This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS98.86 398.97 298.75 299.43 1399.63 199.25 1297.81 198.62 197.69 197.59 2099.90 198.93 598.99 398.42 1199.37 5299.62 3
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS98.90 199.07 198.69 399.38 1999.61 299.33 797.80 398.25 797.60 298.87 399.89 298.67 1899.02 298.26 1799.36 5499.61 5
MSP-MVS98.73 598.93 498.50 699.44 1299.57 399.36 397.65 898.14 1196.51 1598.49 699.65 798.67 1898.60 1398.42 1199.40 4699.63 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVS98.75 498.91 598.57 499.21 2499.54 499.42 297.78 597.49 3196.84 998.94 199.82 498.59 2198.90 998.22 1899.56 1099.48 11
APDe-MVS98.87 298.96 398.77 199.58 299.53 599.44 197.81 198.22 997.33 498.70 499.33 998.86 898.96 598.40 1399.63 399.57 8
CSCG97.44 3297.18 4097.75 2899.47 699.52 698.55 3195.41 4197.69 2495.72 2094.29 5395.53 6298.10 3196.20 10097.38 5199.24 7299.62 3
SteuartSystems-ACMMP98.38 1498.71 997.99 2499.34 2199.46 799.34 597.33 2597.31 3594.25 3098.06 1399.17 1898.13 2898.98 498.46 999.55 1199.54 9
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft98.66 698.89 698.39 999.60 199.41 899.00 2097.63 1297.78 1795.83 1998.33 1099.83 398.85 1098.93 798.56 699.41 4399.40 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP98.20 1898.49 1297.85 2699.50 499.40 999.26 1197.64 1197.47 3392.62 4697.59 2099.09 2198.71 1698.82 1197.86 3399.40 4699.19 39
zzz-MVS98.43 1198.31 2398.57 499.48 599.40 999.32 897.62 1397.70 2296.67 1196.59 3299.09 2198.86 898.65 1297.56 4399.45 3099.17 45
ACMMPR98.40 1298.49 1298.28 1499.41 1499.40 999.36 397.35 2298.30 595.02 2697.79 1798.39 3799.04 298.26 2798.10 2299.50 2199.22 35
XVS96.60 6899.35 1296.82 6590.85 5798.72 2999.46 26
X-MVStestdata96.60 6899.35 1296.82 6590.85 5798.72 2999.46 26
X-MVS97.84 2498.19 2797.42 3199.40 1599.35 1299.06 1797.25 2697.38 3490.85 5796.06 3698.72 2998.53 2498.41 2298.15 2199.46 2699.28 24
PGM-MVS97.81 2598.11 2897.46 3099.55 399.34 1599.32 894.51 4696.21 6093.07 3798.05 1497.95 4298.82 1298.22 3097.89 3299.48 2299.09 53
HFP-MVS98.48 998.62 1098.32 1299.39 1899.33 1699.27 1097.42 1998.27 695.25 2498.34 998.83 2699.08 198.26 2798.08 2499.48 2299.26 29
CP-MVS98.32 1798.34 2198.29 1399.34 2199.30 1799.15 1497.35 2297.49 3195.58 2297.72 1898.62 3398.82 1298.29 2597.67 3899.51 1999.28 24
MVS_111021_HR97.04 3998.20 2695.69 5398.44 4699.29 1896.59 7493.20 5997.70 2289.94 7698.46 796.89 4796.71 6398.11 3797.95 2899.27 6799.01 67
ACMMPcopyleft97.37 3397.48 3597.25 3298.88 3799.28 1998.47 3496.86 3597.04 4492.15 4797.57 2396.05 6097.67 3897.27 5995.99 8799.46 2699.14 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS94.87 496.76 4796.50 5297.05 3698.21 4999.28 1998.67 2797.38 2197.31 3590.36 6989.19 10093.58 6998.19 2798.31 2498.50 799.51 1999.36 17
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SD-MVS98.52 798.77 898.23 1698.15 5099.26 2198.79 2697.59 1698.52 296.25 1697.99 1599.75 599.01 398.27 2697.97 2799.59 499.63 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVScopyleft98.36 1598.32 2298.41 899.47 699.26 2199.12 1597.77 696.73 4996.12 1797.27 2898.88 2498.46 2598.47 1798.39 1499.52 1499.22 35
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DELS-MVS96.06 5396.04 5996.07 5097.77 5699.25 2398.10 4293.26 5694.42 10392.79 4388.52 10793.48 7095.06 8898.51 1598.83 199.45 3099.28 24
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PHI-MVS97.78 2698.44 1797.02 3798.73 3899.25 2398.11 4195.54 4096.66 5292.79 4398.52 599.38 897.50 4297.84 4598.39 1499.45 3099.03 64
CANet96.84 4497.20 3896.42 4297.92 5499.24 2598.60 2993.51 5397.11 4193.07 3791.16 8297.24 4596.21 7198.24 2998.05 2599.22 7899.35 18
MVS_030496.31 4996.91 4795.62 5497.21 6499.20 2698.55 3193.10 6197.04 4489.73 7890.30 9296.35 5395.71 7798.14 3497.93 3199.38 4999.40 14
MP-MVScopyleft98.09 2298.30 2497.84 2799.34 2199.19 2799.23 1397.40 2097.09 4293.03 4097.58 2298.85 2598.57 2398.44 2097.69 3799.48 2299.23 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TSAR-MVS + MP.98.49 898.78 798.15 2098.14 5199.17 2899.34 597.18 3098.44 495.72 2097.84 1699.28 1198.87 799.05 198.05 2599.66 199.60 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft98.34 1698.47 1498.18 1799.46 899.15 2999.10 1697.69 797.67 2594.93 2797.62 1999.70 698.60 2098.45 1897.46 4699.31 6199.26 29
