This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
TSAR-MVS + MP.99.58 499.50 899.81 3899.91 199.66 5499.63 5999.39 21098.91 3799.78 3199.85 2999.36 299.94 5498.84 8299.88 3699.82 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS_fast99.51 1499.40 1699.85 2599.91 199.79 3099.76 2599.56 5597.72 15399.76 3799.75 11099.13 1099.92 8099.07 5199.92 1199.85 14
MP-MVS-pluss99.37 4899.20 5999.88 699.90 399.87 999.30 20899.52 8897.18 20899.60 8199.79 8898.79 4799.95 4398.83 8599.91 1699.83 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
zzz-MVS99.49 1599.36 2199.89 499.90 399.86 1099.36 19399.47 15798.79 4899.68 5399.81 6298.43 8199.97 1198.88 7199.90 2399.83 29
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 4799.47 15798.79 4899.68 5399.81 6298.43 8199.97 1198.88 7199.90 2399.83 29
HPM-MVScopyleft99.42 3899.28 4899.83 3399.90 399.72 4299.81 1299.54 7097.59 16599.68 5399.63 17198.91 3699.94 5498.58 12399.91 1699.84 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HyFIR lowres test99.11 9098.92 9799.65 7299.90 399.37 9899.02 27599.91 397.67 16099.59 8499.75 11095.90 16999.73 18499.53 599.02 16599.86 11
MSP-MVS99.42 3899.27 5099.88 699.89 899.80 2699.67 4399.50 11998.70 5499.77 3399.49 22298.21 9699.95 4398.46 14099.77 9299.88 5
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CHOSEN 1792x268899.19 6999.10 6999.45 11599.89 898.52 19599.39 18199.94 198.73 5299.11 18899.89 1095.50 18299.94 5499.50 899.97 399.89 2
ACMMPcopyleft99.45 2699.32 3099.82 3599.89 899.67 5299.62 6599.69 1898.12 10699.63 7199.84 3898.73 5999.96 1998.55 13199.83 7299.81 41
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
region2R99.48 1999.35 2499.87 1199.88 1199.80 2699.65 5499.66 2798.13 10499.66 6499.68 14598.96 2599.96 1998.62 11499.87 4099.84 18
MP-MVScopyleft99.33 5299.15 6399.87 1199.88 1199.82 2099.66 4799.46 16798.09 11199.48 10599.74 11698.29 9299.96 1997.93 18299.87 4099.82 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS99.44 3099.30 4099.86 1899.88 1199.79 3099.69 3699.48 13998.12 10699.50 10199.75 11098.78 4899.97 1198.57 12599.89 3399.83 29
COLMAP_ROBcopyleft97.56 698.86 11998.75 12199.17 15499.88 1198.53 19199.34 20299.59 4397.55 17098.70 25799.89 1095.83 17199.90 10698.10 16799.90 2399.08 196
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ZNCC-MVS99.47 2299.33 2899.87 1199.87 1599.81 2499.64 5799.67 2298.08 11599.55 9399.64 16598.91 3699.96 1998.72 10099.90 2399.82 36
ACMMP_NAP99.47 2299.34 2699.88 699.87 1599.86 1099.47 14699.48 13998.05 12199.76 3799.86 2398.82 4499.93 6998.82 8999.91 1699.84 18
HFP-MVS99.49 1599.37 1999.86 1899.87 1599.80 2699.66 4799.67 2298.15 10299.68 5399.69 13999.06 1399.96 1998.69 10599.87 4099.84 18
#test#99.43 3399.29 4499.86 1899.87 1599.80 2699.55 10699.67 2297.83 13999.68 5399.69 13999.06 1399.96 1998.39 14499.87 4099.84 18
ACMMPR99.49 1599.36 2199.86 1899.87 1599.79 3099.66 4799.67 2298.15 10299.67 5999.69 13998.95 2899.96 1998.69 10599.87 4099.84 18
PGM-MVS99.45 2699.31 3799.86 1899.87 1599.78 3799.58 8599.65 3297.84 13899.71 4699.80 7699.12 1199.97 1198.33 15299.87 4099.83 29
GST-MVS99.40 4599.24 5599.85 2599.86 2199.79 3099.60 7299.67 2297.97 12799.63 7199.68 14598.52 7499.95 4398.38 14699.86 5199.81 41
AllTest98.87 11698.72 12299.31 13399.86 2198.48 20199.56 9799.61 3597.85 13699.36 13699.85 2995.95 16499.85 13296.66 27699.83 7299.59 133
TestCases99.31 13399.86 2198.48 20199.61 3597.85 13699.36 13699.85 2995.95 16499.85 13296.66 27699.83 7299.59 133
PVSNet_Blended_VisFu99.36 4999.28 4899.61 8299.86 2199.07 13499.47 14699.93 297.66 16199.71 4699.86 2397.73 11199.96 1999.47 1499.82 7899.79 53
DVP-MVS99.57 799.47 999.88 699.85 2599.89 399.57 9099.37 22599.10 899.81 2299.80 7698.94 3199.96 1998.93 6599.86 5199.81 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.85 2599.89 399.62 6599.50 11999.10 899.86 1199.82 4998.94 31
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3699.68 1998.98 2799.37 13399.74 11698.81 4599.94 5498.79 9199.86 5199.84 18
X-MVStestdata96.55 28895.45 30399.87 1199.85 2599.83 1499.69 3699.68 1998.98 2799.37 13364.01 36398.81 4599.94 5498.79 9199.86 5199.84 18
abl_699.44 3099.31 3799.83 3399.85 2599.75 3899.66 4799.59 4398.13 10499.82 2099.81 6298.60 6999.96 1998.46 14099.88 3699.79 53
114514_t98.93 11398.67 12899.72 6199.85 2599.53 8099.62 6599.59 4392.65 33699.71 4699.78 9598.06 10399.90 10698.84 8299.91 1699.74 73
CSCG99.32 5399.32 3099.32 13299.85 2598.29 20999.71 3299.66 2798.11 10899.41 12199.80 7698.37 8899.96 1998.99 5799.96 599.72 86
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 7299.48 13999.08 1199.91 199.81 6299.20 599.96 1998.91 6899.85 5899.79 53
IU-MVS99.84 3299.88 799.32 25098.30 8699.84 1398.86 7899.85 5899.89 2
test_241102_ONE99.84 3299.90 199.48 13999.07 1399.91 199.74 11699.20 599.76 174
test_0728_SECOND99.91 299.84 3299.89 399.57 9099.51 10199.96 1998.93 6599.86 5199.88 5
CP-MVS99.45 2699.32 3099.85 2599.83 3699.75 3899.69 3699.52 8898.07 11699.53 9699.63 17198.93 3599.97 1198.74 9699.91 1699.83 29
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2499.59 7899.51 10198.62 5899.79 2699.83 4299.28 399.97 1198.48 13699.90 2399.84 18
Skip Steuart: Steuart Systems R&D Blog.
