This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
OPU-MVS98.55 198.82 5696.86 198.25 2898.26 5396.04 199.24 12195.36 6799.59 1599.56 22
test_0728_THIRD94.78 3298.73 898.87 695.87 299.84 1997.45 699.72 299.77 1
SED-MVS98.05 197.99 198.24 799.42 695.30 1598.25 2898.27 2895.13 1699.19 198.89 495.54 399.85 1497.52 299.66 899.56 22
test_241102_ONE99.42 695.30 1598.27 2895.09 1999.19 198.81 895.54 399.65 53
DVP-MVS97.91 297.81 298.22 999.45 295.36 1098.21 3497.85 11294.92 2398.73 898.87 695.08 599.84 1997.52 299.67 699.48 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.45 295.36 1098.31 2298.29 2494.92 2398.99 498.92 295.08 5
DPE-MVScopyleft97.86 397.65 498.47 399.17 3295.78 597.21 13198.35 1995.16 1598.71 1098.80 995.05 799.89 396.70 1999.73 199.73 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_241102_TWO98.27 2895.13 1698.93 698.89 494.99 899.85 1497.52 299.65 1099.74 5
SteuartSystems-ACMMP97.62 697.53 697.87 2498.39 8094.25 3898.43 1798.27 2895.34 1098.11 1698.56 1794.53 999.71 3896.57 2399.62 1399.65 9
Skip Steuart: Steuart Systems R&D Blog.
CNVR-MVS97.68 597.44 898.37 598.90 5195.86 497.27 12298.08 6495.81 397.87 2398.31 4794.26 1099.68 4797.02 999.49 3499.57 19
SD-MVS97.41 997.53 697.06 7198.57 7294.46 3097.92 5698.14 5394.82 2999.01 398.55 1994.18 1197.41 29896.94 1099.64 1199.32 60
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSP-MVS97.59 797.54 597.73 3899.40 1193.77 5898.53 998.29 2495.55 598.56 1297.81 8293.90 1299.65 5396.62 2099.21 6999.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MCST-MVS97.18 1696.84 2598.20 1099.30 2495.35 1297.12 13998.07 7093.54 6696.08 7897.69 9093.86 1399.71 3896.50 2499.39 4799.55 26
APDe-MVS97.82 497.73 398.08 1599.15 3394.82 2598.81 298.30 2394.76 3398.30 1398.90 393.77 1499.68 4797.93 199.69 399.75 3
TSAR-MVS + MP.97.42 897.33 997.69 4299.25 2794.24 3998.07 4397.85 11293.72 5898.57 1198.35 3893.69 1599.40 10997.06 899.46 3899.44 47
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DeepPCF-MVS93.97 196.61 4897.09 1295.15 15998.09 10586.63 26296.00 23298.15 5195.43 697.95 1998.56 1793.40 1699.36 11396.77 1799.48 3599.45 45
xxxxxxxxxxxxxcwj97.36 1197.20 1097.83 2698.91 4994.28 3597.02 14497.22 18395.35 898.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 34
SF-MVS97.39 1097.13 1198.17 1199.02 4395.28 1798.23 3198.27 2892.37 10798.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 34
SMA-MVScopyleft97.35 1297.03 1498.30 699.06 4095.42 897.94 5498.18 4690.57 16798.85 798.94 193.33 1799.83 2296.72 1899.68 499.63 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
NCCC97.30 1497.03 1498.11 1498.77 5795.06 2297.34 11498.04 8195.96 297.09 4597.88 7493.18 2099.71 3895.84 5099.17 7299.56 22
9.1496.75 3398.93 4797.73 7398.23 3891.28 14397.88 2298.44 2893.00 2199.65 5395.76 5299.47 36
segment_acmp92.89 22
TSAR-MVS + GP.96.69 4596.49 4697.27 6098.31 8893.39 6696.79 16896.72 22594.17 4697.44 2997.66 9392.76 2399.33 11496.86 1397.76 11899.08 80
TEST998.70 6094.19 4096.41 19998.02 8888.17 23096.03 7997.56 10592.74 2499.59 68
train_agg96.30 5795.83 6397.72 3998.70 6094.19 4096.41 19998.02 8888.58 21896.03 7997.56 10592.73 2599.59 6895.04 7499.37 5299.39 54
test_898.67 6294.06 4996.37 20698.01 9188.58 21895.98 8497.55 10792.73 2599.58 71
agg_prior196.22 6095.77 6497.56 4898.67 6293.79 5596.28 21598.00 9388.76 21595.68 9497.55 10792.70 2799.57 7995.01 7599.32 5399.32 60
CSCG96.05 6395.91 6196.46 9399.24 2890.47 15998.30 2398.57 1189.01 20193.97 12797.57 10392.62 2899.76 3094.66 8899.27 6199.15 72
ETH3D-3000-0.197.07 2296.71 3698.14 1398.90 5195.33 1497.68 8098.24 3491.57 12997.90 2198.37 3692.61 2999.66 5295.59 6399.51 2999.43 49
Regformer-297.16 1896.99 1697.67 4398.32 8693.84 5396.83 16498.10 6195.24 1197.49 2698.25 5492.57 3099.61 6296.80 1499.29 5799.56 22
HPM-MVS++copyleft97.34 1396.97 1798.47 399.08 3896.16 297.55 9597.97 9995.59 496.61 5797.89 7292.57 3099.84 1995.95 4699.51 2999.40 53
ZD-MVS99.05 4194.59 2898.08 6489.22 19697.03 4798.10 6092.52 3299.65 5394.58 9099.31 55
PHI-MVS96.77 4296.46 4897.71 4198.40 7894.07 4898.21 3498.45 1589.86 17997.11 4498.01 6892.52 3299.69 4496.03 4599.53 2499.36 58
Regformer-197.10 2096.96 1897.54 4998.32 8693.48 6496.83 16497.99 9795.20 1397.46 2798.25 5492.48 3499.58 7196.79 1699.29 5799.55 26
APD-MVScopyleft96.95 3196.60 4098.01 1999.03 4294.93 2497.72 7698.10 6191.50 13198.01 1898.32 4692.33 3599.58 7194.85 8099.51 2999.53 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR96.68 4796.58 4296.99 7398.46 7492.31 9796.20 22298.90 294.30 4595.86 8797.74 8792.33 3599.38 11296.04 4499.42 4399.28 65
MSLP-MVS++96.94 3297.06 1396.59 8398.72 5991.86 11297.67 8198.49 1294.66 3697.24 3698.41 3492.31 3798.94 15196.61 2199.46 3898.96 91
旧先验198.38 8193.38 6797.75 11798.09 6292.30 3899.01 8399.16 70
HFP-MVS97.14 1996.92 2097.83 2699.42 694.12 4598.52 1098.32 2093.21 7697.18 3898.29 5092.08 3999.83 2295.63 5899.59 1599.54 29
#test#97.02 2696.75 3397.83 2699.42 694.12 4598.15 3798.32 2092.57 10397.18 3898.29 5092.08 3999.83 2295.12 7299.59 1599.54 29
test_prior396.46 5396.20 5697.23 6298.67 6292.99 7696.35 20798.00 9392.80 9696.03 7997.59 10192.01 4199.41 10795.01 7599.38 4899.29 62
test_prior296.35 20792.80 9696.03 7997.59 10192.01 4195.01 7599.38 48
CDPH-MVS95.97 6695.38 7497.77 3598.93 4794.44 3196.35 20797.88 10686.98 26296.65 5597.89 7291.99 4399.47 10092.26 12799.46 3899.39 54
testtj96.93 3396.56 4398.05 1799.10 3494.66 2797.78 6898.22 3992.74 9897.59 2498.20 5791.96 4499.86 894.21 9499.25 6599.63 11
CP-MVS97.02 2696.81 2897.64 4699.33 2293.54 6298.80 398.28 2692.99 8596.45 6798.30 4991.90 4599.85 1495.61 6099.68 499.54 29
Regformer-496.97 2996.87 2197.25 6198.34 8392.66 8596.96 15298.01 9195.12 1897.14 4198.42 3191.82 4699.61 6296.90 1199.13 7599.50 37
ETH3D cwj APD-0.1696.56 5096.06 5898.05 1798.26 9295.19 1896.99 14998.05 8089.85 18197.26 3598.22 5691.80 4799.69 4494.84 8199.28 5999.27 66
DPM-MVS95.69 7194.92 8498.01 1998.08 10695.71 795.27 26497.62 13490.43 17095.55 10097.07 12691.72 4899.50 9789.62 18098.94 8698.82 106
Regformer-396.85 3896.80 2997.01 7298.34 8392.02 10896.96 15297.76 11695.01 2297.08 4698.42 3191.71 4999.54 8696.80 1499.13 7599.48 41
XVS97.18 1696.96 1897.81 3099.38 1494.03 5098.59 798.20 4294.85 2596.59 5998.29 5091.70 5099.80 2795.66 5399.40 4599.62 13
X-MVStestdata91.71 19589.67 25497.81 3099.38 1494.03 5098.59 798.20 4294.85 2596.59 5932.69 35991.70 5099.80 2795.66 5399.40 4599.62 13
ZNCC-MVS96.96 3096.67 3897.85 2599.37 1694.12 4598.49 1498.18 4692.64 10296.39 6998.18 5891.61 5299.88 495.59 6399.55 2199.57 19
ACMMP_NAP97.20 1596.86 2298.23 899.09 3695.16 2097.60 9198.19 4492.82 9597.93 2098.74 1191.60 5399.86 896.26 3099.52 2599.67 8
