This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
PC_three_145290.77 16698.89 898.28 5796.24 198.35 20995.76 6199.58 2299.59 20
DVP-MVS++98.06 197.99 198.28 998.67 6695.39 1199.29 198.28 2894.78 3798.93 698.87 696.04 299.86 997.45 999.58 2299.59 20
OPU-MVS98.55 398.82 6096.86 398.25 3498.26 5896.04 299.24 12695.36 7699.59 1799.56 27
test_0728_THIRD94.78 3798.73 1098.87 695.87 499.84 2397.45 999.72 299.77 1
SED-MVS98.05 297.99 198.24 1099.42 795.30 1898.25 3498.27 3195.13 1999.19 198.89 495.54 599.85 1897.52 599.66 1099.56 27
test_241102_ONE99.42 795.30 1898.27 3195.09 2399.19 198.81 1095.54 599.65 57
test_one_060199.32 2495.20 2198.25 3695.13 1998.48 1698.87 695.16 7
DVP-MVScopyleft97.91 397.81 398.22 1299.45 395.36 1398.21 4197.85 11894.92 2898.73 1098.87 695.08 899.84 2397.52 599.67 699.48 47
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.45 395.36 1398.31 2798.29 2694.92 2898.99 498.92 295.08 8
DPE-MVScopyleft97.86 497.65 598.47 599.17 3495.78 797.21 14098.35 2095.16 1898.71 1298.80 1195.05 1099.89 496.70 2799.73 199.73 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_241102_TWO98.27 3195.13 1998.93 698.89 494.99 1199.85 1897.52 599.65 1299.74 7
SteuartSystems-ACMMP97.62 797.53 797.87 2798.39 8794.25 4298.43 2198.27 3195.34 1098.11 2098.56 2094.53 1299.71 4296.57 3199.62 1599.65 12
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS97.68 697.44 998.37 798.90 5595.86 697.27 13198.08 6895.81 397.87 2898.31 5194.26 1399.68 5197.02 1799.49 4099.57 24
SD-MVS97.41 1097.53 797.06 7498.57 7994.46 3497.92 6498.14 5794.82 3499.01 398.55 2294.18 1497.41 31196.94 1899.64 1399.32 66
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSP-MVS97.59 897.54 697.73 4199.40 1293.77 6298.53 1398.29 2695.55 598.56 1497.81 9193.90 1599.65 5796.62 2899.21 7599.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MCST-MVS97.18 1796.84 2998.20 1399.30 2695.35 1597.12 14898.07 7493.54 7596.08 8897.69 9993.86 1699.71 4296.50 3299.39 5399.55 31
APDe-MVS97.82 597.73 498.08 1899.15 3594.82 2998.81 698.30 2594.76 3998.30 1798.90 393.77 1799.68 5197.93 199.69 399.75 5
TSAR-MVS + MP.97.42 997.33 1197.69 4599.25 2994.24 4398.07 5197.85 11893.72 6798.57 1398.35 4293.69 1899.40 11397.06 1499.46 4499.44 53
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
patch_mono-296.83 4197.44 995.01 17199.05 4385.39 29196.98 16098.77 594.70 4197.99 2398.66 1493.61 1999.91 197.67 499.50 3699.72 10
DeepPCF-MVS93.97 196.61 5197.09 1495.15 16598.09 11486.63 27196.00 24398.15 5595.43 697.95 2498.56 2093.40 2099.36 11796.77 2599.48 4199.45 51
xxxxxxxxxxxxxcwj97.36 1297.20 1297.83 2998.91 5394.28 3997.02 15397.22 19295.35 898.27 1898.65 1693.33 2199.72 3996.49 3399.52 2999.51 39
SF-MVS97.39 1197.13 1398.17 1499.02 4695.28 2098.23 3898.27 3192.37 11898.27 1898.65 1693.33 2199.72 3996.49 3399.52 2999.51 39
SMA-MVScopyleft97.35 1397.03 1898.30 899.06 4295.42 1097.94 6298.18 5090.57 17998.85 998.94 193.33 2199.83 2696.72 2699.68 499.63 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
NCCC97.30 1597.03 1898.11 1798.77 6195.06 2697.34 12398.04 8595.96 297.09 5197.88 8393.18 2499.71 4295.84 5999.17 8099.56 27
9.1496.75 3798.93 5197.73 8198.23 4291.28 15497.88 2798.44 3293.00 2599.65 5795.76 6199.47 42
segment_acmp92.89 26
TSAR-MVS + GP.96.69 4896.49 5197.27 6398.31 9593.39 7096.79 17896.72 23594.17 5497.44 3497.66 10392.76 2799.33 11896.86 2197.76 12999.08 89
dcpmvs_296.37 6197.05 1694.31 20898.96 5084.11 30997.56 10297.51 15393.92 5997.43 3698.52 2592.75 2899.32 12097.32 1399.50 3699.51 39
TEST998.70 6494.19 4496.41 21098.02 9288.17 24396.03 8997.56 11592.74 2999.59 72
train_agg96.30 6395.83 6997.72 4298.70 6494.19 4496.41 21098.02 9288.58 23196.03 8997.56 11592.73 3099.59 7295.04 8399.37 5899.39 60
test_898.67 6694.06 5396.37 21798.01 9588.58 23195.98 9497.55 11792.73 3099.58 75
agg_prior196.22 6695.77 7097.56 5198.67 6693.79 5996.28 22698.00 9788.76 22895.68 10497.55 11792.70 3299.57 8395.01 8499.32 5999.32 66
CSCG96.05 6995.91 6796.46 9699.24 3090.47 16498.30 2898.57 1289.01 21493.97 13997.57 11392.62 3399.76 3494.66 9799.27 6799.15 81
ETH3D-3000-0.197.07 2396.71 4098.14 1698.90 5595.33 1797.68 8898.24 3891.57 14097.90 2698.37 4092.61 3499.66 5695.59 7399.51 3399.43 55
Regformer-297.16 1996.99 2097.67 4698.32 9393.84 5796.83 17498.10 6595.24 1397.49 3198.25 5992.57 3599.61 6696.80 2299.29 6399.56 27
HPM-MVS++copyleft97.34 1496.97 2198.47 599.08 4096.16 497.55 10497.97 10395.59 496.61 6797.89 8192.57 3599.84 2395.95 5499.51 3399.40 59
ZD-MVS99.05 4394.59 3298.08 6889.22 20997.03 5398.10 6892.52 3799.65 5794.58 9999.31 61
PHI-MVS96.77 4596.46 5497.71 4498.40 8594.07 5298.21 4198.45 1689.86 19197.11 5098.01 7792.52 3799.69 4896.03 5399.53 2899.36 64
Regformer-197.10 2196.96 2297.54 5298.32 9393.48 6896.83 17497.99 10195.20 1597.46 3298.25 5992.48 3999.58 7596.79 2499.29 6399.55 31
APD-MVScopyleft96.95 3296.60 4598.01 2299.03 4594.93 2897.72 8498.10 6591.50 14298.01 2298.32 5092.33 4099.58 7594.85 8999.51 3399.53 38
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR96.68 5096.58 4796.99 7698.46 8192.31 10296.20 23398.90 294.30 5395.86 9797.74 9692.33 4099.38 11696.04 5299.42 4999.28 71
MSLP-MVS++96.94 3397.06 1596.59 8698.72 6391.86 11797.67 8998.49 1394.66 4397.24 4298.41 3892.31 4298.94 15896.61 2999.46 4498.96 101
旧先验198.38 8893.38 7197.75 12398.09 7092.30 4399.01 9299.16 79
HFP-MVS97.14 2096.92 2497.83 2999.42 794.12 4998.52 1498.32 2293.21 8797.18 4498.29 5492.08 4499.83 2695.63 6899.59 1799.54 34
#test#97.02 2796.75 3797.83 2999.42 794.12 4998.15 4698.32 2292.57 11497.18 4498.29 5492.08 4499.83 2695.12 8199.59 1799.54 34
test_prior396.46 5796.20 6297.23 6598.67 6692.99 8196.35 21898.00 9792.80 10796.03 8997.59 11192.01 4699.41 11195.01 8499.38 5499.29 68
test_prior296.35 21892.80 10796.03 8997.59 11192.01 4695.01 8499.38 54
CDPH-MVS95.97 7295.38 7997.77 3898.93 5194.44 3596.35 21897.88 11286.98 27596.65 6497.89 8191.99 4899.47 10492.26 13999.46 4499.39 60
testtj96.93 3496.56 4898.05 2099.10 3694.66 3197.78 7698.22 4392.74 10997.59 2998.20 6591.96 4999.86 994.21 10399.25 7199.63 14
CP-MVS97.02 2796.81 3297.64 4999.33 2393.54 6698.80 798.28 2892.99 9696.45 7798.30 5391.90 5099.85 1895.61 7099.68 499.54 34
Regformer-496.97 3096.87 2597.25 6498.34 9092.66 9096.96 16298.01 9595.12 2297.14 4798.42 3591.82 5199.61 6696.90 1999.13 8399.50 43
ETH3D cwj APD-0.1696.56 5396.06 6498.05 2098.26 9995.19 2296.99 15898.05 8489.85 19397.26 4198.22 6191.80 5299.69 4894.84 9099.28 6599.27 73
CS-MVS96.79 4497.05 1696.00 12598.17 11190.38 17099.09 397.89 10995.31 1297.02 5598.02 7591.74 5398.71 18097.06 1499.18 7898.90 109
DPM-MVS95.69 7694.92 8998.01 2298.08 11595.71 995.27 27597.62 14290.43 18295.55 11097.07 13791.72 5499.50 10189.62 19298.94 9598.82 118
Regformer-396.85 3996.80 3397.01 7598.34 9092.02 11396.96 16297.76 12295.01 2697.08 5298.42 3591.71 5599.54 9096.80 2299.13 8399.48 47
XVS97.18 1796.96 2297.81 3399.38 1594.03 5498.59 1198.20 4694.85 3096.59 6998.29 5491.70 5699.80 3195.66 6399.40 5199.62 16
