This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MM97.29 1996.98 2698.23 1198.01 10795.03 2698.07 5495.76 28797.78 197.52 4098.80 2288.09 10799.86 899.44 199.37 6099.80 1
MVS_030497.04 2896.73 4297.96 2397.60 13494.36 3698.01 5994.09 35197.33 296.29 9098.79 2489.73 8299.86 899.36 299.42 5099.67 13
EPNet95.20 9694.56 10497.14 6592.80 35792.68 8197.85 8394.87 33496.64 392.46 18097.80 10186.23 13999.65 5893.72 13198.62 10499.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsm_n_192097.55 1197.89 396.53 8198.41 7491.73 11198.01 5999.02 196.37 499.30 198.92 1092.39 3799.79 3399.16 599.46 4398.08 173
test_fmvsmvis_n_192096.70 4796.84 3396.31 10496.62 18891.73 11197.98 6398.30 3296.19 596.10 9998.95 889.42 8399.76 3898.90 1099.08 8597.43 205
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2597.34 14398.04 8995.96 697.09 5697.88 9293.18 2599.71 4695.84 7799.17 7799.56 29
CS-MVS-test96.89 3597.04 2396.45 9498.29 8291.66 11799.03 497.85 11695.84 796.90 6097.97 8691.24 5998.75 18596.92 3599.33 6298.94 97
test_fmvsmconf_n97.49 1297.56 997.29 5597.44 14392.37 9097.91 7698.88 495.83 898.92 1299.05 591.45 5399.80 3099.12 699.46 4399.69 12
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15298.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3399.49 4099.57 26
test_fmvsmconf0.1_n97.09 2497.06 1997.19 6495.67 24392.21 9697.95 7298.27 3995.78 1098.40 2599.00 689.99 7899.78 3599.06 799.41 5399.59 22
HPM-MVS++copyleft97.34 1796.97 2798.47 599.08 3696.16 497.55 12197.97 10195.59 1196.61 7497.89 9092.57 3499.84 2395.95 7299.51 3599.40 54
test_fmvsmconf0.01_n96.15 6695.85 7097.03 6992.66 36091.83 10997.97 6997.84 12095.57 1297.53 3999.00 684.20 16899.76 3898.82 1199.08 8599.48 44
MSP-MVS97.59 1097.54 1097.73 3799.40 1193.77 5698.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4299.21 7399.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepPCF-MVS93.97 196.61 5297.09 1895.15 16998.09 10186.63 28296.00 25698.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 3899.48 4199.45 47
CANet96.39 5996.02 6597.50 4797.62 13193.38 6397.02 17397.96 10295.42 1594.86 13197.81 9987.38 12699.82 2896.88 3699.20 7599.29 63
save fliter98.91 4994.28 3897.02 17398.02 9495.35 16
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 4098.43 2398.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4599.62 1999.65 15
Skip Steuart: Steuart Systems R&D Blog.
CS-MVS96.86 3797.06 1996.26 11098.16 9891.16 14399.09 397.87 11195.30 1897.06 5798.03 8091.72 4698.71 19197.10 3199.17 7798.90 104
DELS-MVS96.61 5296.38 5997.30 5497.79 12093.19 6995.96 25898.18 5795.23 1995.87 10797.65 11191.45 5399.70 5195.87 7399.44 4999.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
h-mvs3394.15 12293.52 13296.04 12497.81 11990.22 17497.62 11497.58 15095.19 2096.74 6697.45 12483.67 17599.61 6995.85 7579.73 36898.29 155
hse-mvs293.45 15292.99 14894.81 19097.02 16588.59 22696.69 20396.47 25995.19 2096.74 6696.16 20083.67 17598.48 21295.85 7579.13 37297.35 210
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 16198.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4199.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2299.66 1299.56 29
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2299.65 1499.74 8
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
MTAPA97.08 2596.78 3997.97 2299.37 1694.42 3597.24 15598.08 7495.07 2796.11 9898.59 3090.88 6899.90 296.18 6599.50 3799.58 25
fmvsm_l_conf0.5_n97.65 797.75 697.34 5298.21 9292.75 7897.83 8598.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 8199.50 40
FOURS199.55 193.34 6699.29 198.35 2794.98 2998.49 23
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5998.25 8692.59 8497.81 8998.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 7399.40 54
fmvsm_s_conf0.5_n96.85 3997.13 1696.04 12498.07 10590.28 17297.97 6998.76 894.93 3098.84 1699.06 488.80 9299.65 5899.06 798.63 10398.18 162
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4397.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2299.67 799.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.45 395.36 1398.31 2898.29 3494.92 3298.99 798.92 1095.08 8
XVS97.18 2196.96 2897.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7698.29 6391.70 4899.80 3095.66 8199.40 5499.62 18
X-MVStestdata91.71 21889.67 27997.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7632.69 40891.70 4899.80 3095.66 8199.40 5499.62 18
HQP_MVS93.78 14293.43 13894.82 18896.21 21789.99 17997.74 9497.51 15994.85 3491.34 21396.64 17181.32 22498.60 20193.02 14692.23 24295.86 253
plane_prior297.74 9494.85 34
SD-MVS97.41 1497.53 1197.06 6898.57 6994.46 3397.92 7598.14 6494.82 3899.01 698.55 3394.18 1497.41 32896.94 3499.64 1599.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
UA-Net95.95 7595.53 7697.20 6397.67 12592.98 7497.65 10698.13 6594.81 3996.61 7498.35 5188.87 9099.51 9690.36 19497.35 14699.11 81
DeepC-MVS_fast93.89 296.93 3496.64 4697.78 3198.64 6494.30 3797.41 13398.04 8994.81 3996.59 7698.37 4991.24 5999.64 6695.16 9799.52 3299.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2699.58 2599.59 22
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2699.72 299.77 2
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2898.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1499.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
EI-MVSNet-Vis-set96.51 5596.47 5396.63 7698.24 8791.20 13896.89 18497.73 12994.74 4496.49 8298.49 3890.88 6899.58 7796.44 4998.32 11799.13 77
patch_mono-296.83 4197.44 1395.01 17799.05 3985.39 30596.98 17898.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 1899.50 3799.72 11
test_vis1_n_192094.17 12094.58 10392.91 28397.42 14482.02 34497.83 8597.85 11694.68 4698.10 2998.49 3870.15 34099.32 11797.91 1598.82 9697.40 207
EI-MVSNet-UG-set96.34 6196.30 6096.47 9198.20 9390.93 15096.86 18697.72 13294.67 4796.16 9798.46 4290.43 7399.58 7796.23 5697.96 12998.90 104
MSLP-MVS++96.94 3397.06 1996.59 7998.72 5591.86 10897.67 10398.49 1994.66 4897.24 5098.41 4792.31 4098.94 16596.61 4399.46 4398.96 94
3Dnovator+91.43 495.40 8894.48 11098.16 1696.90 17195.34 1698.48 2197.87 11194.65 4988.53 28998.02 8283.69 17499.71 4693.18 14098.96 9299.44 49
fmvsm_s_conf0.5_n_a96.75 4696.93 2996.20 11697.64 12990.72 16098.00 6198.73 994.55 5098.91 1399.08 388.22 10699.63 6798.91 998.37 11598.25 157
ETV-MVS96.02 7095.89 6996.40 9797.16 15292.44 8897.47 13097.77 12494.55 5096.48 8394.51 27891.23 6198.92 16795.65 8498.19 12297.82 187
sasdasda96.02 7095.45 7997.75 3597.59 13595.15 2398.28 3197.60 14694.52 5296.27 9296.12 20287.65 11699.18 13096.20 6294.82 19898.91 101
canonicalmvs96.02 7095.45 7997.75 3597.59 13595.15 2398.28 3197.60 14694.52 5296.27 9296.12 20287.65 11699.18 13096.20 6294.82 19898.91 101
fmvsm_s_conf0.1_n96.58 5496.77 4096.01 12896.67 18790.25 17397.91 7698.38 2394.48 5498.84 1699.14 188.06 10899.62 6898.82 1198.60 10598.15 166
plane_prior390.00 17794.46 5591.34 213
EC-MVSNet96.42 5796.47 5396.26 11097.01 16691.52 12398.89 597.75 12694.42 5696.64 7397.68 10789.32 8498.60 20197.45 2699.11 8498.67 124
MGCFI-Net95.94 7695.40 8397.56 4697.59 13594.62 3098.21 4397.57 15194.41 5796.17 9696.16 20087.54 12099.17 13296.19 6494.73 20398.91 101
UGNet94.04 13093.28 14396.31 10496.85 17391.19 13997.88 7997.68 13794.40 5893.00 17296.18 19773.39 32299.61 6991.72 16898.46 11298.13 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
alignmvs95.87 7895.23 8897.78 3197.56 14095.19 2197.86 8097.17 19994.39 5996.47 8496.40 18885.89 14599.20 12796.21 6195.11 19498.95 96
CANet_DTU94.37 11593.65 12596.55 8096.46 20792.13 10096.21 24596.67 24794.38 6093.53 16097.03 15179.34 25799.71 4690.76 18798.45 11397.82 187
Vis-MVSNetpermissive95.23 9494.81 9696.51 8697.18 15191.58 12198.26 3598.12 6794.38 6094.90 13098.15 7282.28 20898.92 16791.45 17698.58 10799.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS_111021_HR96.68 5196.58 4996.99 7098.46 7092.31 9396.20 24698.90 394.30 6295.86 10897.74 10492.33 3899.38 11396.04 6999.42 5099.28 65
