EPNet | | | 95.20 90 | 94.56 97 | 97.14 71 | 92.80 333 | 92.68 89 | 97.85 70 | 94.87 320 | 96.64 1 | 92.46 167 | 97.80 92 | 86.23 133 | 99.65 57 | 93.72 115 | 98.62 103 | 99.10 87 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
NCCC | | | 97.30 15 | 97.03 17 | 98.11 17 | 98.77 60 | 95.06 26 | 97.34 122 | 98.04 85 | 95.96 2 | 97.09 50 | 97.88 82 | 93.18 24 | 99.71 42 | 95.84 58 | 99.17 79 | 99.56 27 |
|
CNVR-MVS | | | 97.68 6 | 97.44 9 | 98.37 7 | 98.90 54 | 95.86 6 | 97.27 130 | 98.08 68 | 95.81 3 | 97.87 28 | 98.31 50 | 94.26 13 | 99.68 51 | 97.02 16 | 99.49 39 | 99.57 24 |
|
HPM-MVS++ |  | | 97.34 14 | 96.97 20 | 98.47 5 | 99.08 40 | 96.16 4 | 97.55 103 | 97.97 103 | 95.59 4 | 96.61 66 | 97.89 80 | 92.57 34 | 99.84 23 | 95.95 53 | 99.51 33 | 99.40 58 |
|
MSP-MVS | | | 97.59 8 | 97.54 6 | 97.73 41 | 99.40 12 | 93.77 62 | 98.53 13 | 98.29 26 | 95.55 5 | 98.56 14 | 97.81 90 | 93.90 15 | 99.65 57 | 96.62 27 | 99.21 74 | 99.77 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DeepPCF-MVS | | 93.97 1 | 96.61 51 | 97.09 14 | 95.15 165 | 98.09 113 | 86.63 271 | 96.00 242 | 98.15 55 | 95.43 6 | 97.95 24 | 98.56 20 | 93.40 20 | 99.36 117 | 96.77 24 | 99.48 40 | 99.45 50 |
|
CANet | | | 96.39 60 | 96.02 64 | 97.50 53 | 97.62 139 | 93.38 71 | 97.02 152 | 97.96 104 | 95.42 7 | 94.86 120 | 97.81 90 | 87.38 120 | 99.82 29 | 96.88 19 | 99.20 75 | 99.29 67 |
|
xxxxxxxxxxxxxcwj | | | 97.36 12 | 97.20 12 | 97.83 29 | 98.91 52 | 94.28 39 | 97.02 152 | 97.22 191 | 95.35 8 | 98.27 18 | 98.65 16 | 93.33 21 | 99.72 39 | 96.49 32 | 99.52 29 | 99.51 39 |
|
save fliter | | | | | | 98.91 52 | 94.28 39 | 97.02 152 | 98.02 92 | 95.35 8 | | | | | | | |
|
SteuartSystems-ACMMP | | | 97.62 7 | 97.53 7 | 97.87 27 | 98.39 86 | 94.25 42 | 98.43 21 | 98.27 31 | 95.34 10 | 98.11 20 | 98.56 20 | 94.53 12 | 99.71 42 | 96.57 30 | 99.62 15 | 99.65 12 |
Skip Steuart: Steuart Systems R&D Blog. |
CS-MVS-test | | | 96.47 56 | 96.62 43 | 96.01 124 | 98.18 108 | 90.40 168 | 98.40 23 | 97.65 138 | 95.33 11 | 97.02 54 | 96.79 147 | 89.98 87 | 98.72 177 | 97.06 13 | 99.18 77 | 98.91 106 |
|
CS-MVS | | | 96.79 44 | 97.05 16 | 96.00 125 | 98.17 110 | 90.38 170 | 99.09 3 | 97.89 109 | 95.31 12 | 97.02 54 | 98.02 74 | 91.74 52 | 98.71 179 | 97.06 13 | 99.18 77 | 98.90 108 |
|
Regformer-2 | | | 97.16 19 | 96.99 19 | 97.67 46 | 98.32 92 | 93.84 57 | 96.83 173 | 98.10 65 | 95.24 13 | 97.49 31 | 98.25 58 | 92.57 34 | 99.61 66 | 96.80 21 | 99.29 62 | 99.56 27 |
|
DELS-MVS | | | 96.61 51 | 96.38 56 | 97.30 60 | 97.79 129 | 93.19 77 | 95.96 244 | 98.18 50 | 95.23 14 | 95.87 95 | 97.65 103 | 91.45 60 | 99.70 47 | 95.87 54 | 99.44 47 | 99.00 98 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
Regformer-1 | | | 97.10 21 | 96.96 21 | 97.54 52 | 98.32 92 | 93.48 68 | 96.83 173 | 97.99 101 | 95.20 15 | 97.46 32 | 98.25 58 | 92.48 38 | 99.58 75 | 96.79 23 | 99.29 62 | 99.55 31 |
|
h-mvs33 | | | 94.15 114 | 93.52 122 | 96.04 121 | 97.81 127 | 90.22 172 | 97.62 98 | 97.58 146 | 95.19 16 | 96.74 57 | 97.45 118 | 83.67 168 | 99.61 66 | 95.85 56 | 79.73 341 | 98.29 157 |
|
hse-mvs2 | | | 93.45 141 | 92.99 137 | 94.81 183 | 97.02 165 | 88.59 223 | 96.69 187 | 96.47 252 | 95.19 16 | 96.74 57 | 96.16 187 | 83.67 168 | 98.48 200 | 95.85 56 | 79.13 345 | 97.35 196 |
|
DPE-MVS |  | | 97.86 4 | 97.65 5 | 98.47 5 | 99.17 34 | 95.78 7 | 97.21 139 | 98.35 20 | 95.16 18 | 98.71 12 | 98.80 11 | 95.05 10 | 99.89 4 | 96.70 26 | 99.73 1 | 99.73 9 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
test_one_0601 | | | | | | 99.32 24 | 95.20 21 | | 98.25 36 | 95.13 19 | 98.48 16 | 98.87 6 | 95.16 7 | | | | |
|
SED-MVS | | | 98.05 2 | 97.99 1 | 98.24 10 | 99.42 7 | 95.30 18 | 98.25 34 | 98.27 31 | 95.13 19 | 99.19 1 | 98.89 4 | 95.54 5 | 99.85 18 | 97.52 5 | 99.66 10 | 99.56 27 |
|
test_241102_TWO | | | | | | | | | 98.27 31 | 95.13 19 | 98.93 6 | 98.89 4 | 94.99 11 | 99.85 18 | 97.52 5 | 99.65 12 | 99.74 7 |
|
Regformer-4 | | | 96.97 30 | 96.87 24 | 97.25 64 | 98.34 89 | 92.66 90 | 96.96 161 | 98.01 95 | 95.12 22 | 97.14 46 | 98.42 34 | 91.82 50 | 99.61 66 | 96.90 18 | 99.13 82 | 99.50 42 |
|
test_241102_ONE | | | | | | 99.42 7 | 95.30 18 | | 98.27 31 | 95.09 23 | 99.19 1 | 98.81 10 | 95.54 5 | 99.65 57 | | | |
|
zzz-MVS | | | 97.07 23 | 96.77 35 | 97.97 25 | 99.37 17 | 94.42 36 | 97.15 145 | 98.08 68 | 95.07 24 | 96.11 85 | 98.59 18 | 90.88 75 | 99.90 2 | 96.18 46 | 99.50 36 | 99.58 22 |
|
MTAPA | | | 97.08 22 | 96.78 34 | 97.97 25 | 99.37 17 | 94.42 36 | 97.24 132 | 98.08 68 | 95.07 24 | 96.11 85 | 98.59 18 | 90.88 75 | 99.90 2 | 96.18 46 | 99.50 36 | 99.58 22 |
|
Regformer-3 | | | 96.85 39 | 96.80 32 | 97.01 75 | 98.34 89 | 92.02 113 | 96.96 161 | 97.76 122 | 95.01 26 | 97.08 51 | 98.42 34 | 91.71 54 | 99.54 90 | 96.80 21 | 99.13 82 | 99.48 46 |
|
FOURS1 | | | | | | 99.55 1 | 93.34 74 | 99.29 1 | 98.35 20 | 94.98 27 | 98.49 15 | | | | | | |
|
DVP-MVS |  | | 97.91 3 | 97.81 3 | 98.22 12 | 99.45 3 | 95.36 13 | 98.21 41 | 97.85 118 | 94.92 28 | 98.73 10 | 98.87 6 | 95.08 8 | 99.84 23 | 97.52 5 | 99.67 6 | 99.48 46 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 99.45 3 | 95.36 13 | 98.31 27 | 98.29 26 | 94.92 28 | 98.99 4 | 98.92 2 | 95.08 8 | | | | |
|
XVS | | | 97.18 17 | 96.96 21 | 97.81 33 | 99.38 15 | 94.03 54 | 98.59 11 | 98.20 46 | 94.85 30 | 96.59 68 | 98.29 53 | 91.70 55 | 99.80 31 | 95.66 62 | 99.40 50 | 99.62 16 |
|
X-MVStestdata | | | 91.71 203 | 89.67 263 | 97.81 33 | 99.38 15 | 94.03 54 | 98.59 11 | 98.20 46 | 94.85 30 | 96.59 68 | 32.69 372 | 91.70 55 | 99.80 31 | 95.66 62 | 99.40 50 | 99.62 16 |
|
HQP_MVS | | | 93.78 131 | 93.43 127 | 94.82 181 | 96.21 204 | 89.99 177 | 97.74 79 | 97.51 153 | 94.85 30 | 91.34 192 | 96.64 158 | 81.32 216 | 98.60 188 | 93.02 131 | 92.23 219 | 95.86 234 |
|
plane_prior2 | | | | | | | | 97.74 79 | | 94.85 30 | | | | | | | |
|
SD-MVS | | | 97.41 10 | 97.53 7 | 97.06 74 | 98.57 78 | 94.46 34 | 97.92 64 | 98.14 57 | 94.82 34 | 99.01 3 | 98.55 22 | 94.18 14 | 97.41 310 | 96.94 17 | 99.64 13 | 99.32 65 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
UA-Net | | | 95.95 72 | 95.53 71 | 97.20 69 | 97.67 134 | 92.98 83 | 97.65 92 | 98.13 58 | 94.81 35 | 96.61 66 | 98.35 41 | 88.87 96 | 99.51 98 | 90.36 177 | 97.35 139 | 99.11 86 |
|
DeepC-MVS_fast | | 93.89 2 | 96.93 34 | 96.64 42 | 97.78 36 | 98.64 73 | 94.30 38 | 97.41 114 | 98.04 85 | 94.81 35 | 96.59 68 | 98.37 39 | 91.24 66 | 99.64 65 | 95.16 78 | 99.52 29 | 99.42 57 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DVP-MVS++ | | | 98.06 1 | 97.99 1 | 98.28 9 | 98.67 65 | 95.39 11 | 99.29 1 | 98.28 28 | 94.78 37 | 98.93 6 | 98.87 6 | 96.04 2 | 99.86 9 | 97.45 9 | 99.58 22 | 99.59 20 |
|
test_0728_THIRD | | | | | | | | | | 94.78 37 | 98.73 10 | 98.87 6 | 95.87 4 | 99.84 23 | 97.45 9 | 99.72 2 | 99.77 1 |
|
APDe-MVS | | | 97.82 5 | 97.73 4 | 98.08 18 | 99.15 35 | 94.82 29 | 98.81 6 | 98.30 25 | 94.76 39 | 98.30 17 | 98.90 3 | 93.77 17 | 99.68 51 | 97.93 1 | 99.69 3 | 99.75 5 |
|
EI-MVSNet-Vis-set | | | 96.51 54 | 96.47 51 | 96.63 83 | 98.24 99 | 91.20 140 | 96.89 168 | 97.73 126 | 94.74 40 | 96.49 72 | 98.49 27 | 90.88 75 | 99.58 75 | 96.44 34 | 98.32 112 | 99.13 82 |
|
patch_mono-2 | | | 96.83 41 | 97.44 9 | 95.01 171 | 99.05 43 | 85.39 291 | 96.98 159 | 98.77 5 | 94.70 41 | 97.99 23 | 98.66 14 | 93.61 19 | 99.91 1 | 97.67 4 | 99.50 36 | 99.72 10 |
|
EI-MVSNet-UG-set | | | 96.34 61 | 96.30 57 | 96.47 94 | 98.20 104 | 90.93 151 | 96.86 169 | 97.72 129 | 94.67 42 | 96.16 84 | 98.46 29 | 90.43 81 | 99.58 75 | 96.23 39 | 97.96 122 | 98.90 108 |
|
MSLP-MVS++ | | | 96.94 33 | 97.06 15 | 96.59 86 | 98.72 62 | 91.86 117 | 97.67 89 | 98.49 13 | 94.66 43 | 97.24 41 | 98.41 37 | 92.31 41 | 98.94 157 | 96.61 28 | 99.46 43 | 98.96 100 |
|
3Dnovator+ | | 91.43 4 | 95.40 82 | 94.48 102 | 98.16 15 | 96.90 170 | 95.34 16 | 98.48 19 | 97.87 114 | 94.65 44 | 88.53 269 | 98.02 74 | 83.69 167 | 99.71 42 | 93.18 126 | 98.96 93 | 99.44 52 |
|
ETV-MVS | | | 96.02 69 | 95.89 67 | 96.40 99 | 97.16 153 | 92.44 97 | 97.47 111 | 97.77 121 | 94.55 45 | 96.48 73 | 94.51 262 | 91.23 67 | 98.92 158 | 95.65 65 | 98.19 115 | 97.82 178 |
|
canonicalmvs | | | 96.02 69 | 95.45 75 | 97.75 40 | 97.59 142 | 95.15 25 | 98.28 30 | 97.60 143 | 94.52 46 | 96.27 81 | 96.12 188 | 87.65 113 | 99.18 130 | 96.20 45 | 94.82 187 | 98.91 106 |
|
plane_prior3 | | | | | | | 90.00 175 | | | 94.46 47 | 91.34 192 | | | | | | |
|
DROMVSNet | | | 96.42 58 | 96.47 51 | 96.26 111 | 97.01 166 | 91.52 127 | 98.89 4 | 97.75 123 | 94.42 48 | 96.64 64 | 97.68 99 | 89.32 91 | 98.60 188 | 97.45 9 | 99.11 87 | 98.67 128 |
|
UGNet | | | 94.04 122 | 93.28 132 | 96.31 106 | 96.85 171 | 91.19 141 | 97.88 66 | 97.68 134 | 94.40 49 | 93.00 159 | 96.18 184 | 73.39 308 | 99.61 66 | 91.72 153 | 98.46 109 | 98.13 161 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
alignmvs | | | 95.87 74 | 95.23 82 | 97.78 36 | 97.56 145 | 95.19 22 | 97.86 67 | 97.17 194 | 94.39 50 | 96.47 74 | 96.40 176 | 85.89 139 | 99.20 127 | 96.21 44 | 95.11 183 | 98.95 102 |
|
CANet_DTU | | | 94.37 109 | 93.65 117 | 96.55 87 | 96.46 194 | 92.13 109 | 96.21 231 | 96.67 242 | 94.38 51 | 93.53 147 | 97.03 138 | 79.34 249 | 99.71 42 | 90.76 171 | 98.45 110 | 97.82 178 |
|
Vis-MVSNet |  | | 95.23 88 | 94.81 90 | 96.51 91 | 97.18 152 | 91.58 125 | 98.26 33 | 98.12 60 | 94.38 51 | 94.90 119 | 98.15 66 | 82.28 200 | 98.92 158 | 91.45 162 | 98.58 105 | 99.01 95 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
MVS_111021_HR | | | 96.68 50 | 96.58 46 | 96.99 76 | 98.46 80 | 92.31 102 | 96.20 232 | 98.90 2 | 94.30 53 | 95.86 96 | 97.74 95 | 92.33 39 | 99.38 116 | 96.04 51 | 99.42 48 | 99.28 70 |
|
TSAR-MVS + GP. | | | 96.69 48 | 96.49 50 | 97.27 63 | 98.31 94 | 93.39 70 | 96.79 177 | 96.72 234 | 94.17 54 | 97.44 34 | 97.66 102 | 92.76 27 | 99.33 118 | 96.86 20 | 97.76 128 | 99.08 88 |
|