QAPM96.78 4697.14 4296.36 4499.05 3099.14 3098.02 4393.26 5697.27 3790.84 6091.16 8297.31 4497.64 4097.70 4998.20 1999.33 5699.18 43
MSLP-MVS++98.04 2397.93 3298.18 1799.10 2899.09 3198.34 3696.99 3397.54 3096.60 1394.82 4998.45 3598.89 697.46 5598.77 499.17 8699.37 16
xxxxxxxxxxxxxcwj97.07 3895.99 6098.33 1099.45 999.05 3298.27 3797.65 897.73 1897.02 798.18 1181.99 14298.11 2998.15 3297.62 3999.45 3099.19 39
SF-MVS98.39 1398.45 1698.33 1099.45 999.05 3298.27 3797.65 897.73 1897.02 798.18 1199.25 1498.11 2998.15 3297.62 3999.45 3099.19 39
TSAR-MVS + ACMM97.71 2898.60 1196.66 4198.64 4199.05 3298.85 2597.23 2898.45 389.40 8497.51 2499.27 1396.88 5998.53 1497.81 3598.96 11499.59 7
MCST-MVS98.20 1898.36 1898.01 2399.40 1599.05 3299.00 2097.62 1397.59 2993.70 3497.42 2799.30 1098.77 1498.39 2397.48 4599.59 499.31 23
CNVR-MVS98.47 1098.46 1598.48 799.40 1599.05 3299.02 1997.54 1797.73 1896.65 1297.20 2999.13 1998.85 1098.91 898.10 2299.41 4399.08 54
NCCC98.10 2198.05 3098.17 1999.38 1999.05 3299.00 2097.53 1898.04 1395.12 2594.80 5099.18 1798.58 2298.49 1697.78 3699.39 4898.98 71
CPTT-MVS97.78 2697.54 3398.05 2298.91 3599.05 3299.00 2096.96 3497.14 4095.92 1895.50 4298.78 2898.99 497.20 6196.07 8298.54 15199.04 63
DeepC-MVS_fast96.13 198.13 2098.27 2597.97 2599.16 2799.03 3999.05 1897.24 2798.22 994.17 3295.82 3898.07 3998.69 1798.83 1098.80 299.52 1499.10 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator93.79 897.08 3797.20 3896.95 3899.09 2999.03 3998.20 4093.33 5497.99 1493.82 3390.61 9096.80 4997.82 3597.90 4498.78 399.47 2599.26 29
PVSNet_BlendedMVS95.41 6095.28 7095.57 5597.42 6099.02 4195.89 9493.10 6196.16 6193.12 3591.99 7185.27 12094.66 9398.09 3897.34 5299.24 7299.08 54
PVSNet_Blended95.41 6095.28 7095.57 5597.42 6099.02 4195.89 9493.10 6196.16 6193.12 3591.99 7185.27 12094.66 9398.09 3897.34 5299.24 7299.08 54
IS_MVSNet95.28 6296.43 5493.94 8595.30 8999.01 4395.90 9291.12 8794.13 10887.50 10091.23 8194.45 6694.17 10298.45 1898.50 799.65 299.23 33
CS-MVS96.23 5297.15 4195.16 6195.01 9998.98 4497.13 5790.68 9296.00 6891.21 5494.03 5496.48 5197.35 4598.00 4197.43 4799.55 1199.15 47
MVS_111021_LR97.16 3698.01 3196.16 4798.47 4498.98 4496.94 6193.89 4997.64 2791.44 5198.89 296.41 5297.20 4998.02 4097.29 5699.04 10998.85 86
PVSNet_Blended_VisFu94.77 7295.54 6693.87 8796.48 7198.97 4694.33 12191.84 7694.93 9590.37 6885.04 13094.99 6390.87 14998.12 3697.30 5499.30 6399.45 13
OpenMVScopyleft92.33 1195.50 5595.22 7295.82 5298.98 3198.97 4697.67 5193.04 6494.64 9989.18 8884.44 13594.79 6496.79 6097.23 6097.61 4199.24 7298.88 82
tfpn200view993.64 9492.57 11394.89 6895.33 8798.94 4896.82 6592.31 6792.63 12788.29 9287.21 11178.01 15697.12 5396.82 7195.85 9299.45 3098.56 98
DeepPCF-MVS95.28 297.00 4098.35 2095.42 5897.30 6298.94 4894.82 11296.03 3998.24 892.11 4895.80 3998.64 3295.51 8398.95 698.66 596.78 18499.20 38
thres600view793.49 9992.37 12494.79 7395.42 8498.93 5096.58 7592.31 6793.04 12187.88 9786.62 11776.94 16297.09 5496.82 7195.63 9699.45 3098.63 95
thres20093.62 9592.54 11494.88 6995.36 8698.93 5096.75 6992.31 6792.84 12488.28 9486.99 11377.81 15897.13 5196.82 7195.92 8899.45 3098.49 104
TSAR-MVS + GP.97.45 3198.36 1896.39 4395.56 8398.93 5097.74 4993.31 5597.61 2894.24 3198.44 899.19 1698.03 3397.60 5197.41 4999.44 3899.33 20
train_agg97.65 2998.06 2997.18 3498.94 3398.91 5398.98 2497.07 3296.71 5090.66 6297.43 2699.08 2398.20 2697.96 4297.14 5799.22 7899.19 39
thres40093.56 9792.43 12194.87 7095.40 8598.91 5396.70 7192.38 6692.93 12388.19 9686.69 11677.35 15997.13 5196.75 7695.85 9299.42 4298.56 98
LS3D95.46 5895.14 7395.84 5197.91 5598.90 5598.58 3097.79 497.07 4383.65 11588.71 10388.64 10197.82 3597.49 5497.42 4899.26 7197.72 135
CHOSEN 1792x268892.66 10892.49 11792.85 10297.13 6598.89 5695.90 9288.50 12095.32 8683.31 11671.99 19088.96 9994.10 10496.69 7896.49 7198.15 16499.10 51
EIA-MVS95.50 5596.19 5794.69 7594.83 10298.88 5795.93 9191.50 8394.47 10289.43 8293.14 6092.72 7497.05 5597.82 4897.13 5899.43 4199.15 47
CDPH-MVS96.84 4497.49 3496.09 4898.92 3498.85 5898.61 2895.09 4296.00 6887.29 10195.45 4497.42 4397.16 5097.83 4697.94 2999.44 3898.92 77
3Dnovator+93.91 797.23 3597.22 3797.24 3398.89 3698.85 5898.26 3993.25 5897.99 1495.56 2390.01 9698.03 4198.05 3297.91 4398.43 1099.44 3899.35 18
