This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
zzz-MVS97.07 2296.77 3297.97 2299.37 1694.42 3297.15 13798.08 6495.07 2096.11 7698.59 1590.88 7099.90 196.18 3999.50 3299.58 17
MTAPA97.08 2196.78 3197.97 2299.37 1694.42 3297.24 12498.08 6495.07 2096.11 7698.59 1590.88 7099.90 196.18 3999.50 3299.58 17
DPE-MVScopyleft97.86 397.65 498.47 399.17 3295.78 597.21 13198.35 1995.16 1598.71 1098.80 995.05 799.89 396.70 1999.73 199.73 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ZNCC-MVS96.96 3096.67 3897.85 2599.37 1694.12 4598.49 1498.18 4692.64 10296.39 6998.18 5891.61 5299.88 495.59 6399.55 2199.57 19
MP-MVScopyleft96.77 4296.45 4997.72 3999.39 1393.80 5498.41 1898.06 7393.37 7195.54 10298.34 4190.59 7599.88 494.83 8299.54 2399.49 39
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS96.86 3796.60 4097.64 4699.40 1193.44 6598.50 1398.09 6393.27 7595.95 8598.33 4491.04 6699.88 495.20 6999.57 2099.60 16
region2R97.07 2296.84 2597.77 3599.46 193.79 5598.52 1098.24 3493.19 7997.14 4198.34 4191.59 5499.87 795.46 6699.59 1599.64 10
testtj96.93 3396.56 4398.05 1799.10 3494.66 2797.78 6898.22 3992.74 9897.59 2498.20 5791.96 4499.86 894.21 9499.25 6599.63 11
test_0728_SECOND98.51 299.45 295.93 398.21 3498.28 2699.86 897.52 299.67 699.75 3
GST-MVS96.85 3896.52 4597.82 2999.36 1994.14 4498.29 2498.13 5492.72 9996.70 5198.06 6491.35 5999.86 894.83 8299.28 5999.47 44
MP-MVS-pluss96.70 4496.27 5397.98 2199.23 3094.71 2696.96 15298.06 7390.67 15895.55 10098.78 1091.07 6599.86 896.58 2299.55 2199.38 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP97.20 1596.86 2298.23 899.09 3695.16 2097.60 9198.19 4492.82 9597.93 2098.74 1191.60 5399.86 896.26 3099.52 2599.67 8
ACMMPR97.07 2296.84 2597.79 3299.44 593.88 5298.52 1098.31 2293.21 7697.15 4098.33 4491.35 5999.86 895.63 5899.59 1599.62 13
SED-MVS98.05 197.99 198.24 799.42 695.30 1598.25 2898.27 2895.13 1699.19 198.89 495.54 399.85 1497.52 299.66 899.56 22
test_241102_TWO98.27 2895.13 1698.93 698.89 494.99 899.85 1497.52 299.65 1099.74 5
PGM-MVS96.81 4096.53 4497.65 4499.35 2193.53 6397.65 8498.98 192.22 11097.14 4198.44 2891.17 6499.85 1494.35 9299.46 3899.57 19
CP-MVS97.02 2696.81 2897.64 4699.33 2293.54 6298.80 398.28 2692.99 8596.45 6798.30 4991.90 4599.85 1495.61 6099.68 499.54 29
ACMMPcopyleft96.27 5895.93 6097.28 5999.24 2892.62 8798.25 2898.81 392.99 8594.56 11598.39 3588.96 8999.85 1494.57 9197.63 11999.36 58
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVS97.91 297.81 298.22 999.45 295.36 1098.21 3497.85 11294.92 2398.73 898.87 695.08 599.84 1997.52 299.67 699.48 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD94.78 3298.73 898.87 695.87 299.84 1997.45 699.72 299.77 1
HPM-MVS++copyleft97.34 1396.97 1798.47 399.08 3896.16 297.55 9597.97 9995.59 496.61 5797.89 7292.57 3099.84 1995.95 4699.51 2999.40 53
SMA-MVScopyleft97.35 1297.03 1498.30 699.06 4095.42 897.94 5498.18 4690.57 16798.85 798.94 193.33 1799.83 2296.72 1899.68 499.63 11
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS97.14 1996.92 2097.83 2699.42 694.12 4598.52 1098.32 2093.21 7697.18 3898.29 5092.08 3999.83 2295.63 5899.59 1599.54 29
#test#97.02 2696.75 3397.83 2699.42 694.12 4598.15 3798.32 2092.57 10397.18 3898.29 5092.08 3999.83 2295.12 7299.59 1599.54 29
CANet96.39 5596.02 5997.50 5097.62 12993.38 6797.02 14497.96 10095.42 794.86 11197.81 8287.38 11499.82 2596.88 1299.20 7099.29 62
QAPM93.45 13692.27 15796.98 7496.77 16492.62 8798.39 1998.12 5684.50 29988.27 26397.77 8582.39 19199.81 2685.40 26198.81 8998.51 124
XVS97.18 1696.96 1897.81 3099.38 1494.03 5098.59 798.20 4294.85 2596.59 5998.29 5091.70 5099.80 2795.66 5399.40 4599.62 13
X-MVStestdata91.71 19589.67 25497.81 3099.38 1494.03 5098.59 798.20 4294.85 2596.59 5932.69 35991.70 5099.80 2795.66 5399.40 4599.62 13
3Dnovator91.36 595.19 8794.44 10097.44 5296.56 17493.36 6998.65 698.36 1694.12 4789.25 24198.06 6482.20 19499.77 2993.41 11499.32 5399.18 69
CSCG96.05 6395.91 6196.46 9399.24 2890.47 15998.30 2398.57 1189.01 20193.97 12797.57 10392.62 2899.76 3094.66 8899.27 6199.15 72
OpenMVScopyleft89.19 1292.86 15891.68 17496.40 9695.34 23192.73 8398.27 2698.12 5684.86 29485.78 30097.75 8678.89 25299.74 3187.50 22798.65 9596.73 199
PVSNet_Blended_VisFu95.27 8294.91 8596.38 9998.20 9890.86 14897.27 12298.25 3390.21 17294.18 12297.27 11687.48 11299.73 3293.53 10997.77 11798.55 119
DeepC-MVS93.07 396.06 6295.66 6597.29 5897.96 10993.17 7397.30 12098.06 7393.92 5193.38 14098.66 1286.83 12099.73 3295.60 6299.22 6898.96 91
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D93.57 13392.61 14596.47 9197.59 13291.61 11797.67 8197.72 12285.17 28990.29 20198.34 4184.60 14899.73 3283.85 28098.27 10398.06 155
xxxxxxxxxxxxxcwj97.36 1197.20 1097.83 2698.91 4994.28 3597.02 14497.22 18395.35 898.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 34
SF-MVS97.39 1097.13 1198.17 1199.02 4395.28 1798.23 3198.27 2892.37 10798.27 1498.65 1393.33 1799.72 3596.49 2599.52 2599.51 34
abl_696.40 5496.21 5596.98 7498.89 5492.20 10297.89 5798.03 8493.34 7497.22 3798.42 3187.93 10399.72 3595.10 7399.07 8099.02 83
CANet_DTU94.37 10593.65 11396.55 8496.46 18192.13 10496.21 22196.67 23394.38 4393.53 13697.03 12879.34 24199.71 3890.76 16098.45 10097.82 167
MCST-MVS97.18 1696.84 2598.20 1099.30 2495.35 1297.12 13998.07 7093.54 6696.08 7897.69 9093.86 1399.71 3896.50 2499.39 4799.55 26
NCCC97.30 1497.03 1498.11 1498.77 5795.06 2297.34 11498.04 8195.96 297.09 4597.88 7493.18 2099.71 3895.84 5099.17 7299.56 22
SteuartSystems-ACMMP97.62 697.53 697.87 2498.39 8094.25 3898.43 1798.27 2895.34 1098.11 1698.56 1794.53 999.71 3896.57 2399.62 1399.65 9
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+91.43 495.40 7894.48 9898.16 1296.90 15795.34 1398.48 1597.87 10894.65 3788.53 25798.02 6783.69 16099.71 3893.18 11898.96 8599.44 47
DELS-MVS96.61 4896.38 5197.30 5797.79 12193.19 7295.96 23498.18 4695.23 1295.87 8697.65 9491.45 5599.70 4395.87 4799.44 4299.00 89
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ETH3D cwj APD-0.1696.56 5096.06 5898.05 1798.26 9295.19 1896.99 14998.05 8089.85 18197.26 3598.22 5691.80 4799.69 4494.84 8199.28 5999.27 66
DP-MVS92.76 16391.51 18296.52 8598.77 5790.99 14297.38 11296.08 25882.38 31889.29 23897.87 7583.77 15999.69 4481.37 30096.69 14598.89 100
PHI-MVS96.77 4296.46 4897.71 4198.40 7894.07 4898.21 3498.45 1589.86 17997.11 4498.01 6892.52 3299.69 4496.03 4599.53 2499.36 58
APDe-MVS97.82 497.73 398.08 1599.15 3394.82 2598.81 298.30 2394.76 3398.30 1398.90 393.77 1499.68 4797.93 199.69 399.75 3
CNVR-MVS97.68 597.44 898.37 598.90 5195.86 497.27 12298.08 6495.81 397.87 2398.31 4794.26 1099.68 4797.02 999.49 3499.57 19
ETH3 D test640096.16 6195.52 6898.07 1698.90 5195.06 2297.03 14198.21 4088.16 23296.64 5697.70 8991.18 6399.67 4992.44 12699.47 3699.48 41