X-MVStestdata91.71 20489.67 26497.81 3399.38 1594.03 5498.59 1198.20 4694.85 3096.59 6932.69 37391.70 5699.80 3195.66 6399.40 5199.62 16
ZNCC-MVS96.96 3196.67 4297.85 2899.37 1794.12 4998.49 1898.18 5092.64 11396.39 7998.18 6691.61 5899.88 595.59 7399.55 2599.57 24
ACMMP_NAP97.20 1696.86 2698.23 1199.09 3895.16 2497.60 9998.19 4892.82 10697.93 2598.74 1391.60 5999.86 996.26 3899.52 2999.67 11
region2R97.07 2396.84 2997.77 3899.46 293.79 5998.52 1498.24 3893.19 9097.14 4798.34 4591.59 6099.87 895.46 7599.59 1799.64 13
DELS-MVS96.61 5196.38 5797.30 6097.79 13093.19 7795.96 24598.18 5095.23 1495.87 9697.65 10491.45 6199.70 4795.87 5599.44 4899.00 99
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SR-MVS97.01 2996.86 2697.47 5499.09 3893.27 7697.98 5698.07 7493.75 6697.45 3398.48 2991.43 6299.59 7296.22 4199.27 6799.54 34
test117296.93 3496.86 2697.15 7099.10 3692.34 9997.96 6198.04 8593.79 6597.35 3998.53 2491.40 6399.56 8596.30 3799.30 6299.55 31
SR-MVS-dyc-post96.88 3796.80 3397.11 7399.02 4692.34 9997.98 5698.03 8893.52 7797.43 3698.51 2691.40 6399.56 8596.05 5099.26 6999.43 55
GST-MVS96.85 3996.52 5097.82 3299.36 2094.14 4898.29 2998.13 5892.72 11096.70 6098.06 7291.35 6599.86 994.83 9199.28 6599.47 50
ACMMPR97.07 2396.84 2997.79 3599.44 693.88 5698.52 1498.31 2493.21 8797.15 4698.33 4891.35 6599.86 995.63 6899.59 1799.62 16
DeepC-MVS_fast93.89 296.93 3496.64 4397.78 3698.64 7494.30 3897.41 11598.04 8594.81 3596.59 6998.37 4091.24 6799.64 6595.16 7999.52 2999.42 58
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETV-MVS96.02 7095.89 6896.40 9997.16 15492.44 9797.47 11297.77 12194.55 4596.48 7494.51 26391.23 6898.92 15995.65 6698.19 11697.82 179
ETH3 D test640096.16 6795.52 7398.07 1998.90 5595.06 2697.03 15098.21 4488.16 24596.64 6597.70 9891.18 6999.67 5392.44 13899.47 4299.48 47
PGM-MVS96.81 4296.53 4997.65 4799.35 2293.53 6797.65 9298.98 192.22 12197.14 4798.44 3291.17 7099.85 1894.35 10199.46 4499.57 24
MP-MVS-pluss96.70 4796.27 5997.98 2499.23 3294.71 3096.96 16298.06 7790.67 17095.55 11098.78 1291.07 7199.86 996.58 3099.55 2599.38 62
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mPP-MVS96.86 3896.60 4597.64 4999.40 1293.44 6998.50 1798.09 6793.27 8695.95 9598.33 4891.04 7299.88 595.20 7899.57 2499.60 19
HPM-MVScopyleft96.69 4896.45 5597.40 5699.36 2093.11 7998.87 598.06 7791.17 15896.40 7897.99 7890.99 7399.58 7595.61 7099.61 1699.49 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVS_3200maxsize96.81 4296.71 4097.12 7299.01 4992.31 10297.98 5698.06 7793.11 9397.44 3498.55 2290.93 7499.55 8896.06 4999.25 7199.51 39
test1297.65 4798.46 8194.26 4197.66 13695.52 11390.89 7599.46 10599.25 7199.22 76
zzz-MVS97.07 2396.77 3697.97 2599.37 1794.42 3697.15 14698.08 6895.07 2496.11 8698.59 1890.88 7699.90 296.18 4799.50 3699.58 22
MTAPA97.08 2296.78 3597.97 2599.37 1794.42 3697.24 13398.08 6895.07 2496.11 8698.59 1890.88 7699.90 296.18 4799.50 3699.58 22
EI-MVSNet-Vis-set96.51 5496.47 5296.63 8398.24 10091.20 14096.89 16997.73 12694.74 4096.49 7398.49 2890.88 7699.58 7596.44 3598.32 11399.13 83
RE-MVS-def96.72 3999.02 4692.34 9997.98 5698.03 8893.52 7797.43 3698.51 2690.71 7996.05 5099.26 6999.43 55
EIA-MVS95.53 8295.47 7595.71 14097.06 16289.63 18697.82 7297.87 11493.57 7193.92 14095.04 24090.61 8098.95 15794.62 9898.68 10298.54 133
MP-MVScopyleft96.77 4596.45 5597.72 4299.39 1493.80 5898.41 2298.06 7793.37 8295.54 11298.34 4590.59 8199.88 594.83 9199.54 2799.49 45
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EI-MVSNet-UG-set96.34 6296.30 5896.47 9498.20 10590.93 15196.86 17097.72 12994.67 4296.16 8598.46 3090.43 8299.58 7596.23 4097.96 12398.90 109
原ACMM196.38 10298.59 7691.09 14697.89 10987.41 26795.22 11797.68 10090.25 8399.54 9087.95 22399.12 8698.49 140
112194.71 10793.83 11297.34 5898.57 7993.64 6496.04 23997.73 12681.56 33895.68 10497.85 8790.23 8499.65 5787.68 23399.12 8698.73 123
HPM-MVS_fast96.51 5496.27 5997.22 6799.32 2492.74 8798.74 898.06 7790.57 17996.77 5798.35 4290.21 8599.53 9394.80 9499.63 1499.38 62
testdata95.46 15898.18 10988.90 21797.66 13682.73 33097.03 5398.07 7190.06 8698.85 16589.67 19098.98 9398.64 130
新几何197.32 5998.60 7593.59 6597.75 12381.58 33795.75 10197.85 8790.04 8799.67 5386.50 25599.13 8398.69 127
CS-MVS-test96.47 5696.62 4496.01 12498.18 10990.40 16898.40 2397.65 13895.33 1197.02 5596.79 14889.98 8898.72 17897.06 1499.18 7898.91 107
DP-MVS Recon95.68 7795.12 8797.37 5799.19 3394.19 4497.03 15098.08 6888.35 23895.09 11997.65 10489.97 8999.48 10392.08 14898.59 10598.44 148
MVS_111021_LR96.24 6596.19 6396.39 10198.23 10491.35 13396.24 23198.79 493.99 5895.80 9997.65 10489.92 9099.24 12695.87 5599.20 7698.58 131
EPP-MVSNet95.22 9095.04 8895.76 13397.49 14789.56 19098.67 997.00 21490.69 16994.24 13397.62 10989.79 9198.81 16893.39 12496.49 16198.92 106
DROMVSNet96.42 5896.47 5296.26 11197.01 16791.52 12798.89 497.75 12394.42 4896.64 6597.68 10089.32 9298.60 18997.45 999.11 8898.67 129
PAPR94.18 11493.42 13096.48 9397.64 13991.42 13295.55 26197.71 13388.99 21592.34 17495.82 20489.19 9399.11 13886.14 26197.38 13898.90 109
MG-MVS95.61 7995.38 7996.31 10698.42 8490.53 16296.04 23997.48 15693.47 7995.67 10798.10 6889.17 9499.25 12591.27 16698.77 9999.13 83
PAPM_NR95.01 9494.59 9796.26 11198.89 5890.68 15997.24 13397.73 12691.80 13592.93 16596.62 16689.13 9599.14 13689.21 20497.78 12798.97 100
ACMMPcopyleft96.27 6495.93 6697.28 6299.24 3092.62 9298.25 3498.81 392.99 9694.56 12798.39 3988.96 9699.85 1894.57 10097.63 13099.36 64
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
UA-Net95.95 7395.53 7297.20 6997.67 13592.98 8397.65 9298.13 5894.81 3596.61 6798.35 4288.87 9799.51 9890.36 17897.35 14099.11 87
API-MVS94.84 10394.49 10295.90 12997.90 12492.00 11497.80 7497.48 15689.19 21094.81 12296.71 15288.84 9899.17 13288.91 21098.76 10096.53 215
test22298.24 10092.21 10595.33 27097.60 14379.22 35095.25 11597.84 9088.80 9999.15 8198.72 124
Test By Simon88.73 100
pcd_1.5k_mvsjas7.39 3479.85 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 37988.65 1010.00 3800.00 3780.00 3780.00 376
PS-MVSNAJss93.74 13393.51 12494.44 20093.91 30889.28 20797.75 7897.56 15092.50 11589.94 22996.54 16988.65 10198.18 22393.83 11590.90 24595.86 235
PS-MVSNAJ95.37 8495.33 8195.49 15497.35 14890.66 16095.31 27297.48 15693.85 6296.51 7295.70 21588.65 10199.65 5794.80 9498.27 11496.17 224
xiu_mvs_v2_base95.32 8695.29 8295.40 15997.22 15090.50 16395.44 26697.44 17193.70 6996.46 7696.18 18588.59 10499.53 9394.79 9697.81 12696.17 224
PLCcopyleft91.00 694.11 11993.43 12896.13 11698.58 7891.15 14596.69 18897.39 17787.29 27091.37 19296.71 15288.39 10599.52 9787.33 24397.13 14897.73 181
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UniMVSNet_NR-MVSNet93.37 14492.67 15195.47 15795.34 24592.83 8597.17 14398.58 1192.98 10190.13 22195.80 20588.37 10697.85 27091.71 15583.93 32295.73 248
PVSNet_BlendedMVS94.06 12193.92 11094.47 19998.27 9689.46 19796.73 18298.36 1790.17 18594.36 13095.24 23488.02 10799.58 7593.44 12190.72 24794.36 317
