This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
SED-MVS99.44 399.58 399.28 399.69 899.76 199.62 1498.35 399.51 1699.05 299.60 599.98 199.28 3599.61 598.83 4399.70 7699.77 52
DVP-MVS99.45 299.54 699.35 199.72 799.76 199.63 1198.37 299.63 699.03 398.95 3699.98 199.60 799.60 699.05 2499.74 4499.79 38
SMA-MVScopyleft99.38 599.60 299.12 999.76 299.62 2999.39 2998.23 1999.52 1598.03 1799.45 1099.98 199.64 599.58 899.30 1199.68 8899.76 57
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVS99.39 499.55 599.20 499.63 2199.71 999.66 698.33 699.29 3498.40 1299.64 499.98 199.31 3199.56 998.96 3199.85 399.70 88
MSP-MVS99.34 699.52 999.14 899.68 1299.75 499.64 898.31 899.44 2098.10 1499.28 1599.98 199.30 3399.34 2299.05 2499.81 1699.79 38
SteuartSystems-ACMMP99.20 1599.51 1098.83 2799.66 1699.66 1599.71 398.12 2899.14 5596.62 3499.16 2199.98 199.12 4599.63 399.19 2099.78 2899.83 22
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP99.05 2599.45 1398.58 3199.73 599.60 3999.64 898.28 1299.23 4394.57 6099.35 1399.97 799.55 1499.63 398.66 5199.70 7699.74 68
zzz-MVS99.31 899.44 1699.16 699.73 599.65 1799.63 1198.26 1399.27 3798.01 1899.27 1699.97 799.60 799.59 798.58 5699.71 6799.73 72
MTAPA98.09 1599.97 7
HFP-MVS99.32 799.53 899.07 1399.69 899.59 4199.63 1198.31 899.56 1097.37 2699.27 1699.97 799.70 399.35 2199.24 1699.71 6799.76 57
APDe-MVS99.49 199.64 199.32 299.74 499.74 599.75 198.34 499.56 1098.72 799.57 699.97 799.53 1699.65 299.25 1499.84 599.77 52
TSAR-MVS + MP.99.27 1099.57 498.92 2398.78 5499.53 5099.72 298.11 2999.73 297.43 2599.15 2299.96 1299.59 1099.73 199.07 2299.88 199.82 23
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MTMP98.46 1199.96 12
HPM-MVS++copyleft99.10 2199.30 2798.86 2499.69 899.48 5799.59 1698.34 499.26 4096.55 3799.10 2899.96 1299.36 2799.25 2698.37 6999.64 10999.66 102
CP-MVS99.27 1099.44 1699.08 1299.62 2399.58 4499.53 1898.16 2299.21 4697.79 2199.15 2299.96 1299.59 1099.54 1198.86 3999.78 2899.74 68
PHI-MVS99.08 2299.43 1898.67 2999.15 4699.59 4199.11 4297.35 4099.14 5597.30 2799.44 1199.96 1299.32 3098.89 5099.39 799.79 2599.58 115
XVS97.42 7399.62 2998.59 6493.81 7899.95 1799.69 79
X-MVStestdata97.42 7399.62 2998.59 6493.81 7899.95 1799.69 79
X-MVS98.93 2999.37 2198.42 3299.67 1399.62 2999.60 1598.15 2499.08 6593.81 7898.46 5999.95 1799.59 1099.49 1399.21 1999.68 8899.75 64
SD-MVS99.25 1299.50 1198.96 2198.79 5399.55 4899.33 3298.29 1199.75 197.96 1999.15 2299.95 1799.61 699.17 3199.06 2399.81 1699.84 18
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + ACMM98.77 3399.45 1397.98 4499.37 3799.46 5999.44 2798.13 2799.65 492.30 10298.91 3999.95 1799.05 5099.42 1798.95 3299.58 13499.82 23
ACMMPR99.30 999.54 699.03 1699.66 1699.64 2299.68 498.25 1499.56 1097.12 3099.19 1999.95 1799.72 199.43 1699.25 1499.72 5799.77 52
TSAR-MVS + GP.98.66 3999.36 2297.85 4697.16 8199.46 5999.03 4894.59 6299.09 6397.19 2999.73 399.95 1799.39 2698.95 4398.69 5099.75 3999.65 105
CPTT-MVS99.14 1999.20 3399.06 1499.58 2699.53 5099.45 2597.80 3799.19 4998.32 1398.58 5399.95 1799.60 799.28 2598.20 8199.64 10999.69 92
SR-MVS99.67 1398.25 1499.94 25
MP-MVScopyleft99.07 2399.36 2298.74 2899.63 2199.57 4699.66 698.25 1499.00 7695.62 4398.97 3499.94 2599.54 1599.51 1298.79 4799.71 6799.73 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CNVR-MVS99.23 1499.28 2899.17 599.65 1899.34 7999.46 2498.21 2099.28 3598.47 998.89 4199.94 2599.50 1799.42 1798.61 5499.73 5199.52 128
SF-MVS99.18 1699.32 2699.03 1699.65 1899.41 6898.87 5498.24 1799.14 5598.73 599.11 2599.92 2898.92 5899.22 2798.84 4199.76 3599.56 121
APD-MVScopyleft99.25 1299.38 2099.09 1199.69 899.58 4499.56 1798.32 798.85 9097.87 2098.91 3999.92 2899.30 3399.45 1599.38 899.79 2599.58 115
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast98.34 199.17 1799.45 1398.85 2599.55 2999.37 7399.64 898.05 3299.53 1396.58 3598.93 3799.92 2899.49 1999.46 1499.32 1099.80 2499.64 109
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UA-Net97.13 8099.14 3594.78 10997.21 7999.38 7197.56 10292.04 9898.48 12288.03 12498.39 6299.91 3194.03 18299.33 2399.23 1799.81 1699.25 152
MCST-MVS99.11 2099.27 2998.93 2299.67 1399.33 8299.51 2098.31 899.28 3596.57 3699.10 2899.90 3299.71 299.19 3098.35 7099.82 1099.71 86