新几何197.32 5698.60 6893.59 6197.75 11781.58 32495.75 9197.85 7890.04 8299.67 4986.50 24299.13 7598.69 115
testdata299.67 4985.96 254
ETH3D-3000-0.197.07 2296.71 3698.14 1398.90 5195.33 1497.68 8098.24 3491.57 12997.90 2198.37 3692.61 2999.66 5295.59 6399.51 2999.43 49
ZD-MVS99.05 4194.59 2898.08 6489.22 19697.03 4798.10 6092.52 3299.65 5394.58 9099.31 55
test_241102_ONE99.42 695.30 1598.27 2895.09 1999.19 198.81 895.54 399.65 53
9.1496.75 3398.93 4797.73 7398.23 3891.28 14397.88 2298.44 2893.00 2199.65 5395.76 5299.47 36
MSP-MVS97.59 797.54 597.73 3899.40 1193.77 5898.53 998.29 2495.55 598.56 1297.81 8293.90 1299.65 5396.62 2099.21 6999.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PS-MVSNAJ95.37 7995.33 7695.49 14897.35 13690.66 15595.31 26197.48 14793.85 5396.51 6295.70 20288.65 9499.65 5394.80 8598.27 10396.17 211
无先验95.79 24297.87 10883.87 30799.65 5387.68 22098.89 100
112194.71 10293.83 10797.34 5598.57 7293.64 6096.04 22897.73 11981.56 32595.68 9497.85 7890.23 7899.65 5387.68 22099.12 7898.73 111
EPNet95.20 8694.56 9397.14 6892.80 32092.68 8497.85 6294.87 31096.64 192.46 15697.80 8486.23 12799.65 5393.72 10798.62 9699.10 79
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepC-MVS_fast93.89 296.93 3396.64 3997.78 3398.64 6794.30 3497.41 10698.04 8194.81 3096.59 5998.37 3691.24 6199.64 6195.16 7099.52 2599.42 52
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
hse-mvs394.15 11093.52 11896.04 11897.81 11990.22 16597.62 9097.58 13895.19 1496.74 5097.45 10983.67 16199.61 6295.85 4979.73 32998.29 146
Regformer-496.97 2996.87 2197.25 6198.34 8392.66 8596.96 15298.01 9195.12 1897.14 4198.42 3191.82 4699.61 6296.90 1199.13 7599.50 37
Regformer-297.16 1896.99 1697.67 4398.32 8693.84 5396.83 16498.10 6195.24 1197.49 2698.25 5492.57 3099.61 6296.80 1499.29 5799.56 22
CHOSEN 1792x268894.15 11093.51 11996.06 11698.27 8989.38 19295.18 26898.48 1485.60 28293.76 13197.11 12483.15 16999.61 6291.33 15298.72 9299.19 68
CPTT-MVS95.57 7695.19 7996.70 7799.27 2691.48 12298.33 2198.11 5987.79 24395.17 10798.03 6687.09 11899.61 6293.51 11099.42 4399.02 83
UGNet94.04 11893.28 12896.31 10396.85 15891.19 13697.88 5897.68 12794.40 4193.00 14896.18 17373.39 30099.61 6291.72 14298.46 9998.13 150
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
SR-MVS97.01 2896.86 2297.47 5199.09 3693.27 7197.98 4898.07 7093.75 5797.45 2898.48 2591.43 5699.59 6896.22 3399.27 6199.54 29
TEST998.70 6094.19 4096.41 19998.02 8888.17 23096.03 7997.56 10592.74 2499.59 68
train_agg96.30 5795.83 6397.72 3998.70 6094.19 4096.41 19998.02 8888.58 21896.03 7997.56 10592.73 2599.59 6895.04 7499.37 5299.39 54
test_898.67 6294.06 4996.37 20698.01 9188.58 21895.98 8497.55 10792.73 2599.58 71
EI-MVSNet-UG-set96.34 5696.30 5296.47 9198.20 9890.93 14696.86 16097.72 12294.67 3596.16 7598.46 2690.43 7699.58 7196.23 3297.96 11298.90 98
EI-MVSNet-Vis-set96.51 5196.47 4796.63 8098.24 9391.20 13596.89 15997.73 11994.74 3496.49 6398.49 2490.88 7099.58 7196.44 2798.32 10299.13 74
Regformer-197.10 2096.96 1897.54 4998.32 8693.48 6496.83 16497.99 9795.20 1397.46 2798.25 5492.48 3499.58 7196.79 1699.29 5799.55 26
HPM-MVScopyleft96.69 4596.45 4997.40 5399.36 1993.11 7498.87 198.06 7391.17 14796.40 6897.99 6990.99 6799.58 7195.61 6099.61 1499.49 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVScopyleft96.95 3196.60 4098.01 1999.03 4294.93 2497.72 7698.10 6191.50 13198.01 1898.32 4692.33 3599.58 7194.85 8099.51 2999.53 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PVSNet_BlendedMVS94.06 11693.92 10594.47 19098.27 8989.46 18996.73 17298.36 1690.17 17394.36 11895.24 22188.02 10099.58 7193.44 11290.72 23594.36 304
PVSNet_Blended94.87 9794.56 9395.81 12798.27 8989.46 18995.47 25498.36 1688.84 20994.36 11896.09 18088.02 10099.58 7193.44 11298.18 10698.40 138
agg_prior196.22 6095.77 6497.56 4898.67 6293.79 5596.28 21598.00 9388.76 21595.68 9497.55 10792.70 2799.57 7995.01 7599.32 5399.32 60
agg_prior98.67 6293.79 5598.00 9395.68 9499.57 79
test117296.93 3396.86 2297.15 6799.10 3492.34 9497.96 5398.04 8193.79 5697.35 3398.53 2191.40 5799.56 8196.30 2999.30 5699.55 26
SR-MVS-dyc-post96.88 3696.80 2997.11 7099.02 4392.34 9497.98 4898.03 8493.52 6797.43 3198.51 2291.40 5799.56 8196.05 4299.26 6399.43 49
Anonymous2024052991.98 18990.73 21095.73 13398.14 10389.40 19197.99 4797.72 12279.63 33593.54 13597.41 11269.94 31899.56 8191.04 15791.11 22898.22 147
APD-MVS_3200maxsize96.81 4096.71 3697.12 6999.01 4692.31 9797.98 4898.06 7393.11 8297.44 2998.55 1990.93 6899.55 8496.06 4199.25 6599.51 34
PCF-MVS89.48 1191.56 20289.95 24296.36 10196.60 16992.52 9092.51 32697.26 18079.41 33688.90 24596.56 15684.04 15799.55 8477.01 32697.30 13197.01 188
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Regformer-396.85 3896.80 2997.01 7298.34 8392.02 10896.96 15297.76 11695.01 2297.08 4698.42 3191.71 4999.54 8696.80 1499.13 7599.48 41
原ACMM196.38 9998.59 6991.09 14197.89 10487.41 25495.22 10697.68 9190.25 7799.54 8687.95 21199.12 7898.49 127
AdaColmapbinary94.34 10693.68 11296.31 10398.59 6991.68 11696.59 19097.81 11489.87 17892.15 16697.06 12783.62 16299.54 8689.34 18698.07 10997.70 171
Anonymous20240521192.07 18790.83 20695.76 12898.19 10088.75 21197.58 9295.00 30186.00 27793.64 13297.45 10966.24 33699.53 8990.68 16392.71 20199.01 87
xiu_mvs_v2_base95.32 8195.29 7795.40 15397.22 13990.50 15895.44 25597.44 16293.70 6096.46 6696.18 17388.59 9799.53 8994.79 8797.81 11596.17 211
VNet95.89 6895.45 7197.21 6598.07 10792.94 7997.50 9898.15 5193.87 5297.52 2597.61 10085.29 14099.53 8995.81 5195.27 16899.16 70
HPM-MVS_fast96.51 5196.27 5397.22 6499.32 2392.74 8298.74 498.06 7390.57 16796.77 4998.35 3890.21 7999.53 8994.80 8599.63 1299.38 56
PLCcopyleft91.00 694.11 11493.43 12396.13 11398.58 7191.15 14096.69 17897.39 16887.29 25791.37 17996.71 14088.39 9899.52 9387.33 23097.13 13797.73 169
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UA-Net95.95 6795.53 6797.20 6697.67 12692.98 7897.65 8498.13 5494.81 3096.61 5798.35 3888.87 9099.51 9490.36 16697.35 12999.11 78
RPMNet88.98 27287.05 28794.77 18094.45 27987.19 24890.23 34098.03 8477.87 34392.40 15787.55 34480.17 22799.51 9468.84 34793.95 18997.60 178
MAR-MVS94.22 10893.46 12196.51 8898.00 10892.19 10397.67 8197.47 15088.13 23493.00 14895.84 18984.86 14699.51 9487.99 21098.17 10797.83 166
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DPM-MVS95.69 7194.92 8498.01 1998.08 10695.71 795.27 26497.62 13490.43 17095.55 10097.07 12691.72 4899.50 9789.62 18098.94 8698.82 106
F-COLMAP93.58 13292.98 13295.37 15498.40 7888.98 20797.18 13397.29 17987.75 24690.49 19697.10 12585.21 14199.50 9786.70 23996.72 14497.63 173
DP-MVS Recon95.68 7295.12 8297.37 5499.19 3194.19 4097.03 14198.08 6488.35 22595.09 10997.65 9489.97 8399.48 9992.08 13698.59 9798.44 135
