32291.31 30891.07 34985.34 29391.22 34395.75 27885.56 29583.09 33690.21 34367.21 34095.89 33977.18 33662.48 36592.69 340
miper_refine_blended84.81 31982.64 32291.31 30891.07 34985.34 29391.22 34395.75 27885.56 29583.09 33690.21 34367.21 34095.89 33977.18 33662.48 36592.69 340
AllTest90.23 26588.98 27493.98 22097.94 11986.64 26896.51 20495.54 28885.38 29785.49 31596.77 14970.28 32499.15 13380.02 31992.87 20996.15 225
TestCases93.98 22097.94 11986.64 26895.54 28885.38 29785.49 31596.77 14970.28 32499.15 13380.02 31992.87 20996.15 225
Test_1112_low_res92.84 16891.84 17795.85 13197.04 16489.97 18095.53 26296.64 24385.38 29789.65 23895.18 23485.86 14099.10 13887.70 22993.58 20798.49 139
EU-MVSNet88.72 28888.90 27588.20 33593.15 32874.21 36296.63 19694.22 33485.18 30087.32 29595.97 19476.16 28994.98 35185.27 27486.17 28895.41 259
LS3D93.57 13892.61 15396.47 9497.59 14291.61 12297.67 8997.72 12985.17 30190.29 21398.34 4484.60 15499.73 3683.85 29298.27 11398.06 166
dp88.90 28488.26 28490.81 31694.58 28976.62 35892.85 33294.93 31585.12 30290.07 22793.07 31375.81 29098.12 22980.53 31687.42 27897.71 181
HyFIR lowres test93.66 13492.92 14095.87 13098.24 9989.88 18294.58 28698.49 1385.06 30393.78 14195.78 20882.86 18698.67 18291.77 15295.71 17399.07 90
new-patchmatchnet83.18 32381.87 32587.11 33986.88 36675.99 36093.70 31595.18 30485.02 30477.30 35588.40 35165.99 34893.88 35874.19 34870.18 36091.47 355
TDRefinement86.53 30484.76 31491.85 29382.23 36984.25 30696.38 21595.35 29484.97 30584.09 32994.94 24165.76 35098.34 21184.60 28374.52 35392.97 336
OpenMVScopyleft89.19 1292.86 16691.68 18296.40 9995.34 24492.73 8898.27 3198.12 6084.86 30685.78 31297.75 9478.89 26099.74 3587.50 23998.65 10296.73 211
gm-plane-assit93.22 32678.89 35584.82 30793.52 30698.64 18487.72 226
PMMVS92.86 16692.34 16294.42 20394.92 27086.73 26794.53 28896.38 25684.78 30894.27 13195.12 23883.13 17898.40 20391.47 16196.49 16098.12 162
pmmvs490.93 24589.85 25594.17 21193.34 32490.79 15694.60 28596.02 26984.62 30987.45 29095.15 23581.88 20997.45 30687.70 22987.87 27294.27 321
MDA-MVSNet-bldmvs85.00 31782.95 32191.17 31293.13 32983.33 31894.56 28795.00 31184.57 31065.13 36592.65 31870.45 32295.85 34173.57 34977.49 34794.33 317
QAPM93.45 14192.27 16596.98 7796.77 17792.62 9298.39 2498.12 6084.50 31188.27 27597.77 9382.39 19999.81 3085.40 27398.81 9798.51 136
ppachtmachnet_test88.35 29287.29 29191.53 30392.45 34083.57 31793.75 31495.97 27084.28 31285.32 31894.18 28479.00 25996.93 32675.71 34184.99 30794.10 323
pmmvs589.86 27488.87 27692.82 27292.86 33186.23 27796.26 22695.39 29184.24 31387.12 29794.51 26274.27 30097.36 31387.61 23787.57 27594.86 293
CostFormer91.18 23690.70 22092.62 27894.84 27681.76 33094.09 30594.43 32784.15 31492.72 16693.77 29879.43 24898.20 21990.70 17392.18 22297.90 171
FMVSNet587.29 30085.79 30491.78 29894.80 27887.28 25295.49 26395.28 29884.09 31583.85 33391.82 33262.95 35594.17 35678.48 32885.34 29993.91 327
