This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
OPU-MVS98.55 198.82 5696.86 198.25 2898.26 5396.04 199.24 12095.36 6699.59 1599.56 22
test_0728_THIRD94.78 3198.73 898.87 695.87 299.84 1997.45 699.72 299.77 1
SED-MVS98.05 197.99 198.24 799.42 695.30 1598.25 2898.27 2895.13 1599.19 198.89 495.54 399.85 1497.52 299.66 899.56 22
test_241102_ONE99.42 695.30 1598.27 2895.09 1899.19 198.81 895.54 399.65 53
DVP-MVS97.91 297.81 298.22 999.45 295.36 1098.21 3497.85 11294.92 2298.73 898.87 695.08 599.84 1997.52 299.67 699.48 41
test072699.45 295.36 1098.31 2298.29 2494.92 2298.99 498.92 295.08 5
DPE-MVS97.86 397.65 498.47 399.17 3295.78 597.21 13098.35 1995.16 1498.71 1098.80 995.05 799.89 396.70 1999.73 199.73 7
test_241102_TWO98.27 2895.13 1598.93 698.89 494.99 899.85 1497.52 299.65 1099.74 5
SteuartSystems-ACMMP97.62 697.53 697.87 2498.39 8094.25 3898.43 1798.27 2895.34 1098.11 1698.56 1794.53 999.71 3896.57 2399.62 1399.65 9
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS97.68 597.44 898.37 598.90 5195.86 497.27 12198.08 6495.81 397.87 2398.31 4794.26 1099.68 4797.02 999.49 3499.57 19
SD-MVS97.41 997.53 697.06 7198.57 7294.46 3097.92 5698.14 5394.82 2899.01 398.55 1994.18 1197.41 29696.94 1099.64 1199.32 60
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSP-MVS97.59 797.54 597.73 3899.40 1193.77 5898.53 998.29 2495.55 598.56 1297.81 8293.90 1299.65 5396.62 2099.21 6999.77 1
MCST-MVS97.18 1696.84 2598.20 1099.30 2495.35 1297.12 13898.07 7093.54 6596.08 7797.69 9093.86 1399.71 3896.50 2499.39 4799.55 26
APDe-MVS97.82 497.73 398.08 1599.15 3394.82 2598.81 298.30 2394.76 3298.30 1398.90 393.77 1499.68 4797.93 199.69 399.75 3
TSAR-MVS + MP.97.42 897.33 997.69 4299.25 2794.24 3998.07 4397.85 11293.72 5798.57 1198.35 3893.69 1599.40 10897.06 899.46 3899.44 47
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DeepPCF-MVS93.97 196.61 4897.09 1295.15 15798.09 10586.63 26096.00 22998.15 5195.43 697.95 1998.56 1793.40 1699.36 11296.77 1799.48 3599.45 45
xxxxxxxxxxxxxcwj97.36 1197.20 1097.83 2698.91 4994.28 3597.02 14397.22 18295.35 898.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 34
SF-MVS97.39 1097.13 1198.17 1199.02 4395.28 1798.23 3198.27 2892.37 10698.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 34
SMA-MVScopyleft97.35 1297.03 1498.30 699.06 4095.42 897.94 5498.18 4690.57 16598.85 798.94 193.33 1799.83 2296.72 1899.68 499.63 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
NCCC97.30 1497.03 1498.11 1498.77 5795.06 2297.34 11398.04 8195.96 297.09 4597.88 7493.18 2099.71 3895.84 4999.17 7299.56 22
9.1496.75 3398.93 4797.73 7398.23 3891.28 14197.88 2298.44 2893.00 2199.65 5395.76 5199.47 36
segment_acmp92.89 22
TSAR-MVS + GP.96.69 4596.49 4697.27 6098.31 8893.39 6696.79 16796.72 22594.17 4597.44 2997.66 9392.76 2399.33 11396.86 1397.76 11899.08 80
TEST998.70 6094.19 4096.41 19698.02 8888.17 22796.03 7897.56 10592.74 2499.59 67
train_agg96.30 5795.83 6397.72 3998.70 6094.19 4096.41 19698.02 8888.58 21596.03 7897.56 10592.73 2599.59 6795.04 7399.37 5299.39 54
test_898.67 6294.06 4996.37 20398.01 9188.58 21595.98 8397.55 10792.73 2599.58 70
agg_prior196.22 6095.77 6497.56 4898.67 6293.79 5596.28 21298.00 9388.76 21295.68 9397.55 10792.70 2799.57 7895.01 7499.32 5399.32 60
CSCG96.05 6395.91 6196.46 9399.24 2890.47 15898.30 2398.57 1189.01 19893.97 12697.57 10392.62 2899.76 3094.66 8799.27 6199.15 72
ETH3D-3000-0.197.07 2296.71 3698.14 1398.90 5195.33 1497.68 8098.24 3491.57 12797.90 2198.37 3692.61 2999.66 5295.59 6299.51 2999.43 49
Regformer-297.16 1896.99 1697.67 4398.32 8693.84 5396.83 16398.10 6195.24 1197.49 2698.25 5492.57 3099.61 6296.80 1499.29 5799.56 22
HPM-MVS++copyleft97.34 1396.97 1798.47 399.08 3896.16 297.55 9497.97 9995.59 496.61 5697.89 7292.57 3099.84 1995.95 4699.51 2999.40 53
ZD-MVS99.05 4194.59 2898.08 6489.22 19297.03 4798.10 6092.52 3299.65 5394.58 8999.31 55
PHI-MVS96.77 4296.46 4897.71 4198.40 7894.07 4898.21 3498.45 1589.86 17797.11 4498.01 6892.52 3299.69 4496.03 4599.53 2499.36 58
Regformer-197.10 2096.96 1897.54 4998.32 8693.48 6496.83 16397.99 9795.20 1397.46 2798.25 5492.48 3499.58 7096.79 1699.29 5799.55 26
APD-MVScopyleft96.95 3196.60 4098.01 1999.03 4294.93 2497.72 7698.10 6191.50 12998.01 1898.32 4692.33 3599.58 7094.85 7999.51 2999.53 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR96.68 4796.58 4296.99 7398.46 7492.31 9696.20 21998.90 294.30 4495.86 8697.74 8792.33 3599.38 11196.04 4499.42 4399.28 65
MSLP-MVS++96.94 3297.06 1396.59 8398.72 5991.86 11197.67 8198.49 1294.66 3597.24 3698.41 3492.31 3798.94 15096.61 2199.46 3898.96 91
旧先验198.38 8193.38 6797.75 11798.09 6292.30 3899.01 8399.16 70
HFP-MVS97.14 1996.92 2097.83 2699.42 694.12 4598.52 1098.32 2093.21 7597.18 3898.29 5092.08 3999.83 2295.63 5799.59 1599.54 29
#test#97.02 2696.75 3397.83 2699.42 694.12 4598.15 3798.32 2092.57 10297.18 3898.29 5092.08 3999.83 2295.12 7199.59 1599.54 29
test_prior396.46 5396.20 5697.23 6298.67 6292.99 7696.35 20498.00 9392.80 9596.03 7897.59 10192.01 4199.41 10695.01 7499.38 4899.29 62
test_prior296.35 20492.80 9596.03 7897.59 10192.01 4195.01 7499.38 48
CDPH-MVS95.97 6695.38 7497.77 3598.93 4794.44 3196.35 20497.88 10686.98 25996.65 5497.89 7291.99 4399.47 9992.26 12599.46 3899.39 54
testtj96.93 3396.56 4398.05 1799.10 3494.66 2797.78 6898.22 3992.74 9797.59 2498.20 5791.96 4499.86 894.21 9399.25 6599.63 11
CP-MVS97.02 2696.81 2897.64 4699.33 2293.54 6298.80 398.28 2692.99 8496.45 6698.30 4991.90 4599.85 1495.61 5999.68 499.54 29
Regformer-496.97 2996.87 2197.25 6198.34 8392.66 8596.96 15198.01 9195.12 1797.14 4198.42 3191.82 4699.61 6296.90 1199.13 7599.50 37
ETH3D cwj APD-0.1696.56 5096.06 5898.05 1798.26 9295.19 1896.99 14898.05 8089.85 17997.26 3598.22 5691.80 4799.69 4494.84 8099.28 5999.27 66
DPM-MVS95.69 7194.92 8498.01 1998.08 10695.71 795.27 26197.62 13390.43 16895.55 9997.07 12591.72 4899.50 9689.62 17898.94 8698.82 106
Regformer-396.85 3896.80 2997.01 7298.34 8392.02 10796.96 15197.76 11695.01 2197.08 4698.42 3191.71 4999.54 8596.80 1499.13 7599.48 41
XVS97.18 1696.96 1897.81 3099.38 1494.03 5098.59 798.20 4294.85 2496.59 5898.29 5091.70 5099.80 2795.66 5299.40 4599.62 13
X-MVStestdata91.71 19289.67 25097.81 3099.38 1494.03 5098.59 798.20 4294.85 2496.59 5832.69 35291.70 5099.80 2795.66 5299.40 4599.62 13
ZNCC-MVS96.96 3096.67 3897.85 2599.37 1694.12 4598.49 1498.18 4692.64 10196.39 6898.18 5891.61 5299.88 495.59 6299.55 2199.57 19
ACMMP_NAP97.20 1596.86 2298.23 899.09 3695.16 2097.60 9098.19 4492.82 9497.93 2098.74 1191.60 5399.86 896.26 3099.52 2599.67 8
region2R97.07 2296.84 2597.77 3599.46 193.79 5598.52 1098.24 3493.19 7897.14 4198.34 4191.59 5499.87 795.46 6599.59 1599.64 10
