This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
TSAR-MVS + MP.98.49 798.78 698.15 1998.14 5099.17 2799.34 597.18 2998.44 495.72 1997.84 1599.28 1098.87 799.05 198.05 2499.66 199.60 5
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
IS_MVSNet95.28 6196.43 5393.94 8495.30 8899.01 4295.90 9191.12 8694.13 10787.50 9891.23 8094.45 6594.17 10198.45 1798.50 799.65 299.23 33
APDe-MVS98.87 198.96 298.77 199.58 299.53 499.44 197.81 198.22 897.33 398.70 399.33 898.86 898.96 498.40 1399.63 399.57 7
SD-MVS98.52 698.77 798.23 1598.15 4999.26 2098.79 2597.59 1598.52 296.25 1597.99 1499.75 499.01 398.27 2597.97 2699.59 499.63 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MCST-MVS98.20 1798.36 1798.01 2299.40 1599.05 3199.00 1997.62 1297.59 2893.70 3397.42 2699.30 998.77 1498.39 2297.48 4499.59 499.31 23
UA-Net93.96 8795.95 6091.64 10996.06 7598.59 7595.29 10190.00 9891.06 14982.87 11590.64 8898.06 3986.06 17998.14 3398.20 1899.58 696.96 155
EPP-MVSNet95.27 6296.18 5794.20 8294.88 10098.64 7194.97 10690.70 9095.34 8489.67 7891.66 7793.84 6695.42 8497.32 5797.00 5999.58 699.47 11
ETV-MVS96.31 4897.47 3594.96 6694.79 10298.78 6096.08 8691.41 8396.16 6090.50 6395.76 3996.20 5697.39 4298.42 2097.82 3399.57 899.18 43
Vis-MVSNet (Re-imp)94.46 7896.24 5592.40 10295.23 9198.64 7195.56 9990.99 8794.42 10285.02 10890.88 8794.65 6488.01 16998.17 3098.37 1699.57 898.53 100
DPE-MVS98.75 398.91 498.57 399.21 2399.54 399.42 297.78 497.49 3096.84 898.94 199.82 398.59 2098.90 898.22 1799.56 1099.48 10
CS-MVS96.23 5197.15 4095.16 6095.01 9898.98 4397.13 5690.68 9196.00 6791.21 5394.03 5396.48 5097.35 4498.00 4097.43 4699.55 1199.15 47
SteuartSystems-ACMMP98.38 1398.71 897.99 2399.34 2099.46 699.34 597.33 2497.31 3494.25 2998.06 1299.17 1798.13 2798.98 398.46 999.55 1199.54 8
Skip Steuart: Steuart Systems R&D Blog.
canonicalmvs95.25 6395.45 6795.00 6495.27 9098.72 6596.89 6189.82 10296.51 5290.84 5993.72 5686.01 11497.66 3895.78 11197.94 2899.54 1399.50 9
casdiffmvs94.38 8294.15 9294.64 7694.70 10898.51 7696.03 8991.66 7895.70 7789.36 8386.48 11885.03 12496.60 6597.40 5597.30 5399.52 1498.67 92
baseline194.59 7594.47 8294.72 7395.16 9397.97 9296.07 8791.94 7394.86 9589.98 7291.60 7885.87 11695.64 7897.07 6596.90 6299.52 1497.06 154
APD-MVScopyleft98.36 1498.32 2198.41 799.47 699.26 2099.12 1497.77 596.73 4896.12 1697.27 2798.88 2398.46 2498.47 1698.39 1499.52 1499.22 35
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Vis-MVSNetpermissive92.77 10595.00 7790.16 12894.10 11898.79 5994.76 11288.26 12092.37 13579.95 12988.19 10891.58 7784.38 18997.59 5197.58 4199.52 1498.91 79
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DeepC-MVS_fast96.13 198.13 1998.27 2497.97 2499.16 2699.03 3899.05 1797.24 2698.22 894.17 3195.82 3798.07 3898.69 1798.83 998.80 299.52 1499.10 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CP-MVS98.32 1698.34 2098.29 1299.34 2099.30 1699.15 1397.35 2197.49 3095.58 2197.72 1798.62 3298.82 1298.29 2497.67 3799.51 1999.28 24
