OPU-MVS | | | | | 98.55 1 | 98.82 56 | 96.86 1 | 98.25 28 | | | | 98.26 53 | 96.04 1 | 99.24 120 | 95.36 66 | 99.59 15 | 99.56 22 |
|
test_0728_THIRD | | | | | | | | | | 94.78 31 | 98.73 8 | 98.87 6 | 95.87 2 | 99.84 19 | 97.45 6 | 99.72 2 | 99.77 1 |
|
SED-MVS | | | 98.05 1 | 97.99 1 | 98.24 7 | 99.42 6 | 95.30 15 | 98.25 28 | 98.27 28 | 95.13 15 | 99.19 1 | 98.89 4 | 95.54 3 | 99.85 14 | 97.52 2 | 99.66 8 | 99.56 22 |
|
test_241102_ONE | | | | | | 99.42 6 | 95.30 15 | | 98.27 28 | 95.09 18 | 99.19 1 | 98.81 8 | 95.54 3 | 99.65 53 | | | |
|
DVP-MVS | | | 97.91 2 | 97.81 2 | 98.22 9 | 99.45 2 | 95.36 10 | 98.21 34 | 97.85 112 | 94.92 22 | 98.73 8 | 98.87 6 | 95.08 5 | 99.84 19 | 97.52 2 | 99.67 6 | 99.48 41 |
|
test0726 | | | | | | 99.45 2 | 95.36 10 | 98.31 22 | 98.29 24 | 94.92 22 | 98.99 4 | 98.92 2 | 95.08 5 | | | | |
|
DPE-MVS | | | 97.86 3 | 97.65 4 | 98.47 3 | 99.17 32 | 95.78 5 | 97.21 130 | 98.35 19 | 95.16 14 | 98.71 10 | 98.80 9 | 95.05 7 | 99.89 3 | 96.70 19 | 99.73 1 | 99.73 7 |
|
test_241102_TWO | | | | | | | | | 98.27 28 | 95.13 15 | 98.93 6 | 98.89 4 | 94.99 8 | 99.85 14 | 97.52 2 | 99.65 10 | 99.74 5 |
|
SteuartSystems-ACMMP | | | 97.62 6 | 97.53 6 | 97.87 24 | 98.39 80 | 94.25 38 | 98.43 17 | 98.27 28 | 95.34 10 | 98.11 16 | 98.56 17 | 94.53 9 | 99.71 38 | 96.57 23 | 99.62 13 | 99.65 9 |
Skip Steuart: Steuart Systems R&D Blog. |
CNVR-MVS | | | 97.68 5 | 97.44 8 | 98.37 5 | 98.90 51 | 95.86 4 | 97.27 121 | 98.08 64 | 95.81 3 | 97.87 23 | 98.31 47 | 94.26 10 | 99.68 47 | 97.02 9 | 99.49 34 | 99.57 19 |
|
SD-MVS | | | 97.41 9 | 97.53 6 | 97.06 71 | 98.57 72 | 94.46 30 | 97.92 56 | 98.14 53 | 94.82 28 | 99.01 3 | 98.55 19 | 94.18 11 | 97.41 296 | 96.94 10 | 99.64 11 | 99.32 60 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
MSP-MVS | | | 97.59 7 | 97.54 5 | 97.73 38 | 99.40 11 | 93.77 58 | 98.53 9 | 98.29 24 | 95.55 5 | 98.56 12 | 97.81 82 | 93.90 12 | 99.65 53 | 96.62 20 | 99.21 69 | 99.77 1 |
|
MCST-MVS | | | 97.18 16 | 96.84 25 | 98.20 10 | 99.30 24 | 95.35 12 | 97.12 138 | 98.07 70 | 93.54 65 | 96.08 77 | 97.69 90 | 93.86 13 | 99.71 38 | 96.50 24 | 99.39 47 | 99.55 26 |
|
APDe-MVS | | | 97.82 4 | 97.73 3 | 98.08 15 | 99.15 33 | 94.82 25 | 98.81 2 | 98.30 23 | 94.76 32 | 98.30 13 | 98.90 3 | 93.77 14 | 99.68 47 | 97.93 1 | 99.69 3 | 99.75 3 |
|
TSAR-MVS + MP. | | | 97.42 8 | 97.33 9 | 97.69 42 | 99.25 27 | 94.24 39 | 98.07 43 | 97.85 112 | 93.72 57 | 98.57 11 | 98.35 38 | 93.69 15 | 99.40 108 | 97.06 8 | 99.46 38 | 99.44 47 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
DeepPCF-MVS | | 93.97 1 | 96.61 48 | 97.09 12 | 95.15 157 | 98.09 105 | 86.63 260 | 96.00 229 | 98.15 51 | 95.43 6 | 97.95 19 | 98.56 17 | 93.40 16 | 99.36 112 | 96.77 17 | 99.48 35 | 99.45 45 |
|
xxxxxxxxxxxxxcwj | | | 97.36 11 | 97.20 10 | 97.83 26 | 98.91 49 | 94.28 35 | 97.02 143 | 97.22 182 | 95.35 8 | 98.27 14 | 98.65 13 | 93.33 17 | 99.72 35 | 96.49 25 | 99.52 25 | 99.51 34 |
|
SF-MVS | | | 97.39 10 | 97.13 11 | 98.17 11 | 99.02 43 | 95.28 17 | 98.23 31 | 98.27 28 | 92.37 106 | 98.27 14 | 98.65 13 | 93.33 17 | 99.72 35 | 96.49 25 | 99.52 25 | 99.51 34 |
|
SMA-MVS | | | 97.35 12 | 97.03 14 | 98.30 6 | 99.06 40 | 95.42 8 | 97.94 54 | 98.18 46 | 90.57 165 | 98.85 7 | 98.94 1 | 93.33 17 | 99.83 22 | 96.72 18 | 99.68 4 | 99.63 11 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
NCCC | | | 97.30 14 | 97.03 14 | 98.11 14 | 98.77 57 | 95.06 22 | 97.34 113 | 98.04 81 | 95.96 2 | 97.09 45 | 97.88 74 | 93.18 20 | 99.71 38 | 95.84 49 | 99.17 72 | 99.56 22 |
|
9.14 | | | | 96.75 33 | | 98.93 47 | | 97.73 73 | 98.23 38 | 91.28 141 | 97.88 22 | 98.44 28 | 93.00 21 | 99.65 53 | 95.76 51 | 99.47 36 | |
|
segment_acmp | | | | | | | | | | | | | 92.89 22 | | | | |
|
TSAR-MVS + GP. | | | 96.69 45 | 96.49 46 | 97.27 60 | 98.31 88 | 93.39 66 | 96.79 167 | 96.72 225 | 94.17 45 | 97.44 29 | 97.66 93 | 92.76 23 | 99.33 113 | 96.86 13 | 97.76 118 | 99.08 80 |
|
TEST9 | | | | | | 98.70 60 | 94.19 40 | 96.41 196 | 98.02 88 | 88.17 227 | 96.03 78 | 97.56 105 | 92.74 24 | 99.59 67 | | | |
|
train_agg | | | 96.30 57 | 95.83 63 | 97.72 39 | 98.70 60 | 94.19 40 | 96.41 196 | 98.02 88 | 88.58 215 | 96.03 78 | 97.56 105 | 92.73 25 | 99.59 67 | 95.04 73 | 99.37 52 | 99.39 54 |
|
test_8 | | | | | | 98.67 62 | 94.06 49 | 96.37 203 | 98.01 91 | 88.58 215 | 95.98 83 | 97.55 107 | 92.73 25 | 99.58 70 | | | |
|
agg_prior1 | | | 96.22 60 | 95.77 64 | 97.56 48 | 98.67 62 | 93.79 55 | 96.28 212 | 98.00 93 | 88.76 212 | 95.68 93 | 97.55 107 | 92.70 27 | 99.57 78 | 95.01 74 | 99.32 53 | 99.32 60 |
|
CSCG | | | 96.05 63 | 95.91 61 | 96.46 93 | 99.24 28 | 90.47 158 | 98.30 23 | 98.57 11 | 89.01 198 | 93.97 126 | 97.57 103 | 92.62 28 | 99.76 30 | 94.66 87 | 99.27 61 | 99.15 72 |
|
ETH3D-3000-0.1 | | | 97.07 22 | 96.71 36 | 98.14 13 | 98.90 51 | 95.33 14 | 97.68 80 | 98.24 34 | 91.57 127 | 97.90 21 | 98.37 36 | 92.61 29 | 99.66 52 | 95.59 62 | 99.51 29 | 99.43 49 |
|
Regformer-2 | | | 97.16 18 | 96.99 16 | 97.67 43 | 98.32 86 | 93.84 53 | 96.83 163 | 98.10 61 | 95.24 11 | 97.49 26 | 98.25 54 | 92.57 30 | 99.61 62 | 96.80 14 | 99.29 57 | 99.56 22 |
|
HPM-MVS++ | | | 97.34 13 | 96.97 17 | 98.47 3 | 99.08 38 | 96.16 2 | 97.55 94 | 97.97 99 | 95.59 4 | 96.61 56 | 97.89 72 | 92.57 30 | 99.84 19 | 95.95 46 | 99.51 29 | 99.40 53 |
|
ZD-MVS | | | | | | 99.05 41 | 94.59 28 | | 98.08 64 | 89.22 192 | 97.03 47 | 98.10 60 | 92.52 32 | 99.65 53 | 94.58 89 | 99.31 55 | |
|
PHI-MVS | | | 96.77 42 | 96.46 48 | 97.71 41 | 98.40 78 | 94.07 48 | 98.21 34 | 98.45 15 | 89.86 177 | 97.11 44 | 98.01 68 | 92.52 32 | 99.69 44 | 96.03 45 | 99.53 24 | 99.36 58 |
|
Regformer-1 | | | 97.10 20 | 96.96 18 | 97.54 49 | 98.32 86 | 93.48 64 | 96.83 163 | 97.99 97 | 95.20 13 | 97.46 27 | 98.25 54 | 92.48 34 | 99.58 70 | 96.79 16 | 99.29 57 | 99.55 26 |
|
APD-MVS | | | 96.95 31 | 96.60 40 | 98.01 19 | 99.03 42 | 94.93 24 | 97.72 76 | 98.10 61 | 91.50 129 | 98.01 18 | 98.32 46 | 92.33 35 | 99.58 70 | 94.85 79 | 99.51 29 | 99.53 33 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MVS_111021_HR | | | 96.68 47 | 96.58 42 | 96.99 73 | 98.46 74 | 92.31 96 | 96.20 219 | 98.90 2 | 94.30 44 | 95.86 86 | 97.74 87 | 92.33 35 | 99.38 111 | 96.04 44 | 99.42 43 | 99.28 65 |
|
MSLP-MVS++ | | | 96.94 32 | 97.06 13 | 96.59 83 | 98.72 59 | 91.86 111 | 97.67 81 | 98.49 12 | 94.66 35 | 97.24 36 | 98.41 34 | 92.31 37 | 98.94 150 | 96.61 21 | 99.46 38 | 98.96 91 |
|
旧先验1 | | | | | | 98.38 81 | 93.38 67 | | 97.75 117 | | | 98.09 62 | 92.30 38 | | | 99.01 83 | 99.16 70 |
|
HFP-MVS | | | 97.14 19 | 96.92 20 | 97.83 26 | 99.42 6 | 94.12 45 | 98.52 10 | 98.32 20 | 93.21 75 | 97.18 38 | 98.29 50 | 92.08 39 | 99.83 22 | 95.63 57 | 99.59 15 | 99.54 29 |
|
#test# | | | 97.02 26 | 96.75 33 | 97.83 26 | 99.42 6 | 94.12 45 | 98.15 37 | 98.32 20 | 92.57 102 | 97.18 38 | 98.29 50 | 92.08 39 | 99.83 22 | 95.12 71 | 99.59 15 | 99.54 29 |
|
test_prior3 | | | 96.46 53 | 96.20 56 | 97.23 62 | 98.67 62 | 92.99 76 | 96.35 204 | 98.00 93 | 92.80 95 | 96.03 78 | 97.59 101 | 92.01 41 | 99.41 106 | 95.01 74 | 99.38 48 | 99.29 62 |
|
test_prior2 | | | | | | | | 96.35 204 | | 92.80 95 | 96.03 78 | 97.59 101 | 92.01 41 | | 95.01 74 | 99.38 48 | |
|
CDPH-MVS | | | 95.97 66 | 95.38 74 | 97.77 35 | 98.93 47 | 94.44 31 | 96.35 204 | 97.88 106 | 86.98 259 | 96.65 54 | 97.89 72 | 91.99 43 | 99.47 99 | 92.26 125 | 99.46 38 | 99.39 54 |
|
testtj | | | 96.93 33 | 96.56 43 | 98.05 17 | 99.10 34 | 94.66 27 | 97.78 68 | 98.22 39 | 92.74 97 | 97.59 24 | 98.20 57 | 91.96 44 | 99.86 8 | 94.21 93 | 99.25 65 | 99.63 11 |
|
CP-MVS | | | 97.02 26 | 96.81 28 | 97.64 46 | 99.33 22 | 93.54 62 | 98.80 3 | 98.28 26 | 92.99 84 | 96.45 66 | 98.30 49 | 91.90 45 | 99.85 14 | 95.61 59 | 99.68 4 | 99.54 29 |
|
Regformer-4 | | | 96.97 29 | 96.87 21 | 97.25 61 | 98.34 83 | 92.66 85 | 96.96 151 | 98.01 91 | 95.12 17 | 97.14 41 | 98.42 31 | 91.82 46 | 99.61 62 | 96.90 11 | 99.13 75 | 99.50 37 |
|
ETH3D cwj APD-0.16 | | | 96.56 50 | 96.06 58 | 98.05 17 | 98.26 92 | 95.19 18 | 96.99 148 | 98.05 80 | 89.85 179 | 97.26 35 | 98.22 56 | 91.80 47 | 99.69 44 | 94.84 80 | 99.28 59 | 99.27 66 |
|
DPM-MVS | | | 95.69 71 | 94.92 84 | 98.01 19 | 98.08 106 | 95.71 7 | 95.27 261 | 97.62 133 | 90.43 168 | 95.55 99 | 97.07 125 | 91.72 48 | 99.50 96 | 89.62 178 | 98.94 86 | 98.82 106 |
|
Regformer-3 | | | 96.85 38 | 96.80 29 | 97.01 72 | 98.34 83 | 92.02 107 | 96.96 151 | 97.76 116 | 95.01 21 | 97.08 46 | 98.42 31 | 91.71 49 | 99.54 85 | 96.80 14 | 99.13 75 | 99.48 41 |
|
XVS | | | 97.18 16 | 96.96 18 | 97.81 30 | 99.38 14 | 94.03 50 | 98.59 7 | 98.20 42 | 94.85 24 | 96.59 58 | 98.29 50 | 91.70 50 | 99.80 27 | 95.66 52 | 99.40 45 | 99.62 13 |
|
X-MVStestdata | | | 91.71 192 | 89.67 250 | 97.81 30 | 99.38 14 | 94.03 50 | 98.59 7 | 98.20 42 | 94.85 24 | 96.59 58 | 32.69 352 | 91.70 50 | 99.80 27 | 95.66 52 | 99.40 45 | 99.62 13 |
|
ZNCC-MVS | | | 96.96 30 | 96.67 38 | 97.85 25 | 99.37 16 | 94.12 45 | 98.49 14 | 98.18 46 | 92.64 101 | 96.39 68 | 98.18 58 | 91.61 52 | 99.88 4 | 95.59 62 | 99.55 21 | 99.57 19 |
|
ACMMP_NAP | | | 97.20 15 | 96.86 22 | 98.23 8 | 99.09 36 | 95.16 20 | 97.60 90 | 98.19 44 | 92.82 94 | 97.93 20 | 98.74 11 | 91.60 53 | 99.86 8 | 96.26 30 | 99.52 25 | 99.67 8 |
