PC_three_1452 | | | | | | | | | | 90.77 166 | 98.89 8 | 98.28 57 | 96.24 1 | 98.35 209 | 95.76 61 | 99.58 22 | 99.59 20 |
|
DVP-MVS++ | | | 98.06 1 | 97.99 1 | 98.28 9 | 98.67 66 | 95.39 11 | 99.29 1 | 98.28 28 | 94.78 37 | 98.93 6 | 98.87 6 | 96.04 2 | 99.86 9 | 97.45 9 | 99.58 22 | 99.59 20 |
|
OPU-MVS | | | | | 98.55 3 | 98.82 60 | 96.86 3 | 98.25 34 | | | | 98.26 58 | 96.04 2 | 99.24 126 | 95.36 76 | 99.59 17 | 99.56 27 |
|
test_0728_THIRD | | | | | | | | | | 94.78 37 | 98.73 10 | 98.87 6 | 95.87 4 | 99.84 23 | 97.45 9 | 99.72 2 | 99.77 1 |
|
SED-MVS | | | 98.05 2 | 97.99 1 | 98.24 10 | 99.42 7 | 95.30 18 | 98.25 34 | 98.27 31 | 95.13 19 | 99.19 1 | 98.89 4 | 95.54 5 | 99.85 18 | 97.52 5 | 99.66 10 | 99.56 27 |
|
test_241102_ONE | | | | | | 99.42 7 | 95.30 18 | | 98.27 31 | 95.09 23 | 99.19 1 | 98.81 10 | 95.54 5 | 99.65 57 | | | |
|
test_one_0601 | | | | | | 99.32 24 | 95.20 21 | | 98.25 36 | 95.13 19 | 98.48 16 | 98.87 6 | 95.16 7 | | | | |
|
DVP-MVS |  | | 97.91 3 | 97.81 3 | 98.22 12 | 99.45 3 | 95.36 13 | 98.21 41 | 97.85 118 | 94.92 28 | 98.73 10 | 98.87 6 | 95.08 8 | 99.84 23 | 97.52 5 | 99.67 6 | 99.48 47 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 99.45 3 | 95.36 13 | 98.31 27 | 98.29 26 | 94.92 28 | 98.99 4 | 98.92 2 | 95.08 8 | | | | |
|
DPE-MVS |  | | 97.86 4 | 97.65 5 | 98.47 5 | 99.17 34 | 95.78 7 | 97.21 140 | 98.35 20 | 95.16 18 | 98.71 12 | 98.80 11 | 95.05 10 | 99.89 4 | 96.70 27 | 99.73 1 | 99.73 9 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
test_241102_TWO | | | | | | | | | 98.27 31 | 95.13 19 | 98.93 6 | 98.89 4 | 94.99 11 | 99.85 18 | 97.52 5 | 99.65 12 | 99.74 7 |
|
SteuartSystems-ACMMP | | | 97.62 7 | 97.53 7 | 97.87 27 | 98.39 87 | 94.25 42 | 98.43 21 | 98.27 31 | 95.34 10 | 98.11 20 | 98.56 20 | 94.53 12 | 99.71 42 | 96.57 31 | 99.62 15 | 99.65 12 |
Skip Steuart: Steuart Systems R&D Blog. |
CNVR-MVS | | | 97.68 6 | 97.44 9 | 98.37 7 | 98.90 55 | 95.86 6 | 97.27 131 | 98.08 68 | 95.81 3 | 97.87 28 | 98.31 51 | 94.26 13 | 99.68 51 | 97.02 17 | 99.49 40 | 99.57 24 |
|
SD-MVS | | | 97.41 10 | 97.53 7 | 97.06 74 | 98.57 79 | 94.46 34 | 97.92 64 | 98.14 57 | 94.82 34 | 99.01 3 | 98.55 22 | 94.18 14 | 97.41 311 | 96.94 18 | 99.64 13 | 99.32 66 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
MSP-MVS | | | 97.59 8 | 97.54 6 | 97.73 41 | 99.40 12 | 93.77 62 | 98.53 13 | 98.29 26 | 95.55 5 | 98.56 14 | 97.81 91 | 93.90 15 | 99.65 57 | 96.62 28 | 99.21 75 | 99.77 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
MCST-MVS | | | 97.18 17 | 96.84 29 | 98.20 13 | 99.30 26 | 95.35 15 | 97.12 148 | 98.07 74 | 93.54 75 | 96.08 88 | 97.69 99 | 93.86 16 | 99.71 42 | 96.50 32 | 99.39 53 | 99.55 31 |
|
APDe-MVS | | | 97.82 5 | 97.73 4 | 98.08 18 | 99.15 35 | 94.82 29 | 98.81 6 | 98.30 25 | 94.76 39 | 98.30 17 | 98.90 3 | 93.77 17 | 99.68 51 | 97.93 1 | 99.69 3 | 99.75 5 |
|
TSAR-MVS + MP. | | | 97.42 9 | 97.33 11 | 97.69 45 | 99.25 29 | 94.24 43 | 98.07 51 | 97.85 118 | 93.72 67 | 98.57 13 | 98.35 42 | 93.69 18 | 99.40 113 | 97.06 14 | 99.46 44 | 99.44 53 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
patch_mono-2 | | | 96.83 41 | 97.44 9 | 95.01 171 | 99.05 43 | 85.39 291 | 96.98 160 | 98.77 5 | 94.70 41 | 97.99 23 | 98.66 14 | 93.61 19 | 99.91 1 | 97.67 4 | 99.50 36 | 99.72 10 |
|
DeepPCF-MVS | | 93.97 1 | 96.61 51 | 97.09 14 | 95.15 165 | 98.09 114 | 86.63 271 | 96.00 243 | 98.15 55 | 95.43 6 | 97.95 24 | 98.56 20 | 93.40 20 | 99.36 117 | 96.77 25 | 99.48 41 | 99.45 51 |
|
xxxxxxxxxxxxxcwj | | | 97.36 12 | 97.20 12 | 97.83 29 | 98.91 53 | 94.28 39 | 97.02 153 | 97.22 192 | 95.35 8 | 98.27 18 | 98.65 16 | 93.33 21 | 99.72 39 | 96.49 33 | 99.52 29 | 99.51 39 |
|
SF-MVS | | | 97.39 11 | 97.13 13 | 98.17 14 | 99.02 46 | 95.28 20 | 98.23 38 | 98.27 31 | 92.37 118 | 98.27 18 | 98.65 16 | 93.33 21 | 99.72 39 | 96.49 33 | 99.52 29 | 99.51 39 |
|
SMA-MVS |  | | 97.35 13 | 97.03 18 | 98.30 8 | 99.06 42 | 95.42 10 | 97.94 62 | 98.18 50 | 90.57 179 | 98.85 9 | 98.94 1 | 93.33 21 | 99.83 26 | 96.72 26 | 99.68 4 | 99.63 14 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
NCCC | | | 97.30 15 | 97.03 18 | 98.11 17 | 98.77 61 | 95.06 26 | 97.34 123 | 98.04 85 | 95.96 2 | 97.09 51 | 97.88 83 | 93.18 24 | 99.71 42 | 95.84 59 | 99.17 80 | 99.56 27 |
|
9.14 | | | | 96.75 37 | | 98.93 51 | | 97.73 81 | 98.23 42 | 91.28 154 | 97.88 27 | 98.44 32 | 93.00 25 | 99.65 57 | 95.76 61 | 99.47 42 | |
|
segment_acmp | | | | | | | | | | | | | 92.89 26 | | | | |
|
TSAR-MVS + GP. | | | 96.69 48 | 96.49 51 | 97.27 63 | 98.31 95 | 93.39 70 | 96.79 178 | 96.72 235 | 94.17 54 | 97.44 34 | 97.66 103 | 92.76 27 | 99.33 118 | 96.86 21 | 97.76 129 | 99.08 89 |
|
dcpmvs_2 | | | 96.37 61 | 97.05 16 | 94.31 208 | 98.96 50 | 84.11 309 | 97.56 102 | 97.51 153 | 93.92 59 | 97.43 36 | 98.52 25 | 92.75 28 | 99.32 120 | 97.32 13 | 99.50 36 | 99.51 39 |
|
TEST9 | | | | | | 98.70 64 | 94.19 44 | 96.41 210 | 98.02 92 | 88.17 243 | 96.03 89 | 97.56 115 | 92.74 29 | 99.59 72 | | | |
|
train_agg | | | 96.30 63 | 95.83 69 | 97.72 42 | 98.70 64 | 94.19 44 | 96.41 210 | 98.02 92 | 88.58 231 | 96.03 89 | 97.56 115 | 92.73 30 | 99.59 72 | 95.04 83 | 99.37 58 | 99.39 60 |
|
test_8 | | | | | | 98.67 66 | 94.06 53 | 96.37 217 | 98.01 95 | 88.58 231 | 95.98 94 | 97.55 117 | 92.73 30 | 99.58 75 | | | |
|
agg_prior1 | | | 96.22 66 | 95.77 70 | 97.56 51 | 98.67 66 | 93.79 59 | 96.28 226 | 98.00 97 | 88.76 228 | 95.68 104 | 97.55 117 | 92.70 32 | 99.57 83 | 95.01 84 | 99.32 59 | 99.32 66 |
|
CSCG | | | 96.05 69 | 95.91 67 | 96.46 96 | 99.24 30 | 90.47 164 | 98.30 28 | 98.57 12 | 89.01 214 | 93.97 139 | 97.57 113 | 92.62 33 | 99.76 34 | 94.66 97 | 99.27 67 | 99.15 81 |
|
ETH3D-3000-0.1 | | | 97.07 23 | 96.71 40 | 98.14 16 | 98.90 55 | 95.33 17 | 97.68 88 | 98.24 38 | 91.57 140 | 97.90 26 | 98.37 40 | 92.61 34 | 99.66 56 | 95.59 73 | 99.51 33 | 99.43 55 |
|
Regformer-2 | | | 97.16 19 | 96.99 20 | 97.67 46 | 98.32 93 | 93.84 57 | 96.83 174 | 98.10 65 | 95.24 13 | 97.49 31 | 98.25 59 | 92.57 35 | 99.61 66 | 96.80 22 | 99.29 63 | 99.56 27 |
|
HPM-MVS++ |  | | 97.34 14 | 96.97 21 | 98.47 5 | 99.08 40 | 96.16 4 | 97.55 104 | 97.97 103 | 95.59 4 | 96.61 67 | 97.89 81 | 92.57 35 | 99.84 23 | 95.95 54 | 99.51 33 | 99.40 59 |
|
ZD-MVS | | | | | | 99.05 43 | 94.59 32 | | 98.08 68 | 89.22 209 | 97.03 53 | 98.10 68 | 92.52 37 | 99.65 57 | 94.58 99 | 99.31 61 | |
|
PHI-MVS | | | 96.77 45 | 96.46 54 | 97.71 44 | 98.40 85 | 94.07 52 | 98.21 41 | 98.45 16 | 89.86 191 | 97.11 50 | 98.01 77 | 92.52 37 | 99.69 48 | 96.03 53 | 99.53 28 | 99.36 64 |
|
Regformer-1 | | | 97.10 21 | 96.96 22 | 97.54 52 | 98.32 93 | 93.48 68 | 96.83 174 | 97.99 101 | 95.20 15 | 97.46 32 | 98.25 59 | 92.48 39 | 99.58 75 | 96.79 24 | 99.29 63 | 99.55 31 |
|
APD-MVS |  | | 96.95 32 | 96.60 45 | 98.01 22 | 99.03 45 | 94.93 28 | 97.72 84 | 98.10 65 | 91.50 142 | 98.01 22 | 98.32 50 | 92.33 40 | 99.58 75 | 94.85 89 | 99.51 33 | 99.53 38 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MVS_111021_HR | | | 96.68 50 | 96.58 47 | 96.99 76 | 98.46 81 | 92.31 102 | 96.20 233 | 98.90 2 | 94.30 53 | 95.86 97 | 97.74 96 | 92.33 40 | 99.38 116 | 96.04 52 | 99.42 49 | 99.28 71 |
|
MSLP-MVS++ | | | 96.94 33 | 97.06 15 | 96.59 86 | 98.72 63 | 91.86 117 | 97.67 89 | 98.49 13 | 94.66 43 | 97.24 42 | 98.41 38 | 92.31 42 | 98.94 158 | 96.61 29 | 99.46 44 | 98.96 101 |
|
旧先验1 | | | | | | 98.38 88 | 93.38 71 | | 97.75 123 | | | 98.09 70 | 92.30 43 | | | 99.01 92 | 99.16 79 |
|
HFP-MVS | | | 97.14 20 | 96.92 24 | 97.83 29 | 99.42 7 | 94.12 49 | 98.52 14 | 98.32 22 | 93.21 87 | 97.18 44 | 98.29 54 | 92.08 44 | 99.83 26 | 95.63 68 | 99.59 17 | 99.54 34 |
|
#test# | | | 97.02 27 | 96.75 37 | 97.83 29 | 99.42 7 | 94.12 49 | 98.15 46 | 98.32 22 | 92.57 114 | 97.18 44 | 98.29 54 | 92.08 44 | 99.83 26 | 95.12 81 | 99.59 17 | 99.54 34 |
|
test_prior3 | | | 96.46 57 | 96.20 62 | 97.23 65 | 98.67 66 | 92.99 81 | 96.35 218 | 98.00 97 | 92.80 107 | 96.03 89 | 97.59 111 | 92.01 46 | 99.41 111 | 95.01 84 | 99.38 54 | 99.29 68 |
|
test_prior2 | | | | | | | | 96.35 218 | | 92.80 107 | 96.03 89 | 97.59 111 | 92.01 46 | | 95.01 84 | 99.38 54 | |
|
CDPH-MVS | | | 95.97 72 | 95.38 79 | 97.77 38 | 98.93 51 | 94.44 35 | 96.35 218 | 97.88 112 | 86.98 275 | 96.65 64 | 97.89 81 | 91.99 48 | 99.47 104 | 92.26 139 | 99.46 44 | 99.39 60 |
|
testtj | | | 96.93 34 | 96.56 48 | 98.05 20 | 99.10 36 | 94.66 31 | 97.78 76 | 98.22 43 | 92.74 109 | 97.59 29 | 98.20 65 | 91.96 49 | 99.86 9 | 94.21 103 | 99.25 71 | 99.63 14 |
|
CP-MVS | | | 97.02 27 | 96.81 32 | 97.64 49 | 99.33 23 | 93.54 66 | 98.80 7 | 98.28 28 | 92.99 96 | 96.45 77 | 98.30 53 | 91.90 50 | 99.85 18 | 95.61 70 | 99.68 4 | 99.54 34 |
|
Regformer-4 | | | 96.97 30 | 96.87 25 | 97.25 64 | 98.34 90 | 92.66 90 | 96.96 162 | 98.01 95 | 95.12 22 | 97.14 47 | 98.42 35 | 91.82 51 | 99.61 66 | 96.90 19 | 99.13 83 | 99.50 43 |
|
ETH3D cwj APD-0.16 | | | 96.56 53 | 96.06 64 | 98.05 20 | 98.26 99 | 95.19 22 | 96.99 158 | 98.05 84 | 89.85 193 | 97.26 41 | 98.22 61 | 91.80 52 | 99.69 48 | 94.84 90 | 99.28 65 | 99.27 73 |
|
CS-MVS | | | 96.79 44 | 97.05 16 | 96.00 125 | 98.17 111 | 90.38 170 | 99.09 3 | 97.89 109 | 95.31 12 | 97.02 55 | 98.02 75 | 91.74 53 | 98.71 180 | 97.06 14 | 99.18 78 | 98.90 109 |
|
DPM-MVS | | | 95.69 76 | 94.92 89 | 98.01 22 | 98.08 115 | 95.71 9 | 95.27 275 | 97.62 142 | 90.43 182 | 95.55 110 | 97.07 137 | 91.72 54 | 99.50 101 | 89.62 192 | 98.94 95 | 98.82 118 |
|
Regformer-3 | | | 96.85 39 | 96.80 33 | 97.01 75 | 98.34 90 | 92.02 113 | 96.96 162 | 97.76 122 | 95.01 26 | 97.08 52 | 98.42 35 | 91.71 55 | 99.54 90 | 96.80 22 | 99.13 83 | 99.48 47 |
|
XVS | | | 97.18 17 | 96.96 22 | 97.81 33 | 99.38 15 | 94.03 54 | 98.59 11 | 98.20 46 | 94.85 30 | 96.59 69 | 98.29 54 | 91.70 56 | 99.80 31 | 95.66 63 | 99.40 51 | 99.62 16 |
