This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
EPNet95.20 8694.56 9397.14 6892.80 31892.68 8497.85 6294.87 30496.64 192.46 15597.80 8486.23 12799.65 5393.72 10598.62 9699.10 79
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
NCCC97.30 1497.03 1498.11 1498.77 5795.06 2297.34 11398.04 8195.96 297.09 4597.88 7493.18 2099.71 3895.84 4999.17 7299.56 22
CNVR-MVS97.68 597.44 898.37 598.90 5195.86 497.27 12198.08 6495.81 397.87 2398.31 4794.26 1099.68 4797.02 999.49 3499.57 19
HPM-MVS++copyleft97.34 1396.97 1798.47 399.08 3896.16 297.55 9497.97 9995.59 496.61 5697.89 7292.57 3099.84 1995.95 4699.51 2999.40 53
MSP-MVS97.59 797.54 597.73 3899.40 1193.77 5898.53 998.29 2495.55 598.56 1297.81 8293.90 1299.65 5396.62 2099.21 6999.77 1
DeepPCF-MVS93.97 196.61 4897.09 1295.15 15798.09 10586.63 26096.00 22998.15 5195.43 697.95 1998.56 1793.40 1699.36 11296.77 1799.48 3599.45 45
CANet96.39 5596.02 5997.50 5097.62 12793.38 6797.02 14397.96 10095.42 794.86 11097.81 8287.38 11499.82 2596.88 1299.20 7099.29 62
xxxxxxxxxxxxxcwj97.36 1197.20 1097.83 2698.91 4994.28 3597.02 14397.22 18295.35 898.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 34
save fliter98.91 4994.28 3597.02 14398.02 8895.35 8
SteuartSystems-ACMMP97.62 697.53 697.87 2498.39 8094.25 3898.43 1798.27 2895.34 1098.11 1698.56 1794.53 999.71 3896.57 2399.62 1399.65 9
Skip Steuart: Steuart Systems R&D Blog.
Regformer-297.16 1896.99 1697.67 4398.32 8693.84 5396.83 16398.10 6195.24 1197.49 2698.25 5492.57 3099.61 6296.80 1499.29 5799.56 22
DELS-MVS96.61 4896.38 5197.30 5797.79 11993.19 7295.96 23198.18 4695.23 1295.87 8597.65 9491.45 5599.70 4395.87 4799.44 4299.00 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Regformer-197.10 2096.96 1897.54 4998.32 8693.48 6496.83 16397.99 9795.20 1397.46 2798.25 5492.48 3499.58 7096.79 1699.29 5799.55 26
DPE-MVS97.86 397.65 498.47 399.17 3295.78 597.21 13098.35 1995.16 1498.71 1098.80 995.05 799.89 396.70 1999.73 199.73 7
SED-MVS98.05 197.99 198.24 799.42 695.30 1598.25 2898.27 2895.13 1599.19 198.89 495.54 399.85 1497.52 299.66 899.56 22
test_241102_TWO98.27 2895.13 1598.93 698.89 494.99 899.85 1497.52 299.65 1099.74 5
Regformer-496.97 2996.87 2197.25 6198.34 8392.66 8596.96 15198.01 9195.12 1797.14 4198.42 3191.82 4699.61 6296.90 1199.13 7599.50 37
test_241102_ONE99.42 695.30 1598.27 2895.09 1899.19 198.81 895.54 399.65 53
zzz-MVS97.07 2296.77 3297.97 2299.37 1694.42 3297.15 13698.08 6495.07 1996.11 7598.59 1590.88 7099.90 196.18 3999.50 3299.58 17
MTAPA97.08 2196.78 3197.97 2299.37 1694.42 3297.24 12398.08 6495.07 1996.11 7598.59 1590.88 7099.90 196.18 3999.50 3299.58 17
Regformer-396.85 3896.80 2997.01 7298.34 8392.02 10796.96 15197.76 11695.01 2197.08 4698.42 3191.71 4999.54 8596.80 1499.13 7599.48 41
DVP-MVS97.91 297.81 298.22 999.45 295.36 1098.21 3497.85 11294.92 2298.73 898.87 695.08 599.84 1997.52 299.67 699.48 41
test072699.45 295.36 1098.31 2298.29 2494.92 2298.99 498.92 295.08 5
XVS97.18 1696.96 1897.81 3099.38 1494.03 5098.59 798.20 4294.85 2496.59 5898.29 5091.70 5099.80 2795.66 5299.40 4599.62 13
X-MVStestdata91.71 19289.67 25097.81 3099.38 1494.03 5098.59 798.20 4294.85 2496.59 5832.69 35291.70 5099.80 2795.66 5299.40 4599.62 13
HQP_MVS93.78 12593.43 12294.82 17296.21 18889.99 16797.74 7197.51 14494.85 2491.34 17896.64 14681.32 20798.60 17993.02 11992.23 20895.86 220
plane_prior297.74 7194.85 24
SD-MVS97.41 997.53 697.06 7198.57 7294.46 3097.92 5698.14 5394.82 2899.01 398.55 1994.18 1197.41 29696.94 1099.64 1199.32 60
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
UA-Net95.95 6795.53 6797.20 6697.67 12492.98 7897.65 8498.13 5494.81 2996.61 5698.35 3888.87 9099.51 9390.36 16397.35 12999.11 78
DeepC-MVS_fast93.89 296.93 3396.64 3997.78 3398.64 6794.30 3497.41 10598.04 8194.81 2996.59 5898.37 3691.24 6199.64 6195.16 6999.52 2599.42 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_0728_THIRD94.78 3198.73 898.87 695.87 299.84 1997.45 699.72 299.77 1
APDe-MVS97.82 497.73 398.08 1599.15 3394.82 2598.81 298.30 2394.76 3298.30 1398.90 393.77 1499.68 4797.93 199.69 399.75 3
EI-MVSNet-Vis-set96.51 5196.47 4796.63 8098.24 9391.20 13496.89 15897.73 11994.74 3396.49 6298.49 2490.88 7099.58 7096.44 2798.32 10299.13 74
EI-MVSNet-UG-set96.34 5696.30 5296.47 9198.20 9890.93 14596.86 15997.72 12294.67 3496.16 7498.46 2690.43 7699.58 7096.23 3297.96 11298.90 98
MSLP-MVS++96.94 3297.06 1396.59 8398.72 5991.86 11197.67 8198.49 1294.66 3597.24 3698.41 3492.31 3798.94 15096.61 2199.46 3898.96 91
3Dnovator+91.43 495.40 7894.48 9898.16 1296.90 15495.34 1398.48 1597.87 10894.65 3688.53 25398.02 6783.69 16099.71 3893.18 11698.96 8599.44 47
ETV-MVS96.02 6495.89 6296.40 9697.16 14192.44 9197.47 10297.77 11594.55 3796.48 6394.51 24891.23 6298.92 15195.65 5598.19 10597.82 166
canonicalmvs96.02 6495.45 7197.75 3797.59 13095.15 2198.28 2597.60 13494.52 3896.27 7196.12 17587.65 10799.18 12596.20 3894.82 17698.91 97
plane_prior390.00 16594.46 3991.34 178
UGNet94.04 11793.28 12796.31 10396.85 15591.19 13597.88 5897.68 12794.40 4093.00 14796.18 17273.39 29599.61 6291.72 14198.46 9998.13 149
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
alignmvs95.87 6995.23 7897.78 3397.56 13295.19 1897.86 5997.17 18594.39 4196.47 6496.40 16485.89 13399.20 12296.21 3795.11 17298.95 93
CANet_DTU94.37 10593.65 11396.55 8496.46 17892.13 10396.21 21896.67 23394.38 4293.53 13597.03 12779.34 24099.71 3890.76 15798.45 10097.82 166
Vis-MVSNetpermissive95.23 8494.81 8696.51 8897.18 14091.58 11998.26 2798.12 5694.38 4294.90 10998.15 5982.28 19198.92 15191.45 15098.58 9899.01 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS_111021_HR96.68 4796.58 4296.99 7398.46 7492.31 9696.20 21998.90 294.30 4495.86 8697.74 8792.33 3599.38 11196.04 4499.42 4399.28 65
TSAR-MVS + GP.96.69 4596.49 4697.27 6098.31 8893.39 6696.79 16796.72 22594.17 4597.44 2997.66 9392.76 2399.33 11396.86 1397.76 11899.08 80
3Dnovator91.36 595.19 8794.44 10097.44 5296.56 17193.36 6998.65 698.36 1694.12 4689.25 23898.06 6482.20 19399.77 2993.41 11299.32 5399.18 69
plane_prior89.99 16797.24 12394.06 4792.16 212
casdiffmvs95.64 7395.49 6996.08 11496.76 16390.45 15997.29 12097.44 16194.00 4895.46 10397.98 7087.52 11198.73 16795.64 5697.33 13099.08 80
MVS_111021_LR96.24 5996.19 5796.39 9898.23 9791.35 12796.24 21798.79 493.99 4995.80 8897.65 9489.92 8499.24 12095.87 4799.20 7098.58 118
DeepC-MVS93.07 396.06 6295.66 6597.29 5897.96 10993.17 7397.30 11998.06 7393.92 5093.38 13998.66 1286.83 12099.73 3295.60 6199.22 6898.96 91
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VNet95.89 6895.45 7197.21 6598.07 10792.94 7997.50 9798.15 5193.87 5197.52 2597.61 10085.29 14099.53 8895.81 5095.27 16899.16 70