|
region2R | | | 97.07 22 | 96.84 25 | 97.77 35 | 99.46 1 | 93.79 55 | 98.52 10 | 98.24 34 | 93.19 78 | 97.14 41 | 98.34 41 | 91.59 54 | 99.87 7 | 95.46 65 | 99.59 15 | 99.64 10 |
|
DELS-MVS | | | 96.61 48 | 96.38 51 | 97.30 57 | 97.79 119 | 93.19 72 | 95.96 231 | 98.18 46 | 95.23 12 | 95.87 85 | 97.65 94 | 91.45 55 | 99.70 43 | 95.87 47 | 99.44 42 | 99.00 89 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
SR-MVS | | | 97.01 28 | 96.86 22 | 97.47 51 | 99.09 36 | 93.27 71 | 97.98 48 | 98.07 70 | 93.75 56 | 97.45 28 | 98.48 25 | 91.43 56 | 99.59 67 | 96.22 33 | 99.27 61 | 99.54 29 |
|
test1172 | | | 96.93 33 | 96.86 22 | 97.15 67 | 99.10 34 | 92.34 93 | 97.96 53 | 98.04 81 | 93.79 55 | 97.35 33 | 98.53 21 | 91.40 57 | 99.56 80 | 96.30 29 | 99.30 56 | 99.55 26 |
|
SR-MVS-dyc-post | | | 96.88 36 | 96.80 29 | 97.11 70 | 99.02 43 | 92.34 93 | 97.98 48 | 98.03 84 | 93.52 66 | 97.43 31 | 98.51 22 | 91.40 57 | 99.56 80 | 96.05 42 | 99.26 63 | 99.43 49 |
|
GST-MVS | | | 96.85 38 | 96.52 45 | 97.82 29 | 99.36 19 | 94.14 44 | 98.29 24 | 98.13 54 | 92.72 98 | 96.70 50 | 98.06 64 | 91.35 59 | 99.86 8 | 94.83 81 | 99.28 59 | 99.47 44 |
|
ACMMPR | | | 97.07 22 | 96.84 25 | 97.79 32 | 99.44 5 | 93.88 52 | 98.52 10 | 98.31 22 | 93.21 75 | 97.15 40 | 98.33 44 | 91.35 59 | 99.86 8 | 95.63 57 | 99.59 15 | 99.62 13 |
|
DeepC-MVS_fast | | 93.89 2 | 96.93 33 | 96.64 39 | 97.78 33 | 98.64 67 | 94.30 34 | 97.41 105 | 98.04 81 | 94.81 29 | 96.59 58 | 98.37 36 | 91.24 61 | 99.64 61 | 95.16 69 | 99.52 25 | 99.42 52 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ETV-MVS | | | 96.02 64 | 95.89 62 | 96.40 96 | 97.16 141 | 92.44 91 | 97.47 102 | 97.77 115 | 94.55 37 | 96.48 63 | 94.51 248 | 91.23 62 | 98.92 151 | 95.65 55 | 98.19 105 | 97.82 166 |
|
ETH3 D test6400 | | | 96.16 61 | 95.52 68 | 98.07 16 | 98.90 51 | 95.06 22 | 97.03 140 | 98.21 40 | 88.16 229 | 96.64 55 | 97.70 89 | 91.18 63 | 99.67 49 | 92.44 124 | 99.47 36 | 99.48 41 |
|
PGM-MVS | | | 96.81 40 | 96.53 44 | 97.65 44 | 99.35 21 | 93.53 63 | 97.65 84 | 98.98 1 | 92.22 108 | 97.14 41 | 98.44 28 | 91.17 64 | 99.85 14 | 94.35 91 | 99.46 38 | 99.57 19 |
|
MP-MVS-pluss | | | 96.70 44 | 96.27 53 | 97.98 21 | 99.23 30 | 94.71 26 | 96.96 151 | 98.06 73 | 90.67 156 | 95.55 99 | 98.78 10 | 91.07 65 | 99.86 8 | 96.58 22 | 99.55 21 | 99.38 56 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
mPP-MVS | | | 96.86 37 | 96.60 40 | 97.64 46 | 99.40 11 | 93.44 65 | 98.50 13 | 98.09 63 | 93.27 74 | 95.95 84 | 98.33 44 | 91.04 66 | 99.88 4 | 95.20 68 | 99.57 20 | 99.60 16 |
|
HPM-MVS | | | 96.69 45 | 96.45 49 | 97.40 53 | 99.36 19 | 93.11 74 | 98.87 1 | 98.06 73 | 91.17 145 | 96.40 67 | 97.99 69 | 90.99 67 | 99.58 70 | 95.61 59 | 99.61 14 | 99.49 39 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
APD-MVS_3200maxsize | | | 96.81 40 | 96.71 36 | 97.12 69 | 99.01 46 | 92.31 96 | 97.98 48 | 98.06 73 | 93.11 81 | 97.44 29 | 98.55 19 | 90.93 68 | 99.55 83 | 96.06 41 | 99.25 65 | 99.51 34 |
|
test12 | | | | | 97.65 44 | 98.46 74 | 94.26 37 | | 97.66 128 | | 95.52 102 | | 90.89 69 | 99.46 100 | | 99.25 65 | 99.22 67 |
|
zzz-MVS | | | 97.07 22 | 96.77 32 | 97.97 22 | 99.37 16 | 94.42 32 | 97.15 136 | 98.08 64 | 95.07 19 | 96.11 75 | 98.59 15 | 90.88 70 | 99.90 1 | 96.18 39 | 99.50 32 | 99.58 17 |
|
MTAPA | | | 97.08 21 | 96.78 31 | 97.97 22 | 99.37 16 | 94.42 32 | 97.24 123 | 98.08 64 | 95.07 19 | 96.11 75 | 98.59 15 | 90.88 70 | 99.90 1 | 96.18 39 | 99.50 32 | 99.58 17 |
|
EI-MVSNet-Vis-set | | | 96.51 51 | 96.47 47 | 96.63 80 | 98.24 93 | 91.20 134 | 96.89 158 | 97.73 119 | 94.74 33 | 96.49 62 | 98.49 24 | 90.88 70 | 99.58 70 | 96.44 27 | 98.32 102 | 99.13 74 |
|
RE-MVS-def | | | | 96.72 35 | | 99.02 43 | 92.34 93 | 97.98 48 | 98.03 84 | 93.52 66 | 97.43 31 | 98.51 22 | 90.71 73 | | 96.05 42 | 99.26 63 | 99.43 49 |
|
EIA-MVS | | | 95.53 77 | 95.47 70 | 95.71 133 | 97.06 149 | 89.63 175 | 97.82 64 | 97.87 108 | 93.57 61 | 93.92 127 | 95.04 224 | 90.61 74 | 98.95 149 | 94.62 88 | 98.68 93 | 98.54 120 |
|
MP-MVS | | | 96.77 42 | 96.45 49 | 97.72 39 | 99.39 13 | 93.80 54 | 98.41 18 | 98.06 73 | 93.37 70 | 95.54 101 | 98.34 41 | 90.59 75 | 99.88 4 | 94.83 81 | 99.54 23 | 99.49 39 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
EI-MVSNet-UG-set | | | 96.34 56 | 96.30 52 | 96.47 91 | 98.20 98 | 90.93 145 | 96.86 159 | 97.72 122 | 94.67 34 | 96.16 74 | 98.46 26 | 90.43 76 | 99.58 70 | 96.23 32 | 97.96 112 | 98.90 98 |
|
原ACMM1 | | | | | 96.38 99 | 98.59 69 | 91.09 140 | | 97.89 104 | 87.41 251 | 95.22 105 | 97.68 91 | 90.25 77 | 99.54 85 | 87.95 209 | 99.12 78 | 98.49 127 |
|
1121 | | | 94.71 102 | 93.83 107 | 97.34 55 | 98.57 72 | 93.64 60 | 96.04 225 | 97.73 119 | 81.56 317 | 95.68 93 | 97.85 78 | 90.23 78 | 99.65 53 | 87.68 218 | 99.12 78 | 98.73 111 |
|
CS-MVS | | | 95.80 70 | 95.65 66 | 96.24 110 | 97.32 135 | 91.43 125 | 98.10 39 | 97.91 103 | 93.38 69 | 95.16 107 | 94.57 246 | 90.21 79 | 98.98 147 | 95.53 64 | 98.67 94 | 98.30 145 |
|
HPM-MVS_fast | | | 96.51 51 | 96.27 53 | 97.22 64 | 99.32 23 | 92.74 82 | 98.74 4 | 98.06 73 | 90.57 165 | 96.77 49 | 98.35 38 | 90.21 79 | 99.53 88 | 94.80 84 | 99.63 12 | 99.38 56 |
|
testdata | | | | | 95.46 150 | 98.18 102 | 88.90 208 | | 97.66 128 | 82.73 309 | 97.03 47 | 98.07 63 | 90.06 81 | 98.85 157 | 89.67 176 | 98.98 84 | 98.64 117 |
|
新几何1 | | | | | 97.32 56 | 98.60 68 | 93.59 61 | | 97.75 117 | 81.58 316 | 95.75 90 | 97.85 78 | 90.04 82 | 99.67 49 | 86.50 240 | 99.13 75 | 98.69 115 |
|
DP-MVS Recon | | | 95.68 72 | 95.12 82 | 97.37 54 | 99.19 31 | 94.19 40 | 97.03 140 | 98.08 64 | 88.35 222 | 95.09 108 | 97.65 94 | 89.97 83 | 99.48 98 | 92.08 134 | 98.59 97 | 98.44 135 |
|
MVS_111021_LR | | | 96.24 59 | 96.19 57 | 96.39 98 | 98.23 97 | 91.35 127 | 96.24 217 | 98.79 4 | 93.99 49 | 95.80 88 | 97.65 94 | 89.92 84 | 99.24 120 | 95.87 47 | 99.20 70 | 98.58 118 |
|
EPP-MVSNet | | | 95.22 85 | 95.04 83 | 95.76 127 | 97.49 133 | 89.56 179 | 98.67 5 | 97.00 205 | 90.69 155 | 94.24 120 | 97.62 99 | 89.79 85 | 98.81 160 | 93.39 113 | 96.49 149 | 98.92 96 |
|
PAPR | | | 94.18 109 | 93.42 124 | 96.48 90 | 97.64 126 | 91.42 126 | 95.55 247 | 97.71 126 | 88.99 199 | 92.34 161 | 95.82 188 | 89.19 86 | 99.11 132 | 86.14 246 | 97.38 127 | 98.90 98 |
|
MG-MVS | | | 95.61 74 | 95.38 74 | 96.31 103 | 98.42 77 | 90.53 156 | 96.04 225 | 97.48 146 | 93.47 68 | 95.67 96 | 98.10 60 | 89.17 87 | 99.25 119 | 91.27 153 | 98.77 90 | 99.13 74 |
|
PAPM_NR | | | 95.01 89 | 94.59 92 | 96.26 108 | 98.89 54 | 90.68 153 | 97.24 123 | 97.73 119 | 91.80 122 | 92.93 152 | 96.62 153 | 89.13 88 | 99.14 130 | 89.21 190 | 97.78 116 | 98.97 90 |
|
ACMMP | | | 96.27 58 | 95.93 60 | 97.28 59 | 99.24 28 | 92.62 86 | 98.25 28 | 98.81 3 | 92.99 84 | 94.56 114 | 98.39 35 | 88.96 89 | 99.85 14 | 94.57 90 | 97.63 119 | 99.36 58 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
UA-Net | | | 95.95 67 | 95.53 67 | 97.20 66 | 97.67 124 | 92.98 78 | 97.65 84 | 98.13 54 | 94.81 29 | 96.61 56 | 98.35 38 | 88.87 90 | 99.51 93 | 90.36 163 | 97.35 129 | 99.11 78 |
|
API-MVS | | | 94.84 98 | 94.49 97 | 95.90 123 | 97.90 115 | 92.00 108 | 97.80 66 | 97.48 146 | 89.19 194 | 94.81 111 | 96.71 139 | 88.84 91 | 99.17 126 | 88.91 196 | 98.76 91 | 96.53 200 |
|
test222 | | | | | | 98.24 93 | 92.21 99 | 95.33 256 | 97.60 134 | 79.22 329 | 95.25 104 | 97.84 81 | 88.80 92 | | | 99.15 73 | 98.72 112 |
|
Test By Simon | | | | | | | | | | | | | 88.73 93 | | | | |
|
pcd_1.5k_mvsjas | | | 7.39 328 | 9.85 331 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 88.65 94 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
PS-MVSNAJss | | | 93.74 126 | 93.51 118 | 94.44 188 | 93.91 292 | 89.28 198 | 97.75 70 | 97.56 141 | 92.50 103 | 89.94 213 | 96.54 156 | 88.65 94 | 98.18 208 | 93.83 104 | 90.90 233 | 95.86 220 |
|
PS-MVSNAJ | | | 95.37 79 | 95.33 76 | 95.49 146 | 97.35 134 | 90.66 154 | 95.31 258 | 97.48 146 | 93.85 52 | 96.51 61 | 95.70 199 | 88.65 94 | 99.65 53 | 94.80 84 | 98.27 103 | 96.17 209 |
|
xiu_mvs_v2_base | | | 95.32 81 | 95.29 77 | 95.40 151 | 97.22 137 | 90.50 157 | 95.44 252 | 97.44 161 | 93.70 59 | 96.46 65 | 96.18 172 | 88.59 97 | 99.53 88 | 94.79 86 | 97.81 115 | 96.17 209 |
|
PLC | | 91.00 6 | 94.11 113 | 93.43 122 | 96.13 113 | 98.58 71 | 91.15 139 | 96.69 176 | 97.39 167 | 87.29 254 | 91.37 177 | 96.71 139 | 88.39 98 | 99.52 92 | 87.33 228 | 97.13 137 | 97.73 168 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
UniMVSNet_NR-MVSNet | | | 93.37 136 | 92.67 141 | 95.47 149 | 95.34 228 | 92.83 80 | 97.17 133 | 98.58 10 | 92.98 89 | 90.13 205 | 95.80 189 | 88.37 99 | 97.85 256 | 91.71 142 | 83.93 307 | 95.73 233 |
|
PVSNet_BlendedMVS | | | 94.06 115 | 93.92 105 | 94.47 187 | 98.27 89 | 89.46 186 | 96.73 171 | 98.36 16 | 90.17 171 | 94.36 117 | 95.24 218 | 88.02 100 | 99.58 70 | 93.44 110 | 90.72 235 | 94.36 302 |
|
PVSNet_Blended | | | 94.87 97 | 94.56 93 | 95.81 126 | 98.27 89 | 89.46 186 | 95.47 251 | 98.36 16 | 88.84 206 | 94.36 117 | 96.09 178 | 88.02 100 | 99.58 70 | 93.44 110 | 98.18 106 | 98.40 138 |
|
TAPA-MVS | | 90.10 7 | 92.30 175 | 91.22 192 | 95.56 140 | 98.33 85 | 89.60 177 | 96.79 167 | 97.65 130 | 81.83 314 | 91.52 174 | 97.23 118 | 87.94 102 | 98.91 153 | 71.31 336 | 98.37 101 | 98.17 148 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