NCCC99.05 2599.08 3999.02 1999.62 2399.38 7199.43 2898.21 2099.36 2797.66 2397.79 7799.90 3299.45 2299.17 3198.43 6499.77 3399.51 132
MSLP-MVS++99.15 1899.24 3199.04 1599.52 3299.49 5699.09 4498.07 3099.37 2598.47 997.79 7799.89 3499.50 1798.93 4599.45 499.61 11699.76 57
mPP-MVS99.53 3099.89 34
ACMMPcopyleft98.74 3499.03 4698.40 3399.36 3999.64 2299.20 3697.75 3898.82 9795.24 5098.85 4299.87 3699.17 4298.74 6297.50 11199.71 6799.76 57
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
train_agg98.73 3599.11 3798.28 3699.36 3999.35 7799.48 2397.96 3498.83 9593.86 7798.70 5199.86 3799.44 2399.08 3798.38 6799.61 11699.58 115
abl_698.09 4099.33 4299.22 9298.79 5994.96 5498.52 12197.00 3297.30 8799.86 3798.76 6699.69 7999.41 141
3Dnovator+96.92 798.71 3699.05 4298.32 3499.53 3099.34 7999.06 4694.61 6099.65 497.49 2496.75 10099.86 3799.44 2398.78 5799.30 1199.81 1699.67 98
DeepPCF-MVS97.74 398.34 4599.46 1297.04 6398.82 5299.33 8296.28 13997.47 3999.58 894.70 5998.99 3399.85 4097.24 11399.55 1099.34 997.73 19699.56 121
DPM-MVS98.31 4798.53 6298.05 4198.76 5598.77 11499.13 4098.07 3099.10 6294.27 7196.70 10299.84 4198.70 6897.90 11498.11 8699.40 16599.28 149
PGM-MVS98.86 3199.35 2598.29 3599.77 199.63 2599.67 595.63 4698.66 11295.27 4999.11 2599.82 4299.67 499.33 2399.19 2099.73 5199.74 68
QAPM98.62 4099.04 4598.13 3999.57 2799.48 5799.17 3894.78 5699.57 996.16 3896.73 10199.80 4399.33 2998.79 5699.29 1399.75 3999.64 109
OMC-MVS98.84 3299.01 4898.65 3099.39 3699.23 9199.22 3596.70 4299.40 2297.77 2297.89 7699.80 4399.21 3699.02 4098.65 5299.57 13899.07 163
9.1499.79 45
MVS_111021_HR98.59 4199.36 2297.68 4899.42 3599.61 3498.14 8494.81 5599.31 3195.00 5499.51 899.79 4599.00 5498.94 4498.83 4399.69 7999.57 120
PLCcopyleft97.93 299.02 2898.94 5099.11 1099.46 3499.24 9099.06 4697.96 3499.31 3199.16 197.90 7599.79 4599.36 2798.71 6398.12 8599.65 10599.52 128
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PCF-MVS97.50 698.18 5098.35 6897.99 4398.65 5699.36 7498.94 5198.14 2698.59 11493.62 8296.61 10699.76 4899.03 5297.77 12197.45 11699.57 13898.89 171
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CNLPA99.03 2799.05 4299.01 2099.27 4499.22 9299.03 4897.98 3399.34 2999.00 498.25 6699.71 4999.31 3198.80 5598.82 4599.48 15399.17 156
MVS_111021_LR98.67 3799.41 1997.81 4799.37 3799.53 5098.51 6695.52 4899.27 3794.85 5699.56 799.69 5099.04 5199.36 2098.88 3799.60 12499.58 115
CDPH-MVS98.41 4399.10 3897.61 5099.32 4399.36 7499.49 2196.15 4598.82 9791.82 10698.41 6099.66 5199.10 4798.93 4598.97 3099.75 3999.58 115
3Dnovator96.92 798.67 3799.05 4298.23 3899.57 2799.45 6199.11 4294.66 5999.69 396.80 3396.55 11099.61 5299.40 2598.87 5299.49 399.85 399.66 102
CANet98.46 4299.16 3497.64 4998.48 5899.64 2299.35 3194.71 5899.53 1395.17 5197.63 8399.59 5398.38 8198.88 5198.99 2999.74 4499.86 15
UGNet97.66 6599.07 4196.01 9397.19 8099.65 1797.09 12193.39 8399.35 2894.40 6798.79 4499.59 5394.24 17998.04 10698.29 7799.73 5199.80 30
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
AdaColmapbinary99.06 2498.98 4999.15 799.60 2599.30 8599.38 3098.16 2299.02 7498.55 898.71 5099.57 5599.58 1399.09 3597.84 9899.64 10999.36 146
PVSNet_Blended_VisFu97.41 7398.49 6496.15 8897.49 7199.76 196.02 14393.75 7799.26 4093.38 8693.73 14499.35 5696.47 13598.96 4298.46 6199.77 3399.90 3
RPSCF97.61 6698.16 7796.96 7198.10 6299.00 10098.84 5793.76 7599.45 1994.78 5899.39 1299.31 5798.53 7896.61 15595.43 16697.74 19497.93 187
ETV-MVS98.05 5499.25 3096.65 7695.61 11799.61 3498.26 8093.52 8198.90 8693.74 8199.32 1499.20 5898.90 6199.21 2998.72 4999.87 299.79 38
TAPA-MVS97.53 598.41 4398.84 5597.91 4599.08 4899.33 8299.15 3997.13 4199.34 2993.20 8797.75 7999.19 5999.20 3798.66 6598.13 8499.66 10199.48 136
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CANet_DTU96.64 9899.08 3993.81 12397.10 8299.42 6698.85 5690.01 13399.31 3179.98 17499.78 299.10 6097.42 11098.35 8598.05 8999.47 15599.53 125
CS-MVS98.06 5399.12 3696.82 7295.83 10899.66 1598.93 5293.12 9198.95 7994.29 6998.55 5499.05 6198.94 5699.05 3998.78 4899.83 899.80 30
MVS_030498.14 5199.03 4697.10 6098.05 6599.63 2599.27 3494.33 6599.63 693.06 9097.32 8699.05 6198.09 8898.82 5498.87 3899.81 1699.89 6