DELS-MVS96.61 4896.38 5197.30 5797.79 11993.19 7295.96 23198.18 4695.23 1295.87 8597.65 9491.45 5599.70 4395.87 4799.44 4299.00 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SR-MVS97.01 2896.86 2297.47 5199.09 3693.27 7197.98 4898.07 7093.75 5697.45 2898.48 2591.43 5699.59 6796.22 3399.27 6199.54 29
test117296.93 3396.86 2297.15 6799.10 3492.34 9397.96 5398.04 8193.79 5597.35 3398.53 2191.40 5799.56 8096.30 2999.30 5699.55 26
SR-MVS-dyc-post96.88 3696.80 2997.11 7099.02 4392.34 9397.98 4898.03 8493.52 6697.43 3198.51 2291.40 5799.56 8096.05 4299.26 6399.43 49
GST-MVS96.85 3896.52 4597.82 2999.36 1994.14 4498.29 2498.13 5492.72 9896.70 5098.06 6491.35 5999.86 894.83 8199.28 5999.47 44
ACMMPR97.07 2296.84 2597.79 3299.44 593.88 5298.52 1098.31 2293.21 7597.15 4098.33 4491.35 5999.86 895.63 5799.59 1599.62 13
DeepC-MVS_fast93.89 296.93 3396.64 3997.78 3398.64 6794.30 3497.41 10598.04 8194.81 2996.59 5898.37 3691.24 6199.64 6195.16 6999.52 2599.42 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETV-MVS96.02 6495.89 6296.40 9697.16 14192.44 9197.47 10297.77 11594.55 3796.48 6394.51 24891.23 6298.92 15195.65 5598.19 10597.82 166
ETH3 D test640096.16 6195.52 6898.07 1698.90 5195.06 2297.03 14098.21 4088.16 22996.64 5597.70 8991.18 6399.67 4992.44 12499.47 3699.48 41
PGM-MVS96.81 4096.53 4497.65 4499.35 2193.53 6397.65 8498.98 192.22 10897.14 4198.44 2891.17 6499.85 1494.35 9199.46 3899.57 19
MP-MVS-pluss96.70 4496.27 5397.98 2199.23 3094.71 2696.96 15198.06 7390.67 15695.55 9998.78 1091.07 6599.86 896.58 2299.55 2199.38 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mPP-MVS96.86 3796.60 4097.64 4699.40 1193.44 6598.50 1398.09 6393.27 7495.95 8498.33 4491.04 6699.88 495.20 6899.57 2099.60 16
HPM-MVScopyleft96.69 4596.45 4997.40 5399.36 1993.11 7498.87 198.06 7391.17 14596.40 6797.99 6990.99 6799.58 7095.61 5999.61 1499.49 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVS_3200maxsize96.81 4096.71 3697.12 6999.01 4692.31 9697.98 4898.06 7393.11 8197.44 2998.55 1990.93 6899.55 8396.06 4199.25 6599.51 34
test1297.65 4498.46 7494.26 3797.66 12895.52 10290.89 6999.46 10099.25 6599.22 67
zzz-MVS97.07 2296.77 3297.97 2299.37 1694.42 3297.15 13698.08 6495.07 1996.11 7598.59 1590.88 7099.90 196.18 3999.50 3299.58 17
MTAPA97.08 2196.78 3197.97 2299.37 1694.42 3297.24 12398.08 6495.07 1996.11 7598.59 1590.88 7099.90 196.18 3999.50 3299.58 17
EI-MVSNet-Vis-set96.51 5196.47 4796.63 8098.24 9391.20 13496.89 15897.73 11994.74 3396.49 6298.49 2490.88 7099.58 7096.44 2798.32 10299.13 74
RE-MVS-def96.72 3599.02 4392.34 9397.98 4898.03 8493.52 6697.43 3198.51 2290.71 7396.05 4299.26 6399.43 49
EIA-MVS95.53 7795.47 7095.71 13397.06 14989.63 17597.82 6497.87 10893.57 6193.92 12795.04 22490.61 7498.95 14994.62 8898.68 9398.54 120
MP-MVScopyleft96.77 4296.45 4997.72 3999.39 1393.80 5498.41 1898.06 7393.37 7095.54 10198.34 4190.59 7599.88 494.83 8199.54 2399.49 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EI-MVSNet-UG-set96.34 5696.30 5296.47 9198.20 9890.93 14596.86 15997.72 12294.67 3496.16 7498.46 2690.43 7699.58 7096.23 3297.96 11298.90 98
原ACMM196.38 9998.59 6991.09 14097.89 10487.41 25195.22 10597.68 9190.25 7799.54 8587.95 20999.12 7898.49 127
112194.71 10293.83 10797.34 5598.57 7293.64 6096.04 22597.73 11981.56 31795.68 9397.85 7890.23 7899.65 5387.68 21899.12 7898.73 111
CS-MVS95.80 7095.65 6696.24 11097.32 13591.43 12598.10 3997.91 10393.38 6995.16 10794.57 24690.21 7998.98 14795.53 6498.67 9498.30 145
HPM-MVS_fast96.51 5196.27 5397.22 6499.32 2392.74 8298.74 498.06 7390.57 16596.77 4998.35 3890.21 7999.53 8894.80 8499.63 1299.38 56
testdata95.46 15098.18 10288.90 20897.66 12882.73 30997.03 4798.07 6390.06 8198.85 15789.67 17698.98 8498.64 117
新几何197.32 5698.60 6893.59 6197.75 11781.58 31695.75 9097.85 7890.04 8299.67 4986.50 24099.13 7598.69 115
DP-MVS Recon95.68 7295.12 8297.37 5499.19 3194.19 4097.03 14098.08 6488.35 22295.09 10897.65 9489.97 8399.48 9892.08 13498.59 9798.44 135
MVS_111021_LR96.24 5996.19 5796.39 9898.23 9791.35 12796.24 21798.79 493.99 4995.80 8897.65 9489.92 8499.24 12095.87 4799.20 7098.58 118
EPP-MVSNet95.22 8595.04 8395.76 12797.49 13389.56 17998.67 597.00 20590.69 15594.24 12097.62 9989.79 8598.81 16093.39 11396.49 14998.92 96
PAPR94.18 10993.42 12496.48 9097.64 12691.42 12695.55 24797.71 12688.99 19992.34 16195.82 18889.19 8699.11 13286.14 24697.38 12798.90 98
MG-MVS95.61 7495.38 7496.31 10398.42 7790.53 15696.04 22597.48 14693.47 6895.67 9698.10 6089.17 8799.25 11991.27 15398.77 9099.13 74
PAPM_NR95.01 8994.59 9296.26 10898.89 5490.68 15397.24 12397.73 11991.80 12292.93 15296.62 15389.13 8899.14 13089.21 19097.78 11698.97 90
ACMMPcopyleft96.27 5895.93 6097.28 5999.24 2892.62 8698.25 2898.81 392.99 8494.56 11498.39 3588.96 8999.85 1494.57 9097.63 11999.36 58
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
UA-Net95.95 6795.53 6797.20 6697.67 12492.98 7897.65 8498.13 5494.81 2996.61 5698.35 3888.87 9099.51 9390.36 16397.35 12999.11 78
API-MVS94.84 9894.49 9795.90 12397.90 11592.00 10897.80 6697.48 14689.19 19494.81 11196.71 13988.84 9199.17 12688.91 19698.76 9196.53 200
test22298.24 9392.21 9995.33 25697.60 13479.22 32995.25 10497.84 8188.80 9299.15 7398.72 112
Test By Simon88.73 93
pcd_1.5k_mvsjas7.39 3289.85 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 35888.65 940.00 3580.00 3560.00 3560.00 354
PS-MVSNAJss93.74 12693.51 11894.44 18893.91 29289.28 19897.75 7097.56 14192.50 10389.94 21396.54 15688.65 9498.18 20893.83 10490.90 23395.86 220
PS-MVSNAJ95.37 7995.33 7695.49 14697.35 13490.66 15495.31 25897.48 14693.85 5296.51 6195.70 19988.65 9499.65 5394.80 8498.27 10396.17 209
xiu_mvs_v2_base95.32 8195.29 7795.40 15197.22 13790.50 15795.44 25297.44 16193.70 5996.46 6596.18 17288.59 9799.53 8894.79 8697.81 11596.17 209
PLCcopyleft91.00 694.11 11393.43 12296.13 11398.58 7191.15 13996.69 17697.39 16787.29 25491.37 17796.71 13988.39 9899.52 9287.33 22897.13 13797.73 168
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UniMVSNet_NR-MVSNet93.37 13692.67 14195.47 14995.34 22892.83 8097.17 13398.58 1092.98 8990.13 20595.80 18988.37 9997.85 25691.71 14283.93 30795.73 233
PVSNet_BlendedMVS94.06 11593.92 10594.47 18798.27 8989.46 18696.73 17198.36 1690.17 17194.36 11795.24 21888.02 10099.58 7093.44 11090.72 23594.36 302
PVSNet_Blended94.87 9794.56 9395.81 12698.27 8989.46 18695.47 25198.36 1688.84 20694.36 11796.09 17888.02 10099.58 7093.44 11098.18 10698.40 138
TAPA-MVS90.10 792.30 17591.22 19295.56 14098.33 8589.60 17796.79 16797.65 13081.83 31491.52 17497.23 11887.94 10298.91 15371.31 33698.37 10198.17 148
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