abl_6 | | | 96.40 54 | 96.21 55 | 96.98 74 | 98.89 54 | 92.20 101 | 97.89 57 | 98.03 84 | 93.34 73 | 97.22 37 | 98.42 31 | 87.93 103 | 99.72 35 | 95.10 72 | 99.07 80 | 99.02 83 |
|
MVS_Test | | | 94.89 96 | 94.62 91 | 95.68 134 | 96.83 158 | 89.55 180 | 96.70 174 | 97.17 185 | 91.17 145 | 95.60 98 | 96.11 177 | 87.87 104 | 98.76 165 | 93.01 121 | 97.17 136 | 98.72 112 |
|
UniMVSNet (Re) | | | 93.31 138 | 92.55 146 | 95.61 138 | 95.39 222 | 93.34 70 | 97.39 109 | 98.71 5 | 93.14 80 | 90.10 209 | 94.83 233 | 87.71 105 | 98.03 231 | 91.67 146 | 83.99 306 | 95.46 241 |
|
FC-MVSNet-test | | | 93.94 120 | 93.57 114 | 95.04 161 | 95.48 219 | 91.45 124 | 98.12 38 | 98.71 5 | 93.37 70 | 90.23 200 | 96.70 141 | 87.66 106 | 97.85 256 | 91.49 148 | 90.39 240 | 95.83 224 |
|
canonicalmvs | | | 96.02 64 | 95.45 71 | 97.75 37 | 97.59 130 | 95.15 21 | 98.28 25 | 97.60 134 | 94.52 38 | 96.27 71 | 96.12 175 | 87.65 107 | 99.18 125 | 96.20 38 | 94.82 176 | 98.91 97 |
|
FIs | | | 94.09 114 | 93.70 110 | 95.27 153 | 95.70 211 | 92.03 106 | 98.10 39 | 98.68 7 | 93.36 72 | 90.39 197 | 96.70 141 | 87.63 108 | 97.94 246 | 92.25 127 | 90.50 239 | 95.84 223 |
|
CDS-MVSNet | | | 94.14 112 | 93.54 116 | 95.93 121 | 96.18 191 | 91.46 123 | 96.33 207 | 97.04 201 | 88.97 201 | 93.56 132 | 96.51 157 | 87.55 109 | 97.89 254 | 89.80 172 | 95.95 155 | 98.44 135 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
Effi-MVS+ | | | 94.93 94 | 94.45 99 | 96.36 101 | 96.61 165 | 91.47 122 | 96.41 196 | 97.41 166 | 91.02 150 | 94.50 115 | 95.92 182 | 87.53 110 | 98.78 162 | 93.89 101 | 96.81 140 | 98.84 105 |
|
casdiffmvs | | | 95.64 73 | 95.49 69 | 96.08 114 | 96.76 163 | 90.45 159 | 97.29 120 | 97.44 161 | 94.00 48 | 95.46 103 | 97.98 70 | 87.52 111 | 98.73 167 | 95.64 56 | 97.33 130 | 99.08 80 |
|
PVSNet_Blended_VisFu | | | 95.27 82 | 94.91 85 | 96.38 99 | 98.20 98 | 90.86 147 | 97.27 121 | 98.25 33 | 90.21 170 | 94.18 121 | 97.27 115 | 87.48 112 | 99.73 32 | 93.53 107 | 97.77 117 | 98.55 119 |
|
mvs_anonymous | | | 93.82 123 | 93.74 109 | 94.06 203 | 96.44 179 | 85.41 278 | 95.81 238 | 97.05 199 | 89.85 179 | 90.09 210 | 96.36 166 | 87.44 113 | 97.75 266 | 93.97 97 | 96.69 145 | 99.02 83 |
|
CANet | | | 96.39 55 | 96.02 59 | 97.50 50 | 97.62 127 | 93.38 67 | 97.02 143 | 97.96 100 | 95.42 7 | 94.86 110 | 97.81 82 | 87.38 114 | 99.82 25 | 96.88 12 | 99.20 70 | 99.29 62 |
|
baseline | | | 95.58 75 | 95.42 73 | 96.08 114 | 96.78 160 | 90.41 161 | 97.16 134 | 97.45 157 | 93.69 60 | 95.65 97 | 97.85 78 | 87.29 115 | 98.68 172 | 95.66 52 | 97.25 133 | 99.13 74 |
|
TAMVS | | | 94.01 118 | 93.46 120 | 95.64 135 | 96.16 193 | 90.45 159 | 96.71 173 | 96.89 215 | 89.27 191 | 93.46 137 | 96.92 132 | 87.29 115 | 97.94 246 | 88.70 200 | 95.74 160 | 98.53 121 |
|
nrg030 | | | 94.05 116 | 93.31 126 | 96.27 107 | 95.22 240 | 94.59 28 | 98.34 20 | 97.46 151 | 92.93 91 | 91.21 187 | 96.64 146 | 87.23 117 | 98.22 202 | 94.99 77 | 85.80 281 | 95.98 218 |
|
CPTT-MVS | | | 95.57 76 | 95.19 79 | 96.70 77 | 99.27 26 | 91.48 121 | 98.33 21 | 98.11 59 | 87.79 240 | 95.17 106 | 98.03 66 | 87.09 118 | 99.61 62 | 93.51 108 | 99.42 43 | 99.02 83 |
|
OMC-MVS | | | 95.09 88 | 94.70 90 | 96.25 109 | 98.46 74 | 91.28 128 | 96.43 194 | 97.57 138 | 92.04 117 | 94.77 112 | 97.96 71 | 87.01 119 | 99.09 136 | 91.31 152 | 96.77 141 | 98.36 142 |
|
DeepC-MVS | | 93.07 3 | 96.06 62 | 95.66 65 | 97.29 58 | 97.96 109 | 93.17 73 | 97.30 119 | 98.06 73 | 93.92 50 | 93.38 139 | 98.66 12 | 86.83 120 | 99.73 32 | 95.60 61 | 99.22 68 | 98.96 91 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
IterMVS-LS | | | 92.29 176 | 91.94 165 | 93.34 241 | 96.25 187 | 86.97 252 | 96.57 190 | 97.05 199 | 90.67 156 | 89.50 229 | 94.80 235 | 86.59 121 | 97.64 274 | 89.91 168 | 86.11 279 | 95.40 248 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EI-MVSNet | | | 93.03 148 | 92.88 134 | 93.48 234 | 95.77 208 | 86.98 251 | 96.44 192 | 97.12 189 | 90.66 158 | 91.30 181 | 97.64 97 | 86.56 122 | 98.05 227 | 89.91 168 | 90.55 237 | 95.41 244 |
|
miper_enhance_ethall | | | 91.54 201 | 91.01 196 | 93.15 248 | 95.35 227 | 87.07 250 | 93.97 294 | 96.90 213 | 86.79 263 | 89.17 239 | 93.43 297 | 86.55 123 | 97.64 274 | 89.97 167 | 86.93 270 | 94.74 292 |
|
1112_ss | | | 93.37 136 | 92.42 152 | 96.21 111 | 97.05 151 | 90.99 141 | 96.31 209 | 96.72 225 | 86.87 262 | 89.83 217 | 96.69 143 | 86.51 124 | 99.14 130 | 88.12 206 | 93.67 191 | 98.50 125 |
|
diffmvs | | | 95.25 83 | 95.13 81 | 95.63 136 | 96.43 180 | 89.34 192 | 95.99 230 | 97.35 173 | 92.83 93 | 96.31 69 | 97.37 112 | 86.44 125 | 98.67 173 | 96.26 30 | 97.19 135 | 98.87 102 |
|
WTY-MVS | | | 94.71 102 | 94.02 104 | 96.79 76 | 97.71 123 | 92.05 105 | 96.59 187 | 97.35 173 | 90.61 162 | 94.64 113 | 96.93 129 | 86.41 126 | 99.39 109 | 91.20 155 | 94.71 180 | 98.94 94 |
|
EPNet | | | 95.20 86 | 94.56 93 | 97.14 68 | 92.80 318 | 92.68 84 | 97.85 62 | 94.87 304 | 96.64 1 | 92.46 155 | 97.80 84 | 86.23 127 | 99.65 53 | 93.72 105 | 98.62 96 | 99.10 79 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
miper_ehance_all_eth | | | 91.59 196 | 91.13 195 | 92.97 254 | 95.55 216 | 86.57 261 | 94.47 276 | 96.88 216 | 87.77 241 | 88.88 244 | 94.01 275 | 86.22 128 | 97.54 283 | 89.49 180 | 86.93 270 | 94.79 288 |
|
Fast-Effi-MVS+ | | | 93.46 134 | 92.75 138 | 95.59 139 | 96.77 161 | 90.03 164 | 96.81 166 | 97.13 188 | 88.19 225 | 91.30 181 | 94.27 264 | 86.21 129 | 98.63 176 | 87.66 220 | 96.46 151 | 98.12 150 |
|
MVSFormer | | | 95.37 79 | 95.16 80 | 95.99 120 | 96.34 184 | 91.21 132 | 98.22 32 | 97.57 138 | 91.42 133 | 96.22 72 | 97.32 113 | 86.20 130 | 97.92 250 | 94.07 95 | 99.05 81 | 98.85 103 |
|
lupinMVS | | | 94.99 93 | 94.56 93 | 96.29 106 | 96.34 184 | 91.21 132 | 95.83 237 | 96.27 248 | 88.93 203 | 96.22 72 | 96.88 134 | 86.20 130 | 98.85 157 | 95.27 67 | 99.05 81 | 98.82 106 |
|
114514_t | | | 93.95 119 | 93.06 130 | 96.63 80 | 99.07 39 | 91.61 116 | 97.46 104 | 97.96 100 | 77.99 334 | 93.00 147 | 97.57 103 | 86.14 132 | 99.33 113 | 89.22 189 | 99.15 73 | 98.94 94 |
|
alignmvs | | | 95.87 69 | 95.23 78 | 97.78 33 | 97.56 132 | 95.19 18 | 97.86 59 | 97.17 185 | 94.39 41 | 96.47 64 | 96.40 164 | 85.89 133 | 99.20 122 | 96.21 37 | 95.11 172 | 98.95 93 |
|
WR-MVS_H | | | 92.00 186 | 91.35 183 | 93.95 211 | 95.09 247 | 89.47 184 | 98.04 45 | 98.68 7 | 91.46 131 | 88.34 255 | 94.68 240 | 85.86 134 | 97.56 281 | 85.77 254 | 84.24 304 | 94.82 283 |
|
Test_1112_low_res | | | 92.84 159 | 91.84 168 | 95.85 125 | 97.04 152 | 89.97 170 | 95.53 249 | 96.64 234 | 85.38 278 | 89.65 223 | 95.18 219 | 85.86 134 | 99.10 133 | 87.70 215 | 93.58 196 | 98.49 127 |
|
HY-MVS | | 89.66 9 | 93.87 121 | 92.95 132 | 96.63 80 | 97.10 145 | 92.49 90 | 95.64 245 | 96.64 234 | 89.05 197 | 93.00 147 | 95.79 192 | 85.77 136 | 99.45 102 | 89.16 193 | 94.35 182 | 97.96 155 |
|
cl_fuxian | | | 91.38 208 | 90.89 198 | 92.88 257 | 95.58 214 | 86.30 264 | 94.68 271 | 96.84 221 | 88.17 227 | 88.83 247 | 94.23 267 | 85.65 137 | 97.47 290 | 89.36 183 | 84.63 298 | 94.89 278 |
|
IS-MVSNet | | | 94.90 95 | 94.52 96 | 96.05 117 | 97.67 124 | 90.56 155 | 98.44 16 | 96.22 251 | 93.21 75 | 93.99 124 | 97.74 87 | 85.55 138 | 98.45 189 | 89.98 166 | 97.86 113 | 99.14 73 |
|
MVS | | | 91.71 192 | 90.44 216 | 95.51 144 | 95.20 242 | 91.59 118 | 96.04 225 | 97.45 157 | 73.44 341 | 87.36 278 | 95.60 203 | 85.42 139 | 99.10 133 | 85.97 251 | 97.46 122 | 95.83 224 |
|
VNet | | | 95.89 68 | 95.45 71 | 97.21 65 | 98.07 107 | 92.94 79 | 97.50 97 | 98.15 51 | 93.87 51 | 97.52 25 | 97.61 100 | 85.29 140 | 99.53 88 | 95.81 50 | 95.27 168 | 99.16 70 |
|
CNLPA | | | 94.28 107 | 93.53 117 | 96.52 85 | 98.38 81 | 92.55 88 | 96.59 187 | 96.88 216 | 90.13 173 | 91.91 169 | 97.24 117 | 85.21 141 | 99.09 136 | 87.64 221 | 97.83 114 | 97.92 158 |
|
F-COLMAP | | | 93.58 131 | 92.98 131 | 95.37 152 | 98.40 78 | 88.98 206 | 97.18 132 | 97.29 178 | 87.75 243 | 90.49 194 | 97.10 124 | 85.21 141 | 99.50 96 | 86.70 237 | 96.72 144 | 97.63 172 |
|
LCM-MVSNet-Re | | | 92.50 165 | 92.52 149 | 92.44 267 | 96.82 159 | 81.89 311 | 96.92 155 | 93.71 323 | 92.41 105 | 84.30 309 | 94.60 244 | 85.08 143 | 97.03 307 | 91.51 147 | 97.36 128 | 98.40 138 |
|
NR-MVSNet | | | 92.34 172 | 91.27 189 | 95.53 143 | 94.95 253 | 93.05 75 | 97.39 109 | 98.07 70 | 92.65 100 | 84.46 307 | 95.71 197 | 85.00 144 | 97.77 265 | 89.71 174 | 83.52 313 | 95.78 227 |
|
PAPM | | | 91.52 202 | 90.30 222 | 95.20 155 | 95.30 235 | 89.83 173 | 93.38 308 | 96.85 220 | 86.26 269 | 88.59 251 | 95.80 189 | 84.88 145 | 98.15 210 | 75.67 324 | 95.93 156 | 97.63 172 |
|
MAR-MVS | | | 94.22 108 | 93.46 120 | 96.51 88 | 98.00 108 | 92.19 102 | 97.67 81 | 97.47 149 | 88.13 231 | 93.00 147 | 95.84 186 | 84.86 146 | 99.51 93 | 87.99 208 | 98.17 107 | 97.83 165 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
jason | | | 94.84 98 | 94.39 101 | 96.18 112 | 95.52 217 | 90.93 145 | 96.09 223 | 96.52 241 | 89.28 190 | 96.01 82 | 97.32 113 | 84.70 147 | 98.77 164 | 95.15 70 | 98.91 88 | 98.85 103 |
jason: jason. |