region2R97.07 2296.84 2597.77 3599.46 193.79 5598.52 1098.24 3493.19 7997.14 4198.34 4191.59 5499.87 795.46 6699.59 1599.64 10
DELS-MVS96.61 4896.38 5197.30 5797.79 12193.19 7295.96 23498.18 4695.23 1295.87 8697.65 9491.45 5599.70 4395.87 4799.44 4299.00 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SR-MVS97.01 2896.86 2297.47 5199.09 3693.27 7197.98 4898.07 7093.75 5797.45 2898.48 2591.43 5699.59 6896.22 3399.27 6199.54 29
test117296.93 3396.86 2297.15 6799.10 3492.34 9497.96 5398.04 8193.79 5697.35 3398.53 2191.40 5799.56 8196.30 2999.30 5699.55 26
SR-MVS-dyc-post96.88 3696.80 2997.11 7099.02 4392.34 9497.98 4898.03 8493.52 6797.43 3198.51 2291.40 5799.56 8196.05 4299.26 6399.43 49
GST-MVS96.85 3896.52 4597.82 2999.36 1994.14 4498.29 2498.13 5492.72 9996.70 5198.06 6491.35 5999.86 894.83 8299.28 5999.47 44
ACMMPR97.07 2296.84 2597.79 3299.44 593.88 5298.52 1098.31 2293.21 7697.15 4098.33 4491.35 5999.86 895.63 5899.59 1599.62 13
DeepC-MVS_fast93.89 296.93 3396.64 3997.78 3398.64 6794.30 3497.41 10698.04 8194.81 3096.59 5998.37 3691.24 6199.64 6195.16 7099.52 2599.42 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETV-MVS96.02 6495.89 6296.40 9697.16 14392.44 9297.47 10397.77 11594.55 3896.48 6494.51 25191.23 6298.92 15295.65 5698.19 10597.82 167
ETH3 D test640096.16 6195.52 6898.07 1698.90 5195.06 2297.03 14198.21 4088.16 23296.64 5697.70 8991.18 6399.67 4992.44 12699.47 3699.48 41
PGM-MVS96.81 4096.53 4497.65 4499.35 2193.53 6397.65 8498.98 192.22 11097.14 4198.44 2891.17 6499.85 1494.35 9299.46 3899.57 19
MP-MVS-pluss96.70 4496.27 5397.98 2199.23 3094.71 2696.96 15298.06 7390.67 15895.55 10098.78 1091.07 6599.86 896.58 2299.55 2199.38 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mPP-MVS96.86 3796.60 4097.64 4699.40 1193.44 6598.50 1398.09 6393.27 7595.95 8598.33 4491.04 6699.88 495.20 6999.57 2099.60 16
HPM-MVScopyleft96.69 4596.45 4997.40 5399.36 1993.11 7498.87 198.06 7391.17 14796.40 6897.99 6990.99 6799.58 7195.61 6099.61 1499.49 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVS_3200maxsize96.81 4096.71 3697.12 6999.01 4692.31 9797.98 4898.06 7393.11 8297.44 2998.55 1990.93 6899.55 8496.06 4199.25 6599.51 34
test1297.65 4498.46 7494.26 3797.66 12995.52 10390.89 6999.46 10199.25 6599.22 67
zzz-MVS97.07 2296.77 3297.97 2299.37 1694.42 3297.15 13798.08 6495.07 2096.11 7698.59 1590.88 7099.90 196.18 3999.50 3299.58 17
MTAPA97.08 2196.78 3197.97 2299.37 1694.42 3297.24 12498.08 6495.07 2096.11 7698.59 1590.88 7099.90 196.18 3999.50 3299.58 17
EI-MVSNet-Vis-set96.51 5196.47 4796.63 8098.24 9391.20 13596.89 15997.73 11994.74 3496.49 6398.49 2490.88 7099.58 7196.44 2798.32 10299.13 74
RE-MVS-def96.72 3599.02 4392.34 9497.98 4898.03 8493.52 6797.43 3198.51 2290.71 7396.05 4299.26 6399.43 49
EIA-MVS95.53 7795.47 7095.71 13497.06 15189.63 17897.82 6497.87 10893.57 6293.92 12895.04 22790.61 7498.95 15094.62 8998.68 9398.54 120
MP-MVScopyleft96.77 4296.45 4997.72 3999.39 1393.80 5498.41 1898.06 7393.37 7195.54 10298.34 4190.59 7599.88 494.83 8299.54 2399.49 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EI-MVSNet-UG-set96.34 5696.30 5296.47 9198.20 9890.93 14696.86 16097.72 12294.67 3596.16 7598.46 2690.43 7699.58 7196.23 3297.96 11298.90 98
原ACMM196.38 9998.59 6991.09 14197.89 10487.41 25495.22 10697.68 9190.25 7799.54 8687.95 21199.12 7898.49 127
112194.71 10293.83 10797.34 5598.57 7293.64 6096.04 22897.73 11981.56 32595.68 9497.85 7890.23 7899.65 5387.68 22099.12 7898.73 111
CS-MVS95.80 7095.65 6696.24 11097.32 13791.43 12698.10 3997.91 10393.38 7095.16 10894.57 24990.21 7998.98 14895.53 6598.67 9498.30 145
HPM-MVS_fast96.51 5196.27 5397.22 6499.32 2392.74 8298.74 498.06 7390.57 16796.77 4998.35 3890.21 7999.53 8994.80 8599.63 1299.38 56
testdata95.46 15298.18 10288.90 20997.66 12982.73 31797.03 4798.07 6390.06 8198.85 15889.67 17898.98 8498.64 117
新几何197.32 5698.60 6893.59 6197.75 11781.58 32495.75 9197.85 7890.04 8299.67 4986.50 24299.13 7598.69 115
DP-MVS Recon95.68 7295.12 8297.37 5499.19 3194.19 4097.03 14198.08 6488.35 22595.09 10997.65 9489.97 8399.48 9992.08 13698.59 9798.44 135
MVS_111021_LR96.24 5996.19 5796.39 9898.23 9791.35 12896.24 22098.79 493.99 5095.80 8997.65 9489.92 8499.24 12195.87 4799.20 7098.58 118
EPP-MVSNet95.22 8595.04 8395.76 12897.49 13589.56 18298.67 597.00 20590.69 15794.24 12197.62 9989.79 8598.81 16193.39 11596.49 14998.92 96
PAPR94.18 10993.42 12596.48 9097.64 12891.42 12795.55 25097.71 12688.99 20292.34 16295.82 19189.19 8699.11 13386.14 24897.38 12798.90 98
MG-MVS95.61 7495.38 7496.31 10398.42 7790.53 15796.04 22897.48 14793.47 6995.67 9798.10 6089.17 8799.25 12091.27 15498.77 9099.13 74
PAPM_NR95.01 8994.59 9296.26 10898.89 5490.68 15497.24 12497.73 11991.80 12492.93 15396.62 15489.13 8899.14 13189.21 19297.78 11698.97 90
ACMMPcopyleft96.27 5895.93 6097.28 5999.24 2892.62 8798.25 2898.81 392.99 8594.56 11598.39 3588.96 8999.85 1494.57 9197.63 11999.36 58
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
UA-Net95.95 6795.53 6797.20 6697.67 12692.98 7897.65 8498.13 5494.81 3096.61 5798.35 3888.87 9099.51 9490.36 16697.35 12999.11 78
API-MVS94.84 9894.49 9795.90 12497.90 11592.00 10997.80 6697.48 14789.19 19794.81 11296.71 14088.84 9199.17 12788.91 19898.76 9196.53 202
test22298.24 9392.21 10095.33 25997.60 13579.22 33795.25 10597.84 8188.80 9299.15 7398.72 112
Test By Simon88.73 93
pcd_1.5k_mvsjas7.39 3359.85 3380.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 36588.65 940.00 3650.00 3630.00 3630.00 361
PS-MVSNAJss93.74 12793.51 11994.44 19193.91 29489.28 19997.75 7097.56 14292.50 10489.94 21696.54 15788.65 9498.18 21093.83 10690.90 23395.86 222
PS-MVSNAJ95.37 7995.33 7695.49 14897.35 13690.66 15595.31 26197.48 14793.85 5396.51 6295.70 20288.65 9499.65 5394.80 8598.27 10396.17 211
xiu_mvs_v2_base95.32 8195.29 7795.40 15397.22 13990.50 15895.44 25597.44 16293.70 6096.46 6696.18 17388.59 9799.53 8994.79 8797.81 11596.17 211
PLCcopyleft91.00 694.11 11493.43 12396.13 11398.58 7191.15 14096.69 17897.39 16887.29 25791.37 17996.71 14088.39 9899.52 9387.33 23097.13 13797.73 169
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UniMVSNet_NR-MVSNet93.37 13792.67 14295.47 15195.34 23192.83 8097.17 13498.58 1092.98 9090.13 20895.80 19288.37 9997.85 25791.71 14383.93 30995.73 235
PVSNet_BlendedMVS94.06 11693.92 10594.47 19098.27 8989.46 18996.73 17298.36 1690.17 17394.36 11895.24 22188.02 10099.58 7193.44 11290.72 23594.36 304
PVSNet_Blended94.87 9794.56 9395.81 12798.27 8989.46 18995.47 25498.36 1688.84 20994.36 11896.09 18088.02 10099.58 7193.44 11298.18 10698.40 138
TAPA-MVS90.10 792.30 17691.22 19395.56 14198.33 8589.60 18096.79 16897.65 13181.83 32291.52 17697.23 11987.94 10298.91 15471.31 34398.37 10198.17 149