Effi-MVS+-dtu93.08 14593.21 12892.68 26496.02 20083.25 30297.14 13796.72 22593.85 5291.20 18893.44 29583.08 17098.30 19891.69 14495.73 16196.50 202
mvs-test193.63 12993.69 11193.46 23696.02 20084.61 28897.24 12396.72 22593.85 5292.30 16295.76 19483.08 17098.89 15591.69 14496.54 14896.87 193
PS-MVSNAJ95.37 7995.33 7695.49 14697.35 13490.66 15495.31 25897.48 14693.85 5296.51 6195.70 19988.65 9499.65 5394.80 8498.27 10396.17 209
test117296.93 3396.86 2297.15 6799.10 3492.34 9397.96 5398.04 8193.79 5597.35 3398.53 2191.40 5799.56 8096.30 2999.30 5699.55 26
SR-MVS97.01 2896.86 2297.47 5199.09 3693.27 7197.98 4898.07 7093.75 5697.45 2898.48 2591.43 5699.59 6796.22 3399.27 6199.54 29
TSAR-MVS + MP.97.42 897.33 997.69 4299.25 2794.24 3998.07 4397.85 11293.72 5798.57 1198.35 3893.69 1599.40 10897.06 899.46 3899.44 47
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPM-MVS93.28 13992.76 13694.82 17294.63 27190.77 15196.65 17997.18 18393.72 5791.68 17297.26 11679.33 24198.63 17692.13 13192.28 20795.07 266
xiu_mvs_v2_base95.32 8195.29 7795.40 15197.22 13790.50 15795.44 25297.44 16193.70 5996.46 6596.18 17288.59 9799.53 8894.79 8697.81 11596.17 209
baseline95.58 7595.42 7396.08 11496.78 16090.41 16197.16 13497.45 15793.69 6095.65 9797.85 7887.29 11598.68 17295.66 5297.25 13399.13 74
EIA-MVS95.53 7795.47 7095.71 13397.06 14989.63 17597.82 6497.87 10893.57 6193.92 12795.04 22490.61 7498.95 14994.62 8898.68 9398.54 120
HQP-NCC95.86 20396.65 17993.55 6290.14 201
ACMP_Plane95.86 20396.65 17993.55 6290.14 201
HQP-MVS93.19 14392.74 13994.54 18695.86 20389.33 19396.65 17997.39 16793.55 6290.14 20195.87 18480.95 21098.50 18692.13 13192.10 21395.78 227
MCST-MVS97.18 1696.84 2598.20 1099.30 2495.35 1297.12 13898.07 7093.54 6596.08 7797.69 9093.86 1399.71 3896.50 2499.39 4799.55 26
SR-MVS-dyc-post96.88 3696.80 2997.11 7099.02 4392.34 9397.98 4898.03 8493.52 6697.43 3198.51 2291.40 5799.56 8096.05 4299.26 6399.43 49
RE-MVS-def96.72 3599.02 4392.34 9397.98 4898.03 8493.52 6697.43 3198.51 2290.71 7396.05 4299.26 6399.43 49
MG-MVS95.61 7495.38 7496.31 10398.42 7790.53 15696.04 22597.48 14693.47 6895.67 9698.10 6089.17 8799.25 11991.27 15398.77 9099.13 74
CS-MVS95.80 7095.65 6696.24 11097.32 13591.43 12598.10 3997.91 10393.38 6995.16 10794.57 24690.21 7998.98 14795.53 6498.67 9498.30 145
FC-MVSNet-test93.94 12093.57 11495.04 16195.48 21991.45 12498.12 3898.71 593.37 7090.23 20096.70 14187.66 10697.85 25691.49 14890.39 24095.83 224
MP-MVScopyleft96.77 4296.45 4997.72 3999.39 1393.80 5498.41 1898.06 7393.37 7095.54 10198.34 4190.59 7599.88 494.83 8199.54 2399.49 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
FIs94.09 11493.70 11095.27 15395.70 21192.03 10698.10 3998.68 793.36 7290.39 19796.70 14187.63 10897.94 24692.25 12790.50 23995.84 223
abl_696.40 5496.21 5596.98 7498.89 5492.20 10197.89 5798.03 8493.34 7397.22 3798.42 3187.93 10399.72 3595.10 7299.07 8099.02 83
mPP-MVS96.86 3796.60 4097.64 4699.40 1193.44 6598.50 1398.09 6393.27 7495.95 8498.33 4491.04 6699.88 495.20 6899.57 2099.60 16
HFP-MVS97.14 1996.92 2097.83 2699.42 694.12 4598.52 1098.32 2093.21 7597.18 3898.29 5092.08 3999.83 2295.63 5799.59 1599.54 29
ACMMPR97.07 2296.84 2597.79 3299.44 593.88 5298.52 1098.31 2293.21 7597.15 4098.33 4491.35 5999.86 895.63 5799.59 1599.62 13
IS-MVSNet94.90 9594.52 9696.05 11797.67 12490.56 15598.44 1696.22 25193.21 7593.99 12497.74 8785.55 13898.45 18989.98 16697.86 11399.14 73
region2R97.07 2296.84 2597.77 3599.46 193.79 5598.52 1098.24 3493.19 7897.14 4198.34 4191.59 5499.87 795.46 6599.59 1599.64 10
EPNet_dtu91.71 19291.28 18892.99 25393.76 29783.71 29796.69 17695.28 28293.15 7987.02 28595.95 18183.37 16597.38 29879.46 30996.84 13997.88 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UniMVSNet (Re)93.31 13892.55 14695.61 13895.39 22293.34 7097.39 10998.71 593.14 8090.10 20994.83 23387.71 10598.03 23191.67 14683.99 30695.46 241
APD-MVS_3200maxsize96.81 4096.71 3697.12 6999.01 4692.31 9697.98 4898.06 7393.11 8197.44 2998.55 1990.93 6899.55 8396.06 4199.25 6599.51 34
testdata195.26 26393.10 82
DU-MVS92.90 15592.04 16095.49 14694.95 25392.83 8097.16 13498.24 3493.02 8390.13 20595.71 19783.47 16297.85 25691.71 14283.93 30795.78 227
xiu_mvs_v1_base_debu95.01 8994.76 8795.75 12996.58 16891.71 11296.25 21497.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 214
xiu_mvs_v1_base95.01 8994.76 8795.75 12996.58 16891.71 11296.25 21497.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 214
xiu_mvs_v1_base_debi95.01 8994.76 8795.75 12996.58 16891.71 11296.25 21497.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 214
CP-MVS97.02 2696.81 2897.64 4699.33 2293.54 6298.80 398.28 2692.99 8496.45 6698.30 4991.90 4599.85 1495.61 5999.68 499.54 29
ACMMPcopyleft96.27 5895.93 6097.28 5999.24 2892.62 8698.25 2898.81 392.99 8494.56 11498.39 3588.96 8999.85 1494.57 9097.63 11999.36 58
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
UniMVSNet_NR-MVSNet93.37 13692.67 14195.47 14995.34 22892.83 8097.17 13398.58 1092.98 8990.13 20595.80 18988.37 9997.85 25691.71 14283.93 30795.73 233
VPNet92.23 18091.31 18694.99 16395.56 21590.96 14397.22 12997.86 11192.96 9090.96 18996.62 15375.06 28398.20 20591.90 13683.65 31295.80 226
nrg03094.05 11693.31 12696.27 10795.22 24094.59 2898.34 2097.46 15192.93 9191.21 18796.64 14687.23 11798.22 20294.99 7785.80 28195.98 218
TranMVSNet+NR-MVSNet92.50 16591.63 17495.14 15894.76 26492.07 10497.53 9598.11 5992.90 9289.56 22696.12 17583.16 16797.60 27989.30 18583.20 31695.75 231
diffmvs95.25 8395.13 8195.63 13696.43 18089.34 19295.99 23097.35 17392.83 9396.31 6997.37 11286.44 12598.67 17396.26 3097.19 13598.87 102
ACMMP_NAP97.20 1596.86 2298.23 899.09 3695.16 2097.60 9098.19 4492.82 9497.93 2098.74 1191.60 5399.86 896.26 3099.52 2599.67 8
test_prior396.46 5396.20 5697.23 6298.67 6292.99 7696.35 20498.00 9392.80 9596.03 7897.59 10192.01 4199.41 10695.01 7499.38 4899.29 62
test_prior296.35 20492.80 9596.03 7897.59 10192.01 4195.01 7499.38 48
testtj96.93 3396.56 4398.05 1799.10 3494.66 2797.78 6898.22 3992.74 9797.59 2498.20 5791.96 4499.86 894.21 9399.25 6599.63 11
GST-MVS96.85 3896.52 4597.82 2999.36 1994.14 4498.29 2498.13 5492.72 9896.70 5098.06 6491.35 5999.86 894.83 8199.28 5999.47 44
CLD-MVS92.98 15092.53 14894.32 19496.12 19789.20 20095.28 25997.47 14992.66 9989.90 21495.62 20280.58 21798.40 19192.73 12292.40 20695.38 251
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
NR-MVSNet92.34 17291.27 18995.53 14394.95 25393.05 7597.39 10998.07 7092.65 10084.46 30795.71 19785.00 14497.77 26589.71 17483.52 31395.78 227