RPSCF98.22 17098.62 13896.99 31499.82 3791.58 34999.72 3099.44 18896.61 25399.66 6499.89 1095.92 16799.82 15397.46 22899.10 15899.57 138
DeepC-MVS98.35 299.30 5599.19 6099.64 7799.82 3799.23 11499.62 6599.55 6398.94 3399.63 7199.95 295.82 17299.94 5499.37 1999.97 399.73 80
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_part299.81 4099.83 1499.77 33
CPTT-MVS99.11 9098.90 10099.74 5699.80 4199.46 9099.59 7899.49 12797.03 22499.63 7199.69 13997.27 12499.96 1997.82 19199.84 6599.81 41
SF-MVS99.38 4799.24 5599.79 4399.79 4299.68 4999.57 9099.54 7097.82 14499.71 4699.80 7698.95 2899.93 6998.19 15999.84 6599.74 73
MCST-MVS99.43 3399.30 4099.82 3599.79 4299.74 4199.29 21299.40 20698.79 4899.52 9899.62 17798.91 3699.90 10698.64 11299.75 9699.82 36
DPE-MVScopyleft99.46 2499.32 3099.91 299.78 4499.88 799.36 19399.51 10198.73 5299.88 599.84 3898.72 6099.96 1998.16 16499.87 4099.88 5
EI-MVSNet-UG-set99.58 499.57 199.64 7799.78 4499.14 12699.60 7299.45 17999.01 1899.90 399.83 4298.98 2399.93 6999.59 199.95 699.86 11
EI-MVSNet-Vis-set99.58 499.56 399.64 7799.78 4499.15 12599.61 7199.45 17999.01 1899.89 499.82 4999.01 1699.92 8099.56 499.95 699.85 14
Vis-MVSNetpermissive99.12 8598.97 9199.56 9099.78 4499.10 13199.68 4199.66 2798.49 6699.86 1199.87 2094.77 20999.84 13799.19 3899.41 13599.74 73
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
F-COLMAP99.19 6999.04 7799.64 7799.78 4499.27 11099.42 16799.54 7097.29 19899.41 12199.59 18798.42 8499.93 6998.19 15999.69 10999.73 80
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2699.56 5599.02 1599.88 599.85 2999.18 899.96 1999.22 3599.92 1199.90 1
MVS_111021_LR99.41 4299.33 2899.65 7299.77 4999.51 8598.94 29699.85 698.82 4399.65 6899.74 11698.51 7599.80 16298.83 8599.89 3399.64 119
DP-MVS99.16 7598.95 9599.78 4599.77 4999.53 8099.41 16999.50 11997.03 22499.04 20499.88 1597.39 11799.92 8098.66 11099.90 2399.87 10
SR-MVS-dyc-post99.45 2699.31 3799.85 2599.76 5299.82 2099.63 5999.52 8898.38 7699.76 3799.82 4998.53 7299.95 4398.61 11799.81 8099.77 63
RE-MVS-def99.34 2699.76 5299.82 2099.63 5999.52 8898.38 7699.76 3799.82 4998.75 5698.61 11799.81 8099.77 63
xxxxxxxxxxxxxcwj99.43 3399.32 3099.75 5199.76 5299.59 6899.14 24999.53 8299.00 2299.71 4699.80 7698.95 2899.93 6998.19 15999.84 6599.74 73
save fliter99.76 5299.59 6899.14 24999.40 20699.00 22
Regformer-399.57 799.53 599.68 6599.76 5299.29 10799.58 8599.44 18899.01 1899.87 1099.80 7698.97 2499.91 9199.44 1899.92 1199.83 29
Regformer-499.59 399.54 499.73 5899.76 5299.41 9599.58 8599.49 12799.02 1599.88 599.80 7699.00 2299.94 5499.45 1699.92 1199.84 18
APD-MVS_3200maxsize99.48 1999.35 2499.85 2599.76 5299.83 1499.63 5999.54 7098.36 7999.79 2699.82 4998.86 4099.95 4398.62 11499.81 8099.78 61
PVSNet_BlendedMVS98.86 11998.80 11599.03 16799.76 5298.79 17299.28 21499.91 397.42 18899.67 5999.37 25697.53 11499.88 11998.98 5897.29 24898.42 311
PVSNet_Blended99.08 9698.97 9199.42 12199.76 5298.79 17298.78 31199.91 396.74 24299.67 5999.49 22297.53 11499.88 11998.98 5899.85 5899.60 129
MSDG98.98 10998.80 11599.53 9899.76 5299.19 11698.75 31499.55 6397.25 20299.47 10699.77 10197.82 10899.87 12396.93 26299.90 2399.54 142
test117299.43 3399.29 4499.85 2599.75 6299.82 2099.60 7299.56 5598.28 8799.74 4199.79 8898.53 7299.95 4398.55 13199.78 8999.79 53
SR-MVS99.43 3399.29 4499.86 1899.75 6299.83 1499.59 7899.62 3398.21 9799.73 4399.79 8898.68 6399.96 1998.44 14299.77 9299.79 53
HPM-MVS++copyleft99.39 4699.23 5799.87 1199.75 6299.84 1399.43 16099.51 10198.68 5699.27 15499.53 20998.64 6899.96 1998.44 14299.80 8499.79 53
新几何199.75 5199.75 6299.59 6899.54 7096.76 24199.29 14999.64 16598.43 8199.94 5496.92 26499.66 11799.72 86
test22299.75 6299.49 8698.91 29999.49 12796.42 27099.34 14299.65 15898.28 9399.69 10999.72 86
testdata99.54 9299.75 6298.95 15199.51 10197.07 21999.43 11499.70 13298.87 3999.94 5497.76 19699.64 12099.72 86
CDPH-MVS99.13 7998.91 9999.80 4099.75 6299.71 4499.15 24799.41 20096.60 25599.60 8199.55 20098.83 4399.90 10697.48 22599.83 7299.78 61
APD-MVScopyleft99.27 6099.08 7299.84 3299.75 6299.79 3099.50 12599.50 11997.16 21099.77 3399.82 4998.78 4899.94 5497.56 21899.86 5199.80 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
旧先验199.74 7099.59 6899.54 7099.69 13998.47 7899.68 11499.73 80
112199.09 9498.87 10499.75 5199.74 7099.60 6599.27 21899.48 13996.82 24099.25 16199.65 15898.38 8699.93 6997.53 22199.67 11699.73 80
SD-MVS99.41 4299.52 699.05 16499.74 7099.68 4999.46 14999.52 8899.11 799.88 599.91 599.43 197.70 34498.72 10099.93 1099.77 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DP-MVS Recon99.12 8598.95 9599.65 7299.74 7099.70 4699.27 21899.57 5096.40 27299.42 11799.68 14598.75 5699.80 16297.98 17899.72 10399.44 168
PAPM_NR99.04 10198.84 11099.66 6899.74 7099.44 9299.39 18199.38 21697.70 15599.28 15199.28 27998.34 8999.85 13296.96 25999.45 13299.69 98
ETH3D-3000-0.199.21 6699.02 8299.77 4799.73 7599.69 4799.38 18699.51 10197.45 18299.61 7799.75 11098.51 7599.91 9197.45 23099.83 7299.71 93
SMA-MVScopyleft99.44 3099.30 4099.85 2599.73 7599.83 1499.56 9799.47 15797.45 18299.78 3199.82 4999.18 899.91 9198.79 9199.89 3399.81 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
原ACMM199.65 7299.73 7599.33 10199.47 15797.46 17999.12 18699.66 15798.67 6699.91 9197.70 20599.69 10999.71 93
IS-MVSNet99.05 10098.87 10499.57 8899.73 7599.32 10299.75 2699.20 27398.02 12599.56 8999.86 2396.54 14799.67 20598.09 16899.13 15499.73 80
PVSNet96.02 1798.85 12798.84 11098.89 19299.73 7597.28 24998.32 34199.60 4097.86 13499.50 10199.57 19496.75 14199.86 12698.56 12899.70 10899.54 142
9.1499.10 6999.72 8099.40 17799.51 10197.53 17599.64 7099.78 9598.84 4299.91 9197.63 20999.82 78
testtj99.12 8598.87 10499.86 1899.72 8099.79 3099.44 15499.51 10197.29 19899.59 8499.74 11698.15 10099.96 1996.74 27099.69 10999.81 41
thres100view90097.76 23597.45 24298.69 22199.72 8097.86 23399.59 7898.74 32097.93 13099.26 15998.62 32791.75 28999.83 14693.22 32698.18 20798.37 317
thres600view797.86 21997.51 23598.92 18399.72 8097.95 22899.59 7898.74 32097.94 12999.27 15498.62 32791.75 28999.86 12693.73 32298.19 20698.96 212
DELS-MVS99.48 1999.42 1399.65 7299.72 8099.40 9799.05 26699.66 2799.14 699.57 8899.80 7698.46 7999.94 5499.57 399.84 6599.60 129
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR99.41 4299.32 3099.66 6899.72 8099.47 8998.95 29499.85 698.82 4399.54 9499.73 12398.51 7599.74 17798.91 6899.88 3699.77 63
ZD-MVS99.71 8699.79 3099.61 3596.84 23799.56 8999.54 20598.58 7099.96 1996.93 26299.75 96
Anonymous2023121197.88 21597.54 23298.90 18999.71 8698.53 19199.48 14199.57 5094.16 32398.81 24099.68 14593.23 25199.42 24498.84 8294.42 30998.76 229
Regformer-199.53 1199.47 999.72 6199.71 8699.44 9299.49 13599.46 16798.95 3299.83 1799.76 10599.01 1699.93 6999.17 4199.87 4099.80 49
Regformer-299.54 999.47 999.75 5199.71 8699.52 8399.49 13599.49 12798.94 3399.83 1799.76 10599.01 1699.94 5499.15 4499.87 4099.80 49
XVG-OURS-SEG-HR98.69 14198.62 13898.89 19299.71 8697.74 23799.12 25199.54 7098.44 7399.42 11799.71 12894.20 23199.92 8098.54 13398.90 17499.00 206