mvsmamba93.83 13993.46 13594.93 18694.88 29590.85 15398.55 1495.49 30294.24 6391.29 21996.97 15383.04 18998.14 24095.56 9291.17 26395.78 261
TSAR-MVS + GP.96.69 4996.49 5297.27 5898.31 8193.39 6296.79 19296.72 24094.17 6497.44 4397.66 11092.76 2899.33 11596.86 3797.76 13599.08 83
3Dnovator91.36 595.19 9794.44 11297.44 4996.56 19593.36 6598.65 1198.36 2494.12 6589.25 27498.06 7782.20 21099.77 3793.41 13799.32 6399.18 72
fmvsm_s_conf0.1_n_a96.40 5896.47 5396.16 11895.48 25190.69 16197.91 7698.33 2994.07 6698.93 999.14 187.44 12499.61 6998.63 1398.32 11798.18 162
plane_prior89.99 17997.24 15594.06 6792.16 246
casdiffmvspermissive95.64 8295.49 7796.08 12096.76 18590.45 16897.29 15197.44 17694.00 6895.46 12397.98 8587.52 12298.73 18795.64 8597.33 14799.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive95.81 7995.57 7596.51 8696.87 17291.49 12497.50 12497.56 15593.99 6995.13 12897.92 8987.89 11298.78 18095.97 7197.33 14799.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_111021_LR96.24 6496.19 6396.39 9998.23 9191.35 13196.24 24498.79 693.99 6995.80 11097.65 11189.92 8099.24 12495.87 7399.20 7598.58 127
dcpmvs_296.37 6097.05 2294.31 21998.96 4684.11 32397.56 11897.51 15993.92 7197.43 4598.52 3592.75 2999.32 11797.32 3099.50 3799.51 37
DeepC-MVS93.07 396.06 6795.66 7497.29 5597.96 10993.17 7097.30 14998.06 8293.92 7193.38 16498.66 2786.83 13299.73 4295.60 9099.22 7298.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VNet95.89 7795.45 7997.21 6298.07 10592.94 7597.50 12498.15 6293.87 7397.52 4097.61 11785.29 15299.53 9195.81 7895.27 19099.16 73
Effi-MVS+-dtu93.08 16693.21 14592.68 29396.02 23183.25 33397.14 16796.72 24093.85 7491.20 22493.44 32983.08 18798.30 22791.69 17195.73 18196.50 234
PS-MVSNAJ95.37 8995.33 8695.49 15697.35 14590.66 16395.31 29197.48 16293.85 7496.51 8195.70 22788.65 9599.65 5894.80 10998.27 11996.17 243
SR-MVS97.01 3096.86 3197.47 4899.09 3493.27 6897.98 6398.07 7993.75 7697.45 4298.48 4191.43 5599.59 7496.22 5799.27 6699.54 33
TSAR-MVS + MP.97.42 1397.33 1597.69 4199.25 2794.24 4198.07 5497.85 11693.72 7798.57 2198.35 5193.69 1899.40 11097.06 3299.46 4399.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPM-MVS93.28 15792.76 15794.82 18894.63 30790.77 15796.65 20797.18 19793.72 7791.68 20697.26 13579.33 25898.63 19892.13 15892.28 24195.07 302
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
xiu_mvs_v2_base95.32 9195.29 8795.40 16197.22 14890.50 16695.44 28597.44 17693.70 7996.46 8596.18 19788.59 9899.53 9194.79 11197.81 13296.17 243
baseline95.58 8595.42 8296.08 12096.78 18090.41 17097.16 16597.45 17293.69 8095.65 11797.85 9687.29 12798.68 19395.66 8197.25 15199.13 77
EIA-MVS95.53 8795.47 7895.71 14397.06 16089.63 18897.82 8797.87 11193.57 8193.92 15295.04 25390.61 7198.95 16494.62 11498.68 10198.54 130
HQP-NCC95.86 23496.65 20793.55 8290.14 237
ACMP_Plane95.86 23496.65 20793.55 8290.14 237
HQP-MVS93.19 16192.74 16094.54 20695.86 23489.33 20596.65 20797.39 18293.55 8290.14 23795.87 21380.95 22798.50 20992.13 15892.10 24795.78 261
MCST-MVS97.18 2196.84 3398.20 1499.30 2495.35 1597.12 16898.07 7993.54 8596.08 10097.69 10693.86 1699.71 4696.50 4799.39 5699.55 32
test111193.19 16192.82 15594.30 22097.58 13984.56 31898.21 4389.02 39293.53 8694.58 13698.21 6772.69 32399.05 15793.06 14498.48 11199.28 65
SR-MVS-dyc-post96.88 3696.80 3897.11 6799.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3691.40 5699.56 8596.05 6799.26 6899.43 51
RE-MVS-def96.72 4399.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3690.71 7096.05 6799.26 6899.43 51
MG-MVS95.61 8495.38 8496.31 10498.42 7390.53 16596.04 25397.48 16293.47 8995.67 11698.10 7389.17 8699.25 12391.27 17998.77 9899.13 77
test250691.60 22490.78 23094.04 23197.66 12783.81 32698.27 3375.53 40993.43 9095.23 12598.21 6767.21 35999.07 15293.01 14898.49 10999.25 68
ECVR-MVScopyleft93.19 16192.73 16194.57 20597.66 12785.41 30398.21 4388.23 39493.43 9094.70 13498.21 6772.57 32499.07 15293.05 14598.49 10999.25 68
FC-MVSNet-test93.94 13493.57 12795.04 17595.48 25191.45 12898.12 5098.71 1193.37 9290.23 23696.70 16687.66 11597.85 28891.49 17490.39 27795.83 257
MP-MVScopyleft96.77 4496.45 5797.72 3899.39 1393.80 5398.41 2498.06 8293.37 9295.54 12198.34 5490.59 7299.88 494.83 10699.54 3099.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
FIs94.09 12793.70 12395.27 16495.70 24192.03 10398.10 5198.68 1393.36 9490.39 23396.70 16687.63 11897.94 27992.25 15490.50 27695.84 256
test_cas_vis1_n_192094.48 11494.55 10794.28 22196.78 18086.45 28697.63 11297.64 14293.32 9597.68 3898.36 5073.75 32099.08 14896.73 3999.05 8797.31 212
mPP-MVS96.86 3796.60 4797.64 4499.40 1193.44 6198.50 1998.09 7393.27 9695.95 10698.33 5791.04 6499.88 495.20 9699.57 2799.60 21
HFP-MVS97.14 2396.92 3097.83 2699.42 794.12 4698.52 1698.32 3093.21 9797.18 5198.29 6392.08 4299.83 2695.63 8699.59 2199.54 33
ACMMPR97.07 2696.84 3397.79 3099.44 693.88 5298.52 1698.31 3193.21 9797.15 5298.33 5791.35 5799.86 895.63 8699.59 2199.62 18
IS-MVSNet94.90 10594.52 10896.05 12397.67 12590.56 16498.44 2296.22 27093.21 9793.99 14997.74 10485.55 15098.45 21389.98 19997.86 13099.14 76
region2R97.07 2696.84 3397.77 3399.46 293.79 5498.52 1698.24 4793.19 10097.14 5398.34 5491.59 5299.87 795.46 9399.59 2199.64 16
SDMVSNet94.17 12093.61 12695.86 13398.09 10191.37 13097.35 14298.20 5293.18 10191.79 20297.28 13279.13 26098.93 16694.61 11592.84 23397.28 213
sd_testset93.10 16592.45 17495.05 17498.09 10189.21 21196.89 18497.64 14293.18 10191.79 20297.28 13275.35 30698.65 19688.99 22792.84 23397.28 213
EPNet_dtu91.71 21891.28 21192.99 28093.76 33483.71 32996.69 20395.28 31193.15 10387.02 32295.95 21083.37 18197.38 33079.46 34896.84 15897.88 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UniMVSNet (Re)93.31 15692.55 16895.61 14895.39 25693.34 6697.39 13898.71 1193.14 10490.10 24594.83 26387.71 11498.03 26291.67 17283.99 34495.46 277
APD-MVS_3200maxsize96.81 4296.71 4497.12 6699.01 4592.31 9397.98 6398.06 8293.11 10597.44 4398.55 3390.93 6699.55 8796.06 6699.25 7099.51 37
testdata195.26 29693.10 106
DU-MVS92.90 17692.04 18395.49 15694.95 28892.83 7697.16 16598.24 4793.02 10790.13 24195.71 22583.47 17897.85 28891.71 16983.93 34595.78 261
xiu_mvs_v1_base_debu95.01 9994.76 9795.75 13896.58 19291.71 11396.25 24197.35 18892.99 10896.70 6896.63 17582.67 19899.44 10696.22 5797.46 13996.11 248
xiu_mvs_v1_base95.01 9994.76 9795.75 13896.58 19291.71 11396.25 24197.35 18892.99 10896.70 6896.63 17582.67 19899.44 10696.22 5797.46 13996.11 248
xiu_mvs_v1_base_debi95.01 9994.76 9795.75 13896.58 19291.71 11396.25 24197.35 18892.99 10896.70 6896.63 17582.67 19899.44 10696.22 5797.46 13996.11 248
CP-MVS97.02 2996.81 3797.64 4499.33 2193.54 5998.80 898.28 3692.99 10896.45 8698.30 6291.90 4599.85 1895.61 8899.68 599.54 33
ACMMPcopyleft96.27 6395.93 6697.28 5799.24 2892.62 8298.25 3698.81 592.99 10894.56 13798.39 4888.96 8999.85 1894.57 11797.63 13699.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
UniMVSNet_NR-MVSNet93.37 15492.67 16395.47 15995.34 26292.83 7697.17 16498.58 1792.98 11390.13 24195.80 21888.37 10597.85 28891.71 16983.93 34595.73 268
VPNet92.23 20391.31 20994.99 17895.56 24790.96 14897.22 16097.86 11592.96 11490.96 22596.62 17875.06 30798.20 23491.90 16283.65 35095.80 259
nrg03094.05 12993.31 14296.27 10995.22 27394.59 3198.34 2697.46 16792.93 11591.21 22396.64 17187.23 12998.22 23294.99 10385.80 31795.98 252
TranMVSNet+NR-MVSNet92.50 18791.63 19795.14 17094.76 30092.07 10197.53 12298.11 7092.90 11689.56 26296.12 20283.16 18497.60 31189.30 21783.20 35495.75 266
diffmvspermissive95.25 9395.13 9195.63 14696.43 20989.34 20495.99 25797.35 18892.83 11796.31 8997.37 12886.44 13798.67 19496.26 5497.19 15398.87 109
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMMP_NAP97.20 2096.86 3198.23 1199.09 3495.16 2297.60 11598.19 5592.82 11897.93 3498.74 2691.60 5199.86 896.26 5499.52 3299.67 13
iter_conf05_1196.17 6596.16 6496.21 11497.48 14290.74 15998.14 4997.80 12292.80 11997.34 4897.29 13188.54 9999.10 14196.40 5099.64 1598.80 115