|
X-MVStestdata | | | 91.71 204 | 89.67 264 | 97.81 33 | 99.38 15 | 94.03 54 | 98.59 11 | 98.20 46 | 94.85 30 | 96.59 69 | 32.69 373 | 91.70 56 | 99.80 31 | 95.66 63 | 99.40 51 | 99.62 16 |
|
ZNCC-MVS | | | 96.96 31 | 96.67 42 | 97.85 28 | 99.37 17 | 94.12 49 | 98.49 18 | 98.18 50 | 92.64 113 | 96.39 79 | 98.18 66 | 91.61 58 | 99.88 5 | 95.59 73 | 99.55 25 | 99.57 24 |
|
ACMMP_NAP | | | 97.20 16 | 96.86 26 | 98.23 11 | 99.09 38 | 95.16 24 | 97.60 99 | 98.19 48 | 92.82 106 | 97.93 25 | 98.74 13 | 91.60 59 | 99.86 9 | 96.26 38 | 99.52 29 | 99.67 11 |
|
region2R | | | 97.07 23 | 96.84 29 | 97.77 38 | 99.46 2 | 93.79 59 | 98.52 14 | 98.24 38 | 93.19 90 | 97.14 47 | 98.34 45 | 91.59 60 | 99.87 8 | 95.46 75 | 99.59 17 | 99.64 13 |
|
DELS-MVS | | | 96.61 51 | 96.38 57 | 97.30 60 | 97.79 130 | 93.19 77 | 95.96 245 | 98.18 50 | 95.23 14 | 95.87 96 | 97.65 104 | 91.45 61 | 99.70 47 | 95.87 55 | 99.44 48 | 99.00 99 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
SR-MVS | | | 97.01 29 | 96.86 26 | 97.47 54 | 99.09 38 | 93.27 76 | 97.98 56 | 98.07 74 | 93.75 66 | 97.45 33 | 98.48 29 | 91.43 62 | 99.59 72 | 96.22 41 | 99.27 67 | 99.54 34 |
|
test1172 | | | 96.93 34 | 96.86 26 | 97.15 70 | 99.10 36 | 92.34 99 | 97.96 61 | 98.04 85 | 93.79 65 | 97.35 39 | 98.53 24 | 91.40 63 | 99.56 85 | 96.30 37 | 99.30 62 | 99.55 31 |
|
SR-MVS-dyc-post | | | 96.88 37 | 96.80 33 | 97.11 73 | 99.02 46 | 92.34 99 | 97.98 56 | 98.03 88 | 93.52 77 | 97.43 36 | 98.51 26 | 91.40 63 | 99.56 85 | 96.05 50 | 99.26 69 | 99.43 55 |
|
GST-MVS | | | 96.85 39 | 96.52 50 | 97.82 32 | 99.36 20 | 94.14 48 | 98.29 29 | 98.13 58 | 92.72 110 | 96.70 60 | 98.06 72 | 91.35 65 | 99.86 9 | 94.83 91 | 99.28 65 | 99.47 50 |
|
ACMMPR | | | 97.07 23 | 96.84 29 | 97.79 35 | 99.44 6 | 93.88 56 | 98.52 14 | 98.31 24 | 93.21 87 | 97.15 46 | 98.33 48 | 91.35 65 | 99.86 9 | 95.63 68 | 99.59 17 | 99.62 16 |
|
DeepC-MVS_fast | | 93.89 2 | 96.93 34 | 96.64 43 | 97.78 36 | 98.64 74 | 94.30 38 | 97.41 115 | 98.04 85 | 94.81 35 | 96.59 69 | 98.37 40 | 91.24 67 | 99.64 65 | 95.16 79 | 99.52 29 | 99.42 58 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ETV-MVS | | | 96.02 70 | 95.89 68 | 96.40 99 | 97.16 154 | 92.44 97 | 97.47 112 | 97.77 121 | 94.55 45 | 96.48 74 | 94.51 263 | 91.23 68 | 98.92 159 | 95.65 66 | 98.19 116 | 97.82 179 |
|
ETH3 D test6400 | | | 96.16 67 | 95.52 73 | 98.07 19 | 98.90 55 | 95.06 26 | 97.03 150 | 98.21 44 | 88.16 245 | 96.64 65 | 97.70 98 | 91.18 69 | 99.67 53 | 92.44 138 | 99.47 42 | 99.48 47 |
|
PGM-MVS | | | 96.81 42 | 96.53 49 | 97.65 47 | 99.35 22 | 93.53 67 | 97.65 92 | 98.98 1 | 92.22 121 | 97.14 47 | 98.44 32 | 91.17 70 | 99.85 18 | 94.35 101 | 99.46 44 | 99.57 24 |
|
MP-MVS-pluss | | | 96.70 47 | 96.27 59 | 97.98 24 | 99.23 32 | 94.71 30 | 96.96 162 | 98.06 77 | 90.67 170 | 95.55 110 | 98.78 12 | 91.07 71 | 99.86 9 | 96.58 30 | 99.55 25 | 99.38 62 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
mPP-MVS | | | 96.86 38 | 96.60 45 | 97.64 49 | 99.40 12 | 93.44 69 | 98.50 17 | 98.09 67 | 93.27 86 | 95.95 95 | 98.33 48 | 91.04 72 | 99.88 5 | 95.20 78 | 99.57 24 | 99.60 19 |
|
HPM-MVS |  | | 96.69 48 | 96.45 55 | 97.40 56 | 99.36 20 | 93.11 79 | 98.87 5 | 98.06 77 | 91.17 158 | 96.40 78 | 97.99 78 | 90.99 73 | 99.58 75 | 95.61 70 | 99.61 16 | 99.49 45 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
APD-MVS_3200maxsize | | | 96.81 42 | 96.71 40 | 97.12 72 | 99.01 49 | 92.31 102 | 97.98 56 | 98.06 77 | 93.11 93 | 97.44 34 | 98.55 22 | 90.93 74 | 99.55 88 | 96.06 49 | 99.25 71 | 99.51 39 |
|
test12 | | | | | 97.65 47 | 98.46 81 | 94.26 41 | | 97.66 136 | | 95.52 113 | | 90.89 75 | 99.46 105 | | 99.25 71 | 99.22 76 |
|
zzz-MVS | | | 97.07 23 | 96.77 36 | 97.97 25 | 99.37 17 | 94.42 36 | 97.15 146 | 98.08 68 | 95.07 24 | 96.11 86 | 98.59 18 | 90.88 76 | 99.90 2 | 96.18 47 | 99.50 36 | 99.58 22 |
|
MTAPA | | | 97.08 22 | 96.78 35 | 97.97 25 | 99.37 17 | 94.42 36 | 97.24 133 | 98.08 68 | 95.07 24 | 96.11 86 | 98.59 18 | 90.88 76 | 99.90 2 | 96.18 47 | 99.50 36 | 99.58 22 |
|
EI-MVSNet-Vis-set | | | 96.51 54 | 96.47 52 | 96.63 83 | 98.24 100 | 91.20 140 | 96.89 169 | 97.73 126 | 94.74 40 | 96.49 73 | 98.49 28 | 90.88 76 | 99.58 75 | 96.44 35 | 98.32 113 | 99.13 83 |
|
RE-MVS-def | | | | 96.72 39 | | 99.02 46 | 92.34 99 | 97.98 56 | 98.03 88 | 93.52 77 | 97.43 36 | 98.51 26 | 90.71 79 | | 96.05 50 | 99.26 69 | 99.43 55 |
|
EIA-MVS | | | 95.53 82 | 95.47 75 | 95.71 140 | 97.06 162 | 89.63 186 | 97.82 72 | 97.87 114 | 93.57 71 | 93.92 140 | 95.04 240 | 90.61 80 | 98.95 157 | 94.62 98 | 98.68 102 | 98.54 133 |
|
MP-MVS |  | | 96.77 45 | 96.45 55 | 97.72 42 | 99.39 14 | 93.80 58 | 98.41 22 | 98.06 77 | 93.37 82 | 95.54 112 | 98.34 45 | 90.59 81 | 99.88 5 | 94.83 91 | 99.54 27 | 99.49 45 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
EI-MVSNet-UG-set | | | 96.34 62 | 96.30 58 | 96.47 94 | 98.20 105 | 90.93 151 | 96.86 170 | 97.72 129 | 94.67 42 | 96.16 85 | 98.46 30 | 90.43 82 | 99.58 75 | 96.23 40 | 97.96 123 | 98.90 109 |
|
原ACMM1 | | | | | 96.38 102 | 98.59 76 | 91.09 146 | | 97.89 109 | 87.41 267 | 95.22 117 | 97.68 100 | 90.25 83 | 99.54 90 | 87.95 223 | 99.12 86 | 98.49 140 |
|
1121 | | | 94.71 107 | 93.83 112 | 97.34 58 | 98.57 79 | 93.64 64 | 96.04 239 | 97.73 126 | 81.56 338 | 95.68 104 | 97.85 87 | 90.23 84 | 99.65 57 | 87.68 233 | 99.12 86 | 98.73 123 |
|
HPM-MVS_fast | | | 96.51 54 | 96.27 59 | 97.22 67 | 99.32 24 | 92.74 87 | 98.74 8 | 98.06 77 | 90.57 179 | 96.77 57 | 98.35 42 | 90.21 85 | 99.53 93 | 94.80 94 | 99.63 14 | 99.38 62 |
|
testdata | | | | | 95.46 158 | 98.18 109 | 88.90 217 | | 97.66 136 | 82.73 330 | 97.03 53 | 98.07 71 | 90.06 86 | 98.85 165 | 89.67 190 | 98.98 93 | 98.64 130 |
|
新几何1 | | | | | 97.32 59 | 98.60 75 | 93.59 65 | | 97.75 123 | 81.58 337 | 95.75 101 | 97.85 87 | 90.04 87 | 99.67 53 | 86.50 255 | 99.13 83 | 98.69 127 |
|
CS-MVS-test | | | 96.47 56 | 96.62 44 | 96.01 124 | 98.18 109 | 90.40 168 | 98.40 23 | 97.65 138 | 95.33 11 | 97.02 55 | 96.79 148 | 89.98 88 | 98.72 178 | 97.06 14 | 99.18 78 | 98.91 107 |
|
DP-MVS Recon | | | 95.68 77 | 95.12 87 | 97.37 57 | 99.19 33 | 94.19 44 | 97.03 150 | 98.08 68 | 88.35 238 | 95.09 119 | 97.65 104 | 89.97 89 | 99.48 103 | 92.08 148 | 98.59 105 | 98.44 148 |
|
MVS_111021_LR | | | 96.24 65 | 96.19 63 | 96.39 101 | 98.23 104 | 91.35 133 | 96.24 231 | 98.79 4 | 93.99 58 | 95.80 99 | 97.65 104 | 89.92 90 | 99.24 126 | 95.87 55 | 99.20 76 | 98.58 131 |
|
EPP-MVSNet | | | 95.22 90 | 95.04 88 | 95.76 133 | 97.49 147 | 89.56 190 | 98.67 9 | 97.00 214 | 90.69 169 | 94.24 133 | 97.62 109 | 89.79 91 | 98.81 168 | 93.39 124 | 96.49 161 | 98.92 106 |
|
DROMVSNet | | | 96.42 58 | 96.47 52 | 96.26 111 | 97.01 167 | 91.52 127 | 98.89 4 | 97.75 123 | 94.42 48 | 96.64 65 | 97.68 100 | 89.32 92 | 98.60 189 | 97.45 9 | 99.11 88 | 98.67 129 |
|
PAPR | | | 94.18 114 | 93.42 130 | 96.48 93 | 97.64 139 | 91.42 132 | 95.55 261 | 97.71 133 | 88.99 215 | 92.34 174 | 95.82 204 | 89.19 93 | 99.11 138 | 86.14 261 | 97.38 138 | 98.90 109 |
|
MG-MVS | | | 95.61 79 | 95.38 79 | 96.31 106 | 98.42 84 | 90.53 162 | 96.04 239 | 97.48 156 | 93.47 79 | 95.67 107 | 98.10 68 | 89.17 94 | 99.25 125 | 91.27 166 | 98.77 99 | 99.13 83 |
|
PAPM_NR | | | 95.01 94 | 94.59 97 | 96.26 111 | 98.89 58 | 90.68 159 | 97.24 133 | 97.73 126 | 91.80 135 | 92.93 165 | 96.62 166 | 89.13 95 | 99.14 136 | 89.21 204 | 97.78 127 | 98.97 100 |
|
ACMMP |  | | 96.27 64 | 95.93 66 | 97.28 62 | 99.24 30 | 92.62 92 | 98.25 34 | 98.81 3 | 92.99 96 | 94.56 127 | 98.39 39 | 88.96 96 | 99.85 18 | 94.57 100 | 97.63 130 | 99.36 64 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
UA-Net | | | 95.95 73 | 95.53 72 | 97.20 69 | 97.67 135 | 92.98 83 | 97.65 92 | 98.13 58 | 94.81 35 | 96.61 67 | 98.35 42 | 88.87 97 | 99.51 98 | 90.36 178 | 97.35 140 | 99.11 87 |
|
API-MVS | | | 94.84 103 | 94.49 102 | 95.90 129 | 97.90 124 | 92.00 114 | 97.80 74 | 97.48 156 | 89.19 210 | 94.81 122 | 96.71 152 | 88.84 98 | 99.17 132 | 88.91 210 | 98.76 100 | 96.53 215 |
|
test222 | | | | | | 98.24 100 | 92.21 105 | 95.33 270 | 97.60 143 | 79.22 350 | 95.25 115 | 97.84 90 | 88.80 99 | | | 99.15 81 | 98.72 124 |
|
Test By Simon | | | | | | | | | | | | | 88.73 100 | | | | |
|
pcd_1.5k_mvsjas | | | 7.39 347 | 9.85 350 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 88.65 101 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
PS-MVSNAJss | | | 93.74 133 | 93.51 124 | 94.44 200 | 93.91 308 | 89.28 207 | 97.75 78 | 97.56 150 | 92.50 115 | 89.94 229 | 96.54 169 | 88.65 101 | 98.18 223 | 93.83 115 | 90.90 245 | 95.86 235 |
|
PS-MVSNAJ | | | 95.37 84 | 95.33 81 | 95.49 154 | 97.35 148 | 90.66 160 | 95.31 272 | 97.48 156 | 93.85 62 | 96.51 72 | 95.70 215 | 88.65 101 | 99.65 57 | 94.80 94 | 98.27 114 | 96.17 224 |
|
xiu_mvs_v2_base | | | 95.32 86 | 95.29 82 | 95.40 159 | 97.22 150 | 90.50 163 | 95.44 266 | 97.44 171 | 93.70 69 | 96.46 76 | 96.18 185 | 88.59 104 | 99.53 93 | 94.79 96 | 97.81 126 | 96.17 224 |
|
PLC |  | 91.00 6 | 94.11 119 | 93.43 128 | 96.13 116 | 98.58 78 | 91.15 145 | 96.69 188 | 97.39 177 | 87.29 270 | 91.37 192 | 96.71 152 | 88.39 105 | 99.52 97 | 87.33 243 | 97.13 148 | 97.73 181 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
UniMVSNet_NR-MVSNet | | | 93.37 144 | 92.67 151 | 95.47 157 | 95.34 245 | 92.83 85 | 97.17 143 | 98.58 11 | 92.98 101 | 90.13 221 | 95.80 205 | 88.37 106 | 97.85 270 | 91.71 155 | 83.93 322 | 95.73 248 |
|
PVSNet_BlendedMVS | | | 94.06 121 | 93.92 110 | 94.47 199 | 98.27 96 | 89.46 197 | 96.73 182 | 98.36 17 | 90.17 185 | 94.36 130 | 95.24 234 | 88.02 107 | 99.58 75 | 93.44 121 | 90.72 247 | 94.36 317 |
|
PVSNet_Blended | | | 94.87 102 | 94.56 98 | 95.81 132 | 98.27 96 | 89.46 197 | 95.47 265 | 98.36 17 | 88.84 222 | 94.36 130 | 96.09 193 | 88.02 107 | 99.58 75 | 93.44 121 | 98.18 117 | 98.40 151 |