3Dnovator | | 91.36 5 | 95.19 91 | 94.44 104 | 97.44 55 | 96.56 187 | 93.36 73 | 98.65 10 | 98.36 17 | 94.12 55 | 89.25 253 | 98.06 71 | 82.20 202 | 99.77 33 | 93.41 122 | 99.32 58 | 99.18 77 |
|
plane_prior | | | | | | | 89.99 177 | 97.24 132 | | 94.06 56 | | | | | | 92.16 223 | |
|
casdiffmvs | | | 95.64 77 | 95.49 73 | 96.08 117 | 96.76 179 | 90.45 165 | 97.29 129 | 97.44 170 | 94.00 57 | 95.46 113 | 97.98 78 | 87.52 117 | 98.73 174 | 95.64 66 | 97.33 140 | 99.08 88 |
|
MVS_111021_LR | | | 96.24 64 | 96.19 62 | 96.39 101 | 98.23 103 | 91.35 133 | 96.24 230 | 98.79 4 | 93.99 58 | 95.80 98 | 97.65 103 | 89.92 89 | 99.24 125 | 95.87 54 | 99.20 75 | 98.58 130 |
|
DeepC-MVS | | 93.07 3 | 96.06 67 | 95.66 70 | 97.29 61 | 97.96 117 | 93.17 78 | 97.30 128 | 98.06 77 | 93.92 59 | 93.38 151 | 98.66 14 | 86.83 126 | 99.73 36 | 95.60 71 | 99.22 73 | 98.96 100 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
VNet | | | 95.89 73 | 95.45 75 | 97.21 68 | 98.07 115 | 92.94 84 | 97.50 106 | 98.15 55 | 93.87 60 | 97.52 30 | 97.61 109 | 85.29 146 | 99.53 93 | 95.81 59 | 95.27 179 | 99.16 78 |
|
Effi-MVS+-dtu | | | 93.08 154 | 93.21 134 | 92.68 277 | 96.02 216 | 83.25 319 | 97.14 146 | 96.72 234 | 93.85 61 | 91.20 202 | 93.44 309 | 83.08 179 | 98.30 212 | 91.69 156 | 95.73 172 | 96.50 216 |
|
mvs-test1 | | | 93.63 135 | 93.69 115 | 93.46 249 | 96.02 216 | 84.61 303 | 97.24 132 | 96.72 234 | 93.85 61 | 92.30 174 | 95.76 209 | 83.08 179 | 98.89 162 | 91.69 156 | 96.54 158 | 96.87 207 |
|
PS-MVSNAJ | | | 95.37 83 | 95.33 80 | 95.49 154 | 97.35 147 | 90.66 160 | 95.31 271 | 97.48 155 | 93.85 61 | 96.51 71 | 95.70 214 | 88.65 100 | 99.65 57 | 94.80 93 | 98.27 113 | 96.17 223 |
|
test1172 | | | 96.93 34 | 96.86 25 | 97.15 70 | 99.10 36 | 92.34 99 | 97.96 61 | 98.04 85 | 93.79 64 | 97.35 38 | 98.53 24 | 91.40 62 | 99.56 85 | 96.30 36 | 99.30 61 | 99.55 31 |
|
SR-MVS | | | 97.01 29 | 96.86 25 | 97.47 54 | 99.09 38 | 93.27 76 | 97.98 56 | 98.07 74 | 93.75 65 | 97.45 33 | 98.48 28 | 91.43 61 | 99.59 72 | 96.22 40 | 99.27 66 | 99.54 34 |
|
TSAR-MVS + MP. | | | 97.42 9 | 97.33 11 | 97.69 45 | 99.25 29 | 94.24 43 | 98.07 51 | 97.85 118 | 93.72 66 | 98.57 13 | 98.35 41 | 93.69 18 | 99.40 113 | 97.06 13 | 99.46 43 | 99.44 52 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
OPM-MVS | | | 93.28 146 | 92.76 144 | 94.82 181 | 94.63 286 | 90.77 157 | 96.65 191 | 97.18 192 | 93.72 66 | 91.68 186 | 97.26 126 | 79.33 250 | 98.63 185 | 92.13 144 | 92.28 218 | 95.07 280 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
xiu_mvs_v2_base | | | 95.32 85 | 95.29 81 | 95.40 159 | 97.22 149 | 90.50 163 | 95.44 265 | 97.44 170 | 93.70 68 | 96.46 75 | 96.18 184 | 88.59 103 | 99.53 93 | 94.79 95 | 97.81 125 | 96.17 223 |
|
baseline | | | 95.58 79 | 95.42 77 | 96.08 117 | 96.78 176 | 90.41 167 | 97.16 143 | 97.45 166 | 93.69 69 | 95.65 107 | 97.85 86 | 87.29 121 | 98.68 181 | 95.66 62 | 97.25 143 | 99.13 82 |
|
EIA-MVS | | | 95.53 81 | 95.47 74 | 95.71 140 | 97.06 161 | 89.63 186 | 97.82 72 | 97.87 114 | 93.57 70 | 93.92 139 | 95.04 239 | 90.61 79 | 98.95 156 | 94.62 97 | 98.68 101 | 98.54 132 |
|
HQP-NCC | | | | | | 95.86 219 | | 96.65 191 | | 93.55 71 | 90.14 216 | | | | | | |
|
ACMP_Plane | | | | | | 95.86 219 | | 96.65 191 | | 93.55 71 | 90.14 216 | | | | | | |
|
HQP-MVS | | | 93.19 150 | 92.74 147 | 94.54 198 | 95.86 219 | 89.33 203 | 96.65 191 | 97.39 176 | 93.55 71 | 90.14 216 | 95.87 199 | 80.95 219 | 98.50 196 | 92.13 144 | 92.10 224 | 95.78 241 |
|
MCST-MVS | | | 97.18 17 | 96.84 28 | 98.20 13 | 99.30 26 | 95.35 15 | 97.12 147 | 98.07 74 | 93.54 74 | 96.08 87 | 97.69 98 | 93.86 16 | 99.71 42 | 96.50 31 | 99.39 52 | 99.55 31 |
|
test1111 | | | 93.19 150 | 92.82 142 | 94.30 208 | 97.58 144 | 84.56 304 | 98.21 41 | 89.02 364 | 93.53 75 | 94.58 125 | 98.21 61 | 72.69 309 | 99.05 149 | 93.06 129 | 98.48 108 | 99.28 70 |
|
SR-MVS-dyc-post | | | 96.88 37 | 96.80 32 | 97.11 73 | 99.02 46 | 92.34 99 | 97.98 56 | 98.03 88 | 93.52 76 | 97.43 36 | 98.51 25 | 91.40 62 | 99.56 85 | 96.05 49 | 99.26 68 | 99.43 54 |
|
RE-MVS-def | | | | 96.72 38 | | 99.02 46 | 92.34 99 | 97.98 56 | 98.03 88 | 93.52 76 | 97.43 36 | 98.51 25 | 90.71 78 | | 96.05 49 | 99.26 68 | 99.43 54 |
|
MG-MVS | | | 95.61 78 | 95.38 78 | 96.31 106 | 98.42 83 | 90.53 162 | 96.04 238 | 97.48 155 | 93.47 78 | 95.67 106 | 98.10 67 | 89.17 93 | 99.25 124 | 91.27 165 | 98.77 98 | 99.13 82 |
|
test2506 | | | 91.60 207 | 90.78 215 | 94.04 217 | 97.66 136 | 83.81 311 | 98.27 31 | 75.53 376 | 93.43 79 | 95.23 115 | 98.21 61 | 67.21 340 | 99.07 146 | 93.01 133 | 98.49 106 | 99.25 73 |
|
ECVR-MVS |  | | 93.19 150 | 92.73 148 | 94.57 197 | 97.66 136 | 85.41 289 | 98.21 41 | 88.23 365 | 93.43 79 | 94.70 123 | 98.21 61 | 72.57 310 | 99.07 146 | 93.05 130 | 98.49 106 | 99.25 73 |
|
FC-MVSNet-test | | | 93.94 125 | 93.57 118 | 95.04 169 | 95.48 235 | 91.45 131 | 98.12 47 | 98.71 6 | 93.37 81 | 90.23 214 | 96.70 153 | 87.66 112 | 97.85 269 | 91.49 160 | 90.39 251 | 95.83 238 |
|
MP-MVS |  | | 96.77 45 | 96.45 54 | 97.72 42 | 99.39 14 | 93.80 58 | 98.41 22 | 98.06 77 | 93.37 81 | 95.54 111 | 98.34 44 | 90.59 80 | 99.88 5 | 94.83 90 | 99.54 27 | 99.49 44 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
FIs | | | 94.09 119 | 93.70 114 | 95.27 161 | 95.70 227 | 92.03 112 | 98.10 48 | 98.68 8 | 93.36 83 | 90.39 211 | 96.70 153 | 87.63 114 | 97.94 260 | 92.25 140 | 90.50 250 | 95.84 237 |
|
abl_6 | | | 96.40 59 | 96.21 60 | 96.98 77 | 98.89 57 | 92.20 107 | 97.89 65 | 98.03 88 | 93.34 84 | 97.22 42 | 98.42 34 | 87.93 109 | 99.72 39 | 95.10 81 | 99.07 88 | 99.02 91 |
|
mPP-MVS | | | 96.86 38 | 96.60 44 | 97.64 49 | 99.40 12 | 93.44 69 | 98.50 17 | 98.09 67 | 93.27 85 | 95.95 94 | 98.33 47 | 91.04 71 | 99.88 5 | 95.20 77 | 99.57 24 | 99.60 19 |
|
HFP-MVS | | | 97.14 20 | 96.92 23 | 97.83 29 | 99.42 7 | 94.12 49 | 98.52 14 | 98.32 22 | 93.21 86 | 97.18 43 | 98.29 53 | 92.08 43 | 99.83 26 | 95.63 67 | 99.59 17 | 99.54 34 |
|
ACMMPR | | | 97.07 23 | 96.84 28 | 97.79 35 | 99.44 6 | 93.88 56 | 98.52 14 | 98.31 24 | 93.21 86 | 97.15 45 | 98.33 47 | 91.35 64 | 99.86 9 | 95.63 67 | 99.59 17 | 99.62 16 |
|
IS-MVSNet | | | 94.90 99 | 94.52 100 | 96.05 120 | 97.67 134 | 90.56 161 | 98.44 20 | 96.22 263 | 93.21 86 | 93.99 136 | 97.74 95 | 85.55 144 | 98.45 201 | 89.98 180 | 97.86 123 | 99.14 81 |
|
region2R | | | 97.07 23 | 96.84 28 | 97.77 38 | 99.46 2 | 93.79 59 | 98.52 14 | 98.24 38 | 93.19 89 | 97.14 46 | 98.34 44 | 91.59 59 | 99.87 8 | 95.46 74 | 99.59 17 | 99.64 13 |
|
EPNet_dtu | | | 91.71 203 | 91.28 197 | 92.99 266 | 93.76 312 | 83.71 314 | 96.69 187 | 95.28 298 | 93.15 90 | 87.02 301 | 95.95 196 | 83.37 174 | 97.38 312 | 79.46 324 | 96.84 149 | 97.88 173 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
UniMVSNet (Re) | | | 93.31 145 | 92.55 155 | 95.61 145 | 95.39 238 | 93.34 74 | 97.39 118 | 98.71 6 | 93.14 91 | 90.10 224 | 94.83 248 | 87.71 111 | 98.03 246 | 91.67 158 | 83.99 320 | 95.46 256 |
|
APD-MVS_3200maxsize | | | 96.81 42 | 96.71 39 | 97.12 72 | 99.01 49 | 92.31 102 | 97.98 56 | 98.06 77 | 93.11 92 | 97.44 34 | 98.55 22 | 90.93 73 | 99.55 88 | 96.06 48 | 99.25 70 | 99.51 39 |
|
testdata1 | | | | | | | | 95.26 276 | | 93.10 93 | | | | | | | |
|
DU-MVS | | | 92.90 164 | 92.04 169 | 95.49 154 | 94.95 268 | 92.83 85 | 97.16 143 | 98.24 38 | 93.02 94 | 90.13 220 | 95.71 212 | 83.47 171 | 97.85 269 | 91.71 154 | 83.93 321 | 95.78 241 |
|
xiu_mvs_v1_base_debu | | | 95.01 93 | 94.76 91 | 95.75 135 | 96.58 184 | 91.71 118 | 96.25 227 | 97.35 182 | 92.99 95 | 96.70 59 | 96.63 162 | 82.67 190 | 99.44 108 | 96.22 40 | 97.46 132 | 96.11 228 |
|
xiu_mvs_v1_base | | | 95.01 93 | 94.76 91 | 95.75 135 | 96.58 184 | 91.71 118 | 96.25 227 | 97.35 182 | 92.99 95 | 96.70 59 | 96.63 162 | 82.67 190 | 99.44 108 | 96.22 40 | 97.46 132 | 96.11 228 |
|
xiu_mvs_v1_base_debi | | | 95.01 93 | 94.76 91 | 95.75 135 | 96.58 184 | 91.71 118 | 96.25 227 | 97.35 182 | 92.99 95 | 96.70 59 | 96.63 162 | 82.67 190 | 99.44 108 | 96.22 40 | 97.46 132 | 96.11 228 |
|
CP-MVS | | | 97.02 27 | 96.81 31 | 97.64 49 | 99.33 23 | 93.54 66 | 98.80 7 | 98.28 28 | 92.99 95 | 96.45 76 | 98.30 52 | 91.90 49 | 99.85 18 | 95.61 69 | 99.68 4 | 99.54 34 |
|
ACMMP |  | | 96.27 63 | 95.93 65 | 97.28 62 | 99.24 30 | 92.62 92 | 98.25 34 | 98.81 3 | 92.99 95 | 94.56 126 | 98.39 38 | 88.96 95 | 99.85 18 | 94.57 99 | 97.63 129 | 99.36 63 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
UniMVSNet_NR-MVSNet | | | 93.37 143 | 92.67 150 | 95.47 157 | 95.34 244 | 92.83 85 | 97.17 142 | 98.58 11 | 92.98 100 | 90.13 220 | 95.80 204 | 88.37 105 | 97.85 269 | 91.71 154 | 83.93 321 | 95.73 247 |
|
VPNet | | | 92.23 189 | 91.31 195 | 94.99 172 | 95.56 231 | 90.96 149 | 97.22 138 | 97.86 117 | 92.96 101 | 90.96 203 | 96.62 165 | 75.06 296 | 98.20 219 | 91.90 148 | 83.65 326 | 95.80 240 |
|
nrg030 | | | 94.05 121 | 93.31 131 | 96.27 110 | 95.22 255 | 94.59 32 | 98.34 25 | 97.46 160 | 92.93 102 | 91.21 201 | 96.64 158 | 87.23 123 | 98.22 216 | 94.99 86 | 85.80 292 | 95.98 232 |
|
TranMVSNet+NR-MVSNet | | | 92.50 174 | 91.63 183 | 95.14 166 | 94.76 279 | 92.07 110 | 97.53 104 | 98.11 63 | 92.90 103 | 89.56 241 | 96.12 188 | 83.16 176 | 97.60 293 | 89.30 198 | 83.20 330 | 95.75 245 |
|
diffmvs | | | 95.25 87 | 95.13 85 | 95.63 143 | 96.43 196 | 89.34 202 | 95.99 243 | 97.35 182 | 92.83 104 | 96.31 79 | 97.37 122 | 86.44 131 | 98.67 182 | 96.26 37 | 97.19 145 | 98.87 113 |
|
ACMMP_NAP | | | 97.20 16 | 96.86 25 | 98.23 11 | 99.09 38 | 95.16 24 | 97.60 99 | 98.19 48 | 92.82 105 | 97.93 25 | 98.74 13 | 91.60 58 | 99.86 9 | 96.26 37 | 99.52 29 | 99.67 11 |
|
test_prior3 | | | 96.46 57 | 96.20 61 | 97.23 65 | 98.67 65 | 92.99 81 | 96.35 217 | 98.00 97 | 92.80 106 | 96.03 88 | 97.59 110 | 92.01 45 | 99.41 111 | 95.01 83 | 99.38 53 | 99.29 67 |
|