test_prior296.35 23392.80 11996.03 10197.59 11892.01 4395.01 10299.38 57
GST-MVS96.85 3996.52 5197.82 2799.36 1894.14 4598.29 3098.13 6592.72 12196.70 6898.06 7791.35 5799.86 894.83 10699.28 6599.47 46
CLD-MVS92.98 17192.53 17094.32 21796.12 22789.20 21295.28 29297.47 16592.66 12289.90 25095.62 23180.58 23498.40 21692.73 15092.40 24095.38 284
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
NR-MVSNet92.34 19591.27 21295.53 15394.95 28893.05 7297.39 13898.07 7992.65 12384.46 34695.71 22585.00 15697.77 29789.71 20683.52 35195.78 261
ZNCC-MVS96.96 3196.67 4597.85 2599.37 1694.12 4698.49 2098.18 5792.64 12496.39 8898.18 7091.61 5099.88 495.59 9199.55 2899.57 26
PS-MVSNAJss93.74 14393.51 13394.44 21093.91 32989.28 20997.75 9397.56 15592.50 12589.94 24996.54 18188.65 9598.18 23793.83 13090.90 27095.86 253
MVSMamba_pp96.06 6795.92 6796.50 8997.00 16791.81 11097.33 14697.77 12492.49 12696.78 6497.19 14088.50 10299.07 15296.54 4699.67 798.60 126
bld_raw_dy_0_6495.63 8395.76 7395.24 16697.27 14788.36 23596.07 25297.73 12992.43 12796.59 7697.25 13688.50 10299.09 14596.32 5199.69 398.27 156
VDD-MVS93.82 14093.08 14696.02 12697.88 11689.96 18397.72 9995.85 28492.43 12795.86 10898.44 4468.42 35399.39 11196.31 5294.85 19698.71 121
LCM-MVSNet-Re92.50 18792.52 17192.44 29596.82 17881.89 34596.92 18293.71 36192.41 12984.30 34894.60 27485.08 15597.03 34191.51 17397.36 14598.40 148
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4098.27 3992.37 13098.27 2798.65 2993.33 2399.72 4596.49 4899.52 3299.51 37
iter_conf0594.01 13194.00 11794.04 23195.06 28388.46 23397.27 15296.57 25592.32 13192.26 18997.10 14788.54 9998.10 24695.10 9991.82 25295.57 272
mamv496.02 7095.84 7196.53 8197.05 16291.97 10597.30 14997.79 12392.32 13196.58 8097.14 14588.51 10199.06 15596.27 5399.64 1598.57 128
VPA-MVSNet93.24 15892.48 17395.51 15495.70 24192.39 8997.86 8098.66 1692.30 13392.09 19695.37 24180.49 23698.40 21693.95 12485.86 31695.75 266
PGM-MVS96.81 4296.53 5097.65 4299.35 2093.53 6097.65 10698.98 292.22 13497.14 5398.44 4491.17 6299.85 1894.35 11899.46 4399.57 26
Vis-MVSNet (Re-imp)94.15 12293.88 12094.95 18397.61 13287.92 25098.10 5195.80 28692.22 13493.02 17197.45 12484.53 16297.91 28588.24 23797.97 12899.02 86
thres100view90092.43 19091.58 19994.98 18097.92 11389.37 20397.71 10194.66 33792.20 13693.31 16694.90 25978.06 28299.08 14881.40 33294.08 21596.48 235
baseline192.82 18191.90 18995.55 15297.20 15090.77 15797.19 16294.58 34092.20 13692.36 18496.34 19184.16 16998.21 23389.20 22383.90 34897.68 193
tfpn200view992.38 19391.52 20294.95 18397.85 11789.29 20797.41 13394.88 33192.19 13893.27 16894.46 28378.17 27899.08 14881.40 33294.08 21596.48 235
thres40092.42 19191.52 20295.12 17297.85 11789.29 20797.41 13394.88 33192.19 13893.27 16894.46 28378.17 27899.08 14881.40 33294.08 21596.98 220
thres600view792.49 18991.60 19895.18 16897.91 11489.47 19797.65 10694.66 33792.18 14093.33 16594.91 25878.06 28299.10 14181.61 32994.06 21996.98 220
Fast-Effi-MVS+-dtu92.29 19991.99 18693.21 27495.27 26985.52 30197.03 17196.63 25192.09 14189.11 27795.14 25080.33 24098.08 25187.54 25694.74 20296.03 251
thres20092.23 20391.39 20594.75 19797.61 13289.03 21796.60 21595.09 32192.08 14293.28 16794.00 30778.39 27699.04 16081.26 33794.18 21196.19 242
mvs_tets92.31 19791.76 19293.94 24193.41 34688.29 23797.63 11297.53 15792.04 14388.76 28496.45 18574.62 31298.09 25093.91 12691.48 25795.45 278
OMC-MVS95.09 9894.70 10096.25 11398.46 7091.28 13296.43 22397.57 15192.04 14394.77 13397.96 8787.01 13199.09 14591.31 17896.77 16098.36 152
jajsoiax92.42 19191.89 19094.03 23393.33 34988.50 23197.73 9697.53 15792.00 14588.85 28196.50 18375.62 30498.11 24593.88 12891.56 25695.48 274
XVG-OURS93.72 14493.35 14194.80 19397.07 15788.61 22594.79 30697.46 16791.97 14693.99 14997.86 9581.74 21998.88 17192.64 15192.67 23896.92 224
WR-MVS92.34 19591.53 20194.77 19595.13 28090.83 15496.40 22997.98 10091.88 14789.29 27195.54 23682.50 20397.80 29389.79 20585.27 32595.69 269
PAPM_NR95.01 9994.59 10296.26 11098.89 5190.68 16297.24 15597.73 12991.80 14892.93 17796.62 17889.13 8799.14 13789.21 22297.78 13398.97 93
testing9191.90 21391.02 22094.53 20796.54 19886.55 28595.86 26395.64 29691.77 14991.89 19993.47 32869.94 34298.86 17290.23 19793.86 22298.18 162
testgi87.97 31487.21 31490.24 34492.86 35580.76 35396.67 20694.97 32691.74 15085.52 33795.83 21662.66 37894.47 37876.25 36488.36 29695.48 274
CP-MVSNet91.89 21491.24 21393.82 24695.05 28488.57 22797.82 8798.19 5591.70 15188.21 29895.76 22381.96 21497.52 31987.86 24284.65 33495.37 285
XVG-OURS-SEG-HR93.86 13893.55 12894.81 19097.06 16088.53 23095.28 29297.45 17291.68 15294.08 14897.68 10782.41 20698.90 17093.84 12992.47 23996.98 220
OurMVSNet-221017-090.51 27590.19 25991.44 32393.41 34681.25 34996.98 17896.28 26691.68 15286.55 33096.30 19274.20 31597.98 26788.96 22887.40 30595.09 301
testing9991.62 22390.72 23594.32 21796.48 20586.11 29595.81 26694.76 33591.55 15491.75 20493.44 32968.55 35198.82 17690.43 19193.69 22398.04 175
ACMP89.59 1092.62 18692.14 18194.05 23096.40 21088.20 24297.36 14197.25 19691.52 15588.30 29496.64 17178.46 27498.72 19091.86 16591.48 25795.23 296
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
APD-MVScopyleft96.95 3296.60 4798.01 1999.03 4194.93 2797.72 9998.10 7291.50 15698.01 3198.32 5992.33 3899.58 7794.85 10599.51 3599.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ITE_SJBPF92.43 29695.34 26285.37 30695.92 27991.47 15787.75 30796.39 18971.00 33397.96 27482.36 32689.86 28193.97 348
PS-CasMVS91.55 22990.84 22893.69 25494.96 28788.28 23897.84 8498.24 4791.46 15888.04 30295.80 21879.67 25297.48 32187.02 26784.54 33995.31 289
WR-MVS_H92.00 21091.35 20693.95 23995.09 28289.47 19798.04 5798.68 1391.46 15888.34 29294.68 27085.86 14697.56 31385.77 28784.24 34294.82 319
MVSFormer95.37 8995.16 9095.99 12996.34 21391.21 13698.22 4197.57 15191.42 16096.22 9497.32 12986.20 14297.92 28294.07 12199.05 8798.85 110
test_djsdf93.07 16792.76 15794.00 23493.49 34388.70 22498.22 4197.57 15191.42 16090.08 24795.55 23582.85 19597.92 28294.07 12191.58 25595.40 282
ACMM89.79 892.96 17292.50 17294.35 21496.30 21588.71 22397.58 11697.36 18791.40 16290.53 23096.65 17079.77 25098.75 18591.24 18091.64 25395.59 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PEN-MVS91.20 24890.44 24493.48 26394.49 31287.91 25297.76 9298.18 5791.29 16387.78 30695.74 22480.35 23997.33 33285.46 29182.96 35595.19 300
LPG-MVS_test92.94 17492.56 16794.10 22796.16 22288.26 23997.65 10697.46 16791.29 16390.12 24397.16 14279.05 26298.73 18792.25 15491.89 25095.31 289
LGP-MVS_train94.10 22796.16 22288.26 23997.46 16791.29 16390.12 24397.16 14279.05 26298.73 18792.25 15491.89 25095.31 289
9.1496.75 4198.93 4797.73 9698.23 5091.28 16697.88 3598.44 4493.00 2699.65 5895.76 7999.47 42
MVSTER93.20 16092.81 15694.37 21396.56 19589.59 19197.06 17097.12 20291.24 16791.30 21695.96 20982.02 21398.05 25893.48 13490.55 27495.47 276
test_yl94.78 11094.23 11496.43 9597.74 12291.22 13496.85 18797.10 20491.23 16895.71 11396.93 15484.30 16599.31 11993.10 14195.12 19298.75 116
DCV-MVSNet94.78 11094.23 11496.43 9597.74 12291.22 13496.85 18797.10 20491.23 16895.71 11396.93 15484.30 16599.31 11993.10 14195.12 19298.75 116
test_vis1_n92.37 19492.26 17992.72 29094.75 30182.64 33698.02 5896.80 23791.18 17097.77 3797.93 8858.02 38498.29 22897.63 1998.21 12197.23 216
MVS_Test94.89 10694.62 10195.68 14496.83 17689.55 19396.70 20197.17 19991.17 17195.60 11896.11 20687.87 11398.76 18493.01 14897.17 15498.72 119
HPM-MVScopyleft96.69 4996.45 5797.40 5099.36 1893.11 7198.87 698.06 8291.17 17196.40 8797.99 8490.99 6599.58 7795.61 8899.61 2099.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test-LLR91.42 23591.19 21692.12 30494.59 30880.66 35594.29 32692.98 36691.11 17390.76 22892.37 34679.02 26498.07 25588.81 23096.74 16197.63 194
test0.0.03 189.37 30088.70 29891.41 32492.47 36485.63 29995.22 29792.70 37191.11 17386.91 32793.65 32179.02 26493.19 38978.00 35589.18 28795.41 279