DeepC-MVS94.87 496.76 4696.50 5197.05 3598.21 4899.28 1898.67 2697.38 2097.31 3490.36 6889.19 9993.58 6898.19 2698.31 2398.50 799.51 1999.36 17
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPR98.40 1198.49 1198.28 1399.41 1499.40 899.36 397.35 2198.30 595.02 2597.79 1698.39 3699.04 298.26 2698.10 2199.50 2199.22 35
HFP-MVS98.48 898.62 998.32 1199.39 1899.33 1599.27 997.42 1898.27 695.25 2398.34 898.83 2599.08 198.26 2698.08 2399.48 2299.26 29
MP-MVScopyleft98.09 2198.30 2397.84 2699.34 2099.19 2699.23 1297.40 1997.09 4193.03 3997.58 2198.85 2498.57 2298.44 1997.69 3699.48 2299.23 33
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS97.81 2498.11 2797.46 2999.55 399.34 1499.32 794.51 4596.21 5993.07 3698.05 1397.95 4198.82 1298.22 2997.89 3199.48 2299.09 53
3Dnovator93.79 897.08 3697.20 3796.95 3799.09 2899.03 3898.20 3993.33 5397.99 1393.82 3290.61 8996.80 4897.82 3497.90 4398.78 399.47 2599.26 29
XVS96.60 6799.35 1196.82 6490.85 5698.72 2899.46 26
X-MVStestdata96.60 6799.35 1196.82 6490.85 5698.72 2899.46 26
X-MVS97.84 2398.19 2697.42 3099.40 1599.35 1199.06 1697.25 2597.38 3390.85 5696.06 3598.72 2898.53 2398.41 2198.15 2099.46 2699.28 24
ACMMPcopyleft97.37 3297.48 3497.25 3198.88 3699.28 1898.47 3396.86 3497.04 4392.15 4697.57 2296.05 5997.67 3797.27 5895.99 8699.46 2699.14 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
xxxxxxxxxxxxxcwj97.07 3795.99 5998.33 999.45 999.05 3198.27 3697.65 797.73 1797.02 698.18 1081.99 14098.11 2898.15 3197.62 3899.45 3099.19 39
SF-MVS98.39 1298.45 1598.33 999.45 999.05 3198.27 3697.65 797.73 1797.02 698.18 1099.25 1398.11 2898.15 3197.62 3899.45 3099.19 39
tfpn200view993.64 9392.57 11294.89 6795.33 8698.94 4796.82 6492.31 6692.63 12688.29 9087.21 11078.01 15497.12 5296.82 7095.85 9199.45 3098.56 97
zzz-MVS98.43 1098.31 2298.57 399.48 599.40 899.32 797.62 1297.70 2196.67 1096.59 3199.09 2098.86 898.65 1197.56 4299.45 3099.17 45
thres600view793.49 9892.37 12394.79 7295.42 8398.93 4996.58 7492.31 6693.04 12087.88 9586.62 11676.94 15997.09 5396.82 7095.63 9599.45 3098.63 94
thres20093.62 9492.54 11394.88 6895.36 8598.93 4996.75 6892.31 6692.84 12388.28 9286.99 11277.81 15697.13 5096.82 7095.92 8799.45 3098.49 103
DELS-MVS96.06 5296.04 5896.07 4997.77 5599.25 2298.10 4193.26 5594.42 10292.79 4288.52 10693.48 6995.06 8798.51 1498.83 199.45 3099.28 24
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PHI-MVS97.78 2598.44 1697.02 3698.73 3799.25 2298.11 4095.54 3996.66 5192.79 4298.52 499.38 797.50 4197.84 4498.39 1499.45 3099.03 63
CDPH-MVS96.84 4397.49 3396.09 4798.92 3398.85 5798.61 2795.09 4196.00 6787.29 9995.45 4397.42 4297.16 4997.83 4597.94 2899.44 3898.92 76
TSAR-MVS + GP.97.45 3098.36 1796.39 4295.56 8298.93 4997.74 4893.31 5497.61 2794.24 3098.44 799.19 1598.03 3297.60 5097.41 4899.44 3899.33 20