ZNCC-MVS96.96 3096.67 3897.85 2599.37 1694.12 4598.49 1498.18 4692.64 10196.39 6898.18 5891.61 5299.88 495.59 6299.55 2199.57 19
#test#97.02 2696.75 3397.83 2699.42 694.12 4598.15 3798.32 2092.57 10297.18 3898.29 5092.08 3999.83 2295.12 7199.59 1599.54 29
PS-MVSNAJss93.74 12693.51 11894.44 18893.91 29289.28 19897.75 7097.56 14192.50 10389.94 21396.54 15688.65 9498.18 20893.83 10490.90 23395.86 220
VDD-MVS93.82 12393.08 12996.02 11897.88 11689.96 17197.72 7695.85 26192.43 10495.86 8698.44 2868.42 31999.39 10996.31 2894.85 17498.71 114
LCM-MVSNet-Re92.50 16592.52 14992.44 26796.82 15981.89 31196.92 15593.71 32392.41 10584.30 30994.60 24485.08 14397.03 30791.51 14797.36 12898.40 138
SF-MVS97.39 1097.13 1198.17 1199.02 4395.28 1798.23 3198.27 2892.37 10698.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 34
VPA-MVSNet93.24 14092.48 15195.51 14495.70 21192.39 9297.86 5998.66 992.30 10792.09 16795.37 21380.49 21998.40 19193.95 9885.86 28095.75 231
PGM-MVS96.81 4096.53 4497.65 4499.35 2193.53 6397.65 8498.98 192.22 10897.14 4198.44 2891.17 6499.85 1494.35 9199.46 3899.57 19
Vis-MVSNet (Re-imp)94.15 11093.88 10694.95 16897.61 12887.92 23198.10 3995.80 26392.22 10893.02 14697.45 10984.53 15097.91 25388.24 20497.97 11199.02 83
thres100view90092.43 16891.58 17694.98 16597.92 11389.37 19197.71 7894.66 30692.20 11093.31 14194.90 22978.06 26299.08 13881.40 29594.08 18596.48 203
baseline192.82 16091.90 16695.55 14297.20 13990.77 15197.19 13194.58 30992.20 11092.36 15996.34 16784.16 15598.21 20389.20 19183.90 31097.68 171
tfpn200view992.38 17191.52 17994.95 16897.85 11789.29 19697.41 10594.88 30192.19 11293.27 14394.46 25378.17 25999.08 13881.40 29594.08 18596.48 203
thres40092.42 16991.52 17995.12 16097.85 11789.29 19697.41 10594.88 30192.19 11293.27 14394.46 25378.17 25999.08 13881.40 29594.08 18596.98 187
thres600view792.49 16791.60 17595.18 15697.91 11489.47 18497.65 8494.66 30692.18 11493.33 14094.91 22878.06 26299.10 13381.61 29294.06 18896.98 187
Fast-Effi-MVS+-dtu92.29 17691.99 16393.21 24795.27 23685.52 27697.03 14096.63 23792.09 11589.11 24095.14 22180.33 22398.08 22187.54 22494.74 17996.03 217
thres20092.23 18091.39 18294.75 17997.61 12889.03 20596.60 18695.09 29292.08 11693.28 14294.00 27678.39 25799.04 14481.26 29994.18 18496.19 208
mvs_tets92.31 17491.76 16993.94 21393.41 30788.29 21997.63 8997.53 14292.04 11788.76 24896.45 16074.62 28598.09 22093.91 10091.48 22295.45 243
OMC-MVS95.09 8894.70 9096.25 10998.46 7491.28 12896.43 19497.57 13892.04 11794.77 11297.96 7187.01 11999.09 13691.31 15296.77 14198.36 142
jajsoiax92.42 16991.89 16794.03 20593.33 31088.50 21697.73 7397.53 14292.00 11988.85 24596.50 15875.62 28198.11 21593.88 10291.56 22195.48 238
XVG-OURS93.72 12793.35 12594.80 17597.07 14688.61 21394.79 26997.46 15191.97 12093.99 12497.86 7781.74 20298.88 15692.64 12392.67 20396.92 191
WR-MVS92.34 17291.53 17894.77 17795.13 24590.83 14896.40 19997.98 9891.88 12189.29 23595.54 20882.50 18697.80 26189.79 17385.27 28895.69 234
PAPM_NR95.01 8994.59 9296.26 10898.89 5490.68 15397.24 12397.73 11991.80 12292.93 15296.62 15389.13 8899.14 13089.21 19097.78 11698.97 90
testgi87.97 28287.21 28290.24 31092.86 31680.76 31696.67 17894.97 29791.74 12385.52 29995.83 18762.66 33794.47 33676.25 32188.36 25995.48 238
CP-MVSNet91.89 18991.24 19093.82 21895.05 24888.57 21497.82 6498.19 4491.70 12488.21 26195.76 19481.96 19797.52 28787.86 21084.65 29795.37 252
XVG-OURS-SEG-HR93.86 12293.55 11594.81 17497.06 14988.53 21595.28 25997.45 15791.68 12594.08 12397.68 9182.41 18998.90 15493.84 10392.47 20596.98 187
OurMVSNet-221017-090.51 24690.19 23191.44 29393.41 30781.25 31496.98 15096.28 24791.68 12586.55 29196.30 16874.20 28897.98 23688.96 19587.40 26895.09 265
ETH3D-3000-0.197.07 2296.71 3698.14 1398.90 5195.33 1497.68 8098.24 3491.57 12797.90 2198.37 3692.61 2999.66 5295.59 6299.51 2999.43 49
ACMP89.59 1092.62 16492.14 15894.05 20496.40 18188.20 22497.36 11297.25 18191.52 12888.30 25796.64 14678.46 25598.72 17091.86 13991.48 22295.23 262
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
APD-MVScopyleft96.95 3196.60 4098.01 1999.03 4294.93 2497.72 7698.10 6191.50 12998.01 1898.32 4692.33 3599.58 7094.85 7999.51 2999.53 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ITE_SJBPF92.43 26895.34 22885.37 27995.92 25891.47 13087.75 27196.39 16571.00 30497.96 24382.36 28989.86 24593.97 312
PS-CasMVS91.55 20090.84 20393.69 22594.96 25288.28 22097.84 6398.24 3491.46 13188.04 26595.80 18979.67 23597.48 28987.02 23484.54 30195.31 255
WR-MVS_H92.00 18691.35 18393.95 21195.09 24789.47 18498.04 4598.68 791.46 13188.34 25594.68 24085.86 13497.56 28185.77 25484.24 30494.82 283
RRT_MVS93.21 14192.32 15595.91 12294.92 25594.15 4396.92 15596.86 21991.42 13391.28 18496.43 16179.66 23698.10 21693.29 11490.06 24295.46 241
MVSFormer95.37 7995.16 8095.99 12096.34 18491.21 13298.22 3297.57 13891.42 13396.22 7297.32 11386.20 13097.92 25094.07 9599.05 8198.85 103
test_djsdf93.07 14692.76 13694.00 20693.49 30588.70 21298.22 3297.57 13891.42 13390.08 21195.55 20782.85 17897.92 25094.07 9591.58 22095.40 248
ACMM89.79 892.96 15192.50 15094.35 19296.30 18688.71 21197.58 9197.36 17291.40 13690.53 19396.65 14579.77 23398.75 16691.24 15491.64 21895.59 236
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
RRT_test8_iter0591.19 22290.78 20592.41 26995.76 21083.14 30397.32 11697.46 15191.37 13789.07 24195.57 20470.33 30898.21 20393.56 10686.62 27595.89 219
PEN-MVS91.20 21990.44 21693.48 23494.49 27587.91 23397.76 6998.18 4691.29 13887.78 27095.74 19680.35 22297.33 30085.46 25882.96 31795.19 264
LPG-MVS_test92.94 15392.56 14594.10 20196.16 19388.26 22197.65 8497.46 15191.29 13890.12 20797.16 12079.05 24498.73 16792.25 12791.89 21695.31 255
LGP-MVS_train94.10 20196.16 19388.26 22197.46 15191.29 13890.12 20797.16 12079.05 24498.73 16792.25 12791.89 21695.31 255
9.1496.75 3398.93 4797.73 7398.23 3891.28 14197.88 2298.44 2893.00 2199.65 5395.76 5199.47 36
MVSTER93.20 14292.81 13594.37 19196.56 17189.59 17897.06 13997.12 18991.24 14291.30 18195.96 18082.02 19698.05 22793.48 10990.55 23795.47 240
test_yl94.78 10094.23 10296.43 9497.74 12191.22 13096.85 16097.10 19291.23 14395.71 9196.93 12984.30 15299.31 11593.10 11795.12 17098.75 108
DCV-MVSNet94.78 10094.23 10296.43 9497.74 12191.22 13096.85 16097.10 19291.23 14395.71 9196.93 12984.30 15299.31 11593.10 11795.12 17098.75 108
MVS_Test94.89 9694.62 9195.68 13496.83 15889.55 18096.70 17497.17 18591.17 14595.60 9896.11 17787.87 10498.76 16593.01 12197.17 13698.72 112