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
abl_696.40 5496.21 5596.98 7498.89 5492.20 10297.89 5798.03 8493.34 7497.22 3798.42 3187.93 10399.72 3595.10 7399.07 8099.02 83
MVS_Test94.89 9694.62 9195.68 13596.83 16189.55 18396.70 17697.17 18691.17 14795.60 9996.11 17987.87 10498.76 16693.01 12397.17 13698.72 112
UniMVSNet (Re)93.31 13992.55 14795.61 13995.39 22593.34 7097.39 11098.71 593.14 8190.10 21294.83 23687.71 10598.03 23491.67 14783.99 30895.46 244
FC-MVSNet-test93.94 12193.57 11495.04 16395.48 22291.45 12598.12 3898.71 593.37 7190.23 20296.70 14287.66 10697.85 25791.49 14990.39 24095.83 226
canonicalmvs96.02 6495.45 7197.75 3797.59 13295.15 2198.28 2597.60 13594.52 3996.27 7296.12 17687.65 10799.18 12696.20 3894.82 17698.91 97
FIs94.09 11593.70 11095.27 15595.70 21492.03 10798.10 3998.68 793.36 7390.39 19996.70 14287.63 10897.94 24892.25 12990.50 23995.84 225
CDS-MVSNet94.14 11393.54 11695.93 12296.18 19491.46 12496.33 21097.04 20188.97 20493.56 13396.51 15887.55 10997.89 25589.80 17495.95 15598.44 135
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Effi-MVS+94.93 9494.45 9996.36 10196.61 16891.47 12396.41 19997.41 16791.02 15294.50 11695.92 18587.53 11098.78 16393.89 10396.81 14098.84 105
casdiffmvs95.64 7395.49 6996.08 11496.76 16690.45 16097.29 12197.44 16294.00 4995.46 10497.98 7087.52 11198.73 16895.64 5797.33 13099.08 80
PVSNet_Blended_VisFu95.27 8294.91 8596.38 9998.20 9890.86 14897.27 12298.25 3390.21 17294.18 12297.27 11687.48 11299.73 3293.53 10997.77 11798.55 119
mvs_anonymous93.82 12493.74 10994.06 20596.44 18285.41 28095.81 24197.05 19989.85 18190.09 21396.36 16787.44 11397.75 26893.97 9996.69 14599.02 83
CANet96.39 5596.02 5997.50 5097.62 12993.38 6797.02 14497.96 10095.42 794.86 11197.81 8287.38 11499.82 2596.88 1299.20 7099.29 62
baseline95.58 7595.42 7396.08 11496.78 16390.41 16297.16 13597.45 15893.69 6195.65 9897.85 7887.29 11598.68 17395.66 5397.25 13399.13 74
TAMVS94.01 11993.46 12195.64 13696.16 19690.45 16096.71 17596.89 21589.27 19593.46 13896.92 13387.29 11597.94 24888.70 20295.74 16098.53 121
nrg03094.05 11793.31 12796.27 10795.22 24294.59 2898.34 2097.46 15292.93 9291.21 18996.64 14787.23 11798.22 20494.99 7885.80 28195.98 220
CPTT-MVS95.57 7695.19 7996.70 7799.27 2691.48 12298.33 2198.11 5987.79 24395.17 10798.03 6687.09 11899.61 6293.51 11099.42 4399.02 83
OMC-MVS95.09 8894.70 9096.25 10998.46 7491.28 12996.43 19797.57 13992.04 11994.77 11397.96 7187.01 11999.09 13791.31 15396.77 14198.36 142
DeepC-MVS93.07 396.06 6295.66 6597.29 5897.96 10993.17 7397.30 12098.06 7393.92 5193.38 14098.66 1286.83 12099.73 3295.60 6299.22 6898.96 91
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
IterMVS-LS92.29 17791.94 16693.34 24396.25 19086.97 25496.57 19397.05 19990.67 15889.50 23294.80 23886.59 12197.64 27689.91 17186.11 27995.40 250
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet93.03 14992.88 13593.48 23695.77 21186.98 25396.44 19597.12 19090.66 16091.30 18397.64 9786.56 12298.05 23089.91 17190.55 23795.41 247
miper_enhance_ethall91.54 20591.01 19893.15 25095.35 23087.07 25293.97 29796.90 21386.79 26689.17 24293.43 30086.55 12397.64 27689.97 17086.93 27094.74 294
1112_ss93.37 13792.42 15396.21 11197.05 15390.99 14296.31 21296.72 22586.87 26589.83 22096.69 14486.51 12499.14 13188.12 20893.67 19198.50 125
diffmvs95.25 8395.13 8195.63 13796.43 18389.34 19495.99 23397.35 17492.83 9496.31 7097.37 11386.44 12598.67 17496.26 3097.19 13598.87 102
WTY-MVS94.71 10294.02 10496.79 7697.71 12592.05 10696.59 19097.35 17490.61 16494.64 11496.93 13086.41 12699.39 11091.20 15694.71 18098.94 94
EPNet95.20 8694.56 9397.14 6892.80 32092.68 8497.85 6294.87 31096.64 192.46 15697.80 8486.23 12799.65 5393.72 10798.62 9699.10 79
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth91.59 19991.13 19692.97 25695.55 21986.57 26394.47 27996.88 21687.77 24488.88 24794.01 27886.22 12897.54 28589.49 18286.93 27094.79 290
Fast-Effi-MVS+93.46 13592.75 13995.59 14096.77 16490.03 16796.81 16797.13 18988.19 22891.30 18394.27 26786.21 12998.63 17787.66 22296.46 15198.12 151
MVSFormer95.37 7995.16 8095.99 12196.34 18791.21 13398.22 3297.57 13991.42 13596.22 7397.32 11486.20 13097.92 25194.07 9799.05 8198.85 103
lupinMVS94.99 9394.56 9396.29 10696.34 18791.21 13395.83 24096.27 25088.93 20696.22 7396.88 13586.20 13098.85 15895.27 6899.05 8198.82 106
114514_t93.95 12093.06 13196.63 8099.07 3991.61 11797.46 10597.96 10077.99 34193.00 14897.57 10386.14 13299.33 11489.22 19199.15 7398.94 94
alignmvs95.87 6995.23 7897.78 3397.56 13495.19 1897.86 5997.17 18694.39 4296.47 6596.40 16585.89 13399.20 12396.21 3795.11 17298.95 93
WR-MVS_H92.00 18891.35 18493.95 21395.09 24989.47 18798.04 4598.68 791.46 13388.34 25994.68 24485.86 13497.56 28385.77 25684.24 30594.82 285
Test_1112_low_res92.84 16091.84 16995.85 12697.04 15489.97 17395.53 25296.64 23485.38 28589.65 22695.18 22285.86 13499.10 13487.70 21793.58 19698.49 127
HY-MVS89.66 993.87 12292.95 13396.63 8097.10 14792.49 9195.64 24896.64 23489.05 20093.00 14895.79 19585.77 13699.45 10389.16 19594.35 18297.96 156
cl_fuxian91.38 21290.89 20092.88 25995.58 21786.30 26694.68 27496.84 22188.17 23088.83 25094.23 27085.65 13797.47 29289.36 18584.63 29994.89 280
IS-MVSNet94.90 9594.52 9696.05 11797.67 12690.56 15698.44 1696.22 25393.21 7693.99 12597.74 8785.55 13898.45 19189.98 16997.86 11399.14 73
MVS91.71 19590.44 22095.51 14595.20 24491.59 11996.04 22897.45 15873.44 34887.36 28295.60 20685.42 13999.10 13485.97 25397.46 12295.83 226
VNet95.89 6895.45 7197.21 6598.07 10792.94 7997.50 9898.15 5193.87 5297.52 2597.61 10085.29 14099.53 8995.81 5195.27 16899.16 70
CNLPA94.28 10793.53 11796.52 8598.38 8192.55 8996.59 19096.88 21690.13 17591.91 17197.24 11885.21 14199.09 13787.64 22397.83 11497.92 159
F-COLMAP93.58 13292.98 13295.37 15498.40 7888.98 20797.18 13397.29 17987.75 24690.49 19697.10 12585.21 14199.50 9786.70 23996.72 14497.63 173
LCM-MVSNet-Re92.50 16692.52 15092.44 26996.82 16281.89 31596.92 15693.71 32992.41 10684.30 31394.60 24885.08 14397.03 30991.51 14897.36 12898.40 138
NR-MVSNet92.34 17391.27 19095.53 14494.95 25593.05 7597.39 11098.07 7092.65 10184.46 31195.71 20085.00 14497.77 26789.71 17683.52 31595.78 229
PAPM91.52 20690.30 22695.20 15795.30 23789.83 17693.38 31296.85 22086.26 27388.59 25595.80 19284.88 14598.15 21375.67 33095.93 15697.63 173
MAR-MVS94.22 10893.46 12196.51 8898.00 10892.19 10397.67 8197.47 15088.13 23493.00 14895.84 18984.86 14699.51 9487.99 21098.17 10797.83 166
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
jason94.84 9894.39 10196.18 11295.52 22090.93 14696.09 22696.52 24189.28 19496.01 8397.32 11484.70 14798.77 16595.15 7198.91 8898.85 103
jason: jason.