PVSNet_Blended94.87 10294.56 9895.81 13298.27 9689.46 19795.47 26598.36 1788.84 22294.36 13096.09 19388.02 10799.58 7593.44 12198.18 11798.40 151
TAPA-MVS90.10 792.30 18591.22 20295.56 14798.33 9289.60 18896.79 17897.65 13881.83 33591.52 18997.23 12987.94 10998.91 16171.31 35798.37 11298.17 161
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
abl_696.40 5996.21 6196.98 7798.89 5892.20 10797.89 6598.03 8893.34 8597.22 4398.42 3587.93 11099.72 3995.10 8299.07 8999.02 92
MVS_Test94.89 10194.62 9695.68 14196.83 17589.55 19196.70 18697.17 19591.17 15895.60 10996.11 19287.87 11198.76 17393.01 13497.17 14798.72 124
UniMVSNet (Re)93.31 14692.55 15695.61 14595.39 23993.34 7497.39 11998.71 693.14 9290.10 22594.83 24987.71 11298.03 24791.67 15983.99 32195.46 257
FC-MVSNet-test93.94 12693.57 11995.04 16995.48 23691.45 13198.12 4798.71 693.37 8290.23 21596.70 15487.66 11397.85 27091.49 16190.39 25295.83 239
canonicalmvs96.02 7095.45 7697.75 4097.59 14395.15 2598.28 3097.60 14394.52 4696.27 8296.12 18987.65 11499.18 13196.20 4694.82 18898.91 107
FIs94.09 12093.70 11595.27 16195.70 22892.03 11298.10 4898.68 893.36 8490.39 21296.70 15487.63 11597.94 26192.25 14190.50 25195.84 238
CDS-MVSNet94.14 11893.54 12195.93 12796.18 20891.46 13096.33 22197.04 21088.97 21793.56 14596.51 17087.55 11697.89 26889.80 18695.95 16798.44 148
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Effi-MVS+94.93 9994.45 10496.36 10496.61 18291.47 12996.41 21097.41 17691.02 16394.50 12895.92 19887.53 11798.78 17093.89 11296.81 15198.84 117
casdiffmvs95.64 7895.49 7496.08 11796.76 18090.45 16597.29 13097.44 17194.00 5795.46 11497.98 7987.52 11898.73 17595.64 6797.33 14199.08 89
PVSNet_Blended_VisFu95.27 8794.91 9096.38 10298.20 10590.86 15397.27 13198.25 3690.21 18494.18 13497.27 12687.48 11999.73 3693.53 11897.77 12898.55 132
mvs_anonymous93.82 13093.74 11494.06 21696.44 19685.41 28995.81 25297.05 20889.85 19390.09 22696.36 17987.44 12097.75 28193.97 10896.69 15699.02 92
CANet96.39 6096.02 6597.50 5397.62 14093.38 7197.02 15397.96 10495.42 794.86 12197.81 9187.38 12199.82 2996.88 2099.20 7699.29 68
baseline95.58 8095.42 7896.08 11796.78 17790.41 16797.16 14497.45 16793.69 7095.65 10897.85 8787.29 12298.68 18295.66 6397.25 14499.13 83
TAMVS94.01 12493.46 12695.64 14296.16 21090.45 16596.71 18596.89 22589.27 20893.46 15096.92 14487.29 12297.94 26188.70 21495.74 17298.53 134
nrg03094.05 12293.31 13296.27 11095.22 25694.59 3298.34 2597.46 16192.93 10391.21 20296.64 15987.23 12498.22 21794.99 8785.80 29395.98 233
CPTT-MVS95.57 8195.19 8496.70 8099.27 2891.48 12898.33 2698.11 6387.79 25695.17 11898.03 7487.09 12599.61 6693.51 11999.42 4999.02 92
OMC-MVS95.09 9394.70 9596.25 11398.46 8191.28 13496.43 20897.57 14792.04 13094.77 12397.96 8087.01 12699.09 14291.31 16596.77 15298.36 155
DeepC-MVS93.07 396.06 6895.66 7197.29 6197.96 11893.17 7897.30 12998.06 7793.92 5993.38 15298.66 1486.83 12799.73 3695.60 7299.22 7498.96 101
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
IterMVS-LS92.29 18691.94 17593.34 25596.25 20486.97 26396.57 20497.05 20890.67 17089.50 24594.80 25186.59 12897.64 28989.91 18386.11 29195.40 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet93.03 15892.88 14293.48 24895.77 22586.98 26296.44 20697.12 19990.66 17291.30 19697.64 10786.56 12998.05 24389.91 18390.55 24995.41 260
miper_enhance_ethall91.54 21591.01 20793.15 26295.35 24487.07 26193.97 30896.90 22386.79 27989.17 25593.43 31286.55 13097.64 28989.97 18286.93 28294.74 307
1112_ss93.37 14492.42 16296.21 11497.05 16490.99 14796.31 22396.72 23586.87 27889.83 23396.69 15686.51 13199.14 13688.12 22093.67 20398.50 138
diffmvs95.25 8895.13 8695.63 14396.43 19789.34 20295.99 24497.35 18392.83 10596.31 8097.37 12386.44 13298.67 18396.26 3897.19 14698.87 114
WTY-MVS94.71 10794.02 10996.79 7997.71 13492.05 11196.59 20197.35 18390.61 17694.64 12596.93 14186.41 13399.39 11491.20 16894.71 19298.94 104
EPNet95.20 9194.56 9897.14 7192.80 33492.68 8997.85 7094.87 32196.64 192.46 16897.80 9386.23 13499.65 5793.72 11698.62 10499.10 88
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth91.59 20991.13 20592.97 26895.55 23386.57 27294.47 29096.88 22687.77 25788.88 26094.01 29086.22 13597.54 29889.49 19486.93 28294.79 303
Fast-Effi-MVS+93.46 14192.75 14795.59 14696.77 17890.03 17496.81 17797.13 19888.19 24191.30 19694.27 27986.21 13698.63 18687.66 23596.46 16398.12 163
MVSFormer95.37 8495.16 8595.99 12696.34 20191.21 13898.22 3997.57 14791.42 14696.22 8397.32 12486.20 13797.92 26494.07 10699.05 9098.85 115
lupinMVS94.99 9894.56 9896.29 10996.34 20191.21 13895.83 25196.27 26188.93 21996.22 8396.88 14686.20 13798.85 16595.27 7799.05 9098.82 118
114514_t93.95 12593.06 13796.63 8399.07 4191.61 12297.46 11497.96 10477.99 35493.00 16097.57 11386.14 13999.33 11889.22 20399.15 8198.94 104
alignmvs95.87 7595.23 8397.78 3697.56 14695.19 2297.86 6797.17 19594.39 5096.47 7596.40 17785.89 14099.20 12896.21 4595.11 18498.95 103
WR-MVS_H92.00 19791.35 19393.95 22595.09 26389.47 19598.04 5398.68 891.46 14488.34 27294.68 25785.86 14197.56 29685.77 26984.24 31894.82 298
Test_1112_low_res92.84 16991.84 17895.85 13197.04 16589.97 18095.53 26396.64 24485.38 29889.65 23995.18 23585.86 14199.10 13987.70 23093.58 20898.49 140
HY-MVS89.66 993.87 12892.95 14096.63 8397.10 15892.49 9695.64 25996.64 24489.05 21393.00 16095.79 20885.77 14399.45 10789.16 20794.35 19497.96 168
c3_l91.38 22290.89 20992.88 27195.58 23186.30 27594.68 28596.84 23188.17 24388.83 26394.23 28285.65 14497.47 30589.36 19784.63 31194.89 293
IS-MVSNet94.90 10094.52 10196.05 12097.67 13590.56 16198.44 2096.22 26493.21 8793.99 13797.74 9685.55 14598.45 20289.98 18197.86 12499.14 82
MVS91.71 20490.44 23095.51 15195.20 25891.59 12496.04 23997.45 16773.44 36187.36 29595.60 21985.42 14699.10 13985.97 26697.46 13395.83 239
VNet95.89 7495.45 7697.21 6898.07 11692.94 8497.50 10798.15 5593.87 6197.52 3097.61 11085.29 14799.53 9395.81 6095.27 18099.16 79
CNLPA94.28 11293.53 12296.52 8898.38 8892.55 9496.59 20196.88 22690.13 18791.91 18497.24 12885.21 14899.09 14287.64 23697.83 12597.92 171
F-COLMAP93.58 13892.98 13995.37 16098.40 8588.98 21597.18 14297.29 18887.75 25990.49 20997.10 13685.21 14899.50 10186.70 25296.72 15597.63 185
LCM-MVSNet-Re92.50 17592.52 15992.44 28196.82 17681.89 33096.92 16693.71 34092.41 11784.30 32694.60 26185.08 15097.03 32291.51 16097.36 13998.40 151
NR-MVSNet92.34 18291.27 19995.53 15094.95 26993.05 8097.39 11998.07 7492.65 11284.46 32495.71 21385.00 15197.77 28089.71 18883.52 32895.78 242
PAPM91.52 21690.30 23695.20 16395.30 25189.83 18393.38 32496.85 23086.26 28688.59 26895.80 20584.88 15298.15 22675.67 34395.93 16897.63 185
MAR-MVS94.22 11393.46 12696.51 9198.00 11792.19 10897.67 8997.47 15988.13 24793.00 16095.84 20284.86 15399.51 9887.99 22298.17 11897.83 178
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
jason94.84 10394.39 10696.18 11595.52 23490.93 15196.09 23796.52 25189.28 20796.01 9397.32 12484.70 15498.77 17295.15 8098.91 9798.85 115
jason: jason.