CDPH-MVS95.97 6695.38 7497.77 3598.93 4794.44 3196.35 20797.88 10686.98 26296.65 5597.89 7291.99 4399.47 10092.26 12799.46 3899.39 54
test1297.65 4498.46 7494.26 3797.66 12995.52 10390.89 6999.46 10199.25 6599.22 67
ab-mvs93.57 13392.55 14796.64 7897.28 13891.96 11195.40 25697.45 15889.81 18393.22 14696.28 17079.62 23899.46 10190.74 16193.11 19798.50 125
HY-MVS89.66 993.87 12292.95 13396.63 8097.10 14792.49 9195.64 24896.64 23489.05 20093.00 14895.79 19585.77 13699.45 10389.16 19594.35 18297.96 156
xiu_mvs_v1_base_debu95.01 8994.76 8795.75 13096.58 17191.71 11396.25 21797.35 17492.99 8596.70 5196.63 15182.67 18299.44 10496.22 3397.46 12296.11 216
xiu_mvs_v1_base95.01 8994.76 8795.75 13096.58 17191.71 11396.25 21797.35 17492.99 8596.70 5196.63 15182.67 18299.44 10496.22 3397.46 12296.11 216
xiu_mvs_v1_base_debi95.01 8994.76 8795.75 13096.58 17191.71 11396.25 21797.35 17492.99 8596.70 5196.63 15182.67 18299.44 10496.22 3397.46 12296.11 216
test_prior396.46 5396.20 5697.23 6298.67 6292.99 7696.35 20798.00 9392.80 9696.03 7997.59 10192.01 4199.41 10795.01 7599.38 4899.29 62
test_prior97.23 6298.67 6292.99 7698.00 9399.41 10799.29 62
TSAR-MVS + MP.97.42 897.33 997.69 4299.25 2794.24 3998.07 4397.85 11293.72 5898.57 1198.35 3893.69 1599.40 10997.06 899.46 3899.44 47
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
VDD-MVS93.82 12493.08 13096.02 11997.88 11689.96 17497.72 7695.85 26592.43 10595.86 8798.44 2868.42 32499.39 11096.31 2894.85 17498.71 114
WTY-MVS94.71 10294.02 10496.79 7697.71 12592.05 10696.59 19097.35 17490.61 16494.64 11496.93 13086.41 12699.39 11091.20 15694.71 18098.94 94
MVS_111021_HR96.68 4796.58 4296.99 7398.46 7492.31 9796.20 22298.90 294.30 4595.86 8797.74 8792.33 3599.38 11296.04 4499.42 4399.28 65
DeepPCF-MVS93.97 196.61 4897.09 1295.15 15998.09 10586.63 26296.00 23298.15 5195.43 697.95 1998.56 1793.40 1699.36 11396.77 1799.48 3599.45 45
TSAR-MVS + GP.96.69 4596.49 4697.27 6098.31 8893.39 6696.79 16896.72 22594.17 4697.44 2997.66 9392.76 2399.33 11496.86 1397.76 11899.08 80
114514_t93.95 12093.06 13196.63 8099.07 3991.61 11797.46 10597.96 10077.99 34193.00 14897.57 10386.14 13299.33 11489.22 19199.15 7398.94 94
test_yl94.78 10094.23 10296.43 9497.74 12391.22 13196.85 16197.10 19291.23 14595.71 9296.93 13084.30 15299.31 11693.10 11995.12 17098.75 108
DCV-MVSNet94.78 10094.23 10296.43 9497.74 12391.22 13196.85 16197.10 19291.23 14595.71 9296.93 13084.30 15299.31 11693.10 11995.12 17098.75 108
COLMAP_ROBcopyleft87.81 1590.40 25289.28 26193.79 22297.95 11087.13 25196.92 15695.89 26482.83 31686.88 29397.18 12073.77 29799.29 11878.44 31793.62 19394.95 272
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
sss94.51 10493.80 10896.64 7897.07 14891.97 11096.32 21198.06 7388.94 20594.50 11696.78 13784.60 14899.27 11991.90 13796.02 15398.68 116
MG-MVS95.61 7495.38 7496.31 10398.42 7790.53 15796.04 22897.48 14793.47 6995.67 9798.10 6089.17 8799.25 12091.27 15498.77 9099.13 74
OPU-MVS98.55 198.82 5696.86 198.25 2898.26 5396.04 199.24 12195.36 6799.59 1599.56 22
MVS_111021_LR96.24 5996.19 5796.39 9898.23 9791.35 12896.24 22098.79 493.99 5095.80 8997.65 9489.92 8499.24 12195.87 4799.20 7098.58 118
alignmvs95.87 6995.23 7897.78 3397.56 13495.19 1897.86 5997.17 18694.39 4296.47 6596.40 16585.89 13399.20 12396.21 3795.11 17298.95 93
VDDNet93.05 14892.07 16096.02 11996.84 15990.39 16398.08 4295.85 26586.22 27495.79 9098.46 2667.59 32799.19 12494.92 7994.85 17498.47 130
IB-MVS87.33 1789.91 26288.28 27494.79 17995.26 24187.70 23995.12 27093.95 32889.35 19387.03 28892.49 31070.74 31199.19 12489.18 19481.37 32597.49 182
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
canonicalmvs96.02 6495.45 7197.75 3797.59 13295.15 2198.28 2597.60 13594.52 3996.27 7296.12 17687.65 10799.18 12696.20 3894.82 17698.91 97
API-MVS94.84 9894.49 9795.90 12497.90 11592.00 10997.80 6697.48 14789.19 19794.81 11296.71 14088.84 9199.17 12788.91 19898.76 9196.53 202
LFMVS93.60 13192.63 14396.52 8598.13 10491.27 13097.94 5493.39 33390.57 16796.29 7198.31 4769.00 32099.16 12894.18 9695.87 15799.12 77
AllTest90.23 25688.98 26593.98 20997.94 11186.64 25996.51 19495.54 27885.38 28585.49 30396.77 13870.28 31499.15 12980.02 30792.87 19896.15 213
TestCases93.98 20997.94 11186.64 25995.54 27885.38 28585.49 30396.77 13870.28 31499.15 12980.02 30792.87 19896.15 213
1112_ss93.37 13792.42 15396.21 11197.05 15390.99 14296.31 21296.72 22586.87 26589.83 22096.69 14486.51 12499.14 13188.12 20893.67 19198.50 125
PAPM_NR95.01 8994.59 9296.26 10898.89 5490.68 15497.24 12497.73 11991.80 12492.93 15396.62 15489.13 8899.14 13189.21 19297.78 11698.97 90
PAPR94.18 10993.42 12596.48 9097.64 12891.42 12795.55 25097.71 12688.99 20292.34 16295.82 19189.19 8699.11 13386.14 24897.38 12798.90 98
MVS91.71 19590.44 22095.51 14595.20 24491.59 11996.04 22897.45 15873.44 34887.36 28295.60 20685.42 13999.10 13485.97 25397.46 12295.83 226
thres600view792.49 16891.60 17695.18 15897.91 11489.47 18797.65 8494.66 31292.18 11693.33 14194.91 23178.06 26699.10 13481.61 29494.06 18896.98 189
Test_1112_low_res92.84 16091.84 16995.85 12697.04 15489.97 17395.53 25296.64 23485.38 28589.65 22695.18 22285.86 13499.10 13487.70 21793.58 19698.49 127
CNLPA94.28 10793.53 11796.52 8598.38 8192.55 8996.59 19096.88 21690.13 17591.91 17197.24 11885.21 14199.09 13787.64 22397.83 11497.92 159
OMC-MVS95.09 8894.70 9096.25 10998.46 7491.28 12996.43 19797.57 13992.04 11994.77 11397.96 7187.01 11999.09 13791.31 15396.77 14198.36 142
thres100view90092.43 16991.58 17794.98 16797.92 11389.37 19397.71 7894.66 31292.20 11293.31 14294.90 23278.06 26699.08 13981.40 29794.08 18596.48 205
tfpn200view992.38 17291.52 18094.95 17097.85 11789.29 19797.41 10694.88 30792.19 11493.27 14494.46 25678.17 26299.08 13981.40 29794.08 18596.48 205
thres40092.42 17091.52 18095.12 16297.85 11789.29 19797.41 10694.88 30792.19 11493.27 14494.46 25678.17 26299.08 13981.40 29794.08 18596.98 189
tttt051792.96 15292.33 15594.87 17397.11 14687.16 25097.97 5292.09 34190.63 16293.88 12997.01 12976.50 27799.06 14290.29 16895.45 16598.38 140
thisisatest053093.03 14992.21 15895.49 14897.07 14889.11 20597.49 10292.19 34090.16 17494.09 12396.41 16476.43 28099.05 14390.38 16595.68 16398.31 144
PVSNet86.66 1892.24 18091.74 17393.73 22397.77 12283.69 30392.88 32096.72 22587.91 23893.00 14894.86 23478.51 25699.05 14386.53 24097.45 12698.47 130
thres20092.23 18191.39 18394.75 18297.61 13089.03 20696.60 18995.09 29892.08 11893.28 14394.00 27978.39 26099.04 14581.26 30194.18 18496.19 210
thisisatest051592.29 17791.30 18895.25 15696.60 16988.90 20994.36 28592.32 33987.92 23793.43 13994.57 24977.28 27399.00 14689.42 18495.86 15897.86 163
PatchMatch-RL92.90 15692.02 16395.56 14198.19 10090.80 15095.27 26497.18 18487.96 23691.86 17395.68 20380.44 22198.99 14784.01 27697.54 12196.89 194