Vis-MVSNetpermissive92.77 10695.00 7890.16 13094.10 12098.79 6094.76 11488.26 12292.37 13679.95 13188.19 10991.58 7884.38 19297.59 5297.58 4299.52 1498.91 80
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ETV-MVS96.31 4997.47 3694.96 6794.79 10398.78 6196.08 8791.41 8496.16 6190.50 6495.76 4096.20 5797.39 4398.42 2197.82 3499.57 899.18 43
AdaColmapbinary97.53 3096.93 4598.24 1599.21 2498.77 6298.47 3497.34 2496.68 5196.52 1495.11 4796.12 5898.72 1597.19 6396.24 7899.17 8698.39 111
thres100view90093.55 9892.47 12094.81 7295.33 8798.74 6396.78 6892.30 7092.63 12788.29 9287.21 11178.01 15696.78 6196.38 9195.92 8899.38 4998.40 110
abl_696.82 4098.60 4298.74 6397.74 4993.73 5096.25 5894.37 2994.55 5298.60 3497.25 4799.27 6798.61 96
PCF-MVS93.95 695.65 5495.14 7396.25 4597.73 5898.73 6597.59 5297.13 3192.50 13189.09 9089.85 9796.65 5096.90 5894.97 13294.89 11699.08 9998.38 112
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
canonicalmvs95.25 6495.45 6895.00 6595.27 9198.72 6696.89 6289.82 10396.51 5390.84 6093.72 5786.01 11597.66 3995.78 11297.94 2999.54 1399.50 10
HyFIR lowres test92.03 11191.55 13592.58 10397.13 6598.72 6694.65 11686.54 14093.58 11782.56 11967.75 20190.47 8695.67 7895.87 10895.54 9998.91 11998.93 76
tttt051794.52 7895.44 6993.44 9594.51 11298.68 6894.61 11790.72 8995.61 8286.84 10593.78 5689.26 9594.74 9097.02 6994.86 11799.20 8498.87 84
OMC-MVS97.00 4096.92 4697.09 3598.69 3998.66 6997.85 4795.02 4398.09 1294.47 2893.15 5996.90 4697.38 4497.16 6496.82 6799.13 9397.65 136
TAPA-MVS94.18 596.38 4896.49 5396.25 4598.26 4898.66 6998.00 4494.96 4497.17 3989.48 8192.91 6396.35 5397.53 4196.59 8295.90 9099.28 6597.82 127
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thisisatest053094.54 7795.47 6793.46 9494.51 11298.65 7194.66 11590.72 8995.69 8086.90 10493.80 5589.44 9294.74 9096.98 7094.86 11799.19 8598.85 86
Vis-MVSNet (Re-imp)94.46 7996.24 5692.40 10495.23 9298.64 7295.56 10090.99 8894.42 10385.02 11090.88 8894.65 6588.01 17198.17 3198.37 1699.57 898.53 101
EPP-MVSNet95.27 6396.18 5894.20 8394.88 10198.64 7294.97 10890.70 9195.34 8589.67 8091.66 7893.84 6795.42 8597.32 5897.00 6099.58 699.47 12
UGNet94.92 6596.63 5092.93 10196.03 7798.63 7494.53 11891.52 8296.23 5990.03 7392.87 6496.10 5986.28 18196.68 7996.60 7099.16 8999.32 22
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CNLPA96.90 4296.28 5597.64 2998.56 4398.63 7496.85 6496.60 3797.73 1897.08 689.78 9896.28 5697.80 3796.73 7796.63 6998.94 11698.14 122
UA-Net93.96 8895.95 6191.64 11196.06 7698.59 7695.29 10290.00 9991.06 15182.87 11790.64 8998.06 4086.06 18298.14 3498.20 1999.58 696.96 156
casdiffmvs94.38 8394.15 9394.64 7794.70 10998.51 7796.03 9091.66 7995.70 7889.36 8586.48 11985.03 12596.60 6697.40 5697.30 5499.52 1498.67 93
IB-MVS89.56 1591.71 11692.50 11690.79 12395.94 7998.44 7887.05 19391.38 8593.15 12092.98 4184.78 13185.14 12378.27 20092.47 17194.44 13499.10 9799.08 54
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CANet_DTU93.92 8996.57 5190.83 12195.63 8198.39 7996.99 6087.38 13196.26 5771.97 17496.31 3493.02 7194.53 9697.38 5796.83 6698.49 15497.79 128
MVS_Test94.82 6895.66 6393.84 8894.79 10398.35 8096.49 7889.10 11496.12 6487.09 10392.58 6690.61 8596.48 6796.51 8996.89 6499.11 9698.54 100
diffmvs94.31 8494.21 8894.42 8094.64 11098.28 8196.36 8191.56 8096.77 4888.89 9188.97 10184.23 12896.01 7596.05 10496.41 7399.05 10898.79 90
EPNet96.27 5196.97 4495.46 5798.47 4498.28 8197.41 5493.67 5195.86 7492.86 4297.51 2493.79 6891.76 13497.03 6897.03 5998.61 14799.28 24
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DI_MVS_plusplus_trai94.01 8793.63 10294.44 7994.54 11198.26 8397.51 5390.63 9395.88 7389.34 8680.54 15389.36 9395.48 8496.33 9596.27 7799.17 8698.78 91
PLCcopyleft94.95 397.37 3396.77 4998.07 2198.97 3298.21 8497.94 4696.85 3697.66 2697.58 393.33 5896.84 4898.01 3497.13 6596.20 8099.09 9898.01 123
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DPM-MVS96.86 4396.82 4896.91 3998.08 5298.20 8598.52 3397.20 2997.24 3891.42 5291.84 7598.45 3597.25 4797.07 6697.40 5098.95 11597.55 139
Anonymous20240521192.18 12695.04 9898.20 8596.14 8591.79 7893.93 10974.60 17288.38 10496.48 6795.17 12895.82 9499.00 11099.15 47