sss94.51 10993.80 11396.64 8197.07 15991.97 11596.32 22298.06 7788.94 21894.50 12896.78 14984.60 15599.27 12491.90 14996.02 16598.68 128
LS3D93.57 13992.61 15496.47 9497.59 14391.61 12297.67 8997.72 12985.17 30290.29 21498.34 4584.60 15599.73 3683.85 29398.27 11498.06 167
Vis-MVSNet (Re-imp)94.15 11593.88 11194.95 17797.61 14187.92 24298.10 4895.80 27892.22 12193.02 15997.45 11984.53 15797.91 26788.24 21897.97 12299.02 92
GeoE93.89 12793.28 13395.72 13996.96 17089.75 18598.24 3796.92 22289.47 20292.12 18097.21 13084.42 15898.39 20787.71 22996.50 16099.01 96
cdsmvs_eth3d_5k23.24 34330.99 3450.00 3610.00 3840.00 3850.00 37297.63 1410.00 3790.00 38096.88 14684.38 1590.00 3800.00 3780.00 3780.00 376
test_yl94.78 10594.23 10796.43 9797.74 13291.22 13696.85 17197.10 20191.23 15695.71 10296.93 14184.30 16099.31 12193.10 12895.12 18298.75 120
DCV-MVSNet94.78 10594.23 10796.43 9797.74 13291.22 13696.85 17197.10 20191.23 15695.71 10296.93 14184.30 16099.31 12193.10 12895.12 18298.75 120
CHOSEN 280x42093.12 15492.72 15094.34 20696.71 18187.27 25390.29 35197.72 12986.61 28291.34 19395.29 23184.29 16298.41 20393.25 12698.94 9597.35 197
baseline192.82 17091.90 17695.55 14997.20 15290.77 15797.19 14194.58 32692.20 12392.36 17296.34 18084.16 16398.21 21889.20 20583.90 32597.68 184
eth_miper_zixun_eth91.02 24190.59 22592.34 28595.33 24884.35 30594.10 30596.90 22388.56 23388.84 26294.33 27484.08 16497.60 29488.77 21384.37 31795.06 282
PCF-MVS89.48 1191.56 21289.95 25296.36 10496.60 18392.52 9592.51 33897.26 18979.41 34988.90 25896.56 16884.04 16599.55 8877.01 33997.30 14297.01 201
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
131492.81 17192.03 17195.14 16695.33 24889.52 19496.04 23997.44 17187.72 26086.25 31095.33 23083.84 16698.79 16989.26 20197.05 14997.11 200
DP-MVS92.76 17291.51 19196.52 8898.77 6190.99 14797.38 12196.08 26982.38 33189.29 25197.87 8483.77 16799.69 4881.37 31396.69 15698.89 112
3Dnovator+91.43 495.40 8394.48 10398.16 1596.90 17195.34 1698.48 1997.87 11494.65 4488.53 27098.02 7583.69 16899.71 4293.18 12798.96 9499.44 53
h-mvs3394.15 11593.52 12396.04 12197.81 12890.22 17297.62 9897.58 14695.19 1696.74 5897.45 11983.67 16999.61 6695.85 5779.73 34298.29 158
hse-mvs293.45 14292.99 13894.81 18397.02 16688.59 22396.69 18896.47 25395.19 1696.74 5896.16 18883.67 16998.48 20195.85 5779.13 34697.35 197
AdaColmapbinary94.34 11193.68 11796.31 10698.59 7691.68 12196.59 20197.81 12089.87 19092.15 17897.06 13883.62 17199.54 9089.34 19898.07 12097.70 183
DU-MVS92.90 16592.04 17095.49 15494.95 26992.83 8597.16 14498.24 3893.02 9590.13 22195.71 21383.47 17297.85 27091.71 15583.93 32295.78 242
Baseline_NR-MVSNet91.20 23390.62 22392.95 26993.83 31188.03 24097.01 15795.12 30888.42 23689.70 23695.13 23883.47 17297.44 30889.66 19183.24 33093.37 335
miper_lstm_enhance90.50 26190.06 25091.83 29595.33 24883.74 31393.86 31296.70 24087.56 26487.79 28693.81 29883.45 17496.92 32887.39 24184.62 31294.82 298
EPNet_dtu91.71 20491.28 19892.99 26793.76 31383.71 31596.69 18895.28 29993.15 9187.02 30295.95 19783.37 17597.38 31379.46 32596.84 15097.88 174
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-untuned92.94 16392.62 15393.92 22997.22 15086.16 28096.40 21396.25 26390.06 18889.79 23496.17 18783.19 17698.35 20987.19 24697.27 14397.24 199
TranMVSNet+NR-MVSNet92.50 17591.63 18495.14 16694.76 28092.07 11097.53 10598.11 6392.90 10489.56 24296.12 18983.16 17797.60 29489.30 19983.20 33195.75 246
CHOSEN 1792x268894.15 11593.51 12496.06 11998.27 9689.38 20095.18 27998.48 1585.60 29593.76 14397.11 13583.15 17899.61 6691.33 16498.72 10199.19 77
PMMVS92.86 16792.34 16394.42 20394.92 27186.73 26794.53 28996.38 25784.78 30994.27 13295.12 23983.13 17998.40 20491.47 16296.49 16198.12 163
Effi-MVS+-dtu93.08 15593.21 13592.68 27896.02 21783.25 32097.14 14796.72 23593.85 6291.20 20393.44 31083.08 18098.30 21391.69 15795.73 17396.50 217
mvs-test193.63 13693.69 11693.46 25096.02 21784.61 30397.24 13396.72 23593.85 6292.30 17595.76 21083.08 18098.89 16391.69 15796.54 15996.87 208
v891.29 23090.53 22993.57 24594.15 30188.12 23997.34 12397.06 20788.99 21588.32 27394.26 28183.08 18098.01 24987.62 23783.92 32494.57 312
DIV-MVS_self_test90.97 24490.33 23392.88 27195.36 24386.19 27994.46 29296.63 24787.82 25388.18 27994.23 28282.99 18397.53 30087.72 22785.57 29594.93 289
cl____90.96 24590.32 23492.89 27095.37 24286.21 27894.46 29296.64 24487.82 25388.15 28094.18 28582.98 18497.54 29887.70 23085.59 29494.92 291
BH-w/o92.14 19591.75 18093.31 25696.99 16985.73 28495.67 25695.69 28288.73 22989.26 25394.82 25082.97 18598.07 24085.26 27696.32 16496.13 228
v14890.99 24290.38 23292.81 27493.83 31185.80 28396.78 18096.68 24189.45 20388.75 26693.93 29482.96 18697.82 27487.83 22583.25 32994.80 301
HyFIR lowres test93.66 13592.92 14195.87 13098.24 10089.88 18294.58 28798.49 1385.06 30493.78 14295.78 20982.86 18798.67 18391.77 15395.71 17499.07 91
test_djsdf93.07 15692.76 14594.00 22093.49 32188.70 22198.22 3997.57 14791.42 14690.08 22795.55 22382.85 18897.92 26494.07 10691.58 23295.40 263
PatchmatchNetpermissive91.91 19991.35 19393.59 24395.38 24084.11 30993.15 32895.39 29289.54 19992.10 18193.68 30382.82 18998.13 22784.81 28095.32 17998.52 135
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs182.76 19098.45 145
xiu_mvs_v1_base_debu95.01 9494.76 9295.75 13596.58 18591.71 11896.25 22897.35 18392.99 9696.70 6096.63 16382.67 19199.44 10896.22 4197.46 13396.11 229
xiu_mvs_v1_base95.01 9494.76 9295.75 13596.58 18591.71 11896.25 22897.35 18392.99 9696.70 6096.63 16382.67 19199.44 10896.22 4197.46 13396.11 229
xiu_mvs_v1_base_debi95.01 9494.76 9295.75 13596.58 18591.71 11896.25 22897.35 18392.99 9696.70 6096.63 16382.67 19199.44 10896.22 4197.46 13396.11 229
patchmatchnet-post90.45 34382.65 19498.10 232
V4291.58 21190.87 21093.73 23594.05 30588.50 22797.32 12696.97 21588.80 22789.71 23594.33 27482.54 19598.05 24389.01 20885.07 30594.64 311
WR-MVS92.34 18291.53 18894.77 18895.13 26190.83 15496.40 21397.98 10291.88 13489.29 25195.54 22482.50 19697.80 27589.79 18785.27 30195.69 249
tpmrst91.44 21991.32 19591.79 29895.15 25979.20 35393.42 32395.37 29488.55 23493.49 14993.67 30482.49 19798.27 21490.41 17689.34 26197.90 172
MDTV_nov1_ep13_2view70.35 36793.10 33083.88 31993.55 14682.47 19886.25 25898.38 153
XVG-OURS-SEG-HR93.86 12993.55 12094.81 18397.06 16288.53 22695.28 27397.45 16791.68 13894.08 13697.68 10082.41 19998.90 16293.84 11492.47 21796.98 202
QAPM93.45 14292.27 16696.98 7796.77 17892.62 9298.39 2498.12 6084.50 31288.27 27697.77 9482.39 20099.81 3085.40 27498.81 9898.51 137
Patchmatch-test89.42 27987.99 28693.70 23895.27 25285.11 29588.98 35894.37 33181.11 33987.10 30093.69 30182.28 20197.50 30374.37 34794.76 18998.48 142
Vis-MVSNetpermissive95.23 8994.81 9196.51 9197.18 15391.58 12598.26 3398.12 6094.38 5194.90 12098.15 6782.28 20198.92 15991.45 16398.58 10699.01 96
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator91.36 595.19 9294.44 10597.44 5596.56 18893.36 7398.65 1098.36 1794.12 5589.25 25498.06 7282.20 20399.77 3393.41 12399.32 5999.18 78