testing1191.68 22190.75 23294.47 20896.53 20086.56 28495.76 27094.51 34291.10 17591.24 22293.59 32368.59 35098.86 17291.10 18294.29 20898.00 176
XVG-ACMP-BASELINE90.93 26190.21 25893.09 27794.31 32085.89 29695.33 28997.26 19491.06 17689.38 26795.44 24068.61 34998.60 20189.46 21391.05 26694.79 324
Effi-MVS+94.93 10494.45 11196.36 10296.61 18991.47 12696.41 22597.41 18191.02 17794.50 13895.92 21187.53 12198.78 18093.89 12796.81 15998.84 112
testing22290.31 27888.96 29594.35 21496.54 19887.29 26195.50 28293.84 35990.97 17891.75 20492.96 33662.18 38098.00 26582.86 31894.08 21597.76 189
dmvs_re90.21 28389.50 28492.35 29795.47 25485.15 30995.70 27294.37 34690.94 17988.42 29093.57 32474.63 31195.67 36682.80 32189.57 28496.22 240
SCA91.84 21591.18 21793.83 24595.59 24584.95 31494.72 30795.58 29990.82 18092.25 19093.69 31775.80 30198.10 24686.20 27795.98 17498.45 142
SixPastTwentyTwo89.15 30188.54 30190.98 33193.49 34380.28 36396.70 20194.70 33690.78 18184.15 35195.57 23371.78 32897.71 30184.63 30185.07 32994.94 308
PC_three_145290.77 18298.89 1498.28 6596.24 198.35 22395.76 7999.58 2599.59 22
DTE-MVSNet90.56 27289.75 27793.01 27993.95 32787.25 26497.64 11097.65 14090.74 18387.12 31895.68 22879.97 24797.00 34483.33 31481.66 36194.78 326
GA-MVS91.38 23790.31 24994.59 20094.65 30687.62 25894.34 32296.19 27390.73 18490.35 23493.83 31171.84 32797.96 27487.22 26293.61 22798.21 160
test_fmvs1_n92.73 18492.88 15392.29 30096.08 23081.05 35297.98 6397.08 20790.72 18596.79 6398.18 7063.07 37698.45 21397.62 2098.42 11497.36 208
EPP-MVSNet95.22 9595.04 9395.76 13697.49 14189.56 19298.67 1097.00 21890.69 18694.24 14397.62 11689.79 8198.81 17893.39 13896.49 16898.92 100
test_fmvs193.21 15993.53 13092.25 30296.55 19781.20 35197.40 13796.96 22090.68 18796.80 6298.04 7969.25 34598.40 21697.58 2198.50 10897.16 217
MP-MVS-pluss96.70 4796.27 6197.98 2199.23 3094.71 2996.96 18098.06 8290.67 18895.55 11998.78 2591.07 6399.86 896.58 4499.55 2899.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
IterMVS-LS92.29 19991.94 18893.34 26896.25 21686.97 27396.57 21997.05 21290.67 18889.50 26594.80 26586.59 13397.64 30689.91 20186.11 31595.40 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet93.03 16992.88 15393.48 26395.77 23986.98 27296.44 22197.12 20290.66 19091.30 21697.64 11486.56 13498.05 25889.91 20190.55 27495.41 279
K. test v387.64 31986.75 32190.32 34393.02 35479.48 37296.61 21392.08 37790.66 19080.25 37494.09 30467.21 35996.65 35285.96 28580.83 36494.83 317
tttt051792.96 17292.33 17794.87 18797.11 15587.16 26997.97 6992.09 37690.63 19293.88 15397.01 15276.50 29499.06 15590.29 19695.45 18798.38 150
BH-RMVSNet92.72 18591.97 18794.97 18197.16 15287.99 24896.15 24895.60 29790.62 19391.87 20097.15 14478.41 27598.57 20583.16 31597.60 13798.36 152
IterMVS-SCA-FT90.31 27889.81 27391.82 31295.52 24984.20 32294.30 32596.15 27490.61 19487.39 31494.27 29475.80 30196.44 35387.34 25986.88 31194.82 319
WTY-MVS94.71 11294.02 11696.79 7297.71 12492.05 10296.59 21697.35 18890.61 19494.64 13596.93 15486.41 13899.39 11191.20 18194.71 20498.94 97
ET-MVSNet_ETH3D91.49 23290.11 26095.63 14696.40 21091.57 12295.34 28893.48 36390.60 19675.58 38595.49 23880.08 24496.79 35094.25 11989.76 28298.52 132
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7398.18 5790.57 19798.85 1598.94 993.33 2399.83 2696.72 4099.68 599.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
LFMVS93.60 14692.63 16496.52 8398.13 10091.27 13397.94 7393.39 36490.57 19796.29 9098.31 6069.00 34699.16 13494.18 12095.87 17799.12 80
HPM-MVS_fast96.51 5596.27 6197.22 6199.32 2292.74 7998.74 998.06 8290.57 19796.77 6598.35 5190.21 7599.53 9194.80 10999.63 1899.38 58
DPM-MVS95.69 8094.92 9498.01 1998.08 10495.71 995.27 29497.62 14590.43 20095.55 11997.07 14991.72 4699.50 9989.62 21098.94 9398.82 113
IU-MVS99.42 795.39 1197.94 10490.40 20198.94 897.41 2999.66 1299.74 8
PVSNet_Blended_VisFu95.27 9294.91 9596.38 10098.20 9390.86 15297.27 15298.25 4590.21 20294.18 14597.27 13487.48 12399.73 4293.53 13297.77 13498.55 129
PVSNet_BlendedMVS94.06 12893.92 11994.47 20898.27 8389.46 19996.73 19798.36 2490.17 20394.36 14095.24 24788.02 10999.58 7793.44 13590.72 27294.36 339
thisisatest053093.03 16992.21 18095.49 15697.07 15789.11 21697.49 12992.19 37590.16 20494.09 14796.41 18776.43 29799.05 15790.38 19395.68 18398.31 154
testing387.67 31886.88 31990.05 34696.14 22580.71 35497.10 16992.85 36890.15 20587.54 31094.55 27655.70 38994.10 38173.77 37694.10 21495.35 286
CNLPA94.28 11793.53 13096.52 8398.38 7892.55 8596.59 21696.88 23190.13 20691.91 19897.24 13785.21 15399.09 14587.64 25397.83 13197.92 179
BH-untuned92.94 17492.62 16593.92 24397.22 14886.16 29496.40 22996.25 26990.06 20789.79 25496.17 19983.19 18398.35 22387.19 26397.27 15097.24 215
IterMVS90.15 28689.67 27991.61 31995.48 25183.72 32894.33 32396.12 27589.99 20887.31 31794.15 30275.78 30396.27 35686.97 26886.89 31094.83 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AdaColmapbinary94.34 11693.68 12496.31 10498.59 6691.68 11696.59 21697.81 12189.87 20992.15 19297.06 15083.62 17799.54 8989.34 21698.07 12697.70 192
UnsupCasMVSNet_eth85.99 33584.45 33990.62 33989.97 38082.40 34193.62 34997.37 18589.86 21078.59 38092.37 34665.25 37295.35 37382.27 32770.75 38994.10 345
PHI-MVS96.77 4496.46 5697.71 4098.40 7594.07 4898.21 4398.45 2289.86 21097.11 5598.01 8392.52 3599.69 5296.03 7099.53 3199.36 60
mvs_anonymous93.82 14093.74 12294.06 22996.44 20885.41 30395.81 26697.05 21289.85 21290.09 24696.36 19087.44 12497.75 29893.97 12396.69 16499.02 86
test_fmvs289.77 29689.93 26889.31 35493.68 33776.37 38297.64 11095.90 28189.84 21391.49 20996.26 19558.77 38397.10 33894.65 11391.13 26494.46 335
ab-mvs93.57 14892.55 16896.64 7497.28 14691.96 10795.40 28697.45 17289.81 21493.22 17096.28 19379.62 25499.46 10390.74 18893.11 23098.50 135
FMVSNet391.78 21690.69 23795.03 17696.53 20092.27 9597.02 17396.93 22389.79 21589.35 26894.65 27277.01 29097.47 32286.12 28088.82 28995.35 286
ETVMVS90.52 27489.14 29394.67 19996.81 17987.85 25495.91 26193.97 35589.71 21692.34 18792.48 34465.41 37197.96 27481.37 33594.27 20998.21 160
AUN-MVS91.76 21790.75 23294.81 19097.00 16788.57 22796.65 20796.49 25889.63 21792.15 19296.12 20278.66 27198.50 20990.83 18579.18 37197.36 208
FA-MVS(test-final)93.52 15092.92 15195.31 16396.77 18288.54 22994.82 30596.21 27289.61 21894.20 14495.25 24683.24 18299.14 13790.01 19896.16 17298.25 157
tt080591.09 25290.07 26494.16 22595.61 24488.31 23697.56 11896.51 25789.56 21989.17 27595.64 23067.08 36398.38 22191.07 18388.44 29595.80 259
v2v48291.59 22590.85 22793.80 24793.87 33188.17 24496.94 18196.88 23189.54 22089.53 26394.90 25981.70 22098.02 26389.25 22085.04 33195.20 297
PatchmatchNetpermissive91.91 21291.35 20693.59 25895.38 25784.11 32393.15 35895.39 30489.54 22092.10 19593.68 31982.82 19698.13 24184.81 29895.32 18998.52 132
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS90.70 26989.81 27393.37 26794.73 30384.21 32193.67 34788.02 39589.50 22292.38 18393.49 32677.82 28697.78 29586.03 28392.68 23798.11 171
GeoE93.89 13693.28 14395.72 14296.96 17089.75 18798.24 3996.92 22789.47 22392.12 19497.21 13984.42 16398.39 22087.71 24796.50 16799.01 89
v14890.99 25790.38 24692.81 28893.83 33285.80 29796.78 19496.68 24589.45 22488.75 28593.93 31082.96 19397.82 29287.83 24383.25 35294.80 322
anonymousdsp92.16 20591.55 20093.97 23792.58 36289.55 19397.51 12397.42 18089.42 22588.40 29194.84 26280.66 23397.88 28791.87 16491.28 26194.48 334
baseline291.63 22290.86 22593.94 24194.33 31886.32 28895.92 26091.64 38089.37 22686.94 32594.69 26981.62 22198.69 19288.64 23494.57 20596.81 227
IB-MVS87.33 1789.91 28988.28 30494.79 19495.26 27287.70 25795.12 30093.95 35689.35 22787.03 32192.49 34370.74 33599.19 12889.18 22481.37 36297.49 203
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
jason94.84 10894.39 11396.18 11795.52 24990.93 15096.09 25096.52 25689.28 22896.01 10497.32 12984.70 15998.77 18395.15 9898.91 9598.85 110
jason: jason.