MIMVSNet184.93 31883.05 32090.56 32189.56 35884.84 30195.40 26695.35 29483.91 31680.38 34792.21 33057.23 36093.34 36170.69 35982.75 33493.50 331
RPSCF90.75 25190.86 21090.42 32396.84 17276.29 35995.61 25996.34 25783.89 31791.38 19097.87 8376.45 28698.78 16987.16 24792.23 21996.20 221
MDTV_nov1_ep13_2view70.35 36693.10 32983.88 31893.55 14582.47 19786.25 25798.38 152
无先验95.79 25297.87 11483.87 31999.65 5787.68 23298.89 111
PVSNet_082.17 1985.46 31683.64 31990.92 31495.27 25179.49 34990.55 34995.60 28583.76 32083.00 33889.95 34571.09 31897.97 25382.75 30060.79 36795.31 268
Anonymous2024052186.42 30685.44 30689.34 33190.33 35279.79 34796.73 18195.92 27183.71 32183.25 33591.36 33863.92 35396.01 33778.39 33085.36 29892.22 348
TinyColmap86.82 30385.35 30991.21 31094.91 27382.99 32193.94 30994.02 33783.58 32281.56 34194.68 25662.34 35798.13 22675.78 34087.35 28092.52 344
Anonymous2023120687.09 30186.14 30289.93 32891.22 34880.35 34096.11 23595.35 29483.57 32384.16 32793.02 31473.54 30795.61 34572.16 35386.14 28993.84 328
pmmvs-eth3d86.22 30984.45 31591.53 30388.34 36387.25 25494.47 28995.01 31083.47 32479.51 35289.61 34869.75 32995.71 34483.13 29576.73 35091.64 351
EG-PatchMatch MVS87.02 30285.44 30691.76 30092.67 33585.00 29796.08 23796.45 25383.41 32579.52 35193.49 30757.10 36197.72 28279.34 32690.87 24592.56 343
ADS-MVSNet289.45 27788.59 27992.03 28995.86 21982.26 32790.93 34694.32 33283.23 32691.28 19891.81 33379.01 25795.99 33879.52 32191.39 23597.84 175
ADS-MVSNet89.89 27288.68 27893.53 24595.86 21984.89 30090.93 34695.07 30983.23 32691.28 19891.81 33379.01 25797.85 26979.52 32191.39 23597.84 175
COLMAP_ROBcopyleft87.81 1590.40 26189.28 27093.79 23397.95 11887.13 26096.92 16595.89 27482.83 32886.88 30597.18 13073.77 30599.29 12278.44 32993.62 20494.95 284
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
testdata95.46 15898.18 10888.90 21797.66 13682.73 32997.03 5298.07 7090.06 8598.85 16489.67 18998.98 9298.64 129
DP-MVS92.76 17191.51 19096.52 8898.77 6090.99 14797.38 12096.08 26882.38 33089.29 25097.87 8383.77 16699.69 4881.37 31296.69 15598.89 111
MDA-MVSNet_test_wron85.87 31384.23 31790.80 31892.38 34282.57 32293.17 32595.15 30582.15 33167.65 36192.33 32978.20 26995.51 34877.33 33379.74 34094.31 319
YYNet185.87 31384.23 31790.78 31992.38 34282.46 32593.17 32595.14 30682.12 33267.69 36092.36 32678.16 27295.50 34977.31 33479.73 34194.39 315
PatchT88.87 28587.42 29093.22 25994.08 30385.10 29689.51 35594.64 32481.92 33392.36 17188.15 35480.05 23797.01 32472.43 35293.65 20397.54 192
TAPA-MVS90.10 792.30 18491.22 20195.56 14798.33 9189.60 18896.79 17797.65 13881.83 33491.52 18897.23 12887.94 10898.91 16071.31 35698.37 11198.17 160
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
旧先验295.94 24581.66 33597.34 3998.82 16692.26 138
新几何197.32 5998.60 7493.59 6597.75 12381.58 33695.75 10097.85 8690.04 8699.67 5386.50 25499.13 8298.69 126