v1091.04 24090.23 24193.49 24794.12 30288.16 23897.32 12697.08 20488.26 24088.29 27594.22 28482.17 20497.97 25486.45 25684.12 31994.33 318
v114491.37 22490.60 22493.68 24093.89 30988.23 23496.84 17397.03 21288.37 23789.69 23794.39 27082.04 20597.98 25187.80 22685.37 29894.84 295
MVSTER93.20 15092.81 14494.37 20496.56 18889.59 18997.06 14997.12 19991.24 15591.30 19695.96 19682.02 20698.05 24393.48 12090.55 24995.47 256
CP-MVSNet91.89 20091.24 20093.82 23295.05 26488.57 22497.82 7298.19 4891.70 13788.21 27895.76 21081.96 20797.52 30287.86 22484.65 31095.37 266
Patchmatch-RL test87.38 30086.24 30190.81 31788.74 36378.40 35788.12 36093.17 34587.11 27482.17 34189.29 35081.95 20895.60 34788.64 21577.02 34998.41 150
sam_mvs81.94 209
pmmvs490.93 24689.85 25694.17 21293.34 32590.79 15694.60 28696.02 27084.62 31087.45 29195.15 23681.88 21097.45 30787.70 23087.87 27394.27 322
test_post17.58 37681.76 21198.08 237
XVG-OURS93.72 13493.35 13194.80 18697.07 15988.61 22294.79 28397.46 16191.97 13393.99 13797.86 8681.74 21298.88 16492.64 13792.67 21596.92 206
v2v48291.59 20990.85 21393.80 23393.87 31088.17 23796.94 16596.88 22689.54 19989.53 24394.90 24581.70 21398.02 24889.25 20285.04 30795.20 278
baseline291.63 20790.86 21193.94 22794.33 29786.32 27495.92 24791.64 35789.37 20586.94 30394.69 25681.62 21498.69 18188.64 21594.57 19396.81 210
v14419291.06 23990.28 23793.39 25293.66 31687.23 25696.83 17497.07 20587.43 26689.69 23794.28 27881.48 21598.00 25087.18 24784.92 30994.93 289
MDTV_nov1_ep1390.76 21895.22 25680.33 34293.03 33195.28 29988.14 24692.84 16693.83 29581.34 21698.08 23782.86 29894.34 195
HQP_MVS93.78 13293.43 12894.82 18196.21 20589.99 17797.74 7997.51 15394.85 3091.34 19396.64 15981.32 21798.60 18993.02 13292.23 22095.86 235
plane_prior696.10 21590.00 17581.32 217
v7n90.76 25089.86 25593.45 25193.54 31887.60 25097.70 8797.37 18088.85 22187.65 28994.08 28981.08 21998.10 23284.68 28283.79 32694.66 310
HQP2-MVS80.95 220
HQP-MVS93.19 15192.74 14894.54 19895.86 22089.33 20396.65 19297.39 17793.55 7290.14 21795.87 20080.95 22098.50 19792.13 14592.10 22595.78 242
CR-MVSNet90.82 24989.77 26093.95 22594.45 29387.19 25790.23 35295.68 28486.89 27792.40 16992.36 32780.91 22297.05 32181.09 31593.95 20197.60 190
Patchmtry88.64 29087.25 29392.78 27594.09 30386.64 26889.82 35595.68 28480.81 34387.63 29092.36 32780.91 22297.03 32278.86 32885.12 30494.67 309
v119291.07 23890.23 24193.58 24493.70 31487.82 24696.73 18297.07 20587.77 25789.58 24094.32 27680.90 22497.97 25486.52 25485.48 29694.95 285
cl2291.21 23290.56 22893.14 26396.09 21686.80 26594.41 29496.58 25087.80 25588.58 26993.99 29280.85 22597.62 29289.87 18586.93 28294.99 284
anonymousdsp92.16 19391.55 18793.97 22392.58 33889.55 19197.51 10697.42 17589.42 20488.40 27194.84 24880.66 22697.88 26991.87 15191.28 23894.48 313
CLD-MVS92.98 16092.53 15894.32 20796.12 21489.20 20995.28 27397.47 15992.66 11189.90 23095.62 21880.58 22798.40 20492.73 13692.40 21895.38 265
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_post192.81 33416.58 37780.53 22897.68 28586.20 259
VPA-MVSNet93.24 14892.48 16195.51 15195.70 22892.39 9897.86 6798.66 1092.30 11992.09 18295.37 22980.49 22998.40 20493.95 10985.86 29295.75 246
tpmvs89.83 27689.15 27491.89 29394.92 27180.30 34393.11 32995.46 29186.28 28588.08 28192.65 31980.44 23098.52 19681.47 30989.92 25696.84 209
PatchMatch-RL92.90 16592.02 17295.56 14798.19 10790.80 15595.27 27597.18 19387.96 24991.86 18695.68 21680.44 23098.99 15584.01 28997.54 13296.89 207
PEN-MVS91.20 23390.44 23093.48 24894.49 29187.91 24497.76 7798.18 5091.29 15187.78 28795.74 21280.35 23297.33 31585.46 27382.96 33295.19 279
Fast-Effi-MVS+-dtu92.29 18691.99 17393.21 26195.27 25285.52 28797.03 15096.63 24792.09 12889.11 25695.14 23780.33 23398.08 23787.54 23994.74 19196.03 232
MSDG91.42 22090.24 24094.96 17697.15 15688.91 21693.69 31796.32 25985.72 29486.93 30496.47 17280.24 23498.98 15680.57 31695.05 18596.98 202
v192192090.85 24890.03 25193.29 25793.55 31786.96 26496.74 18197.04 21087.36 26889.52 24494.34 27380.23 23597.97 25486.27 25785.21 30294.94 287
RPMNet88.98 28287.05 29794.77 18894.45 29387.19 25790.23 35298.03 8877.87 35692.40 16987.55 35880.17 23699.51 9868.84 36193.95 20197.60 190
ET-MVSNet_ETH3D91.49 21790.11 24695.63 14396.40 19891.57 12695.34 26993.48 34290.60 17875.58 35895.49 22680.08 23796.79 33194.25 10289.76 25898.52 135
PatchT88.87 28687.42 29193.22 26094.08 30485.10 29689.51 35694.64 32581.92 33492.36 17288.15 35580.05 23897.01 32572.43 35393.65 20497.54 193
our_test_388.78 28887.98 28791.20 31292.45 34182.53 32493.61 32195.69 28285.77 29384.88 32193.71 30079.99 23996.78 33279.47 32486.24 28894.28 321
DTE-MVSNet90.56 25889.75 26293.01 26693.95 30687.25 25497.64 9697.65 13890.74 16787.12 29895.68 21679.97 24097.00 32683.33 29481.66 33794.78 305
D2MVS91.30 22990.95 20892.35 28494.71 28385.52 28796.18 23498.21 4488.89 22086.60 30793.82 29779.92 24197.95 26089.29 20090.95 24493.56 331
TransMVSNet (Re)88.94 28387.56 29093.08 26594.35 29688.45 22997.73 8195.23 30387.47 26584.26 32795.29 23179.86 24297.33 31579.44 32674.44 35593.45 334
ACMM89.79 892.96 16192.50 16094.35 20596.30 20388.71 22097.58 10097.36 18291.40 14990.53 20896.65 15879.77 24398.75 17491.24 16791.64 23095.59 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XXY-MVS92.16 19391.23 20194.95 17794.75 28190.94 15097.47 11297.43 17489.14 21188.90 25896.43 17479.71 24498.24 21589.56 19387.68 27595.67 251
PS-CasMVS91.55 21390.84 21493.69 23994.96 26888.28 23197.84 7198.24 3891.46 14488.04 28295.80 20579.67 24597.48 30487.02 24984.54 31595.31 269
RRT_MVS93.21 14992.32 16595.91 12894.92 27194.15 4796.92 16696.86 22991.42 14691.28 19996.43 17479.66 24698.10 23293.29 12590.06 25495.46 257
ab-mvs93.57 13992.55 15696.64 8197.28 14991.96 11695.40 26797.45 16789.81 19593.22 15896.28 18279.62 24799.46 10590.74 17393.11 20998.50 138
v124090.70 25589.85 25693.23 25993.51 32086.80 26596.61 19897.02 21387.16 27389.58 24094.31 27779.55 24897.98 25185.52 27285.44 29794.90 292
CostFormer91.18 23790.70 22192.62 27994.84 27781.76 33194.09 30694.43 32884.15 31592.72 16793.77 29979.43 24998.20 22090.70 17492.18 22397.90 172
CANet_DTU94.37 11093.65 11896.55 8796.46 19592.13 10996.21 23296.67 24394.38 5193.53 14897.03 13979.34 25099.71 4290.76 17298.45 11197.82 179
OPM-MVS93.28 14792.76 14594.82 18194.63 28790.77 15796.65 19297.18 19393.72 6791.68 18797.26 12779.33 25198.63 18692.13 14592.28 21995.07 281
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
JIA-IIPM88.26 29487.04 29891.91 29293.52 31981.42 33389.38 35794.38 33080.84 34290.93 20580.74 36379.22 25297.92 26482.76 30091.62 23196.38 220
CVMVSNet91.23 23191.75 18089.67 33195.77 22574.69 36296.44 20694.88 31885.81 29292.18 17797.64 10779.07 25395.58 34888.06 22195.86 17098.74 122
LPG-MVS_test92.94 16392.56 15594.10 21496.16 21088.26 23297.65 9297.46 16191.29 15190.12 22397.16 13279.05 25498.73 17592.25 14191.89 22895.31 269
LGP-MVS_train94.10 21496.16 21088.26 23297.46 16191.29 15190.12 22397.16 13279.05 25498.73 17592.25 14191.89 22895.31 269