sss | | | 94.51 104 | 93.80 108 | 96.64 78 | 97.07 146 | 91.97 109 | 96.32 208 | 98.06 73 | 88.94 202 | 94.50 115 | 96.78 136 | 84.60 148 | 99.27 118 | 91.90 136 | 96.02 153 | 98.68 116 |
|
LS3D | | | 93.57 132 | 92.61 144 | 96.47 91 | 97.59 130 | 91.61 116 | 97.67 81 | 97.72 122 | 85.17 282 | 90.29 199 | 98.34 41 | 84.60 148 | 99.73 32 | 83.85 278 | 98.27 103 | 98.06 154 |
|
Vis-MVSNet (Re-imp) | | | 94.15 110 | 93.88 106 | 94.95 168 | 97.61 128 | 87.92 231 | 98.10 39 | 95.80 263 | 92.22 108 | 93.02 146 | 97.45 109 | 84.53 150 | 97.91 253 | 88.24 204 | 97.97 111 | 99.02 83 |
|
cdsmvs_eth3d_5k | | | 23.24 324 | 30.99 326 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 97.63 132 | 0.00 357 | 0.00 358 | 96.88 134 | 84.38 151 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
test_yl | | | 94.78 100 | 94.23 102 | 96.43 94 | 97.74 121 | 91.22 130 | 96.85 160 | 97.10 192 | 91.23 143 | 95.71 91 | 96.93 129 | 84.30 152 | 99.31 115 | 93.10 117 | 95.12 170 | 98.75 108 |
|
DCV-MVSNet | | | 94.78 100 | 94.23 102 | 96.43 94 | 97.74 121 | 91.22 130 | 96.85 160 | 97.10 192 | 91.23 143 | 95.71 91 | 96.93 129 | 84.30 152 | 99.31 115 | 93.10 117 | 95.12 170 | 98.75 108 |
|
CHOSEN 280x420 | | | 93.12 144 | 92.72 140 | 94.34 193 | 96.71 164 | 87.27 242 | 90.29 332 | 97.72 122 | 86.61 265 | 91.34 178 | 95.29 215 | 84.29 154 | 98.41 190 | 93.25 115 | 98.94 86 | 97.35 183 |
|
baseline1 | | | 92.82 160 | 91.90 166 | 95.55 142 | 97.20 139 | 90.77 151 | 97.19 131 | 94.58 309 | 92.20 110 | 92.36 159 | 96.34 167 | 84.16 155 | 98.21 203 | 89.20 191 | 83.90 310 | 97.68 171 |
|
eth_miper_zixun_eth | | | 91.02 227 | 90.59 212 | 92.34 271 | 95.33 231 | 84.35 289 | 94.10 291 | 96.90 213 | 88.56 217 | 88.84 246 | 94.33 259 | 84.08 156 | 97.60 279 | 88.77 199 | 84.37 303 | 95.06 267 |
|
PCF-MVS | | 89.48 11 | 91.56 199 | 89.95 238 | 96.36 101 | 96.60 166 | 92.52 89 | 92.51 321 | 97.26 179 | 79.41 328 | 88.90 242 | 96.56 155 | 84.04 157 | 99.55 83 | 77.01 320 | 97.30 131 | 97.01 186 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
1314 | | | 92.81 161 | 92.03 161 | 95.14 158 | 95.33 231 | 89.52 183 | 96.04 225 | 97.44 161 | 87.72 244 | 86.25 293 | 95.33 214 | 83.84 158 | 98.79 161 | 89.26 187 | 97.05 138 | 97.11 185 |
|
DP-MVS | | | 92.76 162 | 91.51 181 | 96.52 85 | 98.77 57 | 90.99 141 | 97.38 111 | 96.08 255 | 82.38 310 | 89.29 235 | 97.87 75 | 83.77 159 | 99.69 44 | 81.37 298 | 96.69 145 | 98.89 100 |
|
3Dnovator+ | | 91.43 4 | 95.40 78 | 94.48 98 | 98.16 12 | 96.90 154 | 95.34 13 | 98.48 15 | 97.87 108 | 94.65 36 | 88.53 253 | 98.02 67 | 83.69 160 | 99.71 38 | 93.18 116 | 98.96 85 | 99.44 47 |
|
AdaColmap | | | 94.34 106 | 93.68 112 | 96.31 103 | 98.59 69 | 91.68 115 | 96.59 187 | 97.81 114 | 89.87 176 | 92.15 165 | 97.06 126 | 83.62 161 | 99.54 85 | 89.34 184 | 98.07 109 | 97.70 170 |
|
DU-MVS | | | 92.90 155 | 92.04 160 | 95.49 146 | 94.95 253 | 92.83 80 | 97.16 134 | 98.24 34 | 93.02 83 | 90.13 205 | 95.71 197 | 83.47 162 | 97.85 256 | 91.71 142 | 83.93 307 | 95.78 227 |
|
Baseline_NR-MVSNet | | | 91.20 219 | 90.62 210 | 92.95 255 | 93.83 295 | 88.03 229 | 97.01 147 | 95.12 291 | 88.42 220 | 89.70 220 | 95.13 222 | 83.47 162 | 97.44 293 | 89.66 177 | 83.24 315 | 93.37 320 |
|
miper_lstm_enhance | | | 90.50 247 | 90.06 236 | 91.83 281 | 95.33 231 | 83.74 295 | 93.86 296 | 96.70 230 | 87.56 248 | 87.79 269 | 93.81 283 | 83.45 164 | 96.92 313 | 87.39 226 | 84.62 299 | 94.82 283 |
|
EPNet_dtu | | | 91.71 192 | 91.28 188 | 92.99 253 | 93.76 297 | 83.71 297 | 96.69 176 | 95.28 282 | 93.15 79 | 87.02 285 | 95.95 181 | 83.37 165 | 97.38 298 | 79.46 309 | 96.84 139 | 97.88 161 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
BH-untuned | | | 92.94 153 | 92.62 143 | 93.92 215 | 97.22 137 | 86.16 269 | 96.40 199 | 96.25 250 | 90.06 174 | 89.79 218 | 96.17 174 | 83.19 166 | 98.35 195 | 87.19 231 | 97.27 132 | 97.24 184 |
|
TranMVSNet+NR-MVSNet | | | 92.50 165 | 91.63 174 | 95.14 158 | 94.76 264 | 92.07 104 | 97.53 95 | 98.11 59 | 92.90 92 | 89.56 226 | 96.12 175 | 83.16 167 | 97.60 279 | 89.30 185 | 83.20 316 | 95.75 231 |
|
CHOSEN 1792x2688 | | | 94.15 110 | 93.51 118 | 96.06 116 | 98.27 89 | 89.38 190 | 95.18 265 | 98.48 14 | 85.60 277 | 93.76 130 | 97.11 123 | 83.15 168 | 99.61 62 | 91.33 151 | 98.72 92 | 99.19 68 |
|
PMMVS | | | 92.86 157 | 92.34 153 | 94.42 190 | 94.92 255 | 86.73 256 | 94.53 275 | 96.38 244 | 84.78 289 | 94.27 119 | 95.12 223 | 83.13 169 | 98.40 191 | 91.47 149 | 96.49 149 | 98.12 150 |
|
Effi-MVS+-dtu | | | 93.08 145 | 93.21 128 | 92.68 264 | 96.02 200 | 83.25 302 | 97.14 137 | 96.72 225 | 93.85 52 | 91.20 188 | 93.44 295 | 83.08 170 | 98.30 198 | 91.69 144 | 95.73 161 | 96.50 202 |
|
mvs-test1 | | | 93.63 129 | 93.69 111 | 93.46 236 | 96.02 200 | 84.61 288 | 97.24 123 | 96.72 225 | 93.85 52 | 92.30 162 | 95.76 194 | 83.08 170 | 98.89 155 | 91.69 144 | 96.54 148 | 96.87 193 |
|
v8 | | | 91.29 216 | 90.53 215 | 93.57 231 | 94.15 285 | 88.12 228 | 97.34 113 | 97.06 198 | 88.99 199 | 88.32 256 | 94.26 266 | 83.08 170 | 98.01 233 | 87.62 222 | 83.92 309 | 94.57 297 |
|
cl-mvsnet1 | | | 90.97 230 | 90.33 219 | 92.88 257 | 95.36 226 | 86.19 268 | 94.46 278 | 96.63 237 | 87.82 237 | 88.18 262 | 94.23 267 | 82.99 173 | 97.53 285 | 87.72 213 | 85.57 283 | 94.93 274 |
|
cl-mvsnet_ | | | 90.96 231 | 90.32 220 | 92.89 256 | 95.37 225 | 86.21 267 | 94.46 278 | 96.64 234 | 87.82 237 | 88.15 263 | 94.18 270 | 82.98 174 | 97.54 283 | 87.70 215 | 85.59 282 | 94.92 276 |
|
BH-w/o | | | 92.14 184 | 91.75 170 | 93.31 242 | 96.99 153 | 85.73 273 | 95.67 242 | 95.69 265 | 88.73 213 | 89.26 237 | 94.82 234 | 82.97 175 | 98.07 224 | 85.26 261 | 96.32 152 | 96.13 213 |
|
v148 | | | 90.99 228 | 90.38 218 | 92.81 260 | 93.83 295 | 85.80 272 | 96.78 169 | 96.68 231 | 89.45 186 | 88.75 249 | 93.93 279 | 82.96 176 | 97.82 260 | 87.83 211 | 83.25 314 | 94.80 286 |
|
HyFIR lowres test | | | 93.66 128 | 92.92 133 | 95.87 124 | 98.24 93 | 89.88 172 | 94.58 273 | 98.49 12 | 85.06 284 | 93.78 129 | 95.78 193 | 82.86 177 | 98.67 173 | 91.77 140 | 95.71 162 | 99.07 82 |
|
test_djsdf | | | 93.07 146 | 92.76 136 | 94.00 206 | 93.49 305 | 88.70 212 | 98.22 32 | 97.57 138 | 91.42 133 | 90.08 211 | 95.55 207 | 82.85 178 | 97.92 250 | 94.07 95 | 91.58 220 | 95.40 248 |
|
PatchmatchNet | | | 91.91 188 | 91.35 183 | 93.59 229 | 95.38 223 | 84.11 293 | 93.15 312 | 95.39 275 | 89.54 183 | 92.10 166 | 93.68 288 | 82.82 179 | 98.13 211 | 84.81 265 | 95.32 167 | 98.52 122 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
sam_mvs1 | | | | | | | | | | | | | 82.76 180 | | | | 98.45 132 |
|
xiu_mvs_v1_base_debu | | | 95.01 89 | 94.76 87 | 95.75 129 | 96.58 168 | 91.71 112 | 96.25 214 | 97.35 173 | 92.99 84 | 96.70 50 | 96.63 150 | 82.67 181 | 99.44 103 | 96.22 33 | 97.46 122 | 96.11 214 |
|
xiu_mvs_v1_base | | | 95.01 89 | 94.76 87 | 95.75 129 | 96.58 168 | 91.71 112 | 96.25 214 | 97.35 173 | 92.99 84 | 96.70 50 | 96.63 150 | 82.67 181 | 99.44 103 | 96.22 33 | 97.46 122 | 96.11 214 |
|
xiu_mvs_v1_base_debi | | | 95.01 89 | 94.76 87 | 95.75 129 | 96.58 168 | 91.71 112 | 96.25 214 | 97.35 173 | 92.99 84 | 96.70 50 | 96.63 150 | 82.67 181 | 99.44 103 | 96.22 33 | 97.46 122 | 96.11 214 |
|
patchmatchnet-post | | | | | | | | | | | | 90.45 324 | 82.65 184 | 98.10 216 | | | |
|
V42 | | | 91.58 198 | 90.87 199 | 93.73 221 | 94.05 289 | 88.50 216 | 97.32 116 | 96.97 206 | 88.80 211 | 89.71 219 | 94.33 259 | 82.54 185 | 98.05 227 | 89.01 194 | 85.07 292 | 94.64 296 |
|
WR-MVS | | | 92.34 172 | 91.53 178 | 94.77 177 | 95.13 245 | 90.83 148 | 96.40 199 | 97.98 98 | 91.88 121 | 89.29 235 | 95.54 208 | 82.50 186 | 97.80 261 | 89.79 173 | 85.27 288 | 95.69 234 |
|
tpmrst | | | 91.44 205 | 91.32 185 | 91.79 284 | 95.15 243 | 79.20 332 | 93.42 307 | 95.37 277 | 88.55 218 | 93.49 136 | 93.67 289 | 82.49 187 | 98.27 199 | 90.41 161 | 89.34 249 | 97.90 159 |
|
MDTV_nov1_ep13_2view | | | | | | | 70.35 345 | 93.10 314 | | 83.88 299 | 93.55 133 | | 82.47 188 | | 86.25 243 | | 98.38 140 |
|
XVG-OURS-SEG-HR | | | 93.86 122 | 93.55 115 | 94.81 174 | 97.06 149 | 88.53 215 | 95.28 259 | 97.45 157 | 91.68 125 | 94.08 123 | 97.68 91 | 82.41 189 | 98.90 154 | 93.84 103 | 92.47 205 | 96.98 187 |
|
QAPM | | | 93.45 135 | 92.27 156 | 96.98 74 | 96.77 161 | 92.62 86 | 98.39 19 | 98.12 56 | 84.50 292 | 88.27 259 | 97.77 85 | 82.39 190 | 99.81 26 | 85.40 259 | 98.81 89 | 98.51 124 |
|
Patchmatch-test | | | 89.42 266 | 87.99 273 | 93.70 224 | 95.27 236 | 85.11 280 | 88.98 339 | 94.37 314 | 81.11 318 | 87.10 283 | 93.69 286 | 82.28 191 | 97.50 288 | 74.37 327 | 94.76 177 | 98.48 129 |
|
Vis-MVSNet | | | 95.23 84 | 94.81 86 | 96.51 88 | 97.18 140 | 91.58 119 | 98.26 27 | 98.12 56 | 94.38 42 | 94.90 109 | 98.15 59 | 82.28 191 | 98.92 151 | 91.45 150 | 98.58 98 | 99.01 87 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
3Dnovator | | 91.36 5 | 95.19 87 | 94.44 100 | 97.44 52 | 96.56 171 | 93.36 69 | 98.65 6 | 98.36 16 | 94.12 46 | 89.25 238 | 98.06 64 | 82.20 193 | 99.77 29 | 93.41 112 | 99.32 53 | 99.18 69 |
|
v10 | | | 91.04 226 | 90.23 227 | 93.49 233 | 94.12 286 | 88.16 227 | 97.32 116 | 97.08 195 | 88.26 224 | 88.29 258 | 94.22 269 | 82.17 194 | 97.97 239 | 86.45 241 | 84.12 305 | 94.33 303 |