test_prior2 | | | | | | | | 96.35 217 | | 92.80 106 | 96.03 88 | 97.59 110 | 92.01 45 | | 95.01 83 | 99.38 53 | |
|
testtj | | | 96.93 34 | 96.56 47 | 98.05 20 | 99.10 36 | 94.66 31 | 97.78 76 | 98.22 43 | 92.74 108 | 97.59 29 | 98.20 64 | 91.96 48 | 99.86 9 | 94.21 102 | 99.25 70 | 99.63 14 |
|
GST-MVS | | | 96.85 39 | 96.52 49 | 97.82 32 | 99.36 20 | 94.14 48 | 98.29 29 | 98.13 58 | 92.72 109 | 96.70 59 | 98.06 71 | 91.35 64 | 99.86 9 | 94.83 90 | 99.28 64 | 99.47 49 |
|
CLD-MVS | | | 92.98 159 | 92.53 157 | 94.32 207 | 96.12 213 | 89.20 209 | 95.28 272 | 97.47 158 | 92.66 110 | 89.90 229 | 95.62 217 | 80.58 226 | 98.40 203 | 92.73 135 | 92.40 217 | 95.38 264 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
NR-MVSNet | | | 92.34 181 | 91.27 198 | 95.53 150 | 94.95 268 | 93.05 80 | 97.39 118 | 98.07 74 | 92.65 111 | 84.46 323 | 95.71 212 | 85.00 150 | 97.77 279 | 89.71 187 | 83.52 327 | 95.78 241 |
|
ZNCC-MVS | | | 96.96 31 | 96.67 41 | 97.85 28 | 99.37 17 | 94.12 49 | 98.49 18 | 98.18 50 | 92.64 112 | 96.39 78 | 98.18 65 | 91.61 57 | 99.88 5 | 95.59 72 | 99.55 25 | 99.57 24 |
|
#test# | | | 97.02 27 | 96.75 36 | 97.83 29 | 99.42 7 | 94.12 49 | 98.15 46 | 98.32 22 | 92.57 113 | 97.18 43 | 98.29 53 | 92.08 43 | 99.83 26 | 95.12 80 | 99.59 17 | 99.54 34 |
|
PS-MVSNAJss | | | 93.74 132 | 93.51 123 | 94.44 200 | 93.91 307 | 89.28 207 | 97.75 78 | 97.56 150 | 92.50 114 | 89.94 228 | 96.54 168 | 88.65 100 | 98.18 222 | 93.83 114 | 90.90 244 | 95.86 234 |
|
VDD-MVS | | | 93.82 129 | 93.08 135 | 96.02 122 | 97.88 124 | 89.96 181 | 97.72 84 | 95.85 275 | 92.43 115 | 95.86 96 | 98.44 31 | 68.42 334 | 99.39 114 | 96.31 35 | 94.85 185 | 98.71 125 |
|
LCM-MVSNet-Re | | | 92.50 174 | 92.52 158 | 92.44 280 | 96.82 175 | 81.89 329 | 96.92 165 | 93.71 339 | 92.41 116 | 84.30 325 | 94.60 260 | 85.08 149 | 97.03 321 | 91.51 159 | 97.36 138 | 98.40 150 |
|
SF-MVS | | | 97.39 11 | 97.13 13 | 98.17 14 | 99.02 46 | 95.28 20 | 98.23 38 | 98.27 31 | 92.37 117 | 98.27 18 | 98.65 16 | 93.33 21 | 99.72 39 | 96.49 32 | 99.52 29 | 99.51 39 |
|
VPA-MVSNet | | | 93.24 147 | 92.48 160 | 95.51 151 | 95.70 227 | 92.39 98 | 97.86 67 | 98.66 10 | 92.30 118 | 92.09 181 | 95.37 228 | 80.49 228 | 98.40 203 | 93.95 108 | 85.86 291 | 95.75 245 |
|
bset_n11_16_dypcd | | | 91.55 212 | 90.59 224 | 94.44 200 | 91.51 346 | 90.25 171 | 92.70 334 | 93.42 342 | 92.27 119 | 90.22 215 | 94.74 253 | 78.42 266 | 97.80 274 | 94.19 103 | 87.86 273 | 95.29 275 |
|
PGM-MVS | | | 96.81 42 | 96.53 48 | 97.65 47 | 99.35 22 | 93.53 67 | 97.65 92 | 98.98 1 | 92.22 120 | 97.14 46 | 98.44 31 | 91.17 69 | 99.85 18 | 94.35 100 | 99.46 43 | 99.57 24 |
|
Vis-MVSNet (Re-imp) | | | 94.15 114 | 93.88 110 | 94.95 177 | 97.61 140 | 87.92 242 | 98.10 48 | 95.80 277 | 92.22 120 | 93.02 158 | 97.45 118 | 84.53 156 | 97.91 266 | 88.24 217 | 97.97 121 | 99.02 91 |
|
thres100view900 | | | 92.43 177 | 91.58 185 | 94.98 174 | 97.92 121 | 89.37 201 | 97.71 86 | 94.66 322 | 92.20 122 | 93.31 153 | 94.90 244 | 78.06 274 | 99.08 143 | 81.40 309 | 94.08 196 | 96.48 217 |
|
baseline1 | | | 92.82 169 | 91.90 175 | 95.55 149 | 97.20 151 | 90.77 157 | 97.19 140 | 94.58 325 | 92.20 122 | 92.36 171 | 96.34 179 | 84.16 162 | 98.21 217 | 89.20 204 | 83.90 324 | 97.68 183 |
|
tfpn200view9 | | | 92.38 180 | 91.52 188 | 94.95 177 | 97.85 125 | 89.29 205 | 97.41 114 | 94.88 317 | 92.19 124 | 93.27 155 | 94.46 267 | 78.17 270 | 99.08 143 | 81.40 309 | 94.08 196 | 96.48 217 |
|
thres400 | | | 92.42 178 | 91.52 188 | 95.12 168 | 97.85 125 | 89.29 205 | 97.41 114 | 94.88 317 | 92.19 124 | 93.27 155 | 94.46 267 | 78.17 270 | 99.08 143 | 81.40 309 | 94.08 196 | 96.98 201 |
|
thres600view7 | | | 92.49 176 | 91.60 184 | 95.18 164 | 97.91 122 | 89.47 195 | 97.65 92 | 94.66 322 | 92.18 126 | 93.33 152 | 94.91 243 | 78.06 274 | 99.10 138 | 81.61 306 | 94.06 199 | 96.98 201 |
|
Fast-Effi-MVS+-dtu | | | 92.29 185 | 91.99 172 | 93.21 260 | 95.27 251 | 85.52 287 | 97.03 149 | 96.63 246 | 92.09 127 | 89.11 255 | 95.14 236 | 80.33 232 | 98.08 236 | 87.54 238 | 94.74 190 | 96.03 231 |
|
thres200 | | | 92.23 189 | 91.39 191 | 94.75 190 | 97.61 140 | 89.03 214 | 96.60 199 | 95.09 308 | 92.08 128 | 93.28 154 | 94.00 290 | 78.39 268 | 99.04 152 | 81.26 313 | 94.18 195 | 96.19 222 |
|
mvs_tets | | | 92.31 183 | 91.76 178 | 93.94 226 | 93.41 322 | 88.29 230 | 97.63 97 | 97.53 151 | 92.04 129 | 88.76 264 | 96.45 172 | 74.62 298 | 98.09 235 | 93.91 110 | 91.48 233 | 95.45 258 |
|
OMC-MVS | | | 95.09 92 | 94.70 94 | 96.25 113 | 98.46 80 | 91.28 134 | 96.43 207 | 97.57 147 | 92.04 129 | 94.77 122 | 97.96 79 | 87.01 125 | 99.09 141 | 91.31 164 | 96.77 151 | 98.36 154 |
|
jajsoiax | | | 92.42 178 | 91.89 176 | 94.03 218 | 93.33 325 | 88.50 227 | 97.73 81 | 97.53 151 | 92.00 131 | 88.85 260 | 96.50 170 | 75.62 294 | 98.11 230 | 93.88 112 | 91.56 232 | 95.48 253 |
|
XVG-OURS | | | 93.72 133 | 93.35 130 | 94.80 186 | 97.07 158 | 88.61 222 | 94.79 282 | 97.46 160 | 91.97 132 | 93.99 136 | 97.86 85 | 81.74 211 | 98.88 163 | 92.64 136 | 92.67 214 | 96.92 205 |
|
WR-MVS | | | 92.34 181 | 91.53 187 | 94.77 188 | 95.13 260 | 90.83 154 | 96.40 212 | 97.98 102 | 91.88 133 | 89.29 250 | 95.54 223 | 82.50 195 | 97.80 274 | 89.79 186 | 85.27 300 | 95.69 248 |
|
PAPM_NR | | | 95.01 93 | 94.59 96 | 96.26 111 | 98.89 57 | 90.68 159 | 97.24 132 | 97.73 126 | 91.80 134 | 92.93 164 | 96.62 165 | 89.13 94 | 99.14 135 | 89.21 203 | 97.78 126 | 98.97 99 |
|
testgi | | | 87.97 294 | 87.21 294 | 90.24 325 | 92.86 331 | 80.76 335 | 96.67 190 | 94.97 313 | 91.74 135 | 85.52 314 | 95.83 202 | 62.66 356 | 94.47 355 | 76.25 339 | 88.36 269 | 95.48 253 |
|
CP-MVSNet | | | 91.89 199 | 91.24 199 | 93.82 231 | 95.05 263 | 88.57 224 | 97.82 72 | 98.19 48 | 91.70 136 | 88.21 277 | 95.76 209 | 81.96 206 | 97.52 301 | 87.86 223 | 84.65 309 | 95.37 265 |
|
XVG-OURS-SEG-HR | | | 93.86 128 | 93.55 119 | 94.81 183 | 97.06 161 | 88.53 226 | 95.28 272 | 97.45 166 | 91.68 137 | 94.08 135 | 97.68 99 | 82.41 198 | 98.90 161 | 93.84 113 | 92.47 216 | 96.98 201 |
|
OurMVSNet-221017-0 | | | 90.51 259 | 90.19 244 | 91.44 306 | 93.41 322 | 81.25 333 | 96.98 159 | 96.28 259 | 91.68 137 | 86.55 307 | 96.30 180 | 74.20 301 | 97.98 250 | 88.96 208 | 87.40 279 | 95.09 279 |
|
ETH3D-3000-0.1 | | | 97.07 23 | 96.71 39 | 98.14 16 | 98.90 54 | 95.33 17 | 97.68 88 | 98.24 38 | 91.57 139 | 97.90 26 | 98.37 39 | 92.61 33 | 99.66 56 | 95.59 72 | 99.51 33 | 99.43 54 |
|
ACMP | | 89.59 10 | 92.62 173 | 92.14 167 | 94.05 216 | 96.40 197 | 88.20 235 | 97.36 121 | 97.25 190 | 91.52 140 | 88.30 273 | 96.64 158 | 78.46 265 | 98.72 177 | 91.86 151 | 91.48 233 | 95.23 276 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
APD-MVS |  | | 96.95 32 | 96.60 44 | 98.01 22 | 99.03 45 | 94.93 28 | 97.72 84 | 98.10 65 | 91.50 141 | 98.01 22 | 98.32 49 | 92.33 39 | 99.58 75 | 94.85 88 | 99.51 33 | 99.53 38 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ITE_SJBPF | | | | | 92.43 281 | 95.34 244 | 85.37 292 | | 95.92 271 | 91.47 142 | 87.75 287 | 96.39 177 | 71.00 319 | 97.96 257 | 82.36 303 | 89.86 256 | 93.97 326 |
|
PS-CasMVS | | | 91.55 212 | 90.84 213 | 93.69 238 | 94.96 267 | 88.28 231 | 97.84 71 | 98.24 38 | 91.46 143 | 88.04 281 | 95.80 204 | 79.67 244 | 97.48 303 | 87.02 248 | 84.54 314 | 95.31 268 |
|
WR-MVS_H | | | 92.00 196 | 91.35 192 | 93.95 224 | 95.09 262 | 89.47 195 | 98.04 53 | 98.68 8 | 91.46 143 | 88.34 271 | 94.68 256 | 85.86 140 | 97.56 295 | 85.77 268 | 84.24 317 | 94.82 297 |
|
RRT_MVS | | | 93.21 148 | 92.32 164 | 95.91 128 | 94.92 270 | 94.15 47 | 96.92 165 | 96.86 228 | 91.42 145 | 91.28 198 | 96.43 173 | 79.66 245 | 98.10 231 | 93.29 124 | 90.06 253 | 95.46 256 |
|
MVSFormer | | | 95.37 83 | 95.16 84 | 95.99 126 | 96.34 200 | 91.21 138 | 98.22 39 | 97.57 147 | 91.42 145 | 96.22 82 | 97.32 123 | 86.20 136 | 97.92 263 | 94.07 105 | 99.05 89 | 98.85 114 |
|
test_djsdf | | | 93.07 155 | 92.76 144 | 94.00 219 | 93.49 320 | 88.70 221 | 98.22 39 | 97.57 147 | 91.42 145 | 90.08 226 | 95.55 222 | 82.85 187 | 97.92 263 | 94.07 105 | 91.58 231 | 95.40 262 |
|
ACMM | | 89.79 8 | 92.96 160 | 92.50 159 | 94.35 205 | 96.30 202 | 88.71 220 | 97.58 100 | 97.36 181 | 91.40 148 | 90.53 207 | 96.65 157 | 79.77 242 | 98.75 173 | 91.24 166 | 91.64 229 | 95.59 251 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
RRT_test8_iter05 | | | 91.19 235 | 90.78 215 | 92.41 282 | 95.76 226 | 83.14 320 | 97.32 125 | 97.46 160 | 91.37 149 | 89.07 256 | 95.57 219 | 70.33 323 | 98.21 217 | 93.56 116 | 86.62 286 | 95.89 233 |
|
PEN-MVS | | | 91.20 232 | 90.44 229 | 93.48 247 | 94.49 290 | 87.91 244 | 97.76 77 | 98.18 50 | 91.29 150 | 87.78 286 | 95.74 211 | 80.35 231 | 97.33 314 | 85.46 272 | 82.96 331 | 95.19 278 |
|
LPG-MVS_test | | | 92.94 162 | 92.56 154 | 94.10 213 | 96.16 209 | 88.26 232 | 97.65 92 | 97.46 160 | 91.29 150 | 90.12 222 | 97.16 131 | 79.05 253 | 98.73 174 | 92.25 140 | 91.89 227 | 95.31 268 |
|
LGP-MVS_train | | | | | 94.10 213 | 96.16 209 | 88.26 232 | | 97.46 160 | 91.29 150 | 90.12 222 | 97.16 131 | 79.05 253 | 98.73 174 | 92.25 140 | 91.89 227 | 95.31 268 |
|
9.14 | | | | 96.75 36 | | 98.93 50 | | 97.73 81 | 98.23 42 | 91.28 153 | 97.88 27 | 98.44 31 | 93.00 25 | 99.65 57 | 95.76 60 | 99.47 41 | |
|
MVSTER | | | 93.20 149 | 92.81 143 | 94.37 204 | 96.56 187 | 89.59 189 | 97.06 148 | 97.12 198 | 91.24 154 | 91.30 195 | 95.96 195 | 82.02 205 | 98.05 242 | 93.48 119 | 90.55 248 | 95.47 255 |
|
test_yl | | | 94.78 104 | 94.23 106 | 96.43 97 | 97.74 131 | 91.22 136 | 96.85 170 | 97.10 200 | 91.23 155 | 95.71 101 | 96.93 140 | 84.30 159 | 99.31 120 | 93.10 127 | 95.12 181 | 98.75 119 |
|
DCV-MVSNet | | | 94.78 104 | 94.23 106 | 96.43 97 | 97.74 131 | 91.22 136 | 96.85 170 | 97.10 200 | 91.23 155 | 95.71 101 | 96.93 140 | 84.30 159 | 99.31 120 | 93.10 127 | 95.12 181 | 98.75 119 |
|