|
TAPA-MVS | | 90.10 7 | 92.30 185 | 91.22 202 | 95.56 147 | 98.33 92 | 89.60 188 | 96.79 178 | 97.65 138 | 81.83 335 | 91.52 189 | 97.23 129 | 87.94 109 | 98.91 161 | 71.31 357 | 98.37 112 | 98.17 161 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
abl_6 | | | 96.40 59 | 96.21 61 | 96.98 77 | 98.89 58 | 92.20 107 | 97.89 65 | 98.03 88 | 93.34 85 | 97.22 43 | 98.42 35 | 87.93 110 | 99.72 39 | 95.10 82 | 99.07 89 | 99.02 92 |
|
MVS_Test | | | 94.89 101 | 94.62 96 | 95.68 141 | 96.83 175 | 89.55 191 | 96.70 186 | 97.17 195 | 91.17 158 | 95.60 109 | 96.11 192 | 87.87 111 | 98.76 173 | 93.01 134 | 97.17 147 | 98.72 124 |
|
UniMVSNet (Re) | | | 93.31 146 | 92.55 156 | 95.61 145 | 95.39 239 | 93.34 74 | 97.39 119 | 98.71 6 | 93.14 92 | 90.10 225 | 94.83 249 | 87.71 112 | 98.03 247 | 91.67 159 | 83.99 321 | 95.46 257 |
|
FC-MVSNet-test | | | 93.94 126 | 93.57 119 | 95.04 169 | 95.48 236 | 91.45 131 | 98.12 47 | 98.71 6 | 93.37 82 | 90.23 215 | 96.70 154 | 87.66 113 | 97.85 270 | 91.49 161 | 90.39 252 | 95.83 239 |
|
canonicalmvs | | | 96.02 70 | 95.45 76 | 97.75 40 | 97.59 143 | 95.15 25 | 98.28 30 | 97.60 143 | 94.52 46 | 96.27 82 | 96.12 189 | 87.65 114 | 99.18 131 | 96.20 46 | 94.82 188 | 98.91 107 |
|
FIs | | | 94.09 120 | 93.70 115 | 95.27 161 | 95.70 228 | 92.03 112 | 98.10 48 | 98.68 8 | 93.36 84 | 90.39 212 | 96.70 154 | 87.63 115 | 97.94 261 | 92.25 141 | 90.50 251 | 95.84 238 |
|
CDS-MVSNet | | | 94.14 118 | 93.54 121 | 95.93 127 | 96.18 208 | 91.46 130 | 96.33 221 | 97.04 210 | 88.97 217 | 93.56 145 | 96.51 170 | 87.55 116 | 97.89 268 | 89.80 186 | 95.95 167 | 98.44 148 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
Effi-MVS+ | | | 94.93 99 | 94.45 104 | 96.36 104 | 96.61 182 | 91.47 129 | 96.41 210 | 97.41 176 | 91.02 163 | 94.50 128 | 95.92 198 | 87.53 117 | 98.78 170 | 93.89 112 | 96.81 151 | 98.84 117 |
|
casdiffmvs | | | 95.64 78 | 95.49 74 | 96.08 117 | 96.76 180 | 90.45 165 | 97.29 130 | 97.44 171 | 94.00 57 | 95.46 114 | 97.98 79 | 87.52 118 | 98.73 175 | 95.64 67 | 97.33 141 | 99.08 89 |
|
PVSNet_Blended_VisFu | | | 95.27 87 | 94.91 90 | 96.38 102 | 98.20 105 | 90.86 153 | 97.27 131 | 98.25 36 | 90.21 184 | 94.18 134 | 97.27 126 | 87.48 119 | 99.73 36 | 93.53 118 | 97.77 128 | 98.55 132 |
|
mvs_anonymous | | | 93.82 130 | 93.74 114 | 94.06 216 | 96.44 196 | 85.41 289 | 95.81 252 | 97.05 208 | 89.85 193 | 90.09 226 | 96.36 179 | 87.44 120 | 97.75 281 | 93.97 108 | 96.69 156 | 99.02 92 |
|
CANet | | | 96.39 60 | 96.02 65 | 97.50 53 | 97.62 140 | 93.38 71 | 97.02 153 | 97.96 104 | 95.42 7 | 94.86 121 | 97.81 91 | 87.38 121 | 99.82 29 | 96.88 20 | 99.20 76 | 99.29 68 |
|
baseline | | | 95.58 80 | 95.42 78 | 96.08 117 | 96.78 177 | 90.41 167 | 97.16 144 | 97.45 167 | 93.69 70 | 95.65 108 | 97.85 87 | 87.29 122 | 98.68 182 | 95.66 63 | 97.25 144 | 99.13 83 |
|
TAMVS | | | 94.01 124 | 93.46 126 | 95.64 142 | 96.16 210 | 90.45 165 | 96.71 185 | 96.89 225 | 89.27 208 | 93.46 150 | 96.92 144 | 87.29 122 | 97.94 261 | 88.70 214 | 95.74 172 | 98.53 134 |
|
nrg030 | | | 94.05 122 | 93.31 132 | 96.27 110 | 95.22 256 | 94.59 32 | 98.34 25 | 97.46 161 | 92.93 103 | 91.21 202 | 96.64 159 | 87.23 124 | 98.22 217 | 94.99 87 | 85.80 293 | 95.98 233 |
|
CPTT-MVS | | | 95.57 81 | 95.19 84 | 96.70 80 | 99.27 28 | 91.48 128 | 98.33 26 | 98.11 63 | 87.79 256 | 95.17 118 | 98.03 74 | 87.09 125 | 99.61 66 | 93.51 119 | 99.42 49 | 99.02 92 |
|
OMC-MVS | | | 95.09 93 | 94.70 95 | 96.25 113 | 98.46 81 | 91.28 134 | 96.43 208 | 97.57 147 | 92.04 130 | 94.77 123 | 97.96 80 | 87.01 126 | 99.09 142 | 91.31 165 | 96.77 152 | 98.36 155 |
|
DeepC-MVS | | 93.07 3 | 96.06 68 | 95.66 71 | 97.29 61 | 97.96 118 | 93.17 78 | 97.30 129 | 98.06 77 | 93.92 59 | 93.38 152 | 98.66 14 | 86.83 127 | 99.73 36 | 95.60 72 | 99.22 74 | 98.96 101 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
IterMVS-LS | | | 92.29 186 | 91.94 175 | 93.34 255 | 96.25 204 | 86.97 263 | 96.57 204 | 97.05 208 | 90.67 170 | 89.50 245 | 94.80 251 | 86.59 128 | 97.64 289 | 89.91 183 | 86.11 291 | 95.40 263 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EI-MVSNet | | | 93.03 158 | 92.88 142 | 93.48 248 | 95.77 225 | 86.98 262 | 96.44 206 | 97.12 199 | 90.66 172 | 91.30 196 | 97.64 107 | 86.56 129 | 98.05 243 | 89.91 183 | 90.55 249 | 95.41 260 |
|
miper_enhance_ethall | | | 91.54 215 | 91.01 207 | 93.15 262 | 95.35 244 | 87.07 261 | 93.97 308 | 96.90 223 | 86.79 279 | 89.17 255 | 93.43 312 | 86.55 130 | 97.64 289 | 89.97 182 | 86.93 282 | 94.74 307 |
|
1112_ss | | | 93.37 144 | 92.42 162 | 96.21 114 | 97.05 164 | 90.99 147 | 96.31 223 | 96.72 235 | 86.87 278 | 89.83 233 | 96.69 156 | 86.51 131 | 99.14 136 | 88.12 220 | 93.67 203 | 98.50 138 |
|
diffmvs | | | 95.25 88 | 95.13 86 | 95.63 143 | 96.43 197 | 89.34 202 | 95.99 244 | 97.35 183 | 92.83 105 | 96.31 80 | 97.37 123 | 86.44 132 | 98.67 183 | 96.26 38 | 97.19 146 | 98.87 114 |
|
WTY-MVS | | | 94.71 107 | 94.02 109 | 96.79 79 | 97.71 134 | 92.05 111 | 96.59 201 | 97.35 183 | 90.61 176 | 94.64 125 | 96.93 141 | 86.41 133 | 99.39 114 | 91.20 168 | 94.71 192 | 98.94 104 |
|
EPNet | | | 95.20 91 | 94.56 98 | 97.14 71 | 92.80 334 | 92.68 89 | 97.85 70 | 94.87 321 | 96.64 1 | 92.46 168 | 97.80 93 | 86.23 134 | 99.65 57 | 93.72 116 | 98.62 104 | 99.10 88 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
miper_ehance_all_eth | | | 91.59 209 | 91.13 205 | 92.97 268 | 95.55 233 | 86.57 272 | 94.47 290 | 96.88 226 | 87.77 257 | 88.88 260 | 94.01 290 | 86.22 135 | 97.54 298 | 89.49 194 | 86.93 282 | 94.79 303 |
|
Fast-Effi-MVS+ | | | 93.46 141 | 92.75 147 | 95.59 146 | 96.77 178 | 90.03 174 | 96.81 177 | 97.13 198 | 88.19 241 | 91.30 196 | 94.27 279 | 86.21 136 | 98.63 186 | 87.66 235 | 96.46 163 | 98.12 163 |
|
MVSFormer | | | 95.37 84 | 95.16 85 | 95.99 126 | 96.34 201 | 91.21 138 | 98.22 39 | 97.57 147 | 91.42 146 | 96.22 83 | 97.32 124 | 86.20 137 | 97.92 264 | 94.07 106 | 99.05 90 | 98.85 115 |
|
lupinMVS | | | 94.99 98 | 94.56 98 | 96.29 109 | 96.34 201 | 91.21 138 | 95.83 251 | 96.27 261 | 88.93 219 | 96.22 83 | 96.88 146 | 86.20 137 | 98.85 165 | 95.27 77 | 99.05 90 | 98.82 118 |
|
114514_t | | | 93.95 125 | 93.06 137 | 96.63 83 | 99.07 41 | 91.61 122 | 97.46 114 | 97.96 104 | 77.99 354 | 93.00 160 | 97.57 113 | 86.14 139 | 99.33 118 | 89.22 203 | 99.15 81 | 98.94 104 |
|
alignmvs | | | 95.87 75 | 95.23 83 | 97.78 36 | 97.56 146 | 95.19 22 | 97.86 67 | 97.17 195 | 94.39 50 | 96.47 75 | 96.40 177 | 85.89 140 | 99.20 128 | 96.21 45 | 95.11 184 | 98.95 103 |
|
WR-MVS_H | | | 92.00 197 | 91.35 193 | 93.95 225 | 95.09 263 | 89.47 195 | 98.04 53 | 98.68 8 | 91.46 144 | 88.34 272 | 94.68 257 | 85.86 141 | 97.56 296 | 85.77 269 | 84.24 318 | 94.82 298 |
|
Test_1112_low_res | | | 92.84 169 | 91.84 178 | 95.85 131 | 97.04 165 | 89.97 180 | 95.53 263 | 96.64 244 | 85.38 298 | 89.65 239 | 95.18 235 | 85.86 141 | 99.10 139 | 87.70 230 | 93.58 208 | 98.49 140 |
|
HY-MVS | | 89.66 9 | 93.87 128 | 92.95 140 | 96.63 83 | 97.10 158 | 92.49 96 | 95.64 259 | 96.64 244 | 89.05 213 | 93.00 160 | 95.79 208 | 85.77 143 | 99.45 107 | 89.16 207 | 94.35 194 | 97.96 168 |
|
c3_l | | | 91.38 222 | 90.89 209 | 92.88 271 | 95.58 231 | 86.30 275 | 94.68 285 | 96.84 231 | 88.17 243 | 88.83 263 | 94.23 282 | 85.65 144 | 97.47 305 | 89.36 197 | 84.63 311 | 94.89 293 |
|
IS-MVSNet | | | 94.90 100 | 94.52 101 | 96.05 120 | 97.67 135 | 90.56 161 | 98.44 20 | 96.22 264 | 93.21 87 | 93.99 137 | 97.74 96 | 85.55 145 | 98.45 202 | 89.98 181 | 97.86 124 | 99.14 82 |
|
MVS | | | 91.71 204 | 90.44 230 | 95.51 151 | 95.20 258 | 91.59 124 | 96.04 239 | 97.45 167 | 73.44 361 | 87.36 295 | 95.60 219 | 85.42 146 | 99.10 139 | 85.97 266 | 97.46 133 | 95.83 239 |
|
VNet | | | 95.89 74 | 95.45 76 | 97.21 68 | 98.07 116 | 92.94 84 | 97.50 107 | 98.15 55 | 93.87 61 | 97.52 30 | 97.61 110 | 85.29 147 | 99.53 93 | 95.81 60 | 95.27 180 | 99.16 79 |
|
CNLPA | | | 94.28 112 | 93.53 122 | 96.52 88 | 98.38 88 | 92.55 94 | 96.59 201 | 96.88 226 | 90.13 187 | 91.91 184 | 97.24 128 | 85.21 148 | 99.09 142 | 87.64 236 | 97.83 125 | 97.92 171 |
|
F-COLMAP | | | 93.58 138 | 92.98 139 | 95.37 160 | 98.40 85 | 88.98 215 | 97.18 142 | 97.29 188 | 87.75 259 | 90.49 209 | 97.10 136 | 85.21 148 | 99.50 101 | 86.70 252 | 96.72 155 | 97.63 185 |
|
LCM-MVSNet-Re | | | 92.50 175 | 92.52 159 | 92.44 281 | 96.82 176 | 81.89 330 | 96.92 166 | 93.71 340 | 92.41 117 | 84.30 326 | 94.60 261 | 85.08 150 | 97.03 322 | 91.51 160 | 97.36 139 | 98.40 151 |
|
NR-MVSNet | | | 92.34 182 | 91.27 199 | 95.53 150 | 94.95 269 | 93.05 80 | 97.39 119 | 98.07 74 | 92.65 112 | 84.46 324 | 95.71 213 | 85.00 151 | 97.77 280 | 89.71 188 | 83.52 328 | 95.78 242 |
|
PAPM | | | 91.52 216 | 90.30 236 | 95.20 163 | 95.30 251 | 89.83 183 | 93.38 324 | 96.85 230 | 86.26 286 | 88.59 268 | 95.80 205 | 84.88 152 | 98.15 226 | 75.67 343 | 95.93 168 | 97.63 185 |
|
MAR-MVS | | | 94.22 113 | 93.46 126 | 96.51 91 | 98.00 117 | 92.19 108 | 97.67 89 | 97.47 159 | 88.13 247 | 93.00 160 | 95.84 202 | 84.86 153 | 99.51 98 | 87.99 222 | 98.17 118 | 97.83 178 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
jason | | | 94.84 103 | 94.39 106 | 96.18 115 | 95.52 234 | 90.93 151 | 96.09 237 | 96.52 251 | 89.28 207 | 96.01 93 | 97.32 124 | 84.70 154 | 98.77 172 | 95.15 80 | 98.91 97 | 98.85 115 |
jason: jason. |
sss | | | 94.51 109 | 93.80 113 | 96.64 81 | 97.07 159 | 91.97 115 | 96.32 222 | 98.06 77 | 88.94 218 | 94.50 128 | 96.78 149 | 84.60 155 | 99.27 124 | 91.90 149 | 96.02 165 | 98.68 128 |
|
LS3D | | | 93.57 139 | 92.61 154 | 96.47 94 | 97.59 143 | 91.61 122 | 97.67 89 | 97.72 129 | 85.17 302 | 90.29 214 | 98.34 45 | 84.60 155 | 99.73 36 | 83.85 293 | 98.27 114 | 98.06 167 |
|