Vis-MVSNet (Re-imp)98.87 11698.72 12299.31 13399.71 8698.88 16099.80 1699.44 18897.91 13299.36 13699.78 9595.49 18399.43 24397.91 18399.11 15599.62 125
PatchMatch-RL98.84 12998.62 13899.52 10399.71 8699.28 10899.06 26499.77 997.74 15299.50 10199.53 20995.41 18499.84 13797.17 24899.64 12099.44 168
hse-mvs397.70 25097.28 26898.97 17599.70 9397.27 25099.36 19399.45 17998.94 3399.66 6499.64 16594.93 19899.99 199.48 1384.36 34699.65 112
XVG-OURS98.73 13898.68 12798.88 19599.70 9397.73 23898.92 29799.55 6398.52 6499.45 10999.84 3895.27 19099.91 9198.08 17298.84 17799.00 206
TAPA-MVS97.07 1597.74 24297.34 26298.94 17999.70 9397.53 24399.25 22999.51 10191.90 33899.30 14699.63 17198.78 4899.64 21488.09 34899.87 4099.65 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETH3 D test640098.70 13998.35 15599.73 5899.69 9699.60 6599.16 24399.45 17995.42 30599.27 15499.60 18497.39 11799.91 9195.36 30399.83 7299.70 95
tfpn200view997.72 24597.38 25598.72 21999.69 9697.96 22699.50 12598.73 32597.83 13999.17 18098.45 33291.67 29399.83 14693.22 32698.18 20798.37 317
thres40097.77 23497.38 25598.92 18399.69 9697.96 22699.50 12598.73 32597.83 13999.17 18098.45 33291.67 29399.83 14693.22 32698.18 20798.96 212
Test_1112_low_res98.89 11598.66 13199.57 8899.69 9698.95 15199.03 27299.47 15796.98 22699.15 18299.23 28796.77 14099.89 11498.83 8598.78 18199.86 11
1112_ss98.98 10998.77 11899.59 8499.68 10099.02 13899.25 22999.48 13997.23 20599.13 18499.58 19096.93 13599.90 10698.87 7598.78 18199.84 18
TEST999.67 10199.65 5799.05 26699.41 20096.22 28398.95 21999.49 22298.77 5199.91 91
train_agg99.02 10498.77 11899.77 4799.67 10199.65 5799.05 26699.41 20096.28 27698.95 21999.49 22298.76 5399.91 9197.63 20999.72 10399.75 69
test_899.67 10199.61 6399.03 27299.41 20096.28 27698.93 22399.48 22898.76 5399.91 91
agg_prior199.01 10798.76 12099.76 5099.67 10199.62 6198.99 28299.40 20696.26 27998.87 23299.49 22298.77 5199.91 9197.69 20699.72 10399.75 69
agg_prior99.67 10199.62 6199.40 20698.87 23299.91 91
test_prior399.21 6699.05 7499.68 6599.67 10199.48 8798.96 29099.56 5598.34 8199.01 20799.52 21298.68 6399.83 14697.96 17999.74 9999.74 73
test_prior99.68 6599.67 10199.48 8799.56 5599.83 14699.74 73
TSAR-MVS + GP.99.36 4999.36 2199.36 12699.67 10198.61 18699.07 26199.33 24299.00 2299.82 2099.81 6299.06 1399.84 13799.09 4999.42 13499.65 112
OMC-MVS99.08 9699.04 7799.20 15199.67 10198.22 21399.28 21499.52 8898.07 11699.66 6499.81 6297.79 10999.78 16997.79 19399.81 8099.60 129
Anonymous2024052998.09 18697.68 21899.34 12799.66 11098.44 20399.40 17799.43 19693.67 32799.22 16799.89 1090.23 31299.93 6999.26 3398.33 19799.66 108
tttt051798.42 15598.14 16799.28 14399.66 11098.38 20799.74 2996.85 35197.68 15799.79 2699.74 11691.39 29999.89 11498.83 8599.56 12799.57 138
CHOSEN 280x42099.12 8599.13 6599.08 16099.66 11097.89 23098.43 33599.71 1398.88 3899.62 7599.76 10596.63 14499.70 20099.46 1599.99 199.66 108
baseline99.15 7699.02 8299.53 9899.66 11099.14 12699.72 3099.48 13998.35 8099.42 11799.84 3896.07 16099.79 16599.51 799.14 15399.67 105
PLCcopyleft97.94 499.02 10498.85 10999.53 9899.66 11099.01 14099.24 23199.52 8896.85 23699.27 15499.48 22898.25 9499.91 9197.76 19699.62 12499.65 112
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
casdiffmvs99.13 7998.98 9099.56 9099.65 11599.16 12199.56 9799.50 11998.33 8499.41 12199.86 2395.92 16799.83 14699.45 1699.16 15099.70 95
EPP-MVSNet99.13 7998.99 8799.53 9899.65 11599.06 13599.81 1299.33 24297.43 18699.60 8199.88 1597.14 12699.84 13799.13 4598.94 16999.69 98
thres20097.61 26097.28 26898.62 22499.64 11798.03 22099.26 22798.74 32097.68 15799.09 19698.32 33691.66 29599.81 15792.88 33098.22 20398.03 330
test1299.75 5199.64 11799.61 6399.29 26299.21 17098.38 8699.89 11499.74 9999.74 73
ab-mvs98.86 11998.63 13399.54 9299.64 11799.19 11699.44 15499.54 7097.77 14799.30 14699.81 6294.20 23199.93 6999.17 4198.82 17899.49 157
DPM-MVS98.95 11298.71 12499.66 6899.63 12099.55 7598.64 32499.10 28497.93 13099.42 11799.55 20098.67 6699.80 16295.80 29299.68 11499.61 127
thisisatest053098.35 16298.03 17999.31 13399.63 12098.56 18899.54 10996.75 35397.53 17599.73 4399.65 15891.25 30299.89 11498.62 11499.56 12799.48 158
xiu_mvs_v1_base_debu99.29 5799.27 5099.34 12799.63 12098.97 14599.12 25199.51 10198.86 3999.84 1399.47 23198.18 9799.99 199.50 899.31 14199.08 196
xiu_mvs_v1_base99.29 5799.27 5099.34 12799.63 12098.97 14599.12 25199.51 10198.86 3999.84 1399.47 23198.18 9799.99 199.50 899.31 14199.08 196
xiu_mvs_v1_base_debi99.29 5799.27 5099.34 12799.63 12098.97 14599.12 25199.51 10198.86 3999.84 1399.47 23198.18 9799.99 199.50 899.31 14199.08 196
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4799.63 12099.59 6899.36 19399.46 16799.07 1399.79 2699.82 4998.85 4199.92 8098.68 10799.87 4099.82 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UA-Net99.42 3899.29 4499.80 4099.62 12699.55 7599.50 12599.70 1598.79 4899.77 3399.96 197.45 11699.96 1998.92 6799.90 2399.89 2
CNVR-MVS99.42 3899.30 4099.78 4599.62 12699.71 4499.26 22799.52 8898.82 4399.39 12899.71 12898.96 2599.85 13298.59 12299.80 8499.77 63
WTY-MVS99.06 9898.88 10399.61 8299.62 12699.16 12199.37 18999.56 5598.04 12299.53 9699.62 17796.84 13699.94 5498.85 8098.49 19499.72 86
sss99.17 7399.05 7499.53 9899.62 12698.97 14599.36 19399.62 3397.83 13999.67 5999.65 15897.37 12199.95 4399.19 3899.19 14999.68 102
diffmvs99.14 7799.02 8299.51 10599.61 13098.96 14999.28 21499.49 12798.46 6999.72 4599.71 12896.50 14899.88 11999.31 2799.11 15599.67 105
NCCC99.34 5199.19 6099.79 4399.61 13099.65 5799.30 20899.48 13998.86 3999.21 17099.63 17198.72 6099.90 10698.25 15699.63 12299.80 49
PCF-MVS97.08 1497.66 25797.06 27799.47 11299.61 13099.09 13298.04 34899.25 26791.24 34198.51 27799.70 13294.55 22199.91 9192.76 33399.85 5899.42 170
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MSLP-MVS++99.46 2499.47 999.44 12099.60 13399.16 12199.41 16999.71 1398.98 2799.45 10999.78 9599.19 799.54 22899.28 3099.84 6599.63 123
DeepPCF-MVS98.18 398.81 13099.37 1997.12 31399.60 13391.75 34898.61 32599.44 18899.35 199.83 1799.85 2998.70 6299.81 15799.02 5599.91 1699.81 41
test_part197.75 23997.24 27299.29 14099.59 13599.63 6099.65 5499.49 12796.17 28798.44 28299.69 13989.80 31699.47 23198.68 10793.66 31998.78 223
IterMVS-LS98.46 15298.42 15198.58 22899.59 13598.00 22299.37 18999.43 19696.94 23299.07 19899.59 18797.87 10699.03 30698.32 15495.62 28798.71 239
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS97.83 22597.77 20898.02 27999.58 13796.27 29699.02 27599.48 13997.22 20698.71 25199.70 13292.75 26199.13 29397.46 22896.00 27598.67 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CNLPA99.14 7798.99 8799.59 8499.58 13799.41 9599.16 24399.44 18898.45 7099.19 17699.49 22298.08 10299.89 11497.73 20099.75 9699.48 158
Anonymous20240521198.30 16697.98 18499.26 14599.57 13998.16 21599.41 16998.55 33296.03 29999.19 17699.74 11691.87 28699.92 8099.16 4398.29 20299.70 95
IterMVS-SCA-FT97.82 22897.75 21298.06 27699.57 13996.36 29399.02 27599.49 12797.18 20898.71 25199.72 12792.72 26499.14 29097.44 23195.86 28198.67 259