TAMVS94.01 13193.46 13595.64 14596.16 22290.45 16896.71 20096.89 23089.27 22993.46 16296.92 15787.29 12797.94 27988.70 23395.74 18098.53 131
ZD-MVS99.05 3994.59 3198.08 7489.22 23097.03 5898.10 7392.52 3599.65 5894.58 11699.31 64
API-MVS94.84 10894.49 10995.90 13197.90 11592.00 10497.80 9097.48 16289.19 23194.81 13296.71 16488.84 9199.17 13288.91 22998.76 9996.53 232
XXY-MVS92.16 20591.23 21494.95 18394.75 30190.94 14997.47 13097.43 17989.14 23288.90 27896.43 18679.71 25198.24 23089.56 21187.68 30095.67 270
UWE-MVS89.91 28989.48 28591.21 32795.88 23378.23 37994.91 30490.26 38889.11 23392.35 18694.52 27768.76 34897.96 27483.95 31095.59 18597.42 206
dmvs_testset81.38 35382.60 34977.73 37691.74 37151.49 41193.03 36184.21 40489.07 23478.28 38191.25 36376.97 29188.53 39956.57 39982.24 35993.16 357
pm-mvs190.72 26889.65 28193.96 23894.29 32189.63 18897.79 9196.82 23689.07 23486.12 33495.48 23978.61 27297.78 29586.97 26881.67 36094.46 335
HY-MVS89.66 993.87 13792.95 15096.63 7697.10 15692.49 8795.64 27796.64 24889.05 23693.00 17295.79 22185.77 14899.45 10589.16 22594.35 20697.96 177
CSCG96.05 6995.91 6896.46 9399.24 2890.47 16798.30 2998.57 1889.01 23793.97 15197.57 11992.62 3399.76 3894.66 11299.27 6699.15 75
v891.29 24590.53 24393.57 26094.15 32288.12 24697.34 14397.06 21188.99 23888.32 29394.26 29683.08 18798.01 26487.62 25483.92 34794.57 333
PAPR94.18 11993.42 14096.48 9097.64 12991.42 12995.55 27997.71 13688.99 23892.34 18795.82 21789.19 8599.11 14086.14 27997.38 14498.90 104
CDS-MVSNet94.14 12593.54 12995.93 13096.18 22091.46 12796.33 23597.04 21488.97 24093.56 15796.51 18287.55 11997.89 28689.80 20495.95 17598.44 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
sss94.51 11393.80 12196.64 7497.07 15791.97 10596.32 23698.06 8288.94 24194.50 13896.78 16184.60 16099.27 12291.90 16296.02 17398.68 123
lupinMVS94.99 10394.56 10496.29 10896.34 21391.21 13695.83 26596.27 26788.93 24296.22 9496.88 15986.20 14298.85 17495.27 9599.05 8798.82 113
D2MVS91.30 24490.95 22292.35 29794.71 30485.52 30196.18 24798.21 5188.89 24386.60 32993.82 31379.92 24897.95 27889.29 21890.95 26993.56 352
v7n90.76 26589.86 27093.45 26593.54 34087.60 25997.70 10297.37 18588.85 24487.65 30894.08 30581.08 22698.10 24684.68 30083.79 34994.66 331
PVSNet_Blended94.87 10794.56 10495.81 13598.27 8389.46 19995.47 28498.36 2488.84 24594.36 14096.09 20788.02 10999.58 7793.44 13598.18 12398.40 148
ACMH+87.92 1490.20 28489.18 29193.25 27196.48 20586.45 28696.99 17796.68 24588.83 24684.79 34596.22 19670.16 33998.53 20784.42 30488.04 29794.77 327
GBi-Net91.35 24090.27 25294.59 20096.51 20291.18 14097.50 12496.93 22388.82 24789.35 26894.51 27873.87 31697.29 33486.12 28088.82 28995.31 289
test191.35 24090.27 25294.59 20096.51 20291.18 14097.50 12496.93 22388.82 24789.35 26894.51 27873.87 31697.29 33486.12 28088.82 28995.31 289
FMVSNet291.31 24390.08 26194.99 17896.51 20292.21 9697.41 13396.95 22188.82 24788.62 28694.75 26773.87 31697.42 32785.20 29588.55 29495.35 286
V4291.58 22790.87 22493.73 25094.05 32688.50 23197.32 14796.97 21988.80 25089.71 25594.33 28982.54 20298.05 25889.01 22685.07 32994.64 332
mvsany_test193.93 13593.98 11893.78 24994.94 29086.80 27594.62 30992.55 37388.77 25196.85 6198.49 3888.98 8898.08 25195.03 10195.62 18496.46 237
BH-w/o92.14 20791.75 19393.31 26996.99 16985.73 29895.67 27395.69 29288.73 25289.26 27394.82 26482.97 19298.07 25585.26 29496.32 17196.13 247
test20.0386.14 33485.40 33188.35 35690.12 37880.06 36595.90 26295.20 31688.59 25381.29 36793.62 32271.43 33092.65 39071.26 38581.17 36392.34 370
train_agg96.30 6295.83 7297.72 3898.70 5694.19 4296.41 22598.02 9488.58 25496.03 10197.56 12192.73 3199.59 7495.04 10099.37 6099.39 56
test_898.67 5894.06 4996.37 23298.01 9788.58 25495.98 10597.55 12392.73 3199.58 77
eth_miper_zixun_eth91.02 25690.59 24092.34 29995.33 26584.35 31994.10 33196.90 22888.56 25688.84 28294.33 28984.08 17097.60 31188.77 23284.37 34195.06 303
Syy-MVS87.13 32387.02 31887.47 36195.16 27673.21 38995.00 30193.93 35788.55 25786.96 32391.99 35475.90 29994.00 38261.59 39594.11 21295.20 297
myMVS_eth3d87.18 32286.38 32289.58 35195.16 27679.53 36995.00 30193.93 35788.55 25786.96 32391.99 35456.23 38894.00 38275.47 36994.11 21295.20 297
tpmrst91.44 23491.32 20891.79 31495.15 27879.20 37493.42 35395.37 30688.55 25793.49 16193.67 32082.49 20498.27 22990.41 19289.34 28697.90 180
ACMH87.59 1690.53 27389.42 28693.87 24496.21 21787.92 25097.24 15596.94 22288.45 26083.91 35696.27 19471.92 32698.62 20084.43 30389.43 28595.05 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Baseline_NR-MVSNet91.20 24890.62 23892.95 28293.83 33288.03 24797.01 17695.12 32088.42 26189.70 25695.13 25183.47 17897.44 32589.66 20983.24 35393.37 356
v114491.37 23990.60 23993.68 25593.89 33088.23 24196.84 18997.03 21688.37 26289.69 25794.39 28582.04 21297.98 26787.80 24485.37 32294.84 316
DP-MVS Recon95.68 8195.12 9297.37 5199.19 3194.19 4297.03 17198.08 7488.35 26395.09 12997.65 11189.97 7999.48 10192.08 16198.59 10698.44 145
tpm90.25 28189.74 27891.76 31793.92 32879.73 36893.98 33393.54 36288.28 26491.99 19793.25 33377.51 28897.44 32587.30 26187.94 29898.12 168
v1091.04 25590.23 25593.49 26294.12 32388.16 24597.32 14797.08 20788.26 26588.29 29594.22 29982.17 21197.97 27086.45 27484.12 34394.33 340
Fast-Effi-MVS+93.46 15192.75 15995.59 14996.77 18290.03 17696.81 19197.13 20188.19 26691.30 21694.27 29486.21 14198.63 19887.66 25296.46 17098.12 168
c3_l91.38 23790.89 22392.88 28595.58 24686.30 28994.68 30896.84 23588.17 26788.83 28394.23 29785.65 14997.47 32289.36 21584.63 33594.89 314
TEST998.70 5694.19 4296.41 22598.02 9488.17 26796.03 10197.56 12192.74 3099.59 74
MDTV_nov1_ep1390.76 23195.22 27380.33 36193.03 36195.28 31188.14 26992.84 17893.83 31181.34 22398.08 25182.86 31894.34 207
MAR-MVS94.22 11893.46 13596.51 8698.00 10892.19 9997.67 10397.47 16588.13 27093.00 17295.84 21584.86 15899.51 9687.99 24098.17 12497.83 186
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
UniMVSNet_ETH3D91.34 24290.22 25794.68 19894.86 29687.86 25397.23 15997.46 16787.99 27189.90 25096.92 15766.35 36598.23 23190.30 19590.99 26897.96 177
PatchMatch-RL92.90 17692.02 18595.56 15098.19 9590.80 15595.27 29497.18 19787.96 27291.86 20195.68 22880.44 23798.99 16284.01 30897.54 13896.89 225
thisisatest051592.29 19991.30 21095.25 16596.60 19088.90 22094.36 32192.32 37487.92 27393.43 16394.57 27577.28 28999.00 16189.42 21495.86 17897.86 183
PVSNet86.66 1892.24 20291.74 19593.73 25097.77 12183.69 33092.88 36396.72 24087.91 27493.00 17294.86 26178.51 27399.05 15786.53 27197.45 14398.47 140
LTVRE_ROB88.41 1390.99 25789.92 26994.19 22396.18 22089.55 19396.31 23797.09 20687.88 27585.67 33695.91 21278.79 27098.57 20581.50 33089.98 27994.44 337
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WB-MVSnew89.88 29289.56 28290.82 33494.57 31183.06 33495.65 27692.85 36887.86 27690.83 22794.10 30379.66 25396.88 34776.34 36394.19 21092.54 367
cl____90.96 26090.32 24892.89 28495.37 25986.21 29294.46 31796.64 24887.82 27788.15 30094.18 30082.98 19197.54 31587.70 24885.59 31894.92 312
DIV-MVS_self_test90.97 25990.33 24792.88 28595.36 26086.19 29394.46 31796.63 25187.82 27788.18 29994.23 29782.99 19097.53 31787.72 24585.57 31994.93 310
cl2291.21 24790.56 24293.14 27696.09 22986.80 27594.41 31996.58 25487.80 27988.58 28893.99 30880.85 23297.62 30989.87 20386.93 30794.99 305