CS-MVS95.80 7095.65 6696.24 11097.32 13791.43 12698.10 3997.91 10393.38 7095.16 10894.57 24990.21 7998.98 14895.53 6598.67 9498.30 145
MSDG91.42 21090.24 23094.96 16997.15 14588.91 20893.69 30596.32 24885.72 28186.93 29196.47 16080.24 22598.98 14880.57 30395.05 17396.98 189
EIA-MVS95.53 7795.47 7095.71 13497.06 15189.63 17897.82 6497.87 10893.57 6293.92 12895.04 22790.61 7498.95 15094.62 8998.68 9398.54 120
MSLP-MVS++96.94 3297.06 1396.59 8398.72 5991.86 11297.67 8198.49 1294.66 3697.24 3698.41 3492.31 3798.94 15196.61 2199.46 3898.96 91
ETV-MVS96.02 6495.89 6296.40 9697.16 14392.44 9297.47 10397.77 11594.55 3896.48 6494.51 25191.23 6298.92 15295.65 5698.19 10597.82 167
Vis-MVSNetpermissive95.23 8494.81 8696.51 8897.18 14291.58 12098.26 2798.12 5694.38 4394.90 11098.15 5982.28 19298.92 15291.45 15198.58 9899.01 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAPA-MVS90.10 792.30 17691.22 19395.56 14198.33 8589.60 18096.79 16897.65 13181.83 32291.52 17697.23 11987.94 10298.91 15471.31 34398.37 10198.17 149
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
XVG-OURS-SEG-HR93.86 12393.55 11594.81 17697.06 15188.53 21795.28 26297.45 15891.68 12794.08 12497.68 9182.41 19098.90 15593.84 10592.47 20596.98 189
mvs-test193.63 13093.69 11193.46 23896.02 20384.61 29297.24 12496.72 22593.85 5392.30 16395.76 19783.08 17198.89 15691.69 14596.54 14896.87 195
XVG-OURS93.72 12893.35 12694.80 17897.07 14888.61 21494.79 27297.46 15291.97 12293.99 12597.86 7781.74 20398.88 15792.64 12592.67 20396.92 193
testdata95.46 15298.18 10288.90 20997.66 12982.73 31797.03 4798.07 6390.06 8198.85 15889.67 17898.98 8498.64 117
lupinMVS94.99 9394.56 9396.29 10696.34 18791.21 13395.83 24096.27 25088.93 20696.22 7396.88 13586.20 13098.85 15895.27 6899.05 8198.82 106
旧先验295.94 23581.66 32397.34 3498.82 16092.26 127
EPP-MVSNet95.22 8595.04 8395.76 12897.49 13589.56 18298.67 597.00 20590.69 15794.24 12197.62 9989.79 8598.81 16193.39 11596.49 14998.92 96
131492.81 16292.03 16295.14 16095.33 23489.52 18696.04 22897.44 16287.72 24786.25 29795.33 21783.84 15898.79 16289.26 18997.05 13897.11 187
Effi-MVS+94.93 9494.45 9996.36 10196.61 16891.47 12396.41 19997.41 16791.02 15294.50 11695.92 18587.53 11098.78 16393.89 10396.81 14098.84 105
RPSCF90.75 24290.86 20290.42 31296.84 15976.29 34595.61 24996.34 24783.89 30591.38 17897.87 7576.45 27898.78 16387.16 23592.23 20896.20 209
jason94.84 9894.39 10196.18 11295.52 22090.93 14696.09 22696.52 24189.28 19496.01 8397.32 11484.70 14798.77 16595.15 7198.91 8898.85 103
jason: jason.
MVS_Test94.89 9694.62 9195.68 13596.83 16189.55 18396.70 17697.17 18691.17 14795.60 9996.11 17987.87 10498.76 16693.01 12397.17 13698.72 112
ACMM89.79 892.96 15292.50 15194.35 19696.30 18988.71 21297.58 9297.36 17391.40 13890.53 19596.65 14679.77 23498.75 16791.24 15591.64 21895.59 239
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
casdiffmvs95.64 7395.49 6996.08 11496.76 16690.45 16097.29 12197.44 16294.00 4995.46 10497.98 7087.52 11198.73 16895.64 5797.33 13099.08 80
LPG-MVS_test92.94 15492.56 14694.10 20396.16 19688.26 22397.65 8497.46 15291.29 14090.12 21097.16 12179.05 24598.73 16892.25 12991.89 21695.31 256
LGP-MVS_train94.10 20396.16 19688.26 22397.46 15291.29 14090.12 21097.16 12179.05 24598.73 16892.25 12991.89 21695.31 256
ACMP89.59 1092.62 16592.14 15994.05 20696.40 18488.20 22697.36 11397.25 18291.52 13088.30 26196.64 14778.46 25798.72 17191.86 14091.48 22295.23 264
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
baseline291.63 19890.86 20293.94 21594.33 28386.32 26595.92 23691.64 34589.37 19286.94 29094.69 24381.62 20598.69 17288.64 20394.57 18196.81 197
baseline95.58 7595.42 7396.08 11496.78 16390.41 16297.16 13597.45 15893.69 6195.65 9897.85 7887.29 11598.68 17395.66 5397.25 13399.13 74
diffmvs95.25 8395.13 8195.63 13796.43 18389.34 19495.99 23397.35 17492.83 9496.31 7097.37 11386.44 12598.67 17496.26 3097.19 13598.87 102
HyFIR lowres test93.66 12992.92 13495.87 12598.24 9389.88 17594.58 27698.49 1285.06 29193.78 13095.78 19682.86 17898.67 17491.77 14195.71 16299.07 82
gm-plane-assit93.22 31378.89 34184.82 29593.52 29598.64 17687.72 215
OPM-MVS93.28 14092.76 13794.82 17494.63 27390.77 15296.65 18197.18 18493.72 5891.68 17497.26 11779.33 24298.63 17792.13 13392.28 20795.07 268
Fast-Effi-MVS+93.46 13592.75 13995.59 14096.77 16490.03 16796.81 16797.13 18988.19 22891.30 18394.27 26786.21 12998.63 17787.66 22296.46 15198.12 151
ACMH87.59 1690.53 24989.42 25893.87 21896.21 19187.92 23397.24 12496.94 20888.45 22283.91 32096.27 17171.92 30298.62 17984.43 27389.43 24895.05 270
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HQP_MVS93.78 12693.43 12394.82 17496.21 19189.99 17097.74 7197.51 14594.85 2591.34 18096.64 14781.32 20898.60 18093.02 12192.23 20895.86 222
plane_prior597.51 14598.60 18093.02 12192.23 20895.86 222
XVG-ACMP-BASELINE90.93 23690.21 23493.09 25294.31 28585.89 27395.33 25997.26 18091.06 15189.38 23495.44 21568.61 32298.60 18089.46 18391.05 22994.79 290
BH-RMVSNet92.72 16491.97 16594.97 16897.16 14387.99 23296.15 22495.60 27590.62 16391.87 17297.15 12378.41 25998.57 18383.16 28297.60 12098.36 142
LTVRE_ROB88.41 1390.99 23289.92 24394.19 20096.18 19489.55 18396.31 21297.09 19487.88 23985.67 30195.91 18678.79 25398.57 18381.50 29589.98 24394.44 302
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH+87.92 1490.20 25789.18 26393.25 24696.48 18086.45 26496.99 14996.68 23188.83 21084.79 31096.22 17270.16 31698.53 18584.42 27488.04 25994.77 293
tpmvs89.83 26689.15 26491.89 28194.92 25780.30 32893.11 31795.46 28086.28 27288.08 26892.65 30780.44 22198.52 18681.47 29689.92 24496.84 196
AUN-MVS91.76 19490.75 20994.81 17697.00 15588.57 21596.65 18196.49 24289.63 18692.15 16696.12 17678.66 25498.50 18790.83 15979.18 33297.36 184
DWT-MVSNet_test90.76 24089.89 24493.38 24195.04 25183.70 30295.85 23994.30 32388.19 22890.46 19792.80 30573.61 29898.50 18788.16 20790.58 23697.95 158
HQP4-MVS90.14 20498.50 18795.78 229
HQP-MVS93.19 14492.74 14094.54 18995.86 20689.33 19596.65 18197.39 16893.55 6390.14 20495.87 18780.95 21198.50 18792.13 13392.10 21395.78 229
IS-MVSNet94.90 9594.52 9696.05 11797.67 12690.56 15698.44 1696.22 25393.21 7693.99 12597.74 8785.55 13898.45 19189.98 16997.86 11399.14 73
CHOSEN 280x42093.12 14592.72 14194.34 19796.71 16787.27 24490.29 33997.72 12286.61 26991.34 18095.29 21884.29 15498.41 19293.25 11798.94 8697.35 185
VPA-MVSNet93.24 14192.48 15295.51 14595.70 21492.39 9397.86 5998.66 992.30 10892.09 16995.37 21680.49 22098.40 19393.95 10085.86 28095.75 233
PMMVS92.86 15892.34 15494.42 19494.92 25786.73 25894.53 27896.38 24684.78 29694.27 12095.12 22683.13 17098.40 19391.47 15096.49 14998.12 151
CLD-MVS92.98 15192.53 14994.32 19896.12 20089.20 20195.28 26297.47 15092.66 10089.90 21795.62 20580.58 21898.40 19392.73 12492.40 20695.38 252