112194.71 10693.83 11197.34 5898.57 7893.64 6496.04 23897.73 12681.56 33795.68 10397.85 8690.23 8399.65 5787.68 23299.12 8598.73 122
Patchmatch-test89.42 27887.99 28593.70 23795.27 25185.11 29588.98 35794.37 33081.11 33887.10 29993.69 30082.28 20097.50 30274.37 34694.76 18898.48 141
test_040286.46 30584.79 31391.45 30595.02 26585.55 28696.29 22494.89 31680.90 33982.21 33993.97 29268.21 33597.29 31662.98 36488.68 26791.51 353
gg-mvs-nofinetune87.82 29685.61 30594.44 20094.46 29189.27 20891.21 34584.61 37180.88 34089.89 23174.98 36471.50 31597.53 29985.75 26997.21 14496.51 215
JIA-IIPM88.26 29387.04 29791.91 29193.52 31881.42 33289.38 35694.38 32980.84 34190.93 20480.74 36279.22 25197.92 26382.76 29991.62 23096.38 219
Patchmtry88.64 28987.25 29292.78 27494.09 30286.64 26889.82 35495.68 28380.81 34287.63 28992.36 32680.91 22197.03 32178.86 32785.12 30394.67 308
tpm289.96 27089.21 27192.23 28694.91 27381.25 33393.78 31394.42 32880.62 34391.56 18793.44 30976.44 28797.94 26085.60 27092.08 22697.49 193
pmmvs687.81 29786.19 30192.69 27691.32 34786.30 27597.34 12296.41 25580.59 34484.05 33194.37 27167.37 33997.67 28584.75 28079.51 34394.09 325
Anonymous2023121190.63 25689.42 26794.27 20998.24 9989.19 21198.05 5297.89 10979.95 34588.25 27694.96 24072.56 31198.13 22689.70 18885.14 30295.49 252
cascas91.20 23290.08 24694.58 19694.97 26689.16 21293.65 31897.59 14579.90 34689.40 24592.92 31575.36 29598.36 20792.14 14394.75 18996.23 220
Anonymous2024052991.98 19790.73 21995.73 13898.14 11189.40 19997.99 5597.72 12979.63 34793.54 14697.41 12169.94 32899.56 8591.04 16891.11 23998.22 158
PCF-MVS89.48 1191.56 21189.95 25196.36 10496.60 18292.52 9592.51 33797.26 18879.41 34888.90 25796.56 16784.04 16499.55 8877.01 33897.30 14197.01 200
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test22298.24 9992.21 10595.33 26997.60 14379.22 34995.25 11497.84 8988.80 9899.15 8098.72 123
UnsupCasMVSNet_bld82.13 32679.46 32990.14 32688.00 36482.47 32490.89 34896.62 24878.94 35075.61 35684.40 36056.63 36396.31 33577.30 33566.77 36391.63 352
N_pmnet78.73 32878.71 33078.79 34692.80 33346.50 37794.14 30343.71 38078.61 35180.83 34391.66 33674.94 29796.36 33467.24 36184.45 31593.50 331
ANet_high63.94 33559.58 33877.02 34761.24 37866.06 36985.66 36287.93 36778.53 35242.94 37071.04 36725.42 37680.71 37052.60 36830.83 37184.28 362
114514_t93.95 12493.06 13696.63 8399.07 4191.61 12297.46 11397.96 10477.99 35393.00 15997.57 11286.14 13899.33 11889.22 20299.15 8098.94 103
DSMNet-mixed86.34 30786.12 30387.00 34089.88 35670.43 36594.93 28190.08 36277.97 35485.42 31792.78 31774.44 29993.96 35774.43 34595.14 18096.62 213
RPMNet88.98 28187.05 29694.77 18894.45 29287.19 25790.23 35198.03 8877.87 35592.40 16887.55 35780.17 23599.51 9868.84 36093.95 20097.60 189
new_pmnet82.89 32481.12 32888.18 33689.63 35780.18 34491.77 34092.57 34976.79 35675.56 35888.23 35361.22 35894.48 35471.43 35582.92 33289.87 359
tpm cat188.36 29187.21 29491.81 29695.13 26080.55 33992.58 33695.70 28074.97 35787.45 29091.96 33178.01 27698.17 22480.39 31788.74 26696.72 212