MAR-MVS95.50 5595.60 6495.39 5998.67 4098.18 8795.89 9489.81 10494.55 10191.97 4992.99 6190.21 8897.30 4696.79 7497.49 4498.72 13798.99 69
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
gg-mvs-nofinetune86.17 18588.57 15983.36 19393.44 12998.15 8896.58 7572.05 20774.12 21049.23 21464.81 20590.85 8389.90 16497.83 4696.84 6598.97 11397.41 143
PatchMatch-RL94.69 7494.41 8495.02 6497.63 5998.15 8894.50 11991.99 7395.32 8691.31 5395.47 4383.44 13496.02 7496.56 8395.23 10898.69 14096.67 163
Effi-MVS+92.93 10593.86 9791.86 10794.07 12198.09 9095.59 9985.98 14794.27 10679.54 13591.12 8581.81 14396.71 6396.67 8096.06 8399.27 6798.98 71
Anonymous2023121193.49 9992.33 12594.84 7194.78 10598.00 9196.11 8691.85 7594.86 9690.91 5674.69 17189.18 9696.73 6294.82 13395.51 10098.67 14199.24 32
CHOSEN 280x42095.46 5897.01 4393.66 9197.28 6397.98 9296.40 8085.39 15496.10 6591.07 5596.53 3396.34 5595.61 8097.65 5096.95 6296.21 18597.49 140
baseline194.59 7694.47 8394.72 7495.16 9497.97 9396.07 8891.94 7494.86 9689.98 7491.60 7985.87 11795.64 7997.07 6696.90 6399.52 1497.06 155
baseline94.83 6795.82 6293.68 9094.75 10697.80 9496.51 7788.53 11997.02 4689.34 8692.93 6292.18 7694.69 9295.78 11296.08 8198.27 16298.97 75
ACMP92.88 994.43 8094.38 8594.50 7896.01 7897.69 9595.85 9792.09 7295.74 7789.12 8995.14 4682.62 14094.77 8995.73 11494.67 12199.14 9299.06 58
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ET-MVSNet_ETH3D93.34 10194.33 8792.18 10683.26 20797.66 9696.72 7089.89 10295.62 8187.17 10296.00 3783.69 13396.99 5693.78 14895.34 10499.06 10498.18 121
TSAR-MVS + COLMAP94.79 7094.51 8295.11 6296.50 7097.54 9797.99 4594.54 4597.81 1685.88 10796.73 3181.28 14696.99 5696.29 9695.21 10998.76 13696.73 162
LGP-MVS_train94.12 8594.62 8093.53 9296.44 7297.54 9797.40 5591.84 7694.66 9881.09 12895.70 4183.36 13595.10 8796.36 9495.71 9599.32 5899.03 64
baseline293.01 10494.17 9191.64 11192.83 13897.49 9993.40 13387.53 12993.67 11586.07 10691.83 7686.58 10991.36 13896.38 9195.06 11198.67 14198.20 120
CLD-MVS94.79 7094.36 8695.30 6095.21 9397.46 10097.23 5692.24 7196.43 5491.77 5092.69 6584.31 12796.06 7295.52 11895.03 11299.31 6199.06 58
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
COLMAP_ROBcopyleft90.49 1493.27 10392.71 11293.93 8697.75 5797.44 10196.07 8893.17 6095.40 8483.86 11383.76 13988.72 10093.87 10794.25 14494.11 13998.87 12295.28 177
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MSDG94.82 6893.73 10096.09 4898.34 4797.43 10297.06 5896.05 3895.84 7590.56 6386.30 12489.10 9895.55 8296.13 10395.61 9799.00 11095.73 171
OPM-MVS93.61 9692.43 12195.00 6596.94 6797.34 10397.78 4894.23 4789.64 16385.53 10888.70 10482.81 13896.28 7096.28 9795.00 11599.24 7297.22 148
SCA90.92 12793.04 11188.45 14993.72 12797.33 10492.77 14276.08 19896.02 6778.26 13991.96 7390.86 8293.99 10690.98 18690.04 18895.88 18994.06 187
EPMVS90.88 12892.12 12789.44 14094.71 10797.24 10593.55 12976.81 19395.89 7281.77 12391.49 8086.47 11193.87 10790.21 18990.07 18795.92 18893.49 194
HQP-MVS94.43 8094.57 8194.27 8296.41 7397.23 10696.89 6293.98 4895.94 7183.68 11495.01 4884.46 12695.58 8195.47 12094.85 12099.07 10199.00 68
Fast-Effi-MVS+91.87 11392.08 12891.62 11392.91 13697.21 10794.93 10984.60 16593.61 11681.49 12683.50 14078.95 15196.62 6596.55 8496.22 7999.16 8998.51 102
Effi-MVS+-dtu91.78 11593.59 10489.68 13892.44 14297.11 10894.40 12084.94 16192.43 13275.48 15691.09 8683.75 13293.55 11596.61 8195.47 10197.24 18098.67 93
MDTV_nov1_ep1391.57 11993.18 10989.70 13693.39 13096.97 10993.53 13080.91 18495.70 7881.86 12292.40 6889.93 8993.25 12091.97 18090.80 18395.25 19894.46 181
ACMH+90.88 1291.41 12291.13 13891.74 11095.11 9696.95 11093.13 13889.48 11092.42 13379.93 13285.13 12978.02 15593.82 10993.49 15593.88 14598.94 11697.99 124
MS-PatchMatch91.82 11492.51 11591.02 11795.83 8096.88 11195.05 10684.55 16793.85 11282.01 12182.51 14591.71 7790.52 15695.07 13093.03 16198.13 16594.52 179
TDRefinement89.07 15488.15 16390.14 13295.16 9496.88 11195.55 10190.20 9789.68 16276.42 15076.67 16374.30 17284.85 18993.11 16191.91 17998.64 14694.47 180
ACMH90.77 1391.51 12191.63 13491.38 11495.62 8296.87 11391.76 16689.66 10691.58 14678.67 13786.73 11578.12 15493.77 11094.59 13594.54 13098.78 13498.98 71