|
v1144 | | | 91.37 210 | 90.60 211 | 93.68 226 | 93.89 293 | 88.23 223 | 96.84 162 | 97.03 203 | 88.37 221 | 89.69 221 | 94.39 255 | 82.04 195 | 97.98 236 | 87.80 212 | 85.37 286 | 94.84 280 |
|
MVSTER | | | 93.20 142 | 92.81 135 | 94.37 191 | 96.56 171 | 89.59 178 | 97.06 139 | 97.12 189 | 91.24 142 | 91.30 181 | 95.96 180 | 82.02 196 | 98.05 227 | 93.48 109 | 90.55 237 | 95.47 240 |
|
CP-MVSNet | | | 91.89 189 | 91.24 190 | 93.82 218 | 95.05 248 | 88.57 214 | 97.82 64 | 98.19 44 | 91.70 124 | 88.21 261 | 95.76 194 | 81.96 197 | 97.52 287 | 87.86 210 | 84.65 297 | 95.37 252 |
|
Patchmatch-RL test | | | 87.38 287 | 86.24 288 | 90.81 301 | 88.74 340 | 78.40 335 | 88.12 341 | 93.17 327 | 87.11 258 | 82.17 320 | 89.29 329 | 81.95 198 | 95.60 329 | 88.64 201 | 77.02 332 | 98.41 137 |
|
sam_mvs | | | | | | | | | | | | | 81.94 199 | | | | |
|
pmmvs4 | | | 90.93 232 | 89.85 242 | 94.17 199 | 93.34 309 | 90.79 150 | 94.60 272 | 96.02 256 | 84.62 290 | 87.45 274 | 95.15 220 | 81.88 200 | 97.45 292 | 87.70 215 | 87.87 262 | 94.27 307 |
|
test_post | | | | | | | | | | | | 17.58 355 | 81.76 201 | 98.08 221 | | | |
|
XVG-OURS | | | 93.72 127 | 93.35 125 | 94.80 175 | 97.07 146 | 88.61 213 | 94.79 269 | 97.46 151 | 91.97 120 | 93.99 124 | 97.86 77 | 81.74 202 | 98.88 156 | 92.64 123 | 92.67 203 | 96.92 191 |
|
v2v482 | | | 91.59 196 | 90.85 202 | 93.80 219 | 93.87 294 | 88.17 226 | 96.94 154 | 96.88 216 | 89.54 183 | 89.53 227 | 94.90 229 | 81.70 203 | 98.02 232 | 89.25 188 | 85.04 294 | 95.20 263 |
|
baseline2 | | | 91.63 195 | 90.86 200 | 93.94 213 | 94.33 281 | 86.32 263 | 95.92 233 | 91.64 338 | 89.37 188 | 86.94 286 | 94.69 239 | 81.62 204 | 98.69 171 | 88.64 201 | 94.57 181 | 96.81 195 |
|
v144192 | | | 91.06 225 | 90.28 223 | 93.39 238 | 93.66 300 | 87.23 245 | 96.83 163 | 97.07 196 | 87.43 250 | 89.69 221 | 94.28 263 | 81.48 205 | 98.00 235 | 87.18 232 | 84.92 296 | 94.93 274 |
|
MDTV_nov1_ep13 | | | | 90.76 206 | | 95.22 240 | 80.33 322 | 93.03 315 | 95.28 282 | 88.14 230 | 92.84 153 | 93.83 280 | 81.34 206 | 98.08 221 | 82.86 283 | 94.34 183 | |
|
HQP_MVS | | | 93.78 125 | 93.43 122 | 94.82 172 | 96.21 188 | 89.99 167 | 97.74 71 | 97.51 144 | 94.85 24 | 91.34 178 | 96.64 146 | 81.32 207 | 98.60 179 | 93.02 119 | 92.23 208 | 95.86 220 |
|
plane_prior6 | | | | | | 96.10 198 | 90.00 165 | | | | | | 81.32 207 | | | | |
|
v7n | | | 90.76 236 | 89.86 241 | 93.45 237 | 93.54 302 | 87.60 239 | 97.70 79 | 97.37 170 | 88.85 205 | 87.65 272 | 94.08 274 | 81.08 209 | 98.10 216 | 84.68 267 | 83.79 311 | 94.66 295 |
|
HQP2-MVS | | | | | | | | | | | | | 80.95 210 | | | | |
|
HQP-MVS | | | 93.19 143 | 92.74 139 | 94.54 186 | 95.86 203 | 89.33 193 | 96.65 179 | 97.39 167 | 93.55 62 | 90.14 201 | 95.87 184 | 80.95 210 | 98.50 186 | 92.13 131 | 92.10 213 | 95.78 227 |
|
CR-MVSNet | | | 90.82 235 | 89.77 246 | 93.95 211 | 94.45 277 | 87.19 246 | 90.23 333 | 95.68 267 | 86.89 261 | 92.40 156 | 92.36 312 | 80.91 212 | 97.05 306 | 81.09 300 | 93.95 189 | 97.60 177 |
|
Patchmtry | | | 88.64 277 | 87.25 280 | 92.78 261 | 94.09 287 | 86.64 257 | 89.82 336 | 95.68 267 | 80.81 322 | 87.63 273 | 92.36 312 | 80.91 212 | 97.03 307 | 78.86 312 | 85.12 291 | 94.67 294 |
|
v1192 | | | 91.07 224 | 90.23 227 | 93.58 230 | 93.70 298 | 87.82 235 | 96.73 171 | 97.07 196 | 87.77 241 | 89.58 224 | 94.32 261 | 80.90 214 | 97.97 239 | 86.52 239 | 85.48 284 | 94.95 270 |
|
cl-mvsnet2 | | | 91.21 218 | 90.56 214 | 93.14 249 | 96.09 199 | 86.80 254 | 94.41 280 | 96.58 240 | 87.80 239 | 88.58 252 | 93.99 277 | 80.85 215 | 97.62 277 | 89.87 171 | 86.93 270 | 94.99 269 |
|
anonymousdsp | | | 92.16 182 | 91.55 177 | 93.97 209 | 92.58 322 | 89.55 180 | 97.51 96 | 97.42 165 | 89.42 187 | 88.40 254 | 94.84 232 | 80.66 216 | 97.88 255 | 91.87 138 | 91.28 226 | 94.48 298 |
|
CLD-MVS | | | 92.98 150 | 92.53 148 | 94.32 194 | 96.12 197 | 89.20 200 | 95.28 259 | 97.47 149 | 92.66 99 | 89.90 214 | 95.62 202 | 80.58 217 | 98.40 191 | 92.73 122 | 92.40 206 | 95.38 251 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
test_post1 | | | | | | | | 92.81 318 | | | | 16.58 356 | 80.53 218 | 97.68 270 | 86.20 244 | | |
|
VPA-MVSNet | | | 93.24 140 | 92.48 151 | 95.51 144 | 95.70 211 | 92.39 92 | 97.86 59 | 98.66 9 | 92.30 107 | 92.09 167 | 95.37 213 | 80.49 219 | 98.40 191 | 93.95 98 | 85.86 280 | 95.75 231 |
|
tpmvs | | | 89.83 262 | 89.15 260 | 91.89 279 | 94.92 255 | 80.30 323 | 93.11 313 | 95.46 274 | 86.28 268 | 88.08 264 | 92.65 304 | 80.44 220 | 98.52 185 | 81.47 294 | 89.92 244 | 96.84 194 |
|
PatchMatch-RL | | | 92.90 155 | 92.02 162 | 95.56 140 | 98.19 100 | 90.80 149 | 95.27 261 | 97.18 183 | 87.96 233 | 91.86 171 | 95.68 200 | 80.44 220 | 98.99 146 | 84.01 274 | 97.54 121 | 96.89 192 |
|
PEN-MVS | | | 91.20 219 | 90.44 216 | 93.48 234 | 94.49 275 | 87.91 233 | 97.76 69 | 98.18 46 | 91.29 138 | 87.78 270 | 95.74 196 | 80.35 222 | 97.33 300 | 85.46 258 | 82.96 317 | 95.19 264 |
|
Fast-Effi-MVS+-dtu | | | 92.29 176 | 91.99 163 | 93.21 247 | 95.27 236 | 85.52 276 | 97.03 140 | 96.63 237 | 92.09 115 | 89.11 240 | 95.14 221 | 80.33 223 | 98.08 221 | 87.54 224 | 94.74 179 | 96.03 217 |
|
MSDG | | | 91.42 206 | 90.24 226 | 94.96 167 | 97.15 143 | 88.91 207 | 93.69 301 | 96.32 246 | 85.72 276 | 86.93 287 | 96.47 159 | 80.24 224 | 98.98 147 | 80.57 301 | 95.05 173 | 96.98 187 |
|
v1921920 | | | 90.85 234 | 90.03 237 | 93.29 243 | 93.55 301 | 86.96 253 | 96.74 170 | 97.04 201 | 87.36 252 | 89.52 228 | 94.34 258 | 80.23 225 | 97.97 239 | 86.27 242 | 85.21 289 | 94.94 272 |
|
RPMNet | | | 88.98 269 | 87.05 284 | 94.77 177 | 94.45 277 | 87.19 246 | 90.23 333 | 98.03 84 | 77.87 336 | 92.40 156 | 87.55 337 | 80.17 226 | 99.51 93 | 68.84 340 | 93.95 189 | 97.60 177 |
|
ET-MVSNet_ETH3D | | | 91.49 203 | 90.11 232 | 95.63 136 | 96.40 181 | 91.57 120 | 95.34 255 | 93.48 325 | 90.60 164 | 75.58 337 | 95.49 210 | 80.08 227 | 96.79 316 | 94.25 92 | 89.76 246 | 98.52 122 |
|
PatchT | | | 88.87 273 | 87.42 278 | 93.22 246 | 94.08 288 | 85.10 281 | 89.51 337 | 94.64 308 | 81.92 313 | 92.36 159 | 88.15 335 | 80.05 228 | 97.01 310 | 72.43 332 | 93.65 192 | 97.54 180 |
|
our_test_3 | | | 88.78 275 | 87.98 274 | 91.20 296 | 92.45 324 | 82.53 306 | 93.61 305 | 95.69 265 | 85.77 275 | 84.88 304 | 93.71 285 | 79.99 229 | 96.78 317 | 79.47 308 | 86.24 276 | 94.28 306 |
|
DTE-MVSNet | | | 90.56 244 | 89.75 248 | 93.01 252 | 93.95 290 | 87.25 243 | 97.64 88 | 97.65 130 | 90.74 153 | 87.12 281 | 95.68 200 | 79.97 230 | 97.00 311 | 83.33 279 | 81.66 323 | 94.78 290 |
|
D2MVS | | | 91.30 215 | 90.95 197 | 92.35 270 | 94.71 267 | 85.52 276 | 96.18 220 | 98.21 40 | 88.89 204 | 86.60 290 | 93.82 282 | 79.92 231 | 97.95 245 | 89.29 186 | 90.95 232 | 93.56 316 |
|
TransMVSNet (Re) | | | 88.94 270 | 87.56 277 | 93.08 251 | 94.35 280 | 88.45 218 | 97.73 73 | 95.23 286 | 87.47 249 | 84.26 310 | 95.29 215 | 79.86 232 | 97.33 300 | 79.44 310 | 74.44 338 | 93.45 319 |
|
ACMM | | 89.79 8 | 92.96 151 | 92.50 150 | 94.35 192 | 96.30 186 | 88.71 211 | 97.58 91 | 97.36 172 | 91.40 136 | 90.53 193 | 96.65 145 | 79.77 233 | 98.75 166 | 91.24 154 | 91.64 218 | 95.59 236 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
XXY-MVS | | | 92.16 182 | 91.23 191 | 94.95 168 | 94.75 265 | 90.94 144 | 97.47 102 | 97.43 164 | 89.14 195 | 88.90 242 | 96.43 161 | 79.71 234 | 98.24 200 | 89.56 179 | 87.68 263 | 95.67 235 |
|
PS-CasMVS | | | 91.55 200 | 90.84 203 | 93.69 225 | 94.96 252 | 88.28 220 | 97.84 63 | 98.24 34 | 91.46 131 | 88.04 265 | 95.80 189 | 79.67 235 | 97.48 289 | 87.02 234 | 84.54 301 | 95.31 255 |
|
RRT_MVS | | | 93.21 141 | 92.32 155 | 95.91 122 | 94.92 255 | 94.15 43 | 96.92 155 | 96.86 219 | 91.42 133 | 91.28 184 | 96.43 161 | 79.66 236 | 98.10 216 | 93.29 114 | 90.06 242 | 95.46 241 |
|
ab-mvs | | | 93.57 132 | 92.55 146 | 96.64 78 | 97.28 136 | 91.96 110 | 95.40 253 | 97.45 157 | 89.81 181 | 93.22 145 | 96.28 169 | 79.62 237 | 99.46 100 | 90.74 158 | 93.11 197 | 98.50 125 |
|
v1240 | | | 90.70 241 | 89.85 242 | 93.23 245 | 93.51 304 | 86.80 254 | 96.61 184 | 97.02 204 | 87.16 257 | 89.58 224 | 94.31 262 | 79.55 238 | 97.98 236 | 85.52 257 | 85.44 285 | 94.90 277 |
|
CostFormer | | | 91.18 223 | 90.70 208 | 92.62 265 | 94.84 261 | 81.76 312 | 94.09 292 | 94.43 311 | 84.15 295 | 92.72 154 | 93.77 284 | 79.43 239 | 98.20 205 | 90.70 159 | 92.18 211 | 97.90 159 |
|
CANet_DTU | | | 94.37 105 | 93.65 113 | 96.55 84 | 96.46 178 | 92.13 103 | 96.21 218 | 96.67 233 | 94.38 42 | 93.53 135 | 97.03 127 | 79.34 240 | 99.71 38 | 90.76 157 | 98.45 100 | 97.82 166 |
|
OPM-MVS | | | 93.28 139 | 92.76 136 | 94.82 172 | 94.63 271 | 90.77 151 | 96.65 179 | 97.18 183 | 93.72 57 | 91.68 172 | 97.26 116 | 79.33 241 | 98.63 176 | 92.13 131 | 92.28 207 | 95.07 266 |
|
JIA-IIPM | | | 88.26 281 | 87.04 285 | 91.91 278 | 93.52 303 | 81.42 313 | 89.38 338 | 94.38 313 | 80.84 321 | 90.93 190 | 80.74 342 | 79.22 242 | 97.92 250 | 82.76 285 | 91.62 219 | 96.38 205 |
|
CVMVSNet | | | 91.23 217 | 91.75 170 | 89.67 314 | 95.77 208 | 74.69 340 | 96.44 192 | 94.88 301 | 85.81 274 | 92.18 164 | 97.64 97 | 79.07 243 | 95.58 330 | 88.06 207 | 95.86 158 | 98.74 110 |
|