MVS_Test | | | 94.89 100 | 94.62 95 | 95.68 141 | 96.83 174 | 89.55 191 | 96.70 185 | 97.17 194 | 91.17 157 | 95.60 108 | 96.11 191 | 87.87 110 | 98.76 172 | 93.01 133 | 97.17 146 | 98.72 123 |
|
HPM-MVS |  | | 96.69 48 | 96.45 54 | 97.40 56 | 99.36 20 | 93.11 79 | 98.87 5 | 98.06 77 | 91.17 157 | 96.40 77 | 97.99 77 | 90.99 72 | 99.58 75 | 95.61 69 | 99.61 16 | 99.49 44 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
test-LLR | | | 91.42 219 | 91.19 202 | 92.12 287 | 94.59 287 | 80.66 336 | 94.29 299 | 92.98 345 | 91.11 159 | 90.76 205 | 92.37 323 | 79.02 255 | 98.07 239 | 88.81 210 | 96.74 152 | 97.63 184 |
|
test0.0.03 1 | | | 89.37 279 | 88.70 277 | 91.41 307 | 92.47 339 | 85.63 285 | 95.22 277 | 92.70 348 | 91.11 159 | 86.91 304 | 93.65 304 | 79.02 255 | 93.19 362 | 78.00 331 | 89.18 261 | 95.41 259 |
|
XVG-ACMP-BASELINE | | | 90.93 245 | 90.21 243 | 93.09 263 | 94.31 298 | 85.89 282 | 95.33 269 | 97.26 188 | 91.06 161 | 89.38 246 | 95.44 227 | 68.61 332 | 98.60 188 | 89.46 194 | 91.05 240 | 94.79 302 |
|
Effi-MVS+ | | | 94.93 98 | 94.45 103 | 96.36 104 | 96.61 181 | 91.47 129 | 96.41 209 | 97.41 175 | 91.02 162 | 94.50 127 | 95.92 197 | 87.53 116 | 98.78 169 | 93.89 111 | 96.81 150 | 98.84 116 |
|
SCA | | | 91.84 200 | 91.18 203 | 93.83 230 | 95.59 229 | 84.95 299 | 94.72 283 | 95.58 287 | 90.82 163 | 92.25 175 | 93.69 300 | 75.80 291 | 98.10 231 | 86.20 258 | 95.98 165 | 98.45 144 |
|
SixPastTwentyTwo | | | 89.15 280 | 88.54 280 | 90.98 313 | 93.49 320 | 80.28 343 | 96.70 185 | 94.70 321 | 90.78 164 | 84.15 328 | 95.57 219 | 71.78 314 | 97.71 283 | 84.63 282 | 85.07 304 | 94.94 286 |
|
PC_three_1452 | | | | | | | | | | 90.77 165 | 98.89 8 | 98.28 56 | 96.24 1 | 98.35 208 | 95.76 60 | 99.58 22 | 99.59 20 |
|
DTE-MVSNet | | | 90.56 257 | 89.75 261 | 93.01 265 | 93.95 305 | 87.25 254 | 97.64 96 | 97.65 138 | 90.74 166 | 87.12 297 | 95.68 215 | 79.97 239 | 97.00 325 | 83.33 293 | 81.66 336 | 94.78 304 |
|
GA-MVS | | | 91.38 221 | 90.31 234 | 94.59 192 | 94.65 284 | 87.62 249 | 94.34 296 | 96.19 265 | 90.73 167 | 90.35 212 | 93.83 294 | 71.84 313 | 97.96 257 | 87.22 244 | 93.61 205 | 98.21 159 |
|
EPP-MVSNet | | | 95.22 89 | 95.04 87 | 95.76 133 | 97.49 146 | 89.56 190 | 98.67 9 | 97.00 213 | 90.69 168 | 94.24 132 | 97.62 108 | 89.79 90 | 98.81 167 | 93.39 123 | 96.49 160 | 98.92 105 |
|
MP-MVS-pluss | | | 96.70 47 | 96.27 58 | 97.98 24 | 99.23 32 | 94.71 30 | 96.96 161 | 98.06 77 | 90.67 169 | 95.55 109 | 98.78 12 | 91.07 70 | 99.86 9 | 96.58 29 | 99.55 25 | 99.38 61 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
IterMVS-LS | | | 92.29 185 | 91.94 174 | 93.34 254 | 96.25 203 | 86.97 263 | 96.57 203 | 97.05 207 | 90.67 169 | 89.50 244 | 94.80 250 | 86.59 127 | 97.64 288 | 89.91 182 | 86.11 290 | 95.40 262 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EI-MVSNet | | | 93.03 157 | 92.88 141 | 93.48 247 | 95.77 224 | 86.98 262 | 96.44 205 | 97.12 198 | 90.66 171 | 91.30 195 | 97.64 106 | 86.56 128 | 98.05 242 | 89.91 182 | 90.55 248 | 95.41 259 |
|
K. test v3 | | | 87.64 298 | 86.75 299 | 90.32 324 | 93.02 330 | 79.48 350 | 96.61 197 | 92.08 353 | 90.66 171 | 80.25 349 | 94.09 287 | 67.21 340 | 96.65 332 | 85.96 266 | 80.83 339 | 94.83 295 |
|
tttt0517 | | | 92.96 160 | 92.33 163 | 94.87 180 | 97.11 156 | 87.16 259 | 97.97 60 | 92.09 352 | 90.63 173 | 93.88 140 | 97.01 139 | 76.50 285 | 99.06 148 | 90.29 179 | 95.45 176 | 98.38 152 |
|
BH-RMVSNet | | | 92.72 172 | 91.97 173 | 94.97 175 | 97.16 153 | 87.99 241 | 96.15 234 | 95.60 285 | 90.62 174 | 91.87 184 | 97.15 133 | 78.41 267 | 98.57 192 | 83.16 294 | 97.60 130 | 98.36 154 |
|
IterMVS-SCA-FT | | | 90.31 262 | 89.81 257 | 91.82 295 | 95.52 233 | 84.20 308 | 94.30 298 | 96.15 266 | 90.61 175 | 87.39 293 | 94.27 278 | 75.80 291 | 96.44 333 | 87.34 241 | 86.88 285 | 94.82 297 |
|
WTY-MVS | | | 94.71 106 | 94.02 108 | 96.79 79 | 97.71 133 | 92.05 111 | 96.59 200 | 97.35 182 | 90.61 175 | 94.64 124 | 96.93 140 | 86.41 132 | 99.39 114 | 91.20 167 | 94.71 191 | 98.94 103 |
|
ET-MVSNet_ETH3D | | | 91.49 216 | 90.11 245 | 95.63 143 | 96.40 197 | 91.57 126 | 95.34 268 | 93.48 341 | 90.60 177 | 75.58 357 | 95.49 225 | 80.08 236 | 96.79 330 | 94.25 101 | 89.76 257 | 98.52 134 |
|
SMA-MVS |  | | 97.35 13 | 97.03 17 | 98.30 8 | 99.06 42 | 95.42 10 | 97.94 62 | 98.18 50 | 90.57 178 | 98.85 9 | 98.94 1 | 93.33 21 | 99.83 26 | 96.72 25 | 99.68 4 | 99.63 14 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
LFMVS | | | 93.60 136 | 92.63 151 | 96.52 88 | 98.13 112 | 91.27 135 | 97.94 62 | 93.39 343 | 90.57 178 | 96.29 80 | 98.31 50 | 69.00 330 | 99.16 132 | 94.18 104 | 95.87 168 | 99.12 85 |
|
HPM-MVS_fast | | | 96.51 54 | 96.27 58 | 97.22 67 | 99.32 24 | 92.74 87 | 98.74 8 | 98.06 77 | 90.57 178 | 96.77 56 | 98.35 41 | 90.21 84 | 99.53 93 | 94.80 93 | 99.63 14 | 99.38 61 |
|
DPM-MVS | | | 95.69 75 | 94.92 88 | 98.01 22 | 98.08 114 | 95.71 9 | 95.27 274 | 97.62 142 | 90.43 181 | 95.55 109 | 97.07 136 | 91.72 53 | 99.50 101 | 89.62 191 | 98.94 94 | 98.82 117 |
|
IU-MVS | | | | | | 99.42 7 | 95.39 11 | | 97.94 106 | 90.40 182 | 98.94 5 | | | | 97.41 12 | 99.66 10 | 99.74 7 |
|
PVSNet_Blended_VisFu | | | 95.27 86 | 94.91 89 | 96.38 102 | 98.20 104 | 90.86 153 | 97.27 130 | 98.25 36 | 90.21 183 | 94.18 133 | 97.27 125 | 87.48 118 | 99.73 36 | 93.53 117 | 97.77 127 | 98.55 131 |
|
PVSNet_BlendedMVS | | | 94.06 120 | 93.92 109 | 94.47 199 | 98.27 95 | 89.46 197 | 96.73 181 | 98.36 17 | 90.17 184 | 94.36 129 | 95.24 233 | 88.02 106 | 99.58 75 | 93.44 120 | 90.72 246 | 94.36 316 |
|
thisisatest0530 | | | 93.03 157 | 92.21 166 | 95.49 154 | 97.07 158 | 89.11 213 | 97.49 110 | 92.19 351 | 90.16 185 | 94.09 134 | 96.41 175 | 76.43 288 | 99.05 149 | 90.38 176 | 95.68 174 | 98.31 156 |
|
CNLPA | | | 94.28 111 | 93.53 121 | 96.52 88 | 98.38 87 | 92.55 94 | 96.59 200 | 96.88 225 | 90.13 186 | 91.91 183 | 97.24 127 | 85.21 147 | 99.09 141 | 87.64 235 | 97.83 124 | 97.92 170 |
|
BH-untuned | | | 92.94 162 | 92.62 152 | 93.92 228 | 97.22 149 | 86.16 280 | 96.40 212 | 96.25 262 | 90.06 187 | 89.79 233 | 96.17 186 | 83.19 175 | 98.35 208 | 87.19 245 | 97.27 142 | 97.24 198 |
|
IterMVS | | | 90.15 268 | 89.67 263 | 91.61 302 | 95.48 235 | 83.72 313 | 94.33 297 | 96.12 267 | 89.99 188 | 87.31 296 | 94.15 286 | 75.78 293 | 96.27 336 | 86.97 249 | 86.89 284 | 94.83 295 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
AdaColmap |  | | 94.34 110 | 93.68 116 | 96.31 106 | 98.59 75 | 91.68 121 | 96.59 200 | 97.81 120 | 89.87 189 | 92.15 177 | 97.06 137 | 83.62 170 | 99.54 90 | 89.34 197 | 98.07 119 | 97.70 182 |
|
UnsupCasMVSNet_eth | | | 85.99 311 | 84.45 315 | 90.62 320 | 89.97 355 | 82.40 326 | 93.62 319 | 97.37 179 | 89.86 190 | 78.59 354 | 92.37 323 | 65.25 351 | 95.35 350 | 82.27 304 | 70.75 359 | 94.10 323 |
|
PHI-MVS | | | 96.77 45 | 96.46 53 | 97.71 44 | 98.40 84 | 94.07 52 | 98.21 41 | 98.45 16 | 89.86 190 | 97.11 49 | 98.01 76 | 92.52 36 | 99.69 48 | 96.03 52 | 99.53 28 | 99.36 63 |
|
ETH3D cwj APD-0.16 | | | 96.56 53 | 96.06 63 | 98.05 20 | 98.26 98 | 95.19 22 | 96.99 157 | 98.05 84 | 89.85 192 | 97.26 40 | 98.22 60 | 91.80 51 | 99.69 48 | 94.84 89 | 99.28 64 | 99.27 72 |
|
mvs_anonymous | | | 93.82 129 | 93.74 113 | 94.06 215 | 96.44 195 | 85.41 289 | 95.81 251 | 97.05 207 | 89.85 192 | 90.09 225 | 96.36 178 | 87.44 119 | 97.75 280 | 93.97 107 | 96.69 155 | 99.02 91 |
|
ab-mvs | | | 93.57 138 | 92.55 155 | 96.64 81 | 97.28 148 | 91.96 116 | 95.40 266 | 97.45 166 | 89.81 194 | 93.22 157 | 96.28 181 | 79.62 246 | 99.46 105 | 90.74 172 | 93.11 208 | 98.50 137 |
|
test_part1 | | | 92.21 191 | 91.10 205 | 95.51 151 | 97.80 128 | 92.66 90 | 98.02 54 | 97.68 134 | 89.79 195 | 88.80 263 | 96.02 193 | 76.85 283 | 98.18 222 | 90.86 169 | 84.11 319 | 95.69 248 |
|
FMVSNet3 | | | 91.78 201 | 90.69 221 | 95.03 170 | 96.53 189 | 92.27 104 | 97.02 152 | 96.93 217 | 89.79 195 | 89.35 247 | 94.65 258 | 77.01 282 | 97.47 304 | 86.12 261 | 88.82 263 | 95.35 266 |
|
AUN-MVS | | | 91.76 202 | 90.75 218 | 94.81 183 | 97.00 167 | 88.57 224 | 96.65 191 | 96.49 251 | 89.63 197 | 92.15 177 | 96.12 188 | 78.66 262 | 98.50 196 | 90.83 170 | 79.18 344 | 97.36 195 |
|
v2v482 | | | 91.59 208 | 90.85 212 | 93.80 232 | 93.87 309 | 88.17 237 | 96.94 164 | 96.88 225 | 89.54 198 | 89.53 242 | 94.90 244 | 81.70 212 | 98.02 247 | 89.25 201 | 85.04 306 | 95.20 277 |
|
PatchmatchNet |  | | 91.91 198 | 91.35 192 | 93.59 242 | 95.38 239 | 84.11 309 | 93.15 327 | 95.39 291 | 89.54 198 | 92.10 180 | 93.68 302 | 82.82 188 | 98.13 226 | 84.81 279 | 95.32 178 | 98.52 134 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
EPMVS | | | 90.70 254 | 89.81 257 | 93.37 253 | 94.73 281 | 84.21 307 | 93.67 317 | 88.02 366 | 89.50 200 | 92.38 170 | 93.49 307 | 77.82 278 | 97.78 277 | 86.03 264 | 92.68 213 | 98.11 165 |
|
GeoE | | | 93.89 126 | 93.28 132 | 95.72 139 | 96.96 169 | 89.75 185 | 98.24 37 | 96.92 221 | 89.47 201 | 92.12 179 | 97.21 129 | 84.42 157 | 98.39 206 | 87.71 228 | 96.50 159 | 99.01 95 |
|
v148 | | | 90.99 241 | 90.38 231 | 92.81 273 | 93.83 310 | 85.80 283 | 96.78 179 | 96.68 240 | 89.45 202 | 88.75 265 | 93.93 293 | 82.96 185 | 97.82 273 | 87.83 224 | 83.25 328 | 94.80 300 |
|
anonymousdsp | | | 92.16 192 | 91.55 186 | 93.97 222 | 92.58 337 | 89.55 191 | 97.51 105 | 97.42 174 | 89.42 203 | 88.40 270 | 94.84 247 | 80.66 225 | 97.88 268 | 91.87 150 | 91.28 237 | 94.48 312 |
|
baseline2 | | | 91.63 206 | 90.86 210 | 93.94 226 | 94.33 296 | 86.32 274 | 95.92 246 | 91.64 356 | 89.37 204 | 86.94 302 | 94.69 255 | 81.62 213 | 98.69 180 | 88.64 214 | 94.57 192 | 96.81 209 |
|
IB-MVS | | 87.33 17 | 89.91 271 | 88.28 283 | 94.79 187 | 95.26 254 | 87.70 248 | 95.12 280 | 93.95 338 | 89.35 205 | 87.03 300 | 92.49 321 | 70.74 321 | 99.19 128 | 89.18 205 | 81.37 337 | 97.49 193 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