CPTT-MVS95.57 8695.19 8996.70 7399.27 2691.48 12598.33 2798.11 7087.79 28095.17 12798.03 8087.09 13099.61 6993.51 13399.42 5099.02 86
miper_ehance_all_eth91.59 22591.13 21892.97 28195.55 24886.57 28394.47 31596.88 23187.77 28188.88 28094.01 30686.22 14097.54 31589.49 21286.93 30794.79 324
v119291.07 25390.23 25593.58 25993.70 33587.82 25596.73 19797.07 20987.77 28189.58 26094.32 29180.90 23197.97 27086.52 27285.48 32094.95 306
F-COLMAP93.58 14792.98 14995.37 16298.40 7588.98 21897.18 16397.29 19387.75 28390.49 23197.10 14785.21 15399.50 9986.70 27096.72 16397.63 194
131492.81 18292.03 18495.14 17095.33 26589.52 19696.04 25397.44 17687.72 28486.25 33295.33 24283.84 17298.79 17989.26 21997.05 15697.11 218
test-mter90.19 28589.54 28392.12 30494.59 30880.66 35594.29 32692.98 36687.68 28590.76 22892.37 34667.67 35598.07 25588.81 23096.74 16197.63 194
TR-MVS91.48 23390.59 24094.16 22596.40 21087.33 26095.67 27395.34 31087.68 28591.46 21095.52 23776.77 29298.35 22382.85 32093.61 22796.79 228
LF4IMVS87.94 31587.25 31289.98 34792.38 36780.05 36694.38 32095.25 31487.59 28784.34 34794.74 26864.31 37397.66 30584.83 29787.45 30292.23 371
miper_lstm_enhance90.50 27690.06 26591.83 31195.33 26583.74 32793.86 34096.70 24487.56 28887.79 30593.81 31483.45 18096.92 34687.39 25884.62 33694.82 319
TransMVSNet (Re)88.94 30387.56 30993.08 27894.35 31788.45 23497.73 9695.23 31587.47 28984.26 34995.29 24379.86 24997.33 33279.44 34974.44 38393.45 355
v14419291.06 25490.28 25193.39 26693.66 33887.23 26696.83 19097.07 20987.43 29089.69 25794.28 29381.48 22298.00 26587.18 26484.92 33394.93 310
原ACMM196.38 10098.59 6691.09 14597.89 10787.41 29195.22 12697.68 10790.25 7499.54 8987.95 24199.12 8398.49 137
v192192090.85 26390.03 26693.29 27093.55 33986.96 27496.74 19697.04 21487.36 29289.52 26494.34 28880.23 24297.97 27086.27 27585.21 32694.94 308
USDC88.94 30387.83 30892.27 30194.66 30584.96 31393.86 34095.90 28187.34 29383.40 35895.56 23467.43 35798.19 23682.64 32589.67 28393.66 351
PLCcopyleft91.00 694.11 12693.43 13896.13 11998.58 6891.15 14496.69 20397.39 18287.29 29491.37 21296.71 16488.39 10499.52 9587.33 26097.13 15597.73 190
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tfpnnormal89.70 29788.40 30293.60 25795.15 27890.10 17597.56 11898.16 6187.28 29586.16 33394.63 27377.57 28798.05 25874.48 37184.59 33792.65 365
TESTMET0.1,190.06 28789.42 28691.97 30794.41 31680.62 35794.29 32691.97 37887.28 29590.44 23292.47 34568.79 34797.67 30388.50 23696.60 16697.61 198
v124090.70 26989.85 27193.23 27293.51 34286.80 27596.61 21397.02 21787.16 29789.58 26094.31 29279.55 25597.98 26785.52 29085.44 32194.90 313
Patchmatch-RL test87.38 32086.24 32390.81 33588.74 38978.40 37888.12 39593.17 36587.11 29882.17 36589.29 37681.95 21595.60 36888.64 23477.02 37698.41 147
CDPH-MVS95.97 7495.38 8497.77 3398.93 4794.44 3496.35 23397.88 10986.98 29996.65 7297.89 9091.99 4499.47 10292.26 15299.46 4399.39 56
PM-MVS83.48 34781.86 35388.31 35787.83 39277.59 38093.43 35291.75 37986.91 30080.63 37089.91 37244.42 39895.84 36285.17 29676.73 37991.50 379
CR-MVSNet90.82 26489.77 27593.95 23994.45 31487.19 26790.23 38395.68 29486.89 30192.40 18192.36 34980.91 22997.05 34081.09 33893.95 22097.60 199
1112_ss93.37 15492.42 17596.21 11497.05 16290.99 14696.31 23796.72 24086.87 30289.83 25396.69 16886.51 13699.14 13788.12 23893.67 22498.50 135
miper_enhance_ethall91.54 23091.01 22193.15 27595.35 26187.07 27193.97 33496.90 22886.79 30389.17 27593.43 33286.55 13597.64 30689.97 20086.93 30794.74 328
CL-MVSNet_self_test86.31 33185.15 33389.80 34988.83 38781.74 34793.93 33796.22 27086.67 30485.03 34290.80 36578.09 28194.50 37674.92 37071.86 38893.15 358
FMVSNet189.88 29288.31 30394.59 20095.41 25591.18 14097.50 12496.93 22386.62 30587.41 31394.51 27865.94 36997.29 33483.04 31787.43 30395.31 289
CHOSEN 280x42093.12 16492.72 16294.34 21696.71 18687.27 26390.29 38297.72 13286.61 30691.34 21395.29 24384.29 16798.41 21593.25 13998.94 9397.35 210
test_fmvs383.21 34883.02 34583.78 37086.77 39468.34 39696.76 19594.91 32986.49 30784.14 35289.48 37536.04 40291.73 39291.86 16580.77 36591.26 382
mvsany_test383.59 34682.44 35087.03 36483.80 39773.82 38793.70 34490.92 38686.42 30882.51 36390.26 36846.76 39795.71 36490.82 18676.76 37891.57 377
MIMVSNet88.50 31086.76 32093.72 25294.84 29787.77 25691.39 37394.05 35286.41 30987.99 30392.59 34263.27 37595.82 36377.44 35692.84 23397.57 201
FE-MVS92.05 20991.05 21995.08 17396.83 17687.93 24993.91 33995.70 29086.30 31094.15 14694.97 25476.59 29399.21 12684.10 30696.86 15798.09 172
tpmvs89.83 29589.15 29291.89 30994.92 29180.30 36293.11 35995.46 30386.28 31188.08 30192.65 33980.44 23798.52 20881.47 33189.92 28096.84 226
PAPM91.52 23190.30 25095.20 16795.30 26889.83 18593.38 35496.85 23486.26 31288.59 28795.80 21884.88 15798.15 23975.67 36795.93 17697.63 194
VDDNet93.05 16892.07 18296.02 12696.84 17490.39 17198.08 5395.85 28486.22 31395.79 11198.46 4267.59 35699.19 12894.92 10494.85 19698.47 140
MS-PatchMatch90.27 28089.77 27591.78 31594.33 31884.72 31795.55 27996.73 23986.17 31486.36 33195.28 24571.28 33197.80 29384.09 30798.14 12592.81 362
MVP-Stereo90.74 26790.08 26192.71 29193.19 35188.20 24295.86 26396.27 26786.07 31584.86 34494.76 26677.84 28597.75 29883.88 31298.01 12792.17 374
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Anonymous20240521192.07 20890.83 22995.76 13698.19 9588.75 22297.58 11695.00 32486.00 31693.64 15697.45 12466.24 36799.53 9190.68 19092.71 23699.01 89
KD-MVS_self_test85.95 33684.95 33588.96 35589.55 38479.11 37595.13 29996.42 26185.91 31784.07 35490.48 36670.03 34194.82 37580.04 34272.94 38692.94 360
CVMVSNet91.23 24691.75 19389.67 35095.77 23974.69 38596.44 22194.88 33185.81 31892.18 19197.64 11479.07 26195.58 36988.06 23995.86 17898.74 118
our_test_388.78 30787.98 30791.20 32992.45 36582.53 33893.61 35095.69 29285.77 31984.88 34393.71 31679.99 24696.78 35179.47 34786.24 31294.28 343
MSDG91.42 23590.24 25494.96 18297.15 15488.91 21993.69 34696.32 26585.72 32086.93 32696.47 18480.24 24198.98 16380.57 33995.05 19596.98 220
CHOSEN 1792x268894.15 12293.51 13396.06 12298.27 8389.38 20295.18 29898.48 2185.60 32193.76 15597.11 14683.15 18599.61 6991.33 17798.72 10099.19 71
KD-MVS_2432*160084.81 34382.64 34791.31 32591.07 37485.34 30791.22 37595.75 28885.56 32283.09 36090.21 36967.21 35995.89 35977.18 36062.48 39992.69 363
miper_refine_blended84.81 34382.64 34791.31 32591.07 37485.34 30791.22 37595.75 28885.56 32283.09 36090.21 36967.21 35995.89 35977.18 36062.48 39992.69 363
AllTest90.23 28288.98 29493.98 23597.94 11186.64 27996.51 22095.54 30085.38 32485.49 33896.77 16270.28 33799.15 13580.02 34392.87 23196.15 245
TestCases93.98 23597.94 11186.64 27995.54 30085.38 32485.49 33896.77 16270.28 33799.15 13580.02 34392.87 23196.15 245
Test_1112_low_res92.84 18091.84 19195.85 13497.04 16489.97 18295.53 28196.64 24885.38 32489.65 25995.18 24885.86 14699.10 14187.70 24893.58 22998.49 137
test_vis1_rt86.16 33385.06 33489.46 35293.47 34580.46 35996.41 22586.61 40085.22 32779.15 37888.64 37952.41 39297.06 33993.08 14390.57 27390.87 383
EU-MVSNet88.72 30888.90 29688.20 35893.15 35274.21 38696.63 21294.22 35085.18 32887.32 31695.97 20876.16 29894.98 37485.27 29386.17 31395.41 279