LPG-MVS_test | | | 92.94 153 | 92.56 145 | 94.10 201 | 96.16 193 | 88.26 221 | 97.65 84 | 97.46 151 | 91.29 138 | 90.12 207 | 97.16 120 | 79.05 244 | 98.73 167 | 92.25 127 | 91.89 216 | 95.31 255 |
|
LGP-MVS_train | | | | | 94.10 201 | 96.16 193 | 88.26 221 | | 97.46 151 | 91.29 138 | 90.12 207 | 97.16 120 | 79.05 244 | 98.73 167 | 92.25 127 | 91.89 216 | 95.31 255 |
|
test-LLR | | | 91.42 206 | 91.19 193 | 92.12 274 | 94.59 272 | 80.66 317 | 94.29 286 | 92.98 328 | 91.11 147 | 90.76 191 | 92.37 309 | 79.02 246 | 98.07 224 | 88.81 197 | 96.74 142 | 97.63 172 |
|
test0.0.03 1 | | | 89.37 267 | 88.70 264 | 91.41 294 | 92.47 323 | 85.63 274 | 95.22 264 | 92.70 330 | 91.11 147 | 86.91 288 | 93.65 290 | 79.02 246 | 93.19 342 | 78.00 315 | 89.18 250 | 95.41 244 |
|
ADS-MVSNet2 | | | 89.45 265 | 88.59 266 | 92.03 276 | 95.86 203 | 82.26 310 | 90.93 328 | 94.32 316 | 83.23 306 | 91.28 184 | 91.81 319 | 79.01 248 | 95.99 323 | 79.52 306 | 91.39 224 | 97.84 163 |
|
ADS-MVSNet | | | 89.89 259 | 88.68 265 | 93.53 232 | 95.86 203 | 84.89 285 | 90.93 328 | 95.07 293 | 83.23 306 | 91.28 184 | 91.81 319 | 79.01 248 | 97.85 256 | 79.52 306 | 91.39 224 | 97.84 163 |
|
ppachtmachnet_test | | | 88.35 280 | 87.29 279 | 91.53 290 | 92.45 324 | 83.57 300 | 93.75 299 | 95.97 257 | 84.28 293 | 85.32 303 | 94.18 270 | 79.00 250 | 96.93 312 | 75.71 323 | 84.99 295 | 94.10 309 |
|
OpenMVS | | 89.19 12 | 92.86 157 | 91.68 173 | 96.40 96 | 95.34 228 | 92.73 83 | 98.27 26 | 98.12 56 | 84.86 287 | 85.78 297 | 97.75 86 | 78.89 251 | 99.74 31 | 87.50 225 | 98.65 95 | 96.73 197 |
|
LTVRE_ROB | | 88.41 13 | 90.99 228 | 89.92 239 | 94.19 198 | 96.18 191 | 89.55 180 | 96.31 209 | 97.09 194 | 87.88 236 | 85.67 298 | 95.91 183 | 78.79 252 | 98.57 182 | 81.50 293 | 89.98 243 | 94.44 300 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
pm-mvs1 | | | 90.72 240 | 89.65 252 | 93.96 210 | 94.29 284 | 89.63 175 | 97.79 67 | 96.82 222 | 89.07 196 | 86.12 295 | 95.48 211 | 78.61 253 | 97.78 263 | 86.97 235 | 81.67 322 | 94.46 299 |
|
PVSNet | | 86.66 18 | 92.24 179 | 91.74 172 | 93.73 221 | 97.77 120 | 83.69 299 | 92.88 316 | 96.72 225 | 87.91 235 | 93.00 147 | 94.86 231 | 78.51 254 | 99.05 142 | 86.53 238 | 97.45 126 | 98.47 130 |
|
ACMP | | 89.59 10 | 92.62 164 | 92.14 158 | 94.05 204 | 96.40 181 | 88.20 224 | 97.36 112 | 97.25 181 | 91.52 128 | 88.30 257 | 96.64 146 | 78.46 255 | 98.72 170 | 91.86 139 | 91.48 222 | 95.23 262 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
BH-RMVSNet | | | 92.72 163 | 91.97 164 | 94.97 166 | 97.16 141 | 87.99 230 | 96.15 221 | 95.60 269 | 90.62 161 | 91.87 170 | 97.15 122 | 78.41 256 | 98.57 182 | 83.16 280 | 97.60 120 | 98.36 142 |
|
thres200 | | | 92.23 180 | 91.39 182 | 94.75 179 | 97.61 128 | 89.03 205 | 96.60 186 | 95.09 292 | 92.08 116 | 93.28 142 | 94.00 276 | 78.39 257 | 99.04 144 | 81.26 299 | 94.18 184 | 96.19 208 |
|
MDA-MVSNet_test_wron | | | 85.87 299 | 84.23 303 | 90.80 303 | 92.38 326 | 82.57 305 | 93.17 310 | 95.15 289 | 82.15 311 | 67.65 342 | 92.33 315 | 78.20 258 | 95.51 331 | 77.33 317 | 79.74 327 | 94.31 305 |
|
tfpn200view9 | | | 92.38 171 | 91.52 179 | 94.95 168 | 97.85 117 | 89.29 196 | 97.41 105 | 94.88 301 | 92.19 112 | 93.27 143 | 94.46 253 | 78.17 259 | 99.08 138 | 81.40 295 | 94.08 185 | 96.48 203 |
|
thres400 | | | 92.42 169 | 91.52 179 | 95.12 160 | 97.85 117 | 89.29 196 | 97.41 105 | 94.88 301 | 92.19 112 | 93.27 143 | 94.46 253 | 78.17 259 | 99.08 138 | 81.40 295 | 94.08 185 | 96.98 187 |
|
YYNet1 | | | 85.87 299 | 84.23 303 | 90.78 304 | 92.38 326 | 82.46 308 | 93.17 310 | 95.14 290 | 82.12 312 | 67.69 341 | 92.36 312 | 78.16 261 | 95.50 332 | 77.31 318 | 79.73 328 | 94.39 301 |
|
thres100view900 | | | 92.43 168 | 91.58 176 | 94.98 165 | 97.92 113 | 89.37 191 | 97.71 78 | 94.66 306 | 92.20 110 | 93.31 141 | 94.90 229 | 78.06 262 | 99.08 138 | 81.40 295 | 94.08 185 | 96.48 203 |
|
thres600view7 | | | 92.49 167 | 91.60 175 | 95.18 156 | 97.91 114 | 89.47 184 | 97.65 84 | 94.66 306 | 92.18 114 | 93.33 140 | 94.91 228 | 78.06 262 | 99.10 133 | 81.61 292 | 94.06 188 | 96.98 187 |
|
tpm cat1 | | | 88.36 279 | 87.21 282 | 91.81 283 | 95.13 245 | 80.55 320 | 92.58 320 | 95.70 264 | 74.97 338 | 87.45 274 | 91.96 317 | 78.01 264 | 98.17 209 | 80.39 303 | 88.74 255 | 96.72 198 |
|
MVP-Stereo | | | 90.74 239 | 90.08 233 | 92.71 262 | 93.19 312 | 88.20 224 | 95.86 235 | 96.27 248 | 86.07 272 | 84.86 305 | 94.76 236 | 77.84 265 | 97.75 266 | 83.88 277 | 98.01 110 | 92.17 331 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
EPMVS | | | 90.70 241 | 89.81 244 | 93.37 240 | 94.73 266 | 84.21 291 | 93.67 302 | 88.02 345 | 89.50 185 | 92.38 158 | 93.49 293 | 77.82 266 | 97.78 263 | 86.03 250 | 92.68 202 | 98.11 153 |
|
tfpnnormal | | | 89.70 263 | 88.40 268 | 93.60 228 | 95.15 243 | 90.10 163 | 97.56 93 | 98.16 50 | 87.28 255 | 86.16 294 | 94.63 243 | 77.57 267 | 98.05 227 | 74.48 325 | 84.59 300 | 92.65 324 |
|
tpm | | | 90.25 251 | 89.74 249 | 91.76 287 | 93.92 291 | 79.73 328 | 93.98 293 | 93.54 324 | 88.28 223 | 91.99 168 | 93.25 298 | 77.51 268 | 97.44 293 | 87.30 229 | 87.94 261 | 98.12 150 |
|
thisisatest0515 | | | 92.29 176 | 91.30 187 | 95.25 154 | 96.60 166 | 88.90 208 | 94.36 282 | 92.32 332 | 87.92 234 | 93.43 138 | 94.57 246 | 77.28 269 | 99.00 145 | 89.42 182 | 95.86 158 | 97.86 162 |
|
FMVSNet3 | | | 91.78 191 | 90.69 209 | 95.03 162 | 96.53 173 | 92.27 98 | 97.02 143 | 96.93 209 | 89.79 182 | 89.35 232 | 94.65 242 | 77.01 270 | 97.47 290 | 86.12 247 | 88.82 252 | 95.35 253 |
|
TR-MVS | | | 91.48 204 | 90.59 212 | 94.16 200 | 96.40 181 | 87.33 240 | 95.67 242 | 95.34 281 | 87.68 245 | 91.46 175 | 95.52 209 | 76.77 271 | 98.35 195 | 82.85 284 | 93.61 194 | 96.79 196 |
|
tttt0517 | | | 92.96 151 | 92.33 154 | 94.87 171 | 97.11 144 | 87.16 248 | 97.97 52 | 92.09 334 | 90.63 160 | 93.88 128 | 97.01 128 | 76.50 272 | 99.06 141 | 90.29 165 | 95.45 165 | 98.38 140 |
|
RPSCF | | | 90.75 238 | 90.86 200 | 90.42 308 | 96.84 156 | 76.29 338 | 95.61 246 | 96.34 245 | 83.89 298 | 91.38 176 | 97.87 75 | 76.45 273 | 98.78 162 | 87.16 233 | 92.23 208 | 96.20 207 |
|
tpm2 | | | 89.96 257 | 89.21 258 | 92.23 273 | 94.91 258 | 81.25 314 | 93.78 298 | 94.42 312 | 80.62 323 | 91.56 173 | 93.44 295 | 76.44 274 | 97.94 246 | 85.60 256 | 92.08 215 | 97.49 181 |
|
thisisatest0530 | | | 93.03 148 | 92.21 157 | 95.49 146 | 97.07 146 | 89.11 204 | 97.49 101 | 92.19 333 | 90.16 172 | 94.09 122 | 96.41 163 | 76.43 275 | 99.05 142 | 90.38 162 | 95.68 163 | 98.31 144 |
|
EU-MVSNet | | | 88.72 276 | 88.90 262 | 88.20 317 | 93.15 313 | 74.21 341 | 96.63 183 | 94.22 318 | 85.18 281 | 87.32 279 | 95.97 179 | 76.16 276 | 94.98 334 | 85.27 260 | 86.17 277 | 95.41 244 |
|
dp | | | 88.90 272 | 88.26 271 | 90.81 301 | 94.58 274 | 76.62 337 | 92.85 317 | 94.93 299 | 85.12 283 | 90.07 212 | 93.07 299 | 75.81 277 | 98.12 214 | 80.53 302 | 87.42 267 | 97.71 169 |
|
IterMVS-SCA-FT | | | 90.31 249 | 89.81 244 | 91.82 282 | 95.52 217 | 84.20 292 | 94.30 285 | 96.15 253 | 90.61 162 | 87.39 277 | 94.27 264 | 75.80 278 | 96.44 319 | 87.34 227 | 86.88 274 | 94.82 283 |
|
SCA | | | 91.84 190 | 91.18 194 | 93.83 217 | 95.59 213 | 84.95 284 | 94.72 270 | 95.58 271 | 90.82 151 | 92.25 163 | 93.69 286 | 75.80 278 | 98.10 216 | 86.20 244 | 95.98 154 | 98.45 132 |
|
IterMVS | | | 90.15 255 | 89.67 250 | 91.61 289 | 95.48 219 | 83.72 296 | 94.33 284 | 96.12 254 | 89.99 175 | 87.31 280 | 94.15 272 | 75.78 280 | 96.27 322 | 86.97 235 | 86.89 273 | 94.83 281 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
jajsoiax | | | 92.42 169 | 91.89 167 | 94.03 205 | 93.33 310 | 88.50 216 | 97.73 73 | 97.53 142 | 92.00 119 | 88.85 245 | 96.50 158 | 75.62 281 | 98.11 215 | 93.88 102 | 91.56 221 | 95.48 238 |
|
cascas | | | 91.20 219 | 90.08 233 | 94.58 185 | 94.97 251 | 89.16 203 | 93.65 303 | 97.59 136 | 79.90 326 | 89.40 230 | 92.92 301 | 75.36 282 | 98.36 194 | 92.14 130 | 94.75 178 | 96.23 206 |
|
VPNet | | | 92.23 180 | 91.31 186 | 94.99 163 | 95.56 215 | 90.96 143 | 97.22 129 | 97.86 111 | 92.96 90 | 90.96 189 | 96.62 153 | 75.06 283 | 98.20 205 | 91.90 136 | 83.65 312 | 95.80 226 |
|
N_pmnet | | | 78.73 312 | 78.71 314 | 78.79 327 | 92.80 318 | 46.50 356 | 94.14 290 | 43.71 358 | 78.61 331 | 80.83 323 | 91.66 322 | 74.94 284 | 96.36 320 | 67.24 341 | 84.45 302 | 93.50 317 |
|
mvs_tets | | | 92.31 174 | 91.76 169 | 93.94 213 | 93.41 307 | 88.29 219 | 97.63 89 | 97.53 142 | 92.04 117 | 88.76 248 | 96.45 160 | 74.62 285 | 98.09 220 | 93.91 100 | 91.48 222 | 95.45 243 |
|
DSMNet-mixed | | | 86.34 295 | 86.12 291 | 87.00 322 | 89.88 336 | 70.43 344 | 94.93 268 | 90.08 343 | 77.97 335 | 85.42 302 | 92.78 303 | 74.44 286 | 93.96 338 | 74.43 326 | 95.14 169 | 96.62 199 |
|
pmmvs5 | | | 89.86 261 | 88.87 263 | 92.82 259 | 92.86 316 | 86.23 266 | 96.26 213 | 95.39 275 | 84.24 294 | 87.12 281 | 94.51 248 | 74.27 287 | 97.36 299 | 87.61 223 | 87.57 264 | 94.86 279 |
|
OurMVSNet-221017-0 | | | 90.51 246 | 90.19 231 | 91.44 293 | 93.41 307 | 81.25 314 | 96.98 150 | 96.28 247 | 91.68 125 | 86.55 291 | 96.30 168 | 74.20 288 | 97.98 236 | 88.96 195 | 87.40 268 | 95.09 265 |
|
GBi-Net | | | 91.35 211 | 90.27 224 | 94.59 181 | 96.51 174 | 91.18 136 | 97.50 97 | 96.93 209 | 88.82 208 | 89.35 232 | 94.51 248 | 73.87 289 | 97.29 302 | 86.12 247 | 88.82 252 | 95.31 255 |