Vis-MVSNet (Re-imp) | | | 94.15 115 | 93.88 111 | 94.95 177 | 97.61 141 | 87.92 242 | 98.10 48 | 95.80 278 | 92.22 121 | 93.02 159 | 97.45 119 | 84.53 157 | 97.91 267 | 88.24 218 | 97.97 122 | 99.02 92 |
|
GeoE | | | 93.89 127 | 93.28 133 | 95.72 139 | 96.96 170 | 89.75 185 | 98.24 37 | 96.92 222 | 89.47 202 | 92.12 180 | 97.21 130 | 84.42 158 | 98.39 207 | 87.71 229 | 96.50 160 | 99.01 96 |
|
cdsmvs_eth3d_5k | | | 23.24 343 | 30.99 345 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 97.63 141 | 0.00 379 | 0.00 380 | 96.88 146 | 84.38 159 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
test_yl | | | 94.78 105 | 94.23 107 | 96.43 97 | 97.74 132 | 91.22 136 | 96.85 171 | 97.10 201 | 91.23 156 | 95.71 102 | 96.93 141 | 84.30 160 | 99.31 121 | 93.10 128 | 95.12 182 | 98.75 120 |
|
DCV-MVSNet | | | 94.78 105 | 94.23 107 | 96.43 97 | 97.74 132 | 91.22 136 | 96.85 171 | 97.10 201 | 91.23 156 | 95.71 102 | 96.93 141 | 84.30 160 | 99.31 121 | 93.10 128 | 95.12 182 | 98.75 120 |
|
CHOSEN 280x420 | | | 93.12 154 | 92.72 150 | 94.34 206 | 96.71 181 | 87.27 253 | 90.29 351 | 97.72 129 | 86.61 282 | 91.34 193 | 95.29 231 | 84.29 162 | 98.41 203 | 93.25 126 | 98.94 95 | 97.35 197 |
|
baseline1 | | | 92.82 170 | 91.90 176 | 95.55 149 | 97.20 152 | 90.77 157 | 97.19 141 | 94.58 326 | 92.20 123 | 92.36 172 | 96.34 180 | 84.16 163 | 98.21 218 | 89.20 205 | 83.90 325 | 97.68 184 |
|
eth_miper_zixun_eth | | | 91.02 241 | 90.59 225 | 92.34 285 | 95.33 248 | 84.35 305 | 94.10 305 | 96.90 223 | 88.56 233 | 88.84 262 | 94.33 274 | 84.08 164 | 97.60 294 | 88.77 213 | 84.37 317 | 95.06 282 |
|
PCF-MVS | | 89.48 11 | 91.56 212 | 89.95 252 | 96.36 104 | 96.60 183 | 92.52 95 | 92.51 338 | 97.26 189 | 79.41 349 | 88.90 258 | 96.56 168 | 84.04 165 | 99.55 88 | 77.01 339 | 97.30 142 | 97.01 201 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
1314 | | | 92.81 171 | 92.03 171 | 95.14 166 | 95.33 248 | 89.52 194 | 96.04 239 | 97.44 171 | 87.72 260 | 86.25 310 | 95.33 230 | 83.84 166 | 98.79 169 | 89.26 201 | 97.05 149 | 97.11 200 |
|
DP-MVS | | | 92.76 172 | 91.51 191 | 96.52 88 | 98.77 61 | 90.99 147 | 97.38 121 | 96.08 269 | 82.38 331 | 89.29 251 | 97.87 84 | 83.77 167 | 99.69 48 | 81.37 313 | 96.69 156 | 98.89 112 |
|
3Dnovator+ | | 91.43 4 | 95.40 83 | 94.48 103 | 98.16 15 | 96.90 171 | 95.34 16 | 98.48 19 | 97.87 114 | 94.65 44 | 88.53 270 | 98.02 75 | 83.69 168 | 99.71 42 | 93.18 127 | 98.96 94 | 99.44 53 |
|
h-mvs33 | | | 94.15 115 | 93.52 123 | 96.04 121 | 97.81 128 | 90.22 172 | 97.62 98 | 97.58 146 | 95.19 16 | 96.74 58 | 97.45 119 | 83.67 169 | 99.61 66 | 95.85 57 | 79.73 342 | 98.29 158 |
|
hse-mvs2 | | | 93.45 142 | 92.99 138 | 94.81 183 | 97.02 166 | 88.59 223 | 96.69 188 | 96.47 253 | 95.19 16 | 96.74 58 | 96.16 188 | 83.67 169 | 98.48 201 | 95.85 57 | 79.13 346 | 97.35 197 |
|
AdaColmap |  | | 94.34 111 | 93.68 117 | 96.31 106 | 98.59 76 | 91.68 121 | 96.59 201 | 97.81 120 | 89.87 190 | 92.15 178 | 97.06 138 | 83.62 171 | 99.54 90 | 89.34 198 | 98.07 120 | 97.70 183 |
|
DU-MVS | | | 92.90 165 | 92.04 170 | 95.49 154 | 94.95 269 | 92.83 85 | 97.16 144 | 98.24 38 | 93.02 95 | 90.13 221 | 95.71 213 | 83.47 172 | 97.85 270 | 91.71 155 | 83.93 322 | 95.78 242 |
|
Baseline_NR-MVSNet | | | 91.20 233 | 90.62 223 | 92.95 269 | 93.83 311 | 88.03 240 | 97.01 157 | 95.12 308 | 88.42 236 | 89.70 236 | 95.13 238 | 83.47 172 | 97.44 308 | 89.66 191 | 83.24 330 | 93.37 335 |
|
miper_lstm_enhance | | | 90.50 261 | 90.06 250 | 91.83 295 | 95.33 248 | 83.74 313 | 93.86 312 | 96.70 240 | 87.56 264 | 87.79 286 | 93.81 298 | 83.45 174 | 96.92 328 | 87.39 241 | 84.62 312 | 94.82 298 |
|
EPNet_dtu | | | 91.71 204 | 91.28 198 | 92.99 267 | 93.76 313 | 83.71 315 | 96.69 188 | 95.28 299 | 93.15 91 | 87.02 302 | 95.95 197 | 83.37 175 | 97.38 313 | 79.46 325 | 96.84 150 | 97.88 174 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
BH-untuned | | | 92.94 163 | 92.62 153 | 93.92 229 | 97.22 150 | 86.16 280 | 96.40 213 | 96.25 263 | 90.06 188 | 89.79 234 | 96.17 187 | 83.19 176 | 98.35 209 | 87.19 246 | 97.27 143 | 97.24 199 |
|
TranMVSNet+NR-MVSNet | | | 92.50 175 | 91.63 184 | 95.14 166 | 94.76 280 | 92.07 110 | 97.53 105 | 98.11 63 | 92.90 104 | 89.56 242 | 96.12 189 | 83.16 177 | 97.60 294 | 89.30 199 | 83.20 331 | 95.75 246 |
|
CHOSEN 1792x2688 | | | 94.15 115 | 93.51 124 | 96.06 119 | 98.27 96 | 89.38 200 | 95.18 279 | 98.48 15 | 85.60 295 | 93.76 143 | 97.11 135 | 83.15 178 | 99.61 66 | 91.33 164 | 98.72 101 | 99.19 77 |
|
PMMVS | | | 92.86 167 | 92.34 163 | 94.42 203 | 94.92 271 | 86.73 267 | 94.53 289 | 96.38 257 | 84.78 309 | 94.27 132 | 95.12 239 | 83.13 179 | 98.40 204 | 91.47 162 | 96.49 161 | 98.12 163 |
|
Effi-MVS+-dtu | | | 93.08 155 | 93.21 135 | 92.68 278 | 96.02 217 | 83.25 320 | 97.14 147 | 96.72 235 | 93.85 62 | 91.20 203 | 93.44 310 | 83.08 180 | 98.30 213 | 91.69 157 | 95.73 173 | 96.50 217 |
|
mvs-test1 | | | 93.63 136 | 93.69 116 | 93.46 250 | 96.02 217 | 84.61 303 | 97.24 133 | 96.72 235 | 93.85 62 | 92.30 175 | 95.76 210 | 83.08 180 | 98.89 163 | 91.69 157 | 96.54 159 | 96.87 208 |
|
v8 | | | 91.29 230 | 90.53 229 | 93.57 245 | 94.15 301 | 88.12 239 | 97.34 123 | 97.06 207 | 88.99 215 | 88.32 273 | 94.26 281 | 83.08 180 | 98.01 249 | 87.62 237 | 83.92 324 | 94.57 312 |
|
DIV-MVS_self_test | | | 90.97 244 | 90.33 233 | 92.88 271 | 95.36 243 | 86.19 279 | 94.46 292 | 96.63 247 | 87.82 253 | 88.18 279 | 94.23 282 | 82.99 183 | 97.53 300 | 87.72 227 | 85.57 295 | 94.93 289 |
|
cl____ | | | 90.96 245 | 90.32 234 | 92.89 270 | 95.37 242 | 86.21 278 | 94.46 292 | 96.64 244 | 87.82 253 | 88.15 280 | 94.18 285 | 82.98 184 | 97.54 298 | 87.70 230 | 85.59 294 | 94.92 291 |
|
BH-w/o | | | 92.14 195 | 91.75 180 | 93.31 256 | 96.99 169 | 85.73 284 | 95.67 256 | 95.69 282 | 88.73 229 | 89.26 253 | 94.82 250 | 82.97 185 | 98.07 240 | 85.26 276 | 96.32 164 | 96.13 228 |
|
v148 | | | 90.99 242 | 90.38 232 | 92.81 274 | 93.83 311 | 85.80 283 | 96.78 180 | 96.68 241 | 89.45 203 | 88.75 266 | 93.93 294 | 82.96 186 | 97.82 274 | 87.83 225 | 83.25 329 | 94.80 301 |
|
HyFIR lowres test | | | 93.66 135 | 92.92 141 | 95.87 130 | 98.24 100 | 89.88 182 | 94.58 287 | 98.49 13 | 85.06 304 | 93.78 142 | 95.78 209 | 82.86 187 | 98.67 183 | 91.77 153 | 95.71 174 | 99.07 91 |
|
test_djsdf | | | 93.07 156 | 92.76 145 | 94.00 220 | 93.49 321 | 88.70 221 | 98.22 39 | 97.57 147 | 91.42 146 | 90.08 227 | 95.55 223 | 82.85 188 | 97.92 264 | 94.07 106 | 91.58 232 | 95.40 263 |
|
PatchmatchNet |  | | 91.91 199 | 91.35 193 | 93.59 243 | 95.38 240 | 84.11 309 | 93.15 328 | 95.39 292 | 89.54 199 | 92.10 181 | 93.68 303 | 82.82 189 | 98.13 227 | 84.81 280 | 95.32 179 | 98.52 135 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
sam_mvs1 | | | | | | | | | | | | | 82.76 190 | | | | 98.45 145 |
|
xiu_mvs_v1_base_debu | | | 95.01 94 | 94.76 92 | 95.75 135 | 96.58 185 | 91.71 118 | 96.25 228 | 97.35 183 | 92.99 96 | 96.70 60 | 96.63 163 | 82.67 191 | 99.44 108 | 96.22 41 | 97.46 133 | 96.11 229 |
|
xiu_mvs_v1_base | | | 95.01 94 | 94.76 92 | 95.75 135 | 96.58 185 | 91.71 118 | 96.25 228 | 97.35 183 | 92.99 96 | 96.70 60 | 96.63 163 | 82.67 191 | 99.44 108 | 96.22 41 | 97.46 133 | 96.11 229 |
|
xiu_mvs_v1_base_debi | | | 95.01 94 | 94.76 92 | 95.75 135 | 96.58 185 | 91.71 118 | 96.25 228 | 97.35 183 | 92.99 96 | 96.70 60 | 96.63 163 | 82.67 191 | 99.44 108 | 96.22 41 | 97.46 133 | 96.11 229 |
|
patchmatchnet-post | | | | | | | | | | | | 90.45 343 | 82.65 194 | 98.10 232 | | | |
|
V42 | | | 91.58 211 | 90.87 210 | 93.73 235 | 94.05 305 | 88.50 227 | 97.32 126 | 96.97 215 | 88.80 227 | 89.71 235 | 94.33 274 | 82.54 195 | 98.05 243 | 89.01 208 | 85.07 305 | 94.64 311 |
|
WR-MVS | | | 92.34 182 | 91.53 188 | 94.77 188 | 95.13 261 | 90.83 154 | 96.40 213 | 97.98 102 | 91.88 134 | 89.29 251 | 95.54 224 | 82.50 196 | 97.80 275 | 89.79 187 | 85.27 301 | 95.69 249 |
|
tpmrst | | | 91.44 219 | 91.32 195 | 91.79 298 | 95.15 259 | 79.20 353 | 93.42 323 | 95.37 294 | 88.55 234 | 93.49 149 | 93.67 304 | 82.49 197 | 98.27 214 | 90.41 176 | 89.34 261 | 97.90 172 |
|
MDTV_nov1_ep13_2view | | | | | | | 70.35 367 | 93.10 330 | | 83.88 319 | 93.55 146 | | 82.47 198 | | 86.25 258 | | 98.38 153 |
|
XVG-OURS-SEG-HR | | | 93.86 129 | 93.55 120 | 94.81 183 | 97.06 162 | 88.53 226 | 95.28 273 | 97.45 167 | 91.68 138 | 94.08 136 | 97.68 100 | 82.41 199 | 98.90 162 | 93.84 114 | 92.47 217 | 96.98 202 |
|
QAPM | | | 93.45 142 | 92.27 166 | 96.98 77 | 96.77 178 | 92.62 92 | 98.39 24 | 98.12 60 | 84.50 312 | 88.27 276 | 97.77 94 | 82.39 200 | 99.81 30 | 85.40 274 | 98.81 98 | 98.51 137 |
|
Patchmatch-test | | | 89.42 279 | 87.99 286 | 93.70 238 | 95.27 252 | 85.11 295 | 88.98 358 | 94.37 331 | 81.11 339 | 87.10 300 | 93.69 301 | 82.28 201 | 97.50 303 | 74.37 347 | 94.76 189 | 98.48 142 |
|
Vis-MVSNet |  | | 95.23 89 | 94.81 91 | 96.51 91 | 97.18 153 | 91.58 125 | 98.26 33 | 98.12 60 | 94.38 51 | 94.90 120 | 98.15 67 | 82.28 201 | 98.92 159 | 91.45 163 | 98.58 106 | 99.01 96 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
3Dnovator | | 91.36 5 | 95.19 92 | 94.44 105 | 97.44 55 | 96.56 188 | 93.36 73 | 98.65 10 | 98.36 17 | 94.12 55 | 89.25 254 | 98.06 72 | 82.20 203 | 99.77 33 | 93.41 123 | 99.32 59 | 99.18 78 |
|
v10 | | | 91.04 240 | 90.23 241 | 93.49 247 | 94.12 302 | 88.16 238 | 97.32 126 | 97.08 204 | 88.26 240 | 88.29 275 | 94.22 284 | 82.17 204 | 97.97 254 | 86.45 256 | 84.12 319 | 94.33 318 |
|
v1144 | | | 91.37 224 | 90.60 224 | 93.68 240 | 93.89 309 | 88.23 234 | 96.84 173 | 97.03 212 | 88.37 237 | 89.69 237 | 94.39 270 | 82.04 205 | 97.98 251 | 87.80 226 | 85.37 298 | 94.84 295 |
|
MVSTER | | | 93.20 150 | 92.81 144 | 94.37 204 | 96.56 188 | 89.59 189 | 97.06 149 | 97.12 199 | 91.24 155 | 91.30 196 | 95.96 196 | 82.02 206 | 98.05 243 | 93.48 120 | 90.55 249 | 95.47 256 |
|