HPM-MVScopyleft96.69 4596.45 4997.40 5399.36 1993.11 7498.87 198.06 7391.17 14596.40 6797.99 6990.99 6799.58 7095.61 5999.61 1499.49 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test-LLR91.42 20691.19 19392.12 27494.59 27280.66 31794.29 28692.98 32891.11 14790.76 19192.37 30979.02 24698.07 22488.81 19796.74 14297.63 172
test0.0.03 189.37 26788.70 26491.41 29492.47 32385.63 27495.22 26492.70 33091.11 14786.91 28893.65 29079.02 24693.19 34278.00 31589.18 25095.41 244
XVG-ACMP-BASELINE90.93 23290.21 23093.09 25094.31 28385.89 27195.33 25697.26 17991.06 14989.38 23195.44 21268.61 31798.60 17989.46 18191.05 22994.79 288
Effi-MVS+94.93 9494.45 9996.36 10196.61 16591.47 12296.41 19697.41 16691.02 15094.50 11595.92 18287.53 11098.78 16293.89 10196.81 14098.84 105
SCA91.84 19091.18 19493.83 21795.59 21384.95 28494.72 27095.58 27190.82 15192.25 16393.69 28675.80 27898.10 21686.20 24495.98 15498.45 132
SixPastTwentyTwo89.15 26888.54 26790.98 29893.49 30580.28 32496.70 17494.70 30590.78 15284.15 31295.57 20471.78 29997.71 26984.63 26885.07 29294.94 272
DTE-MVSNet90.56 24489.75 24893.01 25293.95 29087.25 24397.64 8897.65 13090.74 15387.12 28195.68 20079.97 23097.00 31183.33 27981.66 32394.78 290
GA-MVS91.38 20890.31 22194.59 18194.65 26987.62 23894.34 28396.19 25290.73 15490.35 19893.83 28071.84 29897.96 24387.22 23093.61 19498.21 147
EPP-MVSNet95.22 8595.04 8395.76 12797.49 13389.56 17998.67 597.00 20590.69 15594.24 12097.62 9989.79 8598.81 16093.39 11396.49 14998.92 96
MP-MVS-pluss96.70 4496.27 5397.98 2199.23 3094.71 2696.96 15198.06 7390.67 15695.55 9998.78 1091.07 6599.86 896.58 2299.55 2199.38 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
IterMVS-LS92.29 17691.94 16593.34 24196.25 18786.97 25296.57 19097.05 19990.67 15689.50 22994.80 23586.59 12197.64 27489.91 16886.11 27995.40 248
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet93.03 14892.88 13493.48 23495.77 20886.98 25196.44 19297.12 18990.66 15891.30 18197.64 9786.56 12298.05 22789.91 16890.55 23795.41 244
K. test v387.64 28686.75 28790.32 30993.02 31579.48 33096.61 18492.08 33590.66 15880.25 32994.09 27367.21 32596.65 31885.96 25280.83 32694.83 281
tttt051792.96 15192.33 15494.87 17197.11 14487.16 24897.97 5292.09 33490.63 16093.88 12897.01 12876.50 27299.06 14190.29 16595.45 16598.38 140
BH-RMVSNet92.72 16391.97 16494.97 16697.16 14187.99 23096.15 22195.60 26990.62 16191.87 17097.15 12278.41 25698.57 18283.16 28097.60 12098.36 142
IterMVS-SCA-FT90.31 24989.81 24491.82 28295.52 21784.20 29294.30 28596.15 25390.61 16287.39 27794.27 26475.80 27896.44 31987.34 22786.88 27494.82 283
WTY-MVS94.71 10294.02 10496.79 7697.71 12392.05 10596.59 18797.35 17390.61 16294.64 11396.93 12986.41 12699.39 10991.20 15594.71 18098.94 94
ET-MVSNet_ETH3D91.49 20390.11 23295.63 13696.40 18191.57 12095.34 25593.48 32590.60 16475.58 33795.49 21080.08 22796.79 31694.25 9289.76 24698.52 122
SMA-MVScopyleft97.35 1297.03 1498.30 699.06 4095.42 897.94 5498.18 4690.57 16598.85 798.94 193.33 1799.83 2296.72 1899.68 499.63 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
LFMVS93.60 13092.63 14296.52 8598.13 10491.27 12997.94 5493.39 32690.57 16596.29 7098.31 4769.00 31599.16 12794.18 9495.87 15799.12 77
HPM-MVS_fast96.51 5196.27 5397.22 6499.32 2392.74 8298.74 498.06 7390.57 16596.77 4998.35 3890.21 7999.53 8894.80 8499.63 1299.38 56
DPM-MVS95.69 7194.92 8498.01 1998.08 10695.71 795.27 26197.62 13390.43 16895.55 9997.07 12591.72 4899.50 9689.62 17898.94 8698.82 106
IU-MVS99.42 695.39 997.94 10290.40 16998.94 597.41 799.66 899.74 5
PVSNet_Blended_VisFu95.27 8294.91 8596.38 9998.20 9890.86 14797.27 12198.25 3390.21 17094.18 12197.27 11587.48 11299.73 3293.53 10797.77 11798.55 119
PVSNet_BlendedMVS94.06 11593.92 10594.47 18798.27 8989.46 18696.73 17198.36 1690.17 17194.36 11795.24 21888.02 10099.58 7093.44 11090.72 23594.36 302
thisisatest053093.03 14892.21 15795.49 14697.07 14689.11 20497.49 10192.19 33390.16 17294.09 12296.41 16376.43 27599.05 14290.38 16295.68 16398.31 144
CNLPA94.28 10793.53 11796.52 8598.38 8192.55 8896.59 18796.88 21690.13 17391.91 16997.24 11785.21 14199.09 13687.64 22197.83 11497.92 158
BH-untuned92.94 15392.62 14393.92 21597.22 13786.16 26996.40 19996.25 25090.06 17489.79 21896.17 17483.19 16698.35 19587.19 23197.27 13297.24 184
IterMVS90.15 25589.67 25091.61 28995.48 21983.72 29694.33 28496.12 25489.99 17587.31 28094.15 27275.78 28096.27 32286.97 23586.89 27394.83 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AdaColmapbinary94.34 10693.68 11296.31 10398.59 6991.68 11596.59 18797.81 11489.87 17692.15 16597.06 12683.62 16199.54 8589.34 18498.07 10997.70 170
UnsupCasMVSNet_eth85.99 29884.45 30190.62 30589.97 33582.40 30993.62 30497.37 17089.86 17778.59 33492.37 30965.25 33395.35 33382.27 29070.75 34194.10 309
PHI-MVS96.77 4296.46 4897.71 4198.40 7894.07 4898.21 3498.45 1589.86 17797.11 4498.01 6892.52 3299.69 4496.03 4599.53 2499.36 58
ETH3D cwj APD-0.1696.56 5096.06 5898.05 1798.26 9295.19 1896.99 14898.05 8089.85 17997.26 3598.22 5691.80 4799.69 4494.84 8099.28 5999.27 66
mvs_anonymous93.82 12393.74 10994.06 20396.44 17985.41 27895.81 23897.05 19989.85 17990.09 21096.36 16687.44 11397.75 26693.97 9796.69 14599.02 83
ab-mvs93.57 13292.55 14696.64 7897.28 13691.96 11095.40 25397.45 15789.81 18193.22 14596.28 16979.62 23799.46 10090.74 15893.11 19798.50 125
FMVSNet391.78 19190.69 20995.03 16296.53 17392.27 9897.02 14396.93 20989.79 18289.35 23294.65 24277.01 27097.47 29086.12 24788.82 25295.35 253
v2v48291.59 19690.85 20293.80 21993.87 29488.17 22696.94 15496.88 21689.54 18389.53 22794.90 22981.70 20398.02 23289.25 18885.04 29495.20 263
PatchmatchNetpermissive91.91 18891.35 18393.59 22995.38 22384.11 29393.15 31295.39 27589.54 18392.10 16693.68 28882.82 17998.13 21184.81 26595.32 16798.52 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS90.70 24189.81 24493.37 24094.73 26684.21 29193.67 30288.02 34589.50 18592.38 15893.49 29377.82 26697.78 26386.03 25092.68 20298.11 153
v14890.99 22890.38 21892.81 26093.83 29585.80 27296.78 16996.68 23189.45 18688.75 24993.93 27982.96 17697.82 26087.83 21183.25 31494.80 286
anonymousdsp92.16 18291.55 17793.97 20992.58 32289.55 18097.51 9697.42 16589.42 18788.40 25494.84 23280.66 21697.88 25591.87 13891.28 22694.48 298
baseline291.63 19590.86 20093.94 21394.33 28186.32 26395.92 23391.64 33889.37 18886.94 28694.69 23981.62 20498.69 17188.64 20194.57 18196.81 195
IB-MVS87.33 1789.91 25888.28 27094.79 17695.26 23987.70 23795.12 26693.95 32289.35 18987.03 28492.49 30770.74 30699.19 12389.18 19281.37 32497.49 181
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
jason94.84 9894.39 10196.18 11295.52 21790.93 14596.09 22396.52 24189.28 19096.01 8297.32 11384.70 14798.77 16495.15 7098.91 8898.85 103
jason: jason.