test-LLR91.42 22091.19 20392.12 28894.59 28880.66 33794.29 30092.98 34691.11 16090.76 20692.37 32479.02 25698.07 24088.81 21196.74 15397.63 185
test0.0.03 189.37 28088.70 27891.41 30892.47 34085.63 28595.22 27892.70 34991.11 16086.91 30593.65 30579.02 25693.19 36378.00 33289.18 26295.41 260
ADS-MVSNet289.45 27888.59 28092.03 29095.86 22082.26 32890.93 34794.32 33383.23 32791.28 19991.81 33479.01 25895.99 33979.52 32291.39 23697.84 176
ADS-MVSNet89.89 27388.68 27993.53 24695.86 22084.89 30090.93 34795.07 31083.23 32791.28 19991.81 33479.01 25897.85 27079.52 32291.39 23697.84 176
ppachtmachnet_test88.35 29387.29 29291.53 30492.45 34183.57 31893.75 31595.97 27184.28 31385.32 31994.18 28579.00 26096.93 32775.71 34284.99 30894.10 324
OpenMVScopyleft89.19 1292.86 16791.68 18396.40 9995.34 24592.73 8898.27 3198.12 6084.86 30785.78 31397.75 9578.89 26199.74 3587.50 24098.65 10396.73 212
LTVRE_ROB88.41 1390.99 24289.92 25394.19 21196.18 20889.55 19196.31 22397.09 20387.88 25285.67 31495.91 19978.79 26298.57 19381.50 30889.98 25594.44 315
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
AUN-MVS91.76 20390.75 21994.81 18397.00 16888.57 22496.65 19296.49 25289.63 19892.15 17896.12 18978.66 26398.50 19790.83 17179.18 34597.36 196
pm-mvs190.72 25489.65 26693.96 22494.29 30089.63 18697.79 7596.82 23289.07 21286.12 31295.48 22778.61 26497.78 27886.97 25081.67 33694.46 314
PVSNet86.66 1892.24 18991.74 18293.73 23597.77 13183.69 31792.88 33296.72 23587.91 25193.00 16094.86 24778.51 26599.05 15086.53 25397.45 13798.47 143
ACMP89.59 1092.62 17492.14 16894.05 21796.40 19888.20 23597.36 12297.25 19191.52 14188.30 27496.64 15978.46 26698.72 17891.86 15291.48 23495.23 277
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
bset_n11_16_dypcd91.55 21390.59 22594.44 20091.51 34790.25 17192.70 33593.42 34392.27 12090.22 21694.74 25478.42 26797.80 27594.19 10487.86 27495.29 276
BH-RMVSNet92.72 17391.97 17494.97 17597.16 15487.99 24196.15 23595.60 28690.62 17591.87 18597.15 13478.41 26898.57 19383.16 29597.60 13198.36 155
thres20092.23 19091.39 19294.75 19097.61 14189.03 21496.60 20095.09 30992.08 12993.28 15594.00 29178.39 26999.04 15381.26 31494.18 19696.19 223
MDA-MVSNet_test_wron85.87 31484.23 31890.80 31992.38 34382.57 32393.17 32695.15 30682.15 33267.65 36292.33 33078.20 27095.51 34977.33 33479.74 34194.31 320
tfpn200view992.38 18191.52 18994.95 17797.85 12689.29 20597.41 11594.88 31892.19 12593.27 15694.46 26878.17 27199.08 14481.40 31094.08 19796.48 218
thres40092.42 17991.52 18995.12 16897.85 12689.29 20597.41 11594.88 31892.19 12593.27 15694.46 26878.17 27199.08 14481.40 31094.08 19796.98 202
YYNet185.87 31484.23 31890.78 32092.38 34382.46 32693.17 32695.14 30782.12 33367.69 36192.36 32778.16 27395.50 35077.31 33579.73 34294.39 316
CL-MVSNet_self_test86.31 30985.15 31189.80 33088.83 36281.74 33293.93 31196.22 26486.67 28085.03 32090.80 34178.09 27494.50 35474.92 34471.86 35993.15 336
thres100view90092.43 17891.58 18694.98 17497.92 12289.37 20197.71 8694.66 32392.20 12393.31 15494.90 24578.06 27599.08 14481.40 31094.08 19796.48 218
thres600view792.49 17791.60 18595.18 16497.91 12389.47 19597.65 9294.66 32392.18 12793.33 15394.91 24478.06 27599.10 13981.61 30794.06 20096.98 202
tpm cat188.36 29287.21 29591.81 29795.13 26180.55 34092.58 33795.70 28174.97 35887.45 29191.96 33278.01 27798.17 22580.39 31888.74 26796.72 213
MVP-Stereo90.74 25390.08 24792.71 27693.19 32888.20 23595.86 24996.27 26186.07 28984.86 32294.76 25277.84 27897.75 28183.88 29298.01 12192.17 351
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EPMVS90.70 25589.81 25893.37 25494.73 28284.21 30793.67 31888.02 36789.50 20192.38 17193.49 30877.82 27997.78 27886.03 26592.68 21498.11 166
tfpnnormal89.70 27788.40 28293.60 24295.15 25990.10 17397.56 10298.16 5487.28 27186.16 31194.63 26077.57 28098.05 24374.48 34584.59 31392.65 343
tpm90.25 26589.74 26391.76 30193.92 30779.73 34993.98 30793.54 34188.28 23991.99 18393.25 31377.51 28197.44 30887.30 24487.94 27298.12 163
thisisatest051592.29 18691.30 19795.25 16296.60 18388.90 21794.36 29692.32 35187.92 25093.43 15194.57 26277.28 28299.00 15489.42 19695.86 17097.86 175
FMVSNet391.78 20290.69 22295.03 17096.53 19092.27 10497.02 15396.93 21889.79 19689.35 24894.65 25977.01 28397.47 30586.12 26288.82 26495.35 267
test_part192.21 19291.10 20695.51 15197.80 12992.66 9098.02 5497.68 13489.79 19688.80 26496.02 19476.85 28498.18 22390.86 17084.11 32095.69 249
TR-MVS91.48 21890.59 22594.16 21396.40 19887.33 25195.67 25695.34 29887.68 26191.46 19095.52 22576.77 28598.35 20982.85 29993.61 20696.79 211
tttt051792.96 16192.33 16494.87 18097.11 15787.16 25997.97 6092.09 35390.63 17493.88 14197.01 14076.50 28699.06 14990.29 18095.45 17798.38 153
RPSCF90.75 25290.86 21190.42 32496.84 17376.29 36095.61 26096.34 25883.89 31891.38 19197.87 8476.45 28798.78 17087.16 24892.23 22096.20 222
tpm289.96 27189.21 27292.23 28794.91 27481.25 33493.78 31494.42 32980.62 34491.56 18893.44 31076.44 28897.94 26185.60 27192.08 22797.49 194
thisisatest053093.03 15892.21 16795.49 15497.07 15989.11 21397.49 11192.19 35290.16 18694.09 13596.41 17676.43 28999.05 15090.38 17795.68 17598.31 157
EU-MVSNet88.72 28988.90 27688.20 33693.15 32974.21 36396.63 19794.22 33585.18 30187.32 29695.97 19576.16 29094.98 35285.27 27586.17 28995.41 260
dp88.90 28588.26 28590.81 31794.58 29076.62 35992.85 33394.93 31685.12 30390.07 22893.07 31475.81 29198.12 23080.53 31787.42 27997.71 182
IterMVS-SCA-FT90.31 26389.81 25891.82 29695.52 23484.20 30894.30 29996.15 26790.61 17687.39 29494.27 27975.80 29296.44 33487.34 24286.88 28694.82 298
SCA91.84 20191.18 20493.83 23195.59 23084.95 29994.72 28495.58 28890.82 16492.25 17693.69 30175.80 29298.10 23286.20 25995.98 16698.45 145
IterMVS90.15 26989.67 26491.61 30395.48 23683.72 31494.33 29896.12 26889.99 18987.31 29794.15 28775.78 29496.27 33786.97 25086.89 28594.83 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
jajsoiax92.42 17991.89 17794.03 21993.33 32688.50 22797.73 8197.53 15192.00 13288.85 26196.50 17175.62 29598.11 23193.88 11391.56 23395.48 254
cascas91.20 23390.08 24794.58 19694.97 26789.16 21293.65 31997.59 14579.90 34789.40 24692.92 31675.36 29698.36 20892.14 14494.75 19096.23 221
VPNet92.23 19091.31 19694.99 17295.56 23290.96 14997.22 13997.86 11792.96 10290.96 20496.62 16675.06 29798.20 22091.90 14983.65 32795.80 241
N_pmnet78.73 32978.71 33178.79 34792.80 33446.50 37894.14 30443.71 38178.61 35280.83 34491.66 33774.94 29896.36 33567.24 36284.45 31693.50 332
mvs_tets92.31 18491.76 17993.94 22793.41 32388.29 23097.63 9797.53 15192.04 13088.76 26596.45 17374.62 29998.09 23693.91 11191.48 23495.45 259
DSMNet-mixed86.34 30886.12 30487.00 34189.88 35770.43 36694.93 28290.08 36377.97 35585.42 31892.78 31874.44 30093.96 35874.43 34695.14 18196.62 214
pmmvs589.86 27588.87 27792.82 27392.86 33286.23 27796.26 22795.39 29284.24 31487.12 29894.51 26374.27 30197.36 31487.61 23887.57 27694.86 294
OurMVSNet-221017-090.51 26090.19 24591.44 30793.41 32381.25 33496.98 16096.28 26091.68 13886.55 30896.30 18174.20 30297.98 25188.96 20987.40 28095.09 280