sss94.51 10493.80 10896.64 7897.07 14891.97 11096.32 21198.06 7388.94 20594.50 11696.78 13784.60 14899.27 11991.90 13796.02 15398.68 116
LS3D93.57 13392.61 14596.47 9197.59 13291.61 11797.67 8197.72 12285.17 28990.29 20198.34 4184.60 14899.73 3283.85 28098.27 10398.06 155
Vis-MVSNet (Re-imp)94.15 11093.88 10694.95 17097.61 13087.92 23398.10 3995.80 26792.22 11093.02 14797.45 10984.53 15097.91 25488.24 20697.97 11199.02 83
cdsmvs_eth3d_5k23.24 33130.99 3330.00 3470.00 3680.00 3690.00 35997.63 1330.00 3640.00 36596.88 13584.38 1510.00 3650.00 3630.00 3630.00 361
test_yl94.78 10094.23 10296.43 9497.74 12391.22 13196.85 16197.10 19291.23 14595.71 9296.93 13084.30 15299.31 11693.10 11995.12 17098.75 108
DCV-MVSNet94.78 10094.23 10296.43 9497.74 12391.22 13196.85 16197.10 19291.23 14595.71 9296.93 13084.30 15299.31 11693.10 11995.12 17098.75 108
CHOSEN 280x42093.12 14592.72 14194.34 19796.71 16787.27 24490.29 33997.72 12286.61 26991.34 18095.29 21884.29 15498.41 19293.25 11798.94 8697.35 185
baseline192.82 16191.90 16795.55 14397.20 14190.77 15297.19 13294.58 31592.20 11292.36 16096.34 16884.16 15598.21 20589.20 19383.90 31297.68 172
eth_miper_zixun_eth91.02 23190.59 21592.34 27395.33 23484.35 29394.10 29496.90 21388.56 22088.84 24994.33 26284.08 15697.60 28188.77 20184.37 30495.06 269
PCF-MVS89.48 1191.56 20289.95 24296.36 10196.60 16992.52 9092.51 32697.26 18079.41 33688.90 24596.56 15684.04 15799.55 8477.01 32697.30 13197.01 188
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
131492.81 16292.03 16295.14 16095.33 23489.52 18696.04 22897.44 16287.72 24786.25 29795.33 21783.84 15898.79 16289.26 18997.05 13897.11 187
DP-MVS92.76 16391.51 18296.52 8598.77 5790.99 14297.38 11296.08 25882.38 31889.29 23897.87 7583.77 15999.69 4481.37 30096.69 14598.89 100
3Dnovator+91.43 495.40 7894.48 9898.16 1296.90 15795.34 1398.48 1597.87 10894.65 3788.53 25798.02 6783.69 16099.71 3893.18 11898.96 8599.44 47
hse-mvs394.15 11093.52 11896.04 11897.81 11990.22 16597.62 9097.58 13895.19 1496.74 5097.45 10983.67 16199.61 6295.85 4979.73 32998.29 146
AdaColmapbinary94.34 10693.68 11296.31 10398.59 6991.68 11696.59 19097.81 11489.87 17892.15 16697.06 12783.62 16299.54 8689.34 18698.07 10997.70 171
DU-MVS92.90 15692.04 16195.49 14894.95 25592.83 8097.16 13598.24 3493.02 8490.13 20895.71 20083.47 16397.85 25791.71 14383.93 30995.78 229
Baseline_NR-MVSNet91.20 22390.62 21392.95 25793.83 29788.03 23197.01 14895.12 29788.42 22389.70 22395.13 22583.47 16397.44 29589.66 17983.24 31793.37 322
miper_lstm_enhance90.50 25190.06 24091.83 28395.33 23483.74 29993.86 30096.70 23087.56 25187.79 27393.81 28683.45 16596.92 31587.39 22884.62 30094.82 285
EPNet_dtu91.71 19591.28 18992.99 25593.76 29983.71 30196.69 17895.28 28893.15 8087.02 28995.95 18483.37 16697.38 30079.46 31296.84 13997.88 162
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-untuned92.94 15492.62 14493.92 21797.22 13986.16 27196.40 20296.25 25290.06 17689.79 22196.17 17583.19 16798.35 19787.19 23397.27 13297.24 186
TranMVSNet+NR-MVSNet92.50 16691.63 17595.14 16094.76 26692.07 10597.53 9698.11 5992.90 9389.56 22996.12 17683.16 16897.60 28189.30 18783.20 31895.75 233
CHOSEN 1792x268894.15 11093.51 11996.06 11698.27 8989.38 19295.18 26898.48 1485.60 28293.76 13197.11 12483.15 16999.61 6291.33 15298.72 9299.19 68
PMMVS92.86 15892.34 15494.42 19494.92 25786.73 25894.53 27896.38 24684.78 29694.27 12095.12 22683.13 17098.40 19391.47 15096.49 14998.12 151
Effi-MVS+-dtu93.08 14693.21 12992.68 26696.02 20383.25 30697.14 13896.72 22593.85 5391.20 19093.44 29883.08 17198.30 20091.69 14595.73 16196.50 204
mvs-test193.63 13093.69 11193.46 23896.02 20384.61 29297.24 12496.72 22593.85 5392.30 16395.76 19783.08 17198.89 15691.69 14596.54 14896.87 195
v891.29 22090.53 21993.57 23394.15 28788.12 23097.34 11497.06 19888.99 20288.32 26094.26 26983.08 17198.01 23687.62 22483.92 31194.57 299
cl-mvsnet190.97 23490.33 22392.88 25995.36 22986.19 27094.46 28196.63 23787.82 24088.18 26694.23 27082.99 17497.53 28787.72 21585.57 28394.93 276
cl-mvsnet_90.96 23590.32 22492.89 25895.37 22886.21 26994.46 28196.64 23487.82 24088.15 26794.18 27382.98 17597.54 28587.70 21785.59 28294.92 278
BH-w/o92.14 18691.75 17193.31 24496.99 15685.73 27595.67 24595.69 27188.73 21689.26 24094.82 23782.97 17698.07 22785.26 26396.32 15296.13 215
v14890.99 23290.38 22292.81 26293.83 29785.80 27496.78 17096.68 23189.45 19088.75 25393.93 28282.96 17797.82 26187.83 21383.25 31694.80 288
HyFIR lowres test93.66 12992.92 13495.87 12598.24 9389.88 17594.58 27698.49 1285.06 29193.78 13095.78 19682.86 17898.67 17491.77 14195.71 16299.07 82
test_djsdf93.07 14792.76 13794.00 20893.49 30788.70 21398.22 3297.57 13991.42 13590.08 21495.55 21082.85 17997.92 25194.07 9791.58 22095.40 250
PatchmatchNetpermissive91.91 19091.35 18493.59 23195.38 22684.11 29793.15 31695.39 28189.54 18792.10 16893.68 29182.82 18098.13 21484.81 26795.32 16798.52 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs182.76 18198.45 132
xiu_mvs_v1_base_debu95.01 8994.76 8795.75 13096.58 17191.71 11396.25 21797.35 17492.99 8596.70 5196.63 15182.67 18299.44 10496.22 3397.46 12296.11 216
xiu_mvs_v1_base95.01 8994.76 8795.75 13096.58 17191.71 11396.25 21797.35 17492.99 8596.70 5196.63 15182.67 18299.44 10496.22 3397.46 12296.11 216
xiu_mvs_v1_base_debi95.01 8994.76 8795.75 13096.58 17191.71 11396.25 21797.35 17492.99 8596.70 5196.63 15182.67 18299.44 10496.22 3397.46 12296.11 216
patchmatchnet-post90.45 33082.65 18598.10 219
V4291.58 20190.87 20193.73 22394.05 29188.50 21897.32 11796.97 20688.80 21489.71 22294.33 26282.54 18698.05 23089.01 19685.07 29394.64 298
WR-MVS92.34 17391.53 17994.77 18095.13 24790.83 14996.40 20297.98 9891.88 12389.29 23895.54 21182.50 18797.80 26289.79 17585.27 28995.69 236
tpmrst91.44 20991.32 18691.79 28695.15 24579.20 33893.42 31195.37 28388.55 22193.49 13793.67 29282.49 18898.27 20190.41 16489.34 24997.90 160
MDTV_nov1_ep13_2view70.35 35293.10 31883.88 30693.55 13482.47 18986.25 24598.38 140
XVG-OURS-SEG-HR93.86 12393.55 11594.81 17697.06 15188.53 21795.28 26297.45 15891.68 12794.08 12497.68 9182.41 19098.90 15593.84 10592.47 20596.98 189
QAPM93.45 13692.27 15796.98 7496.77 16492.62 8798.39 1998.12 5684.50 29988.27 26397.77 8582.39 19199.81 2685.40 26198.81 8998.51 124
Patchmatch-test89.42 26987.99 27693.70 22695.27 23885.11 28488.98 34694.37 32081.11 32687.10 28793.69 28982.28 19297.50 29074.37 33494.76 17798.48 129
Vis-MVSNetpermissive95.23 8494.81 8696.51 8897.18 14291.58 12098.26 2798.12 5694.38 4394.90 11098.15 5982.28 19298.92 15291.45 15198.58 9899.01 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator91.36 595.19 8794.44 10097.44 5296.56 17493.36 6998.65 698.36 1694.12 4789.25 24198.06 6482.20 19499.77 2993.41 11499.32 5399.18 69
v1091.04 23090.23 23193.49 23594.12 28888.16 22997.32 11797.08 19588.26 22788.29 26294.22 27282.17 19597.97 24186.45 24384.12 30694.33 305