TAMVS94.01 11893.46 12095.64 13596.16 19390.45 15996.71 17396.89 21589.27 19193.46 13796.92 13287.29 11597.94 24688.70 20095.74 16098.53 121
ZD-MVS99.05 4194.59 2898.08 6489.22 19297.03 4798.10 6092.52 3299.65 5394.58 8999.31 55
testing_287.33 28885.03 29794.22 19787.77 34489.32 19594.97 26797.11 19189.22 19271.64 34088.73 33055.16 34597.94 24691.95 13588.73 25695.41 244
API-MVS94.84 9894.49 9795.90 12397.90 11592.00 10897.80 6697.48 14689.19 19494.81 11196.71 13988.84 9199.17 12688.91 19698.76 9196.53 200
XXY-MVS92.16 18291.23 19194.95 16894.75 26590.94 14497.47 10297.43 16489.14 19588.90 24296.43 16179.71 23498.24 20089.56 17987.68 26395.67 235
pm-mvs190.72 24089.65 25293.96 21094.29 28489.63 17597.79 6796.82 22289.07 19686.12 29595.48 21178.61 25397.78 26386.97 23581.67 32294.46 299
HY-MVS89.66 993.87 12192.95 13296.63 8097.10 14592.49 9095.64 24596.64 23489.05 19793.00 14795.79 19285.77 13699.45 10289.16 19394.35 18297.96 155
CSCG96.05 6395.91 6196.46 9399.24 2890.47 15898.30 2398.57 1189.01 19893.97 12697.57 10392.62 2899.76 3094.66 8799.27 6199.15 72
v891.29 21690.53 21593.57 23194.15 28588.12 22897.34 11397.06 19888.99 19988.32 25694.26 26683.08 17098.01 23387.62 22283.92 30994.57 297
PAPR94.18 10993.42 12496.48 9097.64 12691.42 12695.55 24797.71 12688.99 19992.34 16195.82 18889.19 8699.11 13286.14 24697.38 12798.90 98
CDS-MVSNet94.14 11293.54 11695.93 12196.18 19191.46 12396.33 20797.04 20188.97 20193.56 13296.51 15787.55 10997.89 25489.80 17295.95 15598.44 135
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
sss94.51 10493.80 10896.64 7897.07 14691.97 10996.32 20898.06 7388.94 20294.50 11596.78 13684.60 14899.27 11891.90 13696.02 15398.68 116
lupinMVS94.99 9394.56 9396.29 10696.34 18491.21 13295.83 23796.27 24888.93 20396.22 7296.88 13486.20 13098.85 15795.27 6799.05 8198.82 106
D2MVS91.30 21590.95 19792.35 27094.71 26785.52 27696.18 22098.21 4088.89 20486.60 29093.82 28279.92 23197.95 24589.29 18690.95 23293.56 316
v7n90.76 23689.86 24193.45 23793.54 30287.60 23997.70 7997.37 17088.85 20587.65 27294.08 27481.08 20998.10 21684.68 26783.79 31194.66 295
PVSNet_Blended94.87 9794.56 9395.81 12698.27 8989.46 18695.47 25198.36 1688.84 20694.36 11796.09 17888.02 10099.58 7093.44 11098.18 10698.40 138
ACMH+87.92 1490.20 25389.18 25993.25 24496.48 17786.45 26296.99 14896.68 23188.83 20784.79 30696.22 17170.16 31198.53 18484.42 27288.04 26094.77 291
GBi-Net91.35 21190.27 22494.59 18196.51 17491.18 13697.50 9796.93 20988.82 20889.35 23294.51 24873.87 28997.29 30286.12 24788.82 25295.31 255
test191.35 21190.27 22494.59 18196.51 17491.18 13697.50 9796.93 20988.82 20889.35 23294.51 24873.87 28997.29 30286.12 24788.82 25295.31 255
FMVSNet291.31 21490.08 23394.99 16396.51 17492.21 9997.41 10596.95 20788.82 20888.62 25094.75 23773.87 28997.42 29585.20 26288.55 25895.35 253
V4291.58 19890.87 19993.73 22194.05 28988.50 21697.32 11696.97 20688.80 21189.71 21994.33 25982.54 18598.05 22789.01 19485.07 29294.64 296
agg_prior196.22 6095.77 6497.56 4898.67 6293.79 5596.28 21298.00 9388.76 21295.68 9397.55 10792.70 2799.57 7895.01 7499.32 5399.32 60
BH-w/o92.14 18491.75 17093.31 24296.99 15385.73 27395.67 24295.69 26588.73 21389.26 23794.82 23482.97 17598.07 22485.26 26196.32 15296.13 213
test20.0386.14 29785.40 29588.35 31590.12 33380.06 32695.90 23495.20 28788.59 21481.29 32293.62 29171.43 30192.65 34371.26 33781.17 32592.34 328
train_agg96.30 5795.83 6397.72 3998.70 6094.19 4096.41 19698.02 8888.58 21596.03 7897.56 10592.73 2599.59 6795.04 7399.37 5299.39 54
test_898.67 6294.06 4996.37 20398.01 9188.58 21595.98 8397.55 10792.73 2599.58 70
eth_miper_zixun_eth91.02 22790.59 21292.34 27195.33 23184.35 28994.10 29196.90 21388.56 21788.84 24694.33 25984.08 15697.60 27988.77 19984.37 30395.06 267
tpmrst91.44 20591.32 18591.79 28495.15 24379.20 33293.42 30795.37 27788.55 21893.49 13693.67 28982.49 18798.27 19990.41 16189.34 24997.90 159
ACMH87.59 1690.53 24589.42 25493.87 21696.21 18887.92 23197.24 12396.94 20888.45 21983.91 31596.27 17071.92 29798.62 17884.43 27189.43 24895.05 268
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Baseline_NR-MVSNet91.20 21990.62 21092.95 25593.83 29588.03 22997.01 14795.12 29188.42 22089.70 22095.13 22283.47 16297.44 29389.66 17783.24 31593.37 320
v114491.37 21090.60 21193.68 22693.89 29388.23 22396.84 16297.03 20388.37 22189.69 22194.39 25582.04 19597.98 23687.80 21285.37 28694.84 280
DP-MVS Recon95.68 7295.12 8297.37 5499.19 3194.19 4097.03 14098.08 6488.35 22295.09 10897.65 9489.97 8399.48 9892.08 13498.59 9798.44 135
tpm90.25 25189.74 24991.76 28793.92 29179.73 32893.98 29393.54 32488.28 22391.99 16893.25 29877.51 26897.44 29387.30 22987.94 26198.12 150
v1091.04 22690.23 22793.49 23394.12 28688.16 22797.32 11697.08 19588.26 22488.29 25894.22 26982.17 19497.97 23986.45 24184.12 30594.33 303
Fast-Effi-MVS+93.46 13492.75 13895.59 13996.77 16190.03 16496.81 16697.13 18888.19 22591.30 18194.27 26486.21 12998.63 17687.66 22096.46 15198.12 150
DWT-MVSNet_test90.76 23689.89 24093.38 23995.04 24983.70 29895.85 23694.30 31788.19 22590.46 19592.80 30273.61 29398.50 18688.16 20590.58 23697.95 157
cl_fuxian91.38 20890.89 19892.88 25795.58 21486.30 26494.68 27196.84 22188.17 22788.83 24794.23 26785.65 13797.47 29089.36 18384.63 29894.89 278
TEST998.70 6094.19 4096.41 19698.02 8888.17 22796.03 7897.56 10592.74 2499.59 67
ETH3 D test640096.16 6195.52 6898.07 1698.90 5195.06 2297.03 14098.21 4088.16 22996.64 5597.70 8991.18 6399.67 4992.44 12499.47 3699.48 41
MDTV_nov1_ep1390.76 20695.22 24080.33 32293.03 31595.28 28288.14 23092.84 15393.83 28081.34 20698.08 22182.86 28394.34 183
MAR-MVS94.22 10893.46 12096.51 8898.00 10892.19 10297.67 8197.47 14988.13 23193.00 14795.84 18684.86 14699.51 9387.99 20898.17 10797.83 165
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
UniMVSNet_ETH3D91.34 21390.22 22994.68 18094.86 26087.86 23497.23 12897.46 15187.99 23289.90 21496.92 13266.35 32798.23 20190.30 16490.99 23197.96 155
PatchMatch-RL92.90 15592.02 16295.56 14098.19 10090.80 14995.27 26197.18 18387.96 23391.86 17195.68 20080.44 22098.99 14684.01 27497.54 12196.89 192
thisisatest051592.29 17691.30 18795.25 15496.60 16688.90 20894.36 28292.32 33287.92 23493.43 13894.57 24677.28 26999.00 14589.42 18295.86 15897.86 162
PVSNet86.66 1892.24 17991.74 17293.73 22197.77 12083.69 29992.88 31696.72 22587.91 23593.00 14794.86 23178.51 25499.05 14286.53 23897.45 12698.47 130
LTVRE_ROB88.41 1390.99 22889.92 23994.19 19896.18 19189.55 18096.31 20997.09 19487.88 23685.67 29895.91 18378.79 25298.57 18281.50 29389.98 24394.44 300
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