jason | | | 94.84 102 | 94.39 105 | 96.18 115 | 95.52 233 | 90.93 151 | 96.09 236 | 96.52 250 | 89.28 206 | 96.01 92 | 97.32 123 | 84.70 153 | 98.77 171 | 95.15 79 | 98.91 96 | 98.85 114 |
jason: jason. |
TAMVS | | | 94.01 123 | 93.46 125 | 95.64 142 | 96.16 209 | 90.45 165 | 96.71 184 | 96.89 224 | 89.27 207 | 93.46 149 | 96.92 143 | 87.29 121 | 97.94 260 | 88.70 213 | 95.74 171 | 98.53 133 |
|
ZD-MVS | | | | | | 99.05 43 | 94.59 32 | | 98.08 68 | 89.22 208 | 97.03 52 | 98.10 67 | 92.52 36 | 99.65 57 | 94.58 98 | 99.31 60 | |
|
API-MVS | | | 94.84 102 | 94.49 101 | 95.90 129 | 97.90 123 | 92.00 114 | 97.80 74 | 97.48 155 | 89.19 209 | 94.81 121 | 96.71 151 | 88.84 97 | 99.17 131 | 88.91 209 | 98.76 99 | 96.53 214 |
|
XXY-MVS | | | 92.16 192 | 91.23 200 | 94.95 177 | 94.75 280 | 90.94 150 | 97.47 111 | 97.43 173 | 89.14 210 | 88.90 257 | 96.43 173 | 79.71 243 | 98.24 214 | 89.56 192 | 87.68 274 | 95.67 250 |
|
pm-mvs1 | | | 90.72 253 | 89.65 265 | 93.96 223 | 94.29 299 | 89.63 186 | 97.79 75 | 96.82 231 | 89.07 211 | 86.12 311 | 95.48 226 | 78.61 263 | 97.78 277 | 86.97 249 | 81.67 335 | 94.46 313 |
|
HY-MVS | | 89.66 9 | 93.87 127 | 92.95 139 | 96.63 83 | 97.10 157 | 92.49 96 | 95.64 258 | 96.64 243 | 89.05 212 | 93.00 159 | 95.79 207 | 85.77 142 | 99.45 107 | 89.16 206 | 94.35 193 | 97.96 167 |
|
CSCG | | | 96.05 68 | 95.91 66 | 96.46 96 | 99.24 30 | 90.47 164 | 98.30 28 | 98.57 12 | 89.01 213 | 93.97 138 | 97.57 112 | 92.62 32 | 99.76 34 | 94.66 96 | 99.27 66 | 99.15 80 |
|
v8 | | | 91.29 229 | 90.53 228 | 93.57 244 | 94.15 300 | 88.12 239 | 97.34 122 | 97.06 206 | 88.99 214 | 88.32 272 | 94.26 280 | 83.08 179 | 98.01 248 | 87.62 236 | 83.92 323 | 94.57 311 |
|
PAPR | | | 94.18 113 | 93.42 129 | 96.48 93 | 97.64 138 | 91.42 132 | 95.55 260 | 97.71 133 | 88.99 214 | 92.34 173 | 95.82 203 | 89.19 92 | 99.11 137 | 86.14 260 | 97.38 137 | 98.90 108 |
|
CDS-MVSNet | | | 94.14 117 | 93.54 120 | 95.93 127 | 96.18 207 | 91.46 130 | 96.33 220 | 97.04 209 | 88.97 216 | 93.56 144 | 96.51 169 | 87.55 115 | 97.89 267 | 89.80 185 | 95.95 166 | 98.44 147 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
sss | | | 94.51 108 | 93.80 112 | 96.64 81 | 97.07 158 | 91.97 115 | 96.32 221 | 98.06 77 | 88.94 217 | 94.50 127 | 96.78 148 | 84.60 154 | 99.27 123 | 91.90 148 | 96.02 164 | 98.68 127 |
|
lupinMVS | | | 94.99 97 | 94.56 97 | 96.29 109 | 96.34 200 | 91.21 138 | 95.83 250 | 96.27 260 | 88.93 218 | 96.22 82 | 96.88 145 | 86.20 136 | 98.85 164 | 95.27 76 | 99.05 89 | 98.82 117 |
|
D2MVS | | | 91.30 228 | 90.95 207 | 92.35 283 | 94.71 282 | 85.52 287 | 96.18 233 | 98.21 44 | 88.89 219 | 86.60 306 | 93.82 296 | 79.92 240 | 97.95 259 | 89.29 199 | 90.95 243 | 93.56 330 |
|
v7n | | | 90.76 249 | 89.86 254 | 93.45 250 | 93.54 317 | 87.60 250 | 97.70 87 | 97.37 179 | 88.85 220 | 87.65 288 | 94.08 288 | 81.08 218 | 98.10 231 | 84.68 281 | 83.79 325 | 94.66 309 |
|
PVSNet_Blended | | | 94.87 101 | 94.56 97 | 95.81 132 | 98.27 95 | 89.46 197 | 95.47 264 | 98.36 17 | 88.84 221 | 94.36 129 | 96.09 192 | 88.02 106 | 99.58 75 | 93.44 120 | 98.18 116 | 98.40 150 |
|
ACMH+ | | 87.92 14 | 90.20 266 | 89.18 272 | 93.25 257 | 96.48 193 | 86.45 273 | 96.99 157 | 96.68 240 | 88.83 222 | 84.79 322 | 96.22 183 | 70.16 326 | 98.53 194 | 84.42 286 | 88.04 270 | 94.77 305 |
|
GBi-Net | | | 91.35 224 | 90.27 237 | 94.59 192 | 96.51 190 | 91.18 142 | 97.50 106 | 96.93 217 | 88.82 223 | 89.35 247 | 94.51 262 | 73.87 302 | 97.29 316 | 86.12 261 | 88.82 263 | 95.31 268 |
|
test1 | | | 91.35 224 | 90.27 237 | 94.59 192 | 96.51 190 | 91.18 142 | 97.50 106 | 96.93 217 | 88.82 223 | 89.35 247 | 94.51 262 | 73.87 302 | 97.29 316 | 86.12 261 | 88.82 263 | 95.31 268 |
|
FMVSNet2 | | | 91.31 227 | 90.08 246 | 94.99 172 | 96.51 190 | 92.21 105 | 97.41 114 | 96.95 215 | 88.82 223 | 88.62 266 | 94.75 252 | 73.87 302 | 97.42 309 | 85.20 276 | 88.55 268 | 95.35 266 |
|
V42 | | | 91.58 210 | 90.87 209 | 93.73 234 | 94.05 304 | 88.50 227 | 97.32 125 | 96.97 214 | 88.80 226 | 89.71 234 | 94.33 273 | 82.54 194 | 98.05 242 | 89.01 207 | 85.07 304 | 94.64 310 |
|
agg_prior1 | | | 96.22 65 | 95.77 69 | 97.56 51 | 98.67 65 | 93.79 59 | 96.28 225 | 98.00 97 | 88.76 227 | 95.68 103 | 97.55 116 | 92.70 31 | 99.57 83 | 95.01 83 | 99.32 58 | 99.32 65 |
|
BH-w/o | | | 92.14 194 | 91.75 179 | 93.31 255 | 96.99 168 | 85.73 284 | 95.67 255 | 95.69 281 | 88.73 228 | 89.26 252 | 94.82 249 | 82.97 184 | 98.07 239 | 85.26 275 | 96.32 163 | 96.13 227 |
|
test20.03 | | | 86.14 310 | 85.40 308 | 88.35 333 | 90.12 353 | 80.06 345 | 95.90 247 | 95.20 303 | 88.59 229 | 81.29 342 | 93.62 305 | 71.43 316 | 92.65 363 | 71.26 357 | 81.17 338 | 92.34 346 |
|
train_agg | | | 96.30 62 | 95.83 68 | 97.72 42 | 98.70 63 | 94.19 44 | 96.41 209 | 98.02 92 | 88.58 230 | 96.03 88 | 97.56 114 | 92.73 29 | 99.59 72 | 95.04 82 | 99.37 57 | 99.39 59 |
|
test_8 | | | | | | 98.67 65 | 94.06 53 | 96.37 216 | 98.01 95 | 88.58 230 | 95.98 93 | 97.55 116 | 92.73 29 | 99.58 75 | | | |
|
eth_miper_zixun_eth | | | 91.02 240 | 90.59 224 | 92.34 284 | 95.33 247 | 84.35 305 | 94.10 304 | 96.90 222 | 88.56 232 | 88.84 261 | 94.33 273 | 84.08 163 | 97.60 293 | 88.77 212 | 84.37 316 | 95.06 281 |
|
tpmrst | | | 91.44 218 | 91.32 194 | 91.79 297 | 95.15 258 | 79.20 352 | 93.42 322 | 95.37 293 | 88.55 233 | 93.49 148 | 93.67 303 | 82.49 196 | 98.27 213 | 90.41 175 | 89.34 260 | 97.90 171 |
|
ACMH | | 87.59 16 | 90.53 258 | 89.42 267 | 93.87 229 | 96.21 204 | 87.92 242 | 97.24 132 | 96.94 216 | 88.45 234 | 83.91 332 | 96.27 182 | 71.92 312 | 98.62 187 | 84.43 285 | 89.43 259 | 95.05 282 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Baseline_NR-MVSNet | | | 91.20 232 | 90.62 222 | 92.95 268 | 93.83 310 | 88.03 240 | 97.01 156 | 95.12 307 | 88.42 235 | 89.70 235 | 95.13 237 | 83.47 171 | 97.44 307 | 89.66 190 | 83.24 329 | 93.37 334 |
|
v1144 | | | 91.37 223 | 90.60 223 | 93.68 239 | 93.89 308 | 88.23 234 | 96.84 172 | 97.03 211 | 88.37 236 | 89.69 236 | 94.39 269 | 82.04 204 | 97.98 250 | 87.80 225 | 85.37 297 | 94.84 294 |
|
DP-MVS Recon | | | 95.68 76 | 95.12 86 | 97.37 57 | 99.19 33 | 94.19 44 | 97.03 149 | 98.08 68 | 88.35 237 | 95.09 118 | 97.65 103 | 89.97 88 | 99.48 103 | 92.08 147 | 98.59 104 | 98.44 147 |
|
tpm | | | 90.25 264 | 89.74 262 | 91.76 300 | 93.92 306 | 79.73 348 | 93.98 306 | 93.54 340 | 88.28 238 | 91.99 182 | 93.25 312 | 77.51 280 | 97.44 307 | 87.30 243 | 87.94 271 | 98.12 162 |
|
v10 | | | 91.04 239 | 90.23 240 | 93.49 246 | 94.12 301 | 88.16 238 | 97.32 125 | 97.08 203 | 88.26 239 | 88.29 274 | 94.22 283 | 82.17 203 | 97.97 253 | 86.45 255 | 84.12 318 | 94.33 317 |
|
Fast-Effi-MVS+ | | | 93.46 140 | 92.75 146 | 95.59 146 | 96.77 177 | 90.03 174 | 96.81 176 | 97.13 197 | 88.19 240 | 91.30 195 | 94.27 278 | 86.21 135 | 98.63 185 | 87.66 234 | 96.46 162 | 98.12 162 |
|
DWT-MVSNet_test | | | 90.76 249 | 89.89 253 | 93.38 252 | 95.04 264 | 83.70 315 | 95.85 249 | 94.30 333 | 88.19 240 | 90.46 209 | 92.80 316 | 73.61 306 | 98.50 196 | 88.16 218 | 90.58 247 | 97.95 169 |
|
c3_l | | | 91.38 221 | 90.89 208 | 92.88 270 | 95.58 230 | 86.30 275 | 94.68 284 | 96.84 230 | 88.17 242 | 88.83 262 | 94.23 281 | 85.65 143 | 97.47 304 | 89.36 196 | 84.63 310 | 94.89 292 |
|
TEST9 | | | | | | 98.70 63 | 94.19 44 | 96.41 209 | 98.02 92 | 88.17 242 | 96.03 88 | 97.56 114 | 92.74 28 | 99.59 72 | | | |
|
ETH3 D test6400 | | | 96.16 66 | 95.52 72 | 98.07 19 | 98.90 54 | 95.06 26 | 97.03 149 | 98.21 44 | 88.16 244 | 96.64 64 | 97.70 97 | 91.18 68 | 99.67 53 | 92.44 137 | 99.47 41 | 99.48 46 |
|
MDTV_nov1_ep13 | | | | 90.76 217 | | 95.22 255 | 80.33 341 | 93.03 330 | 95.28 298 | 88.14 245 | 92.84 165 | 93.83 294 | 81.34 215 | 98.08 236 | 82.86 297 | 94.34 194 | |
|
MAR-MVS | | | 94.22 112 | 93.46 125 | 96.51 91 | 98.00 116 | 92.19 108 | 97.67 89 | 97.47 158 | 88.13 246 | 93.00 159 | 95.84 201 | 84.86 152 | 99.51 98 | 87.99 221 | 98.17 117 | 97.83 177 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
UniMVSNet_ETH3D | | | 91.34 226 | 90.22 242 | 94.68 191 | 94.86 275 | 87.86 245 | 97.23 137 | 97.46 160 | 87.99 247 | 89.90 229 | 96.92 143 | 66.35 345 | 98.23 215 | 90.30 178 | 90.99 242 | 97.96 167 |
|
PatchMatch-RL | | | 92.90 164 | 92.02 171 | 95.56 147 | 98.19 106 | 90.80 155 | 95.27 274 | 97.18 192 | 87.96 248 | 91.86 185 | 95.68 215 | 80.44 229 | 98.99 154 | 84.01 288 | 97.54 131 | 96.89 206 |
|
thisisatest0515 | | | 92.29 185 | 91.30 196 | 95.25 162 | 96.60 182 | 88.90 217 | 94.36 295 | 92.32 350 | 87.92 249 | 93.43 150 | 94.57 261 | 77.28 281 | 99.00 153 | 89.42 195 | 95.86 169 | 97.86 174 |
|
PVSNet | | 86.66 18 | 92.24 188 | 91.74 181 | 93.73 234 | 97.77 130 | 83.69 316 | 92.88 331 | 96.72 234 | 87.91 250 | 93.00 159 | 94.86 246 | 78.51 264 | 99.05 149 | 86.53 252 | 97.45 136 | 98.47 142 |
|
LTVRE_ROB | | 88.41 13 | 90.99 241 | 89.92 252 | 94.19 210 | 96.18 207 | 89.55 191 | 96.31 222 | 97.09 202 | 87.88 251 | 85.67 313 | 95.91 198 | 78.79 261 | 98.57 192 | 81.50 307 | 89.98 254 | 94.44 314 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
cl____ | | | 90.96 244 | 90.32 233 | 92.89 269 | 95.37 241 | 86.21 278 | 94.46 291 | 96.64 243 | 87.82 252 | 88.15 279 | 94.18 284 | 82.98 183 | 97.54 297 | 87.70 229 | 85.59 293 | 94.92 290 |
|
DIV-MVS_self_test | | | 90.97 243 | 90.33 232 | 92.88 270 | 95.36 242 | 86.19 279 | 94.46 291 | 96.63 246 | 87.82 252 | 88.18 278 | 94.23 281 | 82.99 182 | 97.53 299 | 87.72 226 | 85.57 294 | 94.93 288 |
|
cl22 | | | 91.21 231 | 90.56 227 | 93.14 262 | 96.09 215 | 86.80 265 | 94.41 293 | 96.58 249 | 87.80 254 | 88.58 268 | 93.99 291 | 80.85 224 | 97.62 291 | 89.87 184 | 86.93 281 | 94.99 283 |
|
CPTT-MVS | | | 95.57 80 | 95.19 83 | 96.70 80 | 99.27 28 | 91.48 128 | 98.33 26 | 98.11 63 | 87.79 255 | 95.17 117 | 98.03 73 | 87.09 124 | 99.61 66 | 93.51 118 | 99.42 48 | 99.02 91 |
|