OpenMVScopyleft96.23 1197.95 5798.45 6597.35 5299.52 3299.42 6698.91 5394.61 6098.87 8792.24 10494.61 13699.05 6199.10 4798.64 6799.05 2499.74 4499.51 132
GG-mvs-BLEND69.11 20598.13 7835.26 2103.49 21998.20 15394.89 1632.38 21698.42 1255.82 22096.37 11398.60 645.97 21598.75 6197.98 9199.01 18198.61 174
CHOSEN 280x42097.99 5699.24 3196.53 8098.34 6099.61 3498.36 7489.80 13999.27 3795.08 5399.81 198.58 6598.64 7299.02 4098.92 3498.93 18299.48 136
Vis-MVSNet (Re-imp)97.40 7498.89 5295.66 10195.99 10399.62 2997.82 9393.22 8898.82 9791.40 10996.94 9698.56 6695.70 15299.14 3399.41 699.79 2599.75 64
EPNet_dtu96.30 10598.53 6293.70 12798.97 5098.24 15197.36 10794.23 6798.85 9079.18 17899.19 1998.47 6794.09 18197.89 11598.21 8098.39 18898.85 172
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS_MVSNet97.86 5898.86 5396.68 7496.02 10099.72 698.35 7593.37 8598.75 10994.01 7296.88 9998.40 6898.48 7999.09 3599.42 599.83 899.80 30
COLMAP_ROBcopyleft96.15 1297.78 6098.17 7697.32 5398.84 5199.45 6199.28 3395.43 4999.48 1891.80 10794.83 13598.36 6998.90 6198.09 9897.85 9799.68 8899.15 157
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
IterMVS-SCA-FT94.89 13397.87 8991.42 16694.86 13797.70 16897.24 11384.88 18198.93 8375.74 19094.26 14098.25 7096.69 12698.52 7897.68 10499.10 18099.73 72
DELS-MVS98.19 4998.77 5797.52 5198.29 6199.71 999.12 4194.58 6398.80 10095.38 4896.24 11598.24 7197.92 9599.06 3899.52 199.82 1099.79 38
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ADS-MVSNet94.65 13897.04 11891.88 16195.68 11598.99 10295.89 14479.03 20199.15 5285.81 13896.96 9598.21 7297.10 11594.48 19394.24 18897.74 19497.21 193
EIA-MVS97.70 6498.78 5696.44 8495.72 11299.65 1798.14 8493.72 7898.30 12992.31 10198.63 5297.90 7398.97 5598.92 4798.30 7699.78 2899.80 30
CSCG98.90 3098.93 5198.85 2599.75 399.72 699.49 2196.58 4399.38 2398.05 1698.97 3497.87 7499.49 1997.78 12098.92 3499.78 2899.90 3
MS-PatchMatch95.99 11297.26 11394.51 11397.46 7298.76 11797.27 11186.97 16699.09 6389.83 11893.51 14797.78 7596.18 14197.53 13495.71 16399.35 16898.41 179
IterMVS94.81 13597.71 9291.42 16694.83 13897.63 17497.38 10685.08 17898.93 8375.67 19194.02 14197.64 7696.66 12998.45 8197.60 10798.90 18399.72 83
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FC-MVSNet-test96.07 11197.94 8793.89 12193.60 15398.67 12496.62 13190.30 13298.76 10788.62 12095.57 13097.63 7794.48 17597.97 11097.48 11499.71 6799.52 128
EPNet98.05 5498.86 5397.10 6099.02 4999.43 6598.47 6794.73 5799.05 7195.62 4398.93 3797.62 7895.48 16098.59 7498.55 5799.29 17299.84 18
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test0.0.03 196.69 9598.12 7995.01 10795.49 12498.99 10295.86 14590.82 12298.38 12692.54 10096.66 10497.33 7995.75 15097.75 12398.34 7299.60 12499.40 144
MSDG98.27 4898.29 6998.24 3799.20 4599.22 9299.20 3697.82 3699.37 2594.43 6595.90 12197.31 8099.12 4598.76 5998.35 7099.67 9699.14 160
EPP-MVSNet97.75 6298.71 5896.63 7895.68 11599.56 4797.51 10393.10 9299.22 4494.99 5597.18 9297.30 8198.65 7198.83 5398.93 3399.84 599.92 1
CDS-MVSNet96.59 10198.02 8494.92 10894.45 14198.96 10597.46 10591.75 10397.86 15090.07 11596.02 11897.25 8296.21 13998.04 10698.38 6799.60 12499.65 105
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
SCA94.95 13197.44 10292.04 15395.55 12199.16 9596.26 14079.30 19899.02 7485.73 13998.18 6797.13 8397.69 10396.03 17594.91 17997.69 19797.65 189
HyFIR lowres test95.99 11296.56 12795.32 10497.99 6799.65 1796.54 13288.86 14898.44 12489.77 11984.14 19897.05 8499.03 5298.55 7698.19 8299.73 5199.86 15
PMMVS97.52 6998.39 6696.51 8295.82 10998.73 12197.80 9493.05 9398.76 10794.39 6899.07 3197.03 8598.55 7698.31 8797.61 10699.43 16099.21 155
baseline97.45 7298.70 5995.99 9495.89 10599.36 7498.29 7791.37 11399.21 4692.99 9398.40 6196.87 8697.96 9398.60 7298.60 5599.42 16299.86 15
Vis-MVSNetpermissive96.16 10998.22 7493.75 12495.33 12999.70 1197.27 11190.85 12198.30 12985.51 14195.72 12796.45 8793.69 18898.70 6499.00 2899.84 599.69 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PatchmatchNetpermissive94.70 13697.08 11691.92 15895.53 12298.85 10995.77 14679.54 19698.95 7985.98 13698.52 5596.45 8797.39 11195.32 18394.09 18997.32 20097.38 192