GBi-Net91.35 22590.27 23894.59 19296.51 19191.18 14297.50 10796.93 21888.82 22489.35 24894.51 26373.87 30397.29 31786.12 26288.82 26495.31 269
test191.35 22590.27 23894.59 19296.51 19191.18 14297.50 10796.93 21888.82 22489.35 24894.51 26373.87 30397.29 31786.12 26288.82 26495.31 269
FMVSNet291.31 22890.08 24794.99 17296.51 19192.21 10597.41 11596.95 21688.82 22488.62 26794.75 25373.87 30397.42 31085.20 27788.55 26995.35 267
COLMAP_ROBcopyleft87.81 1590.40 26289.28 27193.79 23497.95 11987.13 26096.92 16695.89 27582.83 32986.88 30697.18 13173.77 30699.29 12378.44 33093.62 20594.95 285
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DWT-MVSNet_test90.76 25089.89 25493.38 25395.04 26583.70 31695.85 25094.30 33488.19 24190.46 21092.80 31773.61 30798.50 19788.16 21990.58 24897.95 170
Anonymous2023120687.09 30286.14 30389.93 32991.22 34980.35 34196.11 23695.35 29583.57 32484.16 32893.02 31573.54 30895.61 34672.16 35486.14 29093.84 329
UGNet94.04 12393.28 13396.31 10696.85 17291.19 14197.88 6697.68 13494.40 4993.00 16096.18 18573.39 30999.61 6691.72 15498.46 11098.13 162
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test111193.19 15192.82 14394.30 20997.58 14584.56 30498.21 4189.02 36593.53 7694.58 12698.21 6272.69 31099.05 15093.06 13098.48 10999.28 71
ECVR-MVScopyleft93.19 15192.73 14994.57 19797.66 13785.41 28998.21 4188.23 36693.43 8094.70 12498.21 6272.57 31199.07 14793.05 13198.49 10799.25 74
Anonymous2023121190.63 25789.42 26894.27 21098.24 10089.19 21198.05 5297.89 10979.95 34688.25 27794.96 24172.56 31298.13 22789.70 18985.14 30395.49 253
ACMH87.59 1690.53 25989.42 26893.87 23096.21 20587.92 24297.24 13396.94 21788.45 23583.91 33396.27 18371.92 31398.62 18884.43 28689.43 26095.05 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GA-MVS91.38 22290.31 23594.59 19294.65 28587.62 24994.34 29796.19 26690.73 16890.35 21393.83 29571.84 31497.96 25887.22 24593.61 20698.21 160
SixPastTwentyTwo89.15 28188.54 28190.98 31493.49 32180.28 34496.70 18694.70 32290.78 16584.15 32995.57 22071.78 31597.71 28484.63 28385.07 30594.94 287
gg-mvs-nofinetune87.82 29785.61 30694.44 20094.46 29289.27 20891.21 34684.61 37280.88 34189.89 23274.98 36571.50 31697.53 30085.75 27097.21 14596.51 216
test20.0386.14 31185.40 30988.35 33490.12 35480.06 34695.90 24895.20 30488.59 23081.29 34393.62 30671.43 31792.65 36471.26 35881.17 33992.34 347
MS-PatchMatch90.27 26489.77 26091.78 29994.33 29784.72 30295.55 26196.73 23486.17 28886.36 30995.28 23371.28 31897.80 27584.09 28898.14 11992.81 340
PVSNet_082.17 1985.46 31783.64 32090.92 31595.27 25279.49 35090.55 35095.60 28683.76 32183.00 33989.95 34671.09 31997.97 25482.75 30160.79 36895.31 269
GG-mvs-BLEND93.62 24193.69 31589.20 20992.39 34083.33 37387.98 28589.84 34871.00 32096.87 32982.08 30695.40 17894.80 301
ITE_SJBPF92.43 28295.34 24585.37 29295.92 27291.47 14387.75 28896.39 17871.00 32097.96 25882.36 30489.86 25793.97 327
IB-MVS87.33 1789.91 27288.28 28494.79 18795.26 25587.70 24895.12 28193.95 33989.35 20687.03 30192.49 32270.74 32299.19 12989.18 20681.37 33897.49 194
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDA-MVSNet-bldmvs85.00 31882.95 32291.17 31393.13 33083.33 31994.56 28895.00 31284.57 31165.13 36692.65 31970.45 32395.85 34273.57 35077.49 34894.33 318
RRT_test8_iter0591.19 23690.78 21692.41 28395.76 22783.14 32197.32 12697.46 16191.37 15089.07 25795.57 22070.33 32498.21 21893.56 11786.62 28795.89 234
AllTest90.23 26688.98 27593.98 22197.94 12086.64 26896.51 20595.54 28985.38 29885.49 31696.77 15070.28 32599.15 13480.02 32092.87 21096.15 226
TestCases93.98 22197.94 12086.64 26895.54 28985.38 29885.49 31696.77 15070.28 32599.15 13480.02 32092.87 21096.15 226
ACMH+87.92 1490.20 26789.18 27393.25 25896.48 19486.45 27396.99 15896.68 24188.83 22384.79 32396.22 18470.16 32798.53 19584.42 28788.04 27194.77 306
KD-MVS_self_test85.95 31384.95 31288.96 33389.55 36079.11 35495.13 28096.42 25585.91 29184.07 33190.48 34270.03 32894.82 35380.04 31972.94 35892.94 338
Anonymous2024052991.98 19890.73 22095.73 13898.14 11289.40 19997.99 5597.72 12979.63 34893.54 14797.41 12269.94 32999.56 8591.04 16991.11 24098.22 159
pmmvs-eth3d86.22 31084.45 31691.53 30488.34 36487.25 25494.47 29095.01 31183.47 32579.51 35389.61 34969.75 33095.71 34583.13 29676.73 35191.64 352
LFMVS93.60 13792.63 15296.52 8898.13 11391.27 13597.94 6293.39 34490.57 17996.29 8198.31 5169.00 33199.16 13394.18 10595.87 16999.12 86
TESTMET0.1,190.06 27089.42 26891.97 29194.41 29580.62 33994.29 30091.97 35587.28 27190.44 21192.47 32368.79 33297.67 28688.50 21796.60 15897.61 189
XVG-ACMP-BASELINE90.93 24690.21 24493.09 26494.31 29985.89 28295.33 27097.26 18991.06 16289.38 24795.44 22868.61 33398.60 18989.46 19591.05 24194.79 303
MVS-HIRNet82.47 32681.21 32886.26 34395.38 24069.21 36988.96 35989.49 36466.28 36380.79 34574.08 36768.48 33497.39 31271.93 35595.47 17692.18 350
VDD-MVS93.82 13093.08 13696.02 12297.88 12589.96 18197.72 8495.85 27692.43 11695.86 9798.44 3268.42 33599.39 11496.31 3694.85 18698.71 126
test_040286.46 30684.79 31491.45 30695.02 26685.55 28696.29 22594.89 31780.90 34082.21 34093.97 29368.21 33697.29 31762.98 36588.68 26891.51 354
test-mter90.19 26889.54 26792.12 28894.59 28880.66 33794.29 30092.98 34687.68 26190.76 20692.37 32467.67 33798.07 24088.81 21196.74 15397.63 185
VDDNet93.05 15792.07 16996.02 12296.84 17390.39 16998.08 5095.85 27686.22 28795.79 10098.46 3067.59 33899.19 12994.92 8894.85 18698.47 143
USDC88.94 28387.83 28892.27 28694.66 28484.96 29893.86 31295.90 27487.34 26983.40 33595.56 22267.43 33998.19 22282.64 30389.67 25993.66 330
pmmvs687.81 29886.19 30292.69 27791.32 34886.30 27597.34 12396.41 25680.59 34584.05 33294.37 27267.37 34097.67 28684.75 28179.51 34494.09 326
test250691.60 20890.78 21694.04 21897.66 13783.81 31298.27 3175.53 37793.43 8095.23 11698.21 6267.21 34199.07 14793.01 13498.49 10799.25 74
KD-MVS_2432*160084.81 32082.64 32391.31 30991.07 35085.34 29391.22 34495.75 27985.56 29683.09 33790.21 34467.21 34195.89 34077.18 33762.48 36692.69 341
miper_refine_blended84.81 32082.64 32391.31 30991.07 35085.34 29391.22 34495.75 27985.56 29683.09 33790.21 34467.21 34195.89 34077.18 33762.48 36692.69 341
K. test v387.64 29986.75 30090.32 32593.02 33179.48 35196.61 19892.08 35490.66 17280.25 35094.09 28867.21 34196.65 33385.96 26780.83 34094.83 296
CMPMVSbinary62.92 2185.62 31684.92 31387.74 33889.14 36173.12 36594.17 30396.80 23373.98 35973.65 36094.93 24366.36 34597.61 29383.95 29191.28 23892.48 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UniMVSNet_ETH3D91.34 22790.22 24394.68 19194.86 27687.86 24597.23 13897.46 16187.99 24889.90 23096.92 14466.35 34698.23 21690.30 17990.99 24397.96 168
lessismore_v090.45 32391.96 34679.09 35587.19 37080.32 34994.39 27066.31 34797.55 29784.00 29076.84 35094.70 308
Anonymous20240521192.07 19690.83 21595.76 13398.19 10788.75 21997.58 10095.00 31286.00 29093.64 14497.45 11966.24 34899.53 9390.68 17592.71 21399.01 96
new-patchmatchnet83.18 32481.87 32687.11 34086.88 36775.99 36193.70 31695.18 30585.02 30577.30 35688.40 35265.99 34993.88 35974.19 34970.18 36191.47 356