abl_696.40 5496.21 5596.98 7498.89 5492.20 10197.89 5798.03 8493.34 7397.22 3798.42 3187.93 10399.72 3595.10 7299.07 8099.02 83
MVS_Test94.89 9694.62 9195.68 13496.83 15889.55 18096.70 17497.17 18591.17 14595.60 9896.11 17787.87 10498.76 16593.01 12197.17 13698.72 112
UniMVSNet (Re)93.31 13892.55 14695.61 13895.39 22293.34 7097.39 10998.71 593.14 8090.10 20994.83 23387.71 10598.03 23191.67 14683.99 30695.46 241
FC-MVSNet-test93.94 12093.57 11495.04 16195.48 21991.45 12498.12 3898.71 593.37 7090.23 20096.70 14187.66 10697.85 25691.49 14890.39 24095.83 224
canonicalmvs96.02 6495.45 7197.75 3797.59 13095.15 2198.28 2597.60 13494.52 3896.27 7196.12 17587.65 10799.18 12596.20 3894.82 17698.91 97
FIs94.09 11493.70 11095.27 15395.70 21192.03 10698.10 3998.68 793.36 7290.39 19796.70 14187.63 10897.94 24692.25 12790.50 23995.84 223
CDS-MVSNet94.14 11293.54 11695.93 12196.18 19191.46 12396.33 20797.04 20188.97 20193.56 13296.51 15787.55 10997.89 25489.80 17295.95 15598.44 135
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Effi-MVS+94.93 9494.45 9996.36 10196.61 16591.47 12296.41 19697.41 16691.02 15094.50 11595.92 18287.53 11098.78 16293.89 10196.81 14098.84 105
casdiffmvs95.64 7395.49 6996.08 11496.76 16390.45 15997.29 12097.44 16194.00 4895.46 10397.98 7087.52 11198.73 16795.64 5697.33 13099.08 80
PVSNet_Blended_VisFu95.27 8294.91 8596.38 9998.20 9890.86 14797.27 12198.25 3390.21 17094.18 12197.27 11587.48 11299.73 3293.53 10797.77 11798.55 119
mvs_anonymous93.82 12393.74 10994.06 20396.44 17985.41 27895.81 23897.05 19989.85 17990.09 21096.36 16687.44 11397.75 26693.97 9796.69 14599.02 83
CANet96.39 5596.02 5997.50 5097.62 12793.38 6797.02 14397.96 10095.42 794.86 11097.81 8287.38 11499.82 2596.88 1299.20 7099.29 62
baseline95.58 7595.42 7396.08 11496.78 16090.41 16197.16 13497.45 15793.69 6095.65 9797.85 7887.29 11598.68 17295.66 5297.25 13399.13 74
TAMVS94.01 11893.46 12095.64 13596.16 19390.45 15996.71 17396.89 21589.27 19193.46 13796.92 13287.29 11597.94 24688.70 20095.74 16098.53 121
nrg03094.05 11693.31 12696.27 10795.22 24094.59 2898.34 2097.46 15192.93 9191.21 18796.64 14687.23 11798.22 20294.99 7785.80 28195.98 218
CPTT-MVS95.57 7695.19 7996.70 7799.27 2691.48 12198.33 2198.11 5987.79 24095.17 10698.03 6687.09 11899.61 6293.51 10899.42 4399.02 83
OMC-MVS95.09 8894.70 9096.25 10998.46 7491.28 12896.43 19497.57 13892.04 11794.77 11297.96 7187.01 11999.09 13691.31 15296.77 14198.36 142
DeepC-MVS93.07 396.06 6295.66 6597.29 5897.96 10993.17 7397.30 11998.06 7393.92 5093.38 13998.66 1286.83 12099.73 3295.60 6199.22 6898.96 91
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
IterMVS-LS92.29 17691.94 16593.34 24196.25 18786.97 25296.57 19097.05 19990.67 15689.50 22994.80 23586.59 12197.64 27489.91 16886.11 27995.40 248
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet93.03 14892.88 13493.48 23495.77 20886.98 25196.44 19297.12 18990.66 15891.30 18197.64 9786.56 12298.05 22789.91 16890.55 23795.41 244
miper_enhance_ethall91.54 20191.01 19693.15 24895.35 22787.07 25093.97 29496.90 21386.79 26389.17 23993.43 29786.55 12397.64 27489.97 16786.93 27094.74 292
1112_ss93.37 13692.42 15296.21 11197.05 15190.99 14196.31 20996.72 22586.87 26289.83 21796.69 14386.51 12499.14 13088.12 20693.67 19198.50 125
diffmvs95.25 8395.13 8195.63 13696.43 18089.34 19295.99 23097.35 17392.83 9396.31 6997.37 11286.44 12598.67 17396.26 3097.19 13598.87 102
WTY-MVS94.71 10294.02 10496.79 7697.71 12392.05 10596.59 18797.35 17390.61 16294.64 11396.93 12986.41 12699.39 10991.20 15594.71 18098.94 94
EPNet95.20 8694.56 9397.14 6892.80 31892.68 8497.85 6294.87 30496.64 192.46 15597.80 8486.23 12799.65 5393.72 10598.62 9699.10 79
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth91.59 19691.13 19592.97 25495.55 21686.57 26194.47 27696.88 21687.77 24188.88 24494.01 27586.22 12897.54 28389.49 18086.93 27094.79 288
Fast-Effi-MVS+93.46 13492.75 13895.59 13996.77 16190.03 16496.81 16697.13 18888.19 22591.30 18194.27 26486.21 12998.63 17687.66 22096.46 15198.12 150
MVSFormer95.37 7995.16 8095.99 12096.34 18491.21 13298.22 3297.57 13891.42 13396.22 7297.32 11386.20 13097.92 25094.07 9599.05 8198.85 103
lupinMVS94.99 9394.56 9396.29 10696.34 18491.21 13295.83 23796.27 24888.93 20396.22 7296.88 13486.20 13098.85 15795.27 6799.05 8198.82 106
114514_t93.95 11993.06 13096.63 8099.07 3991.61 11697.46 10497.96 10077.99 33493.00 14797.57 10386.14 13299.33 11389.22 18999.15 7398.94 94
alignmvs95.87 6995.23 7897.78 3397.56 13295.19 1897.86 5997.17 18594.39 4196.47 6496.40 16485.89 13399.20 12296.21 3795.11 17298.95 93
WR-MVS_H92.00 18691.35 18393.95 21195.09 24789.47 18498.04 4598.68 791.46 13188.34 25594.68 24085.86 13497.56 28185.77 25484.24 30494.82 283
Test_1112_low_res92.84 15991.84 16895.85 12597.04 15289.97 17095.53 24996.64 23485.38 27889.65 22395.18 21985.86 13499.10 13387.70 21593.58 19698.49 127
HY-MVS89.66 993.87 12192.95 13296.63 8097.10 14592.49 9095.64 24596.64 23489.05 19793.00 14795.79 19285.77 13699.45 10289.16 19394.35 18297.96 155
cl_fuxian91.38 20890.89 19892.88 25795.58 21486.30 26494.68 27196.84 22188.17 22788.83 24794.23 26785.65 13797.47 29089.36 18384.63 29894.89 278
IS-MVSNet94.90 9594.52 9696.05 11797.67 12490.56 15598.44 1696.22 25193.21 7593.99 12497.74 8785.55 13898.45 18989.98 16697.86 11399.14 73
MVS91.71 19290.44 21695.51 14495.20 24291.59 11896.04 22597.45 15773.44 34187.36 27895.60 20385.42 13999.10 13385.97 25197.46 12295.83 224
VNet95.89 6895.45 7197.21 6598.07 10792.94 7997.50 9798.15 5193.87 5197.52 2597.61 10085.29 14099.53 8895.81 5095.27 16899.16 70
CNLPA94.28 10793.53 11796.52 8598.38 8192.55 8896.59 18796.88 21690.13 17391.91 16997.24 11785.21 14199.09 13687.64 22197.83 11497.92 158
F-COLMAP93.58 13192.98 13195.37 15298.40 7888.98 20697.18 13297.29 17887.75 24390.49 19497.10 12485.21 14199.50 9686.70 23796.72 14497.63 172
LCM-MVSNet-Re92.50 16592.52 14992.44 26796.82 15981.89 31196.92 15593.71 32392.41 10584.30 30994.60 24485.08 14397.03 30791.51 14797.36 12898.40 138
NR-MVSNet92.34 17291.27 18995.53 14394.95 25393.05 7597.39 10998.07 7092.65 10084.46 30795.71 19785.00 14497.77 26589.71 17483.52 31395.78 227
PAPM91.52 20290.30 22295.20 15595.30 23589.83 17393.38 30896.85 22086.26 26988.59 25195.80 18984.88 14598.15 21075.67 32495.93 15697.63 172
MAR-MVS94.22 10893.46 12096.51 8898.00 10892.19 10297.67 8197.47 14988.13 23193.00 14795.84 18684.86 14699.51 9387.99 20898.17 10797.83 165
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
jason94.84 9894.39 10196.18 11295.52 21790.93 14596.09 22396.52 24189.28 19096.01 8297.32 11384.70 14798.77 16495.15 7098.91 8898.85 103
jason: jason.