cl-mvsnet_90.96 23190.32 22092.89 25695.37 22586.21 26794.46 27896.64 23487.82 23788.15 26394.18 27082.98 17497.54 28387.70 21585.59 28294.92 276
cl-mvsnet190.97 23090.33 21992.88 25795.36 22686.19 26894.46 27896.63 23787.82 23788.18 26294.23 26782.99 17397.53 28587.72 21385.57 28394.93 274
cl-mvsnet291.21 21890.56 21493.14 24996.09 19986.80 25494.41 28096.58 24087.80 23988.58 25293.99 27780.85 21597.62 27789.87 17186.93 27094.99 269
CPTT-MVS95.57 7695.19 7996.70 7799.27 2691.48 12198.33 2198.11 5987.79 24095.17 10698.03 6687.09 11899.61 6293.51 10899.42 4399.02 83
miper_ehance_all_eth91.59 19691.13 19592.97 25495.55 21686.57 26194.47 27696.88 21687.77 24188.88 24494.01 27586.22 12897.54 28389.49 18086.93 27094.79 288
v119291.07 22490.23 22793.58 23093.70 29887.82 23596.73 17197.07 19687.77 24189.58 22494.32 26180.90 21497.97 23986.52 23985.48 28494.95 270
F-COLMAP93.58 13192.98 13195.37 15298.40 7888.98 20697.18 13297.29 17887.75 24390.49 19497.10 12485.21 14199.50 9686.70 23796.72 14497.63 172
131492.81 16192.03 16195.14 15895.33 23189.52 18396.04 22597.44 16187.72 24486.25 29395.33 21483.84 15898.79 16189.26 18797.05 13897.11 185
test-mter90.19 25489.54 25392.12 27494.59 27280.66 31794.29 28692.98 32887.68 24590.76 19192.37 30967.67 32198.07 22488.81 19796.74 14297.63 172
TR-MVS91.48 20490.59 21294.16 20096.40 18187.33 24095.67 24295.34 28187.68 24591.46 17595.52 20976.77 27198.35 19582.85 28493.61 19496.79 196
LF4IMVS87.94 28387.25 28089.98 31292.38 32680.05 32794.38 28195.25 28587.59 24784.34 30894.74 23864.31 33497.66 27384.83 26487.45 26592.23 329
miper_lstm_enhance90.50 24790.06 23691.83 28195.33 23183.74 29593.86 29696.70 23087.56 24887.79 26993.81 28383.45 16496.92 31387.39 22684.62 29994.82 283
TransMVSNet (Re)88.94 27087.56 27793.08 25194.35 28088.45 21897.73 7395.23 28687.47 24984.26 31095.29 21579.86 23297.33 30079.44 31074.44 33893.45 319
v14419291.06 22590.28 22393.39 23893.66 30087.23 24596.83 16397.07 19687.43 25089.69 22194.28 26381.48 20598.00 23587.18 23284.92 29694.93 274
原ACMM196.38 9998.59 6991.09 14097.89 10487.41 25195.22 10597.68 9190.25 7799.54 8587.95 20999.12 7898.49 127
v192192090.85 23490.03 23793.29 24393.55 30186.96 25396.74 17097.04 20187.36 25289.52 22894.34 25880.23 22597.97 23986.27 24285.21 28994.94 272
USDC88.94 27087.83 27592.27 27294.66 26884.96 28393.86 29695.90 25987.34 25383.40 31795.56 20667.43 32398.19 20782.64 28889.67 24793.66 315
PLCcopyleft91.00 694.11 11393.43 12296.13 11398.58 7191.15 13996.69 17697.39 16787.29 25491.37 17796.71 13988.39 9899.52 9287.33 22897.13 13797.73 168
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tfpnnormal89.70 26388.40 26893.60 22895.15 24390.10 16397.56 9398.16 5087.28 25586.16 29494.63 24377.57 26798.05 22774.48 32584.59 30092.65 324
TESTMET0.1,190.06 25689.42 25491.97 27794.41 27980.62 31994.29 28691.97 33687.28 25590.44 19692.47 30868.79 31697.67 27188.50 20396.60 14797.61 176
v124090.70 24189.85 24293.23 24593.51 30486.80 25496.61 18497.02 20487.16 25789.58 22494.31 26279.55 23897.98 23685.52 25785.44 28594.90 277
Patchmatch-RL test87.38 28786.24 28890.81 30188.74 34078.40 33588.12 34193.17 32787.11 25882.17 32089.29 32981.95 19895.60 32988.64 20177.02 33298.41 137
CDPH-MVS95.97 6695.38 7497.77 3598.93 4794.44 3196.35 20497.88 10686.98 25996.65 5497.89 7291.99 4399.47 9992.26 12599.46 3899.39 54
PM-MVS83.48 30681.86 31088.31 31687.83 34377.59 33693.43 30691.75 33786.91 26080.63 32589.91 32644.42 34995.84 32585.17 26376.73 33491.50 335
CR-MVSNet90.82 23589.77 24693.95 21194.45 27787.19 24690.23 33395.68 26786.89 26192.40 15692.36 31280.91 21297.05 30681.09 30093.95 18997.60 177
1112_ss93.37 13692.42 15296.21 11197.05 15190.99 14196.31 20996.72 22586.87 26289.83 21796.69 14386.51 12499.14 13088.12 20693.67 19198.50 125
miper_enhance_ethall91.54 20191.01 19693.15 24895.35 22787.07 25093.97 29496.90 21386.79 26389.17 23993.43 29786.55 12397.64 27489.97 16786.93 27094.74 292
FMVSNet189.88 26088.31 26994.59 18195.41 22191.18 13697.50 9796.93 20986.62 26487.41 27694.51 24865.94 33197.29 30283.04 28287.43 26695.31 255
CHOSEN 280x42093.12 14492.72 14094.34 19396.71 16487.27 24290.29 33297.72 12286.61 26591.34 17895.29 21584.29 15498.41 19093.25 11598.94 8697.35 183
MVS_030488.79 27487.57 27692.46 26694.65 26986.15 27096.40 19997.17 18586.44 26688.02 26691.71 32156.68 34397.03 30784.47 27092.58 20494.19 308
MIMVSNet88.50 27886.76 28693.72 22394.84 26187.77 23691.39 32594.05 31986.41 26787.99 26792.59 30663.27 33595.82 32677.44 31692.84 20097.57 179
tpmvs89.83 26289.15 26091.89 27994.92 25580.30 32393.11 31395.46 27486.28 26888.08 26492.65 30480.44 22098.52 18581.47 29489.92 24496.84 194
PAPM91.52 20290.30 22295.20 15595.30 23589.83 17393.38 30896.85 22086.26 26988.59 25195.80 18984.88 14598.15 21075.67 32495.93 15697.63 172
VDDNet93.05 14792.07 15996.02 11896.84 15690.39 16298.08 4295.85 26186.22 27095.79 8998.46 2667.59 32299.19 12394.92 7894.85 17498.47 130
MS-PatchMatch90.27 25089.77 24691.78 28594.33 28184.72 28795.55 24796.73 22486.17 27186.36 29295.28 21771.28 30297.80 26184.09 27398.14 10892.81 323
MVP-Stereo90.74 23990.08 23392.71 26293.19 31288.20 22495.86 23596.27 24886.07 27284.86 30594.76 23677.84 26597.75 26683.88 27798.01 11092.17 331
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Anonymous20240521192.07 18590.83 20495.76 12798.19 10088.75 21097.58 9195.00 29586.00 27393.64 13197.45 10966.24 32999.53 8890.68 16092.71 20199.01 87
CVMVSNet91.23 21791.75 17089.67 31495.77 20874.69 34096.44 19294.88 30185.81 27492.18 16497.64 9779.07 24395.58 33088.06 20795.86 15898.74 110
our_test_388.78 27587.98 27491.20 29692.45 32482.53 30693.61 30595.69 26585.77 27584.88 30493.71 28579.99 22996.78 31779.47 30886.24 27694.28 306
MSDG91.42 20690.24 22694.96 16797.15 14388.91 20793.69 30196.32 24685.72 27686.93 28796.47 15980.24 22498.98 14780.57 30195.05 17396.98 187
CHOSEN 1792x268894.15 11093.51 11896.06 11698.27 8989.38 19095.18 26598.48 1485.60 27793.76 13097.11 12383.15 16899.61 6291.33 15198.72 9299.19 68
AllTest90.23 25288.98 26193.98 20797.94 11186.64 25796.51 19195.54 27285.38 27885.49 30096.77 13770.28 30999.15 12880.02 30492.87 19896.15 211
TestCases93.98 20797.94 11186.64 25795.54 27285.38 27885.49 30096.77 13770.28 30999.15 12880.02 30492.87 19896.15 211
Test_1112_low_res92.84 15991.84 16895.85 12597.04 15289.97 17095.53 24996.64 23485.38 27889.65 22395.18 21985.86 13499.10 13387.70 21593.58 19698.49 127
EU-MVSNet88.72 27688.90 26288.20 31793.15 31374.21 34196.63 18394.22 31885.18 28187.32 27995.97 17976.16 27694.98 33485.27 26086.17 27795.41 244