miper_ehance_all_eth | | | 91.59 208 | 91.13 204 | 92.97 267 | 95.55 232 | 86.57 272 | 94.47 289 | 96.88 225 | 87.77 256 | 88.88 259 | 94.01 289 | 86.22 134 | 97.54 297 | 89.49 193 | 86.93 281 | 94.79 302 |
|
v1192 | | | 91.07 237 | 90.23 240 | 93.58 243 | 93.70 313 | 87.82 246 | 96.73 181 | 97.07 204 | 87.77 256 | 89.58 239 | 94.32 275 | 80.90 223 | 97.97 253 | 86.52 253 | 85.48 295 | 94.95 284 |
|
F-COLMAP | | | 93.58 137 | 92.98 138 | 95.37 160 | 98.40 84 | 88.98 215 | 97.18 141 | 97.29 187 | 87.75 258 | 90.49 208 | 97.10 135 | 85.21 147 | 99.50 101 | 86.70 251 | 96.72 154 | 97.63 184 |
|
1314 | | | 92.81 170 | 92.03 170 | 95.14 166 | 95.33 247 | 89.52 194 | 96.04 238 | 97.44 170 | 87.72 259 | 86.25 309 | 95.33 229 | 83.84 165 | 98.79 168 | 89.26 200 | 97.05 148 | 97.11 199 |
|
test-mter | | | 90.19 267 | 89.54 266 | 92.12 287 | 94.59 287 | 80.66 336 | 94.29 299 | 92.98 345 | 87.68 260 | 90.76 205 | 92.37 323 | 67.67 336 | 98.07 239 | 88.81 210 | 96.74 152 | 97.63 184 |
|
TR-MVS | | | 91.48 217 | 90.59 224 | 94.16 212 | 96.40 197 | 87.33 251 | 95.67 255 | 95.34 297 | 87.68 260 | 91.46 189 | 95.52 224 | 76.77 284 | 98.35 208 | 82.85 298 | 93.61 205 | 96.79 210 |
|
LF4IMVS | | | 87.94 295 | 87.25 292 | 89.98 327 | 92.38 342 | 80.05 346 | 94.38 294 | 95.25 301 | 87.59 262 | 84.34 324 | 94.74 253 | 64.31 352 | 97.66 287 | 84.83 278 | 87.45 276 | 92.23 347 |
|
miper_lstm_enhance | | | 90.50 260 | 90.06 249 | 91.83 294 | 95.33 247 | 83.74 312 | 93.86 311 | 96.70 239 | 87.56 263 | 87.79 285 | 93.81 297 | 83.45 173 | 96.92 327 | 87.39 240 | 84.62 311 | 94.82 297 |
|
TransMVSNet (Re) | | | 88.94 282 | 87.56 289 | 93.08 264 | 94.35 295 | 88.45 229 | 97.73 81 | 95.23 302 | 87.47 264 | 84.26 326 | 95.29 230 | 79.86 241 | 97.33 314 | 79.44 325 | 74.44 354 | 93.45 333 |
|
v144192 | | | 91.06 238 | 90.28 236 | 93.39 251 | 93.66 315 | 87.23 256 | 96.83 173 | 97.07 204 | 87.43 265 | 89.69 236 | 94.28 277 | 81.48 214 | 98.00 249 | 87.18 246 | 84.92 308 | 94.93 288 |
|
原ACMM1 | | | | | 96.38 102 | 98.59 75 | 91.09 146 | | 97.89 109 | 87.41 266 | 95.22 116 | 97.68 99 | 90.25 82 | 99.54 90 | 87.95 222 | 99.12 85 | 98.49 139 |
|
v1921920 | | | 90.85 247 | 90.03 250 | 93.29 256 | 93.55 316 | 86.96 264 | 96.74 180 | 97.04 209 | 87.36 267 | 89.52 243 | 94.34 272 | 80.23 234 | 97.97 253 | 86.27 256 | 85.21 301 | 94.94 286 |
|
USDC | | | 88.94 282 | 87.83 287 | 92.27 285 | 94.66 283 | 84.96 298 | 93.86 311 | 95.90 273 | 87.34 268 | 83.40 334 | 95.56 221 | 67.43 338 | 98.19 221 | 82.64 302 | 89.67 258 | 93.66 329 |
|
PLC |  | 91.00 6 | 94.11 118 | 93.43 127 | 96.13 116 | 98.58 77 | 91.15 145 | 96.69 187 | 97.39 176 | 87.29 269 | 91.37 191 | 96.71 151 | 88.39 104 | 99.52 97 | 87.33 242 | 97.13 147 | 97.73 180 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
tfpnnormal | | | 89.70 276 | 88.40 281 | 93.60 241 | 95.15 258 | 90.10 173 | 97.56 102 | 98.16 54 | 87.28 270 | 86.16 310 | 94.63 259 | 77.57 279 | 98.05 242 | 74.48 344 | 84.59 312 | 92.65 342 |
|
TESTMET0.1,1 | | | 90.06 269 | 89.42 267 | 91.97 290 | 94.41 294 | 80.62 338 | 94.29 299 | 91.97 354 | 87.28 270 | 90.44 210 | 92.47 322 | 68.79 331 | 97.67 285 | 88.50 216 | 96.60 157 | 97.61 188 |
|
v1240 | | | 90.70 254 | 89.85 255 | 93.23 258 | 93.51 319 | 86.80 265 | 96.61 197 | 97.02 212 | 87.16 272 | 89.58 239 | 94.31 276 | 79.55 247 | 97.98 250 | 85.52 271 | 85.44 296 | 94.90 291 |
|
Patchmatch-RL test | | | 87.38 299 | 86.24 300 | 90.81 316 | 88.74 362 | 78.40 356 | 88.12 359 | 93.17 344 | 87.11 273 | 82.17 340 | 89.29 349 | 81.95 207 | 95.60 346 | 88.64 214 | 77.02 348 | 98.41 149 |
|
CDPH-MVS | | | 95.97 71 | 95.38 78 | 97.77 38 | 98.93 50 | 94.44 35 | 96.35 217 | 97.88 112 | 86.98 274 | 96.65 63 | 97.89 80 | 91.99 47 | 99.47 104 | 92.26 138 | 99.46 43 | 99.39 59 |
|
PM-MVS | | | 83.48 322 | 81.86 326 | 88.31 334 | 87.83 365 | 77.59 357 | 93.43 321 | 91.75 355 | 86.91 275 | 80.63 345 | 89.91 346 | 44.42 368 | 95.84 342 | 85.17 277 | 76.73 350 | 91.50 354 |
|
CR-MVSNet | | | 90.82 248 | 89.77 259 | 93.95 224 | 94.45 292 | 87.19 257 | 90.23 351 | 95.68 283 | 86.89 276 | 92.40 168 | 92.36 326 | 80.91 221 | 97.05 320 | 81.09 314 | 93.95 200 | 97.60 189 |
|
1112_ss | | | 93.37 143 | 92.42 161 | 96.21 114 | 97.05 163 | 90.99 147 | 96.31 222 | 96.72 234 | 86.87 277 | 89.83 232 | 96.69 155 | 86.51 130 | 99.14 135 | 88.12 219 | 93.67 202 | 98.50 137 |
|
miper_enhance_ethall | | | 91.54 214 | 91.01 206 | 93.15 261 | 95.35 243 | 87.07 261 | 93.97 307 | 96.90 222 | 86.79 278 | 89.17 254 | 93.43 311 | 86.55 129 | 97.64 288 | 89.97 181 | 86.93 281 | 94.74 306 |
|
CL-MVSNet_self_test | | | 86.31 308 | 85.15 310 | 89.80 329 | 88.83 361 | 81.74 331 | 93.93 310 | 96.22 263 | 86.67 279 | 85.03 319 | 90.80 340 | 78.09 273 | 94.50 353 | 74.92 343 | 71.86 358 | 93.15 335 |
|
FMVSNet1 | | | 89.88 273 | 88.31 282 | 94.59 192 | 95.41 237 | 91.18 142 | 97.50 106 | 96.93 217 | 86.62 280 | 87.41 292 | 94.51 262 | 65.94 349 | 97.29 316 | 83.04 296 | 87.43 277 | 95.31 268 |
|
CHOSEN 280x420 | | | 93.12 153 | 92.72 149 | 94.34 206 | 96.71 180 | 87.27 253 | 90.29 350 | 97.72 129 | 86.61 281 | 91.34 192 | 95.29 230 | 84.29 161 | 98.41 202 | 93.25 125 | 98.94 94 | 97.35 196 |
|
MVS_0304 | | | 88.79 286 | 87.57 288 | 92.46 279 | 94.65 284 | 86.15 281 | 96.40 212 | 97.17 194 | 86.44 282 | 88.02 282 | 91.71 335 | 56.68 362 | 97.03 321 | 84.47 284 | 92.58 215 | 94.19 322 |
|
MIMVSNet | | | 88.50 290 | 86.76 298 | 93.72 236 | 94.84 276 | 87.77 247 | 91.39 341 | 94.05 335 | 86.41 283 | 87.99 283 | 92.59 320 | 63.27 354 | 95.82 343 | 77.44 332 | 92.84 211 | 97.57 191 |
|
tpmvs | | | 89.83 275 | 89.15 273 | 91.89 292 | 94.92 270 | 80.30 342 | 93.11 328 | 95.46 290 | 86.28 284 | 88.08 280 | 92.65 318 | 80.44 229 | 98.52 195 | 81.47 308 | 89.92 255 | 96.84 208 |
|
PAPM | | | 91.52 215 | 90.30 235 | 95.20 163 | 95.30 250 | 89.83 183 | 93.38 323 | 96.85 229 | 86.26 285 | 88.59 267 | 95.80 204 | 84.88 151 | 98.15 225 | 75.67 342 | 95.93 167 | 97.63 184 |
|
VDDNet | | | 93.05 156 | 92.07 168 | 96.02 122 | 96.84 172 | 90.39 169 | 98.08 50 | 95.85 275 | 86.22 286 | 95.79 99 | 98.46 29 | 67.59 337 | 99.19 128 | 94.92 87 | 94.85 185 | 98.47 142 |
|
MS-PatchMatch | | | 90.27 263 | 89.77 259 | 91.78 298 | 94.33 296 | 84.72 302 | 95.55 260 | 96.73 233 | 86.17 287 | 86.36 308 | 95.28 232 | 71.28 317 | 97.80 274 | 84.09 287 | 98.14 118 | 92.81 339 |
|
MVP-Stereo | | | 90.74 252 | 90.08 246 | 92.71 275 | 93.19 327 | 88.20 235 | 95.86 248 | 96.27 260 | 86.07 288 | 84.86 321 | 94.76 251 | 77.84 277 | 97.75 280 | 83.88 291 | 98.01 120 | 92.17 350 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
Anonymous202405211 | | | 92.07 195 | 90.83 214 | 95.76 133 | 98.19 106 | 88.75 219 | 97.58 100 | 95.00 311 | 86.00 289 | 93.64 143 | 97.45 118 | 66.24 347 | 99.53 93 | 90.68 174 | 92.71 212 | 99.01 95 |
|
KD-MVS_self_test | | | 85.95 312 | 84.95 311 | 88.96 332 | 89.55 359 | 79.11 353 | 95.13 279 | 96.42 254 | 85.91 290 | 84.07 330 | 90.48 341 | 70.03 327 | 94.82 352 | 80.04 318 | 72.94 357 | 92.94 337 |
|
CVMVSNet | | | 91.23 230 | 91.75 179 | 89.67 330 | 95.77 224 | 74.69 361 | 96.44 205 | 94.88 317 | 85.81 291 | 92.18 176 | 97.64 106 | 79.07 252 | 95.58 347 | 88.06 220 | 95.86 169 | 98.74 121 |
|
our_test_3 | | | 88.78 287 | 87.98 286 | 91.20 311 | 92.45 340 | 82.53 323 | 93.61 320 | 95.69 281 | 85.77 292 | 84.88 320 | 93.71 299 | 79.99 238 | 96.78 331 | 79.47 323 | 86.24 287 | 94.28 320 |
|
MSDG | | | 91.42 219 | 90.24 239 | 94.96 176 | 97.15 155 | 88.91 216 | 93.69 316 | 96.32 258 | 85.72 293 | 86.93 303 | 96.47 171 | 80.24 233 | 98.98 155 | 80.57 315 | 95.05 184 | 96.98 201 |
|
CHOSEN 1792x2688 | | | 94.15 114 | 93.51 123 | 96.06 119 | 98.27 95 | 89.38 200 | 95.18 278 | 98.48 15 | 85.60 294 | 93.76 142 | 97.11 134 | 83.15 177 | 99.61 66 | 91.33 163 | 98.72 100 | 99.19 76 |
|
KD-MVS_2432*1600 | | | 84.81 319 | 82.64 322 | 91.31 308 | 91.07 349 | 85.34 293 | 91.22 343 | 95.75 278 | 85.56 295 | 83.09 336 | 90.21 343 | 67.21 340 | 95.89 339 | 77.18 336 | 62.48 365 | 92.69 340 |
|
miper_refine_blended | | | 84.81 319 | 82.64 322 | 91.31 308 | 91.07 349 | 85.34 293 | 91.22 343 | 95.75 278 | 85.56 295 | 83.09 336 | 90.21 343 | 67.21 340 | 95.89 339 | 77.18 336 | 62.48 365 | 92.69 340 |
|
AllTest | | | 90.23 265 | 88.98 274 | 93.98 220 | 97.94 119 | 86.64 268 | 96.51 204 | 95.54 288 | 85.38 297 | 85.49 315 | 96.77 149 | 70.28 324 | 99.15 133 | 80.02 319 | 92.87 209 | 96.15 225 |
|
TestCases | | | | | 93.98 220 | 97.94 119 | 86.64 268 | | 95.54 288 | 85.38 297 | 85.49 315 | 96.77 149 | 70.28 324 | 99.15 133 | 80.02 319 | 92.87 209 | 96.15 225 |
|
Test_1112_low_res | | | 92.84 168 | 91.84 177 | 95.85 131 | 97.04 164 | 89.97 180 | 95.53 262 | 96.64 243 | 85.38 297 | 89.65 238 | 95.18 234 | 85.86 140 | 99.10 138 | 87.70 229 | 93.58 207 | 98.49 139 |
|
EU-MVSNet | | | 88.72 288 | 88.90 275 | 88.20 335 | 93.15 328 | 74.21 362 | 96.63 196 | 94.22 334 | 85.18 300 | 87.32 295 | 95.97 194 | 76.16 289 | 94.98 351 | 85.27 274 | 86.17 288 | 95.41 259 |
|
LS3D | | | 93.57 138 | 92.61 153 | 96.47 94 | 97.59 142 | 91.61 122 | 97.67 89 | 97.72 129 | 85.17 301 | 90.29 213 | 98.34 44 | 84.60 154 | 99.73 36 | 83.85 292 | 98.27 113 | 98.06 166 |
|
dp | | | 88.90 284 | 88.26 284 | 90.81 316 | 94.58 289 | 76.62 358 | 92.85 332 | 94.93 315 | 85.12 302 | 90.07 227 | 93.07 313 | 75.81 290 | 98.12 229 | 80.53 316 | 87.42 278 | 97.71 181 |
|
HyFIR lowres test | | | 93.66 134 | 92.92 140 | 95.87 130 | 98.24 99 | 89.88 182 | 94.58 286 | 98.49 13 | 85.06 303 | 93.78 141 | 95.78 208 | 82.86 186 | 98.67 182 | 91.77 152 | 95.71 173 | 99.07 90 |
|
new-patchmatchnet | | | 83.18 323 | 81.87 325 | 87.11 339 | 86.88 366 | 75.99 360 | 93.70 315 | 95.18 304 | 85.02 304 | 77.30 355 | 88.40 351 | 65.99 348 | 93.88 358 | 74.19 348 | 70.18 360 | 91.47 355 |
|