v114491.37 21490.60 21493.68 22893.89 29588.23 22596.84 16397.03 20388.37 22489.69 22494.39 25882.04 19697.98 23887.80 21485.37 28694.84 282
MVSTER93.20 14392.81 13694.37 19596.56 17489.59 18197.06 14097.12 19091.24 14491.30 18395.96 18382.02 19798.05 23093.48 11190.55 23795.47 243
CP-MVSNet91.89 19191.24 19193.82 22095.05 25088.57 21597.82 6498.19 4491.70 12688.21 26595.76 19781.96 19897.52 28987.86 21284.65 29895.37 253
Patchmatch-RL test87.38 29086.24 29190.81 30588.74 34878.40 34288.12 34893.17 33487.11 26182.17 32889.29 33781.95 19995.60 33488.64 20377.02 33598.41 137
sam_mvs81.94 200
pmmvs490.93 23689.85 24694.17 20193.34 31190.79 15194.60 27596.02 25984.62 29787.45 27895.15 22381.88 20197.45 29487.70 21787.87 26194.27 309
test_post17.58 36281.76 20298.08 224
XVG-OURS93.72 12893.35 12694.80 17897.07 14888.61 21494.79 27297.46 15291.97 12293.99 12597.86 7781.74 20398.88 15792.64 12592.67 20396.92 193
v2v48291.59 19990.85 20493.80 22193.87 29688.17 22896.94 15596.88 21689.54 18789.53 23094.90 23281.70 20498.02 23589.25 19085.04 29595.20 265
baseline291.63 19890.86 20293.94 21594.33 28386.32 26595.92 23691.64 34589.37 19286.94 29094.69 24381.62 20598.69 17288.64 20394.57 18196.81 197
v14419291.06 22990.28 22793.39 24093.66 30287.23 24796.83 16497.07 19687.43 25389.69 22494.28 26681.48 20698.00 23787.18 23484.92 29794.93 276
MDTV_nov1_ep1390.76 20895.22 24280.33 32793.03 31995.28 28888.14 23392.84 15493.83 28381.34 20798.08 22482.86 28594.34 183
HQP_MVS93.78 12693.43 12394.82 17496.21 19189.99 17097.74 7197.51 14594.85 2591.34 18096.64 14781.32 20898.60 18093.02 12192.23 20895.86 222
plane_prior696.10 20190.00 16881.32 208
v7n90.76 24089.86 24593.45 23993.54 30487.60 24197.70 7997.37 17188.85 20887.65 27694.08 27781.08 21098.10 21984.68 26983.79 31394.66 297
HQP2-MVS80.95 211
HQP-MVS93.19 14492.74 14094.54 18995.86 20689.33 19596.65 18197.39 16893.55 6390.14 20495.87 18780.95 21198.50 18792.13 13392.10 21395.78 229
CR-MVSNet90.82 23989.77 25093.95 21394.45 27987.19 24890.23 34095.68 27386.89 26492.40 15792.36 31580.91 21397.05 30881.09 30293.95 18997.60 178
Patchmtry88.64 28087.25 28392.78 26394.09 28986.64 25989.82 34395.68 27380.81 33087.63 27792.36 31580.91 21397.03 30978.86 31585.12 29294.67 296
v119291.07 22890.23 23193.58 23293.70 30087.82 23796.73 17297.07 19687.77 24489.58 22794.32 26480.90 21597.97 24186.52 24185.48 28494.95 272
cl-mvsnet291.21 22290.56 21893.14 25196.09 20286.80 25694.41 28396.58 24087.80 24288.58 25693.99 28080.85 21697.62 27989.87 17386.93 27094.99 271
anonymousdsp92.16 18491.55 17893.97 21192.58 32489.55 18397.51 9797.42 16689.42 19188.40 25894.84 23580.66 21797.88 25691.87 13991.28 22694.48 300
CLD-MVS92.98 15192.53 14994.32 19896.12 20089.20 20195.28 26297.47 15092.66 10089.90 21795.62 20580.58 21898.40 19392.73 12492.40 20695.38 252
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_post192.81 32216.58 36380.53 21997.68 27286.20 246
VPA-MVSNet93.24 14192.48 15295.51 14595.70 21492.39 9397.86 5998.66 992.30 10892.09 16995.37 21680.49 22098.40 19393.95 10085.86 28095.75 233
tpmvs89.83 26689.15 26491.89 28194.92 25780.30 32893.11 31795.46 28086.28 27288.08 26892.65 30780.44 22198.52 18681.47 29689.92 24496.84 196
PatchMatch-RL92.90 15692.02 16395.56 14198.19 10090.80 15095.27 26497.18 18487.96 23691.86 17395.68 20380.44 22198.99 14784.01 27697.54 12196.89 194
PEN-MVS91.20 22390.44 22093.48 23694.49 27787.91 23597.76 6998.18 4691.29 14087.78 27495.74 19980.35 22397.33 30285.46 26082.96 31995.19 266
Fast-Effi-MVS+-dtu92.29 17791.99 16493.21 24995.27 23885.52 27897.03 14196.63 23792.09 11789.11 24395.14 22480.33 22498.08 22487.54 22694.74 17996.03 219
MSDG91.42 21090.24 23094.96 16997.15 14588.91 20893.69 30596.32 24885.72 28186.93 29196.47 16080.24 22598.98 14880.57 30395.05 17396.98 189
v192192090.85 23890.03 24193.29 24593.55 30386.96 25596.74 17197.04 20187.36 25589.52 23194.34 26180.23 22697.97 24186.27 24485.21 29094.94 274
RPMNet88.98 27287.05 28794.77 18094.45 27987.19 24890.23 34098.03 8477.87 34392.40 15787.55 34480.17 22799.51 9468.84 34793.95 18997.60 178
ET-MVSNet_ETH3D91.49 20790.11 23695.63 13796.40 18491.57 12195.34 25893.48 33190.60 16675.58 34595.49 21380.08 22896.79 31894.25 9389.76 24698.52 122
PatchT88.87 27687.42 28193.22 24894.08 29085.10 28589.51 34494.64 31481.92 32192.36 16088.15 34280.05 22997.01 31272.43 33993.65 19297.54 181
our_test_388.78 27887.98 27791.20 30092.45 32682.53 31093.61 30995.69 27185.77 28084.88 30893.71 28879.99 23096.78 31979.47 31186.24 27694.28 308
DTE-MVSNet90.56 24889.75 25293.01 25493.95 29287.25 24597.64 8897.65 13190.74 15587.12 28595.68 20379.97 23197.00 31383.33 28181.66 32494.78 292
D2MVS91.30 21990.95 19992.35 27294.71 26985.52 27896.18 22398.21 4088.89 20786.60 29493.82 28579.92 23297.95 24789.29 18890.95 23293.56 318
TransMVSNet (Re)88.94 27387.56 28093.08 25394.35 28288.45 22097.73 7395.23 29287.47 25284.26 31495.29 21879.86 23397.33 30279.44 31374.44 34193.45 321
ACMM89.79 892.96 15292.50 15194.35 19696.30 18988.71 21297.58 9297.36 17391.40 13890.53 19596.65 14679.77 23498.75 16791.24 15591.64 21895.59 239
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XXY-MVS92.16 18491.23 19294.95 17094.75 26790.94 14597.47 10397.43 16589.14 19888.90 24596.43 16279.71 23598.24 20289.56 18187.68 26395.67 238
PS-CasMVS91.55 20390.84 20593.69 22794.96 25488.28 22297.84 6398.24 3491.46 13388.04 26995.80 19279.67 23697.48 29187.02 23684.54 30295.31 256
RRT_MVS93.21 14292.32 15695.91 12394.92 25794.15 4396.92 15696.86 21991.42 13591.28 18696.43 16279.66 23798.10 21993.29 11690.06 24295.46 244
ab-mvs93.57 13392.55 14796.64 7897.28 13891.96 11195.40 25697.45 15889.81 18393.22 14696.28 17079.62 23899.46 10190.74 16193.11 19798.50 125
v124090.70 24589.85 24693.23 24793.51 30686.80 25696.61 18797.02 20487.16 26089.58 22794.31 26579.55 23997.98 23885.52 25985.44 28594.90 279
CostFormer91.18 22790.70 21192.62 26794.84 26381.76 31694.09 29594.43 31784.15 30292.72 15593.77 28779.43 24098.20 20790.70 16292.18 21197.90 160
CANet_DTU94.37 10593.65 11396.55 8496.46 18192.13 10496.21 22196.67 23394.38 4393.53 13697.03 12879.34 24199.71 3890.76 16098.45 10097.82 167
OPM-MVS93.28 14092.76 13794.82 17494.63 27390.77 15296.65 18197.18 18493.72 5891.68 17497.26 11779.33 24298.63 17792.13 13392.28 20795.07 268
JIA-IIPM88.26 28487.04 28891.91 28093.52 30581.42 31889.38 34594.38 31980.84 32990.93 19280.74 34979.22 24397.92 25182.76 28791.62 21996.38 207
CVMVSNet91.23 22191.75 17189.67 31995.77 21174.69 34796.44 19594.88 30785.81 27992.18 16597.64 9779.07 24495.58 33588.06 20995.86 15898.74 110
LPG-MVS_test92.94 15492.56 14694.10 20396.16 19688.26 22397.65 8497.46 15291.29 14090.12 21097.16 12179.05 24598.73 16892.25 12991.89 21695.31 256