PS-MVSNAJ99.32 5399.32 3099.30 13799.57 13998.94 15498.97 28999.46 16798.92 3699.71 4699.24 28599.01 1699.98 699.35 2099.66 11798.97 210
MG-MVS99.13 7999.02 8299.45 11599.57 13998.63 18399.07 26199.34 23598.99 2599.61 7799.82 4997.98 10599.87 12397.00 25599.80 8499.85 14
OPU-MVS99.64 7799.56 14399.72 4299.60 7299.70 13299.27 499.42 24498.24 15799.80 8499.79 53
PHI-MVS99.30 5599.17 6299.70 6499.56 14399.52 8399.58 8599.80 897.12 21499.62 7599.73 12398.58 7099.90 10698.61 11799.91 1699.68 102
AdaColmapbinary99.01 10798.80 11599.66 6899.56 14399.54 7799.18 24199.70 1598.18 10199.35 13999.63 17196.32 15499.90 10697.48 22599.77 9299.55 140
CS-MVS99.21 6699.13 6599.45 11599.54 14699.34 10099.71 3299.54 7098.26 9098.99 21499.24 28598.25 9499.88 11998.98 5899.63 12299.12 190
ET-MVSNet_ETH3D96.49 29095.64 30199.05 16499.53 14798.82 16998.84 30597.51 34897.63 16384.77 35199.21 29192.09 28398.91 32398.98 5892.21 33399.41 172
xiu_mvs_v2_base99.26 6299.25 5499.29 14099.53 14798.91 15899.02 27599.45 17998.80 4799.71 4699.26 28398.94 3199.98 699.34 2499.23 14698.98 209
LFMVS97.90 21497.35 25999.54 9299.52 14999.01 14099.39 18198.24 33697.10 21899.65 6899.79 8884.79 34799.91 9199.28 3098.38 19699.69 98
VNet99.11 9098.90 10099.73 5899.52 14999.56 7399.41 16999.39 21099.01 1899.74 4199.78 9595.56 18099.92 8099.52 698.18 20799.72 86
ETH3D cwj APD-0.1699.06 9898.84 11099.72 6199.51 15199.60 6599.23 23299.44 18897.04 22299.39 12899.67 15198.30 9199.92 8097.27 23799.69 10999.64 119
Fast-Effi-MVS+98.70 13998.43 15099.51 10599.51 15199.28 10899.52 11599.47 15796.11 29499.01 20799.34 26596.20 15899.84 13797.88 18598.82 17899.39 174
MVSFormer99.17 7399.12 6799.29 14099.51 15198.94 15499.88 199.46 16797.55 17099.80 2499.65 15897.39 11799.28 26999.03 5399.85 5899.65 112
lupinMVS99.13 7999.01 8699.46 11499.51 15198.94 15499.05 26699.16 27897.86 13499.80 2499.56 19797.39 11799.86 12698.94 6399.85 5899.58 137
GBi-Net97.68 25397.48 23798.29 26299.51 15197.26 25299.43 16099.48 13996.49 26199.07 19899.32 27290.26 30998.98 31397.10 25096.65 25898.62 281
test197.68 25397.48 23798.29 26299.51 15197.26 25299.43 16099.48 13996.49 26199.07 19899.32 27290.26 30998.98 31397.10 25096.65 25898.62 281
FMVSNet297.72 24597.36 25798.80 21299.51 15198.84 16599.45 15099.42 19896.49 26198.86 23799.29 27790.26 30998.98 31396.44 28096.56 26198.58 295
thisisatest051598.14 18197.79 20399.19 15299.50 15898.50 19898.61 32596.82 35296.95 23099.54 9499.43 23991.66 29599.86 12698.08 17299.51 13199.22 184
baseline198.31 16497.95 18999.38 12599.50 15898.74 17499.59 7898.93 30198.41 7499.14 18399.60 18494.59 21899.79 16598.48 13693.29 32399.61 127
EIA-MVS99.18 7199.09 7199.45 11599.49 16099.18 11899.67 4399.53 8297.66 16199.40 12699.44 23798.10 10199.81 15798.94 6399.62 12499.35 176
test_yl98.86 11998.63 13399.54 9299.49 16099.18 11899.50 12599.07 28998.22 9599.61 7799.51 21695.37 18699.84 13798.60 12098.33 19799.59 133
DCV-MVSNet98.86 11998.63 13399.54 9299.49 16099.18 11899.50 12599.07 28998.22 9599.61 7799.51 21695.37 18699.84 13798.60 12098.33 19799.59 133
VDDNet97.55 26297.02 27899.16 15599.49 16098.12 21999.38 18699.30 25795.35 30699.68 5399.90 782.62 35199.93 6999.31 2798.13 21299.42 170
MVS_Test99.10 9398.97 9199.48 10999.49 16099.14 12699.67 4399.34 23597.31 19699.58 8699.76 10597.65 11399.82 15398.87 7599.07 16199.46 165
BH-untuned98.42 15598.36 15398.59 22699.49 16096.70 28199.27 21899.13 28297.24 20498.80 24299.38 25395.75 17499.74 17797.07 25399.16 15099.33 179
AUN-MVS96.88 28396.31 28898.59 22699.48 16697.04 26599.27 21899.22 27097.44 18598.51 27799.41 24591.97 28499.66 20897.71 20383.83 34799.07 200
VDD-MVS97.73 24397.35 25998.88 19599.47 16797.12 25699.34 20298.85 31298.19 9899.67 5999.85 2982.98 34999.92 8099.49 1298.32 20199.60 129
ETV-MVS99.26 6299.21 5899.40 12299.46 16899.30 10699.56 9799.52 8898.52 6499.44 11399.27 28298.41 8599.86 12699.10 4899.59 12699.04 202
Effi-MVS+98.81 13098.59 14399.48 10999.46 16899.12 13098.08 34799.50 11997.50 17899.38 13199.41 24596.37 15399.81 15799.11 4798.54 19199.51 153
jason99.13 7999.03 7999.45 11599.46 16898.87 16199.12 25199.26 26598.03 12499.79 2699.65 15897.02 13199.85 13299.02 5599.90 2399.65 112
jason: jason.
TAMVS99.12 8599.08 7299.24 14899.46 16898.55 18999.51 11999.46 16798.09 11199.45 10999.82 4998.34 8999.51 22998.70 10298.93 17099.67 105
ACMH+97.24 1097.92 21297.78 20698.32 25999.46 16896.68 28399.56 9799.54 7098.41 7497.79 31299.87 2090.18 31399.66 20898.05 17697.18 25298.62 281
MIMVSNet97.73 24397.45 24298.57 22999.45 17397.50 24499.02 27598.98 29696.11 29499.41 12199.14 29790.28 30898.74 32795.74 29398.93 17099.47 163
alignmvs98.81 13098.56 14599.58 8799.43 17499.42 9499.51 11998.96 29998.61 5999.35 13998.92 31794.78 20699.77 17199.35 2098.11 21399.54 142
canonicalmvs99.02 10498.86 10899.51 10599.42 17599.32 10299.80 1699.48 13998.63 5799.31 14598.81 32097.09 12899.75 17699.27 3297.90 21799.47 163
HY-MVS97.30 798.85 12798.64 13299.47 11299.42 17599.08 13399.62 6599.36 22697.39 19199.28 15199.68 14596.44 15199.92 8098.37 14898.22 20399.40 173
CDS-MVSNet99.09 9499.03 7999.25 14699.42 17598.73 17599.45 15099.46 16798.11 10899.46 10899.77 10198.01 10499.37 25198.70 10298.92 17299.66 108
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet99.25 6499.14 6499.59 8499.41 17899.16 12199.35 19999.57 5098.82 4399.51 10099.61 18196.46 14999.95 4399.59 199.98 299.65 112
Fast-Effi-MVS+-dtu98.77 13698.83 11498.60 22599.41 17896.99 26999.52 11599.49 12798.11 10899.24 16299.34 26596.96 13499.79 16597.95 18199.45 13299.02 205
BH-RMVSNet98.41 15798.08 17499.40 12299.41 17898.83 16899.30 20898.77 31697.70 15598.94 22199.65 15892.91 25999.74 17796.52 27899.55 12999.64 119
ACMM97.58 598.37 16198.34 15698.48 23999.41 17897.10 25799.56 9799.45 17998.53 6399.04 20499.85 2993.00 25599.71 19498.74 9697.45 24098.64 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH97.28 898.10 18597.99 18398.44 24899.41 17896.96 27399.60 7299.56 5598.09 11198.15 29899.91 590.87 30699.70 20098.88 7197.45 24098.67 259
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D97.32 27596.81 28198.87 19999.40 18397.46 24599.51 11999.53 8295.86 30198.54 27699.77 10182.44 35299.66 20898.68 10797.52 23299.50 156
PAPR98.63 14798.34 15699.51 10599.40 18399.03 13798.80 30999.36 22696.33 27399.00 21299.12 30198.46 7999.84 13795.23 30599.37 14099.66 108
API-MVS99.04 10199.03 7999.06 16299.40 18399.31 10599.55 10699.56 5598.54 6299.33 14399.39 25298.76 5399.78 16996.98 25799.78 8998.07 327
FMVSNet398.03 19597.76 21198.84 20699.39 18698.98 14299.40 17799.38 21696.67 24799.07 19899.28 27992.93 25698.98 31397.10 25096.65 25898.56 297
GA-MVS97.85 22097.47 23999.00 17199.38 18797.99 22398.57 32899.15 27997.04 22298.90 22799.30 27589.83 31599.38 24896.70 27398.33 19799.62 125
mvs_anonymous99.03 10398.99 8799.16 15599.38 18798.52 19599.51 11999.38 21697.79 14599.38 13199.81 6297.30 12299.45 23499.35 2098.99 16799.51 153