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DeepC-MVS97.63 498.33 4698.57 6098.04 4298.62 5799.65 1799.45 2598.15 2499.51 1692.80 9595.74 12596.44 8999.46 2199.37 1999.50 299.78 2899.81 28
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Fast-Effi-MVS+-dtu95.38 12498.20 7592.09 15293.91 14598.87 10897.35 10885.01 18099.08 6581.09 16698.10 6996.36 9095.62 15598.43 8497.03 12599.55 14399.50 134
PatchMatch-RL97.77 6198.25 7097.21 5899.11 4799.25 8897.06 12394.09 6898.72 11095.14 5298.47 5896.29 9198.43 8098.65 6697.44 11799.45 15798.94 166
DCV-MVSNet97.56 6898.36 6796.62 7996.44 8998.36 14798.37 7291.73 10499.11 6194.80 5798.36 6396.28 9298.60 7598.12 9598.44 6299.76 3599.87 12
thisisatest053097.23 7798.25 7096.05 9095.60 11999.59 4196.96 12593.23 8699.17 5192.60 9898.75 4896.19 9398.17 8398.19 9396.10 15299.72 5799.77 52
MVS_Test97.30 7698.54 6195.87 9595.74 11199.28 8698.19 8291.40 11299.18 5091.59 10898.17 6896.18 9498.63 7398.61 7098.55 5799.66 10199.78 44
tpmrst93.86 15595.88 14591.50 16595.69 11498.62 12795.64 14979.41 19798.80 10083.76 14995.63 12896.13 9597.25 11292.92 19792.31 19797.27 20196.74 198
tttt051797.23 7798.24 7396.04 9195.60 11999.60 3996.94 12693.23 8699.15 5292.56 9998.74 4996.12 9698.17 8398.21 9196.10 15299.73 5199.78 44
MDTV_nov1_ep1395.57 11897.48 9993.35 13895.43 12698.97 10497.19 11683.72 18798.92 8587.91 12697.75 7996.12 9697.88 9996.84 15495.64 16497.96 19298.10 184
EPMVS95.05 12996.86 12392.94 14395.84 10798.96 10596.68 12879.87 19499.05 7190.15 11497.12 9395.99 9897.49 10895.17 18694.75 18497.59 19896.96 197
GBi-Net96.98 8498.00 8595.78 9693.81 14897.98 15798.09 8691.32 11498.80 10093.92 7497.21 8995.94 9997.89 9698.07 10198.34 7299.68 8899.67 98
test196.98 8498.00 8595.78 9693.81 14897.98 15798.09 8691.32 11498.80 10093.92 7497.21 8995.94 9997.89 9698.07 10198.34 7299.68 8899.67 98
FMVSNet397.02 8398.12 7995.73 10093.59 15497.98 15798.34 7691.32 11498.80 10093.92 7497.21 8995.94 9997.63 10598.61 7098.62 5399.61 11699.65 105
gg-mvs-nofinetune90.85 18994.14 16887.02 19594.89 13699.25 8898.64 6276.29 20988.24 20957.50 21379.93 20495.45 10295.18 16998.77 5898.07 8899.62 11499.24 153
CHOSEN 1792x268896.41 10296.99 11995.74 9998.01 6699.72 697.70 9990.78 12499.13 6090.03 11687.35 18995.36 10398.33 8298.59 7498.91 3699.59 13099.87 12
FMVSNet296.64 9897.50 9795.63 10293.81 14897.98 15798.09 8690.87 12098.99 7793.48 8493.17 15295.25 10497.89 9698.63 6898.80 4699.68 8899.67 98
DI_MVS_plusplus_trai96.90 8797.49 9896.21 8795.61 11799.40 7098.72 6192.11 9699.14 5592.98 9493.08 15595.14 10598.13 8798.05 10597.91 9499.74 4499.73 72
thisisatest051594.61 14096.89 12191.95 15792.00 17098.47 13792.01 19290.73 12698.18 13483.96 14494.51 13795.13 10693.38 18997.38 13894.74 18599.61 11699.79 38
tpm cat194.06 14894.90 15693.06 14195.42 12898.52 13596.64 13080.67 19097.82 15292.63 9793.39 14995.00 10796.06 14591.36 20391.58 20296.98 20496.66 200
MVS-HIRNet92.51 17695.97 14288.48 19293.73 15198.37 14690.33 19875.36 21198.32 12877.78 18489.15 17494.87 10895.14 17097.62 13196.39 14298.51 18597.11 194
MAR-MVS97.71 6398.04 8297.32 5399.35 4198.91 10797.65 10091.68 10598.00 14197.01 3197.72 8194.83 10998.85 6598.44 8398.86 3999.41 16399.52 128
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MIMVSNet94.49 14497.59 9690.87 17891.74 17898.70 12394.68 17278.73 20397.98 14283.71 15097.71 8294.81 11096.96 11997.97 11097.92 9399.40 16598.04 185
IterMVS-LS96.12 11097.48 9994.53 11295.19 13197.56 18197.15 11789.19 14699.08 6588.23 12294.97 13294.73 11197.84 10197.86 11798.26 7899.60 12499.88 10
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test-LLR95.50 12197.32 10993.37 13695.49 12498.74 11996.44 13790.82 12298.18 13482.75 15796.60 10794.67 11295.54 15898.09 9896.00 15499.20 17698.93 167
TESTMET0.1,194.95 13197.32 10992.20 15092.62 15998.74 11996.44 13786.67 16998.18 13482.75 15796.60 10794.67 11295.54 15898.09 9896.00 15499.20 17698.93 167
Anonymous2023121197.10 8197.06 11797.14 5996.32 9199.52 5398.16 8393.76 7598.84 9495.98 4090.92 16194.58 11498.90 6197.72 12598.10 8799.71 6799.75 64
Anonymous20240521197.40 10496.45 8899.54 4998.08 8993.79 7498.24 13393.55 14594.41 11598.88 6498.04 10698.24 7999.75 3999.76 57
test-mter94.86 13497.32 10992.00 15592.41 16398.82 11096.18 14286.35 17398.05 13982.28 16096.48 11194.39 11695.46 16298.17 9496.20 14899.32 17099.13 161