3Dnovator+93.91 797.23 3497.22 3697.24 3298.89 3598.85 5798.26 3893.25 5797.99 1395.56 2290.01 9598.03 4098.05 3197.91 4298.43 1099.44 3899.35 18
EIA-MVS95.50 5496.19 5694.69 7494.83 10198.88 5695.93 9091.50 8294.47 10189.43 8093.14 5992.72 7397.05 5497.82 4797.13 5799.43 4199.15 47
thres40093.56 9692.43 12094.87 6995.40 8498.91 5296.70 7092.38 6592.93 12288.19 9486.69 11577.35 15797.13 5096.75 7595.85 9199.42 4298.56 97
SMA-MVS98.66 598.89 598.39 899.60 199.41 799.00 1997.63 1197.78 1695.83 1898.33 999.83 298.85 1098.93 698.56 699.41 4399.40 13
UniMVSNet (Re)90.03 14089.61 14990.51 12489.97 16496.12 13592.32 15089.26 11090.99 15080.95 12778.25 15875.08 16691.14 13993.78 14793.87 14499.41 4399.21 37
CNVR-MVS98.47 998.46 1498.48 699.40 1599.05 3199.02 1897.54 1697.73 1796.65 1197.20 2899.13 1898.85 1098.91 798.10 2199.41 4399.08 54
DVP-MVS98.73 498.93 398.50 599.44 1299.57 299.36 397.65 798.14 1096.51 1498.49 599.65 698.67 1898.60 1298.42 1199.40 4699.63 1
ACMMP_NAP98.20 1798.49 1197.85 2599.50 499.40 899.26 1097.64 1097.47 3292.62 4597.59 1999.09 2098.71 1698.82 1097.86 3299.40 4699.19 39
NCCC98.10 2098.05 2998.17 1899.38 1999.05 3199.00 1997.53 1798.04 1295.12 2494.80 4999.18 1698.58 2198.49 1597.78 3599.39 4898.98 70
thres100view90093.55 9792.47 11994.81 7195.33 8698.74 6296.78 6792.30 6992.63 12688.29 9087.21 11078.01 15496.78 6096.38 9095.92 8799.38 4998.40 109
MVS_030496.31 4896.91 4695.62 5397.21 6399.20 2598.55 3093.10 6097.04 4389.73 7690.30 9196.35 5295.71 7698.14 3397.93 3099.38 4999.40 13
FC-MVSNet-train93.85 8993.91 9493.78 8894.94 9996.79 11794.29 12091.13 8593.84 11288.26 9390.40 9085.23 12194.65 9496.54 8495.31 10499.38 4999.28 24
MSP-MVS98.86 298.97 198.75 299.43 1399.63 199.25 1197.81 198.62 197.69 197.59 1999.90 198.93 598.99 298.42 1199.37 5299.62 3
UniMVSNet_NR-MVSNet90.35 13389.96 14690.80 12089.66 16695.83 14792.48 14690.53 9490.96 15179.57 13179.33 15577.14 15893.21 11992.91 16394.50 13199.37 5299.05 60
DU-MVS89.67 14388.84 15490.63 12389.26 17695.61 15392.48 14689.91 9991.22 14779.57 13177.72 15971.18 18393.21 11992.53 16794.57 12599.35 5499.05 60
WR-MVS_H87.93 16587.85 16888.03 15889.62 16795.58 15790.47 17885.55 14987.20 18176.83 14574.42 17372.67 17786.37 17793.22 15893.04 15899.33 5598.83 87
QAPM96.78 4597.14 4196.36 4399.05 2999.14 2998.02 4293.26 5597.27 3690.84 5991.16 8197.31 4397.64 3997.70 4898.20 1899.33 5599.18 43
NR-MVSNet89.34 14688.66 15590.13 13190.40 15695.61 15393.04 13889.91 9991.22 14778.96 13477.72 15968.90 19489.16 16594.24 14493.95 14199.32 5798.99 68
TranMVSNet+NR-MVSNet89.23 14988.48 15890.11 13289.07 18295.25 16792.91 13990.43 9590.31 15777.10 14376.62 16271.57 18191.83 13192.12 17394.59 12499.32 5798.92 76
LGP-MVS_train94.12 8494.62 7993.53 9196.44 7197.54 9697.40 5491.84 7594.66 9781.09 12695.70 4083.36 13495.10 8696.36 9395.71 9499.32 5799.03 63