LGP-MVS_train94.10 20396.16 19688.26 22397.46 15291.29 14090.12 21097.16 12179.05 24598.73 16892.25 12991.89 21695.31 256
test-LLR91.42 21091.19 19492.12 27694.59 27480.66 32294.29 28992.98 33591.11 14990.76 19392.37 31279.02 24798.07 22788.81 19996.74 14297.63 173
test0.0.03 189.37 27088.70 26891.41 29692.47 32585.63 27695.22 26792.70 33791.11 14986.91 29293.65 29379.02 24793.19 34978.00 31989.18 25095.41 247
ADS-MVSNet289.45 26888.59 27092.03 27895.86 20682.26 31490.93 33594.32 32283.23 31491.28 18691.81 32279.01 24995.99 32679.52 30991.39 22497.84 164
ADS-MVSNet89.89 26388.68 26993.53 23495.86 20684.89 28990.93 33595.07 29983.23 31491.28 18691.81 32279.01 24997.85 25779.52 30991.39 22497.84 164
ppachtmachnet_test88.35 28387.29 28291.53 29292.45 32683.57 30493.75 30395.97 26084.28 30085.32 30694.18 27379.00 25196.93 31475.71 32984.99 29694.10 311
OpenMVScopyleft89.19 1292.86 15891.68 17496.40 9695.34 23192.73 8398.27 2698.12 5684.86 29485.78 30097.75 8678.89 25299.74 3187.50 22798.65 9596.73 199
LTVRE_ROB88.41 1390.99 23289.92 24394.19 20096.18 19489.55 18396.31 21297.09 19487.88 23985.67 30195.91 18678.79 25398.57 18381.50 29589.98 24394.44 302
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
AUN-MVS91.76 19490.75 20994.81 17697.00 15588.57 21596.65 18196.49 24289.63 18692.15 16696.12 17678.66 25498.50 18790.83 15979.18 33297.36 184
pm-mvs190.72 24489.65 25693.96 21294.29 28689.63 17897.79 6796.82 22289.07 19986.12 29995.48 21478.61 25597.78 26586.97 23781.67 32394.46 301
PVSNet86.66 1892.24 18091.74 17393.73 22397.77 12283.69 30392.88 32096.72 22587.91 23893.00 14894.86 23478.51 25699.05 14386.53 24097.45 12698.47 130
ACMP89.59 1092.62 16592.14 15994.05 20696.40 18488.20 22697.36 11397.25 18291.52 13088.30 26196.64 14778.46 25798.72 17191.86 14091.48 22295.23 264
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
bset_n11_16_dypcd91.55 20390.59 21594.44 19191.51 33290.25 16492.70 32393.42 33292.27 10990.22 20394.74 24178.42 25897.80 26294.19 9587.86 26295.29 263
BH-RMVSNet92.72 16491.97 16594.97 16897.16 14387.99 23296.15 22495.60 27590.62 16391.87 17297.15 12378.41 25998.57 18383.16 28297.60 12098.36 142
thres20092.23 18191.39 18394.75 18297.61 13089.03 20696.60 18995.09 29892.08 11893.28 14394.00 27978.39 26099.04 14581.26 30194.18 18496.19 210
MDA-MVSNet_test_wron85.87 30484.23 30890.80 30792.38 32882.57 30993.17 31495.15 29582.15 31967.65 34992.33 31878.20 26195.51 33677.33 32179.74 32894.31 307
tfpn200view992.38 17291.52 18094.95 17097.85 11789.29 19797.41 10694.88 30792.19 11493.27 14494.46 25678.17 26299.08 13981.40 29794.08 18596.48 205
thres40092.42 17091.52 18095.12 16297.85 11789.29 19797.41 10694.88 30792.19 11493.27 14494.46 25678.17 26299.08 13981.40 29794.08 18596.98 189
YYNet185.87 30484.23 30890.78 30892.38 32882.46 31293.17 31495.14 29682.12 32067.69 34892.36 31578.16 26495.50 33777.31 32279.73 32994.39 303
CL-MVSNet_2432*160086.31 29985.15 30189.80 31888.83 34781.74 31793.93 29996.22 25386.67 26785.03 30790.80 32878.09 26594.50 34174.92 33171.86 34593.15 323
thres100view90092.43 16991.58 17794.98 16797.92 11389.37 19397.71 7894.66 31292.20 11293.31 14294.90 23278.06 26699.08 13981.40 29794.08 18596.48 205
thres600view792.49 16891.60 17695.18 15897.91 11489.47 18797.65 8494.66 31292.18 11693.33 14194.91 23178.06 26699.10 13481.61 29494.06 18896.98 189
tpm cat188.36 28287.21 28591.81 28595.13 24780.55 32592.58 32595.70 27074.97 34587.45 27891.96 32078.01 26898.17 21280.39 30588.74 25596.72 200
MVP-Stereo90.74 24390.08 23792.71 26493.19 31488.20 22695.86 23896.27 25086.07 27684.86 30994.76 23977.84 26997.75 26883.88 27998.01 11092.17 338
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EPMVS90.70 24589.81 24893.37 24294.73 26884.21 29593.67 30688.02 35289.50 18992.38 15993.49 29677.82 27097.78 26586.03 25292.68 20298.11 154
tfpnnormal89.70 26788.40 27293.60 23095.15 24590.10 16697.56 9498.16 5087.28 25886.16 29894.63 24777.57 27198.05 23074.48 33284.59 30192.65 330
tpm90.25 25589.74 25391.76 28993.92 29379.73 33493.98 29693.54 33088.28 22691.99 17093.25 30177.51 27297.44 29587.30 23187.94 26098.12 151
thisisatest051592.29 17791.30 18895.25 15696.60 16988.90 20994.36 28592.32 33987.92 23793.43 13994.57 24977.28 27399.00 14689.42 18495.86 15897.86 163
FMVSNet391.78 19390.69 21295.03 16496.53 17692.27 9997.02 14496.93 20989.79 18489.35 23594.65 24677.01 27497.47 29286.12 24988.82 25295.35 254
test_part192.21 18391.10 19795.51 14597.80 12092.66 8598.02 4697.68 12789.79 18488.80 25196.02 18176.85 27598.18 21090.86 15884.11 30795.69 236
TR-MVS91.48 20890.59 21594.16 20296.40 18487.33 24295.67 24595.34 28787.68 24891.46 17795.52 21276.77 27698.35 19782.85 28693.61 19496.79 198
tttt051792.96 15292.33 15594.87 17397.11 14687.16 25097.97 5292.09 34190.63 16293.88 12997.01 12976.50 27799.06 14290.29 16895.45 16598.38 140
RPSCF90.75 24290.86 20290.42 31296.84 15976.29 34595.61 24996.34 24783.89 30591.38 17897.87 7576.45 27898.78 16387.16 23592.23 20896.20 209
tpm289.96 26189.21 26292.23 27594.91 26081.25 31993.78 30294.42 31880.62 33191.56 17593.44 29876.44 27997.94 24885.60 25892.08 21597.49 182
thisisatest053093.03 14992.21 15895.49 14897.07 14889.11 20597.49 10292.19 34090.16 17494.09 12396.41 16476.43 28099.05 14390.38 16595.68 16398.31 144
EU-MVSNet88.72 27988.90 26688.20 32493.15 31574.21 34896.63 18694.22 32485.18 28887.32 28395.97 18276.16 28194.98 33985.27 26286.17 27795.41 247
dp88.90 27588.26 27590.81 30594.58 27676.62 34492.85 32194.93 30585.12 29090.07 21593.07 30275.81 28298.12 21780.53 30487.42 26797.71 170
IterMVS-SCA-FT90.31 25389.81 24891.82 28495.52 22084.20 29694.30 28896.15 25690.61 16487.39 28194.27 26775.80 28396.44 32187.34 22986.88 27494.82 285
SCA91.84 19291.18 19593.83 21995.59 21684.95 28894.72 27395.58 27790.82 15392.25 16493.69 28975.80 28398.10 21986.20 24695.98 15498.45 132
IterMVS90.15 25989.67 25491.61 29195.48 22283.72 30094.33 28796.12 25789.99 17787.31 28494.15 27575.78 28596.27 32486.97 23786.89 27394.83 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
jajsoiax92.42 17091.89 16894.03 20793.33 31288.50 21897.73 7397.53 14392.00 12188.85 24896.50 15975.62 28698.11 21893.88 10491.56 22195.48 241
cascas91.20 22390.08 23794.58 18894.97 25389.16 20493.65 30797.59 13779.90 33489.40 23392.92 30475.36 28798.36 19692.14 13294.75 17896.23 208
VPNet92.23 18191.31 18794.99 16595.56 21890.96 14497.22 13097.86 11192.96 9190.96 19196.62 15475.06 28898.20 20791.90 13783.65 31495.80 228
N_pmnet78.73 31978.71 32178.79 33492.80 32046.50 36394.14 29343.71 36578.61 33980.83 33191.66 32574.94 28996.36 32267.24 34884.45 30393.50 319
mvs_tets92.31 17591.76 17093.94 21593.41 30988.29 22197.63 8997.53 14392.04 11988.76 25296.45 16174.62 29098.09 22393.91 10291.48 22295.45 246
DSMNet-mixed86.34 29886.12 29487.00 32989.88 34270.43 35194.93 27190.08 35077.97 34285.42 30592.78 30674.44 29193.96 34574.43 33395.14 16996.62 201