ACMP97.20 1198.06 18997.94 19198.45 24599.37 18997.01 26799.44 15499.49 12797.54 17398.45 28199.79 8891.95 28599.72 18897.91 18397.49 23898.62 281
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MAR-MVS98.86 11998.63 13399.54 9299.37 18999.66 5499.45 15099.54 7096.61 25399.01 20799.40 24897.09 12899.86 12697.68 20899.53 13099.10 191
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testgi97.65 25897.50 23698.13 27399.36 19196.45 29099.42 16799.48 13997.76 14897.87 30899.45 23691.09 30398.81 32694.53 31398.52 19299.13 189
EI-MVSNet98.67 14398.67 12898.68 22299.35 19297.97 22499.50 12599.38 21696.93 23399.20 17399.83 4297.87 10699.36 25598.38 14697.56 22998.71 239
CVMVSNet98.57 14998.67 12898.30 26199.35 19295.59 30899.50 12599.55 6398.60 6099.39 12899.83 4294.48 22399.45 23498.75 9598.56 19099.85 14
BH-w/o98.00 20297.89 19898.32 25999.35 19296.20 29899.01 28098.90 30896.42 27098.38 28699.00 31095.26 19299.72 18896.06 28698.61 18499.03 203
MVSTER98.49 15098.32 15899.00 17199.35 19299.02 13899.54 10999.38 21697.41 18999.20 17399.73 12393.86 24399.36 25598.87 7597.56 22998.62 281
miper_lstm_enhance98.00 20297.91 19398.28 26599.34 19697.43 24698.88 30199.36 22696.48 26598.80 24299.55 20095.98 16298.91 32397.27 23795.50 29198.51 300
Effi-MVS+-dtu98.78 13498.89 10298.47 24399.33 19796.91 27599.57 9099.30 25798.47 6799.41 12198.99 31196.78 13899.74 17798.73 9899.38 13698.74 235
CANet_DTU98.97 11198.87 10499.25 14699.33 19798.42 20699.08 26099.30 25799.16 599.43 11499.75 11095.27 19099.97 1198.56 12899.95 699.36 175
mvs-test198.86 11998.84 11098.89 19299.33 19797.77 23699.44 15499.30 25798.47 6799.10 19199.43 23996.78 13899.95 4398.73 9899.02 16598.96 212
ADS-MVSNet298.02 19798.07 17797.87 28999.33 19795.19 32099.23 23299.08 28796.24 28199.10 19199.67 15194.11 23598.93 32296.81 26799.05 16299.48 158
ADS-MVSNet98.20 17398.08 17498.56 23199.33 19796.48 28999.23 23299.15 27996.24 28199.10 19199.67 15194.11 23599.71 19496.81 26799.05 16299.48 158
LPG-MVS_test98.22 17098.13 16898.49 23799.33 19797.05 26399.58 8599.55 6397.46 17999.24 16299.83 4292.58 27199.72 18898.09 16897.51 23398.68 252
LGP-MVS_train98.49 23799.33 19797.05 26399.55 6397.46 17999.24 16299.83 4292.58 27199.72 18898.09 16897.51 23398.68 252
FMVSNet196.84 28496.36 28798.29 26299.32 20497.26 25299.43 16099.48 13995.11 30998.55 27599.32 27283.95 34898.98 31395.81 29196.26 27098.62 281
PVSNet_094.43 1996.09 29995.47 30297.94 28499.31 20594.34 33397.81 35099.70 1597.12 21497.46 31698.75 32489.71 31799.79 16597.69 20681.69 34999.68 102
cl_fuxian98.12 18498.04 17898.38 25499.30 20697.69 24298.81 30899.33 24296.67 24798.83 23899.34 26597.11 12798.99 31297.58 21395.34 29398.48 302
SCA98.19 17498.16 16598.27 26699.30 20695.55 30999.07 26198.97 29797.57 16899.43 11499.57 19492.72 26499.74 17797.58 21399.20 14899.52 147
LCM-MVSNet-Re97.83 22598.15 16696.87 31999.30 20692.25 34799.59 7898.26 33597.43 18696.20 33499.13 29896.27 15698.73 32898.17 16398.99 16799.64 119
MVS-HIRNet95.75 30295.16 30697.51 30499.30 20693.69 33998.88 30195.78 35685.09 35098.78 24592.65 35391.29 30199.37 25194.85 31099.85 5899.46 165
HQP_MVS98.27 16998.22 16498.44 24899.29 21096.97 27199.39 18199.47 15798.97 3099.11 18899.61 18192.71 26699.69 20397.78 19497.63 22298.67 259
plane_prior799.29 21097.03 266
ITE_SJBPF98.08 27499.29 21096.37 29298.92 30398.34 8198.83 23899.75 11091.09 30399.62 22095.82 29097.40 24598.25 322
DeepMVS_CXcopyleft93.34 33199.29 21082.27 35599.22 27085.15 34996.33 33399.05 30690.97 30599.73 18493.57 32397.77 22098.01 331
CLD-MVS98.16 17898.10 17098.33 25799.29 21096.82 27898.75 31499.44 18897.83 13999.13 18499.55 20092.92 25799.67 20598.32 15497.69 22198.48 302
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
plane_prior699.27 21596.98 27092.71 266
PMMVS98.80 13398.62 13899.34 12799.27 21598.70 17798.76 31399.31 25397.34 19399.21 17099.07 30397.20 12599.82 15398.56 12898.87 17599.52 147
eth_miper_zixun_eth98.05 19497.96 18798.33 25799.26 21797.38 24798.56 33099.31 25396.65 24998.88 23099.52 21296.58 14599.12 29797.39 23495.53 29098.47 304
D2MVS98.41 15798.50 14798.15 27299.26 21796.62 28599.40 17799.61 3597.71 15498.98 21599.36 25996.04 16199.67 20598.70 10297.41 24498.15 325
plane_prior199.26 217
XXY-MVS98.38 16098.09 17399.24 14899.26 21799.32 10299.56 9799.55 6397.45 18298.71 25199.83 4293.23 25199.63 21998.88 7196.32 26998.76 229
cl-mvsnet_98.01 20097.84 20198.55 23399.25 22197.97 22498.71 31899.34 23596.47 26798.59 27499.54 20595.65 17999.21 28497.21 24195.77 28298.46 308
cl-mvsnet198.01 20097.85 20098.48 23999.24 22297.95 22898.71 31899.35 23196.50 26098.60 27399.54 20595.72 17699.03 30697.21 24195.77 28298.46 308
miper_ehance_all_eth98.18 17698.10 17098.41 25099.23 22397.72 23998.72 31799.31 25396.60 25598.88 23099.29 27797.29 12399.13 29397.60 21195.99 27698.38 316
RRT_test8_iter0597.72 24597.60 22698.08 27499.23 22396.08 30099.63 5999.49 12797.54 17398.94 22199.81 6287.99 33699.35 25999.21 3796.51 26498.81 220
NP-MVS99.23 22396.92 27499.40 248
LTVRE_ROB97.16 1298.02 19797.90 19498.40 25299.23 22396.80 27999.70 3499.60 4097.12 21498.18 29799.70 13291.73 29199.72 18898.39 14497.45 24098.68 252
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVS_030496.79 28596.52 28597.59 30199.22 22794.92 32699.04 27199.59 4396.49 26198.43 28398.99 31180.48 35499.39 24697.15 24999.27 14498.47 304
UGNet98.87 11698.69 12699.40 12299.22 22798.72 17699.44 15499.68 1999.24 399.18 17999.42 24292.74 26399.96 1999.34 2499.94 999.53 146
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VPNet97.84 22397.44 24799.01 16999.21 22998.94 15499.48 14199.57 5098.38 7699.28 15199.73 12388.89 32599.39 24699.19 3893.27 32498.71 239
IB-MVS95.67 1896.22 29495.44 30498.57 22999.21 22996.70 28198.65 32397.74 34696.71 24497.27 32098.54 33086.03 34399.92 8098.47 13986.30 34499.10 191
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tfpnnormal97.84 22397.47 23998.98 17399.20 23199.22 11599.64 5799.61 3596.32 27498.27 29499.70 13293.35 25099.44 23995.69 29495.40 29298.27 320
QAPM98.67 14398.30 16099.80 4099.20 23199.67 5299.77 2299.72 1194.74 31798.73 24999.90 795.78 17399.98 696.96 25999.88 3699.76 68
HQP-NCC99.19 23398.98 28698.24 9198.66 260
ACMP_Plane99.19 23398.98 28698.24 9198.66 260
HQP-MVS98.02 19797.90 19498.37 25599.19 23396.83 27698.98 28699.39 21098.24 9198.66 26099.40 24892.47 27599.64 21497.19 24597.58 22798.64 271
Patchmatch-test97.93 20997.65 22198.77 21599.18 23697.07 26199.03 27299.14 28196.16 28998.74 24899.57 19494.56 22099.72 18893.36 32599.11 15599.52 147
FIs98.78 13498.63 13399.23 15099.18 23699.54 7799.83 999.59 4398.28 8798.79 24499.81 6296.75 14199.37 25199.08 5096.38 26798.78 223
baseline297.87 21797.55 22998.82 20899.18 23698.02 22199.41 16996.58 35596.97 22796.51 33199.17 29393.43 24899.57 22497.71 20399.03 16498.86 217
CR-MVSNet98.17 17797.93 19298.87 19999.18 23698.49 19999.22 23799.33 24296.96 22899.56 8999.38 25394.33 22799.00 31194.83 31198.58 18799.14 187
RPMNet96.72 28695.90 29699.19 15299.18 23698.49 19999.22 23799.52 8888.72 34799.56 8997.38 34394.08 23799.95 4386.87 35298.58 18799.14 187