TDRefinement | | | 86.53 304 | 84.76 314 | 91.85 293 | 82.23 369 | 84.25 306 | 96.38 215 | 95.35 294 | 84.97 305 | 84.09 329 | 94.94 241 | 65.76 350 | 98.34 211 | 84.60 283 | 74.52 353 | 92.97 336 |
|
OpenMVS |  | 89.19 12 | 92.86 166 | 91.68 182 | 96.40 99 | 95.34 244 | 92.73 88 | 98.27 31 | 98.12 60 | 84.86 306 | 85.78 312 | 97.75 94 | 78.89 260 | 99.74 35 | 87.50 239 | 98.65 102 | 96.73 211 |
|
gm-plane-assit | | | | | | 93.22 326 | 78.89 355 | | | 84.82 307 | | 93.52 306 | | 98.64 184 | 87.72 226 | | |
|
PMMVS | | | 92.86 166 | 92.34 162 | 94.42 203 | 94.92 270 | 86.73 267 | 94.53 288 | 96.38 256 | 84.78 308 | 94.27 131 | 95.12 238 | 83.13 178 | 98.40 203 | 91.47 161 | 96.49 160 | 98.12 162 |
|
pmmvs4 | | | 90.93 245 | 89.85 255 | 94.17 211 | 93.34 324 | 90.79 156 | 94.60 285 | 96.02 269 | 84.62 309 | 87.45 290 | 95.15 235 | 81.88 209 | 97.45 306 | 87.70 229 | 87.87 272 | 94.27 321 |
|
MDA-MVSNet-bldmvs | | | 85.00 317 | 82.95 321 | 91.17 312 | 93.13 329 | 83.33 318 | 94.56 287 | 95.00 311 | 84.57 310 | 65.13 365 | 92.65 318 | 70.45 322 | 95.85 341 | 73.57 349 | 77.49 347 | 94.33 317 |
|
QAPM | | | 93.45 141 | 92.27 165 | 96.98 77 | 96.77 177 | 92.62 92 | 98.39 24 | 98.12 60 | 84.50 311 | 88.27 275 | 97.77 93 | 82.39 199 | 99.81 30 | 85.40 273 | 98.81 97 | 98.51 136 |
|
ppachtmachnet_test | | | 88.35 292 | 87.29 291 | 91.53 303 | 92.45 340 | 83.57 317 | 93.75 314 | 95.97 270 | 84.28 312 | 85.32 318 | 94.18 284 | 79.00 259 | 96.93 326 | 75.71 341 | 84.99 307 | 94.10 323 |
|
pmmvs5 | | | 89.86 274 | 88.87 276 | 92.82 272 | 92.86 331 | 86.23 277 | 96.26 226 | 95.39 291 | 84.24 313 | 87.12 297 | 94.51 262 | 74.27 300 | 97.36 313 | 87.61 237 | 87.57 275 | 94.86 293 |
|
CostFormer | | | 91.18 236 | 90.70 220 | 92.62 278 | 94.84 276 | 81.76 330 | 94.09 305 | 94.43 327 | 84.15 314 | 92.72 166 | 93.77 298 | 79.43 248 | 98.20 219 | 90.70 173 | 92.18 222 | 97.90 171 |
|
FMVSNet5 | | | 87.29 300 | 85.79 304 | 91.78 298 | 94.80 278 | 87.28 252 | 95.49 263 | 95.28 298 | 84.09 315 | 83.85 333 | 91.82 332 | 62.95 355 | 94.17 356 | 78.48 328 | 85.34 299 | 93.91 327 |
|
MIMVSNet1 | | | 84.93 318 | 83.05 320 | 90.56 321 | 89.56 358 | 84.84 301 | 95.40 266 | 95.35 294 | 83.91 316 | 80.38 347 | 92.21 330 | 57.23 360 | 93.34 361 | 70.69 359 | 82.75 334 | 93.50 331 |
|
RPSCF | | | 90.75 251 | 90.86 210 | 90.42 323 | 96.84 172 | 76.29 359 | 95.61 259 | 96.34 257 | 83.89 317 | 91.38 190 | 97.87 83 | 76.45 286 | 98.78 169 | 87.16 247 | 92.23 219 | 96.20 221 |
|
MDTV_nov1_ep13_2view | | | | | | | 70.35 366 | 93.10 329 | | 83.88 318 | 93.55 145 | | 82.47 197 | | 86.25 257 | | 98.38 152 |
|
无先验 | | | | | | | | 95.79 252 | 97.87 114 | 83.87 319 | | | | 99.65 57 | 87.68 232 | | 98.89 111 |
|
PVSNet_0 | | 82.17 19 | 85.46 316 | 83.64 319 | 90.92 314 | 95.27 251 | 79.49 349 | 90.55 349 | 95.60 285 | 83.76 320 | 83.00 338 | 89.95 345 | 71.09 318 | 97.97 253 | 82.75 300 | 60.79 367 | 95.31 268 |
|
Anonymous20240521 | | | 86.42 306 | 85.44 306 | 89.34 331 | 90.33 352 | 79.79 347 | 96.73 181 | 95.92 271 | 83.71 321 | 83.25 335 | 91.36 338 | 63.92 353 | 96.01 337 | 78.39 330 | 85.36 298 | 92.22 348 |
|
TinyColmap | | | 86.82 303 | 85.35 309 | 91.21 310 | 94.91 273 | 82.99 321 | 93.94 309 | 94.02 337 | 83.58 322 | 81.56 341 | 94.68 256 | 62.34 357 | 98.13 226 | 75.78 340 | 87.35 280 | 92.52 344 |
|
Anonymous20231206 | | | 87.09 301 | 86.14 302 | 89.93 328 | 91.22 348 | 80.35 340 | 96.11 235 | 95.35 294 | 83.57 323 | 84.16 327 | 93.02 314 | 73.54 307 | 95.61 345 | 72.16 353 | 86.14 289 | 93.84 328 |
|
pmmvs-eth3d | | | 86.22 309 | 84.45 315 | 91.53 303 | 88.34 363 | 87.25 254 | 94.47 289 | 95.01 310 | 83.47 324 | 79.51 352 | 89.61 348 | 69.75 329 | 95.71 344 | 83.13 295 | 76.73 350 | 91.64 351 |
|
EG-PatchMatch MVS | | | 87.02 302 | 85.44 306 | 91.76 300 | 92.67 335 | 85.00 297 | 96.08 237 | 96.45 253 | 83.41 325 | 79.52 351 | 93.49 307 | 57.10 361 | 97.72 282 | 79.34 326 | 90.87 245 | 92.56 343 |
|
ADS-MVSNet2 | | | 89.45 277 | 88.59 279 | 92.03 289 | 95.86 219 | 82.26 327 | 90.93 346 | 94.32 332 | 83.23 326 | 91.28 198 | 91.81 333 | 79.01 257 | 95.99 338 | 79.52 321 | 91.39 235 | 97.84 175 |
|
ADS-MVSNet | | | 89.89 272 | 88.68 278 | 93.53 245 | 95.86 219 | 84.89 300 | 90.93 346 | 95.07 309 | 83.23 326 | 91.28 198 | 91.81 333 | 79.01 257 | 97.85 269 | 79.52 321 | 91.39 235 | 97.84 175 |
|
COLMAP_ROB |  | 87.81 15 | 90.40 261 | 89.28 270 | 93.79 233 | 97.95 118 | 87.13 260 | 96.92 165 | 95.89 274 | 82.83 328 | 86.88 305 | 97.18 130 | 73.77 305 | 99.29 122 | 78.44 329 | 93.62 204 | 94.95 284 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
testdata | | | | | 95.46 158 | 98.18 108 | 88.90 217 | | 97.66 136 | 82.73 329 | 97.03 52 | 98.07 70 | 90.06 85 | 98.85 164 | 89.67 189 | 98.98 92 | 98.64 129 |
|
DP-MVS | | | 92.76 171 | 91.51 190 | 96.52 88 | 98.77 60 | 90.99 147 | 97.38 120 | 96.08 268 | 82.38 330 | 89.29 250 | 97.87 83 | 83.77 166 | 99.69 48 | 81.37 312 | 96.69 155 | 98.89 111 |
|
MDA-MVSNet_test_wron | | | 85.87 313 | 84.23 317 | 90.80 318 | 92.38 342 | 82.57 322 | 93.17 325 | 95.15 305 | 82.15 331 | 67.65 361 | 92.33 329 | 78.20 269 | 95.51 348 | 77.33 333 | 79.74 340 | 94.31 319 |
|
YYNet1 | | | 85.87 313 | 84.23 317 | 90.78 319 | 92.38 342 | 82.46 325 | 93.17 325 | 95.14 306 | 82.12 332 | 67.69 360 | 92.36 326 | 78.16 272 | 95.50 349 | 77.31 334 | 79.73 341 | 94.39 315 |
|
PatchT | | | 88.87 285 | 87.42 290 | 93.22 259 | 94.08 303 | 85.10 296 | 89.51 355 | 94.64 324 | 81.92 333 | 92.36 171 | 88.15 354 | 80.05 237 | 97.01 324 | 72.43 352 | 93.65 203 | 97.54 192 |
|
TAPA-MVS | | 90.10 7 | 92.30 184 | 91.22 201 | 95.56 147 | 98.33 91 | 89.60 188 | 96.79 177 | 97.65 138 | 81.83 334 | 91.52 188 | 97.23 128 | 87.94 108 | 98.91 160 | 71.31 356 | 98.37 111 | 98.17 160 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
旧先验2 | | | | | | | | 95.94 245 | | 81.66 335 | 97.34 39 | | | 98.82 166 | 92.26 138 | | |
|
新几何1 | | | | | 97.32 59 | 98.60 74 | 93.59 65 | | 97.75 123 | 81.58 336 | 95.75 100 | 97.85 86 | 90.04 86 | 99.67 53 | 86.50 254 | 99.13 82 | 98.69 126 |
|
1121 | | | 94.71 106 | 93.83 111 | 97.34 58 | 98.57 78 | 93.64 64 | 96.04 238 | 97.73 126 | 81.56 337 | 95.68 103 | 97.85 86 | 90.23 83 | 99.65 57 | 87.68 232 | 99.12 85 | 98.73 122 |
|
Patchmatch-test | | | 89.42 278 | 87.99 285 | 93.70 237 | 95.27 251 | 85.11 295 | 88.98 357 | 94.37 330 | 81.11 338 | 87.10 299 | 93.69 300 | 82.28 200 | 97.50 302 | 74.37 346 | 94.76 188 | 98.48 141 |
|
test_0402 | | | 86.46 305 | 84.79 313 | 91.45 305 | 95.02 265 | 85.55 286 | 96.29 224 | 94.89 316 | 80.90 339 | 82.21 339 | 93.97 292 | 68.21 335 | 97.29 316 | 62.98 364 | 88.68 267 | 91.51 353 |
|
gg-mvs-nofinetune | | | 87.82 296 | 85.61 305 | 94.44 200 | 94.46 291 | 89.27 208 | 91.21 345 | 84.61 371 | 80.88 340 | 89.89 231 | 74.98 364 | 71.50 315 | 97.53 299 | 85.75 269 | 97.21 144 | 96.51 215 |
|
JIA-IIPM | | | 88.26 293 | 87.04 297 | 91.91 291 | 93.52 318 | 81.42 332 | 89.38 356 | 94.38 329 | 80.84 341 | 90.93 204 | 80.74 362 | 79.22 251 | 97.92 263 | 82.76 299 | 91.62 230 | 96.38 219 |
|
Patchmtry | | | 88.64 289 | 87.25 292 | 92.78 274 | 94.09 302 | 86.64 268 | 89.82 354 | 95.68 283 | 80.81 342 | 87.63 289 | 92.36 326 | 80.91 221 | 97.03 321 | 78.86 327 | 85.12 303 | 94.67 308 |
|
tpm2 | | | 89.96 270 | 89.21 271 | 92.23 286 | 94.91 273 | 81.25 333 | 93.78 313 | 94.42 328 | 80.62 343 | 91.56 187 | 93.44 309 | 76.44 287 | 97.94 260 | 85.60 270 | 92.08 226 | 97.49 193 |
|
pmmvs6 | | | 87.81 297 | 86.19 301 | 92.69 276 | 91.32 347 | 86.30 275 | 97.34 122 | 96.41 255 | 80.59 344 | 84.05 331 | 94.37 271 | 67.37 339 | 97.67 285 | 84.75 280 | 79.51 343 | 94.09 325 |
|
Anonymous20231211 | | | 90.63 256 | 89.42 267 | 94.27 209 | 98.24 99 | 89.19 211 | 98.05 52 | 97.89 109 | 79.95 345 | 88.25 276 | 94.96 240 | 72.56 311 | 98.13 226 | 89.70 188 | 85.14 302 | 95.49 252 |
|
cascas | | | 91.20 232 | 90.08 246 | 94.58 196 | 94.97 266 | 89.16 212 | 93.65 318 | 97.59 145 | 79.90 346 | 89.40 245 | 92.92 315 | 75.36 295 | 98.36 207 | 92.14 143 | 94.75 189 | 96.23 220 |
|
Anonymous20240529 | | | 91.98 197 | 90.73 219 | 95.73 138 | 98.14 111 | 89.40 199 | 97.99 55 | 97.72 129 | 79.63 347 | 93.54 146 | 97.41 121 | 69.94 328 | 99.56 85 | 91.04 168 | 91.11 239 | 98.22 158 |
|
PCF-MVS | | 89.48 11 | 91.56 211 | 89.95 251 | 96.36 104 | 96.60 182 | 92.52 95 | 92.51 337 | 97.26 188 | 79.41 348 | 88.90 257 | 96.56 167 | 84.04 164 | 99.55 88 | 77.01 338 | 97.30 141 | 97.01 200 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
test222 | | | | | | 98.24 99 | 92.21 105 | 95.33 269 | 97.60 143 | 79.22 349 | 95.25 114 | 97.84 89 | 88.80 98 | | | 99.15 80 | 98.72 123 |
|
UnsupCasMVSNet_bld | | | 82.13 326 | 79.46 329 | 90.14 326 | 88.00 364 | 82.47 324 | 90.89 348 | 96.62 248 | 78.94 350 | 75.61 356 | 84.40 360 | 56.63 363 | 96.31 335 | 77.30 335 | 66.77 363 | 91.63 352 |
|
N_pmnet | | | 78.73 328 | 78.71 330 | 78.79 346 | 92.80 333 | 46.50 377 | 94.14 303 | 43.71 380 | 78.61 351 | 80.83 343 | 91.66 336 | 74.94 297 | 96.36 334 | 67.24 361 | 84.45 315 | 93.50 331 |
|
ANet_high | | | 63.94 335 | 59.58 338 | 77.02 347 | 61.24 378 | 66.06 369 | 85.66 362 | 87.93 367 | 78.53 352 | 42.94 370 | 71.04 367 | 25.42 376 | 80.71 370 | 52.60 368 | 30.83 371 | 84.28 362 |
|
114514_t | | | 93.95 124 | 93.06 136 | 96.63 83 | 99.07 41 | 91.61 122 | 97.46 113 | 97.96 104 | 77.99 353 | 93.00 159 | 97.57 112 | 86.14 138 | 99.33 118 | 89.22 202 | 99.15 80 | 98.94 103 |
|
DSMNet-mixed | | | 86.34 307 | 86.12 303 | 87.00 340 | 89.88 356 | 70.43 365 | 94.93 281 | 90.08 362 | 77.97 354 | 85.42 317 | 92.78 317 | 74.44 299 | 93.96 357 | 74.43 345 | 95.14 180 | 96.62 213 |
|
RPMNet | | | 88.98 281 | 87.05 296 | 94.77 188 | 94.45 292 | 87.19 257 | 90.23 351 | 98.03 88 | 77.87 355 | 92.40 168 | 87.55 357 | 80.17 235 | 99.51 98 | 68.84 360 | 93.95 200 | 97.60 189 |
|