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PatchmatchNetpermissive90.56 13192.49 11788.31 15293.83 12596.86 11492.42 15076.50 19595.96 7078.31 13891.96 7389.66 9193.48 11690.04 19189.20 19195.32 19593.73 192
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test-mter90.95 12693.54 10787.93 16390.28 16196.80 11591.44 16882.68 17792.15 14174.37 16789.57 9988.23 10690.88 14896.37 9394.31 13697.93 17197.37 144
CDS-MVSNet92.77 10693.60 10391.80 10992.63 14096.80 11595.24 10489.14 11390.30 16084.58 11186.76 11490.65 8490.42 15795.89 10796.49 7198.79 13398.32 116
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMM92.75 1094.41 8293.84 9895.09 6396.41 7396.80 11594.88 11193.54 5296.41 5590.16 7092.31 6983.11 13696.32 6996.22 9994.65 12299.22 7897.35 145
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FC-MVSNet-train93.85 9093.91 9593.78 8994.94 10096.79 11894.29 12291.13 8693.84 11388.26 9590.40 9185.23 12294.65 9596.54 8595.31 10599.38 4999.28 24
PMMVS94.61 7595.56 6593.50 9394.30 11696.74 11994.91 11089.56 10895.58 8387.72 9896.15 3592.86 7296.06 7295.47 12095.02 11398.43 15997.09 151
ADS-MVSNet89.80 14391.33 13788.00 16194.43 11496.71 12092.29 15474.95 20396.07 6677.39 14288.67 10586.09 11493.26 11988.44 19589.57 19095.68 19193.81 191
MVSTER94.89 6695.07 7694.68 7694.71 10796.68 12197.00 5990.57 9495.18 9293.05 3995.21 4586.41 11293.72 11197.59 5295.88 9199.00 11098.50 103
GG-mvs-BLEND66.17 20594.91 7932.63 2111.32 21996.64 12291.40 1690.85 21794.39 1052.20 22090.15 9595.70 612.27 21696.39 9095.44 10297.78 17395.68 172
TAMVS90.54 13390.87 14390.16 13091.48 14896.61 12393.26 13686.08 14587.71 17981.66 12583.11 14384.04 12990.42 15794.54 13694.60 12598.04 16995.48 175
test-LLR91.62 11893.56 10589.35 14293.31 13296.57 12492.02 16287.06 13592.34 13775.05 16390.20 9388.64 10190.93 14596.19 10194.07 14097.75 17596.90 159
TESTMET0.1,191.07 12593.56 10588.17 15390.43 15796.57 12492.02 16282.83 17692.34 13775.05 16390.20 9388.64 10190.93 14596.19 10194.07 14097.75 17596.90 159
GA-MVS89.28 14990.75 14487.57 17091.77 14696.48 12692.29 15487.58 12890.61 15765.77 19684.48 13476.84 16389.46 16595.84 10993.68 15098.52 15297.34 146
Fast-Effi-MVS+-dtu91.19 12493.64 10188.33 15192.19 14496.46 12793.99 12581.52 18292.59 12971.82 17592.17 7085.54 11891.68 13595.73 11494.64 12398.80 13198.34 113
USDC90.69 12990.52 14590.88 12094.17 11996.43 12895.82 9886.76 13793.92 11076.27 15286.49 11874.30 17293.67 11495.04 13193.36 15498.61 14794.13 184
RPSCF94.05 8694.00 9494.12 8496.20 7596.41 12996.61 7391.54 8195.83 7689.73 7896.94 3092.80 7395.35 8691.63 18290.44 18595.27 19793.94 188
FC-MVSNet-test91.63 11793.82 9989.08 14392.02 14596.40 13093.26 13687.26 13293.72 11477.26 14388.61 10689.86 9085.50 18595.72 11695.02 11399.16 8997.44 142
test0.0.03 191.97 11293.91 9589.72 13593.31 13296.40 13091.34 17187.06 13593.86 11181.67 12491.15 8489.16 9786.02 18395.08 12995.09 11098.91 11996.64 165
UniMVSNet_ETH3D88.47 16086.00 19091.35 11591.55 14796.29 13292.53 14788.81 11585.58 19382.33 12067.63 20266.87 20294.04 10591.49 18395.24 10798.84 12598.92 77
EG-PatchMatch MVS86.68 18187.24 17786.02 18690.58 15696.26 13391.08 17581.59 18084.96 19469.80 18971.35 19475.08 16984.23 19394.24 14593.35 15598.82 12695.46 176
dps90.11 14189.37 15490.98 11893.89 12396.21 13493.49 13177.61 19191.95 14292.74 4588.85 10278.77 15392.37 12787.71 19887.71 19695.80 19094.38 182
thisisatest051590.12 14092.06 12987.85 16490.03 16496.17 13587.83 19087.45 13091.71 14577.15 14485.40 12884.01 13085.74 18495.41 12293.30 15798.88 12198.43 106
UniMVSNet (Re)90.03 14289.61 15090.51 12689.97 16696.12 13692.32 15289.26 11190.99 15280.95 12978.25 16075.08 16991.14 14193.78 14893.87 14699.41 4399.21 37
CostFormer90.69 12990.48 14690.93 11994.18 11896.08 13794.03 12478.20 18993.47 11889.96 7590.97 8780.30 14793.72 11187.66 19988.75 19295.51 19496.12 167
FMVSNet393.79 9394.17 9193.35 9891.21 15395.99 13896.62 7288.68 11695.23 8990.40 6586.39 12091.16 7994.11 10395.96 10596.67 6899.07 10197.79 128
tpmrst88.86 15889.62 14987.97 16294.33 11595.98 13992.62 14676.36 19694.62 10076.94 14685.98 12582.80 13992.80 12486.90 20187.15 19894.77 20293.93 189
anonymousdsp88.90 15691.00 14086.44 18288.74 19295.97 14090.40 18182.86 17588.77 17067.33 19481.18 14981.44 14590.22 16096.23 9894.27 13799.12 9599.16 46