pmmvs589.86 26588.87 26792.82 26192.86 31886.23 26896.26 21695.39 28184.24 30187.12 28594.51 25174.27 29297.36 30187.61 22587.57 26494.86 281
OurMVSNet-221017-090.51 25090.19 23591.44 29593.41 30981.25 31996.98 15196.28 24991.68 12786.55 29596.30 16974.20 29397.98 23888.96 19787.40 26895.09 267
GBi-Net91.35 21590.27 22894.59 18496.51 17791.18 13797.50 9896.93 20988.82 21189.35 23594.51 25173.87 29497.29 30486.12 24988.82 25295.31 256
test191.35 21590.27 22894.59 18496.51 17791.18 13797.50 9896.93 20988.82 21189.35 23594.51 25173.87 29497.29 30486.12 24988.82 25295.31 256
FMVSNet291.31 21890.08 23794.99 16596.51 17792.21 10097.41 10696.95 20788.82 21188.62 25494.75 24073.87 29497.42 29785.20 26488.55 25795.35 254
COLMAP_ROBcopyleft87.81 1590.40 25289.28 26193.79 22297.95 11087.13 25196.92 15695.89 26482.83 31686.88 29397.18 12073.77 29799.29 11878.44 31793.62 19394.95 272
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DWT-MVSNet_test90.76 24089.89 24493.38 24195.04 25183.70 30295.85 23994.30 32388.19 22890.46 19792.80 30573.61 29898.50 18788.16 20790.58 23697.95 158
Anonymous2023120687.09 29286.14 29389.93 31791.22 33480.35 32696.11 22595.35 28483.57 31184.16 31593.02 30373.54 29995.61 33372.16 34086.14 27893.84 316
UGNet94.04 11893.28 12896.31 10396.85 15891.19 13697.88 5897.68 12794.40 4193.00 14896.18 17373.39 30099.61 6291.72 14298.46 9998.13 150
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2023121190.63 24789.42 25894.27 19998.24 9389.19 20398.05 4497.89 10479.95 33388.25 26494.96 22872.56 30198.13 21489.70 17785.14 29195.49 240
ACMH87.59 1690.53 24989.42 25893.87 21896.21 19187.92 23397.24 12496.94 20888.45 22283.91 32096.27 17171.92 30298.62 17984.43 27389.43 24895.05 270
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GA-MVS91.38 21290.31 22594.59 18494.65 27187.62 24094.34 28696.19 25590.73 15690.35 20093.83 28371.84 30397.96 24587.22 23293.61 19498.21 148
SixPastTwentyTwo89.15 27188.54 27190.98 30293.49 30780.28 32996.70 17694.70 31190.78 15484.15 31695.57 20771.78 30497.71 27184.63 27085.07 29394.94 274
gg-mvs-nofinetune87.82 28785.61 29694.44 19194.46 27889.27 20091.21 33484.61 35780.88 32889.89 21974.98 35171.50 30597.53 28785.75 25797.21 13496.51 203
test20.0386.14 30185.40 29988.35 32290.12 33980.06 33195.90 23795.20 29388.59 21781.29 33093.62 29471.43 30692.65 35071.26 34481.17 32692.34 334
MS-PatchMatch90.27 25489.77 25091.78 28794.33 28384.72 29195.55 25096.73 22486.17 27586.36 29695.28 22071.28 30797.80 26284.09 27598.14 10892.81 327
PVSNet_082.17 1985.46 30783.64 31090.92 30395.27 23879.49 33590.55 33895.60 27583.76 30883.00 32689.95 33371.09 30897.97 24182.75 28860.79 35395.31 256
GG-mvs-BLEND93.62 22993.69 30189.20 20192.39 32883.33 35887.98 27289.84 33571.00 30996.87 31682.08 29395.40 16694.80 288
ITE_SJBPF92.43 27095.34 23185.37 28195.92 26191.47 13287.75 27596.39 16671.00 30997.96 24582.36 29189.86 24593.97 314
IB-MVS87.33 1789.91 26288.28 27494.79 17995.26 24187.70 23995.12 27093.95 32889.35 19387.03 28892.49 31070.74 31199.19 12489.18 19481.37 32597.49 182
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDA-MVSNet-bldmvs85.00 30882.95 31291.17 30193.13 31683.33 30594.56 27795.00 30184.57 29865.13 35292.65 30770.45 31295.85 32973.57 33777.49 33494.33 305
RRT_test8_iter0591.19 22690.78 20792.41 27195.76 21383.14 30797.32 11797.46 15291.37 13989.07 24495.57 20770.33 31398.21 20593.56 10886.62 27595.89 221
AllTest90.23 25688.98 26593.98 20997.94 11186.64 25996.51 19495.54 27885.38 28585.49 30396.77 13870.28 31499.15 12980.02 30792.87 19896.15 213
TestCases93.98 20997.94 11186.64 25995.54 27885.38 28585.49 30396.77 13870.28 31499.15 12980.02 30792.87 19896.15 213
ACMH+87.92 1490.20 25789.18 26393.25 24696.48 18086.45 26496.99 14996.68 23188.83 21084.79 31096.22 17270.16 31698.53 18584.42 27488.04 25994.77 293
DIV-MVS_2432*160085.95 30384.95 30288.96 32189.55 34579.11 33995.13 26996.42 24485.91 27884.07 31890.48 32970.03 31794.82 34080.04 30672.94 34492.94 325
Anonymous2024052991.98 18990.73 21095.73 13398.14 10389.40 19197.99 4797.72 12279.63 33593.54 13597.41 11269.94 31899.56 8191.04 15791.11 22898.22 147
pmmvs-eth3d86.22 30084.45 30691.53 29288.34 34987.25 24594.47 27995.01 30083.47 31279.51 34089.61 33669.75 31995.71 33283.13 28376.73 33791.64 339
LFMVS93.60 13192.63 14396.52 8598.13 10491.27 13097.94 5493.39 33390.57 16796.29 7198.31 4769.00 32099.16 12894.18 9695.87 15799.12 77
TESTMET0.1,190.06 26089.42 25891.97 27994.41 28180.62 32494.29 28991.97 34387.28 25890.44 19892.47 31168.79 32197.67 27388.50 20596.60 14797.61 177
XVG-ACMP-BASELINE90.93 23690.21 23493.09 25294.31 28585.89 27395.33 25997.26 18091.06 15189.38 23495.44 21568.61 32298.60 18089.46 18391.05 22994.79 290
MVS-HIRNet82.47 31681.21 31886.26 33195.38 22669.21 35488.96 34789.49 35166.28 35080.79 33274.08 35368.48 32397.39 29971.93 34195.47 16492.18 337
VDD-MVS93.82 12493.08 13096.02 11997.88 11689.96 17497.72 7695.85 26592.43 10595.86 8798.44 2868.42 32499.39 11096.31 2894.85 17498.71 114
test_040286.46 29684.79 30491.45 29495.02 25285.55 27796.29 21494.89 30680.90 32782.21 32793.97 28168.21 32597.29 30462.98 35188.68 25691.51 341
test-mter90.19 25889.54 25792.12 27694.59 27480.66 32294.29 28992.98 33587.68 24890.76 19392.37 31267.67 32698.07 22788.81 19996.74 14297.63 173
VDDNet93.05 14892.07 16096.02 11996.84 15990.39 16398.08 4295.85 26586.22 27495.79 9098.46 2667.59 32799.19 12494.92 7994.85 17498.47 130
USDC88.94 27387.83 27892.27 27494.66 27084.96 28793.86 30095.90 26387.34 25683.40 32295.56 20967.43 32898.19 20982.64 29089.67 24793.66 317
pmmvs687.81 28886.19 29292.69 26591.32 33386.30 26697.34 11496.41 24580.59 33284.05 31994.37 26067.37 32997.67 27384.75 26879.51 33194.09 313
KD-MVS_2432*160084.81 31082.64 31391.31 29791.07 33585.34 28291.22 33295.75 26885.56 28383.09 32490.21 33167.21 33095.89 32777.18 32462.48 35192.69 328
miper_refine_blended84.81 31082.64 31391.31 29791.07 33585.34 28291.22 33295.75 26885.56 28383.09 32490.21 33167.21 33095.89 32777.18 32462.48 35192.69 328
K. test v387.64 28986.75 29090.32 31393.02 31779.48 33696.61 18792.08 34290.66 16080.25 33794.09 27667.21 33096.65 32085.96 25480.83 32794.83 283
CMPMVSbinary62.92 2185.62 30684.92 30387.74 32689.14 34673.12 35094.17 29296.80 22373.98 34673.65 34794.93 23066.36 33397.61 28083.95 27891.28 22692.48 333
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UniMVSNet_ETH3D91.34 21790.22 23394.68 18394.86 26287.86 23697.23 12997.46 15287.99 23589.90 21796.92 13366.35 33498.23 20390.30 16790.99 23197.96 156
lessismore_v090.45 31191.96 33179.09 34087.19 35580.32 33694.39 25866.31 33597.55 28484.00 27776.84 33694.70 295
Anonymous20240521192.07 18790.83 20695.76 12898.19 10088.75 21197.58 9295.00 30186.00 27793.64 13297.45 10966.24 33699.53 8990.68 16392.71 20199.01 87