LS3D99.27 6099.12 6799.74 5699.18 23699.75 3899.56 9799.57 5098.45 7099.49 10499.85 2997.77 11099.94 5498.33 15299.84 6599.52 147
tpm cat197.39 27397.36 25797.50 30599.17 24293.73 33799.43 16099.31 25391.27 34098.71 25199.08 30294.31 22999.77 17196.41 28298.50 19399.00 206
3Dnovator+97.12 1399.18 7198.97 9199.82 3599.17 24299.68 4999.81 1299.51 10199.20 498.72 25099.89 1095.68 17799.97 1198.86 7899.86 5199.81 41
VPA-MVSNet98.29 16797.95 18999.30 13799.16 24499.54 7799.50 12599.58 4998.27 8999.35 13999.37 25692.53 27399.65 21299.35 2094.46 30798.72 237
tpmrst98.33 16398.48 14897.90 28899.16 24494.78 32899.31 20699.11 28397.27 20099.45 10999.59 18795.33 18899.84 13798.48 13698.61 18499.09 195
PatchmatchNetpermissive98.31 16498.36 15398.19 26999.16 24495.32 31799.27 21898.92 30397.37 19299.37 13399.58 19094.90 20099.70 20097.43 23299.21 14799.54 142
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm297.44 27297.34 26297.74 29799.15 24794.36 33299.45 15098.94 30093.45 33298.90 22799.44 23791.35 30099.59 22397.31 23598.07 21499.29 181
CostFormer97.72 24597.73 21497.71 29899.15 24794.02 33599.54 10999.02 29394.67 31899.04 20499.35 26292.35 28199.77 17198.50 13597.94 21699.34 178
TransMVSNet (Re)97.15 27996.58 28398.86 20299.12 24998.85 16499.49 13598.91 30695.48 30497.16 32499.80 7693.38 24999.11 29894.16 31991.73 33498.62 281
3Dnovator97.25 999.24 6599.05 7499.81 3899.12 24999.66 5499.84 699.74 1099.09 1098.92 22499.90 795.94 16699.98 698.95 6299.92 1199.79 53
XVG-ACMP-BASELINE97.83 22597.71 21698.20 26899.11 25196.33 29499.41 16999.52 8898.06 12099.05 20399.50 21989.64 31999.73 18497.73 20097.38 24698.53 298
FMVSNet596.43 29296.19 29097.15 31099.11 25195.89 30399.32 20499.52 8894.47 32298.34 29099.07 30387.54 34097.07 34892.61 33495.72 28598.47 304
MDTV_nov1_ep1398.32 15899.11 25194.44 33199.27 21898.74 32097.51 17799.40 12699.62 17794.78 20699.76 17497.59 21298.81 180
Patchmtry97.75 23997.40 25398.81 21099.10 25498.87 16199.11 25799.33 24294.83 31598.81 24099.38 25394.33 22799.02 30896.10 28595.57 28898.53 298
dp97.75 23997.80 20297.59 30199.10 25493.71 33899.32 20498.88 31096.48 26599.08 19799.55 20092.67 26999.82 15396.52 27898.58 18799.24 183
cl-mvsnet297.85 22097.64 22398.48 23999.09 25697.87 23198.60 32799.33 24297.11 21798.87 23299.22 28892.38 28099.17 28898.21 15895.99 27698.42 311
Baseline_NR-MVSNet97.76 23597.45 24298.68 22299.09 25698.29 20999.41 16998.85 31295.65 30398.63 26899.67 15194.82 20399.10 30098.07 17592.89 32898.64 271
FC-MVSNet-test98.75 13798.62 13899.15 15799.08 25899.45 9199.86 599.60 4098.23 9498.70 25799.82 4996.80 13799.22 27999.07 5196.38 26798.79 222
USDC97.34 27497.20 27397.75 29699.07 25995.20 31998.51 33299.04 29297.99 12698.31 29199.86 2389.02 32399.55 22795.67 29697.36 24798.49 301
TinyColmap97.12 28096.89 28097.83 29299.07 25995.52 31298.57 32898.74 32097.58 16797.81 31199.79 8888.16 33499.56 22595.10 30697.21 25098.39 315
pm-mvs197.68 25397.28 26898.88 19599.06 26198.62 18499.50 12599.45 17996.32 27497.87 30899.79 8892.47 27599.35 25997.54 22093.54 32198.67 259
TR-MVS97.76 23597.41 25298.82 20899.06 26197.87 23198.87 30398.56 33196.63 25298.68 25999.22 28892.49 27499.65 21295.40 30197.79 21998.95 215
PAPM97.59 26197.09 27699.07 16199.06 26198.26 21298.30 34299.10 28494.88 31498.08 30099.34 26596.27 15699.64 21489.87 34298.92 17299.31 180
nrg03098.64 14698.42 15199.28 14399.05 26499.69 4799.81 1299.46 16798.04 12299.01 20799.82 4996.69 14399.38 24899.34 2494.59 30698.78 223
tpmvs97.98 20498.02 18197.84 29199.04 26594.73 32999.31 20699.20 27396.10 29898.76 24799.42 24294.94 19799.81 15796.97 25898.45 19598.97 210
OpenMVScopyleft96.50 1698.47 15198.12 16999.52 10399.04 26599.53 8099.82 1099.72 1194.56 32098.08 30099.88 1594.73 21299.98 697.47 22799.76 9599.06 201
DWT-MVSNet_test97.53 26497.40 25397.93 28599.03 26794.86 32799.57 9098.63 32996.59 25798.36 28898.79 32189.32 32199.74 17798.14 16698.16 21199.20 186
WR-MVS_H98.13 18297.87 19998.90 18999.02 26898.84 16599.70 3499.59 4397.27 20098.40 28599.19 29295.53 18199.23 27698.34 15193.78 31898.61 290
tpm97.67 25697.55 22998.03 27799.02 26895.01 32399.43 16098.54 33396.44 26899.12 18699.34 26591.83 28899.60 22297.75 19896.46 26599.48 158
UniMVSNet (Re)98.29 16798.00 18299.13 15899.00 27099.36 9999.49 13599.51 10197.95 12898.97 21799.13 29896.30 15599.38 24898.36 15093.34 32298.66 267
v1097.85 22097.52 23398.86 20298.99 27198.67 17999.75 2699.41 20095.70 30298.98 21599.41 24594.75 21199.23 27696.01 28894.63 30598.67 259
PS-CasMVS97.93 20997.59 22898.95 17898.99 27199.06 13599.68 4199.52 8897.13 21298.31 29199.68 14592.44 27999.05 30398.51 13494.08 31598.75 231
PatchT97.03 28296.44 28698.79 21398.99 27198.34 20899.16 24399.07 28992.13 33799.52 9897.31 34694.54 22298.98 31388.54 34698.73 18399.03 203
V4298.06 18997.79 20398.86 20298.98 27498.84 16599.69 3699.34 23596.53 25999.30 14699.37 25694.67 21599.32 26497.57 21794.66 30498.42 311
LF4IMVS97.52 26597.46 24197.70 29998.98 27495.55 30999.29 21298.82 31598.07 11698.66 26099.64 16589.97 31499.61 22197.01 25496.68 25797.94 337
CP-MVSNet98.09 18697.78 20699.01 16998.97 27699.24 11399.67 4399.46 16797.25 20298.48 28099.64 16593.79 24499.06 30298.63 11394.10 31498.74 235
miper_enhance_ethall98.16 17898.08 17498.41 25098.96 27797.72 23998.45 33499.32 25096.95 23098.97 21799.17 29397.06 13099.22 27997.86 18795.99 27698.29 319
v897.95 20897.63 22498.93 18198.95 27898.81 17199.80 1699.41 20096.03 29999.10 19199.42 24294.92 19999.30 26796.94 26194.08 31598.66 267
TESTMET0.1,197.55 26297.27 27198.40 25298.93 27996.53 28798.67 32097.61 34796.96 22898.64 26799.28 27988.63 32999.45 23497.30 23699.38 13699.21 185
UniMVSNet_NR-MVSNet98.22 17097.97 18598.96 17698.92 28098.98 14299.48 14199.53 8297.76 14898.71 25199.46 23596.43 15299.22 27998.57 12592.87 32998.69 247
v2v48298.06 18997.77 20898.92 18398.90 28198.82 16999.57 9099.36 22696.65 24999.19 17699.35 26294.20 23199.25 27497.72 20294.97 30198.69 247
131498.68 14298.54 14699.11 15998.89 28298.65 18199.27 21899.49 12796.89 23497.99 30599.56 19797.72 11299.83 14697.74 19999.27 14498.84 219
OPM-MVS98.19 17498.10 17098.45 24598.88 28397.07 26199.28 21499.38 21698.57 6199.22 16799.81 6292.12 28299.66 20898.08 17297.54 23198.61 290
v119297.81 23097.44 24798.91 18798.88 28398.68 17899.51 11999.34 23596.18 28699.20 17399.34 26594.03 23899.36 25595.32 30495.18 29698.69 247
RRT_MVS98.60 14898.44 14999.05 16498.88 28399.14 12699.49 13599.38 21697.76 14899.29 14999.86 2395.38 18599.36 25598.81 9097.16 25398.64 271
EPMVS97.82 22897.65 22198.35 25698.88 28395.98 30199.49 13594.71 35997.57 16899.26 15999.48 22892.46 27899.71 19497.87 18699.08 16099.35 176
v114497.98 20497.69 21798.85 20598.87 28798.66 18099.54 10999.35 23196.27 27899.23 16699.35 26294.67 21599.23 27696.73 27195.16 29798.68 252
DU-MVS98.08 18897.79 20398.96 17698.87 28798.98 14299.41 16999.45 17997.87 13398.71 25199.50 21994.82 20399.22 27998.57 12592.87 32998.68 252
NR-MVSNet97.97 20797.61 22599.02 16898.87 28799.26 11199.47 14699.42 19897.63 16397.08 32699.50 21995.07 19699.13 29397.86 18793.59 32098.68 252