Patchmtry95.96 14193.36 13475.99 19975.19 160
CR-MVSNet90.16 13991.96 13188.06 15793.32 13195.95 14293.36 13475.99 19992.40 13475.19 16083.18 14185.37 11992.05 12995.21 12694.56 12898.47 15697.08 153
RPMNet90.19 13892.03 13088.05 15893.46 12895.95 14293.41 13274.59 20492.40 13475.91 15484.22 13686.41 11292.49 12594.42 14093.85 14798.44 15796.96 156
SixPastTwentyTwo88.37 16189.47 15187.08 17690.01 16595.93 14487.41 19185.32 15590.26 16170.26 18386.34 12371.95 18290.93 14592.89 16691.72 18098.55 15097.22 148
GBi-Net93.81 9194.18 8993.38 9691.34 15095.86 14596.22 8288.68 11695.23 8990.40 6586.39 12091.16 7994.40 9996.52 8696.30 7499.21 8197.79 128
test193.81 9194.18 8993.38 9691.34 15095.86 14596.22 8288.68 11695.23 8990.40 6586.39 12091.16 7994.40 9996.52 8696.30 7499.21 8197.79 128
FMVSNet293.30 10293.36 10893.22 10091.34 15095.86 14596.22 8288.24 12395.15 9389.92 7781.64 14789.36 9394.40 9996.77 7596.98 6199.21 8197.79 128
UniMVSNet_NR-MVSNet90.35 13589.96 14790.80 12289.66 16995.83 14892.48 14890.53 9590.96 15379.57 13379.33 15777.14 16093.21 12192.91 16594.50 13399.37 5299.05 61
DCV-MVSNet94.76 7395.12 7594.35 8195.10 9795.81 14996.46 7989.49 10996.33 5690.16 7092.55 6790.26 8795.83 7695.52 11896.03 8599.06 10499.33 20
LTVRE_ROB87.32 1687.55 17388.25 16286.73 17990.66 15595.80 15093.05 13984.77 16283.35 19960.32 20783.12 14267.39 20093.32 11894.36 14294.86 11798.28 16198.87 84
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tfpnnormal88.50 15987.01 18190.23 12891.36 14995.78 15192.74 14390.09 9883.65 19876.33 15171.46 19369.58 19491.84 13295.54 11794.02 14299.06 10499.03 64
pm-mvs189.19 15289.02 15589.38 14190.40 15895.74 15292.05 16088.10 12586.13 18977.70 14073.72 18079.44 15088.97 16895.81 11194.51 13299.08 9997.78 133
MIMVSNet88.99 15591.07 13986.57 18186.78 20195.62 15391.20 17475.40 20190.65 15676.57 14884.05 13782.44 14191.01 14495.84 10995.38 10398.48 15593.50 193
DU-MVS89.67 14588.84 15690.63 12589.26 17995.61 15492.48 14889.91 10091.22 14979.57 13377.72 16171.18 18693.21 12192.53 16994.57 12799.35 5599.05 61
NR-MVSNet89.34 14888.66 15790.13 13390.40 15895.61 15493.04 14089.91 10091.22 14978.96 13677.72 16168.90 19789.16 16794.24 14593.95 14399.32 5898.99 69
testgi89.42 14691.50 13687.00 17892.40 14395.59 15689.15 18785.27 15892.78 12572.42 17291.75 7776.00 16584.09 19494.38 14193.82 14998.65 14596.15 166
PatchT89.13 15391.71 13286.11 18592.92 13595.59 15683.64 20175.09 20291.87 14375.19 16082.63 14485.06 12492.05 12995.21 12694.56 12897.76 17497.08 153
WR-MVS_H87.93 16787.85 17088.03 16089.62 17095.58 15890.47 18085.55 15287.20 18476.83 14774.42 17572.67 18086.37 18093.22 16093.04 16099.33 5698.83 88
pmmvs587.83 17188.09 16487.51 17389.59 17295.48 15989.75 18584.73 16386.07 19171.44 17780.57 15270.09 19290.74 15294.47 13892.87 16598.82 12697.10 150
EPNet_dtu92.45 11095.02 7789.46 13998.02 5395.47 16094.79 11392.62 6594.97 9470.11 18594.76 5192.61 7584.07 19595.94 10695.56 9897.15 18195.82 170
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_part191.21 12389.47 15193.24 9994.26 11795.45 16195.26 10388.36 12188.49 17390.04 7272.61 18782.82 13793.69 11393.25 15994.62 12497.84 17299.06 58
CVMVSNet89.77 14491.66 13387.56 17193.21 13495.45 16191.94 16589.22 11289.62 16469.34 19183.99 13885.90 11684.81 19094.30 14395.28 10696.85 18397.09 151
TinyColmap89.42 14688.58 15890.40 12793.80 12695.45 16193.96 12686.54 14092.24 13976.49 14980.83 15070.44 18993.37 11794.45 13993.30 15798.26 16393.37 195
tpm cat188.90 15687.78 17290.22 12993.88 12495.39 16493.79 12778.11 19092.55 13089.43 8281.31 14879.84 14991.40 13784.95 20286.34 20194.68 20494.09 185
V4288.31 16287.95 16888.73 14689.44 17495.34 16592.23 15687.21 13388.83 16874.49 16674.89 17073.43 17790.41 15992.08 17892.77 16898.60 14998.33 114
v2v48288.25 16387.71 17388.88 14489.23 18395.28 16692.10 15887.89 12788.69 17173.31 17075.32 16771.64 18391.89 13192.10 17792.92 16398.86 12497.99 124
WR-MVS87.93 16788.09 16487.75 16589.26 17995.28 16690.81 17786.69 13888.90 16775.29 15974.31 17673.72 17585.19 18892.26 17293.32 15699.27 6798.81 89
FMVSNet191.54 12090.93 14192.26 10590.35 16095.27 16895.22 10587.16 13491.37 14887.62 9975.45 16683.84 13194.43 9796.52 8696.30 7498.82 12697.74 134