LS3D93.57 14892.61 16696.47 9197.59 13591.61 11897.67 10397.72 13285.17 32990.29 23598.34 5484.60 16099.73 4283.85 31398.27 11998.06 174
dp88.90 30588.26 30590.81 33594.58 31076.62 38192.85 36494.93 32885.12 33090.07 24893.07 33475.81 30098.12 24480.53 34087.42 30497.71 191
HyFIR lowres test93.66 14592.92 15195.87 13298.24 8789.88 18494.58 31198.49 1985.06 33193.78 15495.78 22282.86 19498.67 19491.77 16795.71 18299.07 85
new-patchmatchnet83.18 34981.87 35287.11 36386.88 39375.99 38493.70 34495.18 31785.02 33277.30 38388.40 38165.99 36893.88 38574.19 37570.18 39091.47 380
TDRefinement86.53 32784.76 33891.85 31082.23 40284.25 32096.38 23195.35 30784.97 33384.09 35394.94 25665.76 37098.34 22684.60 30274.52 38292.97 359
OpenMVScopyleft89.19 1292.86 17891.68 19696.40 9795.34 26292.73 8098.27 3398.12 6784.86 33485.78 33597.75 10378.89 26999.74 4187.50 25798.65 10296.73 229
gm-plane-assit93.22 35078.89 37784.82 33593.52 32598.64 19787.72 245
PMMVS92.86 17892.34 17694.42 21294.92 29186.73 27894.53 31396.38 26384.78 33694.27 14295.12 25283.13 18698.40 21691.47 17596.49 16898.12 168
pmmvs490.93 26189.85 27194.17 22493.34 34890.79 15694.60 31096.02 27784.62 33787.45 31195.15 24981.88 21797.45 32487.70 24887.87 29994.27 344
MDA-MVSNet-bldmvs85.00 34182.95 34691.17 33093.13 35383.33 33294.56 31295.00 32484.57 33865.13 39892.65 33970.45 33695.85 36173.57 37777.49 37594.33 340
QAPM93.45 15292.27 17896.98 7196.77 18292.62 8298.39 2598.12 6784.50 33988.27 29697.77 10282.39 20799.81 2985.40 29298.81 9798.51 134
ppachtmachnet_test88.35 31287.29 31191.53 32092.45 36583.57 33193.75 34395.97 27884.28 34085.32 34194.18 30079.00 26896.93 34575.71 36684.99 33294.10 345
pmmvs589.86 29488.87 29792.82 28792.86 35586.23 29196.26 24095.39 30484.24 34187.12 31894.51 27874.27 31497.36 33187.61 25587.57 30194.86 315
CostFormer91.18 25190.70 23692.62 29494.84 29781.76 34694.09 33294.43 34384.15 34292.72 17993.77 31579.43 25698.20 23490.70 18992.18 24597.90 180
FMVSNet587.29 32185.79 32791.78 31594.80 29987.28 26295.49 28395.28 31184.09 34383.85 35791.82 35762.95 37794.17 38078.48 35285.34 32493.91 349
MIMVSNet184.93 34283.05 34490.56 34089.56 38384.84 31695.40 28695.35 30783.91 34480.38 37292.21 35357.23 38593.34 38870.69 38782.75 35893.50 353
RPSCF90.75 26690.86 22590.42 34296.84 17476.29 38395.61 27896.34 26483.89 34591.38 21197.87 9376.45 29598.78 18087.16 26592.23 24296.20 241
MDTV_nov1_ep13_2view70.35 39293.10 36083.88 34693.55 15882.47 20586.25 27698.38 150
无先验95.79 26897.87 11183.87 34799.65 5887.68 25198.89 107
PVSNet_082.17 1985.46 34083.64 34390.92 33295.27 26979.49 37190.55 38195.60 29783.76 34883.00 36289.95 37171.09 33297.97 27082.75 32360.79 40195.31 289
Anonymous2024052186.42 32985.44 32989.34 35390.33 37779.79 36796.73 19795.92 27983.71 34983.25 35991.36 36263.92 37496.01 35778.39 35485.36 32392.22 372
TinyColmap86.82 32685.35 33291.21 32794.91 29382.99 33593.94 33694.02 35483.58 35081.56 36694.68 27062.34 37998.13 24175.78 36587.35 30692.52 368
Anonymous2023120687.09 32486.14 32589.93 34891.22 37380.35 36096.11 24995.35 30783.57 35184.16 35093.02 33573.54 32195.61 36772.16 38186.14 31493.84 350
pmmvs-eth3d86.22 33284.45 33991.53 32088.34 39087.25 26494.47 31595.01 32383.47 35279.51 37789.61 37469.75 34495.71 36483.13 31676.73 37991.64 375
EG-PatchMatch MVS87.02 32585.44 32991.76 31792.67 35985.00 31296.08 25196.45 26083.41 35379.52 37693.49 32657.10 38697.72 30079.34 35090.87 27192.56 366
ADS-MVSNet289.45 29888.59 30092.03 30695.86 23482.26 34290.93 37894.32 34983.23 35491.28 22091.81 35879.01 26695.99 35879.52 34591.39 25997.84 184
ADS-MVSNet89.89 29188.68 29993.53 26195.86 23484.89 31590.93 37895.07 32283.23 35491.28 22091.81 35879.01 26697.85 28879.52 34591.39 25997.84 184
COLMAP_ROBcopyleft87.81 1590.40 27789.28 28993.79 24897.95 11087.13 27096.92 18295.89 28382.83 35686.88 32897.18 14173.77 31999.29 12178.44 35393.62 22694.95 306
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
testdata95.46 16098.18 9788.90 22097.66 13882.73 35797.03 5898.07 7690.06 7698.85 17489.67 20898.98 9198.64 125
WB-MVS76.77 35876.63 36177.18 37785.32 39556.82 40994.53 31389.39 39182.66 35871.35 39089.18 37775.03 30888.88 39735.42 40666.79 39585.84 391
DP-MVS92.76 18391.51 20496.52 8398.77 5390.99 14697.38 14096.08 27682.38 35989.29 27197.87 9383.77 17399.69 5281.37 33596.69 16498.89 107
MDA-MVSNet_test_wron85.87 33784.23 34190.80 33792.38 36782.57 33793.17 35695.15 31882.15 36067.65 39492.33 35278.20 27795.51 37077.33 35779.74 36794.31 342
YYNet185.87 33784.23 34190.78 33892.38 36782.46 34093.17 35695.14 31982.12 36167.69 39292.36 34978.16 28095.50 37177.31 35879.73 36894.39 338
PatchT88.87 30687.42 31093.22 27394.08 32585.10 31189.51 38894.64 33981.92 36292.36 18488.15 38480.05 24597.01 34372.43 38093.65 22597.54 202
TAPA-MVS90.10 792.30 19891.22 21595.56 15098.33 8089.60 19096.79 19297.65 14081.83 36391.52 20897.23 13887.94 11198.91 16971.31 38498.37 11598.17 165
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SSC-MVS76.05 35975.83 36276.72 38184.77 39656.22 41094.32 32488.96 39381.82 36470.52 39188.91 37874.79 31088.71 39833.69 40764.71 39785.23 392
旧先验295.94 25981.66 36597.34 4898.82 17692.26 152
新几何197.32 5398.60 6593.59 5897.75 12681.58 36695.75 11297.85 9690.04 7799.67 5686.50 27399.13 8198.69 122
Patchmatch-test89.42 29987.99 30693.70 25395.27 26985.11 31088.98 39094.37 34681.11 36787.10 32093.69 31782.28 20897.50 32074.37 37394.76 20098.48 139
test_040286.46 32884.79 33791.45 32295.02 28585.55 30096.29 23994.89 33080.90 36882.21 36493.97 30968.21 35497.29 33462.98 39388.68 29391.51 378
gg-mvs-nofinetune87.82 31685.61 32894.44 21094.46 31389.27 21091.21 37784.61 40380.88 36989.89 25274.98 39971.50 32997.53 31785.75 28897.21 15296.51 233
JIA-IIPM88.26 31387.04 31791.91 30893.52 34181.42 34889.38 38994.38 34580.84 37090.93 22680.74 39679.22 25997.92 28282.76 32291.62 25496.38 238
Patchmtry88.64 30987.25 31292.78 28994.09 32486.64 27989.82 38795.68 29480.81 37187.63 30992.36 34980.91 22997.03 34178.86 35185.12 32894.67 330
test_f80.57 35479.62 35683.41 37183.38 40067.80 39893.57 35193.72 36080.80 37277.91 38287.63 38733.40 40392.08 39187.14 26679.04 37390.34 386
tpm289.96 28889.21 29092.23 30394.91 29381.25 34993.78 34294.42 34480.62 37391.56 20793.44 32976.44 29697.94 27985.60 28992.08 24997.49 203
pmmvs687.81 31786.19 32492.69 29291.32 37286.30 28997.34 14396.41 26280.59 37484.05 35594.37 28767.37 35897.67 30384.75 29979.51 37094.09 347
Anonymous2023121190.63 27189.42 28694.27 22298.24 8789.19 21498.05 5697.89 10779.95 37588.25 29794.96 25572.56 32598.13 24189.70 20785.14 32795.49 273
cascas91.20 24890.08 26194.58 20494.97 28689.16 21593.65 34897.59 14979.90 37689.40 26692.92 33775.36 30598.36 22292.14 15794.75 20196.23 239
Anonymous2024052991.98 21190.73 23495.73 14198.14 9989.40 20197.99 6297.72 13279.63 37793.54 15997.41 12769.94 34299.56 8591.04 18491.11 26598.22 159
PCF-MVS89.48 1191.56 22889.95 26796.36 10296.60 19092.52 8692.51 36897.26 19479.41 37888.90 27896.56 18084.04 17199.55 8777.01 36297.30 14997.01 219
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test22298.24 8792.21 9695.33 28997.60 14679.22 37995.25 12497.84 9888.80 9299.15 7998.72 119
UnsupCasMVSNet_bld82.13 35279.46 35790.14 34588.00 39182.47 33990.89 38096.62 25378.94 38075.61 38484.40 39456.63 38796.31 35577.30 35966.77 39691.63 376