sss94.51 10493.80 10896.64 7897.07 14691.97 10996.32 20898.06 7388.94 20294.50 11596.78 13684.60 14899.27 11891.90 13696.02 15398.68 116
LS3D93.57 13292.61 14496.47 9197.59 13091.61 11697.67 8197.72 12285.17 28290.29 19998.34 4184.60 14899.73 3283.85 27898.27 10398.06 154
Vis-MVSNet (Re-imp)94.15 11093.88 10694.95 16897.61 12887.92 23198.10 3995.80 26392.22 10893.02 14697.45 10984.53 15097.91 25388.24 20497.97 11199.02 83
cdsmvs_eth3d_5k23.24 32430.99 3260.00 3400.00 3610.00 3620.00 35297.63 1320.00 3570.00 35896.88 13484.38 1510.00 3580.00 3560.00 3560.00 354
test_yl94.78 10094.23 10296.43 9497.74 12191.22 13096.85 16097.10 19291.23 14395.71 9196.93 12984.30 15299.31 11593.10 11795.12 17098.75 108
DCV-MVSNet94.78 10094.23 10296.43 9497.74 12191.22 13096.85 16097.10 19291.23 14395.71 9196.93 12984.30 15299.31 11593.10 11795.12 17098.75 108
CHOSEN 280x42093.12 14492.72 14094.34 19396.71 16487.27 24290.29 33297.72 12286.61 26591.34 17895.29 21584.29 15498.41 19093.25 11598.94 8697.35 183
baseline192.82 16091.90 16695.55 14297.20 13990.77 15197.19 13194.58 30992.20 11092.36 15996.34 16784.16 15598.21 20389.20 19183.90 31097.68 171
eth_miper_zixun_eth91.02 22790.59 21292.34 27195.33 23184.35 28994.10 29196.90 21388.56 21788.84 24694.33 25984.08 15697.60 27988.77 19984.37 30395.06 267
PCF-MVS89.48 1191.56 19989.95 23896.36 10196.60 16692.52 8992.51 32197.26 17979.41 32888.90 24296.56 15584.04 15799.55 8377.01 32097.30 13197.01 186
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
131492.81 16192.03 16195.14 15895.33 23189.52 18396.04 22597.44 16187.72 24486.25 29395.33 21483.84 15898.79 16189.26 18797.05 13897.11 185
DP-MVS92.76 16291.51 18196.52 8598.77 5790.99 14197.38 11196.08 25582.38 31089.29 23597.87 7583.77 15999.69 4481.37 29896.69 14598.89 100
3Dnovator+91.43 495.40 7894.48 9898.16 1296.90 15495.34 1398.48 1597.87 10894.65 3688.53 25398.02 6783.69 16099.71 3893.18 11698.96 8599.44 47
AdaColmapbinary94.34 10693.68 11296.31 10398.59 6991.68 11596.59 18797.81 11489.87 17692.15 16597.06 12683.62 16199.54 8589.34 18498.07 10997.70 170
DU-MVS92.90 15592.04 16095.49 14694.95 25392.83 8097.16 13498.24 3493.02 8390.13 20595.71 19783.47 16297.85 25691.71 14283.93 30795.78 227
Baseline_NR-MVSNet91.20 21990.62 21092.95 25593.83 29588.03 22997.01 14795.12 29188.42 22089.70 22095.13 22283.47 16297.44 29389.66 17783.24 31593.37 320
miper_lstm_enhance90.50 24790.06 23691.83 28195.33 23183.74 29593.86 29696.70 23087.56 24887.79 26993.81 28383.45 16496.92 31387.39 22684.62 29994.82 283
EPNet_dtu91.71 19291.28 18892.99 25393.76 29783.71 29796.69 17695.28 28293.15 7987.02 28595.95 18183.37 16597.38 29879.46 30996.84 13997.88 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-untuned92.94 15392.62 14393.92 21597.22 13786.16 26996.40 19996.25 25090.06 17489.79 21896.17 17483.19 16698.35 19587.19 23197.27 13297.24 184
TranMVSNet+NR-MVSNet92.50 16591.63 17495.14 15894.76 26492.07 10497.53 9598.11 5992.90 9289.56 22696.12 17583.16 16797.60 27989.30 18583.20 31695.75 231
CHOSEN 1792x268894.15 11093.51 11896.06 11698.27 8989.38 19095.18 26598.48 1485.60 27793.76 13097.11 12383.15 16899.61 6291.33 15198.72 9299.19 68
PMMVS92.86 15792.34 15394.42 19094.92 25586.73 25694.53 27596.38 24484.78 28994.27 11995.12 22383.13 16998.40 19191.47 14996.49 14998.12 150
Effi-MVS+-dtu93.08 14593.21 12892.68 26496.02 20083.25 30297.14 13796.72 22593.85 5291.20 18893.44 29583.08 17098.30 19891.69 14495.73 16196.50 202
mvs-test193.63 12993.69 11193.46 23696.02 20084.61 28897.24 12396.72 22593.85 5292.30 16295.76 19483.08 17098.89 15591.69 14496.54 14896.87 193
v891.29 21690.53 21593.57 23194.15 28588.12 22897.34 11397.06 19888.99 19988.32 25694.26 26683.08 17098.01 23387.62 22283.92 30994.57 297
cl-mvsnet190.97 23090.33 21992.88 25795.36 22686.19 26894.46 27896.63 23787.82 23788.18 26294.23 26782.99 17397.53 28587.72 21385.57 28394.93 274
cl-mvsnet_90.96 23190.32 22092.89 25695.37 22586.21 26794.46 27896.64 23487.82 23788.15 26394.18 27082.98 17497.54 28387.70 21585.59 28294.92 276
BH-w/o92.14 18491.75 17093.31 24296.99 15385.73 27395.67 24295.69 26588.73 21389.26 23794.82 23482.97 17598.07 22485.26 26196.32 15296.13 213
v14890.99 22890.38 21892.81 26093.83 29585.80 27296.78 16996.68 23189.45 18688.75 24993.93 27982.96 17697.82 26087.83 21183.25 31494.80 286
HyFIR lowres test93.66 12892.92 13395.87 12498.24 9389.88 17294.58 27398.49 1285.06 28493.78 12995.78 19382.86 17798.67 17391.77 14095.71 16299.07 82
test_djsdf93.07 14692.76 13694.00 20693.49 30588.70 21298.22 3297.57 13891.42 13390.08 21195.55 20782.85 17897.92 25094.07 9591.58 22095.40 248
PatchmatchNetpermissive91.91 18891.35 18393.59 22995.38 22384.11 29393.15 31295.39 27589.54 18392.10 16693.68 28882.82 17998.13 21184.81 26595.32 16798.52 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs182.76 18098.45 132
xiu_mvs_v1_base_debu95.01 8994.76 8795.75 12996.58 16891.71 11296.25 21497.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 214
xiu_mvs_v1_base95.01 8994.76 8795.75 12996.58 16891.71 11296.25 21497.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 214
xiu_mvs_v1_base_debi95.01 8994.76 8795.75 12996.58 16891.71 11296.25 21497.35 17392.99 8496.70 5096.63 15082.67 18199.44 10396.22 3397.46 12296.11 214
patchmatchnet-post90.45 32482.65 18498.10 216
V4291.58 19890.87 19993.73 22194.05 28988.50 21697.32 11696.97 20688.80 21189.71 21994.33 25982.54 18598.05 22789.01 19485.07 29294.64 296
WR-MVS92.34 17291.53 17894.77 17795.13 24590.83 14896.40 19997.98 9891.88 12189.29 23595.54 20882.50 18697.80 26189.79 17385.27 28895.69 234
tpmrst91.44 20591.32 18591.79 28495.15 24379.20 33293.42 30795.37 27788.55 21893.49 13693.67 28982.49 18798.27 19990.41 16189.34 24997.90 159
MDTV_nov1_ep13_2view70.35 34593.10 31483.88 29993.55 13382.47 18886.25 24398.38 140
XVG-OURS-SEG-HR93.86 12293.55 11594.81 17497.06 14988.53 21595.28 25997.45 15791.68 12594.08 12397.68 9182.41 18998.90 15493.84 10392.47 20596.98 187
QAPM93.45 13592.27 15696.98 7496.77 16192.62 8698.39 1998.12 5684.50 29288.27 25997.77 8582.39 19099.81 2685.40 25998.81 8998.51 124
Patchmatch-test89.42 26687.99 27393.70 22495.27 23685.11 28088.98 33994.37 31481.11 31887.10 28393.69 28682.28 19197.50 28874.37 32794.76 17798.48 129
Vis-MVSNetpermissive95.23 8494.81 8696.51 8897.18 14091.58 11998.26 2798.12 5694.38 4294.90 10998.15 5982.28 19198.92 15191.45 15098.58 9899.01 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator91.36 595.19 8794.44 10097.44 5296.56 17193.36 6998.65 698.36 1694.12 4689.25 23898.06 6482.20 19399.77 2993.41 11299.32 5399.18 69