LS3D93.57 13292.61 14496.47 9197.59 13091.61 11697.67 8197.72 12285.17 28290.29 19998.34 4184.60 14899.73 3283.85 27898.27 10398.06 154
dp88.90 27288.26 27190.81 30194.58 27476.62 33792.85 31794.93 29985.12 28390.07 21293.07 29975.81 27798.12 21480.53 30287.42 26797.71 169
HyFIR lowres test93.66 12892.92 13395.87 12498.24 9389.88 17294.58 27398.49 1285.06 28493.78 12995.78 19382.86 17798.67 17391.77 14095.71 16299.07 82
new-patchmatchnet83.18 30781.87 30987.11 32186.88 34575.99 33993.70 30095.18 28885.02 28577.30 33588.40 33265.99 33093.88 33974.19 32970.18 34291.47 336
TDRefinement86.53 29384.76 30091.85 28082.23 34884.25 29096.38 20295.35 27884.97 28684.09 31394.94 22665.76 33298.34 19784.60 26974.52 33792.97 321
OpenMVScopyleft89.19 1292.86 15791.68 17396.40 9695.34 22892.73 8398.27 2698.12 5684.86 28785.78 29797.75 8678.89 25199.74 3187.50 22598.65 9596.73 197
gm-plane-assit93.22 31178.89 33484.82 28893.52 29298.64 17587.72 213
PMMVS92.86 15792.34 15394.42 19094.92 25586.73 25694.53 27596.38 24484.78 28994.27 11995.12 22383.13 16998.40 19191.47 14996.49 14998.12 150
pmmvs490.93 23289.85 24294.17 19993.34 30990.79 15094.60 27296.02 25684.62 29087.45 27495.15 22081.88 20097.45 29287.70 21587.87 26294.27 307
MDA-MVSNet-bldmvs85.00 30382.95 30791.17 29793.13 31483.33 30194.56 27495.00 29584.57 29165.13 34592.65 30470.45 30795.85 32473.57 33077.49 33194.33 303
QAPM93.45 13592.27 15696.98 7496.77 16192.62 8698.39 1998.12 5684.50 29288.27 25997.77 8582.39 19099.81 2685.40 25998.81 8998.51 124
ppachtmachnet_test88.35 28087.29 27991.53 29092.45 32483.57 30093.75 29995.97 25784.28 29385.32 30394.18 27079.00 25096.93 31275.71 32384.99 29594.10 309
pmmvs589.86 26188.87 26392.82 25992.86 31686.23 26696.26 21395.39 27584.24 29487.12 28194.51 24874.27 28797.36 29987.61 22387.57 26494.86 279
CostFormer91.18 22390.70 20892.62 26594.84 26181.76 31294.09 29294.43 31184.15 29592.72 15493.77 28479.43 23998.20 20590.70 15992.18 21197.90 159
FMVSNet587.29 28985.79 29291.78 28594.80 26387.28 24195.49 25095.28 28284.09 29683.85 31691.82 31862.95 33694.17 33778.48 31385.34 28793.91 313
MIMVSNet184.93 30483.05 30690.56 30689.56 33884.84 28695.40 25395.35 27883.91 29780.38 32792.21 31657.23 34193.34 34170.69 33982.75 32193.50 317
RPSCF90.75 23890.86 20090.42 30896.84 15676.29 33895.61 24696.34 24583.89 29891.38 17697.87 7576.45 27398.78 16287.16 23392.23 20896.20 207
MDTV_nov1_ep13_2view70.35 34593.10 31483.88 29993.55 13382.47 18886.25 24398.38 140
无先验95.79 23997.87 10883.87 30099.65 5387.68 21898.89 100
PVSNet_082.17 1985.46 30283.64 30590.92 29995.27 23679.49 32990.55 33195.60 26983.76 30183.00 31889.95 32571.09 30397.97 23982.75 28660.79 34695.31 255
TinyColmap86.82 29285.35 29691.21 29594.91 25882.99 30493.94 29594.02 32183.58 30281.56 32194.68 24062.34 33898.13 21175.78 32287.35 26992.52 326
Anonymous2023120687.09 29086.14 29089.93 31391.22 33180.35 32196.11 22295.35 27883.57 30384.16 31193.02 30073.54 29495.61 32872.16 33386.14 27893.84 314
pmmvs-eth3d86.22 29684.45 30191.53 29088.34 34187.25 24394.47 27695.01 29483.47 30479.51 33289.61 32869.75 31495.71 32783.13 28176.73 33491.64 332
EG-PatchMatch MVS87.02 29185.44 29491.76 28792.67 32085.00 28296.08 22496.45 24283.41 30579.52 33193.49 29357.10 34297.72 26879.34 31190.87 23492.56 325
ADS-MVSNet289.45 26588.59 26692.03 27695.86 20382.26 31090.93 32894.32 31683.23 30691.28 18491.81 31979.01 24895.99 32379.52 30691.39 22497.84 163
ADS-MVSNet89.89 25988.68 26593.53 23295.86 20384.89 28590.93 32895.07 29383.23 30691.28 18491.81 31979.01 24897.85 25679.52 30691.39 22497.84 163
COLMAP_ROBcopyleft87.81 1590.40 24889.28 25793.79 22097.95 11087.13 24996.92 15595.89 26082.83 30886.88 28997.18 11973.77 29299.29 11778.44 31493.62 19394.95 270
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
testdata95.46 15098.18 10288.90 20897.66 12882.73 30997.03 4798.07 6390.06 8198.85 15789.67 17698.98 8498.64 117
DP-MVS92.76 16291.51 18196.52 8598.77 5790.99 14197.38 11196.08 25582.38 31089.29 23597.87 7583.77 15999.69 4481.37 29896.69 14598.89 100
MDA-MVSNet_test_wron85.87 29984.23 30390.80 30392.38 32682.57 30593.17 31095.15 28982.15 31167.65 34292.33 31578.20 25895.51 33177.33 31779.74 32794.31 305
YYNet185.87 29984.23 30390.78 30492.38 32682.46 30893.17 31095.14 29082.12 31267.69 34192.36 31278.16 26195.50 33277.31 31879.73 32894.39 301
PatchT88.87 27387.42 27893.22 24694.08 28885.10 28189.51 33794.64 30881.92 31392.36 15988.15 33580.05 22897.01 31072.43 33293.65 19297.54 180
TAPA-MVS90.10 792.30 17591.22 19295.56 14098.33 8589.60 17796.79 16797.65 13081.83 31491.52 17497.23 11887.94 10298.91 15371.31 33698.37 10198.17 148
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
旧先验295.94 23281.66 31597.34 3498.82 15992.26 125
新几何197.32 5698.60 6893.59 6197.75 11781.58 31695.75 9097.85 7890.04 8299.67 4986.50 24099.13 7598.69 115
112194.71 10293.83 10797.34 5598.57 7293.64 6096.04 22597.73 11981.56 31795.68 9397.85 7890.23 7899.65 5387.68 21899.12 7898.73 111
Patchmatch-test89.42 26687.99 27393.70 22495.27 23685.11 28088.98 33994.37 31481.11 31887.10 28393.69 28682.28 19197.50 28874.37 32794.76 17798.48 129
test_040286.46 29484.79 29991.45 29295.02 25085.55 27596.29 21194.89 30080.90 31982.21 31993.97 27868.21 32097.29 30262.98 34488.68 25791.51 334
gg-mvs-nofinetune87.82 28485.61 29394.44 18894.46 27689.27 19991.21 32784.61 35080.88 32089.89 21674.98 34471.50 30097.53 28585.75 25597.21 13496.51 201
JIA-IIPM88.26 28187.04 28591.91 27893.52 30381.42 31389.38 33894.38 31380.84 32190.93 19080.74 34279.22 24297.92 25082.76 28591.62 21996.38 205
Patchmtry88.64 27787.25 28092.78 26194.09 28786.64 25789.82 33695.68 26780.81 32287.63 27392.36 31280.91 21297.03 30778.86 31285.12 29194.67 294
tpm289.96 25789.21 25892.23 27394.91 25881.25 31493.78 29894.42 31280.62 32391.56 17393.44 29576.44 27497.94 24685.60 25692.08 21597.49 181
pmmvs687.81 28586.19 28992.69 26391.32 33086.30 26497.34 11396.41 24380.59 32484.05 31494.37 25767.37 32497.67 27184.75 26679.51 32994.09 311
Anonymous2023121190.63 24389.42 25494.27 19598.24 9389.19 20298.05 4497.89 10479.95 32588.25 26094.96 22572.56 29698.13 21189.70 17585.14 29095.49 237
cascas91.20 21990.08 23394.58 18594.97 25189.16 20393.65 30397.59 13679.90 32689.40 23092.92 30175.36 28298.36 19492.14 13094.75 17896.23 206
Anonymous2024052991.98 18790.73 20795.73 13298.14 10389.40 18997.99 4797.72 12279.63 32793.54 13497.41 11169.94 31299.56 8091.04 15691.11 22898.22 146
PCF-MVS89.48 1191.56 19989.95 23896.36 10196.60 16692.52 8992.51 32197.26 17979.41 32888.90 24296.56 15584.04 15799.55 8377.01 32097.30 13197.01 186