WR-MVS98.06 18997.73 21499.06 16298.86 29099.25 11299.19 24099.35 23197.30 19798.66 26099.43 23993.94 24099.21 28498.58 12394.28 31198.71 239
v124097.69 25197.32 26598.79 21398.85 29198.43 20499.48 14199.36 22696.11 29499.27 15499.36 25993.76 24699.24 27594.46 31495.23 29598.70 243
test_040296.64 28796.24 28997.85 29098.85 29196.43 29199.44 15499.26 26593.52 32996.98 32899.52 21288.52 33099.20 28692.58 33597.50 23597.93 338
v14419297.92 21297.60 22698.87 19998.83 29398.65 18199.55 10699.34 23596.20 28499.32 14499.40 24894.36 22699.26 27396.37 28395.03 30098.70 243
v192192097.80 23297.45 24298.84 20698.80 29498.53 19199.52 11599.34 23596.15 29199.24 16299.47 23193.98 23999.29 26895.40 30195.13 29898.69 247
gg-mvs-nofinetune96.17 29795.32 30598.73 21798.79 29598.14 21799.38 18694.09 36091.07 34398.07 30391.04 35689.62 32099.35 25996.75 26999.09 15998.68 252
test-LLR98.06 18997.90 19498.55 23398.79 29597.10 25798.67 32097.75 34497.34 19398.61 27198.85 31894.45 22499.45 23497.25 23999.38 13699.10 191
test-mter97.49 27097.13 27598.55 23398.79 29597.10 25798.67 32097.75 34496.65 24998.61 27198.85 31888.23 33399.45 23497.25 23999.38 13699.10 191
PS-MVSNAJss98.92 11498.92 9798.90 18998.78 29898.53 19199.78 2099.54 7098.07 11699.00 21299.76 10599.01 1699.37 25199.13 4597.23 24998.81 220
MVS97.28 27696.55 28499.48 10998.78 29898.95 15199.27 21899.39 21083.53 35198.08 30099.54 20596.97 13399.87 12394.23 31799.16 15099.63 123
TranMVSNet+NR-MVSNet97.93 20997.66 22098.76 21698.78 29898.62 18499.65 5499.49 12797.76 14898.49 27999.60 18494.23 23098.97 32098.00 17792.90 32798.70 243
PEN-MVS97.76 23597.44 24798.72 21998.77 30198.54 19099.78 2099.51 10197.06 22198.29 29399.64 16592.63 27098.89 32598.09 16893.16 32598.72 237
v7n97.87 21797.52 23398.92 18398.76 30298.58 18799.84 699.46 16796.20 28498.91 22599.70 13294.89 20199.44 23996.03 28793.89 31798.75 231
v14897.79 23397.55 22998.50 23698.74 30397.72 23999.54 10999.33 24296.26 27998.90 22799.51 21694.68 21499.14 29097.83 19093.15 32698.63 279
JIA-IIPM97.50 26897.02 27898.93 18198.73 30497.80 23599.30 20898.97 29791.73 33998.91 22594.86 35195.10 19599.71 19497.58 21397.98 21599.28 182
Gipumacopyleft90.99 32090.15 32393.51 33098.73 30490.12 35193.98 35599.45 17979.32 35392.28 34794.91 35069.61 35697.98 33887.42 34995.67 28692.45 352
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EU-MVSNet97.98 20498.03 17997.81 29498.72 30696.65 28499.66 4799.66 2798.09 11198.35 28999.82 4995.25 19398.01 33797.41 23395.30 29498.78 223
K. test v397.10 28196.79 28298.01 28098.72 30696.33 29499.87 497.05 35097.59 16596.16 33599.80 7688.71 32699.04 30496.69 27496.55 26298.65 269
OurMVSNet-221017-097.88 21597.77 20898.19 26998.71 30896.53 28799.88 199.00 29497.79 14598.78 24599.94 391.68 29299.35 25997.21 24196.99 25698.69 247
test_djsdf98.67 14398.57 14498.98 17398.70 30998.91 15899.88 199.46 16797.55 17099.22 16799.88 1595.73 17599.28 26999.03 5397.62 22498.75 231
pmmvs696.53 28996.09 29297.82 29398.69 31095.47 31399.37 18999.47 15793.46 33197.41 31799.78 9587.06 34199.33 26396.92 26492.70 33198.65 269
lessismore_v097.79 29598.69 31095.44 31594.75 35895.71 33899.87 2088.69 32799.32 26495.89 28994.93 30398.62 281
mvs_tets98.40 15998.23 16398.91 18798.67 31298.51 19799.66 4799.53 8298.19 9898.65 26699.81 6292.75 26199.44 23999.31 2797.48 23998.77 227
SixPastTwentyTwo97.50 26897.33 26498.03 27798.65 31396.23 29799.77 2298.68 32897.14 21197.90 30799.93 490.45 30799.18 28797.00 25596.43 26698.67 259
UnsupCasMVSNet_eth96.44 29196.12 29197.40 30798.65 31395.65 30699.36 19399.51 10197.13 21296.04 33798.99 31188.40 33198.17 33396.71 27290.27 33798.40 314
DTE-MVSNet97.51 26797.19 27498.46 24498.63 31598.13 21899.84 699.48 13996.68 24697.97 30699.67 15192.92 25798.56 32996.88 26692.60 33298.70 243
our_test_397.65 25897.68 21897.55 30398.62 31694.97 32498.84 30599.30 25796.83 23998.19 29699.34 26597.01 13299.02 30895.00 30996.01 27498.64 271
ppachtmachnet_test97.49 27097.45 24297.61 30098.62 31695.24 31898.80 30999.46 16796.11 29498.22 29599.62 17796.45 15098.97 32093.77 32195.97 27998.61 290
pmmvs498.13 18297.90 19498.81 21098.61 31898.87 16198.99 28299.21 27296.44 26899.06 20299.58 19095.90 16999.11 29897.18 24796.11 27398.46 308
jajsoiax98.43 15498.28 16198.88 19598.60 31998.43 20499.82 1099.53 8298.19 9898.63 26899.80 7693.22 25399.44 23999.22 3597.50 23598.77 227
cascas97.69 25197.43 25098.48 23998.60 31997.30 24898.18 34699.39 21092.96 33598.41 28498.78 32393.77 24599.27 27298.16 16498.61 18498.86 217
pmmvs597.52 26597.30 26798.16 27198.57 32196.73 28099.27 21898.90 30896.14 29298.37 28799.53 20991.54 29899.14 29097.51 22395.87 28098.63 279
GG-mvs-BLEND98.45 24598.55 32298.16 21599.43 16093.68 36197.23 32198.46 33189.30 32299.22 27995.43 30098.22 20397.98 335
gm-plane-assit98.54 32392.96 34494.65 31999.15 29699.64 21497.56 218
anonymousdsp98.44 15398.28 16198.94 17998.50 32498.96 14999.77 2299.50 11997.07 21998.87 23299.77 10194.76 21099.28 26998.66 11097.60 22598.57 296
N_pmnet94.95 31095.83 29892.31 33398.47 32579.33 35899.12 25192.81 36493.87 32597.68 31399.13 29893.87 24299.01 31091.38 33796.19 27198.59 294
MS-PatchMatch97.24 27897.32 26596.99 31498.45 32693.51 34298.82 30799.32 25097.41 18998.13 29999.30 27588.99 32499.56 22595.68 29599.80 8497.90 340
test0.0.03 197.71 24997.42 25198.56 23198.41 32797.82 23498.78 31198.63 32997.34 19398.05 30498.98 31494.45 22498.98 31395.04 30897.15 25498.89 216
EPNet_dtu98.03 19597.96 18798.23 26798.27 32895.54 31199.23 23298.75 31799.02 1597.82 31099.71 12896.11 15999.48 23093.04 32999.65 11999.69 98
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
bset_n11_16_dypcd98.16 17897.97 18598.73 21798.26 32998.28 21197.99 34998.01 34197.68 15799.10 19199.63 17195.68 17799.15 28998.78 9496.55 26298.75 231
MDA-MVSNet-bldmvs94.96 30993.98 31597.92 28698.24 33097.27 25099.15 24799.33 24293.80 32680.09 35799.03 30888.31 33297.86 34193.49 32494.36 31098.62 281
MDA-MVSNet_test_wron95.45 30494.60 31098.01 28098.16 33197.21 25599.11 25799.24 26893.49 33080.73 35698.98 31493.02 25498.18 33294.22 31894.45 30898.64 271
new_pmnet96.38 29396.03 29397.41 30698.13 33295.16 32299.05 26699.20 27393.94 32497.39 31898.79 32191.61 29799.04 30490.43 34095.77 28298.05 329
YYNet195.36 30694.51 31297.92 28697.89 33397.10 25799.10 25999.23 26993.26 33380.77 35599.04 30792.81 26098.02 33694.30 31594.18 31398.64 271
DSMNet-mixed97.25 27797.35 25996.95 31797.84 33493.61 34199.57 9096.63 35496.13 29398.87 23298.61 32994.59 21897.70 34495.08 30798.86 17699.55 140
EG-PatchMatch MVS95.97 30095.69 30096.81 32097.78 33592.79 34599.16 24398.93 30196.16 28994.08 34399.22 28882.72 35099.47 23195.67 29697.50 23598.17 324
Anonymous2024052196.20 29695.89 29797.13 31297.72 33694.96 32599.79 1999.29 26293.01 33497.20 32399.03 30889.69 31898.36 33191.16 33896.13 27298.07 327
MVP-Stereo97.81 23097.75 21297.99 28297.53 33796.60 28698.96 29098.85 31297.22 20697.23 32199.36 25995.28 18999.46 23395.51 29899.78 8997.92 339