Effi-MVS+-dtu95.74 11698.04 8293.06 14193.92 14499.16 9597.90 9188.16 15999.07 7082.02 16298.02 7394.32 11796.74 12598.53 7797.56 10899.61 11699.62 112
FC-MVSNet-train97.04 8297.91 8896.03 9296.00 10298.41 14396.53 13493.42 8299.04 7393.02 9298.03 7294.32 11797.47 10997.93 11297.77 10299.75 3999.88 10
LS3D97.79 5998.25 7097.26 5798.40 5999.63 2599.53 1898.63 199.25 4288.13 12396.93 9794.14 11999.19 3899.14 3399.23 1799.69 7999.42 140
baseline296.36 10497.82 9094.65 11194.60 14099.09 9896.45 13689.63 14198.36 12791.29 11197.60 8494.13 12096.37 13698.45 8197.70 10399.54 14799.41 141
PatchT93.96 15297.36 10690.00 18594.76 13998.65 12590.11 20078.57 20497.96 14580.42 17096.07 11794.10 12196.85 12298.10 9697.49 11299.26 17499.15 157
RPMNet94.66 13797.16 11491.75 16294.98 13498.59 13097.00 12478.37 20597.98 14283.78 14796.27 11494.09 12296.91 12097.36 13996.73 13199.48 15399.09 162
FMVSNet595.42 12296.47 13494.20 11692.26 16695.99 20295.66 14887.15 16597.87 14993.46 8596.68 10393.79 12397.52 10697.10 14997.21 12399.11 17996.62 201
MDTV_nov1_ep13_2view92.44 17895.66 14888.68 19091.05 19697.92 16192.17 19179.64 19598.83 9576.20 18891.45 15893.51 12495.04 17195.68 18193.70 19297.96 19298.53 176
CR-MVSNet94.57 14397.34 10791.33 16994.90 13598.59 13097.15 11779.14 19997.98 14280.42 17096.59 10993.50 12596.85 12298.10 9697.49 11299.50 15299.15 157
CVMVSNet95.33 12697.09 11593.27 13995.23 13098.39 14595.49 15292.58 9597.71 15683.00 15694.44 13993.28 12693.92 18597.79 11998.54 5999.41 16399.45 138
FMVSNet195.77 11596.41 13995.03 10693.42 15597.86 16497.11 12089.89 13698.53 11992.00 10589.17 17393.23 12798.15 8698.07 10198.34 7299.61 11699.69 92
baseline197.58 6798.05 8197.02 6696.21 9799.45 6197.71 9893.71 7998.47 12395.75 4298.78 4593.20 12898.91 6098.52 7898.44 6299.81 1699.53 125
dps94.63 13995.31 15493.84 12295.53 12298.71 12296.54 13280.12 19397.81 15497.21 2896.98 9492.37 12996.34 13892.46 20091.77 20097.26 20297.08 195
testgi95.67 11797.48 9993.56 13095.07 13399.00 10095.33 15688.47 15498.80 10086.90 13297.30 8792.33 13095.97 14797.66 12797.91 9499.60 12499.38 145
N_pmnet92.21 18594.60 16289.42 18991.88 17397.38 19089.15 20389.74 14097.89 14873.75 19787.94 18692.23 13193.85 18696.10 17393.20 19498.15 19197.43 191
IB-MVS93.96 1595.02 13096.44 13793.36 13797.05 8399.28 8690.43 19793.39 8398.02 14096.02 3994.92 13492.07 13283.52 20495.38 18295.82 16099.72 5799.59 114
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVSTER97.16 7997.71 9296.52 8195.97 10498.48 13698.63 6392.10 9798.68 11195.96 4199.23 1891.79 13396.87 12198.76 5997.37 12199.57 13899.68 97
casdiffmvs96.93 8697.43 10396.34 8595.70 11399.50 5597.75 9793.22 8898.98 7892.64 9694.97 13291.71 13498.93 5798.62 6998.52 6099.82 1099.72 83
TAMVS95.53 12096.50 13394.39 11593.86 14799.03 9996.67 12989.55 14397.33 16390.64 11393.02 15691.58 13596.21 13997.72 12597.43 11899.43 16099.36 146
canonicalmvs97.31 7597.81 9196.72 7396.20 9899.45 6198.21 8191.60 10799.22 4495.39 4798.48 5790.95 13699.16 4397.66 12799.05 2499.76 3599.90 3
anonymousdsp93.12 16495.86 14689.93 18791.09 19598.25 15095.12 15785.08 17897.44 15973.30 19890.89 16290.78 13795.25 16897.91 11395.96 15899.71 6799.82 23
ET-MVSNet_ETH3D96.17 10896.99 11995.21 10588.53 20398.54 13398.28 7892.61 9498.85 9093.60 8399.06 3290.39 13898.63 7395.98 17796.68 13399.61 11699.41 141
PVSNet_BlendedMVS97.51 7097.71 9297.28 5598.06 6399.61 3497.31 10995.02 5299.08 6595.51 4598.05 7090.11 13998.07 8998.91 4898.40 6599.72 5799.78 44
PVSNet_Blended97.51 7097.71 9297.28 5598.06 6399.61 3497.31 10995.02 5299.08 6595.51 4598.05 7090.11 13998.07 8998.91 4898.40 6599.72 5799.78 44
pmmvs495.09 12895.90 14494.14 11792.29 16597.70 16895.45 15390.31 13098.60 11390.70 11293.25 15089.90 14196.67 12897.13 14795.42 16799.44 15999.28 149
pm-mvs194.27 14595.57 14992.75 14492.58 16098.13 15594.87 16590.71 12796.70 18083.78 14789.94 16989.85 14294.96 17397.58 13297.07 12499.61 11699.72 83
diffmvs96.83 8897.33 10896.25 8695.76 11099.34 7998.06 9093.22 8899.43 2192.30 10296.90 9889.83 14398.55 7698.00 10998.14 8399.64 10999.70 88
test_part195.56 11995.38 15195.78 9696.07 9998.16 15497.57 10190.78 12497.43 16093.04 9189.12 17689.41 14497.93 9496.38 16397.38 12099.29 17299.78 44