HPM-MVS++copyleft98.34 1598.47 1398.18 1699.46 899.15 2899.10 1597.69 697.67 2494.93 2697.62 1899.70 598.60 1998.45 1797.46 4599.31 6099.26 29
CLD-MVS94.79 6994.36 8595.30 5995.21 9297.46 9997.23 5592.24 7096.43 5391.77 4992.69 6484.31 12696.06 7195.52 11795.03 11199.31 6099.06 58
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CP-MVSNet87.89 16887.27 17488.62 14589.30 17495.06 17090.60 17785.78 14687.43 18075.98 15174.60 17068.14 19690.76 14893.07 16193.60 14999.30 6298.98 70
PVSNet_Blended_VisFu94.77 7195.54 6593.87 8696.48 7098.97 4594.33 11991.84 7594.93 9490.37 6785.04 12994.99 6290.87 14798.12 3597.30 5399.30 6299.45 12
PS-CasMVS87.33 17586.68 18388.10 15289.22 18194.93 17590.35 18085.70 14786.44 18574.01 16673.43 18066.59 20290.04 15992.92 16293.52 15099.28 6498.91 79
TAPA-MVS94.18 596.38 4796.49 5296.25 4498.26 4798.66 6898.00 4394.96 4397.17 3889.48 7992.91 6296.35 5297.53 4096.59 8195.90 8999.28 6497.82 126
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Effi-MVS+92.93 10493.86 9691.86 10594.07 11998.09 8995.59 9885.98 14494.27 10579.54 13391.12 8481.81 14196.71 6296.67 7996.06 8299.27 6698.98 70
WR-MVS87.93 16588.09 16287.75 16389.26 17695.28 16490.81 17586.69 13688.90 16575.29 15774.31 17473.72 17285.19 18592.26 17093.32 15499.27 6698.81 88
abl_696.82 3998.60 4198.74 6297.74 4893.73 4996.25 5794.37 2894.55 5198.60 3397.25 4699.27 6698.61 95
MVS_111021_HR97.04 3898.20 2595.69 5298.44 4599.29 1796.59 7393.20 5897.70 2189.94 7498.46 696.89 4696.71 6298.11 3697.95 2799.27 6699.01 66
LS3D95.46 5795.14 7295.84 5097.91 5498.90 5498.58 2997.79 397.07 4283.65 11388.71 10288.64 10097.82 3497.49 5397.42 4799.26 7097.72 134
OPM-MVS93.61 9592.43 12095.00 6496.94 6697.34 10297.78 4794.23 4689.64 16185.53 10688.70 10382.81 13696.28 6996.28 9695.00 11499.24 7197.22 147
PEN-MVS87.22 17786.50 18588.07 15388.88 18594.44 18590.99 17486.21 13986.53 18473.66 16774.97 16766.56 20389.42 16491.20 18393.48 15199.24 7198.31 116
PVSNet_BlendedMVS95.41 5995.28 6995.57 5497.42 5999.02 4095.89 9393.10 6096.16 6093.12 3491.99 7085.27 11994.66 9298.09 3797.34 5199.24 7199.08 54
PVSNet_Blended95.41 5995.28 6995.57 5497.42 5999.02 4095.89 9393.10 6096.16 6093.12 3491.99 7085.27 11994.66 9298.09 3797.34 5199.24 7199.08 54
CSCG97.44 3197.18 3997.75 2799.47 699.52 598.55 3095.41 4097.69 2395.72 1994.29 5295.53 6198.10 3096.20 9997.38 5099.24 7199.62 3
OpenMVScopyleft92.33 1195.50 5495.22 7195.82 5198.98 3098.97 4597.67 5093.04 6394.64 9889.18 8684.44 13494.79 6396.79 5997.23 5997.61 4099.24 7198.88 81
CANet96.84 4397.20 3796.42 4197.92 5399.24 2498.60 2893.51 5297.11 4093.07 3691.16 8197.24 4496.21 7098.24 2898.05 2499.22 7799.35 18
train_agg97.65 2898.06 2897.18 3398.94 3298.91 5298.98 2397.07 3196.71 4990.66 6197.43 2599.08 2298.20 2597.96 4197.14 5699.22 7799.19 39
ACMM92.75 1094.41 8193.84 9795.09 6296.41 7296.80 11494.88 10993.54 5196.41 5490.16 6992.31 6883.11 13596.32 6896.22 9894.65 12199.22 7797.35 144