TranMVSNet+NR-MVSNet89.23 15188.48 16090.11 13489.07 18595.25 16992.91 14190.43 9690.31 15977.10 14576.62 16471.57 18491.83 13392.12 17594.59 12699.32 5898.92 77
v14887.51 17486.79 18388.36 15089.39 17695.21 17089.84 18488.20 12487.61 18177.56 14173.38 18370.32 19186.80 17790.70 18792.31 17598.37 16097.98 126
v114487.92 16987.79 17188.07 15589.27 17895.15 17192.17 15785.62 15188.52 17271.52 17673.80 17972.40 18191.06 14393.54 15492.80 16698.81 12998.33 114
CP-MVSNet87.89 17087.27 17688.62 14789.30 17795.06 17290.60 17985.78 14987.43 18375.98 15374.60 17268.14 19990.76 15093.07 16393.60 15199.30 6398.98 71
CMPMVSbinary65.18 1784.76 19183.10 19786.69 18095.29 9095.05 17388.37 18885.51 15380.27 20571.31 17868.37 19973.85 17485.25 18687.72 19787.75 19594.38 20588.70 204
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
v888.21 16487.94 16988.51 14889.62 17095.01 17492.31 15384.99 16088.94 16674.70 16575.03 16873.51 17690.67 15392.11 17692.74 16998.80 13198.24 118
IterMVS-LS92.56 10993.18 10991.84 10893.90 12294.97 17594.99 10786.20 14494.18 10782.68 11885.81 12687.36 10894.43 9795.31 12496.02 8698.87 12298.60 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pmmvs490.55 13289.91 14891.30 11690.26 16294.95 17692.73 14487.94 12693.44 11985.35 10982.28 14676.09 16493.02 12393.56 15392.26 17798.51 15396.77 161
v7n86.43 18386.52 18786.33 18387.91 19694.93 17790.15 18383.05 17386.57 18670.21 18471.48 19266.78 20387.72 17294.19 14792.96 16298.92 11898.76 92
PS-CasMVS87.33 17786.68 18688.10 15489.22 18494.93 17790.35 18285.70 15086.44 18874.01 16873.43 18266.59 20590.04 16192.92 16493.52 15299.28 6598.91 80
v14419287.40 17687.20 17887.64 16788.89 18794.88 17991.65 16784.70 16487.80 17871.17 18073.20 18470.91 18790.75 15192.69 16792.49 17298.71 13898.43 106
v119287.51 17487.31 17587.74 16689.04 18694.87 18092.07 15985.03 15988.49 17370.32 18272.65 18670.35 19091.21 14093.59 15092.80 16698.78 13498.42 108
v192192087.31 17887.13 17987.52 17288.87 18994.72 18191.96 16484.59 16688.28 17569.86 18872.50 18870.03 19391.10 14293.33 15792.61 17198.71 13898.44 105
v1088.00 16587.96 16788.05 15889.44 17494.68 18292.36 15183.35 17289.37 16572.96 17173.98 17872.79 17991.35 13993.59 15092.88 16498.81 12998.42 108
MDTV_nov1_ep13_2view86.30 18488.27 16184.01 19187.71 19894.67 18388.08 18976.78 19490.59 15868.66 19380.46 15480.12 14887.58 17589.95 19288.20 19495.25 19893.90 190
v124086.89 18086.75 18587.06 17788.75 19194.65 18491.30 17384.05 16887.49 18268.94 19271.96 19168.86 19890.65 15493.33 15792.72 17098.67 14198.24 118
tpm87.95 16689.44 15386.21 18492.53 14194.62 18591.40 16976.36 19691.46 14769.80 18987.43 11075.14 16791.55 13689.85 19390.60 18495.61 19296.96 156
MVS-HIRNet85.36 18986.89 18283.57 19290.13 16394.51 18683.57 20272.61 20688.27 17671.22 17968.97 19781.81 14388.91 16993.08 16291.94 17894.97 20189.64 203
PEN-MVS87.22 17986.50 18888.07 15588.88 18894.44 18790.99 17686.21 14286.53 18773.66 16974.97 16966.56 20689.42 16691.20 18593.48 15399.24 7298.31 117
TransMVSNet (Re)87.73 17286.79 18388.83 14590.76 15494.40 18891.33 17289.62 10784.73 19575.41 15872.73 18571.41 18586.80 17794.53 13793.93 14499.06 10495.83 169
pmmvs685.98 18784.89 19587.25 17588.83 19094.35 18989.36 18685.30 15778.51 20775.44 15762.71 20675.41 16687.65 17393.58 15292.40 17496.89 18297.29 147
IterMVS90.20 13792.43 12187.61 16992.82 13994.31 19094.11 12381.54 18192.97 12269.90 18784.71 13288.16 10789.96 16395.25 12594.17 13897.31 17997.46 141
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT90.24 13692.48 11987.63 16892.85 13794.30 19193.79 12781.47 18392.66 12669.95 18684.66 13388.38 10489.99 16295.39 12394.34 13597.74 17797.63 137
pmnet_mix0286.12 18687.12 18084.96 18989.82 16794.12 19284.88 19986.63 13991.78 14465.60 19780.76 15176.98 16186.61 17987.29 20084.80 20496.21 18594.09 185
DTE-MVSNet86.67 18286.09 18987.35 17488.45 19494.08 19390.65 17886.05 14686.13 18972.19 17374.58 17466.77 20487.61 17490.31 18893.12 15999.13 9397.62 138
our_test_389.78 16893.84 19485.59 196
Baseline_NR-MVSNet89.27 15088.01 16690.73 12489.26 17993.71 19592.71 14589.78 10590.73 15481.28 12773.53 18172.85 17892.30 12892.53 16993.84 14899.07 10198.88 82