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test22298.24 9392.21 9995.33 25697.60 13479.22 32995.25 10497.84 8188.80 9299.15 7398.72 112
UnsupCasMVSNet_bld82.13 31079.46 31390.14 31188.00 34282.47 30790.89 33096.62 23978.94 33075.61 33684.40 34056.63 34496.31 32177.30 31966.77 34591.63 333
N_pmnet78.73 31278.71 31478.79 32792.80 31846.50 35694.14 29043.71 35878.61 33180.83 32391.66 32274.94 28496.36 32067.24 34184.45 30293.50 317
ANet_high63.94 31759.58 32077.02 32861.24 35666.06 34885.66 34487.93 34678.53 33242.94 35071.04 34725.42 35680.71 34952.60 34730.83 35084.28 342
test_part189.59 26488.03 27294.27 19595.32 23489.42 18898.03 4697.58 13778.01 33386.10 29694.59 24569.87 31398.01 23389.88 17082.85 31995.40 248
114514_t93.95 11993.06 13096.63 8099.07 3991.61 11697.46 10497.96 10077.99 33493.00 14797.57 10386.14 13299.33 11389.22 18999.15 7398.94 94
DSMNet-mixed86.34 29586.12 29187.00 32289.88 33670.43 34494.93 26890.08 34377.97 33585.42 30292.78 30374.44 28693.96 33874.43 32695.14 16996.62 199
RPMNet88.98 26987.05 28494.77 17794.45 27787.19 24690.23 33398.03 8477.87 33692.40 15687.55 33780.17 22699.51 9368.84 34093.95 18997.60 177
new_pmnet82.89 30881.12 31288.18 31889.63 33780.18 32591.77 32492.57 33176.79 33775.56 33888.23 33461.22 33994.48 33571.43 33582.92 31889.87 339
tpm cat188.36 27987.21 28291.81 28395.13 24580.55 32092.58 32095.70 26474.97 33887.45 27491.96 31778.01 26498.17 20980.39 30388.74 25596.72 198
CMPMVSbinary62.92 2185.62 30184.92 29887.74 31989.14 33973.12 34394.17 28996.80 22373.98 33973.65 33994.93 22766.36 32697.61 27883.95 27691.28 22692.48 327
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OpenMVS_ROBcopyleft81.14 2084.42 30582.28 30890.83 30090.06 33484.05 29495.73 24194.04 32073.89 34080.17 33091.53 32359.15 34097.64 27466.92 34289.05 25190.80 337
MVS91.71 19290.44 21695.51 14495.20 24291.59 11896.04 22597.45 15773.44 34187.36 27895.60 20385.42 13999.10 13385.97 25197.46 12295.83 224
pmmvs379.97 31177.50 31587.39 32082.80 34779.38 33192.70 31990.75 34270.69 34278.66 33387.47 33851.34 34793.40 34073.39 33169.65 34389.38 340
MVS-HIRNet82.47 30981.21 31186.26 32495.38 22369.21 34788.96 34089.49 34466.28 34380.79 32474.08 34668.48 31897.39 29771.93 33495.47 16492.18 330
DeepMVS_CXcopyleft74.68 33190.84 33264.34 35181.61 35365.34 34467.47 34388.01 33648.60 34880.13 35062.33 34573.68 34079.58 344
PMMVS270.19 31566.92 31880.01 32676.35 34965.67 34986.22 34287.58 34764.83 34562.38 34680.29 34326.78 35588.49 34663.79 34354.07 34785.88 341
FPMVS71.27 31469.85 31675.50 32974.64 35059.03 35291.30 32691.50 33958.80 34657.92 34788.28 33329.98 35385.53 34853.43 34682.84 32081.95 343
LCM-MVSNet72.55 31369.39 31782.03 32570.81 35465.42 35090.12 33594.36 31555.02 34765.88 34481.72 34124.16 35789.96 34474.32 32868.10 34490.71 338
Gipumacopyleft67.86 31665.41 31975.18 33092.66 32173.45 34266.50 35094.52 31053.33 34857.80 34866.07 34830.81 35189.20 34548.15 34878.88 33062.90 347
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft53.92 2258.58 31855.40 32168.12 33251.00 35748.64 35478.86 34787.10 34946.77 34935.84 35474.28 3458.76 35886.34 34742.07 34973.91 33969.38 345
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN53.28 31952.56 32355.43 33474.43 35147.13 35583.63 34676.30 35442.23 35042.59 35162.22 35028.57 35474.40 35131.53 35131.51 34944.78 348
EMVS52.08 32151.31 32454.39 33572.62 35345.39 35783.84 34575.51 35541.13 35140.77 35259.65 35130.08 35273.60 35228.31 35229.90 35144.18 349
MVEpermissive50.73 2353.25 32048.81 32566.58 33365.34 35557.50 35372.49 34970.94 35640.15 35239.28 35363.51 3496.89 36073.48 35338.29 35042.38 34868.76 346
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt51.94 32253.82 32246.29 33633.73 35845.30 35878.32 34867.24 35718.02 35350.93 34987.05 33952.99 34653.11 35470.76 33825.29 35240.46 350
wuyk23d25.11 32324.57 32726.74 33773.98 35239.89 35957.88 3519.80 35912.27 35410.39 3556.97 3577.03 35936.44 35525.43 35317.39 3533.89 353
testmvs13.36 32516.33 3284.48 3395.04 3592.26 36193.18 3093.28 3602.70 3558.24 35621.66 3532.29 3622.19 3567.58 3542.96 3549.00 352
test12313.04 32615.66 3295.18 3384.51 3603.45 36092.50 3221.81 3612.50 3567.58 35720.15 3543.67 3612.18 3577.13 3551.07 3559.90 351
uanet_test0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
cdsmvs_eth3d_5k23.24 32430.99 3260.00 3400.00 3610.00 3620.00 35297.63 1320.00 3570.00 35896.88 13484.38 1510.00 3580.00 3560.00 3560.00 354
pcd_1.5k_mvsjas7.39 3289.85 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 35888.65 940.00 3580.00 3560.00 3560.00 354
sosnet-low-res0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
uncertanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
Regformer0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
ab-mvs-re8.06 32710.74 3300.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 35896.69 1430.00 3630.00 3580.00 3560.00 3560.00 354
uanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
OPU-MVS98.55 198.82 5696.86 198.25 2898.26 5396.04 199.24 12095.36 6699.59 1599.56 22
test_0728_SECOND98.51 299.45 295.93 398.21 3498.28 2699.86 897.52 299.67 699.75 3
GSMVS98.45 132
test_part299.28 2595.74 698.10 17
sam_mvs182.76 18098.45 132
sam_mvs81.94 199
ambc86.56 32383.60 34670.00 34685.69 34394.97 29780.60 32688.45 33137.42 35096.84 31582.69 28775.44 33692.86 322
MTGPAbinary98.08 64
test_post192.81 31816.58 35680.53 21897.68 27086.20 244
test_post17.58 35581.76 20198.08 221
patchmatchnet-post90.45 32482.65 18498.10 216
GG-mvs-BLEND93.62 22793.69 29989.20 20092.39 32383.33 35187.98 26889.84 32771.00 30496.87 31482.08 29195.40 16694.80 286
MTMP97.86 5982.03 352
test9_res94.81 8399.38 4899.45 45
agg_prior293.94 9999.38 4899.50 37
agg_prior98.67 6293.79 5598.00 9395.68 9399.57 78
test_prior493.66 5996.42 195
test_prior97.23 6298.67 6292.99 7698.00 9399.41 10699.29 62
新几何295.79 239
旧先验198.38 8193.38 6797.75 11798.09 6292.30 3899.01 8399.16 70
原ACMM295.67 242
testdata299.67 4985.96 252
segment_acmp92.89 22
test1297.65 4498.46 7494.26 3797.66 12895.52 10290.89 6999.46 10099.25 6599.22 67
plane_prior796.21 18889.98 169
plane_prior696.10 19890.00 16581.32 207
plane_prior597.51 14498.60 17993.02 11992.23 20895.86 220
plane_prior496.64 146
plane_prior196.14 196
n20.00 362
nn0.00 362
door-mid91.06 341
lessismore_v090.45 30791.96 32979.09 33387.19 34880.32 32894.39 25566.31 32897.55 28284.00 27576.84 33394.70 293
test1197.88 106
door91.13 340
HQP5-MVS89.33 193
BP-MVS92.13 131
HQP4-MVS90.14 20198.50 18695.78 227
HQP3-MVS97.39 16792.10 213
HQP2-MVS80.95 210
NP-MVS95.99 20289.81 17495.87 184
ACMMP++_ref90.30 241
ACMMP++91.02 230
Test By Simon88.73 93