v1091.04 22690.23 22793.49 23394.12 28688.16 22797.32 11697.08 19588.26 22488.29 25894.22 26982.17 19497.97 23986.45 24184.12 30594.33 303
v114491.37 21090.60 21193.68 22693.89 29388.23 22396.84 16297.03 20388.37 22189.69 22194.39 25582.04 19597.98 23687.80 21285.37 28694.84 280
MVSTER93.20 14292.81 13594.37 19196.56 17189.59 17897.06 13997.12 18991.24 14291.30 18195.96 18082.02 19698.05 22793.48 10990.55 23795.47 240
CP-MVSNet91.89 18991.24 19093.82 21895.05 24888.57 21497.82 6498.19 4491.70 12488.21 26195.76 19481.96 19797.52 28787.86 21084.65 29795.37 252
Patchmatch-RL test87.38 28786.24 28890.81 30188.74 34078.40 33588.12 34193.17 32787.11 25882.17 32089.29 32981.95 19895.60 32988.64 20177.02 33298.41 137
sam_mvs81.94 199
pmmvs490.93 23289.85 24294.17 19993.34 30990.79 15094.60 27296.02 25684.62 29087.45 27495.15 22081.88 20097.45 29287.70 21587.87 26294.27 307
test_post17.58 35581.76 20198.08 221
XVG-OURS93.72 12793.35 12594.80 17597.07 14688.61 21394.79 26997.46 15191.97 12093.99 12497.86 7781.74 20298.88 15692.64 12392.67 20396.92 191
v2v48291.59 19690.85 20293.80 21993.87 29488.17 22696.94 15496.88 21689.54 18389.53 22794.90 22981.70 20398.02 23289.25 18885.04 29495.20 263
baseline291.63 19590.86 20093.94 21394.33 28186.32 26395.92 23391.64 33889.37 18886.94 28694.69 23981.62 20498.69 17188.64 20194.57 18196.81 195
v14419291.06 22590.28 22393.39 23893.66 30087.23 24596.83 16397.07 19687.43 25089.69 22194.28 26381.48 20598.00 23587.18 23284.92 29694.93 274
MDTV_nov1_ep1390.76 20695.22 24080.33 32293.03 31595.28 28288.14 23092.84 15393.83 28081.34 20698.08 22182.86 28394.34 183
HQP_MVS93.78 12593.43 12294.82 17296.21 18889.99 16797.74 7197.51 14494.85 2491.34 17896.64 14681.32 20798.60 17993.02 11992.23 20895.86 220
plane_prior696.10 19890.00 16581.32 207
v7n90.76 23689.86 24193.45 23793.54 30287.60 23997.70 7997.37 17088.85 20587.65 27294.08 27481.08 20998.10 21684.68 26783.79 31194.66 295
HQP2-MVS80.95 210
HQP-MVS93.19 14392.74 13994.54 18695.86 20389.33 19396.65 17997.39 16793.55 6290.14 20195.87 18480.95 21098.50 18692.13 13192.10 21395.78 227
CR-MVSNet90.82 23589.77 24693.95 21194.45 27787.19 24690.23 33395.68 26786.89 26192.40 15692.36 31280.91 21297.05 30681.09 30093.95 18997.60 177
Patchmtry88.64 27787.25 28092.78 26194.09 28786.64 25789.82 33695.68 26780.81 32287.63 27392.36 31280.91 21297.03 30778.86 31285.12 29194.67 294
v119291.07 22490.23 22793.58 23093.70 29887.82 23596.73 17197.07 19687.77 24189.58 22494.32 26180.90 21497.97 23986.52 23985.48 28494.95 270
cl-mvsnet291.21 21890.56 21493.14 24996.09 19986.80 25494.41 28096.58 24087.80 23988.58 25293.99 27780.85 21597.62 27789.87 17186.93 27094.99 269
anonymousdsp92.16 18291.55 17793.97 20992.58 32289.55 18097.51 9697.42 16589.42 18788.40 25494.84 23280.66 21697.88 25591.87 13891.28 22694.48 298
CLD-MVS92.98 15092.53 14894.32 19496.12 19789.20 20095.28 25997.47 14992.66 9989.90 21495.62 20280.58 21798.40 19192.73 12292.40 20695.38 251
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_post192.81 31816.58 35680.53 21897.68 27086.20 244
VPA-MVSNet93.24 14092.48 15195.51 14495.70 21192.39 9297.86 5998.66 992.30 10792.09 16795.37 21380.49 21998.40 19193.95 9885.86 28095.75 231
tpmvs89.83 26289.15 26091.89 27994.92 25580.30 32393.11 31395.46 27486.28 26888.08 26492.65 30480.44 22098.52 18581.47 29489.92 24496.84 194
PatchMatch-RL92.90 15592.02 16295.56 14098.19 10090.80 14995.27 26197.18 18387.96 23391.86 17195.68 20080.44 22098.99 14684.01 27497.54 12196.89 192
PEN-MVS91.20 21990.44 21693.48 23494.49 27587.91 23397.76 6998.18 4691.29 13887.78 27095.74 19680.35 22297.33 30085.46 25882.96 31795.19 264
Fast-Effi-MVS+-dtu92.29 17691.99 16393.21 24795.27 23685.52 27697.03 14096.63 23792.09 11589.11 24095.14 22180.33 22398.08 22187.54 22494.74 17996.03 217
MSDG91.42 20690.24 22694.96 16797.15 14388.91 20793.69 30196.32 24685.72 27686.93 28796.47 15980.24 22498.98 14780.57 30195.05 17396.98 187
v192192090.85 23490.03 23793.29 24393.55 30186.96 25396.74 17097.04 20187.36 25289.52 22894.34 25880.23 22597.97 23986.27 24285.21 28994.94 272
RPMNet88.98 26987.05 28494.77 17794.45 27787.19 24690.23 33398.03 8477.87 33692.40 15687.55 33780.17 22699.51 9368.84 34093.95 18997.60 177
ET-MVSNet_ETH3D91.49 20390.11 23295.63 13696.40 18191.57 12095.34 25593.48 32590.60 16475.58 33795.49 21080.08 22796.79 31694.25 9289.76 24698.52 122
PatchT88.87 27387.42 27893.22 24694.08 28885.10 28189.51 33794.64 30881.92 31392.36 15988.15 33580.05 22897.01 31072.43 33293.65 19297.54 180
our_test_388.78 27587.98 27491.20 29692.45 32482.53 30693.61 30595.69 26585.77 27584.88 30493.71 28579.99 22996.78 31779.47 30886.24 27694.28 306
DTE-MVSNet90.56 24489.75 24893.01 25293.95 29087.25 24397.64 8897.65 13090.74 15387.12 28195.68 20079.97 23097.00 31183.33 27981.66 32394.78 290
D2MVS91.30 21590.95 19792.35 27094.71 26785.52 27696.18 22098.21 4088.89 20486.60 29093.82 28279.92 23197.95 24589.29 18690.95 23293.56 316
TransMVSNet (Re)88.94 27087.56 27793.08 25194.35 28088.45 21897.73 7395.23 28687.47 24984.26 31095.29 21579.86 23297.33 30079.44 31074.44 33893.45 319
ACMM89.79 892.96 15192.50 15094.35 19296.30 18688.71 21197.58 9197.36 17291.40 13690.53 19396.65 14579.77 23398.75 16691.24 15491.64 21895.59 236
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XXY-MVS92.16 18291.23 19194.95 16894.75 26590.94 14497.47 10297.43 16489.14 19588.90 24296.43 16179.71 23498.24 20089.56 17987.68 26395.67 235
PS-CasMVS91.55 20090.84 20393.69 22594.96 25288.28 22097.84 6398.24 3491.46 13188.04 26595.80 18979.67 23597.48 28987.02 23484.54 30195.31 255
RRT_MVS93.21 14192.32 15595.91 12294.92 25594.15 4396.92 15596.86 21991.42 13391.28 18496.43 16179.66 23698.10 21693.29 11490.06 24295.46 241
ab-mvs93.57 13292.55 14696.64 7897.28 13691.96 11095.40 25397.45 15789.81 18193.22 14596.28 16979.62 23799.46 10090.74 15893.11 19798.50 125
v124090.70 24189.85 24293.23 24593.51 30486.80 25496.61 18497.02 20487.16 25789.58 22494.31 26279.55 23897.98 23685.52 25785.44 28594.90 277
CostFormer91.18 22390.70 20892.62 26594.84 26181.76 31294.09 29294.43 31184.15 29592.72 15493.77 28479.43 23998.20 20590.70 15992.18 21197.90 159
CANet_DTU94.37 10593.65 11396.55 8496.46 17892.13 10396.21 21896.67 23394.38 4293.53 13597.03 12779.34 24099.71 3890.76 15798.45 10097.82 166
OPM-MVS93.28 13992.76 13694.82 17294.63 27190.77 15196.65 17997.18 18393.72 5791.68 17297.26 11679.33 24198.63 17692.13 13192.28 20795.07 266
JIA-IIPM88.26 28187.04 28591.91 27893.52 30381.42 31389.38 33894.38 31380.84 32190.93 19080.74 34279.22 24297.92 25082.76 28591.62 21996.38 205