Effi-MVS+95.81 11497.31 11294.06 11995.09 13299.35 7797.24 11388.22 15798.54 11885.38 14298.52 5588.68 14598.70 6898.32 8697.93 9299.74 4499.84 18
GA-MVS93.93 15396.31 14091.16 17393.61 15298.79 11195.39 15590.69 12898.25 13273.28 19996.15 11688.42 14694.39 17797.76 12295.35 16899.58 13499.45 138
EU-MVSNet92.80 17094.76 16090.51 18091.88 17396.74 19992.48 19088.69 15196.21 18679.00 17991.51 15787.82 14791.83 19795.87 17996.27 14599.21 17598.92 170
pmmvs691.90 18792.53 19491.17 17291.81 17697.63 17493.23 18588.37 15693.43 20580.61 16877.32 20687.47 14894.12 18096.58 15795.72 16298.88 18499.53 125
UniMVSNet_NR-MVSNet94.59 14195.47 15093.55 13191.85 17597.89 16395.03 15892.00 9997.33 16386.12 13493.19 15187.29 14996.60 13196.12 17296.70 13299.72 5799.80 30
Fast-Effi-MVS+95.38 12496.52 13094.05 12094.15 14399.14 9797.24 11386.79 16798.53 11987.62 12894.51 13787.06 15098.76 6698.60 7298.04 9099.72 5799.77 52
CLD-MVS96.74 9296.51 13197.01 6896.71 8698.62 12798.73 6094.38 6498.94 8294.46 6497.33 8587.03 15198.07 8997.20 14596.87 12999.72 5799.54 124
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP-MVS96.37 10396.58 12696.13 8997.31 7798.44 14098.45 6895.22 5098.86 8888.58 12198.33 6487.00 15297.67 10497.23 14396.56 13899.56 14199.62 112
thres100view90096.72 9396.47 13497.00 6996.31 9299.52 5398.28 7894.01 6997.35 16194.52 6195.90 12186.93 15399.09 4998.07 10197.87 9699.81 1699.63 111
tfpn200view996.75 9196.51 13197.03 6496.31 9299.67 1298.41 6993.99 7197.35 16194.52 6195.90 12186.93 15399.14 4498.26 8897.80 10099.82 1099.70 88
thres20096.76 9096.53 12997.03 6496.31 9299.67 1298.37 7293.99 7197.68 15794.49 6395.83 12486.77 15599.18 4098.26 8897.82 9999.82 1099.66 102
ACMM96.26 996.67 9796.69 12596.66 7597.29 7898.46 13896.48 13595.09 5199.21 4693.19 8898.78 4586.73 15698.17 8397.84 11896.32 14499.74 4499.49 135
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LGP-MVS_train96.23 10696.89 12195.46 10397.32 7598.77 11498.81 5893.60 8098.58 11585.52 14099.08 3086.67 15797.83 10297.87 11697.51 11099.69 7999.73 72
ACMP96.25 1096.62 10096.72 12496.50 8396.96 8498.75 11897.80 9494.30 6698.85 9093.12 8998.78 4586.61 15897.23 11497.73 12496.61 13699.62 11499.71 86
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
new_pmnet90.45 19392.84 19287.66 19388.96 20296.16 20188.71 20484.66 18297.56 15871.91 20385.60 19786.58 15993.28 19096.07 17493.54 19398.46 18694.39 205
OPM-MVS96.22 10795.85 14796.65 7697.75 6898.54 13399.00 5095.53 4796.88 17489.88 11795.95 12086.46 16098.07 8997.65 12996.63 13599.67 9698.83 173
xxxxxxxxxxxxxcwj98.14 5197.38 10599.03 1699.65 1899.41 6898.87 5498.24 1799.14 5598.73 599.11 2586.38 16198.92 5899.22 2798.84 4199.76 3599.56 121
thres40096.71 9496.45 13697.02 6696.28 9599.63 2598.41 6994.00 7097.82 15294.42 6695.74 12586.26 16299.18 4098.20 9297.79 10199.81 1699.70 88
UniMVSNet (Re)94.58 14295.34 15293.71 12692.25 16798.08 15694.97 16091.29 11897.03 17287.94 12593.97 14386.25 16396.07 14496.27 16995.97 15799.72 5799.79 38
CostFormer94.25 14794.88 15793.51 13395.43 12698.34 14896.21 14180.64 19197.94 14694.01 7298.30 6586.20 16497.52 10692.71 19892.69 19597.23 20398.02 186
thres600view796.69 9596.43 13897.00 6996.28 9599.67 1298.41 6993.99 7197.85 15194.29 6995.96 11985.91 16599.19 3898.26 8897.63 10599.82 1099.73 72
SixPastTwentyTwo93.44 16095.32 15391.24 17192.11 16898.40 14492.77 18888.64 15398.09 13877.83 18393.51 14785.74 16696.52 13496.91 15294.89 18299.59 13099.73 72
TSAR-MVS + COLMAP96.79 8996.55 12897.06 6297.70 7098.46 13899.07 4596.23 4499.38 2391.32 11098.80 4385.61 16798.69 7097.64 13096.92 12899.37 16799.06 164
ACMH+95.51 1395.40 12396.00 14194.70 11096.33 9098.79 11196.79 12791.32 11498.77 10687.18 13095.60 12985.46 16896.97 11897.15 14696.59 13799.59 13099.65 105
test20.0390.65 19293.71 18087.09 19490.44 19996.24 20089.74 20285.46 17795.59 19872.99 20090.68 16485.33 16984.41 20395.94 17895.10 17599.52 15097.06 196
tmp_tt82.25 20397.73 6988.71 21180.18 21068.65 21399.15 5286.98 13199.47 985.31 17068.35 21187.51 20583.81 20791.64 210
WR-MVS_H93.54 15894.67 16192.22 14891.95 17197.91 16294.58 17688.75 15096.64 18183.88 14690.66 16585.13 17194.40 17696.54 15995.91 15999.73 5199.89 6