MDA-MVSNet-bldmvs80.11 19880.24 20179.94 19877.01 21093.21 19678.86 20885.94 14882.71 20260.86 20479.71 15651.77 21583.71 19675.60 20786.37 20093.28 20692.35 196
Anonymous2023120683.84 19485.19 19382.26 19587.38 19992.87 19785.49 19783.65 17086.07 19163.44 20368.42 19869.01 19675.45 20393.34 15692.44 17398.12 16794.20 183
N_pmnet84.80 19085.10 19484.45 19089.25 18292.86 19884.04 20086.21 14288.78 16966.73 19572.41 18974.87 17185.21 18788.32 19686.45 19995.30 19692.04 197
EU-MVSNet85.62 18887.65 17483.24 19488.54 19392.77 19987.12 19285.32 15586.71 18564.54 19978.52 15975.11 16878.35 19992.25 17392.28 17695.58 19395.93 168
FMVSNet590.36 13490.93 14189.70 13687.99 19592.25 20092.03 16183.51 17192.20 14084.13 11285.59 12786.48 11092.43 12694.61 13494.52 13198.13 16590.85 200
test20.0382.92 19685.52 19179.90 19987.75 19791.84 20182.80 20382.99 17482.65 20360.32 20778.90 15870.50 18867.10 20692.05 17990.89 18298.44 15791.80 198
PM-MVS84.72 19284.47 19685.03 18884.67 20391.57 20286.27 19582.31 17987.65 18070.62 18176.54 16556.41 21388.75 17092.59 16889.85 18997.54 17896.66 164
pmmvs-eth3d84.33 19382.94 19885.96 18784.16 20490.94 20386.55 19483.79 16984.25 19675.85 15570.64 19556.43 21287.44 17692.20 17490.41 18697.97 17095.68 172
MIMVSNet180.03 19980.93 20078.97 20072.46 21390.73 20480.81 20682.44 17880.39 20463.64 20157.57 20764.93 20776.37 20191.66 18191.55 18198.07 16889.70 202
new-patchmatchnet78.49 20178.19 20378.84 20184.13 20590.06 20577.11 21080.39 18579.57 20659.64 21066.01 20355.65 21475.62 20284.55 20380.70 20596.14 18790.77 201
gm-plane-assit83.26 19585.29 19280.89 19689.52 17389.89 20670.26 21178.24 18877.11 20858.01 21174.16 17766.90 20190.63 15597.20 6196.05 8498.66 14495.68 172
new_pmnet81.53 19782.68 19980.20 19783.47 20689.47 20782.21 20578.36 18787.86 17760.14 20967.90 20069.43 19582.03 19789.22 19487.47 19794.99 20087.39 205
DeepMVS_CXcopyleft86.86 20879.50 20770.43 20990.73 15463.66 20080.36 15560.83 20879.68 19876.23 20689.46 20986.53 206
pmmvs379.16 20080.12 20278.05 20279.36 20886.59 20978.13 20973.87 20576.42 20957.51 21270.59 19657.02 21184.66 19190.10 19088.32 19394.75 20391.77 199
ambc73.83 20576.23 21185.13 21082.27 20484.16 19765.58 19852.82 20923.31 22073.55 20491.41 18485.26 20392.97 20794.70 178
FPMVS75.84 20274.59 20477.29 20386.92 20083.89 21185.01 19880.05 18682.91 20160.61 20665.25 20460.41 20963.86 20775.60 20773.60 20987.29 21180.47 208
PMMVS264.36 20665.94 20862.52 20767.37 21477.44 21264.39 21369.32 21261.47 21234.59 21546.09 21041.03 21648.02 21374.56 20978.23 20691.43 20882.76 207
tmp_tt66.88 20686.07 20273.86 21368.22 21233.38 21496.88 4780.67 13088.23 10878.82 15249.78 21182.68 20577.47 20783.19 213
Gipumacopyleft68.35 20366.71 20670.27 20474.16 21268.78 21463.93 21471.77 20883.34 20054.57 21334.37 21131.88 21768.69 20583.30 20485.53 20288.48 21079.78 209
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft63.12 1867.27 20466.39 20768.30 20577.98 20960.24 21559.53 21576.82 19266.65 21160.74 20554.39 20859.82 21051.24 21073.92 21070.52 21083.48 21279.17 210
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.86 1949.54 20951.43 20947.33 21044.14 21759.20 21636.45 21860.59 21341.47 21531.14 21629.58 21217.06 22148.52 21262.22 21174.63 20863.12 21675.87 211
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS49.98 20846.76 21153.74 20964.96 21551.29 21737.81 21769.35 21151.83 21322.69 21829.57 21325.06 21857.28 20844.81 21356.11 21270.32 21568.64 213
E-PMN50.67 20747.85 21053.96 20864.13 21650.98 21838.06 21669.51 21051.40 21424.60 21729.46 21424.39 21956.07 20948.17 21259.70 21171.40 21470.84 212
testmvs12.09 21016.94 2126.42 2123.15 2186.08 2199.51 2203.84 21521.46 2165.31 21927.49 2156.76 22210.89 21417.06 21415.01 2135.84 21724.75 214
test1239.58 21113.53 2134.97 2131.31 2205.47 2208.32 2212.95 21618.14 2172.03 22120.82 2162.34 22310.60 21510.00 21514.16 2144.60 21823.77 215
uanet_test0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
sosnet-low-res0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
sosnet0.00 2120.00 2140.00 2140.00 2210.00 2210.00 2220.00 2180.00 2180.00 2220.00 2170.00 2240.00 2170.00 2160.00 2150.00 2190.00 216
RE-MVS-def63.50 202
9.1499.28 11
SR-MVS99.45 997.61 1599.20 15
MTAPA96.83 1099.12 20
MTMP97.18 598.83 26
Patchmatch-RL test34.61 219
mPP-MVS99.21 2498.29 38
NP-MVS95.32 86