CP-MVSNet | | | 91.89 200 | 91.24 200 | 93.82 232 | 95.05 264 | 88.57 224 | 97.82 72 | 98.19 48 | 91.70 137 | 88.21 278 | 95.76 210 | 81.96 207 | 97.52 302 | 87.86 224 | 84.65 310 | 95.37 266 |
|
Patchmatch-RL test | | | 87.38 300 | 86.24 301 | 90.81 317 | 88.74 363 | 78.40 357 | 88.12 360 | 93.17 345 | 87.11 274 | 82.17 341 | 89.29 350 | 81.95 208 | 95.60 347 | 88.64 215 | 77.02 349 | 98.41 150 |
|
sam_mvs | | | | | | | | | | | | | 81.94 209 | | | | |
|
pmmvs4 | | | 90.93 246 | 89.85 256 | 94.17 212 | 93.34 325 | 90.79 156 | 94.60 286 | 96.02 270 | 84.62 310 | 87.45 291 | 95.15 236 | 81.88 210 | 97.45 307 | 87.70 230 | 87.87 273 | 94.27 322 |
|
test_post | | | | | | | | | | | | 17.58 376 | 81.76 211 | 98.08 237 | | | |
|
XVG-OURS | | | 93.72 134 | 93.35 131 | 94.80 186 | 97.07 159 | 88.61 222 | 94.79 283 | 97.46 161 | 91.97 133 | 93.99 137 | 97.86 86 | 81.74 212 | 98.88 164 | 92.64 137 | 92.67 215 | 96.92 206 |
|
v2v482 | | | 91.59 209 | 90.85 213 | 93.80 233 | 93.87 310 | 88.17 237 | 96.94 165 | 96.88 226 | 89.54 199 | 89.53 243 | 94.90 245 | 81.70 213 | 98.02 248 | 89.25 202 | 85.04 307 | 95.20 278 |
|
baseline2 | | | 91.63 207 | 90.86 211 | 93.94 227 | 94.33 297 | 86.32 274 | 95.92 247 | 91.64 357 | 89.37 205 | 86.94 303 | 94.69 256 | 81.62 214 | 98.69 181 | 88.64 215 | 94.57 193 | 96.81 210 |
|
v144192 | | | 91.06 239 | 90.28 237 | 93.39 252 | 93.66 316 | 87.23 256 | 96.83 174 | 97.07 205 | 87.43 266 | 89.69 237 | 94.28 278 | 81.48 215 | 98.00 250 | 87.18 247 | 84.92 309 | 94.93 289 |
|
MDTV_nov1_ep13 | | | | 90.76 218 | | 95.22 256 | 80.33 342 | 93.03 331 | 95.28 299 | 88.14 246 | 92.84 166 | 93.83 295 | 81.34 216 | 98.08 237 | 82.86 298 | 94.34 195 | |
|
HQP_MVS | | | 93.78 132 | 93.43 128 | 94.82 181 | 96.21 205 | 89.99 177 | 97.74 79 | 97.51 153 | 94.85 30 | 91.34 193 | 96.64 159 | 81.32 217 | 98.60 189 | 93.02 132 | 92.23 220 | 95.86 235 |
|
plane_prior6 | | | | | | 96.10 215 | 90.00 175 | | | | | | 81.32 217 | | | | |
|
v7n | | | 90.76 250 | 89.86 255 | 93.45 251 | 93.54 318 | 87.60 250 | 97.70 87 | 97.37 180 | 88.85 221 | 87.65 289 | 94.08 289 | 81.08 219 | 98.10 232 | 84.68 282 | 83.79 326 | 94.66 310 |
|
HQP2-MVS | | | | | | | | | | | | | 80.95 220 | | | | |
|
HQP-MVS | | | 93.19 151 | 92.74 148 | 94.54 198 | 95.86 220 | 89.33 203 | 96.65 192 | 97.39 177 | 93.55 72 | 90.14 217 | 95.87 200 | 80.95 220 | 98.50 197 | 92.13 145 | 92.10 225 | 95.78 242 |
|
CR-MVSNet | | | 90.82 249 | 89.77 260 | 93.95 225 | 94.45 293 | 87.19 257 | 90.23 352 | 95.68 284 | 86.89 277 | 92.40 169 | 92.36 327 | 80.91 222 | 97.05 321 | 81.09 315 | 93.95 201 | 97.60 190 |
|
Patchmtry | | | 88.64 290 | 87.25 293 | 92.78 275 | 94.09 303 | 86.64 268 | 89.82 355 | 95.68 284 | 80.81 343 | 87.63 290 | 92.36 327 | 80.91 222 | 97.03 322 | 78.86 328 | 85.12 304 | 94.67 309 |
|
v1192 | | | 91.07 238 | 90.23 241 | 93.58 244 | 93.70 314 | 87.82 246 | 96.73 182 | 97.07 205 | 87.77 257 | 89.58 240 | 94.32 276 | 80.90 224 | 97.97 254 | 86.52 254 | 85.48 296 | 94.95 285 |
|
cl22 | | | 91.21 232 | 90.56 228 | 93.14 263 | 96.09 216 | 86.80 265 | 94.41 294 | 96.58 250 | 87.80 255 | 88.58 269 | 93.99 292 | 80.85 225 | 97.62 292 | 89.87 185 | 86.93 282 | 94.99 284 |
|
anonymousdsp | | | 92.16 193 | 91.55 187 | 93.97 223 | 92.58 338 | 89.55 191 | 97.51 106 | 97.42 175 | 89.42 204 | 88.40 271 | 94.84 248 | 80.66 226 | 97.88 269 | 91.87 151 | 91.28 238 | 94.48 313 |
|
CLD-MVS | | | 92.98 160 | 92.53 158 | 94.32 207 | 96.12 214 | 89.20 209 | 95.28 273 | 97.47 159 | 92.66 111 | 89.90 230 | 95.62 218 | 80.58 227 | 98.40 204 | 92.73 136 | 92.40 218 | 95.38 265 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
test_post1 | | | | | | | | 92.81 334 | | | | 16.58 377 | 80.53 228 | 97.68 285 | 86.20 259 | | |
|
VPA-MVSNet | | | 93.24 148 | 92.48 161 | 95.51 151 | 95.70 228 | 92.39 98 | 97.86 67 | 98.66 10 | 92.30 119 | 92.09 182 | 95.37 229 | 80.49 229 | 98.40 204 | 93.95 109 | 85.86 292 | 95.75 246 |
|
tpmvs | | | 89.83 276 | 89.15 274 | 91.89 293 | 94.92 271 | 80.30 343 | 93.11 329 | 95.46 291 | 86.28 285 | 88.08 281 | 92.65 319 | 80.44 230 | 98.52 196 | 81.47 309 | 89.92 256 | 96.84 209 |
|
PatchMatch-RL | | | 92.90 165 | 92.02 172 | 95.56 147 | 98.19 107 | 90.80 155 | 95.27 275 | 97.18 193 | 87.96 249 | 91.86 186 | 95.68 216 | 80.44 230 | 98.99 155 | 84.01 289 | 97.54 132 | 96.89 207 |
|
PEN-MVS | | | 91.20 233 | 90.44 230 | 93.48 248 | 94.49 291 | 87.91 244 | 97.76 77 | 98.18 50 | 91.29 151 | 87.78 287 | 95.74 212 | 80.35 232 | 97.33 315 | 85.46 273 | 82.96 332 | 95.19 279 |
|
Fast-Effi-MVS+-dtu | | | 92.29 186 | 91.99 173 | 93.21 261 | 95.27 252 | 85.52 287 | 97.03 150 | 96.63 247 | 92.09 128 | 89.11 256 | 95.14 237 | 80.33 233 | 98.08 237 | 87.54 239 | 94.74 191 | 96.03 232 |
|
MSDG | | | 91.42 220 | 90.24 240 | 94.96 176 | 97.15 156 | 88.91 216 | 93.69 317 | 96.32 259 | 85.72 294 | 86.93 304 | 96.47 172 | 80.24 234 | 98.98 156 | 80.57 316 | 95.05 185 | 96.98 202 |
|
v1921920 | | | 90.85 248 | 90.03 251 | 93.29 257 | 93.55 317 | 86.96 264 | 96.74 181 | 97.04 210 | 87.36 268 | 89.52 244 | 94.34 273 | 80.23 235 | 97.97 254 | 86.27 257 | 85.21 302 | 94.94 287 |
|
RPMNet | | | 88.98 282 | 87.05 297 | 94.77 188 | 94.45 293 | 87.19 257 | 90.23 352 | 98.03 88 | 77.87 356 | 92.40 169 | 87.55 358 | 80.17 236 | 99.51 98 | 68.84 361 | 93.95 201 | 97.60 190 |
|
ET-MVSNet_ETH3D | | | 91.49 217 | 90.11 246 | 95.63 143 | 96.40 198 | 91.57 126 | 95.34 269 | 93.48 342 | 90.60 178 | 75.58 358 | 95.49 226 | 80.08 237 | 96.79 331 | 94.25 102 | 89.76 258 | 98.52 135 |
|
PatchT | | | 88.87 286 | 87.42 291 | 93.22 260 | 94.08 304 | 85.10 296 | 89.51 356 | 94.64 325 | 81.92 334 | 92.36 172 | 88.15 355 | 80.05 238 | 97.01 325 | 72.43 353 | 93.65 204 | 97.54 193 |
|
our_test_3 | | | 88.78 288 | 87.98 287 | 91.20 312 | 92.45 341 | 82.53 324 | 93.61 321 | 95.69 282 | 85.77 293 | 84.88 321 | 93.71 300 | 79.99 239 | 96.78 332 | 79.47 324 | 86.24 288 | 94.28 321 |
|
DTE-MVSNet | | | 90.56 258 | 89.75 262 | 93.01 266 | 93.95 306 | 87.25 254 | 97.64 96 | 97.65 138 | 90.74 167 | 87.12 298 | 95.68 216 | 79.97 240 | 97.00 326 | 83.33 294 | 81.66 337 | 94.78 305 |
|
D2MVS | | | 91.30 229 | 90.95 208 | 92.35 284 | 94.71 283 | 85.52 287 | 96.18 234 | 98.21 44 | 88.89 220 | 86.60 307 | 93.82 297 | 79.92 241 | 97.95 260 | 89.29 200 | 90.95 244 | 93.56 331 |
|
TransMVSNet (Re) | | | 88.94 283 | 87.56 290 | 93.08 265 | 94.35 296 | 88.45 229 | 97.73 81 | 95.23 303 | 87.47 265 | 84.26 327 | 95.29 231 | 79.86 242 | 97.33 315 | 79.44 326 | 74.44 355 | 93.45 334 |
|
ACMM | | 89.79 8 | 92.96 161 | 92.50 160 | 94.35 205 | 96.30 203 | 88.71 220 | 97.58 100 | 97.36 182 | 91.40 149 | 90.53 208 | 96.65 158 | 79.77 243 | 98.75 174 | 91.24 167 | 91.64 230 | 95.59 252 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
XXY-MVS | | | 92.16 193 | 91.23 201 | 94.95 177 | 94.75 281 | 90.94 150 | 97.47 112 | 97.43 174 | 89.14 211 | 88.90 258 | 96.43 174 | 79.71 244 | 98.24 215 | 89.56 193 | 87.68 275 | 95.67 251 |
|
PS-CasMVS | | | 91.55 213 | 90.84 214 | 93.69 239 | 94.96 268 | 88.28 231 | 97.84 71 | 98.24 38 | 91.46 144 | 88.04 282 | 95.80 205 | 79.67 245 | 97.48 304 | 87.02 249 | 84.54 315 | 95.31 269 |
|
RRT_MVS | | | 93.21 149 | 92.32 165 | 95.91 128 | 94.92 271 | 94.15 47 | 96.92 166 | 96.86 229 | 91.42 146 | 91.28 199 | 96.43 174 | 79.66 246 | 98.10 232 | 93.29 125 | 90.06 254 | 95.46 257 |
|
ab-mvs | | | 93.57 139 | 92.55 156 | 96.64 81 | 97.28 149 | 91.96 116 | 95.40 267 | 97.45 167 | 89.81 195 | 93.22 158 | 96.28 182 | 79.62 247 | 99.46 105 | 90.74 173 | 93.11 209 | 98.50 138 |
|
v1240 | | | 90.70 255 | 89.85 256 | 93.23 259 | 93.51 320 | 86.80 265 | 96.61 198 | 97.02 213 | 87.16 273 | 89.58 240 | 94.31 277 | 79.55 248 | 97.98 251 | 85.52 272 | 85.44 297 | 94.90 292 |
|
CostFormer | | | 91.18 237 | 90.70 221 | 92.62 279 | 94.84 277 | 81.76 331 | 94.09 306 | 94.43 328 | 84.15 315 | 92.72 167 | 93.77 299 | 79.43 249 | 98.20 220 | 90.70 174 | 92.18 223 | 97.90 172 |
|
CANet_DTU | | | 94.37 110 | 93.65 118 | 96.55 87 | 96.46 195 | 92.13 109 | 96.21 232 | 96.67 243 | 94.38 51 | 93.53 148 | 97.03 139 | 79.34 250 | 99.71 42 | 90.76 172 | 98.45 111 | 97.82 179 |
|
OPM-MVS | | | 93.28 147 | 92.76 145 | 94.82 181 | 94.63 287 | 90.77 157 | 96.65 192 | 97.18 193 | 93.72 67 | 91.68 187 | 97.26 127 | 79.33 251 | 98.63 186 | 92.13 145 | 92.28 219 | 95.07 281 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
JIA-IIPM | | | 88.26 294 | 87.04 298 | 91.91 292 | 93.52 319 | 81.42 333 | 89.38 357 | 94.38 330 | 80.84 342 | 90.93 205 | 80.74 363 | 79.22 252 | 97.92 264 | 82.76 300 | 91.62 231 | 96.38 220 |
|
CVMVSNet | | | 91.23 231 | 91.75 180 | 89.67 331 | 95.77 225 | 74.69 362 | 96.44 206 | 94.88 318 | 85.81 292 | 92.18 177 | 97.64 107 | 79.07 253 | 95.58 348 | 88.06 221 | 95.86 170 | 98.74 122 |
|
LPG-MVS_test | | | 92.94 163 | 92.56 155 | 94.10 214 | 96.16 210 | 88.26 232 | 97.65 92 | 97.46 161 | 91.29 151 | 90.12 223 | 97.16 132 | 79.05 254 | 98.73 175 | 92.25 141 | 91.89 228 | 95.31 269 |
|
LGP-MVS_train | | | | | 94.10 214 | 96.16 210 | 88.26 232 | | 97.46 161 | 91.29 151 | 90.12 223 | 97.16 132 | 79.05 254 | 98.73 175 | 92.25 141 | 91.89 228 | 95.31 269 |
|
test-LLR | | | 91.42 220 | 91.19 203 | 92.12 288 | 94.59 288 | 80.66 337 | 94.29 300 | 92.98 346 | 91.11 160 | 90.76 206 | 92.37 324 | 79.02 256 | 98.07 240 | 88.81 211 | 96.74 153 | 97.63 185 |
|
test0.0.03 1 | | | 89.37 280 | 88.70 278 | 91.41 308 | 92.47 340 | 85.63 285 | 95.22 278 | 92.70 349 | 91.11 160 | 86.91 305 | 93.65 305 | 79.02 256 | 93.19 363 | 78.00 332 | 89.18 262 | 95.41 260 |
|
ADS-MVSNet2 | | | 89.45 278 | 88.59 280 | 92.03 290 | 95.86 220 | 82.26 328 | 90.93 347 | 94.32 333 | 83.23 327 | 91.28 199 | 91.81 334 | 79.01 258 | 95.99 339 | 79.52 322 | 91.39 236 | 97.84 176 |
|