new_pmnet | | | 82.89 324 | 81.12 328 | 88.18 336 | 89.63 357 | 80.18 344 | 91.77 340 | 92.57 349 | 76.79 356 | 75.56 358 | 88.23 353 | 61.22 358 | 94.48 354 | 71.43 355 | 82.92 332 | 89.87 359 |
|
tpm cat1 | | | 88.36 291 | 87.21 294 | 91.81 296 | 95.13 260 | 80.55 339 | 92.58 336 | 95.70 280 | 74.97 357 | 87.45 290 | 91.96 331 | 78.01 276 | 98.17 224 | 80.39 317 | 88.74 266 | 96.72 212 |
|
CMPMVS |  | 62.92 21 | 85.62 315 | 84.92 312 | 87.74 337 | 89.14 360 | 73.12 364 | 94.17 302 | 96.80 232 | 73.98 358 | 73.65 359 | 94.93 242 | 66.36 344 | 97.61 292 | 83.95 290 | 91.28 237 | 92.48 345 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
OpenMVS_ROB |  | 81.14 20 | 84.42 321 | 82.28 324 | 90.83 315 | 90.06 354 | 84.05 310 | 95.73 254 | 94.04 336 | 73.89 359 | 80.17 350 | 91.53 337 | 59.15 359 | 97.64 288 | 66.92 362 | 89.05 262 | 90.80 357 |
|
MVS | | | 91.71 203 | 90.44 229 | 95.51 151 | 95.20 257 | 91.59 124 | 96.04 238 | 97.45 166 | 73.44 360 | 87.36 294 | 95.60 218 | 85.42 145 | 99.10 138 | 85.97 265 | 97.46 132 | 95.83 238 |
|
pmmvs3 | | | 79.97 327 | 77.50 331 | 87.39 338 | 82.80 368 | 79.38 351 | 92.70 334 | 90.75 361 | 70.69 361 | 78.66 353 | 87.47 358 | 51.34 366 | 93.40 360 | 73.39 350 | 69.65 361 | 89.38 360 |
|
MVS-HIRNet | | | 82.47 325 | 81.21 327 | 86.26 342 | 95.38 239 | 69.21 368 | 88.96 358 | 89.49 363 | 66.28 362 | 80.79 344 | 74.08 366 | 68.48 333 | 97.39 311 | 71.93 354 | 95.47 175 | 92.18 349 |
|
DeepMVS_CX |  | | | | 74.68 350 | 90.84 351 | 64.34 372 | | 81.61 374 | 65.34 363 | 67.47 362 | 88.01 356 | 48.60 367 | 80.13 371 | 62.33 365 | 73.68 356 | 79.58 365 |
|
PMMVS2 | | | 70.19 331 | 66.92 334 | 80.01 345 | 76.35 370 | 65.67 370 | 86.22 360 | 87.58 368 | 64.83 364 | 62.38 366 | 80.29 363 | 26.78 375 | 88.49 366 | 63.79 363 | 54.07 368 | 85.88 361 |
|
FPMVS | | | 71.27 330 | 69.85 332 | 75.50 348 | 74.64 371 | 59.03 373 | 91.30 342 | 91.50 357 | 58.80 365 | 57.92 367 | 88.28 352 | 29.98 373 | 85.53 368 | 53.43 367 | 82.84 333 | 81.95 364 |
|
LCM-MVSNet | | | 72.55 329 | 69.39 333 | 82.03 344 | 70.81 376 | 65.42 371 | 90.12 353 | 94.36 331 | 55.02 366 | 65.88 363 | 81.72 361 | 24.16 377 | 89.96 364 | 74.32 347 | 68.10 362 | 90.71 358 |
|
Gipuma |  | | 67.86 333 | 65.41 335 | 75.18 349 | 92.66 336 | 73.45 363 | 66.50 368 | 94.52 326 | 53.33 367 | 57.80 368 | 66.07 368 | 30.81 371 | 89.20 365 | 48.15 369 | 78.88 346 | 62.90 368 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMVS |  | 53.92 22 | 58.58 336 | 55.40 339 | 68.12 352 | 51.00 379 | 48.64 375 | 78.86 365 | 87.10 370 | 46.77 368 | 35.84 374 | 74.28 365 | 8.76 378 | 86.34 367 | 42.07 370 | 73.91 355 | 69.38 366 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
E-PMN | | | 53.28 337 | 52.56 341 | 55.43 354 | 74.43 372 | 47.13 376 | 83.63 364 | 76.30 375 | 42.23 369 | 42.59 371 | 62.22 370 | 28.57 374 | 74.40 372 | 31.53 372 | 31.51 370 | 44.78 369 |
|
EMVS | | | 52.08 339 | 51.31 342 | 54.39 355 | 72.62 374 | 45.39 378 | 83.84 363 | 75.51 377 | 41.13 370 | 40.77 372 | 59.65 371 | 30.08 372 | 73.60 373 | 28.31 373 | 29.90 372 | 44.18 370 |
|
MVE |  | 50.73 23 | 53.25 338 | 48.81 343 | 66.58 353 | 65.34 377 | 57.50 374 | 72.49 367 | 70.94 378 | 40.15 371 | 39.28 373 | 63.51 369 | 6.89 380 | 73.48 374 | 38.29 371 | 42.38 369 | 68.76 367 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 66.11 334 | 64.89 336 | 69.79 351 | 72.62 374 | 35.23 381 | 65.19 369 | 92.83 347 | 20.35 372 | 65.20 364 | 88.08 355 | 43.14 369 | 82.70 369 | 73.12 351 | 63.46 364 | 91.45 356 |
|
tmp_tt | | | 51.94 340 | 53.82 340 | 46.29 356 | 33.73 380 | 45.30 379 | 78.32 366 | 67.24 379 | 18.02 373 | 50.93 369 | 87.05 359 | 52.99 365 | 53.11 375 | 70.76 358 | 25.29 373 | 40.46 371 |
|
wuyk23d | | | 25.11 341 | 24.57 345 | 26.74 357 | 73.98 373 | 39.89 380 | 57.88 370 | 9.80 381 | 12.27 374 | 10.39 375 | 6.97 377 | 7.03 379 | 36.44 376 | 25.43 374 | 17.39 374 | 3.89 374 |
|
testmvs | | | 13.36 343 | 16.33 346 | 4.48 359 | 5.04 381 | 2.26 383 | 93.18 324 | 3.28 382 | 2.70 375 | 8.24 376 | 21.66 373 | 2.29 382 | 2.19 377 | 7.58 375 | 2.96 375 | 9.00 373 |
|
test123 | | | 13.04 344 | 15.66 347 | 5.18 358 | 4.51 382 | 3.45 382 | 92.50 338 | 1.81 383 | 2.50 376 | 7.58 377 | 20.15 374 | 3.67 381 | 2.18 378 | 7.13 376 | 1.07 376 | 9.90 372 |
|
EGC-MVSNET | | | 68.77 332 | 63.01 337 | 86.07 343 | 92.49 338 | 82.24 328 | 93.96 308 | 90.96 360 | 0.71 377 | 2.62 378 | 90.89 339 | 53.66 364 | 93.46 359 | 57.25 366 | 84.55 313 | 82.51 363 |
|
test_blank | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.00 378 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
uanet_test | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.00 378 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
DCPMVS | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.00 378 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
cdsmvs_eth3d_5k | | | 23.24 342 | 30.99 344 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 97.63 141 | 0.00 378 | 0.00 379 | 96.88 145 | 84.38 158 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
pcd_1.5k_mvsjas | | | 7.39 346 | 9.85 349 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.00 378 | 88.65 100 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
sosnet-low-res | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.00 378 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
sosnet | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.00 378 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
uncertanet | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.00 378 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
Regformer | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.00 378 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
ab-mvs-re | | | 8.06 345 | 10.74 348 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 96.69 155 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
uanet | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.00 378 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
MSC_two_6792asdad | | | | | 98.86 1 | 98.67 65 | 96.94 1 | | 97.93 107 | | | | | 99.86 9 | 97.68 2 | 99.67 6 | 99.77 1 |
|
No_MVS | | | | | 98.86 1 | 98.67 65 | 96.94 1 | | 97.93 107 | | | | | 99.86 9 | 97.68 2 | 99.67 6 | 99.77 1 |
|
eth-test2 | | | | | | 0.00 383 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 383 | | | | | | | | | | | |
|
OPU-MVS | | | | | 98.55 3 | 98.82 59 | 96.86 3 | 98.25 34 | | | | 98.26 57 | 96.04 2 | 99.24 125 | 95.36 75 | 99.59 17 | 99.56 27 |
|
test_0728_SECOND | | | | | 98.51 4 | 99.45 3 | 95.93 5 | 98.21 41 | 98.28 28 | | | | | 99.86 9 | 97.52 5 | 99.67 6 | 99.75 5 |
|
GSMVS | | | | | | | | | | | | | | | | | 98.45 144 |
|
test_part2 | | | | | | 99.28 27 | 95.74 8 | | | | 98.10 21 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 82.76 189 | | | | 98.45 144 |
|
sam_mvs | | | | | | | | | | | | | 81.94 208 | | | | |
|
ambc | | | | | 86.56 341 | 83.60 367 | 70.00 367 | 85.69 361 | 94.97 313 | | 80.60 346 | 88.45 350 | 37.42 370 | 96.84 329 | 82.69 301 | 75.44 352 | 92.86 338 |
|
MTGPA |  | | | | | | | | 98.08 68 | | | | | | | | |
|
test_post1 | | | | | | | | 92.81 333 | | | | 16.58 376 | 80.53 227 | 97.68 284 | 86.20 258 | | |
|
test_post | | | | | | | | | | | | 17.58 375 | 81.76 210 | 98.08 236 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 90.45 342 | 82.65 193 | 98.10 231 | | | |
|
GG-mvs-BLEND | | | | | 93.62 240 | 93.69 314 | 89.20 209 | 92.39 339 | 83.33 372 | | 87.98 284 | 89.84 347 | 71.00 319 | 96.87 328 | 82.08 305 | 95.40 177 | 94.80 300 |
|
MTMP | | | | | | | | 97.86 67 | 82.03 373 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 94.81 92 | 99.38 53 | 99.45 50 |
|
agg_prior2 | | | | | | | | | | | | | | | 93.94 109 | 99.38 53 | 99.50 42 |
|
agg_prior | | | | | | 98.67 65 | 93.79 59 | | 98.00 97 | | 95.68 103 | | | 99.57 83 | | | |
|
test_prior4 | | | | | | | 93.66 63 | 96.42 208 | | | | | | | | | |
|
test_prior | | | | | 97.23 65 | 98.67 65 | 92.99 81 | | 98.00 97 | | | | | 99.41 111 | | | 99.29 67 |
|
新几何2 | | | | | | | | 95.79 252 | | | | | | | | | |
|
旧先验1 | | | | | | 98.38 87 | 93.38 71 | | 97.75 123 | | | 98.09 69 | 92.30 42 | | | 99.01 91 | 99.16 78 |
|
原ACMM2 | | | | | | | | 95.67 255 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.67 53 | 85.96 266 | | |
|
segment_acmp | | | | | | | | | | | | | 92.89 26 | | | | |
|
test12 | | | | | 97.65 47 | 98.46 80 | 94.26 41 | | 97.66 136 | | 95.52 112 | | 90.89 74 | 99.46 105 | | 99.25 70 | 99.22 75 |
|
plane_prior7 | | | | | | 96.21 204 | 89.98 179 | | | | | | | | | | |
|
plane_prior6 | | | | | | 96.10 214 | 90.00 175 | | | | | | 81.32 216 | | | | |
|
plane_prior5 | | | | | | | | | 97.51 153 | | | | | 98.60 188 | 93.02 131 | 92.23 219 | 95.86 234 |
|
plane_prior4 | | | | | | | | | | | | 96.64 158 | | | | | |
|
plane_prior1 | | | | | | 96.14 212 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 384 | | | | | | | | |
|
nn | | | | | | | | | 0.00 384 | | | | | | | | |
|
door-mid | | | | | | | | | 91.06 359 | | | | | | | | |
|
lessismore_v0 | | | | | 90.45 322 | 91.96 345 | 79.09 354 | | 87.19 369 | | 80.32 348 | 94.39 269 | 66.31 346 | 97.55 296 | 84.00 289 | 76.84 349 | 94.70 307 |
|
test11 | | | | | | | | | 97.88 112 | | | | | | | | |
|
door | | | | | | | | | 91.13 358 | | | | | | | | |
|
HQP5-MVS | | | | | | | 89.33 203 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 92.13 144 | | |
|
HQP4-MVS | | | | | | | | | | | 90.14 216 | | | 98.50 196 | | | 95.78 241 |
|
HQP3-MVS | | | | | | | | | 97.39 176 | | | | | | | 92.10 224 | |
|
HQP2-MVS | | | | | | | | | | | | | 80.95 219 | | | | |
|
NP-MVS | | | | | | 95.99 218 | 89.81 184 | | | | | 95.87 199 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 90.30 252 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 91.02 241 | |
|
Test By Simon | | | | | | | | | | | | | 88.73 99 | | | | |
|