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
cascas91.20 22390.08 23794.58 18894.97 25389.16 20493.65 30797.59 13779.90 33489.40 23392.92 30475.36 28798.36 19692.14 13294.75 17896.23 208
BH-untuned92.94 15492.62 14493.92 21797.22 13986.16 27196.40 20296.25 25290.06 17689.79 22196.17 17583.19 16798.35 19787.19 23397.27 13297.24 186
TR-MVS91.48 20890.59 21594.16 20296.40 18487.33 24295.67 24595.34 28787.68 24891.46 17795.52 21276.77 27698.35 19782.85 28693.61 19496.79 198
TDRefinement86.53 29584.76 30591.85 28282.23 35584.25 29496.38 20595.35 28484.97 29384.09 31794.94 22965.76 33998.34 19984.60 27174.52 34092.97 324
Effi-MVS+-dtu93.08 14693.21 12992.68 26696.02 20383.25 30697.14 13896.72 22593.85 5391.20 19093.44 29883.08 17198.30 20091.69 14595.73 16196.50 204
tpmrst91.44 20991.32 18691.79 28695.15 24579.20 33893.42 31195.37 28388.55 22193.49 13793.67 29282.49 18898.27 20190.41 16489.34 24997.90 160
XXY-MVS92.16 18491.23 19294.95 17094.75 26790.94 14597.47 10397.43 16589.14 19888.90 24596.43 16279.71 23598.24 20289.56 18187.68 26395.67 238
UniMVSNet_ETH3D91.34 21790.22 23394.68 18394.86 26287.86 23697.23 12997.46 15287.99 23589.90 21796.92 13366.35 33498.23 20390.30 16790.99 23197.96 156
nrg03094.05 11793.31 12796.27 10795.22 24294.59 2898.34 2097.46 15292.93 9291.21 18996.64 14787.23 11798.22 20494.99 7885.80 28195.98 220
baseline192.82 16191.90 16795.55 14397.20 14190.77 15297.19 13294.58 31592.20 11292.36 16096.34 16884.16 15598.21 20589.20 19383.90 31297.68 172
RRT_test8_iter0591.19 22690.78 20792.41 27195.76 21383.14 30797.32 11797.46 15291.37 13989.07 24495.57 20770.33 31398.21 20593.56 10886.62 27595.89 221
VPNet92.23 18191.31 18794.99 16595.56 21890.96 14497.22 13097.86 11192.96 9190.96 19196.62 15475.06 28898.20 20791.90 13783.65 31495.80 228
CostFormer91.18 22790.70 21192.62 26794.84 26381.76 31694.09 29594.43 31784.15 30292.72 15593.77 28779.43 24098.20 20790.70 16292.18 21197.90 160
USDC88.94 27387.83 27892.27 27494.66 27084.96 28793.86 30095.90 26387.34 25683.40 32295.56 20967.43 32898.19 20982.64 29089.67 24793.66 317
test_part192.21 18391.10 19795.51 14597.80 12092.66 8598.02 4697.68 12789.79 18488.80 25196.02 18176.85 27598.18 21090.86 15884.11 30795.69 236
PS-MVSNAJss93.74 12793.51 11994.44 19193.91 29489.28 19997.75 7097.56 14292.50 10489.94 21696.54 15788.65 9498.18 21093.83 10690.90 23395.86 222
tpm cat188.36 28287.21 28591.81 28595.13 24780.55 32592.58 32595.70 27074.97 34587.45 27891.96 32078.01 26898.17 21280.39 30588.74 25596.72 200
PAPM91.52 20690.30 22695.20 15795.30 23789.83 17693.38 31296.85 22086.26 27388.59 25595.80 19284.88 14598.15 21375.67 33095.93 15697.63 173
Anonymous2023121190.63 24789.42 25894.27 19998.24 9389.19 20398.05 4497.89 10479.95 33388.25 26494.96 22872.56 30198.13 21489.70 17785.14 29195.49 240
PatchmatchNetpermissive91.91 19091.35 18493.59 23195.38 22684.11 29793.15 31695.39 28189.54 18792.10 16893.68 29182.82 18098.13 21484.81 26795.32 16798.52 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TinyColmap86.82 29485.35 30091.21 29994.91 26082.99 30893.94 29894.02 32783.58 31081.56 32994.68 24462.34 34698.13 21475.78 32887.35 26992.52 332
dp88.90 27588.26 27590.81 30594.58 27676.62 34492.85 32194.93 30585.12 29090.07 21593.07 30275.81 28298.12 21780.53 30487.42 26797.71 170
jajsoiax92.42 17091.89 16894.03 20793.33 31288.50 21897.73 7397.53 14392.00 12188.85 24896.50 15975.62 28698.11 21893.88 10491.56 22195.48 241
patchmatchnet-post90.45 33082.65 18598.10 219
SCA91.84 19291.18 19593.83 21995.59 21684.95 28894.72 27395.58 27790.82 15392.25 16493.69 28975.80 28398.10 21986.20 24695.98 15498.45 132
v7n90.76 24089.86 24593.45 23993.54 30487.60 24197.70 7997.37 17188.85 20887.65 27694.08 27781.08 21098.10 21984.68 26983.79 31394.66 297
RRT_MVS93.21 14292.32 15695.91 12394.92 25794.15 4396.92 15696.86 21991.42 13591.28 18696.43 16279.66 23798.10 21993.29 11690.06 24295.46 244
mvs_tets92.31 17591.76 17093.94 21593.41 30988.29 22197.63 8997.53 14392.04 11988.76 25296.45 16174.62 29098.09 22393.91 10291.48 22295.45 246
Fast-Effi-MVS+-dtu92.29 17791.99 16493.21 24995.27 23885.52 27897.03 14196.63 23792.09 11789.11 24395.14 22480.33 22498.08 22487.54 22694.74 17996.03 219
test_post17.58 36281.76 20298.08 224
MDTV_nov1_ep1390.76 20895.22 24280.33 32793.03 31995.28 28888.14 23392.84 15493.83 28381.34 20798.08 22482.86 28594.34 183
test-LLR91.42 21091.19 19492.12 27694.59 27480.66 32294.29 28992.98 33591.11 14990.76 19392.37 31279.02 24798.07 22788.81 19996.74 14297.63 173
test-mter90.19 25889.54 25792.12 27694.59 27480.66 32294.29 28992.98 33587.68 24890.76 19392.37 31267.67 32698.07 22788.81 19996.74 14297.63 173
BH-w/o92.14 18691.75 17193.31 24496.99 15685.73 27595.67 24595.69 27188.73 21689.26 24094.82 23782.97 17698.07 22785.26 26396.32 15296.13 215
tfpnnormal89.70 26788.40 27293.60 23095.15 24590.10 16697.56 9498.16 5087.28 25886.16 29894.63 24777.57 27198.05 23074.48 33284.59 30192.65 330
V4291.58 20190.87 20193.73 22394.05 29188.50 21897.32 11796.97 20688.80 21489.71 22294.33 26282.54 18698.05 23089.01 19685.07 29394.64 298
EI-MVSNet93.03 14992.88 13593.48 23695.77 21186.98 25396.44 19597.12 19090.66 16091.30 18397.64 9786.56 12298.05 23089.91 17190.55 23795.41 247
MVSTER93.20 14392.81 13694.37 19596.56 17489.59 18197.06 14097.12 19091.24 14491.30 18395.96 18382.02 19798.05 23093.48 11190.55 23795.47 243
UniMVSNet (Re)93.31 13992.55 14795.61 13995.39 22593.34 7097.39 11098.71 593.14 8190.10 21294.83 23687.71 10598.03 23491.67 14783.99 30895.46 244
v2v48291.59 19990.85 20493.80 22193.87 29688.17 22896.94 15596.88 21689.54 18789.53 23094.90 23281.70 20498.02 23589.25 19085.04 29595.20 265
v891.29 22090.53 21993.57 23394.15 28788.12 23097.34 11497.06 19888.99 20288.32 26094.26 26983.08 17198.01 23687.62 22483.92 31194.57 299
v14419291.06 22990.28 22793.39 24093.66 30287.23 24796.83 16497.07 19687.43 25389.69 22494.28 26681.48 20698.00 23787.18 23484.92 29794.93 276
v114491.37 21490.60 21493.68 22893.89 29588.23 22596.84 16397.03 20388.37 22489.69 22494.39 25882.04 19697.98 23887.80 21485.37 28694.84 282
v124090.70 24589.85 24693.23 24793.51 30686.80 25696.61 18797.02 20487.16 26089.58 22794.31 26579.55 23997.98 23885.52 25985.44 28594.90 279
OurMVSNet-221017-090.51 25090.19 23591.44 29593.41 30981.25 31996.98 15196.28 24991.68 12786.55 29596.30 16974.20 29397.98 23888.96 19787.40 26895.09 267
v192192090.85 23890.03 24193.29 24593.55 30386.96 25596.74 17197.04 20187.36 25589.52 23194.34 26180.23 22697.97 24186.27 24485.21 29094.94 274
v119291.07 22890.23 23193.58 23293.70 30087.82 23796.73 17297.07 19687.77 24489.58 22794.32 26480.90 21597.97 24186.52 24185.48 28494.95 272
v1091.04 23090.23 23193.49 23594.12 28888.16 22997.32 11797.08 19588.26 22788.29 26294.22 27282.17 19597.97 24186.45 24384.12 30694.33 305