CVMVSNet91.23 21791.75 17089.67 31495.77 20874.69 34096.44 19294.88 30185.81 27492.18 16497.64 9779.07 24395.58 33088.06 20795.86 15898.74 110
LPG-MVS_test92.94 15392.56 14594.10 20196.16 19388.26 22197.65 8497.46 15191.29 13890.12 20797.16 12079.05 24498.73 16792.25 12791.89 21695.31 255
LGP-MVS_train94.10 20196.16 19388.26 22197.46 15191.29 13890.12 20797.16 12079.05 24498.73 16792.25 12791.89 21695.31 255
test-LLR91.42 20691.19 19392.12 27494.59 27280.66 31794.29 28692.98 32891.11 14790.76 19192.37 30979.02 24698.07 22488.81 19796.74 14297.63 172
test0.0.03 189.37 26788.70 26491.41 29492.47 32385.63 27495.22 26492.70 33091.11 14786.91 28893.65 29079.02 24693.19 34278.00 31589.18 25095.41 244
ADS-MVSNet289.45 26588.59 26692.03 27695.86 20382.26 31090.93 32894.32 31683.23 30691.28 18491.81 31979.01 24895.99 32379.52 30691.39 22497.84 163
ADS-MVSNet89.89 25988.68 26593.53 23295.86 20384.89 28590.93 32895.07 29383.23 30691.28 18491.81 31979.01 24897.85 25679.52 30691.39 22497.84 163
ppachtmachnet_test88.35 28087.29 27991.53 29092.45 32483.57 30093.75 29995.97 25784.28 29385.32 30394.18 27079.00 25096.93 31275.71 32384.99 29594.10 309
OpenMVScopyleft89.19 1292.86 15791.68 17396.40 9695.34 22892.73 8398.27 2698.12 5684.86 28785.78 29797.75 8678.89 25199.74 3187.50 22598.65 9596.73 197
LTVRE_ROB88.41 1390.99 22889.92 23994.19 19896.18 19189.55 18096.31 20997.09 19487.88 23685.67 29895.91 18378.79 25298.57 18281.50 29389.98 24394.44 300
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pm-mvs190.72 24089.65 25293.96 21094.29 28489.63 17597.79 6796.82 22289.07 19686.12 29595.48 21178.61 25397.78 26386.97 23581.67 32294.46 299
PVSNet86.66 1892.24 17991.74 17293.73 22197.77 12083.69 29992.88 31696.72 22587.91 23593.00 14794.86 23178.51 25499.05 14286.53 23897.45 12698.47 130
ACMP89.59 1092.62 16492.14 15894.05 20496.40 18188.20 22497.36 11297.25 18191.52 12888.30 25796.64 14678.46 25598.72 17091.86 13991.48 22295.23 262
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
BH-RMVSNet92.72 16391.97 16494.97 16697.16 14187.99 23096.15 22195.60 26990.62 16191.87 17097.15 12278.41 25698.57 18283.16 28097.60 12098.36 142
thres20092.23 18091.39 18294.75 17997.61 12889.03 20596.60 18695.09 29292.08 11693.28 14294.00 27678.39 25799.04 14481.26 29994.18 18496.19 208
MDA-MVSNet_test_wron85.87 29984.23 30390.80 30392.38 32682.57 30593.17 31095.15 28982.15 31167.65 34292.33 31578.20 25895.51 33177.33 31779.74 32794.31 305
tfpn200view992.38 17191.52 17994.95 16897.85 11789.29 19697.41 10594.88 30192.19 11293.27 14394.46 25378.17 25999.08 13881.40 29594.08 18596.48 203
thres40092.42 16991.52 17995.12 16097.85 11789.29 19697.41 10594.88 30192.19 11293.27 14394.46 25378.17 25999.08 13881.40 29594.08 18596.98 187
YYNet185.87 29984.23 30390.78 30492.38 32682.46 30893.17 31095.14 29082.12 31267.69 34192.36 31278.16 26195.50 33277.31 31879.73 32894.39 301
thres100view90092.43 16891.58 17694.98 16597.92 11389.37 19197.71 7894.66 30692.20 11093.31 14194.90 22978.06 26299.08 13881.40 29594.08 18596.48 203
thres600view792.49 16791.60 17595.18 15697.91 11489.47 18497.65 8494.66 30692.18 11493.33 14094.91 22878.06 26299.10 13381.61 29294.06 18896.98 187
tpm cat188.36 27987.21 28291.81 28395.13 24580.55 32092.58 32095.70 26474.97 33887.45 27491.96 31778.01 26498.17 20980.39 30388.74 25596.72 198
MVP-Stereo90.74 23990.08 23392.71 26293.19 31288.20 22495.86 23596.27 24886.07 27284.86 30594.76 23677.84 26597.75 26683.88 27798.01 11092.17 331
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EPMVS90.70 24189.81 24493.37 24094.73 26684.21 29193.67 30288.02 34589.50 18592.38 15893.49 29377.82 26697.78 26386.03 25092.68 20298.11 153
tfpnnormal89.70 26388.40 26893.60 22895.15 24390.10 16397.56 9398.16 5087.28 25586.16 29494.63 24377.57 26798.05 22774.48 32584.59 30092.65 324
tpm90.25 25189.74 24991.76 28793.92 29179.73 32893.98 29393.54 32488.28 22391.99 16893.25 29877.51 26897.44 29387.30 22987.94 26198.12 150
thisisatest051592.29 17691.30 18795.25 15496.60 16688.90 20894.36 28292.32 33287.92 23493.43 13894.57 24677.28 26999.00 14589.42 18295.86 15897.86 162
FMVSNet391.78 19190.69 20995.03 16296.53 17392.27 9897.02 14396.93 20989.79 18289.35 23294.65 24277.01 27097.47 29086.12 24788.82 25295.35 253
TR-MVS91.48 20490.59 21294.16 20096.40 18187.33 24095.67 24295.34 28187.68 24591.46 17595.52 20976.77 27198.35 19582.85 28493.61 19496.79 196
tttt051792.96 15192.33 15494.87 17197.11 14487.16 24897.97 5292.09 33490.63 16093.88 12897.01 12876.50 27299.06 14190.29 16595.45 16598.38 140
RPSCF90.75 23890.86 20090.42 30896.84 15676.29 33895.61 24696.34 24583.89 29891.38 17697.87 7576.45 27398.78 16287.16 23392.23 20896.20 207
tpm289.96 25789.21 25892.23 27394.91 25881.25 31493.78 29894.42 31280.62 32391.56 17393.44 29576.44 27497.94 24685.60 25692.08 21597.49 181
thisisatest053093.03 14892.21 15795.49 14697.07 14689.11 20497.49 10192.19 33390.16 17294.09 12296.41 16376.43 27599.05 14290.38 16295.68 16398.31 144
EU-MVSNet88.72 27688.90 26288.20 31793.15 31374.21 34196.63 18394.22 31885.18 28187.32 27995.97 17976.16 27694.98 33485.27 26086.17 27795.41 244
dp88.90 27288.26 27190.81 30194.58 27476.62 33792.85 31794.93 29985.12 28390.07 21293.07 29975.81 27798.12 21480.53 30287.42 26797.71 169
IterMVS-SCA-FT90.31 24989.81 24491.82 28295.52 21784.20 29294.30 28596.15 25390.61 16287.39 27794.27 26475.80 27896.44 31987.34 22786.88 27494.82 283
SCA91.84 19091.18 19493.83 21795.59 21384.95 28494.72 27095.58 27190.82 15192.25 16393.69 28675.80 27898.10 21686.20 24495.98 15498.45 132
IterMVS90.15 25589.67 25091.61 28995.48 21983.72 29694.33 28496.12 25489.99 17587.31 28094.15 27275.78 28096.27 32286.97 23586.89 27394.83 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
jajsoiax92.42 16991.89 16794.03 20593.33 31088.50 21697.73 7397.53 14292.00 11988.85 24596.50 15875.62 28198.11 21593.88 10291.56 22195.48 238
cascas91.20 21990.08 23394.58 18594.97 25189.16 20393.65 30397.59 13679.90 32689.40 23092.92 30175.36 28298.36 19492.14 13094.75 17896.23 206
VPNet92.23 18091.31 18694.99 16395.56 21590.96 14397.22 12997.86 11192.96 9090.96 18996.62 15375.06 28398.20 20591.90 13683.65 31295.80 226
N_pmnet78.73 31278.71 31478.79 32792.80 31846.50 35694.14 29043.71 35878.61 33180.83 32391.66 32274.94 28496.36 32067.24 34184.45 30293.50 317
mvs_tets92.31 17491.76 16993.94 21393.41 30788.29 21997.63 8997.53 14292.04 11788.76 24896.45 16074.62 28598.09 22093.91 10091.48 22295.45 243
DSMNet-mixed86.34 29586.12 29187.00 32289.88 33670.43 34494.93 26890.08 34377.97 33585.42 30292.78 30374.44 28693.96 33874.43 32695.14 16996.62 199