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GBi-Net93.81 9094.18 8893.38 9591.34 14895.86 14496.22 8188.68 11595.23 8890.40 6486.39 11991.16 7894.40 9896.52 8596.30 7399.21 8097.79 127
test193.81 9094.18 8893.38 9591.34 14895.86 14496.22 8188.68 11595.23 8890.40 6486.39 11991.16 7894.40 9896.52 8596.30 7399.21 8097.79 127
FMVSNet293.30 10193.36 10793.22 9891.34 14895.86 14496.22 8188.24 12195.15 9289.92 7581.64 14689.36 9294.40 9896.77 7496.98 6099.21 8097.79 127
tttt051794.52 7795.44 6893.44 9494.51 11198.68 6794.61 11590.72 8895.61 8186.84 10393.78 5589.26 9494.74 8997.02 6894.86 11699.20 8398.87 83
thisisatest053094.54 7695.47 6693.46 9394.51 11198.65 7094.66 11390.72 8895.69 7986.90 10293.80 5489.44 9194.74 8996.98 6994.86 11699.19 8498.85 85
DI_MVS_plusplus_trai94.01 8693.63 10194.44 7894.54 11098.26 8297.51 5290.63 9295.88 7289.34 8480.54 15189.36 9295.48 8396.33 9496.27 7699.17 8598.78 90
MSLP-MVS++98.04 2297.93 3198.18 1699.10 2799.09 3098.34 3596.99 3297.54 2996.60 1294.82 4898.45 3498.89 697.46 5498.77 499.17 8599.37 16
AdaColmapbinary97.53 2996.93 4498.24 1499.21 2398.77 6198.47 3397.34 2396.68 5096.52 1395.11 4696.12 5798.72 1597.19 6296.24 7799.17 8598.39 110
Fast-Effi-MVS+91.87 11292.08 12791.62 11192.91 13497.21 10694.93 10784.60 16293.61 11581.49 12483.50 13978.95 14996.62 6496.55 8396.22 7899.16 8898.51 101
FC-MVSNet-test91.63 11693.82 9889.08 14192.02 14396.40 12993.26 13487.26 13093.72 11377.26 14188.61 10589.86 8985.50 18295.72 11595.02 11299.16 8897.44 141
UGNet94.92 6496.63 4992.93 9996.03 7698.63 7394.53 11691.52 8196.23 5890.03 7192.87 6396.10 5886.28 17896.68 7896.60 6999.16 8899.32 22
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ACMP92.88 994.43 7994.38 8494.50 7796.01 7797.69 9495.85 9692.09 7195.74 7689.12 8795.14 4582.62 13894.77 8895.73 11394.67 12099.14 9199.06 58
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DTE-MVSNet86.67 18086.09 18687.35 17288.45 19194.08 19090.65 17686.05 14386.13 18672.19 17174.58 17266.77 20187.61 17290.31 18693.12 15799.13 9297.62 137
OMC-MVS97.00 3996.92 4597.09 3498.69 3898.66 6897.85 4695.02 4298.09 1194.47 2793.15 5896.90 4597.38 4397.16 6396.82 6699.13 9297.65 135
anonymousdsp88.90 15491.00 13986.44 18088.74 18995.97 13990.40 17982.86 17288.77 16867.33 19281.18 14881.44 14390.22 15896.23 9794.27 13599.12 9499.16 46
MVS_Test94.82 6795.66 6293.84 8794.79 10298.35 7996.49 7789.10 11396.12 6387.09 10192.58 6590.61 8496.48 6696.51 8896.89 6399.11 9598.54 99
IB-MVS89.56 1591.71 11592.50 11590.79 12195.94 7898.44 7787.05 19191.38 8493.15 11992.98 4084.78 13085.14 12278.27 19792.47 16994.44 13299.10 9699.08 54
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PLCcopyleft94.95 397.37 3296.77 4898.07 2098.97 3198.21 8397.94 4596.85 3597.66 2597.58 293.33 5796.84 4798.01 3397.13 6496.20 7999.09 9798.01 122
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