PVSNet_082.17 1985.46 30783.64 31090.92 30395.27 23879.49 33590.55 33895.60 27583.76 30883.00 32689.95 33371.09 30897.97 24182.75 28860.79 35395.31 256
GA-MVS91.38 21290.31 22594.59 18494.65 27187.62 24094.34 28696.19 25590.73 15690.35 20093.83 28371.84 30397.96 24587.22 23293.61 19498.21 148
ITE_SJBPF92.43 27095.34 23185.37 28195.92 26191.47 13287.75 27596.39 16671.00 30997.96 24582.36 29189.86 24593.97 314
D2MVS91.30 21990.95 19992.35 27294.71 26985.52 27896.18 22398.21 4088.89 20786.60 29493.82 28579.92 23297.95 24789.29 18890.95 23293.56 318
FIs94.09 11593.70 11095.27 15595.70 21492.03 10798.10 3998.68 793.36 7390.39 19996.70 14287.63 10897.94 24892.25 12990.50 23995.84 225
tpm289.96 26189.21 26292.23 27594.91 26081.25 31993.78 30294.42 31880.62 33191.56 17593.44 29876.44 27997.94 24885.60 25892.08 21597.49 182
TAMVS94.01 11993.46 12195.64 13696.16 19690.45 16096.71 17596.89 21589.27 19593.46 13896.92 13387.29 11597.94 24888.70 20295.74 16098.53 121
MVSFormer95.37 7995.16 8095.99 12196.34 18791.21 13398.22 3297.57 13991.42 13596.22 7397.32 11486.20 13097.92 25194.07 9799.05 8198.85 103
test_djsdf93.07 14792.76 13794.00 20893.49 30788.70 21398.22 3297.57 13991.42 13590.08 21495.55 21082.85 17997.92 25194.07 9791.58 22095.40 250
JIA-IIPM88.26 28487.04 28891.91 28093.52 30581.42 31889.38 34594.38 31980.84 32990.93 19280.74 34979.22 24397.92 25182.76 28791.62 21996.38 207
Vis-MVSNet (Re-imp)94.15 11093.88 10694.95 17097.61 13087.92 23398.10 3995.80 26792.22 11093.02 14797.45 10984.53 15097.91 25488.24 20697.97 11199.02 83
CDS-MVSNet94.14 11393.54 11695.93 12296.18 19491.46 12496.33 21097.04 20188.97 20493.56 13396.51 15887.55 10997.89 25589.80 17495.95 15598.44 135
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
anonymousdsp92.16 18491.55 17893.97 21192.58 32489.55 18397.51 9797.42 16689.42 19188.40 25894.84 23580.66 21797.88 25691.87 13991.28 22694.48 300
FC-MVSNet-test93.94 12193.57 11495.04 16395.48 22291.45 12598.12 3898.71 593.37 7190.23 20296.70 14287.66 10697.85 25791.49 14990.39 24095.83 226
ADS-MVSNet89.89 26388.68 26993.53 23495.86 20684.89 28990.93 33595.07 29983.23 31491.28 18691.81 32279.01 24997.85 25779.52 30991.39 22497.84 164
UniMVSNet_NR-MVSNet93.37 13792.67 14295.47 15195.34 23192.83 8097.17 13498.58 1092.98 9090.13 20895.80 19288.37 9997.85 25791.71 14383.93 30995.73 235
DU-MVS92.90 15692.04 16195.49 14894.95 25592.83 8097.16 13598.24 3493.02 8490.13 20895.71 20083.47 16397.85 25791.71 14383.93 30995.78 229
v14890.99 23290.38 22292.81 26293.83 29785.80 27496.78 17096.68 23189.45 19088.75 25393.93 28282.96 17797.82 26187.83 21383.25 31694.80 288
MS-PatchMatch90.27 25489.77 25091.78 28794.33 28384.72 29195.55 25096.73 22486.17 27586.36 29695.28 22071.28 30797.80 26284.09 27598.14 10892.81 327
bset_n11_16_dypcd91.55 20390.59 21594.44 19191.51 33290.25 16492.70 32393.42 33292.27 10990.22 20394.74 24178.42 25897.80 26294.19 9587.86 26295.29 263
WR-MVS92.34 17391.53 17994.77 18095.13 24790.83 14996.40 20297.98 9891.88 12389.29 23895.54 21182.50 18797.80 26289.79 17585.27 28995.69 236
pm-mvs190.72 24489.65 25693.96 21294.29 28689.63 17897.79 6796.82 22289.07 19986.12 29995.48 21478.61 25597.78 26586.97 23781.67 32394.46 301
EPMVS90.70 24589.81 24893.37 24294.73 26884.21 29593.67 30688.02 35289.50 18992.38 15993.49 29677.82 27097.78 26586.03 25292.68 20298.11 154
NR-MVSNet92.34 17391.27 19095.53 14494.95 25593.05 7597.39 11098.07 7092.65 10184.46 31195.71 20085.00 14497.77 26789.71 17683.52 31595.78 229
MVP-Stereo90.74 24390.08 23792.71 26493.19 31488.20 22695.86 23896.27 25086.07 27684.86 30994.76 23977.84 26997.75 26883.88 27998.01 11092.17 338
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
mvs_anonymous93.82 12493.74 10994.06 20596.44 18285.41 28095.81 24197.05 19989.85 18190.09 21396.36 16787.44 11397.75 26893.97 9996.69 14599.02 83
EG-PatchMatch MVS87.02 29385.44 29791.76 28992.67 32285.00 28696.08 22796.45 24383.41 31379.52 33993.49 29657.10 35097.72 27079.34 31490.87 23492.56 331
SixPastTwentyTwo89.15 27188.54 27190.98 30293.49 30780.28 32996.70 17694.70 31190.78 15484.15 31695.57 20771.78 30497.71 27184.63 27085.07 29394.94 274
test_post192.81 32216.58 36380.53 21997.68 27286.20 246
pmmvs687.81 28886.19 29292.69 26591.32 33386.30 26697.34 11496.41 24580.59 33284.05 31994.37 26067.37 32997.67 27384.75 26879.51 33194.09 313
TESTMET0.1,190.06 26089.42 25891.97 27994.41 28180.62 32494.29 28991.97 34387.28 25890.44 19892.47 31168.79 32197.67 27388.50 20596.60 14797.61 177
LF4IMVS87.94 28687.25 28389.98 31692.38 32880.05 33294.38 28495.25 29187.59 25084.34 31294.74 24164.31 34197.66 27584.83 26687.45 26592.23 335
miper_enhance_ethall91.54 20591.01 19893.15 25095.35 23087.07 25293.97 29796.90 21386.79 26689.17 24293.43 30086.55 12397.64 27689.97 17086.93 27094.74 294
IterMVS-LS92.29 17791.94 16693.34 24396.25 19086.97 25496.57 19397.05 19990.67 15889.50 23294.80 23886.59 12197.64 27689.91 17186.11 27995.40 250
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OpenMVS_ROBcopyleft81.14 2084.42 31282.28 31590.83 30490.06 34084.05 29895.73 24494.04 32673.89 34780.17 33891.53 32659.15 34897.64 27666.92 34989.05 25190.80 344
cl-mvsnet291.21 22290.56 21893.14 25196.09 20286.80 25694.41 28396.58 24087.80 24288.58 25693.99 28080.85 21697.62 27989.87 17386.93 27094.99 271
CMPMVSbinary62.92 2185.62 30684.92 30387.74 32689.14 34673.12 35094.17 29296.80 22373.98 34673.65 34794.93 23066.36 33397.61 28083.95 27891.28 22692.48 333
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
eth_miper_zixun_eth91.02 23190.59 21592.34 27395.33 23484.35 29394.10 29496.90 21388.56 22088.84 24994.33 26284.08 15697.60 28188.77 20184.37 30495.06 269
TranMVSNet+NR-MVSNet92.50 16691.63 17595.14 16094.76 26692.07 10597.53 9698.11 5992.90 9389.56 22996.12 17683.16 16897.60 28189.30 18783.20 31895.75 233
WR-MVS_H92.00 18891.35 18493.95 21395.09 24989.47 18798.04 4598.68 791.46 13388.34 25994.68 24485.86 13497.56 28385.77 25684.24 30594.82 285
lessismore_v090.45 31191.96 33179.09 34087.19 35580.32 33694.39 25866.31 33597.55 28484.00 27776.84 33694.70 295
miper_ehance_all_eth91.59 19991.13 19692.97 25695.55 21986.57 26394.47 27996.88 21687.77 24488.88 24794.01 27886.22 12897.54 28589.49 18286.93 27094.79 290
cl-mvsnet_90.96 23590.32 22492.89 25895.37 22886.21 26994.46 28196.64 23487.82 24088.15 26794.18 27382.98 17597.54 28587.70 21785.59 28294.92 278
cl-mvsnet190.97 23490.33 22392.88 25995.36 22986.19 27094.46 28196.63 23787.82 24088.18 26694.23 27082.99 17497.53 28787.72 21585.57 28394.93 276
gg-mvs-nofinetune87.82 28785.61 29694.44 19194.46 27889.27 20091.21 33484.61 35780.88 32889.89 21974.98 35171.50 30597.53 28785.75 25797.21 13496.51 203