WR-MVS93.43 16194.48 16492.21 14991.52 18797.69 17094.66 17489.98 13496.86 17583.43 15190.12 16785.03 17293.94 18496.02 17695.82 16099.71 6799.82 23
CMPMVSbinary70.31 1890.74 19091.06 19790.36 18397.32 7597.43 18792.97 18787.82 16293.50 20475.34 19483.27 20084.90 17392.19 19692.64 19991.21 20396.50 20694.46 204
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Anonymous2023120690.70 19193.93 17686.92 19690.21 20196.79 19790.30 19986.61 17196.05 19169.25 20488.46 18184.86 17485.86 20297.11 14896.47 14199.30 17197.80 188
v1092.79 17194.06 17291.31 17091.78 17797.29 19394.87 16586.10 17496.97 17379.82 17588.16 18384.56 17595.63 15496.33 16795.31 16999.65 10599.80 30
v114492.81 16994.03 17391.40 16891.68 17997.60 17894.73 16988.40 15596.71 17978.48 18188.14 18484.46 17695.45 16396.31 16895.22 17199.65 10599.76 57
Baseline_NR-MVSNet93.87 15493.98 17593.75 12491.66 18097.02 19495.53 15191.52 11197.16 16987.77 12787.93 18783.69 17796.35 13795.10 18897.23 12299.68 8899.73 72
ACMH95.42 1495.27 12795.96 14394.45 11496.83 8598.78 11394.72 17091.67 10698.95 7986.82 13396.42 11283.67 17897.00 11797.48 13696.68 13399.69 7999.76 57
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TransMVSNet (Re)93.45 15994.08 17192.72 14592.83 15797.62 17794.94 16191.54 11095.65 19783.06 15588.93 17783.53 17994.25 17897.41 13797.03 12599.67 9698.40 181
pmmvs592.71 17594.27 16790.90 17791.42 18997.74 16793.23 18586.66 17095.99 19378.96 18091.45 15883.44 18095.55 15797.30 14195.05 17699.58 13498.93 167
V4293.05 16593.90 17892.04 15391.91 17297.66 17294.91 16289.91 13596.85 17680.58 16989.66 17083.43 18195.37 16495.03 19094.90 18099.59 13099.78 44
EG-PatchMatch MVS92.45 17793.92 17790.72 17992.56 16198.43 14294.88 16484.54 18397.18 16679.55 17686.12 19683.23 18293.15 19297.22 14496.00 15499.67 9699.27 151
tpm92.38 18194.79 15989.56 18894.30 14297.50 18494.24 18278.97 20297.72 15574.93 19597.97 7482.91 18396.60 13193.65 19694.81 18398.33 18998.98 165
v192192092.36 18393.57 18290.94 17691.39 19097.39 18994.70 17187.63 16396.60 18276.63 18786.98 19282.89 18495.75 15096.26 17095.14 17499.55 14399.73 72
v892.87 16793.87 17991.72 16492.05 16997.50 18494.79 16888.20 15896.85 17680.11 17390.01 16882.86 18595.48 16095.15 18794.90 18099.66 10199.80 30
v119292.43 17993.61 18191.05 17491.53 18697.43 18794.61 17587.99 16096.60 18276.72 18687.11 19182.74 18695.85 14996.35 16695.30 17099.60 12499.74 68
v14419292.38 18193.55 18491.00 17591.44 18897.47 18694.27 18087.41 16496.52 18478.03 18287.50 18882.65 18795.32 16595.82 18095.15 17399.55 14399.78 44
TranMVSNet+NR-MVSNet93.67 15794.14 16893.13 14091.28 19497.58 17995.60 15091.97 10097.06 17084.05 14390.64 16682.22 18896.17 14294.94 19196.78 13099.69 7999.78 44
CP-MVSNet93.25 16294.00 17492.38 14791.65 18297.56 18194.38 17989.20 14596.05 19183.16 15489.51 17181.97 18996.16 14396.43 16196.56 13899.71 6799.89 6
v124091.99 18693.33 18790.44 18191.29 19297.30 19294.25 18186.79 16796.43 18575.49 19386.34 19581.85 19095.29 16696.42 16295.22 17199.52 15099.73 72
tfpnnormal93.85 15694.12 17093.54 13293.22 15698.24 15195.45 15391.96 10194.61 20083.91 14590.74 16381.75 19197.04 11697.49 13596.16 15099.68 8899.84 18
v2v48292.77 17293.52 18591.90 16091.59 18597.63 17494.57 17790.31 13096.80 17879.22 17788.74 17981.55 19296.04 14695.26 18494.97 17899.66 10199.69 92
DU-MVS93.98 15194.44 16593.44 13491.66 18097.77 16595.03 15891.57 10897.17 16786.12 13493.13 15381.13 19396.60 13195.10 18897.01 12799.67 9699.80 30
USDC94.26 14694.83 15893.59 12996.02 10098.44 14097.84 9288.65 15298.86 8882.73 15994.02 14180.56 19496.76 12497.28 14296.15 15199.55 14398.50 177
NR-MVSNet94.01 14994.51 16393.44 13492.56 16197.77 16595.67 14791.57 10897.17 16785.84 13793.13 15380.53 19595.29 16697.01 15096.17 14999.69 7999.75 64
TinyColmap94.00 15094.35 16693.60 12895.89 10598.26 14997.49 10488.82 14998.56 11783.21 15391.28 16080.48 19696.68 12797.34 14096.26 14799.53 14998.24 182
gm-plane-assit89.44 19692.82 19385.49 19991.37 19195.34 20579.55 21282.12 18891.68 20864.79 21087.98 18580.26 19795.66 15398.51 8097.56 10899.45 15798.41 179
v14892.36 18392.88 19091.75 16291.63 18397.66 17292.64 18990.55 12996.09 18983.34 15288.19 18280.00 19892.74 19393.98 19594.58 18699.58 13499.69 92