FMVSNet189.88 27488.31 28394.59 19295.41 23891.18 14297.50 10796.93 21886.62 28187.41 29394.51 26365.94 35097.29 31783.04 29787.43 27895.31 269
TDRefinement86.53 30584.76 31591.85 29482.23 37084.25 30696.38 21695.35 29584.97 30684.09 33094.94 24265.76 35198.34 21284.60 28474.52 35492.97 337
UnsupCasMVSNet_eth85.99 31284.45 31690.62 32189.97 35682.40 32793.62 32097.37 18089.86 19178.59 35592.37 32465.25 35295.35 35182.27 30570.75 36094.10 324
LF4IMVS87.94 29687.25 29389.98 32892.38 34380.05 34794.38 29595.25 30287.59 26384.34 32594.74 25464.31 35397.66 28884.83 27987.45 27792.23 348
Anonymous2024052186.42 30785.44 30789.34 33290.33 35379.79 34896.73 18295.92 27283.71 32283.25 33691.36 33963.92 35496.01 33878.39 33185.36 29992.22 349
MIMVSNet88.50 29186.76 29993.72 23794.84 27787.77 24791.39 34294.05 33686.41 28487.99 28492.59 32163.27 35595.82 34477.44 33392.84 21297.57 192
FMVSNet587.29 30185.79 30591.78 29994.80 27987.28 25295.49 26495.28 29984.09 31683.85 33491.82 33362.95 35694.17 35778.48 32985.34 30093.91 328
testgi87.97 29587.21 29590.24 32692.86 33280.76 33696.67 19194.97 31491.74 13685.52 31595.83 20362.66 35794.47 35676.25 34088.36 27095.48 254
TinyColmap86.82 30485.35 31091.21 31194.91 27482.99 32293.94 31094.02 33883.58 32381.56 34294.68 25762.34 35898.13 22775.78 34187.35 28192.52 345
new_pmnet82.89 32581.12 32988.18 33789.63 35880.18 34591.77 34192.57 35076.79 35775.56 35988.23 35461.22 35994.48 35571.43 35682.92 33389.87 360
OpenMVS_ROBcopyleft81.14 2084.42 32282.28 32590.83 31690.06 35584.05 31195.73 25594.04 33773.89 36080.17 35191.53 33859.15 36097.64 28966.92 36389.05 26390.80 358
MIMVSNet184.93 31983.05 32190.56 32289.56 35984.84 30195.40 26795.35 29583.91 31780.38 34892.21 33157.23 36193.34 36270.69 36082.75 33593.50 332
EG-PatchMatch MVS87.02 30385.44 30791.76 30192.67 33685.00 29796.08 23896.45 25483.41 32679.52 35293.49 30857.10 36297.72 28379.34 32790.87 24692.56 344
MVS_030488.79 28787.57 28992.46 28094.65 28586.15 28196.40 21397.17 19586.44 28388.02 28391.71 33656.68 36397.03 32284.47 28592.58 21694.19 323
UnsupCasMVSNet_bld82.13 32779.46 33090.14 32788.00 36582.47 32590.89 34996.62 24978.94 35175.61 35784.40 36156.63 36496.31 33677.30 33666.77 36491.63 353
EGC-MVSNET68.77 33363.01 33886.07 34492.49 33982.24 32993.96 30990.96 3610.71 3782.62 37990.89 34053.66 36593.46 36057.25 36784.55 31482.51 364
tmp_tt51.94 34153.82 34146.29 35733.73 38145.30 38078.32 36767.24 38018.02 37450.93 37087.05 36052.99 36653.11 37670.76 35925.29 37440.46 372
pmmvs379.97 32877.50 33287.39 33982.80 36979.38 35292.70 33590.75 36270.69 36278.66 35487.47 35951.34 36793.40 36173.39 35169.65 36289.38 361
DeepMVS_CXcopyleft74.68 35190.84 35264.34 37381.61 37565.34 36467.47 36388.01 35748.60 36880.13 37262.33 36673.68 35779.58 366
PM-MVS83.48 32381.86 32788.31 33587.83 36677.59 35893.43 32291.75 35686.91 27680.63 34689.91 34744.42 36995.84 34385.17 27876.73 35191.50 355
test_method66.11 33564.89 33769.79 35272.62 37535.23 38265.19 37092.83 34820.35 37365.20 36588.08 35643.14 37082.70 37073.12 35263.46 36591.45 357
ambc86.56 34283.60 36870.00 36885.69 36294.97 31480.60 34788.45 35137.42 37196.84 33082.69 30275.44 35392.86 339
Gipumacopyleft67.86 33465.41 33675.18 35092.66 33773.45 36466.50 36994.52 32753.33 36857.80 36966.07 36930.81 37289.20 36648.15 37078.88 34762.90 369
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS52.08 34051.31 34354.39 35672.62 37545.39 37983.84 36475.51 37841.13 37140.77 37359.65 37230.08 37373.60 37428.31 37429.90 37344.18 371
FPMVS71.27 33169.85 33375.50 34974.64 37259.03 37491.30 34391.50 35858.80 36657.92 36888.28 35329.98 37485.53 36953.43 36882.84 33481.95 365
E-PMN53.28 33852.56 34255.43 35574.43 37347.13 37783.63 36576.30 37642.23 37042.59 37262.22 37128.57 37574.40 37331.53 37331.51 37144.78 370
PMMVS270.19 33266.92 33580.01 34676.35 37165.67 37186.22 36187.58 36964.83 36562.38 36780.29 36426.78 37688.49 36763.79 36454.07 36985.88 362
ANet_high63.94 33659.58 33977.02 34861.24 37966.06 37085.66 36387.93 36878.53 35342.94 37171.04 36825.42 37780.71 37152.60 36930.83 37284.28 363
LCM-MVSNet72.55 33069.39 33482.03 34570.81 37765.42 37290.12 35494.36 33255.02 36765.88 36481.72 36224.16 37889.96 36574.32 34868.10 36390.71 359
PMVScopyleft53.92 2258.58 33755.40 34068.12 35351.00 38048.64 37678.86 36687.10 37146.77 36935.84 37574.28 3668.76 37986.34 36842.07 37173.91 35669.38 367
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d25.11 34224.57 34626.74 35873.98 37439.89 38157.88 3719.80 38212.27 37510.39 3766.97 3787.03 38036.44 37725.43 37517.39 3753.89 375
MVEpermissive50.73 2353.25 33948.81 34466.58 35465.34 37857.50 37572.49 36870.94 37940.15 37239.28 37463.51 3706.89 38173.48 37538.29 37242.38 37068.76 368
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test12313.04 34515.66 3485.18 3594.51 3833.45 38392.50 3391.81 3842.50 3777.58 37820.15 3753.67 3822.18 3797.13 3771.07 3779.90 373
testmvs13.36 34416.33 3474.48 3605.04 3822.26 38493.18 3253.28 3832.70 3768.24 37721.66 3742.29 3832.19 3787.58 3762.96 3769.00 374
test_blank0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
sosnet-low-res0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
sosnet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
Regformer0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
ab-mvs-re8.06 34610.74 3490.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38096.69 1560.00 3840.00 3800.00 3780.00 3780.00 376
uanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
FOURS199.55 193.34 7499.29 198.35 2094.98 2798.49 15
MSC_two_6792asdad98.86 198.67 6696.94 197.93 10799.86 997.68 299.67 699.77 1
No_MVS98.86 198.67 6696.94 197.93 10799.86 997.68 299.67 699.77 1
eth-test20.00 384
eth-test0.00 384
IU-MVS99.42 795.39 1197.94 10690.40 18398.94 597.41 1299.66 1099.74 7
save fliter98.91 5394.28 3997.02 15398.02 9295.35 8
test_0728_SECOND98.51 499.45 395.93 598.21 4198.28 2899.86 997.52 599.67 699.75 5
GSMVS98.45 145
test_part299.28 2795.74 898.10 21
MTGPAbinary98.08 68
MTMP97.86 6782.03 374
gm-plane-assit93.22 32778.89 35684.82 30893.52 30798.64 18587.72 227
test9_res94.81 9399.38 5499.45 51
agg_prior293.94 11099.38 5499.50 43
agg_prior98.67 6693.79 5998.00 9795.68 10499.57 83
test_prior493.66 6396.42 209
test_prior97.23 6598.67 6692.99 8198.00 9799.41 11199.29 68
旧先验295.94 24681.66 33697.34 4098.82 16792.26 139
新几何295.79 253
无先验95.79 25397.87 11483.87 32099.65 5787.68 23398.89 112
原ACMM295.67 256
testdata299.67 5385.96 267
testdata195.26 27793.10 94
plane_prior796.21 20589.98 179
plane_prior597.51 15398.60 18993.02 13292.23 22095.86 235
plane_prior496.64 159
plane_prior390.00 17594.46 4791.34 193
plane_prior297.74 7994.85 30
plane_prior196.14 213
plane_prior89.99 17797.24 13394.06 5692.16 224
n20.00 385
nn0.00 385
door-mid91.06 360
test1197.88 112
door91.13 359
HQP5-MVS89.33 203
HQP-NCC95.86 22096.65 19293.55 7290.14 217
ACMP_Plane95.86 22096.65 19293.55 7290.14 217
BP-MVS92.13 145
HQP4-MVS90.14 21798.50 19795.78 242
HQP3-MVS97.39 17792.10 225
NP-MVS95.99 21989.81 18495.87 200
ACMMP++_ref90.30 253
ACMMP++91.02 242