CP-MVSNet91.89 19191.24 19193.82 22095.05 25088.57 21597.82 6498.19 4491.70 12688.21 26595.76 19781.96 19897.52 28987.86 21284.65 29895.37 253
Patchmatch-test89.42 26987.99 27693.70 22695.27 23885.11 28488.98 34694.37 32081.11 32687.10 28793.69 28982.28 19297.50 29074.37 33494.76 17798.48 129
PS-CasMVS91.55 20390.84 20593.69 22794.96 25488.28 22297.84 6398.24 3491.46 13388.04 26995.80 19279.67 23697.48 29187.02 23684.54 30295.31 256
cl_fuxian91.38 21290.89 20092.88 25995.58 21786.30 26694.68 27496.84 22188.17 23088.83 25094.23 27085.65 13797.47 29289.36 18584.63 29994.89 280
FMVSNet391.78 19390.69 21295.03 16496.53 17692.27 9997.02 14496.93 20989.79 18489.35 23594.65 24677.01 27497.47 29286.12 24988.82 25295.35 254
pmmvs490.93 23689.85 24694.17 20193.34 31190.79 15194.60 27596.02 25984.62 29787.45 27895.15 22381.88 20197.45 29487.70 21787.87 26194.27 309
Baseline_NR-MVSNet91.20 22390.62 21392.95 25793.83 29788.03 23197.01 14895.12 29788.42 22389.70 22395.13 22583.47 16397.44 29589.66 17983.24 31793.37 322
tpm90.25 25589.74 25391.76 28993.92 29379.73 33493.98 29693.54 33088.28 22691.99 17093.25 30177.51 27297.44 29587.30 23187.94 26098.12 151
FMVSNet291.31 21890.08 23794.99 16596.51 17792.21 10097.41 10696.95 20788.82 21188.62 25494.75 24073.87 29497.42 29785.20 26488.55 25795.35 254
SD-MVS97.41 997.53 697.06 7198.57 7294.46 3097.92 5698.14 5394.82 2999.01 398.55 1994.18 1197.41 29896.94 1099.64 1199.32 60
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS-HIRNet82.47 31681.21 31886.26 33195.38 22669.21 35488.96 34789.49 35166.28 35080.79 33274.08 35368.48 32397.39 29971.93 34195.47 16492.18 337
EPNet_dtu91.71 19591.28 18992.99 25593.76 29983.71 30196.69 17895.28 28893.15 8087.02 28995.95 18483.37 16697.38 30079.46 31296.84 13997.88 162
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs589.86 26588.87 26792.82 26192.86 31886.23 26896.26 21695.39 28184.24 30187.12 28594.51 25174.27 29297.36 30187.61 22587.57 26494.86 281
PEN-MVS91.20 22390.44 22093.48 23694.49 27787.91 23597.76 6998.18 4691.29 14087.78 27495.74 19980.35 22397.33 30285.46 26082.96 31995.19 266
TransMVSNet (Re)88.94 27387.56 28093.08 25394.35 28288.45 22097.73 7395.23 29287.47 25284.26 31495.29 21879.86 23397.33 30279.44 31374.44 34193.45 321
GBi-Net91.35 21590.27 22894.59 18496.51 17791.18 13797.50 9896.93 20988.82 21189.35 23594.51 25173.87 29497.29 30486.12 24988.82 25295.31 256
test191.35 21590.27 22894.59 18496.51 17791.18 13797.50 9896.93 20988.82 21189.35 23594.51 25173.87 29497.29 30486.12 24988.82 25295.31 256
FMVSNet189.88 26488.31 27394.59 18495.41 22491.18 13797.50 9896.93 20986.62 26887.41 28094.51 25165.94 33897.29 30483.04 28487.43 26695.31 256
test_040286.46 29684.79 30491.45 29495.02 25285.55 27796.29 21494.89 30680.90 32782.21 32793.97 28168.21 32597.29 30462.98 35188.68 25691.51 341
CR-MVSNet90.82 23989.77 25093.95 21394.45 27987.19 24890.23 34095.68 27386.89 26492.40 15792.36 31580.91 21397.05 30881.09 30293.95 18997.60 178
MVS_030488.79 27787.57 27992.46 26894.65 27186.15 27296.40 20297.17 18686.44 27088.02 27091.71 32456.68 35197.03 30984.47 27292.58 20494.19 310
LCM-MVSNet-Re92.50 16692.52 15092.44 26996.82 16281.89 31596.92 15693.71 32992.41 10684.30 31394.60 24885.08 14397.03 30991.51 14897.36 12898.40 138
Patchmtry88.64 28087.25 28392.78 26394.09 28986.64 25989.82 34395.68 27380.81 33087.63 27792.36 31580.91 21397.03 30978.86 31585.12 29294.67 296
PatchT88.87 27687.42 28193.22 24894.08 29085.10 28589.51 34494.64 31481.92 32192.36 16088.15 34280.05 22997.01 31272.43 33993.65 19297.54 181
DTE-MVSNet90.56 24889.75 25293.01 25493.95 29287.25 24597.64 8897.65 13190.74 15587.12 28595.68 20379.97 23197.00 31383.33 28181.66 32494.78 292
ppachtmachnet_test88.35 28387.29 28291.53 29292.45 32683.57 30493.75 30395.97 26084.28 30085.32 30694.18 27379.00 25196.93 31475.71 32984.99 29694.10 311
miper_lstm_enhance90.50 25190.06 24091.83 28395.33 23483.74 29993.86 30096.70 23087.56 25187.79 27393.81 28683.45 16596.92 31587.39 22884.62 30094.82 285
GG-mvs-BLEND93.62 22993.69 30189.20 20192.39 32883.33 35887.98 27289.84 33571.00 30996.87 31682.08 29395.40 16694.80 288
ambc86.56 33083.60 35370.00 35385.69 35094.97 30380.60 33488.45 33837.42 35796.84 31782.69 28975.44 33992.86 326
ET-MVSNet_ETH3D91.49 20790.11 23695.63 13796.40 18491.57 12195.34 25893.48 33190.60 16675.58 34595.49 21380.08 22896.79 31894.25 9389.76 24698.52 122
our_test_388.78 27887.98 27791.20 30092.45 32682.53 31093.61 30995.69 27185.77 28084.88 30893.71 28879.99 23096.78 31979.47 31186.24 27694.28 308
K. test v387.64 28986.75 29090.32 31393.02 31779.48 33696.61 18792.08 34290.66 16080.25 33794.09 27667.21 33096.65 32085.96 25480.83 32794.83 283
IterMVS-SCA-FT90.31 25389.81 24891.82 28495.52 22084.20 29694.30 28896.15 25690.61 16487.39 28194.27 26775.80 28396.44 32187.34 22986.88 27494.82 285
N_pmnet78.73 31978.71 32178.79 33492.80 32046.50 36394.14 29343.71 36578.61 33980.83 33191.66 32574.94 28996.36 32267.24 34884.45 30393.50 319
UnsupCasMVSNet_bld82.13 31779.46 32090.14 31588.00 35082.47 31190.89 33796.62 23978.94 33875.61 34484.40 34756.63 35296.31 32377.30 32366.77 35091.63 340
IterMVS90.15 25989.67 25491.61 29195.48 22283.72 30094.33 28796.12 25789.99 17787.31 28494.15 27575.78 28596.27 32486.97 23786.89 27394.83 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous2024052186.42 29785.44 29789.34 32090.33 33879.79 33396.73 17295.92 26183.71 30983.25 32391.36 32763.92 34296.01 32578.39 31885.36 28792.22 336
ADS-MVSNet289.45 26888.59 27092.03 27895.86 20682.26 31490.93 33594.32 32283.23 31491.28 18691.81 32279.01 24995.99 32679.52 30991.39 22497.84 164
KD-MVS_2432*160084.81 31082.64 31391.31 29791.07 33585.34 28291.22 33295.75 26885.56 28383.09 32490.21 33167.21 33095.89 32777.18 32462.48 35192.69 328
miper_refine_blended84.81 31082.64 31391.31 29791.07 33585.34 28291.22 33295.75 26885.56 28383.09 32490.21 33167.21 33095.89 32777.18 32462.48 35192.69 328
MDA-MVSNet-bldmvs85.00 30882.95 31291.17 30193.13 31683.33 30594.56 27795.00 30184.57 29865.13 35292.65 30770.45 31295.85 32973.57 33777.49 33494.33 305
PM-MVS83.48 31381.86 31788.31 32387.83 35177.59 34393.43 31091.75 34486.91 26380.63 33389.91 33444.42 35695.84 33085.17 26576.73 33791.50 342
MIMVSNet88.50 28186.76 28993.72 22594.84 26387.77 23891.39 33094.05 32586.41 27187.99 27192.59 30963.27 34395.82 33177.44 32092.84 20097.57 180
pmmvs-eth3d86.22 30084.45 30691.53 29288.34 34987.25 24594.47 27995.01 30083.47 31279.51 34089.61 33669.75 31995.71 33283.13 28376.73 33791.64 339
Anonymous2023120687.09 29286.14 29389.93 31791.22 33480.35 32696.11 22595.35 28483.57 31184.16 31593.02 30373.54 29995.61 33372.16 34086.14 27893.84 316
Patchmatch-RL test87.38 29086.24 29190.81 30588.74 34878.40 34288.12 34893.17 33487.11 26182.17 32889.29 33781.95 19995.60 33488.64 20377.02 33598.41 137