pm-mvs189.19 15089.02 15389.38 13990.40 15695.74 15192.05 15888.10 12386.13 18677.70 13873.72 17879.44 14888.97 16695.81 11094.51 13099.08 9897.78 132
PCF-MVS93.95 695.65 5395.14 7296.25 4497.73 5798.73 6497.59 5197.13 3092.50 13089.09 8889.85 9696.65 4996.90 5794.97 13194.89 11599.08 9898.38 111
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Baseline_NR-MVSNet89.27 14888.01 16490.73 12289.26 17693.71 19292.71 14389.78 10490.73 15281.28 12573.53 17972.85 17592.30 12692.53 16793.84 14699.07 10098.88 81
FMVSNet393.79 9294.17 9093.35 9791.21 15195.99 13796.62 7188.68 11595.23 8890.40 6486.39 11991.16 7894.11 10295.96 10496.67 6799.07 10097.79 127
HQP-MVS94.43 7994.57 8094.27 8196.41 7297.23 10596.89 6193.98 4795.94 7083.68 11295.01 4784.46 12595.58 8095.47 11994.85 11999.07 10099.00 67
ET-MVSNet_ETH3D93.34 10094.33 8692.18 10483.26 20497.66 9596.72 6989.89 10195.62 8087.17 10096.00 3683.69 13296.99 5593.78 14795.34 10399.06 10398.18 120
DCV-MVSNet94.76 7295.12 7494.35 8095.10 9695.81 14896.46 7889.49 10896.33 5590.16 6992.55 6690.26 8695.83 7595.52 11796.03 8499.06 10399.33 20
tfpnnormal88.50 15787.01 17890.23 12691.36 14795.78 15092.74 14190.09 9783.65 19576.33 14971.46 19069.58 19191.84 13095.54 11694.02 14099.06 10399.03 63
TransMVSNet (Re)87.73 17086.79 18088.83 14390.76 15294.40 18691.33 17089.62 10684.73 19275.41 15672.73 18371.41 18286.80 17594.53 13693.93 14299.06 10395.83 168
diffmvs94.31 8394.21 8794.42 7994.64 10998.28 8096.36 8091.56 7996.77 4788.89 8988.97 10084.23 12796.01 7496.05 10396.41 7299.05 10798.79 89
MVS_111021_LR97.16 3598.01 3096.16 4698.47 4398.98 4396.94 6093.89 4897.64 2691.44 5098.89 296.41 5197.20 4898.02 3997.29 5599.04 10898.85 85
Anonymous20240521192.18 12595.04 9798.20 8496.14 8491.79 7793.93 10874.60 17088.38 10396.48 6695.17 12795.82 9399.00 10999.15 47
MVSTER94.89 6595.07 7594.68 7594.71 10696.68 12097.00 5890.57 9395.18 9193.05 3895.21 4486.41 11193.72 11097.59 5195.88 9099.00 10998.50 102
MSDG94.82 6793.73 9996.09 4798.34 4697.43 10197.06 5796.05 3795.84 7490.56 6286.30 12389.10 9795.55 8196.13 10295.61 9699.00 10995.73 170
gg-mvs-nofinetune86.17 18388.57 15783.36 19093.44 12798.15 8796.58 7472.05 20474.12 20749.23 21064.81 20290.85 8289.90 16297.83 4596.84 6498.97 11297.41 142
TSAR-MVS + ACMM97.71 2798.60 1096.66 4098.64 4099.05 3198.85 2497.23 2798.45 389.40 8297.51 2399.27 1296.88 5898.53 1397.81 3498.96 11399.59 6
DPM-MVS96.86 4296.82 4796.91 3898.08 5198.20 8498.52 3297.20 2897.24 3791.42 5191.84 7498.45 3497.25 4697.07 6597.40 4998.95 11497.55 138
CNLPA96.90 4196.28 5497.64 2898.56 4298.63 7396.85 6396.60 3697.73 1797.08 589.78 9796.28 5597.80 3696.73 7696.63 6898.94 11598.14 121
ACMH+90.88 1291.41 12191.13 13791.74 10895.11 9596.95 10993.13 13689.48 10992.42 13279.93 13085.13 12878.02 15393.82 10893.49 15493.88 14398.94 11597.99 123
v7n86.43 18186.52 18486.33 18187.91 19394.93 17590.15 18183.05 17086.57 18370.21 18271.48 18966.78 20087.72 17094.19 14692.96 16098.92 11798.76 91