|
test1 | | | 91.35 211 | 90.27 224 | 94.59 181 | 96.51 174 | 91.18 136 | 97.50 97 | 96.93 209 | 88.82 208 | 89.35 232 | 94.51 248 | 73.87 289 | 97.29 302 | 86.12 247 | 88.82 252 | 95.31 255 |
|
FMVSNet2 | | | 91.31 214 | 90.08 233 | 94.99 163 | 96.51 174 | 92.21 99 | 97.41 105 | 96.95 207 | 88.82 208 | 88.62 250 | 94.75 237 | 73.87 289 | 97.42 295 | 85.20 262 | 88.55 258 | 95.35 253 |
|
COLMAP_ROB | | 87.81 15 | 90.40 248 | 89.28 257 | 93.79 220 | 97.95 110 | 87.13 249 | 96.92 155 | 95.89 260 | 82.83 308 | 86.88 289 | 97.18 119 | 73.77 292 | 99.29 117 | 78.44 314 | 93.62 193 | 94.95 270 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
DWT-MVSNet_test | | | 90.76 236 | 89.89 240 | 93.38 239 | 95.04 249 | 83.70 298 | 95.85 236 | 94.30 317 | 88.19 225 | 90.46 195 | 92.80 302 | 73.61 293 | 98.50 186 | 88.16 205 | 90.58 236 | 97.95 157 |
|
Anonymous20231206 | | | 87.09 290 | 86.14 290 | 89.93 313 | 91.22 331 | 80.35 321 | 96.11 222 | 95.35 278 | 83.57 303 | 84.16 311 | 93.02 300 | 73.54 294 | 95.61 328 | 72.16 333 | 86.14 278 | 93.84 314 |
|
UGNet | | | 94.04 117 | 93.28 127 | 96.31 103 | 96.85 155 | 91.19 135 | 97.88 58 | 97.68 127 | 94.40 40 | 93.00 147 | 96.18 172 | 73.39 295 | 99.61 62 | 91.72 141 | 98.46 99 | 98.13 149 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Anonymous20231211 | | | 90.63 243 | 89.42 254 | 94.27 195 | 98.24 93 | 89.19 202 | 98.05 44 | 97.89 104 | 79.95 325 | 88.25 260 | 94.96 225 | 72.56 296 | 98.13 211 | 89.70 175 | 85.14 290 | 95.49 237 |
|
ACMH | | 87.59 16 | 90.53 245 | 89.42 254 | 93.87 216 | 96.21 188 | 87.92 231 | 97.24 123 | 96.94 208 | 88.45 219 | 83.91 315 | 96.27 170 | 71.92 297 | 98.62 178 | 84.43 271 | 89.43 248 | 95.05 268 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
GA-MVS | | | 91.38 208 | 90.31 221 | 94.59 181 | 94.65 269 | 87.62 238 | 94.34 283 | 96.19 252 | 90.73 154 | 90.35 198 | 93.83 280 | 71.84 298 | 97.96 243 | 87.22 230 | 93.61 194 | 98.21 147 |
|
SixPastTwentyTwo | | | 89.15 268 | 88.54 267 | 90.98 298 | 93.49 305 | 80.28 324 | 96.70 174 | 94.70 305 | 90.78 152 | 84.15 312 | 95.57 204 | 71.78 299 | 97.71 269 | 84.63 268 | 85.07 292 | 94.94 272 |
|
gg-mvs-nofinetune | | | 87.82 284 | 85.61 293 | 94.44 188 | 94.46 276 | 89.27 199 | 91.21 327 | 84.61 350 | 80.88 320 | 89.89 216 | 74.98 344 | 71.50 300 | 97.53 285 | 85.75 255 | 97.21 134 | 96.51 201 |
|
test20.03 | | | 86.14 297 | 85.40 295 | 88.35 315 | 90.12 333 | 80.06 326 | 95.90 234 | 95.20 287 | 88.59 214 | 81.29 322 | 93.62 291 | 71.43 301 | 92.65 343 | 71.26 337 | 81.17 325 | 92.34 328 |
|
MS-PatchMatch | | | 90.27 250 | 89.77 246 | 91.78 285 | 94.33 281 | 84.72 287 | 95.55 247 | 96.73 224 | 86.17 271 | 86.36 292 | 95.28 217 | 71.28 302 | 97.80 261 | 84.09 273 | 98.14 108 | 92.81 323 |
|
PVSNet_0 | | 82.17 19 | 85.46 302 | 83.64 305 | 90.92 299 | 95.27 236 | 79.49 329 | 90.55 331 | 95.60 269 | 83.76 301 | 83.00 318 | 89.95 325 | 71.09 303 | 97.97 239 | 82.75 286 | 60.79 346 | 95.31 255 |
|
GG-mvs-BLEND | | | | | 93.62 227 | 93.69 299 | 89.20 200 | 92.39 323 | 83.33 351 | | 87.98 268 | 89.84 327 | 71.00 304 | 96.87 314 | 82.08 291 | 95.40 166 | 94.80 286 |
|
ITE_SJBPF | | | | | 92.43 268 | 95.34 228 | 85.37 279 | | 95.92 258 | 91.47 130 | 87.75 271 | 96.39 165 | 71.00 304 | 97.96 243 | 82.36 289 | 89.86 245 | 93.97 312 |
|
IB-MVS | | 87.33 17 | 89.91 258 | 88.28 270 | 94.79 176 | 95.26 239 | 87.70 237 | 95.12 266 | 93.95 322 | 89.35 189 | 87.03 284 | 92.49 307 | 70.74 306 | 99.19 123 | 89.18 192 | 81.37 324 | 97.49 181 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
MDA-MVSNet-bldmvs | | | 85.00 303 | 82.95 307 | 91.17 297 | 93.13 314 | 83.33 301 | 94.56 274 | 95.00 295 | 84.57 291 | 65.13 345 | 92.65 304 | 70.45 307 | 95.85 324 | 73.57 330 | 77.49 331 | 94.33 303 |
|
RRT_test8_iter05 | | | 91.19 222 | 90.78 205 | 92.41 269 | 95.76 210 | 83.14 303 | 97.32 116 | 97.46 151 | 91.37 137 | 89.07 241 | 95.57 204 | 70.33 308 | 98.21 203 | 93.56 106 | 86.62 275 | 95.89 219 |
|
AllTest | | | 90.23 252 | 88.98 261 | 93.98 207 | 97.94 111 | 86.64 257 | 96.51 191 | 95.54 272 | 85.38 278 | 85.49 300 | 96.77 137 | 70.28 309 | 99.15 128 | 80.02 304 | 92.87 198 | 96.15 211 |
|
TestCases | | | | | 93.98 207 | 97.94 111 | 86.64 257 | | 95.54 272 | 85.38 278 | 85.49 300 | 96.77 137 | 70.28 309 | 99.15 128 | 80.02 304 | 92.87 198 | 96.15 211 |
|
ACMH+ | | 87.92 14 | 90.20 253 | 89.18 259 | 93.25 244 | 96.48 177 | 86.45 262 | 96.99 148 | 96.68 231 | 88.83 207 | 84.79 306 | 96.22 171 | 70.16 311 | 98.53 184 | 84.42 272 | 88.04 260 | 94.77 291 |
|
Anonymous20240529 | | | 91.98 187 | 90.73 207 | 95.73 132 | 98.14 103 | 89.40 189 | 97.99 47 | 97.72 122 | 79.63 327 | 93.54 134 | 97.41 111 | 69.94 312 | 99.56 80 | 91.04 156 | 91.11 228 | 98.22 146 |
|
test_part1 | | | 89.59 264 | 88.03 272 | 94.27 195 | 95.32 234 | 89.42 188 | 98.03 46 | 97.58 137 | 78.01 333 | 86.10 296 | 94.59 245 | 69.87 313 | 98.01 233 | 89.88 170 | 82.85 319 | 95.40 248 |
|
pmmvs-eth3d | | | 86.22 296 | 84.45 301 | 91.53 290 | 88.34 341 | 87.25 243 | 94.47 276 | 95.01 294 | 83.47 304 | 79.51 332 | 89.61 328 | 69.75 314 | 95.71 327 | 83.13 281 | 76.73 334 | 91.64 332 |
|
LFMVS | | | 93.60 130 | 92.63 142 | 96.52 85 | 98.13 104 | 91.27 129 | 97.94 54 | 93.39 326 | 90.57 165 | 96.29 70 | 98.31 47 | 69.00 315 | 99.16 127 | 94.18 94 | 95.87 157 | 99.12 77 |
|
TESTMET0.1,1 | | | 90.06 256 | 89.42 254 | 91.97 277 | 94.41 279 | 80.62 319 | 94.29 286 | 91.97 336 | 87.28 255 | 90.44 196 | 92.47 308 | 68.79 316 | 97.67 271 | 88.50 203 | 96.60 147 | 97.61 176 |
|
XVG-ACMP-BASELINE | | | 90.93 232 | 90.21 230 | 93.09 250 | 94.31 283 | 85.89 271 | 95.33 256 | 97.26 179 | 91.06 149 | 89.38 231 | 95.44 212 | 68.61 317 | 98.60 179 | 89.46 181 | 91.05 229 | 94.79 288 |
|
MVS-HIRNet | | | 82.47 309 | 81.21 311 | 86.26 324 | 95.38 223 | 69.21 347 | 88.96 340 | 89.49 344 | 66.28 343 | 80.79 324 | 74.08 346 | 68.48 318 | 97.39 297 | 71.93 334 | 95.47 164 | 92.18 330 |
|
VDD-MVS | | | 93.82 123 | 93.08 129 | 96.02 118 | 97.88 116 | 89.96 171 | 97.72 76 | 95.85 261 | 92.43 104 | 95.86 86 | 98.44 28 | 68.42 319 | 99.39 109 | 96.31 28 | 94.85 174 | 98.71 114 |
|
test_0402 | | | 86.46 294 | 84.79 299 | 91.45 292 | 95.02 250 | 85.55 275 | 96.29 211 | 94.89 300 | 80.90 319 | 82.21 319 | 93.97 278 | 68.21 320 | 97.29 302 | 62.98 344 | 88.68 257 | 91.51 334 |
|
test-mter | | | 90.19 254 | 89.54 253 | 92.12 274 | 94.59 272 | 80.66 317 | 94.29 286 | 92.98 328 | 87.68 245 | 90.76 191 | 92.37 309 | 67.67 321 | 98.07 224 | 88.81 197 | 96.74 142 | 97.63 172 |
|
VDDNet | | | 93.05 147 | 92.07 159 | 96.02 118 | 96.84 156 | 90.39 162 | 98.08 42 | 95.85 261 | 86.22 270 | 95.79 89 | 98.46 26 | 67.59 322 | 99.19 123 | 94.92 78 | 94.85 174 | 98.47 130 |
|
USDC | | | 88.94 270 | 87.83 275 | 92.27 272 | 94.66 268 | 84.96 283 | 93.86 296 | 95.90 259 | 87.34 253 | 83.40 317 | 95.56 206 | 67.43 323 | 98.19 207 | 82.64 288 | 89.67 247 | 93.66 315 |
|
pmmvs6 | | | 87.81 285 | 86.19 289 | 92.69 263 | 91.32 330 | 86.30 264 | 97.34 113 | 96.41 243 | 80.59 324 | 84.05 314 | 94.37 257 | 67.37 324 | 97.67 271 | 84.75 266 | 79.51 329 | 94.09 311 |
|
K. test v3 | | | 87.64 286 | 86.75 287 | 90.32 309 | 93.02 315 | 79.48 330 | 96.61 184 | 92.08 335 | 90.66 158 | 80.25 329 | 94.09 273 | 67.21 325 | 96.65 318 | 85.96 252 | 80.83 326 | 94.83 281 |
|
CMPMVS | | 62.92 21 | 85.62 301 | 84.92 298 | 87.74 319 | 89.14 339 | 73.12 343 | 94.17 289 | 96.80 223 | 73.98 339 | 73.65 339 | 94.93 227 | 66.36 326 | 97.61 278 | 83.95 276 | 91.28 226 | 92.48 327 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
UniMVSNet_ETH3D | | | 91.34 213 | 90.22 229 | 94.68 180 | 94.86 260 | 87.86 234 | 97.23 128 | 97.46 151 | 87.99 232 | 89.90 214 | 96.92 132 | 66.35 327 | 98.23 201 | 90.30 164 | 90.99 231 | 97.96 155 |
|
lessismore_v0 | | | | | 90.45 307 | 91.96 329 | 79.09 333 | | 87.19 348 | | 80.32 328 | 94.39 255 | 66.31 328 | 97.55 282 | 84.00 275 | 76.84 333 | 94.70 293 |
|
Anonymous202405211 | | | 92.07 185 | 90.83 204 | 95.76 127 | 98.19 100 | 88.75 210 | 97.58 91 | 95.00 295 | 86.00 273 | 93.64 131 | 97.45 109 | 66.24 329 | 99.53 88 | 90.68 160 | 92.71 201 | 99.01 87 |
|
new-patchmatchnet | | | 83.18 307 | 81.87 309 | 87.11 321 | 86.88 345 | 75.99 339 | 93.70 300 | 95.18 288 | 85.02 285 | 77.30 335 | 88.40 332 | 65.99 330 | 93.88 339 | 74.19 329 | 70.18 342 | 91.47 336 |
|
FMVSNet1 | | | 89.88 260 | 88.31 269 | 94.59 181 | 95.41 221 | 91.18 136 | 97.50 97 | 96.93 209 | 86.62 264 | 87.41 276 | 94.51 248 | 65.94 331 | 97.29 302 | 83.04 282 | 87.43 266 | 95.31 255 |
|
TDRefinement | | | 86.53 293 | 84.76 300 | 91.85 280 | 82.23 348 | 84.25 290 | 96.38 202 | 95.35 278 | 84.97 286 | 84.09 313 | 94.94 226 | 65.76 332 | 98.34 197 | 84.60 269 | 74.52 337 | 92.97 321 |
|
UnsupCasMVSNet_eth | | | 85.99 298 | 84.45 301 | 90.62 305 | 89.97 335 | 82.40 309 | 93.62 304 | 97.37 170 | 89.86 177 | 78.59 334 | 92.37 309 | 65.25 333 | 95.35 333 | 82.27 290 | 70.75 341 | 94.10 309 |
|
LF4IMVS | | | 87.94 283 | 87.25 280 | 89.98 312 | 92.38 326 | 80.05 327 | 94.38 281 | 95.25 285 | 87.59 247 | 84.34 308 | 94.74 238 | 64.31 334 | 97.66 273 | 84.83 264 | 87.45 265 | 92.23 329 |