new-patchmatchnet83.18 31481.87 31687.11 32886.88 35275.99 34693.70 30495.18 29485.02 29277.30 34388.40 33965.99 33793.88 34674.19 33670.18 34791.47 343
FMVSNet189.88 26488.31 27394.59 18495.41 22491.18 13797.50 9896.93 20986.62 26887.41 28094.51 25165.94 33897.29 30483.04 28487.43 26695.31 256
TDRefinement86.53 29584.76 30591.85 28282.23 35584.25 29496.38 20595.35 28484.97 29384.09 31794.94 22965.76 33998.34 19984.60 27174.52 34092.97 324
UnsupCasMVSNet_eth85.99 30284.45 30690.62 30989.97 34182.40 31393.62 30897.37 17189.86 17978.59 34292.37 31265.25 34095.35 33882.27 29270.75 34694.10 311
LF4IMVS87.94 28687.25 28389.98 31692.38 32880.05 33294.38 28495.25 29187.59 25084.34 31294.74 24164.31 34197.66 27584.83 26687.45 26592.23 335
Anonymous2024052186.42 29785.44 29789.34 32090.33 33879.79 33396.73 17295.92 26183.71 30983.25 32391.36 32763.92 34296.01 32578.39 31885.36 28792.22 336
MIMVSNet88.50 28186.76 28993.72 22594.84 26387.77 23891.39 33094.05 32586.41 27187.99 27192.59 30963.27 34395.82 33177.44 32092.84 20097.57 180
FMVSNet587.29 29185.79 29591.78 28794.80 26587.28 24395.49 25395.28 28884.09 30383.85 32191.82 32162.95 34494.17 34478.48 31685.34 28893.91 315
testgi87.97 28587.21 28590.24 31492.86 31880.76 32196.67 18094.97 30391.74 12585.52 30295.83 19062.66 34594.47 34376.25 32788.36 25895.48 241
TinyColmap86.82 29485.35 30091.21 29994.91 26082.99 30893.94 29894.02 32783.58 31081.56 32994.68 24462.34 34698.13 21475.78 32887.35 26992.52 332
new_pmnet82.89 31581.12 31988.18 32589.63 34380.18 33091.77 32992.57 33876.79 34475.56 34688.23 34161.22 34794.48 34271.43 34282.92 32089.87 346
OpenMVS_ROBcopyleft81.14 2084.42 31282.28 31590.83 30490.06 34084.05 29895.73 24494.04 32673.89 34780.17 33891.53 32659.15 34897.64 27666.92 34989.05 25190.80 344
MIMVSNet184.93 30983.05 31190.56 31089.56 34484.84 29095.40 25695.35 28483.91 30480.38 33592.21 31957.23 34993.34 34870.69 34682.75 32293.50 319
EG-PatchMatch MVS87.02 29385.44 29791.76 28992.67 32285.00 28696.08 22796.45 24383.41 31379.52 33993.49 29657.10 35097.72 27079.34 31490.87 23492.56 331
MVS_030488.79 27787.57 27992.46 26894.65 27186.15 27296.40 20297.17 18686.44 27088.02 27091.71 32456.68 35197.03 30984.47 27292.58 20494.19 310
UnsupCasMVSNet_bld82.13 31779.46 32090.14 31588.00 35082.47 31190.89 33796.62 23978.94 33875.61 34484.40 34756.63 35296.31 32377.30 32366.77 35091.63 340
tmp_tt51.94 32953.82 32946.29 34333.73 36545.30 36578.32 35567.24 36418.02 36050.93 35687.05 34652.99 35353.11 36170.76 34525.29 35940.46 357
pmmvs379.97 31877.50 32287.39 32782.80 35479.38 33792.70 32390.75 34970.69 34978.66 34187.47 34551.34 35493.40 34773.39 33869.65 34889.38 347
DeepMVS_CXcopyleft74.68 33890.84 33764.34 35881.61 36065.34 35167.47 35088.01 34348.60 35580.13 35762.33 35273.68 34379.58 351
PM-MVS83.48 31381.86 31788.31 32387.83 35177.59 34393.43 31091.75 34486.91 26380.63 33389.91 33444.42 35695.84 33085.17 26576.73 33791.50 342
ambc86.56 33083.60 35370.00 35385.69 35094.97 30380.60 33488.45 33837.42 35796.84 31782.69 28975.44 33992.86 326
Gipumacopyleft67.86 32365.41 32675.18 33792.66 32373.45 34966.50 35794.52 31653.33 35557.80 35566.07 35530.81 35889.20 35248.15 35578.88 33362.90 354
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EMVS52.08 32851.31 33154.39 34272.62 36045.39 36483.84 35275.51 36241.13 35840.77 35959.65 35830.08 35973.60 35928.31 35929.90 35844.18 356
FPMVS71.27 32169.85 32375.50 33674.64 35759.03 35991.30 33191.50 34658.80 35357.92 35488.28 34029.98 36085.53 35553.43 35382.84 32181.95 350
E-PMN53.28 32652.56 33055.43 34174.43 35847.13 36283.63 35376.30 36142.23 35742.59 35862.22 35728.57 36174.40 35831.53 35831.51 35644.78 355
PMMVS270.19 32266.92 32580.01 33376.35 35665.67 35686.22 34987.58 35464.83 35262.38 35380.29 35026.78 36288.49 35363.79 35054.07 35485.88 348
ANet_high63.94 32459.58 32777.02 33561.24 36366.06 35585.66 35187.93 35378.53 34042.94 35771.04 35425.42 36380.71 35652.60 35430.83 35784.28 349
LCM-MVSNet72.55 32069.39 32482.03 33270.81 36165.42 35790.12 34294.36 32155.02 35465.88 35181.72 34824.16 36489.96 35174.32 33568.10 34990.71 345
PMVScopyleft53.92 2258.58 32555.40 32868.12 33951.00 36448.64 36178.86 35487.10 35646.77 35635.84 36174.28 3528.76 36586.34 35442.07 35673.91 34269.38 352
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d25.11 33024.57 33426.74 34473.98 35939.89 36657.88 3589.80 36612.27 36110.39 3626.97 3647.03 36636.44 36225.43 36017.39 3603.89 360
MVEpermissive50.73 2353.25 32748.81 33266.58 34065.34 36257.50 36072.49 35670.94 36340.15 35939.28 36063.51 3566.89 36773.48 36038.29 35742.38 35568.76 353
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test12313.04 33315.66 3365.18 3454.51 3673.45 36792.50 3271.81 3682.50 3637.58 36420.15 3613.67 3682.18 3647.13 3621.07 3629.90 358
testmvs13.36 33216.33 3354.48 3465.04 3662.26 36893.18 3133.28 3672.70 3628.24 36321.66 3602.29 3692.19 3637.58 3612.96 3619.00 359
uanet_test0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
sosnet-low-res0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
sosnet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
uncertanet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
Regformer0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
ab-mvs-re8.06 33410.74 3370.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 36596.69 1440.00 3700.00 3650.00 3630.00 3630.00 361
uanet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
IU-MVS99.42 695.39 997.94 10290.40 17198.94 597.41 799.66 899.74 5
save fliter98.91 4994.28 3597.02 14498.02 8895.35 8
test_0728_SECOND98.51 299.45 295.93 398.21 3498.28 2699.86 897.52 299.67 699.75 3
GSMVS98.45 132
test_part299.28 2595.74 698.10 17
MTGPAbinary98.08 64
MTMP97.86 5982.03 359
gm-plane-assit93.22 31378.89 34184.82 29593.52 29598.64 17687.72 215
test9_res94.81 8499.38 4899.45 45
agg_prior293.94 10199.38 4899.50 37
agg_prior98.67 6293.79 5598.00 9395.68 9499.57 79
test_prior493.66 5996.42 198
test_prior97.23 6298.67 6292.99 7698.00 9399.41 10799.29 62
旧先验295.94 23581.66 32397.34 3498.82 16092.26 127
新几何295.79 242
无先验95.79 24297.87 10883.87 30799.65 5387.68 22098.89 100
原ACMM295.67 245
testdata299.67 4985.96 254
testdata195.26 26693.10 83
plane_prior796.21 19189.98 172
plane_prior597.51 14598.60 18093.02 12192.23 20895.86 222
plane_prior496.64 147
plane_prior390.00 16894.46 4091.34 180
plane_prior297.74 7194.85 25
plane_prior196.14 199
plane_prior89.99 17097.24 12494.06 4892.16 212
n20.00 369
nn0.00 369
door-mid91.06 348
test1197.88 106
door91.13 347
HQP5-MVS89.33 195
HQP-NCC95.86 20696.65 18193.55 6390.14 204
ACMP_Plane95.86 20696.65 18193.55 6390.14 204
BP-MVS92.13 133
HQP4-MVS90.14 20498.50 18795.78 229
HQP3-MVS97.39 16892.10 213
NP-MVS95.99 20589.81 17795.87 187
ACMMP++_ref90.30 241
ACMMP++91.02 230