test0.0.03 191.97 11193.91 9489.72 13393.31 13096.40 12991.34 16987.06 13393.86 11081.67 12291.15 8389.16 9686.02 18095.08 12895.09 10998.91 11896.64 164
HyFIR lowres test92.03 11091.55 13492.58 10197.13 6498.72 6594.65 11486.54 13793.58 11682.56 11767.75 19890.47 8595.67 7795.87 10795.54 9898.91 11898.93 75
thisisatest051590.12 13892.06 12887.85 16290.03 16296.17 13487.83 18887.45 12891.71 14377.15 14285.40 12784.01 12985.74 18195.41 12193.30 15598.88 12098.43 105
IterMVS-LS92.56 10893.18 10891.84 10693.90 12094.97 17394.99 10586.20 14194.18 10682.68 11685.81 12587.36 10794.43 9695.31 12396.02 8598.87 12198.60 96
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
COLMAP_ROBcopyleft90.49 1493.27 10292.71 11193.93 8597.75 5697.44 10096.07 8793.17 5995.40 8383.86 11183.76 13888.72 9993.87 10694.25 14394.11 13798.87 12195.28 176
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v2v48288.25 16187.71 17188.88 14289.23 18095.28 16492.10 15687.89 12588.69 16973.31 16875.32 16571.64 18091.89 12992.10 17592.92 16198.86 12397.99 123
UniMVSNet_ETH3D88.47 15886.00 18791.35 11391.55 14596.29 13192.53 14588.81 11485.58 19082.33 11867.63 19966.87 19994.04 10491.49 18195.24 10698.84 12498.92 76
pmmvs587.83 16988.09 16287.51 17189.59 16995.48 15889.75 18384.73 16086.07 18871.44 17580.57 15070.09 18990.74 15094.47 13792.87 16398.82 12597.10 149
EG-PatchMatch MVS86.68 17987.24 17586.02 18490.58 15496.26 13291.08 17381.59 17784.96 19169.80 18771.35 19175.08 16684.23 19094.24 14493.35 15398.82 12595.46 175
FMVSNet191.54 11990.93 14092.26 10390.35 15895.27 16695.22 10387.16 13291.37 14687.62 9775.45 16483.84 13094.43 9696.52 8596.30 7398.82 12597.74 133
v114487.92 16787.79 16988.07 15389.27 17595.15 16992.17 15585.62 14888.52 17071.52 17473.80 17772.40 17891.06 14193.54 15392.80 16498.81 12898.33 113
v1088.00 16387.96 16588.05 15689.44 17194.68 18092.36 14983.35 16989.37 16372.96 16973.98 17672.79 17691.35 13793.59 14992.88 16298.81 12898.42 107
Fast-Effi-MVS+-dtu91.19 12293.64 10088.33 14992.19 14296.46 12693.99 12381.52 17992.59 12871.82 17392.17 6985.54 11791.68 13395.73 11394.64 12298.80 13098.34 112
v888.21 16287.94 16788.51 14689.62 16795.01 17292.31 15184.99 15788.94 16474.70 16375.03 16673.51 17390.67 15192.11 17492.74 16798.80 13098.24 117
CDS-MVSNet92.77 10593.60 10291.80 10792.63 13896.80 11495.24 10289.14 11290.30 15884.58 10986.76 11390.65 8390.42 15595.89 10696.49 7098.79 13298.32 115
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v119287.51 17287.31 17387.74 16489.04 18394.87 17892.07 15785.03 15688.49 17170.32 18072.65 18470.35 18791.21 13893.59 14992.80 16498.78 13398.42 107
ACMH90.77 1391.51 12091.63 13391.38 11295.62 8196.87 11291.76 16489.66 10591.58 14478.67 13586.73 11478.12 15293.77 10994.59 13494.54 12898.78 13398.98 70