N_pmnet78.73 35778.71 35878.79 37592.80 35746.50 41494.14 33043.71 41678.61 38180.83 36891.66 36074.94 30996.36 35467.24 39084.45 34093.50 353
ANet_high63.94 37159.58 37477.02 37861.24 41466.06 39985.66 39887.93 39678.53 38242.94 40671.04 40325.42 40980.71 40552.60 40130.83 40784.28 393
114514_t93.95 13393.06 14796.63 7699.07 3791.61 11897.46 13297.96 10277.99 38393.00 17297.57 11986.14 14499.33 11589.22 22199.15 7998.94 97
DSMNet-mixed86.34 33086.12 32687.00 36589.88 38170.43 39194.93 30390.08 38977.97 38485.42 34092.78 33874.44 31393.96 38474.43 37295.14 19196.62 231
RPMNet88.98 30287.05 31694.77 19594.45 31487.19 26790.23 38398.03 9177.87 38592.40 18187.55 38880.17 24399.51 9668.84 38993.95 22097.60 199
test_vis3_rt72.73 36070.55 36379.27 37480.02 40368.13 39793.92 33874.30 41176.90 38658.99 40273.58 40220.29 41195.37 37284.16 30572.80 38774.31 399
new_pmnet82.89 35081.12 35588.18 35989.63 38280.18 36491.77 37292.57 37276.79 38775.56 38688.23 38361.22 38194.48 37771.43 38382.92 35689.87 387
dongtai69.99 36469.33 36671.98 38588.78 38861.64 40589.86 38659.93 41575.67 38874.96 38785.45 39150.19 39481.66 40443.86 40355.27 40272.63 400
tpm cat188.36 31187.21 31491.81 31395.13 28080.55 35892.58 36795.70 29074.97 38987.45 31191.96 35678.01 28498.17 23880.39 34188.74 29296.72 230
CMPMVSbinary62.92 2185.62 33984.92 33687.74 36089.14 38573.12 39094.17 32996.80 23773.98 39073.65 38994.93 25766.36 36497.61 31083.95 31091.28 26192.48 369
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OpenMVS_ROBcopyleft81.14 2084.42 34582.28 35190.83 33390.06 37984.05 32595.73 27194.04 35373.89 39180.17 37591.53 36159.15 38297.64 30666.92 39189.05 28890.80 384
MVS91.71 21890.44 24495.51 15495.20 27591.59 12096.04 25397.45 17273.44 39287.36 31595.60 23285.42 15199.10 14185.97 28497.46 13995.83 257
pmmvs379.97 35577.50 36087.39 36282.80 40179.38 37392.70 36690.75 38770.69 39378.66 37987.47 38951.34 39393.40 38773.39 37869.65 39189.38 388
APD_test179.31 35677.70 35984.14 36989.11 38669.07 39592.36 37191.50 38169.07 39473.87 38892.63 34139.93 40094.32 37970.54 38880.25 36689.02 389
kuosan65.27 37064.66 37267.11 38883.80 39761.32 40688.53 39260.77 41468.22 39567.67 39380.52 39749.12 39570.76 41029.67 40953.64 40469.26 402
MVS-HIRNet82.47 35181.21 35486.26 36795.38 25769.21 39488.96 39189.49 39066.28 39680.79 36974.08 40168.48 35297.39 32971.93 38295.47 18692.18 373
DeepMVS_CXcopyleft74.68 38490.84 37664.34 40281.61 40765.34 39767.47 39588.01 38648.60 39680.13 40662.33 39473.68 38579.58 396
PMMVS270.19 36366.92 36780.01 37376.35 40665.67 40086.22 39687.58 39764.83 39862.38 39980.29 39826.78 40888.49 40063.79 39254.07 40385.88 390
FPMVS71.27 36269.85 36475.50 38274.64 40759.03 40791.30 37491.50 38158.80 39957.92 40388.28 38229.98 40685.53 40253.43 40082.84 35781.95 395
testf169.31 36566.76 36876.94 37978.61 40461.93 40388.27 39386.11 40155.62 40059.69 40085.31 39220.19 41289.32 39457.62 39669.44 39279.58 396
APD_test269.31 36566.76 36876.94 37978.61 40461.93 40388.27 39386.11 40155.62 40059.69 40085.31 39220.19 41289.32 39457.62 39669.44 39279.58 396
LCM-MVSNet72.55 36169.39 36582.03 37270.81 41265.42 40190.12 38594.36 34855.02 40265.88 39681.72 39524.16 41089.96 39374.32 37468.10 39490.71 385
Gipumacopyleft67.86 36865.41 37075.18 38392.66 36073.45 38866.50 40494.52 34153.33 40357.80 40466.07 40430.81 40489.20 39648.15 40278.88 37462.90 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft53.92 2258.58 37255.40 37568.12 38751.00 41548.64 41278.86 40187.10 39946.77 40435.84 41074.28 4008.76 41486.34 40142.07 40473.91 38469.38 401
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN53.28 37352.56 37755.43 39074.43 40847.13 41383.63 40076.30 40842.23 40542.59 40762.22 40628.57 40774.40 40731.53 40831.51 40644.78 405
EMVS52.08 37551.31 37854.39 39172.62 41045.39 41583.84 39975.51 41041.13 40640.77 40859.65 40730.08 40573.60 40828.31 41029.90 40844.18 406
MVEpermissive50.73 2353.25 37448.81 37966.58 38965.34 41357.50 40872.49 40370.94 41240.15 40739.28 40963.51 4056.89 41673.48 40938.29 40542.38 40568.76 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method66.11 36964.89 37169.79 38672.62 41035.23 41865.19 40592.83 37020.35 40865.20 39788.08 38543.14 39982.70 40373.12 37963.46 39891.45 381
tmp_tt51.94 37653.82 37646.29 39233.73 41645.30 41678.32 40267.24 41318.02 40950.93 40587.05 39052.99 39153.11 41170.76 38625.29 40940.46 407
wuyk23d25.11 37724.57 38126.74 39373.98 40939.89 41757.88 4069.80 41712.27 41010.39 4116.97 4137.03 41536.44 41225.43 41117.39 4103.89 410
testmvs13.36 37916.33 3824.48 3955.04 4172.26 42093.18 3553.28 4182.70 4118.24 41221.66 4092.29 4182.19 4137.58 4122.96 4119.00 409
test12313.04 38015.66 3835.18 3944.51 4183.45 41992.50 3691.81 4192.50 4127.58 41320.15 4103.67 4172.18 4147.13 4131.07 4129.90 408
EGC-MVSNET68.77 36763.01 37386.07 36892.49 36382.24 34393.96 33590.96 3850.71 4132.62 41490.89 36453.66 39093.46 38657.25 39884.55 33882.51 394
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k23.24 37830.99 3800.00 3960.00 4190.00 4210.00 40797.63 1440.00 4140.00 41596.88 15984.38 1640.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.39 3829.85 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41488.65 950.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.06 38110.74 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41596.69 1680.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS79.53 36975.56 368
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 799.77 2
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 799.77 2
eth-test20.00 419
eth-test0.00 419
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 6696.04 299.24 12495.36 9499.59 2199.56 29
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 3699.86 897.52 2299.67 799.75 6
GSMVS98.45 142
test_part299.28 2595.74 898.10 29
sam_mvs182.76 19798.45 142
sam_mvs81.94 216
ambc86.56 36683.60 39970.00 39385.69 39794.97 32680.60 37188.45 38037.42 40196.84 34982.69 32475.44 38192.86 361
MTGPAbinary98.08 74
test_post192.81 36516.58 41280.53 23597.68 30286.20 277
test_post17.58 41181.76 21898.08 251
patchmatchnet-post90.45 36782.65 20198.10 246
GG-mvs-BLEND93.62 25693.69 33689.20 21292.39 37083.33 40587.98 30489.84 37371.00 33396.87 34882.08 32895.40 18894.80 322
MTMP97.86 8082.03 406
test9_res94.81 10899.38 5799.45 47
agg_prior293.94 12599.38 5799.50 40
agg_prior98.67 5893.79 5498.00 9895.68 11599.57 84
test_prior493.66 5796.42 224
test_prior97.23 6098.67 5892.99 7398.00 9899.41 10999.29 63
新几何295.79 268
旧先验198.38 7893.38 6397.75 12698.09 7592.30 4199.01 9099.16 73
原ACMM295.67 273
testdata299.67 5685.96 285
segment_acmp92.89 27
test1297.65 4298.46 7094.26 3997.66 13895.52 12290.89 6799.46 10399.25 7099.22 70
plane_prior796.21 21789.98 181
plane_prior696.10 22890.00 17781.32 224
plane_prior597.51 15998.60 20193.02 14692.23 24295.86 253
plane_prior496.64 171
plane_prior196.14 225
n20.00 420
nn0.00 420
door-mid91.06 384
lessismore_v090.45 34191.96 37079.09 37687.19 39880.32 37394.39 28566.31 36697.55 31484.00 30976.84 37794.70 329
test1197.88 109
door91.13 383
HQP5-MVS89.33 205
BP-MVS92.13 158
HQP4-MVS90.14 23798.50 20995.78 261
HQP3-MVS97.39 18292.10 247
HQP2-MVS80.95 227
NP-MVS95.99 23289.81 18695.87 213
ACMMP++_ref90.30 278
ACMMP++91.02 267
Test By Simon88.73 94