PS-CasMVS92.72 17393.36 18691.98 15691.62 18497.52 18394.13 18388.98 14795.94 19481.51 16587.35 18979.95 19995.91 14896.37 16496.49 14099.70 7699.89 6
TDRefinement93.04 16693.57 18292.41 14696.58 8798.77 11497.78 9691.96 10198.12 13780.84 16789.13 17579.87 20087.78 20096.44 16094.50 18799.54 14798.15 183
DeepMVS_CXcopyleft96.85 19687.43 20689.27 14498.30 12975.55 19295.05 13179.47 20192.62 19589.48 20495.18 20995.96 202
LTVRE_ROB93.20 1692.84 16894.92 15590.43 18292.83 15798.63 12697.08 12287.87 16197.91 14768.42 20693.54 14679.46 20296.62 13097.55 13397.40 11999.74 4499.92 1
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PEN-MVS92.72 17393.20 18892.15 15191.29 19297.31 19194.67 17389.81 13796.19 18781.83 16388.58 18079.06 20395.61 15695.21 18596.27 14599.72 5799.82 23
MIMVSNet188.61 19790.68 19886.19 19881.56 21095.30 20687.78 20585.98 17594.19 20372.30 20278.84 20578.90 20490.06 19896.59 15695.47 16599.46 15695.49 203
v7n91.61 18892.95 18990.04 18490.56 19897.69 17093.74 18485.59 17695.89 19576.95 18586.60 19478.60 20593.76 18797.01 15094.99 17799.65 10599.87 12
DTE-MVSNet92.42 18092.85 19191.91 15990.87 19796.97 19594.53 17889.81 13795.86 19681.59 16488.83 17877.88 20695.01 17294.34 19496.35 14399.64 10999.73 72
pmmvs388.19 19891.27 19684.60 20185.60 20793.66 20885.68 20781.13 18992.36 20763.66 21289.51 17177.10 20793.22 19196.37 16492.40 19698.30 19097.46 190
UniMVSNet_ETH3D93.15 16392.33 19594.11 11893.91 14598.61 12994.81 16790.98 11997.06 17087.51 12982.27 20276.33 20897.87 10094.79 19297.47 11599.56 14199.81 28
FPMVS83.82 20184.61 20382.90 20290.39 20090.71 21090.85 19684.10 18695.47 19965.15 20883.44 19974.46 20975.48 20681.63 20779.42 20991.42 21187.14 209
PMVScopyleft72.60 1776.39 20477.66 20774.92 20581.04 21169.37 21768.47 21480.54 19285.39 21065.07 20973.52 20772.91 21065.67 21280.35 20976.81 21088.71 21285.25 212
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
pmmvs-eth3d89.81 19489.65 20090.00 18586.94 20595.38 20491.08 19386.39 17294.57 20182.27 16183.03 20164.94 21193.96 18396.57 15893.82 19199.35 16899.24 153
new-patchmatchnet86.12 20087.30 20284.74 20086.92 20695.19 20783.57 20984.42 18592.67 20665.66 20780.32 20364.72 21289.41 19992.33 20289.21 20498.43 18796.69 199
MDA-MVSNet-bldmvs87.84 19989.22 20186.23 19781.74 20996.77 19883.74 20889.57 14294.50 20272.83 20196.64 10564.47 21392.71 19481.43 20892.28 19896.81 20598.47 178
PM-MVS89.55 19590.30 19988.67 19187.06 20495.60 20390.88 19584.51 18496.14 18875.75 18986.89 19363.47 21494.64 17496.85 15393.89 19099.17 17899.29 148
Gipumacopyleft81.40 20281.78 20480.96 20483.21 20885.61 21379.73 21176.25 21097.33 16364.21 21155.32 21055.55 21586.04 20192.43 20192.20 19996.32 20793.99 206
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMMVS277.26 20379.47 20674.70 20676.00 21388.37 21274.22 21376.34 20878.31 21154.13 21469.96 20852.50 21670.14 21084.83 20688.71 20597.35 19993.58 207
EMVS68.12 20768.11 20968.14 20875.51 21471.76 21555.38 21777.20 20777.78 21237.79 21753.59 21143.61 21774.72 20767.05 21276.70 21188.27 21486.24 210
E-PMN68.30 20668.43 20868.15 20774.70 21571.56 21655.64 21677.24 20677.48 21339.46 21651.95 21341.68 21873.28 20870.65 21179.51 20888.61 21386.20 211
MVEpermissive67.97 1965.53 20867.43 21063.31 20959.33 21674.20 21453.09 21870.43 21266.27 21443.13 21545.98 21430.62 21970.65 20979.34 21086.30 20683.25 21589.33 208
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ambc80.99 20580.04 21290.84 20990.91 19496.09 18974.18 19662.81 20930.59 22082.44 20596.25 17191.77 20095.91 20898.56 175
testmvs31.24 20940.15 21120.86 21112.61 21717.99 21825.16 21913.30 21448.42 21524.82 21853.07 21230.13 22128.47 21342.73 21337.65 21220.79 21651.04 213
test12326.75 21034.25 21218.01 2127.93 21817.18 21924.85 22012.36 21544.83 21616.52 21941.80 21518.10 22228.29 21433.08 21434.79 21318.10 21749.95 214
uanet_test0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
sosnet-low-res0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
sosnet0.00 2110.00 2130.00 2130.00 2200.00 2200.00 2210.00 2170.00 2170.00 2210.00 2160.00 2230.00 2160.00 2150.00 2140.00 2180.00 215
RE-MVS-def69.05 205
our_test_392.30 16497.58 17990.09 201
Patchmatch-RL test66.86 215
NP-MVS98.57 116
Patchmtry98.59 13097.15 11779.14 19980.42 170