pmmvs589.86 26188.87 26392.82 25992.86 31686.23 26696.26 21395.39 27584.24 29487.12 28194.51 24874.27 28797.36 29987.61 22387.57 26494.86 279
OurMVSNet-221017-090.51 24690.19 23191.44 29393.41 30781.25 31496.98 15096.28 24791.68 12586.55 29196.30 16874.20 28897.98 23688.96 19587.40 26895.09 265
GBi-Net91.35 21190.27 22494.59 18196.51 17491.18 13697.50 9796.93 20988.82 20889.35 23294.51 24873.87 28997.29 30286.12 24788.82 25295.31 255
test191.35 21190.27 22494.59 18196.51 17491.18 13697.50 9796.93 20988.82 20889.35 23294.51 24873.87 28997.29 30286.12 24788.82 25295.31 255
FMVSNet291.31 21490.08 23394.99 16396.51 17492.21 9997.41 10596.95 20788.82 20888.62 25094.75 23773.87 28997.42 29585.20 26288.55 25895.35 253
COLMAP_ROBcopyleft87.81 1590.40 24889.28 25793.79 22097.95 11087.13 24996.92 15595.89 26082.83 30886.88 28997.18 11973.77 29299.29 11778.44 31493.62 19394.95 270
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DWT-MVSNet_test90.76 23689.89 24093.38 23995.04 24983.70 29895.85 23694.30 31788.19 22590.46 19592.80 30273.61 29398.50 18688.16 20590.58 23697.95 157
Anonymous2023120687.09 29086.14 29089.93 31391.22 33180.35 32196.11 22295.35 27883.57 30384.16 31193.02 30073.54 29495.61 32872.16 33386.14 27893.84 314
UGNet94.04 11793.28 12796.31 10396.85 15591.19 13597.88 5897.68 12794.40 4093.00 14796.18 17273.39 29599.61 6291.72 14198.46 9998.13 149
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2023121190.63 24389.42 25494.27 19598.24 9389.19 20298.05 4497.89 10479.95 32588.25 26094.96 22572.56 29698.13 21189.70 17585.14 29095.49 237
ACMH87.59 1690.53 24589.42 25493.87 21696.21 18887.92 23197.24 12396.94 20888.45 21983.91 31596.27 17071.92 29798.62 17884.43 27189.43 24895.05 268
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GA-MVS91.38 20890.31 22194.59 18194.65 26987.62 23894.34 28396.19 25290.73 15490.35 19893.83 28071.84 29897.96 24387.22 23093.61 19498.21 147
SixPastTwentyTwo89.15 26888.54 26790.98 29893.49 30580.28 32496.70 17494.70 30590.78 15284.15 31295.57 20471.78 29997.71 26984.63 26885.07 29294.94 272
gg-mvs-nofinetune87.82 28485.61 29394.44 18894.46 27689.27 19991.21 32784.61 35080.88 32089.89 21674.98 34471.50 30097.53 28585.75 25597.21 13496.51 201
test20.0386.14 29785.40 29588.35 31590.12 33380.06 32695.90 23495.20 28788.59 21481.29 32293.62 29171.43 30192.65 34371.26 33781.17 32592.34 328
MS-PatchMatch90.27 25089.77 24691.78 28594.33 28184.72 28795.55 24796.73 22486.17 27186.36 29295.28 21771.28 30297.80 26184.09 27398.14 10892.81 323
PVSNet_082.17 1985.46 30283.64 30590.92 29995.27 23679.49 32990.55 33195.60 26983.76 30183.00 31889.95 32571.09 30397.97 23982.75 28660.79 34695.31 255
GG-mvs-BLEND93.62 22793.69 29989.20 20092.39 32383.33 35187.98 26889.84 32771.00 30496.87 31482.08 29195.40 16694.80 286
ITE_SJBPF92.43 26895.34 22885.37 27995.92 25891.47 13087.75 27196.39 16571.00 30497.96 24382.36 28989.86 24593.97 312
IB-MVS87.33 1789.91 25888.28 27094.79 17695.26 23987.70 23795.12 26693.95 32289.35 18987.03 28492.49 30770.74 30699.19 12389.18 19281.37 32497.49 181
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDA-MVSNet-bldmvs85.00 30382.95 30791.17 29793.13 31483.33 30194.56 27495.00 29584.57 29165.13 34592.65 30470.45 30795.85 32473.57 33077.49 33194.33 303
RRT_test8_iter0591.19 22290.78 20592.41 26995.76 21083.14 30397.32 11697.46 15191.37 13789.07 24195.57 20470.33 30898.21 20393.56 10686.62 27595.89 219
AllTest90.23 25288.98 26193.98 20797.94 11186.64 25796.51 19195.54 27285.38 27885.49 30096.77 13770.28 30999.15 12880.02 30492.87 19896.15 211
TestCases93.98 20797.94 11186.64 25795.54 27285.38 27885.49 30096.77 13770.28 30999.15 12880.02 30492.87 19896.15 211
ACMH+87.92 1490.20 25389.18 25993.25 24496.48 17786.45 26296.99 14896.68 23188.83 20784.79 30696.22 17170.16 31198.53 18484.42 27288.04 26094.77 291
Anonymous2024052991.98 18790.73 20795.73 13298.14 10389.40 18997.99 4797.72 12279.63 32793.54 13497.41 11169.94 31299.56 8091.04 15691.11 22898.22 146
test_part189.59 26488.03 27294.27 19595.32 23489.42 18898.03 4697.58 13778.01 33386.10 29694.59 24569.87 31398.01 23389.88 17082.85 31995.40 248
pmmvs-eth3d86.22 29684.45 30191.53 29088.34 34187.25 24394.47 27695.01 29483.47 30479.51 33289.61 32869.75 31495.71 32783.13 28176.73 33491.64 332
LFMVS93.60 13092.63 14296.52 8598.13 10491.27 12997.94 5493.39 32690.57 16596.29 7098.31 4769.00 31599.16 12794.18 9495.87 15799.12 77
TESTMET0.1,190.06 25689.42 25491.97 27794.41 27980.62 31994.29 28691.97 33687.28 25590.44 19692.47 30868.79 31697.67 27188.50 20396.60 14797.61 176
XVG-ACMP-BASELINE90.93 23290.21 23093.09 25094.31 28385.89 27195.33 25697.26 17991.06 14989.38 23195.44 21268.61 31798.60 17989.46 18191.05 22994.79 288
MVS-HIRNet82.47 30981.21 31186.26 32495.38 22369.21 34788.96 34089.49 34466.28 34380.79 32474.08 34668.48 31897.39 29771.93 33495.47 16492.18 330
VDD-MVS93.82 12393.08 12996.02 11897.88 11689.96 17197.72 7695.85 26192.43 10495.86 8698.44 2868.42 31999.39 10996.31 2894.85 17498.71 114
test_040286.46 29484.79 29991.45 29295.02 25085.55 27596.29 21194.89 30080.90 31982.21 31993.97 27868.21 32097.29 30262.98 34488.68 25791.51 334
test-mter90.19 25489.54 25392.12 27494.59 27280.66 31794.29 28692.98 32887.68 24590.76 19192.37 30967.67 32198.07 22488.81 19796.74 14297.63 172
VDDNet93.05 14792.07 15996.02 11896.84 15690.39 16298.08 4295.85 26186.22 27095.79 8998.46 2667.59 32299.19 12394.92 7894.85 17498.47 130
USDC88.94 27087.83 27592.27 27294.66 26884.96 28393.86 29695.90 25987.34 25383.40 31795.56 20667.43 32398.19 20782.64 28889.67 24793.66 315
pmmvs687.81 28586.19 28992.69 26391.32 33086.30 26497.34 11396.41 24380.59 32484.05 31494.37 25767.37 32497.67 27184.75 26679.51 32994.09 311
K. test v387.64 28686.75 28790.32 30993.02 31579.48 33096.61 18492.08 33590.66 15880.25 32994.09 27367.21 32596.65 31885.96 25280.83 32694.83 281
CMPMVSbinary62.92 2185.62 30184.92 29887.74 31989.14 33973.12 34394.17 28996.80 22373.98 33973.65 33994.93 22766.36 32697.61 27883.95 27691.28 22692.48 327
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UniMVSNet_ETH3D91.34 21390.22 22994.68 18094.86 26087.86 23497.23 12897.46 15187.99 23289.90 21496.92 13266.35 32798.23 20190.30 16490.99 23197.96 155
lessismore_v090.45 30791.96 32979.09 33387.19 34880.32 32894.39 25566.31 32897.55 28284.00 27576.84 33394.70 293
Anonymous20240521192.07 18590.83 20495.76 12798.19 10088.75 21097.58 9195.00 29586.00 27393.64 13197.45 10966.24 32999.53 8890.68 16092.71 20199.01 87
new-patchmatchnet83.18 30781.87 30987.11 32186.88 34575.99 33993.70 30095.18 28885.02 28577.30 33588.40 33265.99 33093.88 33974.19 32970.18 34291.47 336