CMPMVSbinary62.92 2185.62 31584.92 31287.74 33789.14 36073.12 36494.17 30296.80 23273.98 35873.65 35994.93 24266.36 34497.61 29283.95 29091.28 23792.48 345
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OpenMVS_ROBcopyleft81.14 2084.42 32182.28 32490.83 31590.06 35484.05 31095.73 25494.04 33673.89 35980.17 35091.53 33759.15 35997.64 28866.92 36289.05 26290.80 357
MVS91.71 20390.44 22995.51 15195.20 25791.59 12496.04 23897.45 16673.44 36087.36 29495.60 21885.42 14599.10 13885.97 26597.46 13295.83 238
pmmvs379.97 32777.50 33187.39 33882.80 36879.38 35192.70 33490.75 36170.69 36178.66 35387.47 35851.34 36693.40 36073.39 35069.65 36189.38 360
MVS-HIRNet82.47 32581.21 32786.26 34295.38 23969.21 36888.96 35889.49 36366.28 36280.79 34474.08 36668.48 33397.39 31171.93 35495.47 17592.18 349
DeepMVS_CXcopyleft74.68 35090.84 35164.34 37281.61 37465.34 36367.47 36288.01 35648.60 36780.13 37162.33 36573.68 35679.58 365
PMMVS270.19 33166.92 33480.01 34576.35 37065.67 37086.22 36087.58 36864.83 36462.38 36680.29 36326.78 37588.49 36663.79 36354.07 36885.88 361
FPMVS71.27 33069.85 33275.50 34874.64 37159.03 37391.30 34291.50 35758.80 36557.92 36788.28 35229.98 37385.53 36853.43 36782.84 33381.95 364
LCM-MVSNet72.55 32969.39 33382.03 34470.81 37665.42 37190.12 35394.36 33155.02 36665.88 36381.72 36124.16 37789.96 36474.32 34768.10 36290.71 358
Gipumacopyleft67.86 33365.41 33575.18 34992.66 33673.45 36366.50 36894.52 32653.33 36757.80 36866.07 36830.81 37189.20 36548.15 36978.88 34662.90 368
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft53.92 2258.58 33655.40 33968.12 35251.00 37948.64 37578.86 36587.10 37046.77 36835.84 37474.28 3658.76 37886.34 36742.07 37073.91 35569.38 366
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN53.28 33752.56 34155.43 35474.43 37247.13 37683.63 36476.30 37542.23 36942.59 37162.22 37028.57 37474.40 37231.53 37231.51 37044.78 369
EMVS52.08 33951.31 34254.39 35572.62 37445.39 37883.84 36375.51 37741.13 37040.77 37259.65 37130.08 37273.60 37328.31 37329.90 37244.18 370
MVEpermissive50.73 2353.25 33848.81 34366.58 35365.34 37757.50 37472.49 36770.94 37840.15 37139.28 37363.51 3696.89 38073.48 37438.29 37142.38 36968.76 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method66.11 33464.89 33669.79 35172.62 37435.23 38165.19 36992.83 34720.35 37265.20 36488.08 35543.14 36982.70 36973.12 35163.46 36491.45 356
tmp_tt51.94 34053.82 34046.29 35633.73 38045.30 37978.32 36667.24 37918.02 37350.93 36987.05 35952.99 36553.11 37570.76 35825.29 37340.46 371
wuyk23d25.11 34124.57 34526.74 35773.98 37339.89 38057.88 3709.80 38112.27 37410.39 3756.97 3777.03 37936.44 37625.43 37417.39 3743.89 374
testmvs13.36 34316.33 3464.48 3595.04 3812.26 38393.18 3243.28 3822.70 3758.24 37621.66 3732.29 3822.19 3777.58 3752.96 3759.00 373
test12313.04 34415.66 3475.18 3584.51 3823.45 38292.50 3381.81 3832.50 3767.58 37720.15 3743.67 3812.18 3787.13 3761.07 3769.90 372