ADS-MVSNet | | | 89.89 273 | 88.68 279 | 93.53 246 | 95.86 220 | 84.89 300 | 90.93 347 | 95.07 310 | 83.23 327 | 91.28 199 | 91.81 334 | 79.01 258 | 97.85 270 | 79.52 322 | 91.39 236 | 97.84 176 |
|
ppachtmachnet_test | | | 88.35 293 | 87.29 292 | 91.53 304 | 92.45 341 | 83.57 318 | 93.75 315 | 95.97 271 | 84.28 313 | 85.32 319 | 94.18 285 | 79.00 260 | 96.93 327 | 75.71 342 | 84.99 308 | 94.10 324 |
|
OpenMVS |  | 89.19 12 | 92.86 167 | 91.68 183 | 96.40 99 | 95.34 245 | 92.73 88 | 98.27 31 | 98.12 60 | 84.86 307 | 85.78 313 | 97.75 95 | 78.89 261 | 99.74 35 | 87.50 240 | 98.65 103 | 96.73 212 |
|
LTVRE_ROB | | 88.41 13 | 90.99 242 | 89.92 253 | 94.19 211 | 96.18 208 | 89.55 191 | 96.31 223 | 97.09 203 | 87.88 252 | 85.67 314 | 95.91 199 | 78.79 262 | 98.57 193 | 81.50 308 | 89.98 255 | 94.44 315 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
AUN-MVS | | | 91.76 203 | 90.75 219 | 94.81 183 | 97.00 168 | 88.57 224 | 96.65 192 | 96.49 252 | 89.63 198 | 92.15 178 | 96.12 189 | 78.66 263 | 98.50 197 | 90.83 171 | 79.18 345 | 97.36 196 |
|
pm-mvs1 | | | 90.72 254 | 89.65 266 | 93.96 224 | 94.29 300 | 89.63 186 | 97.79 75 | 96.82 232 | 89.07 212 | 86.12 312 | 95.48 227 | 78.61 264 | 97.78 278 | 86.97 250 | 81.67 336 | 94.46 314 |
|
PVSNet | | 86.66 18 | 92.24 189 | 91.74 182 | 93.73 235 | 97.77 131 | 83.69 317 | 92.88 332 | 96.72 235 | 87.91 251 | 93.00 160 | 94.86 247 | 78.51 265 | 99.05 150 | 86.53 253 | 97.45 137 | 98.47 143 |
|
ACMP | | 89.59 10 | 92.62 174 | 92.14 168 | 94.05 217 | 96.40 198 | 88.20 235 | 97.36 122 | 97.25 191 | 91.52 141 | 88.30 274 | 96.64 159 | 78.46 266 | 98.72 178 | 91.86 152 | 91.48 234 | 95.23 277 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
bset_n11_16_dypcd | | | 91.55 213 | 90.59 225 | 94.44 200 | 91.51 347 | 90.25 171 | 92.70 335 | 93.42 343 | 92.27 120 | 90.22 216 | 94.74 254 | 78.42 267 | 97.80 275 | 94.19 104 | 87.86 274 | 95.29 276 |
|
BH-RMVSNet | | | 92.72 173 | 91.97 174 | 94.97 175 | 97.16 154 | 87.99 241 | 96.15 235 | 95.60 286 | 90.62 175 | 91.87 185 | 97.15 134 | 78.41 268 | 98.57 193 | 83.16 295 | 97.60 131 | 98.36 155 |
|
thres200 | | | 92.23 190 | 91.39 192 | 94.75 190 | 97.61 141 | 89.03 214 | 96.60 200 | 95.09 309 | 92.08 129 | 93.28 155 | 94.00 291 | 78.39 269 | 99.04 153 | 81.26 314 | 94.18 196 | 96.19 223 |
|
MDA-MVSNet_test_wron | | | 85.87 314 | 84.23 318 | 90.80 319 | 92.38 343 | 82.57 323 | 93.17 326 | 95.15 306 | 82.15 332 | 67.65 362 | 92.33 330 | 78.20 270 | 95.51 349 | 77.33 334 | 79.74 341 | 94.31 320 |
|
tfpn200view9 | | | 92.38 181 | 91.52 189 | 94.95 177 | 97.85 126 | 89.29 205 | 97.41 115 | 94.88 318 | 92.19 125 | 93.27 156 | 94.46 268 | 78.17 271 | 99.08 144 | 81.40 310 | 94.08 197 | 96.48 218 |
|
thres400 | | | 92.42 179 | 91.52 189 | 95.12 168 | 97.85 126 | 89.29 205 | 97.41 115 | 94.88 318 | 92.19 125 | 93.27 156 | 94.46 268 | 78.17 271 | 99.08 144 | 81.40 310 | 94.08 197 | 96.98 202 |
|
YYNet1 | | | 85.87 314 | 84.23 318 | 90.78 320 | 92.38 343 | 82.46 326 | 93.17 326 | 95.14 307 | 82.12 333 | 67.69 361 | 92.36 327 | 78.16 273 | 95.50 350 | 77.31 335 | 79.73 342 | 94.39 316 |
|
CL-MVSNet_self_test | | | 86.31 309 | 85.15 311 | 89.80 330 | 88.83 362 | 81.74 332 | 93.93 311 | 96.22 264 | 86.67 280 | 85.03 320 | 90.80 341 | 78.09 274 | 94.50 354 | 74.92 344 | 71.86 359 | 93.15 336 |
|
thres100view900 | | | 92.43 178 | 91.58 186 | 94.98 174 | 97.92 122 | 89.37 201 | 97.71 86 | 94.66 323 | 92.20 123 | 93.31 154 | 94.90 245 | 78.06 275 | 99.08 144 | 81.40 310 | 94.08 197 | 96.48 218 |
|
thres600view7 | | | 92.49 177 | 91.60 185 | 95.18 164 | 97.91 123 | 89.47 195 | 97.65 92 | 94.66 323 | 92.18 127 | 93.33 153 | 94.91 244 | 78.06 275 | 99.10 139 | 81.61 307 | 94.06 200 | 96.98 202 |
|
tpm cat1 | | | 88.36 292 | 87.21 295 | 91.81 297 | 95.13 261 | 80.55 340 | 92.58 337 | 95.70 281 | 74.97 358 | 87.45 291 | 91.96 332 | 78.01 277 | 98.17 225 | 80.39 318 | 88.74 267 | 96.72 213 |
|
MVP-Stereo | | | 90.74 253 | 90.08 247 | 92.71 276 | 93.19 328 | 88.20 235 | 95.86 249 | 96.27 261 | 86.07 289 | 84.86 322 | 94.76 252 | 77.84 278 | 97.75 281 | 83.88 292 | 98.01 121 | 92.17 351 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
EPMVS | | | 90.70 255 | 89.81 258 | 93.37 254 | 94.73 282 | 84.21 307 | 93.67 318 | 88.02 367 | 89.50 201 | 92.38 171 | 93.49 308 | 77.82 279 | 97.78 278 | 86.03 265 | 92.68 214 | 98.11 166 |
|
tfpnnormal | | | 89.70 277 | 88.40 282 | 93.60 242 | 95.15 259 | 90.10 173 | 97.56 102 | 98.16 54 | 87.28 271 | 86.16 311 | 94.63 260 | 77.57 280 | 98.05 243 | 74.48 345 | 84.59 313 | 92.65 343 |
|
tpm | | | 90.25 265 | 89.74 263 | 91.76 301 | 93.92 307 | 79.73 349 | 93.98 307 | 93.54 341 | 88.28 239 | 91.99 183 | 93.25 313 | 77.51 281 | 97.44 308 | 87.30 244 | 87.94 272 | 98.12 163 |
|
thisisatest0515 | | | 92.29 186 | 91.30 197 | 95.25 162 | 96.60 183 | 88.90 217 | 94.36 296 | 92.32 351 | 87.92 250 | 93.43 151 | 94.57 262 | 77.28 282 | 99.00 154 | 89.42 196 | 95.86 170 | 97.86 175 |
|
FMVSNet3 | | | 91.78 202 | 90.69 222 | 95.03 170 | 96.53 190 | 92.27 104 | 97.02 153 | 96.93 218 | 89.79 196 | 89.35 248 | 94.65 259 | 77.01 283 | 97.47 305 | 86.12 262 | 88.82 264 | 95.35 267 |
|
test_part1 | | | 92.21 192 | 91.10 206 | 95.51 151 | 97.80 129 | 92.66 90 | 98.02 54 | 97.68 134 | 89.79 196 | 88.80 264 | 96.02 194 | 76.85 284 | 98.18 223 | 90.86 170 | 84.11 320 | 95.69 249 |
|
TR-MVS | | | 91.48 218 | 90.59 225 | 94.16 213 | 96.40 198 | 87.33 251 | 95.67 256 | 95.34 298 | 87.68 261 | 91.46 190 | 95.52 225 | 76.77 285 | 98.35 209 | 82.85 299 | 93.61 206 | 96.79 211 |
|
tttt0517 | | | 92.96 161 | 92.33 164 | 94.87 180 | 97.11 157 | 87.16 259 | 97.97 60 | 92.09 353 | 90.63 174 | 93.88 141 | 97.01 140 | 76.50 286 | 99.06 149 | 90.29 180 | 95.45 177 | 98.38 153 |
|
RPSCF | | | 90.75 252 | 90.86 211 | 90.42 324 | 96.84 173 | 76.29 360 | 95.61 260 | 96.34 258 | 83.89 318 | 91.38 191 | 97.87 84 | 76.45 287 | 98.78 170 | 87.16 248 | 92.23 220 | 96.20 222 |
|
tpm2 | | | 89.96 271 | 89.21 272 | 92.23 287 | 94.91 274 | 81.25 334 | 93.78 314 | 94.42 329 | 80.62 344 | 91.56 188 | 93.44 310 | 76.44 288 | 97.94 261 | 85.60 271 | 92.08 227 | 97.49 194 |
|
thisisatest0530 | | | 93.03 158 | 92.21 167 | 95.49 154 | 97.07 159 | 89.11 213 | 97.49 111 | 92.19 352 | 90.16 186 | 94.09 135 | 96.41 176 | 76.43 289 | 99.05 150 | 90.38 177 | 95.68 175 | 98.31 157 |
|
EU-MVSNet | | | 88.72 289 | 88.90 276 | 88.20 336 | 93.15 329 | 74.21 363 | 96.63 197 | 94.22 335 | 85.18 301 | 87.32 296 | 95.97 195 | 76.16 290 | 94.98 352 | 85.27 275 | 86.17 289 | 95.41 260 |
|
dp | | | 88.90 285 | 88.26 285 | 90.81 317 | 94.58 290 | 76.62 359 | 92.85 333 | 94.93 316 | 85.12 303 | 90.07 228 | 93.07 314 | 75.81 291 | 98.12 230 | 80.53 317 | 87.42 279 | 97.71 182 |
|
IterMVS-SCA-FT | | | 90.31 263 | 89.81 258 | 91.82 296 | 95.52 234 | 84.20 308 | 94.30 299 | 96.15 267 | 90.61 176 | 87.39 294 | 94.27 279 | 75.80 292 | 96.44 334 | 87.34 242 | 86.88 286 | 94.82 298 |
|
SCA | | | 91.84 201 | 91.18 204 | 93.83 231 | 95.59 230 | 84.95 299 | 94.72 284 | 95.58 288 | 90.82 164 | 92.25 176 | 93.69 301 | 75.80 292 | 98.10 232 | 86.20 259 | 95.98 166 | 98.45 145 |
|
IterMVS | | | 90.15 269 | 89.67 264 | 91.61 303 | 95.48 236 | 83.72 314 | 94.33 298 | 96.12 268 | 89.99 189 | 87.31 297 | 94.15 287 | 75.78 294 | 96.27 337 | 86.97 250 | 86.89 285 | 94.83 296 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
jajsoiax | | | 92.42 179 | 91.89 177 | 94.03 219 | 93.33 326 | 88.50 227 | 97.73 81 | 97.53 151 | 92.00 132 | 88.85 261 | 96.50 171 | 75.62 295 | 98.11 231 | 93.88 113 | 91.56 233 | 95.48 254 |
|
cascas | | | 91.20 233 | 90.08 247 | 94.58 196 | 94.97 267 | 89.16 212 | 93.65 319 | 97.59 145 | 79.90 347 | 89.40 246 | 92.92 316 | 75.36 296 | 98.36 208 | 92.14 144 | 94.75 190 | 96.23 221 |
|
VPNet | | | 92.23 190 | 91.31 196 | 94.99 172 | 95.56 232 | 90.96 149 | 97.22 139 | 97.86 117 | 92.96 102 | 90.96 204 | 96.62 166 | 75.06 297 | 98.20 220 | 91.90 149 | 83.65 327 | 95.80 241 |
|
N_pmnet | | | 78.73 329 | 78.71 331 | 78.79 347 | 92.80 334 | 46.50 378 | 94.14 304 | 43.71 381 | 78.61 352 | 80.83 344 | 91.66 337 | 74.94 298 | 96.36 335 | 67.24 362 | 84.45 316 | 93.50 332 |
|
mvs_tets | | | 92.31 184 | 91.76 179 | 93.94 227 | 93.41 323 | 88.29 230 | 97.63 97 | 97.53 151 | 92.04 130 | 88.76 265 | 96.45 173 | 74.62 299 | 98.09 236 | 93.91 111 | 91.48 234 | 95.45 259 |
|
DSMNet-mixed | | | 86.34 308 | 86.12 304 | 87.00 341 | 89.88 357 | 70.43 366 | 94.93 282 | 90.08 363 | 77.97 355 | 85.42 318 | 92.78 318 | 74.44 300 | 93.96 358 | 74.43 346 | 95.14 181 | 96.62 214 |
|
pmmvs5 | | | 89.86 275 | 88.87 277 | 92.82 273 | 92.86 332 | 86.23 277 | 96.26 227 | 95.39 292 | 84.24 314 | 87.12 298 | 94.51 263 | 74.27 301 | 97.36 314 | 87.61 238 | 87.57 276 | 94.86 294 |
|
OurMVSNet-221017-0 | | | 90.51 260 | 90.19 245 | 91.44 307 | 93.41 323 | 81.25 334 | 96.98 160 | 96.28 260 | 91.68 138 | 86.55 308 | 96.30 181 | 74.20 302 | 97.98 251 | 88.96 209 | 87.40 280 | 95.09 280 |
|
GBi-Net | | | 91.35 225 | 90.27 238 | 94.59 192 | 96.51 191 | 91.18 142 | 97.50 107 | 96.93 218 | 88.82 224 | 89.35 248 | 94.51 263 | 73.87 303 | 97.29 317 | 86.12 262 | 88.82 264 | 95.31 269 |
|
test1 | | | 91.35 225 | 90.27 238 | 94.59 192 | 96.51 191 | 91.18 142 | 97.50 107 | 96.93 218 | 88.82 224 | 89.35 248 | 94.51 263 | 73.87 303 | 97.29 317 | 86.12 262 | 88.82 264 | 95.31 269 |
|
FMVSNet2 | | | 91.31 228 | 90.08 247 | 94.99 172 | 96.51 191 | 92.21 105 | 97.41 115 | 96.95 216 | 88.82 224 | 88.62 267 | 94.75 253 | 73.87 303 | 97.42 310 | 85.20 277 | 88.55 269 | 95.35 267 |
|
COLMAP_ROB |  | 87.81 15 | 90.40 262 | 89.28 271 | 93.79 234 | 97.95 119 | 87.13 260 | 96.92 166 | 95.89 275 | 82.83 329 | 86.88 306 | 97.18 131 | 73.77 306 | 99.29 123 | 78.44 330 | 93.62 205 | 94.95 285 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