FMVSNet189.88 26088.31 26994.59 18195.41 22191.18 13697.50 9796.93 20986.62 26487.41 27694.51 24865.94 33197.29 30283.04 28287.43 26695.31 255
TDRefinement86.53 29384.76 30091.85 28082.23 34884.25 29096.38 20295.35 27884.97 28684.09 31394.94 22665.76 33298.34 19784.60 26974.52 33792.97 321
UnsupCasMVSNet_eth85.99 29884.45 30190.62 30589.97 33582.40 30993.62 30497.37 17089.86 17778.59 33492.37 30965.25 33395.35 33382.27 29070.75 34194.10 309
LF4IMVS87.94 28387.25 28089.98 31292.38 32680.05 32794.38 28195.25 28587.59 24784.34 30894.74 23864.31 33497.66 27384.83 26487.45 26592.23 329
MIMVSNet88.50 27886.76 28693.72 22394.84 26187.77 23691.39 32594.05 31986.41 26787.99 26792.59 30663.27 33595.82 32677.44 31692.84 20097.57 179
FMVSNet587.29 28985.79 29291.78 28594.80 26387.28 24195.49 25095.28 28284.09 29683.85 31691.82 31862.95 33694.17 33778.48 31385.34 28793.91 313
testgi87.97 28287.21 28290.24 31092.86 31680.76 31696.67 17894.97 29791.74 12385.52 29995.83 18762.66 33794.47 33676.25 32188.36 25995.48 238
TinyColmap86.82 29285.35 29691.21 29594.91 25882.99 30493.94 29594.02 32183.58 30281.56 32194.68 24062.34 33898.13 21175.78 32287.35 26992.52 326
new_pmnet82.89 30881.12 31288.18 31889.63 33780.18 32591.77 32492.57 33176.79 33775.56 33888.23 33461.22 33994.48 33571.43 33582.92 31889.87 339
OpenMVS_ROBcopyleft81.14 2084.42 30582.28 30890.83 30090.06 33484.05 29495.73 24194.04 32073.89 34080.17 33091.53 32359.15 34097.64 27466.92 34289.05 25190.80 337
MIMVSNet184.93 30483.05 30690.56 30689.56 33884.84 28695.40 25395.35 27883.91 29780.38 32792.21 31657.23 34193.34 34170.69 33982.75 32193.50 317
EG-PatchMatch MVS87.02 29185.44 29491.76 28792.67 32085.00 28296.08 22496.45 24283.41 30579.52 33193.49 29357.10 34297.72 26879.34 31190.87 23492.56 325
MVS_030488.79 27487.57 27692.46 26694.65 26986.15 27096.40 19997.17 18586.44 26688.02 26691.71 32156.68 34397.03 30784.47 27092.58 20494.19 308
UnsupCasMVSNet_bld82.13 31079.46 31390.14 31188.00 34282.47 30790.89 33096.62 23978.94 33075.61 33684.40 34056.63 34496.31 32177.30 31966.77 34591.63 333
testing_287.33 28885.03 29794.22 19787.77 34489.32 19594.97 26797.11 19189.22 19271.64 34088.73 33055.16 34597.94 24691.95 13588.73 25695.41 244
tmp_tt51.94 32253.82 32246.29 33633.73 35845.30 35878.32 34867.24 35718.02 35350.93 34987.05 33952.99 34653.11 35470.76 33825.29 35240.46 350
pmmvs379.97 31177.50 31587.39 32082.80 34779.38 33192.70 31990.75 34270.69 34278.66 33387.47 33851.34 34793.40 34073.39 33169.65 34389.38 340
DeepMVS_CXcopyleft74.68 33190.84 33264.34 35181.61 35365.34 34467.47 34388.01 33648.60 34880.13 35062.33 34573.68 34079.58 344
PM-MVS83.48 30681.86 31088.31 31687.83 34377.59 33693.43 30691.75 33786.91 26080.63 32589.91 32644.42 34995.84 32585.17 26376.73 33491.50 335
ambc86.56 32383.60 34670.00 34685.69 34394.97 29780.60 32688.45 33137.42 35096.84 31582.69 28775.44 33692.86 322
Gipumacopyleft67.86 31665.41 31975.18 33092.66 32173.45 34266.50 35094.52 31053.33 34857.80 34866.07 34830.81 35189.20 34548.15 34878.88 33062.90 347
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS52.08 32151.31 32454.39 33572.62 35345.39 35783.84 34575.51 35541.13 35140.77 35259.65 35130.08 35273.60 35228.31 35229.90 35144.18 349
FPMVS71.27 31469.85 31675.50 32974.64 35059.03 35291.30 32691.50 33958.80 34657.92 34788.28 33329.98 35385.53 34853.43 34682.84 32081.95 343
E-PMN53.28 31952.56 32355.43 33474.43 35147.13 35583.63 34676.30 35442.23 35042.59 35162.22 35028.57 35474.40 35131.53 35131.51 34944.78 348
PMMVS270.19 31566.92 31880.01 32676.35 34965.67 34986.22 34287.58 34764.83 34562.38 34680.29 34326.78 35588.49 34663.79 34354.07 34785.88 341
ANet_high63.94 31759.58 32077.02 32861.24 35666.06 34885.66 34487.93 34678.53 33242.94 35071.04 34725.42 35680.71 34952.60 34730.83 35084.28 342
LCM-MVSNet72.55 31369.39 31782.03 32570.81 35465.42 35090.12 33594.36 31555.02 34765.88 34481.72 34124.16 35789.96 34474.32 32868.10 34490.71 338
PMVScopyleft53.92 2258.58 31855.40 32168.12 33251.00 35748.64 35478.86 34787.10 34946.77 34935.84 35474.28 3458.76 35886.34 34742.07 34973.91 33969.38 345
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d25.11 32324.57 32726.74 33773.98 35239.89 35957.88 3519.80 35912.27 35410.39 3556.97 3577.03 35936.44 35525.43 35317.39 3533.89 353
MVEpermissive50.73 2353.25 32048.81 32566.58 33365.34 35557.50 35372.49 34970.94 35640.15 35239.28 35363.51 3496.89 36073.48 35338.29 35042.38 34868.76 346
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test12313.04 32615.66 3295.18 3384.51 3603.45 36092.50 3221.81 3612.50 3567.58 35720.15 3543.67 3612.18 3577.13 3551.07 3559.90 351
testmvs13.36 32516.33 3284.48 3395.04 3592.26 36193.18 3093.28 3602.70 3558.24 35621.66 3532.29 3622.19 3567.58 3542.96 3549.00 352
uanet_test0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet-low-res0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
uncertanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
Regformer0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
ab-mvs-re8.06 32710.74 3300.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 35896.69 1430.00 3630.00 3580.00 3560.00 3560.00 354
uanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
IU-MVS99.42 695.39 997.94 10290.40 16998.94 597.41 799.66 899.74 5
save fliter98.91 4994.28 3597.02 14398.02 8895.35 8
test_0728_SECOND98.51 299.45 295.93 398.21 3498.28 2699.86 897.52 299.67 699.75 3
GSMVS98.45 132
test_part299.28 2595.74 698.10 17
MTGPAbinary98.08 64
MTMP97.86 5982.03 352
gm-plane-assit93.22 31178.89 33484.82 28893.52 29298.64 17587.72 213
test9_res94.81 8399.38 4899.45 45
agg_prior293.94 9999.38 4899.50 37
agg_prior98.67 6293.79 5598.00 9395.68 9399.57 78
test_prior493.66 5996.42 195
test_prior97.23 6298.67 6292.99 7698.00 9399.41 10699.29 62
旧先验295.94 23281.66 31597.34 3498.82 15992.26 125
新几何295.79 239
无先验95.79 23997.87 10883.87 30099.65 5387.68 21898.89 100
原ACMM295.67 242
testdata299.67 4985.96 252
testdata195.26 26393.10 82
plane_prior796.21 18889.98 169
plane_prior597.51 14498.60 17993.02 11992.23 20895.86 220
plane_prior496.64 146
plane_prior390.00 16594.46 3991.34 178
plane_prior297.74 7194.85 24
plane_prior196.14 196
plane_prior89.99 16797.24 12394.06 4792.16 212
n20.00 362
nn0.00 362
door-mid91.06 341
test1197.88 106
door91.13 340
HQP5-MVS89.33 193
HQP-NCC95.86 20396.65 17993.55 6290.14 201
ACMP_Plane95.86 20396.65 17993.55 6290.14 201
BP-MVS92.13 131
HQP4-MVS90.14 20198.50 18695.78 227
HQP3-MVS97.39 16792.10 213
NP-MVS95.99 20289.81 17495.87 184
ACMMP++_ref90.30 241
ACMMP++91.02 230