EGC-MVSNET68.77 33263.01 33786.07 34392.49 33882.24 32893.96 30890.96 3600.71 3772.62 37890.89 33953.66 36493.46 35957.25 36684.55 31382.51 363
test_blank0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
uanet_test0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
DCPMVS0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
cdsmvs_eth3d_5k23.24 34230.99 3440.00 3600.00 3830.00 3840.00 37197.63 1410.00 3780.00 37996.88 14584.38 1580.00 3790.00 3770.00 3770.00 375
pcd_1.5k_mvsjas7.39 3469.85 3490.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 37888.65 1000.00 3790.00 3770.00 3770.00 375
sosnet-low-res0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
sosnet0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
uncertanet0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
Regformer0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
ab-mvs-re8.06 34510.74 3480.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 37996.69 1550.00 3830.00 3790.00 3770.00 3770.00 375
uanet0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
MSC_two_6792asdad98.86 198.67 6596.94 197.93 10799.86 997.68 299.67 699.77 1
No_MVS98.86 198.67 6596.94 197.93 10799.86 997.68 299.67 699.77 1
eth-test20.00 383
eth-test0.00 383
OPU-MVS98.55 398.82 5996.86 398.25 3498.26 5796.04 299.24 12595.36 7599.59 1799.56 27
test_0728_SECOND98.51 499.45 395.93 598.21 4198.28 2899.86 997.52 599.67 699.75 5
GSMVS98.45 144
test_part299.28 2795.74 898.10 21
sam_mvs182.76 18998.45 144
sam_mvs81.94 208
ambc86.56 34183.60 36770.00 36785.69 36194.97 31380.60 34688.45 35037.42 37096.84 32982.69 30175.44 35292.86 338
MTGPAbinary98.08 68
test_post192.81 33316.58 37680.53 22797.68 28486.20 258
test_post17.58 37581.76 21098.08 236
patchmatchnet-post90.45 34282.65 19398.10 231
GG-mvs-BLEND93.62 24093.69 31489.20 20992.39 33983.33 37287.98 28489.84 34771.00 31996.87 32882.08 30595.40 17794.80 300
MTMP97.86 6782.03 373
test9_res94.81 9299.38 5399.45 50
agg_prior293.94 10999.38 5399.50 42
agg_prior98.67 6593.79 5998.00 9795.68 10399.57 83
test_prior493.66 6396.42 208
test_prior97.23 6598.67 6592.99 8198.00 9799.41 11199.29 67
新几何295.79 252
旧先验198.38 8793.38 7197.75 12398.09 6992.30 4299.01 9199.16 78
原ACMM295.67 255
testdata299.67 5385.96 266
segment_acmp92.89 26
test1297.65 4798.46 8094.26 4197.66 13695.52 11290.89 7499.46 10599.25 7099.22 75
plane_prior796.21 20489.98 179
plane_prior696.10 21490.00 17581.32 216
plane_prior597.51 15398.60 18893.02 13192.23 21995.86 234
plane_prior496.64 158
plane_prior196.14 212
n20.00 384
nn0.00 384
door-mid91.06 359
lessismore_v090.45 32291.96 34579.09 35487.19 36980.32 34894.39 26966.31 34697.55 29684.00 28976.84 34994.70 307
test1197.88 112
door91.13 358
HQP5-MVS89.33 203
BP-MVS92.13 144
HQP4-MVS90.14 21698.50 19695.78 241
HQP3-MVS97.39 17692.10 224
HQP2-MVS80.95 219
NP-MVS95.99 21889.81 18495.87 199
ACMMP++_ref90.30 252
ACMMP++91.02 241
Test By Simon88.73 99