CVMVSNet91.23 22191.75 17189.67 31995.77 21174.69 34796.44 19594.88 30785.81 27992.18 16597.64 9779.07 24495.58 33588.06 20995.86 15898.74 110
MDA-MVSNet_test_wron85.87 30484.23 30890.80 30792.38 32882.57 30993.17 31495.15 29582.15 31967.65 34992.33 31878.20 26195.51 33677.33 32179.74 32894.31 307
YYNet185.87 30484.23 30890.78 30892.38 32882.46 31293.17 31495.14 29682.12 32067.69 34892.36 31578.16 26495.50 33777.31 32279.73 32994.39 303
UnsupCasMVSNet_eth85.99 30284.45 30690.62 30989.97 34182.40 31393.62 30897.37 17189.86 17978.59 34292.37 31265.25 34095.35 33882.27 29270.75 34694.10 311
EU-MVSNet88.72 27988.90 26688.20 32493.15 31574.21 34896.63 18694.22 32485.18 28887.32 28395.97 18276.16 28194.98 33985.27 26286.17 27795.41 247
DIV-MVS_2432*160085.95 30384.95 30288.96 32189.55 34579.11 33995.13 26996.42 24485.91 27884.07 31890.48 32970.03 31794.82 34080.04 30672.94 34492.94 325
CL-MVSNet_2432*160086.31 29985.15 30189.80 31888.83 34781.74 31793.93 29996.22 25386.67 26785.03 30790.80 32878.09 26594.50 34174.92 33171.86 34593.15 323
new_pmnet82.89 31581.12 31988.18 32589.63 34380.18 33091.77 32992.57 33876.79 34475.56 34688.23 34161.22 34794.48 34271.43 34282.92 32089.87 346
testgi87.97 28587.21 28590.24 31492.86 31880.76 32196.67 18094.97 30391.74 12585.52 30295.83 19062.66 34594.47 34376.25 32788.36 25895.48 241
FMVSNet587.29 29185.79 29591.78 28794.80 26587.28 24395.49 25395.28 28884.09 30383.85 32191.82 32162.95 34494.17 34478.48 31685.34 28893.91 315
DSMNet-mixed86.34 29886.12 29487.00 32989.88 34270.43 35194.93 27190.08 35077.97 34285.42 30592.78 30674.44 29193.96 34574.43 33395.14 16996.62 201
new-patchmatchnet83.18 31481.87 31687.11 32886.88 35275.99 34693.70 30495.18 29485.02 29277.30 34388.40 33965.99 33793.88 34674.19 33670.18 34791.47 343
pmmvs379.97 31877.50 32287.39 32782.80 35479.38 33792.70 32390.75 34970.69 34978.66 34187.47 34551.34 35493.40 34773.39 33869.65 34889.38 347
MIMVSNet184.93 30983.05 31190.56 31089.56 34484.84 29095.40 25695.35 28483.91 30480.38 33592.21 31957.23 34993.34 34870.69 34682.75 32293.50 319
test0.0.03 189.37 27088.70 26891.41 29692.47 32585.63 27695.22 26792.70 33791.11 14986.91 29293.65 29379.02 24793.19 34978.00 31989.18 25095.41 247
test20.0386.14 30185.40 29988.35 32290.12 33980.06 33195.90 23795.20 29388.59 21781.29 33093.62 29471.43 30692.65 35071.26 34481.17 32692.34 334
LCM-MVSNet72.55 32069.39 32482.03 33270.81 36165.42 35790.12 34294.36 32155.02 35465.88 35181.72 34824.16 36489.96 35174.32 33568.10 34990.71 345
Gipumacopyleft67.86 32365.41 32675.18 33792.66 32373.45 34966.50 35794.52 31653.33 35557.80 35566.07 35530.81 35889.20 35248.15 35578.88 33362.90 354
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS270.19 32266.92 32580.01 33376.35 35665.67 35686.22 34987.58 35464.83 35262.38 35380.29 35026.78 36288.49 35363.79 35054.07 35485.88 348
PMVScopyleft53.92 2258.58 32555.40 32868.12 33951.00 36448.64 36178.86 35487.10 35646.77 35635.84 36174.28 3528.76 36586.34 35442.07 35673.91 34269.38 352
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FPMVS71.27 32169.85 32375.50 33674.64 35759.03 35991.30 33191.50 34658.80 35357.92 35488.28 34029.98 36085.53 35553.43 35382.84 32181.95 350
ANet_high63.94 32459.58 32777.02 33561.24 36366.06 35585.66 35187.93 35378.53 34042.94 35771.04 35425.42 36380.71 35652.60 35430.83 35784.28 349
DeepMVS_CXcopyleft74.68 33890.84 33764.34 35881.61 36065.34 35167.47 35088.01 34348.60 35580.13 35762.33 35273.68 34379.58 351
E-PMN53.28 32652.56 33055.43 34174.43 35847.13 36283.63 35376.30 36142.23 35742.59 35862.22 35728.57 36174.40 35831.53 35831.51 35644.78 355
EMVS52.08 32851.31 33154.39 34272.62 36045.39 36483.84 35275.51 36241.13 35840.77 35959.65 35830.08 35973.60 35928.31 35929.90 35844.18 356
MVEpermissive50.73 2353.25 32748.81 33266.58 34065.34 36257.50 36072.49 35670.94 36340.15 35939.28 36063.51 3566.89 36773.48 36038.29 35742.38 35568.76 353
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt51.94 32953.82 32946.29 34333.73 36545.30 36578.32 35567.24 36418.02 36050.93 35687.05 34652.99 35353.11 36170.76 34525.29 35940.46 357
wuyk23d25.11 33024.57 33426.74 34473.98 35939.89 36657.88 3589.80 36612.27 36110.39 3626.97 3647.03 36636.44 36225.43 36017.39 3603.89 360
testmvs13.36 33216.33 3354.48 3465.04 3662.26 36893.18 3133.28 3672.70 3628.24 36321.66 3602.29 3692.19 3637.58 3612.96 3619.00 359
test12313.04 33315.66 3365.18 3454.51 3673.45 36792.50 3271.81 3682.50 3637.58 36420.15 3613.67 3682.18 3647.13 3621.07 3629.90 358
uanet_test0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
cdsmvs_eth3d_5k23.24 33130.99 3330.00 3470.00 3680.00 3690.00 35997.63 1330.00 3640.00 36596.88 13584.38 1510.00 3650.00 3630.00 3630.00 361
pcd_1.5k_mvsjas7.39 3359.85 3380.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 36588.65 940.00 3650.00 3630.00 3630.00 361
sosnet-low-res0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
sosnet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
uncertanet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
Regformer0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
ab-mvs-re8.06 33410.74 3370.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 36596.69 1440.00 3700.00 3650.00 3630.00 3630.00 361
uanet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
RE-MVS-def96.72 3599.02 4392.34 9497.98 4898.03 8493.52 6797.43 3198.51 2290.71 7396.05 4299.26 6399.43 49
IU-MVS99.42 695.39 997.94 10290.40 17198.94 597.41 799.66 899.74 5
save fliter98.91 4994.28 3597.02 14498.02 8895.35 8
test072699.45 295.36 1098.31 2298.29 2494.92 2398.99 498.92 295.08 5
GSMVS98.45 132
test_part299.28 2595.74 698.10 17
sam_mvs182.76 18198.45 132
sam_mvs81.94 200
MTGPAbinary98.08 64
MTMP97.86 5982.03 359
test9_res94.81 8499.38 4899.45 45
agg_prior293.94 10199.38 4899.50 37
test_prior493.66 5996.42 198
test_prior296.35 20792.80 9696.03 7997.59 10192.01 4195.01 7599.38 48
新几何295.79 242
旧先验198.38 8193.38 6797.75 11798.09 6292.30 3899.01 8399.16 70
原ACMM295.67 245
test22298.24 9392.21 10095.33 25997.60 13579.22 33795.25 10597.84 8188.80 9299.15 7398.72 112
segment_acmp92.89 22
testdata195.26 26693.10 83
plane_prior796.21 19189.98 172
plane_prior696.10 20190.00 16881.32 208
plane_prior496.64 147
plane_prior390.00 16894.46 4091.34 180
plane_prior297.74 7194.85 25
plane_prior196.14 199
plane_prior89.99 17097.24 12494.06 4892.16 212
n20.00 369
nn0.00 369
door-mid91.06 348
test1197.88 106
door91.13 347
HQP5-MVS89.33 195
HQP-NCC95.86 20696.65 18193.55 6390.14 204
ACMP_Plane95.86 20696.65 18193.55 6390.14 204
BP-MVS92.13 133
HQP3-MVS97.39 16892.10 213
HQP2-MVS80.95 211
NP-MVS95.99 20589.81 17795.87 187
MDTV_nov1_ep13_2view70.35 35293.10 31883.88 30693.55 13482.47 18986.25 24598.38 140
ACMMP++_ref90.30 241
ACMMP++91.02 230
Test By Simon88.73 93