|
MIMVSNet | | | 88.50 278 | 86.76 286 | 93.72 223 | 94.84 261 | 87.77 236 | 91.39 325 | 94.05 319 | 86.41 267 | 87.99 267 | 92.59 306 | 63.27 335 | 95.82 326 | 77.44 316 | 92.84 200 | 97.57 179 |
|
FMVSNet5 | | | 87.29 289 | 85.79 292 | 91.78 285 | 94.80 263 | 87.28 241 | 95.49 250 | 95.28 282 | 84.09 296 | 83.85 316 | 91.82 318 | 62.95 336 | 94.17 337 | 78.48 313 | 85.34 287 | 93.91 313 |
|
testgi | | | 87.97 282 | 87.21 282 | 90.24 310 | 92.86 316 | 80.76 316 | 96.67 178 | 94.97 297 | 91.74 123 | 85.52 299 | 95.83 187 | 62.66 337 | 94.47 336 | 76.25 321 | 88.36 259 | 95.48 238 |
|
TinyColmap | | | 86.82 292 | 85.35 296 | 91.21 295 | 94.91 258 | 82.99 304 | 93.94 295 | 94.02 321 | 83.58 302 | 81.56 321 | 94.68 240 | 62.34 338 | 98.13 211 | 75.78 322 | 87.35 269 | 92.52 326 |
|
new_pmnet | | | 82.89 308 | 81.12 312 | 88.18 318 | 89.63 337 | 80.18 325 | 91.77 324 | 92.57 331 | 76.79 337 | 75.56 338 | 88.23 334 | 61.22 339 | 94.48 335 | 71.43 335 | 82.92 318 | 89.87 339 |
|
OpenMVS_ROB | | 81.14 20 | 84.42 305 | 82.28 308 | 90.83 300 | 90.06 334 | 84.05 294 | 95.73 241 | 94.04 320 | 73.89 340 | 80.17 330 | 91.53 323 | 59.15 340 | 97.64 274 | 66.92 342 | 89.05 251 | 90.80 337 |
|
MIMVSNet1 | | | 84.93 304 | 83.05 306 | 90.56 306 | 89.56 338 | 84.84 286 | 95.40 253 | 95.35 278 | 83.91 297 | 80.38 327 | 92.21 316 | 57.23 341 | 93.34 341 | 70.69 339 | 82.75 321 | 93.50 317 |
|
EG-PatchMatch MVS | | | 87.02 291 | 85.44 294 | 91.76 287 | 92.67 320 | 85.00 282 | 96.08 224 | 96.45 242 | 83.41 305 | 79.52 331 | 93.49 293 | 57.10 342 | 97.72 268 | 79.34 311 | 90.87 234 | 92.56 325 |
|
MVS_0304 | | | 88.79 274 | 87.57 276 | 92.46 266 | 94.65 269 | 86.15 270 | 96.40 199 | 97.17 185 | 86.44 266 | 88.02 266 | 91.71 321 | 56.68 343 | 97.03 307 | 84.47 270 | 92.58 204 | 94.19 308 |
|
UnsupCasMVSNet_bld | | | 82.13 310 | 79.46 313 | 90.14 311 | 88.00 342 | 82.47 307 | 90.89 330 | 96.62 239 | 78.94 330 | 75.61 336 | 84.40 340 | 56.63 344 | 96.31 321 | 77.30 319 | 66.77 345 | 91.63 333 |
|
testing_2 | | | 87.33 288 | 85.03 297 | 94.22 197 | 87.77 344 | 89.32 195 | 94.97 267 | 97.11 191 | 89.22 192 | 71.64 340 | 88.73 330 | 55.16 345 | 97.94 246 | 91.95 135 | 88.73 256 | 95.41 244 |
|
tmp_tt | | | 51.94 322 | 53.82 322 | 46.29 336 | 33.73 358 | 45.30 358 | 78.32 348 | 67.24 357 | 18.02 353 | 50.93 349 | 87.05 339 | 52.99 346 | 53.11 354 | 70.76 338 | 25.29 352 | 40.46 350 |
|
pmmvs3 | | | 79.97 311 | 77.50 315 | 87.39 320 | 82.80 347 | 79.38 331 | 92.70 319 | 90.75 342 | 70.69 342 | 78.66 333 | 87.47 338 | 51.34 347 | 93.40 340 | 73.39 331 | 69.65 343 | 89.38 340 |
|
DeepMVS_CX | | | | | 74.68 331 | 90.84 332 | 64.34 351 | | 81.61 353 | 65.34 344 | 67.47 343 | 88.01 336 | 48.60 348 | 80.13 350 | 62.33 345 | 73.68 340 | 79.58 344 |
|
PM-MVS | | | 83.48 306 | 81.86 310 | 88.31 316 | 87.83 343 | 77.59 336 | 93.43 306 | 91.75 337 | 86.91 260 | 80.63 325 | 89.91 326 | 44.42 349 | 95.84 325 | 85.17 263 | 76.73 334 | 91.50 335 |
|
ambc | | | | | 86.56 323 | 83.60 346 | 70.00 346 | 85.69 343 | 94.97 297 | | 80.60 326 | 88.45 331 | 37.42 350 | 96.84 315 | 82.69 287 | 75.44 336 | 92.86 322 |
|
Gipuma | | | 67.86 316 | 65.41 319 | 75.18 330 | 92.66 321 | 73.45 342 | 66.50 350 | 94.52 310 | 53.33 348 | 57.80 348 | 66.07 348 | 30.81 351 | 89.20 345 | 48.15 348 | 78.88 330 | 62.90 347 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
EMVS | | | 52.08 321 | 51.31 324 | 54.39 335 | 72.62 353 | 45.39 357 | 83.84 345 | 75.51 355 | 41.13 351 | 40.77 352 | 59.65 351 | 30.08 352 | 73.60 352 | 28.31 352 | 29.90 351 | 44.18 349 |
|
FPMVS | | | 71.27 314 | 69.85 316 | 75.50 329 | 74.64 350 | 59.03 352 | 91.30 326 | 91.50 339 | 58.80 346 | 57.92 347 | 88.28 333 | 29.98 353 | 85.53 348 | 53.43 346 | 82.84 320 | 81.95 343 |
|
E-PMN | | | 53.28 319 | 52.56 323 | 55.43 334 | 74.43 351 | 47.13 355 | 83.63 346 | 76.30 354 | 42.23 350 | 42.59 351 | 62.22 350 | 28.57 354 | 74.40 351 | 31.53 351 | 31.51 349 | 44.78 348 |
|
PMMVS2 | | | 70.19 315 | 66.92 318 | 80.01 326 | 76.35 349 | 65.67 349 | 86.22 342 | 87.58 347 | 64.83 345 | 62.38 346 | 80.29 343 | 26.78 355 | 88.49 346 | 63.79 343 | 54.07 347 | 85.88 341 |
|
ANet_high | | | 63.94 317 | 59.58 320 | 77.02 328 | 61.24 356 | 66.06 348 | 85.66 344 | 87.93 346 | 78.53 332 | 42.94 350 | 71.04 347 | 25.42 356 | 80.71 349 | 52.60 347 | 30.83 350 | 84.28 342 |
|
LCM-MVSNet | | | 72.55 313 | 69.39 317 | 82.03 325 | 70.81 354 | 65.42 350 | 90.12 335 | 94.36 315 | 55.02 347 | 65.88 344 | 81.72 341 | 24.16 357 | 89.96 344 | 74.32 328 | 68.10 344 | 90.71 338 |
|
PMVS | | 53.92 22 | 58.58 318 | 55.40 321 | 68.12 332 | 51.00 357 | 48.64 354 | 78.86 347 | 87.10 349 | 46.77 349 | 35.84 354 | 74.28 345 | 8.76 358 | 86.34 347 | 42.07 349 | 73.91 339 | 69.38 345 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
wuyk23d | | | 25.11 323 | 24.57 327 | 26.74 337 | 73.98 352 | 39.89 359 | 57.88 351 | 9.80 359 | 12.27 354 | 10.39 355 | 6.97 357 | 7.03 359 | 36.44 355 | 25.43 353 | 17.39 353 | 3.89 353 |
|
MVE | | 50.73 23 | 53.25 320 | 48.81 325 | 66.58 333 | 65.34 355 | 57.50 353 | 72.49 349 | 70.94 356 | 40.15 352 | 39.28 353 | 63.51 349 | 6.89 360 | 73.48 353 | 38.29 350 | 42.38 348 | 68.76 346 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test123 | | | 13.04 326 | 15.66 329 | 5.18 338 | 4.51 360 | 3.45 360 | 92.50 322 | 1.81 361 | 2.50 356 | 7.58 357 | 20.15 354 | 3.67 361 | 2.18 357 | 7.13 355 | 1.07 355 | 9.90 351 |
|
testmvs | | | 13.36 325 | 16.33 328 | 4.48 339 | 5.04 359 | 2.26 361 | 93.18 309 | 3.28 360 | 2.70 355 | 8.24 356 | 21.66 353 | 2.29 362 | 2.19 356 | 7.58 354 | 2.96 354 | 9.00 352 |
|
uanet_test | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
sosnet-low-res | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
sosnet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
uncertanet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
Regformer | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
ab-mvs-re | | | 8.06 327 | 10.74 330 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 96.69 143 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
uanet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
IU-MVS | | | | | | 99.42 6 | 95.39 9 | | 97.94 102 | 90.40 169 | 98.94 5 | | | | 97.41 7 | 99.66 8 | 99.74 5 |
|
save fliter | | | | | | 98.91 49 | 94.28 35 | 97.02 143 | 98.02 88 | 95.35 8 | | | | | | | |
|
test_0728_SECOND | | | | | 98.51 2 | 99.45 2 | 95.93 3 | 98.21 34 | 98.28 26 | | | | | 99.86 8 | 97.52 2 | 99.67 6 | 99.75 3 |
|
GSMVS | | | | | | | | | | | | | | | | | 98.45 132 |
|
test_part2 | | | | | | 99.28 25 | 95.74 6 | | | | 98.10 17 | | | | | | |
|
MTGPA | | | | | | | | | 98.08 64 | | | | | | | | |
|
MTMP | | | | | | | | 97.86 59 | 82.03 352 | | | | | | | | |
|
gm-plane-assit | | | | | | 93.22 311 | 78.89 334 | | | 84.82 288 | | 93.52 292 | | 98.64 175 | 87.72 213 | | |
|
test9_res | | | | | | | | | | | | | | | 94.81 83 | 99.38 48 | 99.45 45 |
|
agg_prior2 | | | | | | | | | | | | | | | 93.94 99 | 99.38 48 | 99.50 37 |
|
agg_prior | | | | | | 98.67 62 | 93.79 55 | | 98.00 93 | | 95.68 93 | | | 99.57 78 | | | |
|
test_prior4 | | | | | | | 93.66 59 | 96.42 195 | | | | | | | | | |
|
test_prior | | | | | 97.23 62 | 98.67 62 | 92.99 76 | | 98.00 93 | | | | | 99.41 106 | | | 99.29 62 |
|
旧先验2 | | | | | | | | 95.94 232 | | 81.66 315 | 97.34 34 | | | 98.82 159 | 92.26 125 | | |
|
新几何2 | | | | | | | | 95.79 239 | | | | | | | | | |
|
无先验 | | | | | | | | 95.79 239 | 97.87 108 | 83.87 300 | | | | 99.65 53 | 87.68 218 | | 98.89 100 |
|
原ACMM2 | | | | | | | | 95.67 242 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.67 49 | 85.96 252 | | |
|
testdata1 | | | | | | | | 95.26 263 | | 93.10 82 | | | | | | | |
|
plane_prior7 | | | | | | 96.21 188 | 89.98 169 | | | | | | | | | | |
|
plane_prior5 | | | | | | | | | 97.51 144 | | | | | 98.60 179 | 93.02 119 | 92.23 208 | 95.86 220 |
|
plane_prior4 | | | | | | | | | | | | 96.64 146 | | | | | |
|
plane_prior3 | | | | | | | 90.00 165 | | | 94.46 39 | 91.34 178 | | | | | | |
|
plane_prior2 | | | | | | | | 97.74 71 | | 94.85 24 | | | | | | | |
|
plane_prior1 | | | | | | 96.14 196 | | | | | | | | | | | |
|
plane_prior | | | | | | | 89.99 167 | 97.24 123 | | 94.06 47 | | | | | | 92.16 212 | |
|
n2 | | | | | | | | | 0.00 362 | | | | | | | | |
|
nn | | | | | | | | | 0.00 362 | | | | | | | | |
|
door-mid | | | | | | | | | 91.06 341 | | | | | | | | |
|
test11 | | | | | | | | | 97.88 106 | | | | | | | | |
|
door | | | | | | | | | 91.13 340 | | | | | | | | |
|
HQP5-MVS | | | | | | | 89.33 193 | | | | | | | | | | |
|
HQP-NCC | | | | | | 95.86 203 | | 96.65 179 | | 93.55 62 | 90.14 201 | | | | | | |
|
ACMP_Plane | | | | | | 95.86 203 | | 96.65 179 | | 93.55 62 | 90.14 201 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 92.13 131 | | |
|
HQP4-MVS | | | | | | | | | | | 90.14 201 | | | 98.50 186 | | | 95.78 227 |
|
HQP3-MVS | | | | | | | | | 97.39 167 | | | | | | | 92.10 213 | |
|
NP-MVS | | | | | | 95.99 202 | 89.81 174 | | | | | 95.87 184 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 90.30 241 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 91.02 230 | |
|