DWT-MVSNet_test | | | 90.76 250 | 89.89 254 | 93.38 253 | 95.04 265 | 83.70 316 | 95.85 250 | 94.30 334 | 88.19 241 | 90.46 210 | 92.80 317 | 73.61 307 | 98.50 197 | 88.16 219 | 90.58 248 | 97.95 170 |
|
Anonymous20231206 | | | 87.09 302 | 86.14 303 | 89.93 329 | 91.22 349 | 80.35 341 | 96.11 236 | 95.35 295 | 83.57 324 | 84.16 328 | 93.02 315 | 73.54 308 | 95.61 346 | 72.16 354 | 86.14 290 | 93.84 329 |
|
UGNet | | | 94.04 123 | 93.28 133 | 96.31 106 | 96.85 172 | 91.19 141 | 97.88 66 | 97.68 134 | 94.40 49 | 93.00 160 | 96.18 185 | 73.39 309 | 99.61 66 | 91.72 154 | 98.46 110 | 98.13 162 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
test1111 | | | 93.19 151 | 92.82 143 | 94.30 209 | 97.58 145 | 84.56 304 | 98.21 41 | 89.02 365 | 93.53 76 | 94.58 126 | 98.21 62 | 72.69 310 | 99.05 150 | 93.06 130 | 98.48 109 | 99.28 71 |
|
ECVR-MVS |  | | 93.19 151 | 92.73 149 | 94.57 197 | 97.66 137 | 85.41 289 | 98.21 41 | 88.23 366 | 93.43 80 | 94.70 124 | 98.21 62 | 72.57 311 | 99.07 147 | 93.05 131 | 98.49 107 | 99.25 74 |
|
Anonymous20231211 | | | 90.63 257 | 89.42 268 | 94.27 210 | 98.24 100 | 89.19 211 | 98.05 52 | 97.89 109 | 79.95 346 | 88.25 277 | 94.96 241 | 72.56 312 | 98.13 227 | 89.70 189 | 85.14 303 | 95.49 253 |
|
ACMH | | 87.59 16 | 90.53 259 | 89.42 268 | 93.87 230 | 96.21 205 | 87.92 242 | 97.24 133 | 96.94 217 | 88.45 235 | 83.91 333 | 96.27 183 | 71.92 313 | 98.62 188 | 84.43 286 | 89.43 260 | 95.05 283 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
GA-MVS | | | 91.38 222 | 90.31 235 | 94.59 192 | 94.65 285 | 87.62 249 | 94.34 297 | 96.19 266 | 90.73 168 | 90.35 213 | 93.83 295 | 71.84 314 | 97.96 258 | 87.22 245 | 93.61 206 | 98.21 160 |
|
SixPastTwentyTwo | | | 89.15 281 | 88.54 281 | 90.98 314 | 93.49 321 | 80.28 344 | 96.70 186 | 94.70 322 | 90.78 165 | 84.15 329 | 95.57 220 | 71.78 315 | 97.71 284 | 84.63 283 | 85.07 305 | 94.94 287 |
|
gg-mvs-nofinetune | | | 87.82 297 | 85.61 306 | 94.44 200 | 94.46 292 | 89.27 208 | 91.21 346 | 84.61 372 | 80.88 341 | 89.89 232 | 74.98 365 | 71.50 316 | 97.53 300 | 85.75 270 | 97.21 145 | 96.51 216 |
|
test20.03 | | | 86.14 311 | 85.40 309 | 88.35 334 | 90.12 354 | 80.06 346 | 95.90 248 | 95.20 304 | 88.59 230 | 81.29 343 | 93.62 306 | 71.43 317 | 92.65 364 | 71.26 358 | 81.17 339 | 92.34 347 |
|
MS-PatchMatch | | | 90.27 264 | 89.77 260 | 91.78 299 | 94.33 297 | 84.72 302 | 95.55 261 | 96.73 234 | 86.17 288 | 86.36 309 | 95.28 233 | 71.28 318 | 97.80 275 | 84.09 288 | 98.14 119 | 92.81 340 |
|
PVSNet_0 | | 82.17 19 | 85.46 317 | 83.64 320 | 90.92 315 | 95.27 252 | 79.49 350 | 90.55 350 | 95.60 286 | 83.76 321 | 83.00 339 | 89.95 346 | 71.09 319 | 97.97 254 | 82.75 301 | 60.79 368 | 95.31 269 |
|
GG-mvs-BLEND | | | | | 93.62 241 | 93.69 315 | 89.20 209 | 92.39 340 | 83.33 373 | | 87.98 285 | 89.84 348 | 71.00 320 | 96.87 329 | 82.08 306 | 95.40 178 | 94.80 301 |
|
ITE_SJBPF | | | | | 92.43 282 | 95.34 245 | 85.37 292 | | 95.92 272 | 91.47 143 | 87.75 288 | 96.39 178 | 71.00 320 | 97.96 258 | 82.36 304 | 89.86 257 | 93.97 327 |
|
IB-MVS | | 87.33 17 | 89.91 272 | 88.28 284 | 94.79 187 | 95.26 255 | 87.70 248 | 95.12 281 | 93.95 339 | 89.35 206 | 87.03 301 | 92.49 322 | 70.74 322 | 99.19 129 | 89.18 206 | 81.37 338 | 97.49 194 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
MDA-MVSNet-bldmvs | | | 85.00 318 | 82.95 322 | 91.17 313 | 93.13 330 | 83.33 319 | 94.56 288 | 95.00 312 | 84.57 311 | 65.13 366 | 92.65 319 | 70.45 323 | 95.85 342 | 73.57 350 | 77.49 348 | 94.33 318 |
|
RRT_test8_iter05 | | | 91.19 236 | 90.78 216 | 92.41 283 | 95.76 227 | 83.14 321 | 97.32 126 | 97.46 161 | 91.37 150 | 89.07 257 | 95.57 220 | 70.33 324 | 98.21 218 | 93.56 117 | 86.62 287 | 95.89 234 |
|
AllTest | | | 90.23 266 | 88.98 275 | 93.98 221 | 97.94 120 | 86.64 268 | 96.51 205 | 95.54 289 | 85.38 298 | 85.49 316 | 96.77 150 | 70.28 325 | 99.15 134 | 80.02 320 | 92.87 210 | 96.15 226 |
|
TestCases | | | | | 93.98 221 | 97.94 120 | 86.64 268 | | 95.54 289 | 85.38 298 | 85.49 316 | 96.77 150 | 70.28 325 | 99.15 134 | 80.02 320 | 92.87 210 | 96.15 226 |
|
ACMH+ | | 87.92 14 | 90.20 267 | 89.18 273 | 93.25 258 | 96.48 194 | 86.45 273 | 96.99 158 | 96.68 241 | 88.83 223 | 84.79 323 | 96.22 184 | 70.16 327 | 98.53 195 | 84.42 287 | 88.04 271 | 94.77 306 |
|
KD-MVS_self_test | | | 85.95 313 | 84.95 312 | 88.96 333 | 89.55 360 | 79.11 354 | 95.13 280 | 96.42 255 | 85.91 291 | 84.07 331 | 90.48 342 | 70.03 328 | 94.82 353 | 80.04 319 | 72.94 358 | 92.94 338 |
|
Anonymous20240529 | | | 91.98 198 | 90.73 220 | 95.73 138 | 98.14 112 | 89.40 199 | 97.99 55 | 97.72 129 | 79.63 348 | 93.54 147 | 97.41 122 | 69.94 329 | 99.56 85 | 91.04 169 | 91.11 240 | 98.22 159 |
|
pmmvs-eth3d | | | 86.22 310 | 84.45 316 | 91.53 304 | 88.34 364 | 87.25 254 | 94.47 290 | 95.01 311 | 83.47 325 | 79.51 353 | 89.61 349 | 69.75 330 | 95.71 345 | 83.13 296 | 76.73 351 | 91.64 352 |
|
LFMVS | | | 93.60 137 | 92.63 152 | 96.52 88 | 98.13 113 | 91.27 135 | 97.94 62 | 93.39 344 | 90.57 179 | 96.29 81 | 98.31 51 | 69.00 331 | 99.16 133 | 94.18 105 | 95.87 169 | 99.12 86 |
|
TESTMET0.1,1 | | | 90.06 270 | 89.42 268 | 91.97 291 | 94.41 295 | 80.62 339 | 94.29 300 | 91.97 355 | 87.28 271 | 90.44 211 | 92.47 323 | 68.79 332 | 97.67 286 | 88.50 217 | 96.60 158 | 97.61 189 |
|
XVG-ACMP-BASELINE | | | 90.93 246 | 90.21 244 | 93.09 264 | 94.31 299 | 85.89 282 | 95.33 270 | 97.26 189 | 91.06 162 | 89.38 247 | 95.44 228 | 68.61 333 | 98.60 189 | 89.46 195 | 91.05 241 | 94.79 303 |
|
MVS-HIRNet | | | 82.47 326 | 81.21 328 | 86.26 343 | 95.38 240 | 69.21 369 | 88.96 359 | 89.49 364 | 66.28 363 | 80.79 345 | 74.08 367 | 68.48 334 | 97.39 312 | 71.93 355 | 95.47 176 | 92.18 350 |
|
VDD-MVS | | | 93.82 130 | 93.08 136 | 96.02 122 | 97.88 125 | 89.96 181 | 97.72 84 | 95.85 276 | 92.43 116 | 95.86 97 | 98.44 32 | 68.42 335 | 99.39 114 | 96.31 36 | 94.85 186 | 98.71 126 |
|
test_0402 | | | 86.46 306 | 84.79 314 | 91.45 306 | 95.02 266 | 85.55 286 | 96.29 225 | 94.89 317 | 80.90 340 | 82.21 340 | 93.97 293 | 68.21 336 | 97.29 317 | 62.98 365 | 88.68 268 | 91.51 354 |
|
test-mter | | | 90.19 268 | 89.54 267 | 92.12 288 | 94.59 288 | 80.66 337 | 94.29 300 | 92.98 346 | 87.68 261 | 90.76 206 | 92.37 324 | 67.67 337 | 98.07 240 | 88.81 211 | 96.74 153 | 97.63 185 |
|
VDDNet | | | 93.05 157 | 92.07 169 | 96.02 122 | 96.84 173 | 90.39 169 | 98.08 50 | 95.85 276 | 86.22 287 | 95.79 100 | 98.46 30 | 67.59 338 | 99.19 129 | 94.92 88 | 94.85 186 | 98.47 143 |
|
USDC | | | 88.94 283 | 87.83 288 | 92.27 286 | 94.66 284 | 84.96 298 | 93.86 312 | 95.90 274 | 87.34 269 | 83.40 335 | 95.56 222 | 67.43 339 | 98.19 222 | 82.64 303 | 89.67 259 | 93.66 330 |
|
pmmvs6 | | | 87.81 298 | 86.19 302 | 92.69 277 | 91.32 348 | 86.30 275 | 97.34 123 | 96.41 256 | 80.59 345 | 84.05 332 | 94.37 272 | 67.37 340 | 97.67 286 | 84.75 281 | 79.51 344 | 94.09 326 |
|
test2506 | | | 91.60 208 | 90.78 216 | 94.04 218 | 97.66 137 | 83.81 312 | 98.27 31 | 75.53 377 | 93.43 80 | 95.23 116 | 98.21 62 | 67.21 341 | 99.07 147 | 93.01 134 | 98.49 107 | 99.25 74 |
|
KD-MVS_2432*1600 | | | 84.81 320 | 82.64 323 | 91.31 309 | 91.07 350 | 85.34 293 | 91.22 344 | 95.75 279 | 85.56 296 | 83.09 337 | 90.21 344 | 67.21 341 | 95.89 340 | 77.18 337 | 62.48 366 | 92.69 341 |
|
miper_refine_blended | | | 84.81 320 | 82.64 323 | 91.31 309 | 91.07 350 | 85.34 293 | 91.22 344 | 95.75 279 | 85.56 296 | 83.09 337 | 90.21 344 | 67.21 341 | 95.89 340 | 77.18 337 | 62.48 366 | 92.69 341 |
|
K. test v3 | | | 87.64 299 | 86.75 300 | 90.32 325 | 93.02 331 | 79.48 351 | 96.61 198 | 92.08 354 | 90.66 172 | 80.25 350 | 94.09 288 | 67.21 341 | 96.65 333 | 85.96 267 | 80.83 340 | 94.83 296 |
|
CMPMVS |  | 62.92 21 | 85.62 316 | 84.92 313 | 87.74 338 | 89.14 361 | 73.12 365 | 94.17 303 | 96.80 233 | 73.98 359 | 73.65 360 | 94.93 243 | 66.36 345 | 97.61 293 | 83.95 291 | 91.28 238 | 92.48 346 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
UniMVSNet_ETH3D | | | 91.34 227 | 90.22 243 | 94.68 191 | 94.86 276 | 87.86 245 | 97.23 138 | 97.46 161 | 87.99 248 | 89.90 230 | 96.92 144 | 66.35 346 | 98.23 216 | 90.30 179 | 90.99 243 | 97.96 168 |
|
lessismore_v0 | | | | | 90.45 323 | 91.96 346 | 79.09 355 | | 87.19 370 | | 80.32 349 | 94.39 270 | 66.31 347 | 97.55 297 | 84.00 290 | 76.84 350 | 94.70 308 |
|
Anonymous202405211 | | | 92.07 196 | 90.83 215 | 95.76 133 | 98.19 107 | 88.75 219 | 97.58 100 | 95.00 312 | 86.00 290 | 93.64 144 | 97.45 119 | 66.24 348 | 99.53 93 | 90.68 175 | 92.71 213 | 99.01 96 |
|
new-patchmatchnet | | | 83.18 324 | 81.87 326 | 87.11 340 | 86.88 367 | 75.99 361 | 93.70 316 | 95.18 305 | 85.02 305 | 77.30 356 | 88.40 352 | 65.99 349 | 93.88 359 | 74.19 349 | 70.18 361 | 91.47 356 |
|
FMVSNet1 | | | 89.88 274 | 88.31 283 | 94.59 192 | 95.41 238 | 91.18 142 | 97.50 107 | 96.93 218 | 86.62 281 | 87.41 293 | 94.51 263 | 65.94 350 | 97.29 317 | 83.04 297 | 87.43 278 | 95.31 269 |
|
TDRefinement | | | 86.53 305 | 84.76 315 | 91.85 294 | 82.23 370 | 84.25 306 | 96.38 216 | 95.35 295 | 84.97 306 | 84.09 330 | 94.94 242 | 65.76 351 | 98.34 212 | 84.60 284 | 74.52 354 | 92.97 337 |
|
UnsupCasMVSNet_eth | | | 85.99 312 | 84.45 316 | 90.62 321 | 89.97 356 | 82.40 327 | 93.62 320 | 97.37 180 | 89.86 191 | 78.59 355 | 92.37 324 | 65.25 352 | 95.35 351 | 82.27 305 | 70.75 360 | 94.10 324 |
|
LF4IMVS | | | 87.94 296 | 87.25 293 | 89.98 328 | 92.38 343 | 80.05 347 | 94.38 295 | 95.25 302 | 87.59 263 | 84.34 325 | 94.74 254 | 64.31 353 | 97.66 288 | 84.83 279 | 87.45 277 | 92.23 348 |
|
Anonymous20240521 | | | 86.42 307 | 85.44 307 | 89.34 332 | 90.33 353 | 79.79 348 | 96.73 182 | 95.92 272 | 83.71 322 | 83.25 336 | 91.36 339 | 63.92 354 | 96.01 338 | 78.39 331 | 85.36 299 | 92.22 349 |
|