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test20.0396.12 29895.96 29596.63 32297.44 33895.45 31499.51 11999.38 21696.55 25896.16 33599.25 28493.76 24696.17 35387.35 35094.22 31298.27 320
UnsupCasMVSNet_bld93.53 31892.51 32196.58 32497.38 33993.82 33698.24 34399.48 13991.10 34293.10 34696.66 34774.89 35598.37 33094.03 32087.71 34297.56 344
MIMVSNet195.51 30395.04 30796.92 31897.38 33995.60 30799.52 11599.50 11993.65 32896.97 32999.17 29385.28 34696.56 35288.36 34795.55 28998.60 293
OpenMVS_ROBcopyleft92.34 2094.38 31593.70 31996.41 32597.38 33993.17 34399.06 26498.75 31786.58 34894.84 34298.26 33781.53 35399.32 26489.01 34497.87 21896.76 346
Anonymous2023120696.22 29496.03 29396.79 32197.31 34294.14 33499.63 5999.08 28796.17 28797.04 32799.06 30593.94 24097.76 34386.96 35195.06 29998.47 304
CMPMVSbinary69.68 2394.13 31694.90 30891.84 33497.24 34380.01 35798.52 33199.48 13989.01 34591.99 34899.67 15185.67 34599.13 29395.44 29997.03 25596.39 348
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EPNet98.86 11998.71 12499.30 13797.20 34498.18 21499.62 6598.91 30699.28 298.63 26899.81 6295.96 16399.99 199.24 3499.72 10399.73 80
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
KD-MVS_2432*160094.62 31193.72 31797.31 30897.19 34595.82 30498.34 33899.20 27395.00 31297.57 31498.35 33487.95 33798.10 33492.87 33177.00 35398.01 331
miper_refine_blended94.62 31193.72 31797.31 30897.19 34595.82 30498.34 33899.20 27395.00 31297.57 31498.35 33487.95 33798.10 33492.87 33177.00 35398.01 331
DIV-MVS_2432*160095.00 30894.34 31396.96 31697.07 34795.39 31699.56 9799.44 18895.11 30997.13 32597.32 34591.86 28797.27 34790.35 34181.23 35098.23 323
CL-MVSNet_2432*160094.49 31393.97 31696.08 32696.16 34893.67 34098.33 34099.38 21695.13 30797.33 31998.15 33892.69 26896.57 35188.67 34579.87 35197.99 334
Patchmatch-RL test95.84 30195.81 29995.95 32795.61 34990.57 35098.24 34398.39 33495.10 31195.20 33998.67 32694.78 20697.77 34296.28 28490.02 33899.51 153
PM-MVS92.96 31992.23 32295.14 32995.61 34989.98 35299.37 18998.21 33794.80 31695.04 34197.69 34065.06 35797.90 34094.30 31589.98 33997.54 345
pmmvs-eth3d95.34 30794.73 30997.15 31095.53 35195.94 30299.35 19999.10 28495.13 30793.55 34497.54 34188.15 33597.91 33994.58 31289.69 34097.61 342
new-patchmatchnet94.48 31494.08 31495.67 32895.08 35292.41 34699.18 24199.28 26494.55 32193.49 34597.37 34487.86 33997.01 34991.57 33688.36 34197.61 342
pmmvs394.09 31793.25 32096.60 32394.76 35394.49 33098.92 29798.18 33989.66 34496.48 33298.06 33986.28 34297.33 34689.68 34387.20 34397.97 336
ambc93.06 33292.68 35482.36 35498.47 33398.73 32595.09 34097.41 34255.55 36099.10 30096.42 28191.32 33597.71 341
EMVS80.02 32679.22 32982.43 34291.19 35576.40 36097.55 35392.49 36566.36 35983.01 35491.27 35564.63 35885.79 36065.82 35960.65 35785.08 356
E-PMN80.61 32579.88 32882.81 34090.75 35676.38 36197.69 35195.76 35766.44 35883.52 35292.25 35462.54 35987.16 35968.53 35861.40 35684.89 357
PMMVS286.87 32185.37 32591.35 33690.21 35783.80 35398.89 30097.45 34983.13 35291.67 34995.03 34948.49 36294.70 35585.86 35377.62 35295.54 349
TDRefinement95.42 30594.57 31197.97 28389.83 35896.11 29999.48 14198.75 31796.74 24296.68 33099.88 1588.65 32899.71 19498.37 14882.74 34898.09 326
LCM-MVSNet86.80 32285.22 32691.53 33587.81 35980.96 35698.23 34598.99 29571.05 35590.13 35096.51 34848.45 36396.88 35090.51 33985.30 34596.76 346
FPMVS84.93 32385.65 32482.75 34186.77 36063.39 36498.35 33798.92 30374.11 35483.39 35398.98 31450.85 36192.40 35784.54 35494.97 30192.46 351
wuyk23d40.18 33041.29 33536.84 34486.18 36149.12 36679.73 35822.81 36727.64 36125.46 36428.45 36421.98 36748.89 36255.80 36023.56 36212.51 360
MVEpermissive76.82 2176.91 32874.31 33284.70 33885.38 36276.05 36296.88 35493.17 36267.39 35771.28 35989.01 35821.66 36987.69 35871.74 35772.29 35590.35 354
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high77.30 32774.86 33184.62 33975.88 36377.61 35997.63 35293.15 36388.81 34664.27 36089.29 35736.51 36483.93 36175.89 35652.31 35892.33 353
PMVScopyleft70.75 2275.98 32974.97 33079.01 34370.98 36455.18 36593.37 35698.21 33765.08 36061.78 36193.83 35221.74 36892.53 35678.59 35591.12 33689.34 355
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt82.80 32481.52 32786.66 33766.61 36568.44 36392.79 35797.92 34268.96 35680.04 35899.85 2985.77 34496.15 35497.86 18743.89 35995.39 350
test12339.01 33242.50 33428.53 34539.17 36620.91 36798.75 31419.17 36819.83 36338.57 36266.67 36033.16 36515.42 36337.50 36229.66 36149.26 358
testmvs39.17 33143.78 33325.37 34636.04 36716.84 36898.36 33626.56 36620.06 36238.51 36367.32 35929.64 36615.30 36437.59 36139.90 36043.98 359
uanet_test0.02 3360.03 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 3650.00 3700.00 3650.00 3630.00 3630.00 361
cdsmvs_eth3d_5k24.64 33332.85 3360.00 3470.00 3680.00 3690.00 35999.51 1010.00 3640.00 36599.56 19796.58 1450.00 3650.00 3630.00 3630.00 361
pcd_1.5k_mvsjas8.27 33511.03 3380.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 36599.01 160.00 3650.00 3630.00 3630.00 361
sosnet-low-res0.02 3360.03 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 3650.00 3700.00 3650.00 3630.00 3630.00 361
sosnet0.02 3360.03 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 3650.00 3700.00 3650.00 3630.00 3630.00 361
uncertanet0.02 3360.03 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 3650.00 3700.00 3650.00 3630.00 3630.00 361
Regformer0.02 3360.03 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 3650.00 3700.00 3650.00 3630.00 3630.00 361
ab-mvs-re8.30 33411.06 3370.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 36599.58 1900.00 3700.00 3650.00 3630.00 3630.00 361
uanet0.02 3360.03 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.27 3650.00 3700.00 3650.00 3630.00 3630.00 361
test_241102_TWO99.48 13999.08 1199.88 599.81 6298.94 3199.96 1998.91 6899.84 6599.88 5
test_0728_THIRD98.99 2599.81 2299.80 7699.09 1299.96 1998.85 8099.90 2399.88 5
GSMVS99.52 147
sam_mvs194.86 20299.52 147
sam_mvs94.72 213
MTGPAbinary99.47 157
test_post199.23 23265.14 36294.18 23499.71 19497.58 213
test_post65.99 36194.65 21799.73 184
patchmatchnet-post98.70 32594.79 20599.74 177
MTMP99.54 10998.88 310
test9_res97.49 22499.72 10399.75 69
agg_prior297.21 24199.73 10299.75 69
test_prior499.56 7398.99 282
test_prior298.96 29098.34 8199.01 20799.52 21298.68 6397.96 17999.74 99
旧先验298.96 29096.70 24599.47 10699.94 5498.19 159
新几何299.01 280
无先验98.99 28299.51 10196.89 23499.93 6997.53 22199.72 86
原ACMM298.95 294
testdata299.95 4396.67 275
segment_acmp98.96 25
testdata198.85 30498.32 85
plane_prior599.47 15799.69 20397.78 19497.63 22298.67 259
plane_prior499.61 181
plane_prior397.00 26898.69 5599.11 188
plane_prior299.39 18198.97 30
plane_prior96.97 27199.21 23998.45 7097.60 225
n20.00 369
nn0.00 369
door-mid98.05 340
test1199.35 231
door97.92 342
HQP5-MVS96.83 276
BP-MVS97.19 245
HQP4-MVS98.66 26099.64 21498.64 271
HQP3-MVS99.39 21097.58 227
HQP2-MVS92.47 275
MDTV_nov1_ep13_2view95.18 32199.35 19996.84 23799.58 8695.19 19497.82 19199.46 165
ACMMP++_ref97.19 251
ACMMP++97.43 243
Test By Simon98.75 56