MIMVSNet | | | 88.50 291 | 86.76 299 | 93.72 237 | 94.84 277 | 87.77 247 | 91.39 342 | 94.05 336 | 86.41 284 | 87.99 284 | 92.59 321 | 63.27 355 | 95.82 344 | 77.44 333 | 92.84 212 | 97.57 192 |
|
FMVSNet5 | | | 87.29 301 | 85.79 305 | 91.78 299 | 94.80 279 | 87.28 252 | 95.49 264 | 95.28 299 | 84.09 316 | 83.85 334 | 91.82 333 | 62.95 356 | 94.17 357 | 78.48 329 | 85.34 300 | 93.91 328 |
|
testgi | | | 87.97 295 | 87.21 295 | 90.24 326 | 92.86 332 | 80.76 336 | 96.67 191 | 94.97 314 | 91.74 136 | 85.52 315 | 95.83 203 | 62.66 357 | 94.47 356 | 76.25 340 | 88.36 270 | 95.48 254 |
|
TinyColmap | | | 86.82 304 | 85.35 310 | 91.21 311 | 94.91 274 | 82.99 322 | 93.94 310 | 94.02 338 | 83.58 323 | 81.56 342 | 94.68 257 | 62.34 358 | 98.13 227 | 75.78 341 | 87.35 281 | 92.52 345 |
|
new_pmnet | | | 82.89 325 | 81.12 329 | 88.18 337 | 89.63 358 | 80.18 345 | 91.77 341 | 92.57 350 | 76.79 357 | 75.56 359 | 88.23 354 | 61.22 359 | 94.48 355 | 71.43 356 | 82.92 333 | 89.87 360 |
|
OpenMVS_ROB |  | 81.14 20 | 84.42 322 | 82.28 325 | 90.83 316 | 90.06 355 | 84.05 311 | 95.73 255 | 94.04 337 | 73.89 360 | 80.17 351 | 91.53 338 | 59.15 360 | 97.64 289 | 66.92 363 | 89.05 263 | 90.80 358 |
|
MIMVSNet1 | | | 84.93 319 | 83.05 321 | 90.56 322 | 89.56 359 | 84.84 301 | 95.40 267 | 95.35 295 | 83.91 317 | 80.38 348 | 92.21 331 | 57.23 361 | 93.34 362 | 70.69 360 | 82.75 335 | 93.50 332 |
|
EG-PatchMatch MVS | | | 87.02 303 | 85.44 307 | 91.76 301 | 92.67 336 | 85.00 297 | 96.08 238 | 96.45 254 | 83.41 326 | 79.52 352 | 93.49 308 | 57.10 362 | 97.72 283 | 79.34 327 | 90.87 246 | 92.56 344 |
|
MVS_0304 | | | 88.79 287 | 87.57 289 | 92.46 280 | 94.65 285 | 86.15 281 | 96.40 213 | 97.17 195 | 86.44 283 | 88.02 283 | 91.71 336 | 56.68 363 | 97.03 322 | 84.47 285 | 92.58 216 | 94.19 323 |
|
UnsupCasMVSNet_bld | | | 82.13 327 | 79.46 330 | 90.14 327 | 88.00 365 | 82.47 325 | 90.89 349 | 96.62 249 | 78.94 351 | 75.61 357 | 84.40 361 | 56.63 364 | 96.31 336 | 77.30 336 | 66.77 364 | 91.63 353 |
|
EGC-MVSNET | | | 68.77 333 | 63.01 338 | 86.07 344 | 92.49 339 | 82.24 329 | 93.96 309 | 90.96 361 | 0.71 378 | 2.62 379 | 90.89 340 | 53.66 365 | 93.46 360 | 57.25 367 | 84.55 314 | 82.51 364 |
|
tmp_tt | | | 51.94 341 | 53.82 341 | 46.29 357 | 33.73 381 | 45.30 380 | 78.32 367 | 67.24 380 | 18.02 374 | 50.93 370 | 87.05 360 | 52.99 366 | 53.11 376 | 70.76 359 | 25.29 374 | 40.46 372 |
|
pmmvs3 | | | 79.97 328 | 77.50 332 | 87.39 339 | 82.80 369 | 79.38 352 | 92.70 335 | 90.75 362 | 70.69 362 | 78.66 354 | 87.47 359 | 51.34 367 | 93.40 361 | 73.39 351 | 69.65 362 | 89.38 361 |
|
DeepMVS_CX |  | | | | 74.68 351 | 90.84 352 | 64.34 373 | | 81.61 375 | 65.34 364 | 67.47 363 | 88.01 357 | 48.60 368 | 80.13 372 | 62.33 366 | 73.68 357 | 79.58 366 |
|
PM-MVS | | | 83.48 323 | 81.86 327 | 88.31 335 | 87.83 366 | 77.59 358 | 93.43 322 | 91.75 356 | 86.91 276 | 80.63 346 | 89.91 347 | 44.42 369 | 95.84 343 | 85.17 278 | 76.73 351 | 91.50 355 |
|
test_method | | | 66.11 335 | 64.89 337 | 69.79 352 | 72.62 375 | 35.23 382 | 65.19 370 | 92.83 348 | 20.35 373 | 65.20 365 | 88.08 356 | 43.14 370 | 82.70 370 | 73.12 352 | 63.46 365 | 91.45 357 |
|
ambc | | | | | 86.56 342 | 83.60 368 | 70.00 368 | 85.69 362 | 94.97 314 | | 80.60 347 | 88.45 351 | 37.42 371 | 96.84 330 | 82.69 302 | 75.44 353 | 92.86 339 |
|
Gipuma |  | | 67.86 334 | 65.41 336 | 75.18 350 | 92.66 337 | 73.45 364 | 66.50 369 | 94.52 327 | 53.33 368 | 57.80 369 | 66.07 369 | 30.81 372 | 89.20 366 | 48.15 370 | 78.88 347 | 62.90 369 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
EMVS | | | 52.08 340 | 51.31 343 | 54.39 356 | 72.62 375 | 45.39 379 | 83.84 364 | 75.51 378 | 41.13 371 | 40.77 373 | 59.65 372 | 30.08 373 | 73.60 374 | 28.31 374 | 29.90 373 | 44.18 371 |
|
FPMVS | | | 71.27 331 | 69.85 333 | 75.50 349 | 74.64 372 | 59.03 374 | 91.30 343 | 91.50 358 | 58.80 366 | 57.92 368 | 88.28 353 | 29.98 374 | 85.53 369 | 53.43 368 | 82.84 334 | 81.95 365 |
|
E-PMN | | | 53.28 338 | 52.56 342 | 55.43 355 | 74.43 373 | 47.13 377 | 83.63 365 | 76.30 376 | 42.23 370 | 42.59 372 | 62.22 371 | 28.57 375 | 74.40 373 | 31.53 373 | 31.51 371 | 44.78 370 |
|
PMMVS2 | | | 70.19 332 | 66.92 335 | 80.01 346 | 76.35 371 | 65.67 371 | 86.22 361 | 87.58 369 | 64.83 365 | 62.38 367 | 80.29 364 | 26.78 376 | 88.49 367 | 63.79 364 | 54.07 369 | 85.88 362 |
|
ANet_high | | | 63.94 336 | 59.58 339 | 77.02 348 | 61.24 379 | 66.06 370 | 85.66 363 | 87.93 368 | 78.53 353 | 42.94 371 | 71.04 368 | 25.42 377 | 80.71 371 | 52.60 369 | 30.83 372 | 84.28 363 |
|
LCM-MVSNet | | | 72.55 330 | 69.39 334 | 82.03 345 | 70.81 377 | 65.42 372 | 90.12 354 | 94.36 332 | 55.02 367 | 65.88 364 | 81.72 362 | 24.16 378 | 89.96 365 | 74.32 348 | 68.10 363 | 90.71 359 |
|
PMVS |  | 53.92 22 | 58.58 337 | 55.40 340 | 68.12 353 | 51.00 380 | 48.64 376 | 78.86 366 | 87.10 371 | 46.77 369 | 35.84 375 | 74.28 366 | 8.76 379 | 86.34 368 | 42.07 371 | 73.91 356 | 69.38 367 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
wuyk23d | | | 25.11 342 | 24.57 346 | 26.74 358 | 73.98 374 | 39.89 381 | 57.88 371 | 9.80 382 | 12.27 375 | 10.39 376 | 6.97 378 | 7.03 380 | 36.44 377 | 25.43 375 | 17.39 375 | 3.89 375 |
|
MVE |  | 50.73 23 | 53.25 339 | 48.81 344 | 66.58 354 | 65.34 378 | 57.50 375 | 72.49 368 | 70.94 379 | 40.15 372 | 39.28 374 | 63.51 370 | 6.89 381 | 73.48 375 | 38.29 372 | 42.38 370 | 68.76 368 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test123 | | | 13.04 345 | 15.66 348 | 5.18 359 | 4.51 383 | 3.45 383 | 92.50 339 | 1.81 384 | 2.50 377 | 7.58 378 | 20.15 375 | 3.67 382 | 2.18 379 | 7.13 377 | 1.07 377 | 9.90 373 |
|
testmvs | | | 13.36 344 | 16.33 347 | 4.48 360 | 5.04 382 | 2.26 384 | 93.18 325 | 3.28 383 | 2.70 376 | 8.24 377 | 21.66 374 | 2.29 383 | 2.19 378 | 7.58 376 | 2.96 376 | 9.00 374 |
|
test_blank | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uanet_test | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
DCPMVS | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
sosnet-low-res | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
sosnet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uncertanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
Regformer | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
ab-mvs-re | | | 8.06 346 | 10.74 349 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 96.69 156 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
FOURS1 | | | | | | 99.55 1 | 93.34 74 | 99.29 1 | 98.35 20 | 94.98 27 | 98.49 15 | | | | | | |
|
MSC_two_6792asdad | | | | | 98.86 1 | 98.67 66 | 96.94 1 | | 97.93 107 | | | | | 99.86 9 | 97.68 2 | 99.67 6 | 99.77 1 |
|
No_MVS | | | | | 98.86 1 | 98.67 66 | 96.94 1 | | 97.93 107 | | | | | 99.86 9 | 97.68 2 | 99.67 6 | 99.77 1 |
|
eth-test2 | | | | | | 0.00 384 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 384 | | | | | | | | | | | |
|
IU-MVS | | | | | | 99.42 7 | 95.39 11 | | 97.94 106 | 90.40 183 | 98.94 5 | | | | 97.41 12 | 99.66 10 | 99.74 7 |
|
save fliter | | | | | | 98.91 53 | 94.28 39 | 97.02 153 | 98.02 92 | 95.35 8 | | | | | | | |
|
test_0728_SECOND | | | | | 98.51 4 | 99.45 3 | 95.93 5 | 98.21 41 | 98.28 28 | | | | | 99.86 9 | 97.52 5 | 99.67 6 | 99.75 5 |
|
GSMVS | | | | | | | | | | | | | | | | | 98.45 145 |
|
test_part2 | | | | | | 99.28 27 | 95.74 8 | | | | 98.10 21 | | | | | | |
|
MTGPA |  | | | | | | | | 98.08 68 | | | | | | | | |
|
MTMP | | | | | | | | 97.86 67 | 82.03 374 | | | | | | | | |
|
gm-plane-assit | | | | | | 93.22 327 | 78.89 356 | | | 84.82 308 | | 93.52 307 | | 98.64 185 | 87.72 227 | | |
|
test9_res | | | | | | | | | | | | | | | 94.81 93 | 99.38 54 | 99.45 51 |
|
agg_prior2 | | | | | | | | | | | | | | | 93.94 110 | 99.38 54 | 99.50 43 |
|
agg_prior | | | | | | 98.67 66 | 93.79 59 | | 98.00 97 | | 95.68 104 | | | 99.57 83 | | | |
|
test_prior4 | | | | | | | 93.66 63 | 96.42 209 | | | | | | | | | |
|
test_prior | | | | | 97.23 65 | 98.67 66 | 92.99 81 | | 98.00 97 | | | | | 99.41 111 | | | 99.29 68 |
|
旧先验2 | | | | | | | | 95.94 246 | | 81.66 336 | 97.34 40 | | | 98.82 167 | 92.26 139 | | |
|
新几何2 | | | | | | | | 95.79 253 | | | | | | | | | |
|
无先验 | | | | | | | | 95.79 253 | 97.87 114 | 83.87 320 | | | | 99.65 57 | 87.68 233 | | 98.89 112 |
|
原ACMM2 | | | | | | | | 95.67 256 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.67 53 | 85.96 267 | | |
|
testdata1 | | | | | | | | 95.26 277 | | 93.10 94 | | | | | | | |
|
plane_prior7 | | | | | | 96.21 205 | 89.98 179 | | | | | | | | | | |
|
plane_prior5 | | | | | | | | | 97.51 153 | | | | | 98.60 189 | 93.02 132 | 92.23 220 | 95.86 235 |
|
plane_prior4 | | | | | | | | | | | | 96.64 159 | | | | | |
|
plane_prior3 | | | | | | | 90.00 175 | | | 94.46 47 | 91.34 193 | | | | | | |
|
plane_prior2 | | | | | | | | 97.74 79 | | 94.85 30 | | | | | | | |
|
plane_prior1 | | | | | | 96.14 213 | | | | | | | | | | | |
|
plane_prior | | | | | | | 89.99 177 | 97.24 133 | | 94.06 56 | | | | | | 92.16 224 | |
|
n2 | | | | | | | | | 0.00 385 | | | | | | | | |
|
nn | | | | | | | | | 0.00 385 | | | | | | | | |
|
door-mid | | | | | | | | | 91.06 360 | | | | | | | | |
|
test11 | | | | | | | | | 97.88 112 | | | | | | | | |
|
door | | | | | | | | | 91.13 359 | | | | | | | | |
|
HQP5-MVS | | | | | | | 89.33 203 | | | | | | | | | | |
|
HQP-NCC | | | | | | 95.86 220 | | 96.65 192 | | 93.55 72 | 90.14 217 | | | | | | |
|
ACMP_Plane | | | | | | 95.86 220 | | 96.65 192 | | 93.55 72 | 90.14 217 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 92.13 145 | | |
|
HQP4-MVS | | | | | | | | | | | 90.14 217 | | | 98.50 197 | | | 95.78 242 |
|
HQP3-MVS | | | | | | | | | 97.39 177 | | | | | | | 92.10 225 | |
|
NP-MVS | | | | | | 95.99 219 | 89.81 184 | | | | | 95.87 200 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 90.30 253 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 91.02 242 | |
|