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TSAR-MVS + COLMAP94.79 6994.51 8195.11 6196.50 6997.54 9697.99 4494.54 4497.81 1585.88 10596.73 3081.28 14496.99 5596.29 9595.21 10898.76 13596.73 161
MAR-MVS95.50 5495.60 6395.39 5898.67 3998.18 8695.89 9389.81 10394.55 10091.97 4892.99 6090.21 8797.30 4596.79 7397.49 4398.72 13698.99 68
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
v14419287.40 17487.20 17687.64 16588.89 18494.88 17791.65 16584.70 16187.80 17571.17 17873.20 18270.91 18490.75 14992.69 16592.49 17098.71 13798.43 105
v192192087.31 17687.13 17787.52 17088.87 18694.72 17991.96 16284.59 16388.28 17269.86 18672.50 18570.03 19091.10 14093.33 15692.61 16998.71 13798.44 104
PatchMatch-RL94.69 7394.41 8395.02 6397.63 5898.15 8794.50 11791.99 7295.32 8591.31 5295.47 4283.44 13396.02 7396.56 8295.23 10798.69 13996.67 162
Anonymous2023121193.49 9892.33 12494.84 7094.78 10498.00 9096.11 8591.85 7494.86 9590.91 5574.69 16989.18 9596.73 6194.82 13295.51 9998.67 14099.24 32
v124086.89 17886.75 18287.06 17588.75 18894.65 18291.30 17184.05 16587.49 17968.94 19071.96 18868.86 19590.65 15293.33 15692.72 16898.67 14098.24 117
baseline293.01 10394.17 9091.64 10992.83 13697.49 9893.40 13187.53 12793.67 11486.07 10491.83 7586.58 10891.36 13696.38 9095.06 11098.67 14098.20 119
gm-plane-assit83.26 19285.29 18980.89 19389.52 17089.89 20370.26 20878.24 18577.11 20558.01 20774.16 17566.90 19890.63 15397.20 6096.05 8398.66 14395.68 171
testgi89.42 14491.50 13587.00 17692.40 14195.59 15589.15 18585.27 15592.78 12472.42 17091.75 7676.00 16284.09 19194.38 14093.82 14798.65 14496.15 165
TDRefinement89.07 15288.15 16190.14 13095.16 9396.88 11095.55 10090.20 9689.68 16076.42 14876.67 16174.30 16984.85 18693.11 15991.91 17798.64 14594.47 179
EPNet96.27 5096.97 4395.46 5698.47 4398.28 8097.41 5393.67 5095.86 7392.86 4197.51 2393.79 6791.76 13297.03 6797.03 5898.61 14699.28 24
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
USDC90.69 12790.52 14490.88 11894.17 11796.43 12795.82 9786.76 13593.92 10976.27 15086.49 11774.30 16993.67 11295.04 13093.36 15298.61 14694.13 183
V4288.31 16087.95 16688.73 14489.44 17195.34 16392.23 15487.21 13188.83 16674.49 16474.89 16873.43 17490.41 15792.08 17692.77 16698.60 14898.33 113
SixPastTwentyTwo88.37 15989.47 15087.08 17490.01 16395.93 14387.41 18985.32 15290.26 15970.26 18186.34 12271.95 17990.93 14392.89 16491.72 17898.55 14997.22 147
CPTT-MVS97.78 2597.54 3298.05 2198.91 3499.05 3199.00 1996.96 3397.14 3995.92 1795.50 4198.78 2798.99 497.20 6096.07 8198.54 15099.04 62
GA-MVS89.28 14790.75 14387.57 16891.77 14496.48 12592.29 15287.58 12690.61 15565.77 19484.48 13376.84 16089.46 16395.84 10893.68 14898.52 15197.34 145
pmmvs490.55 13089.91 14791.30 11490.26 16094.95 17492.73 14287.94 12493.44 11885.35 10782.28 14576.09 16193.02 12193.56 15292.26 17598.51 15296.77 160
CANet_DTU93.92 8896.57 5090.83 11995.63 8098.39 7896.99 5987.38 12996.26 5671.97 17296.31 3393.02 7094.53 9597.38 5696.83 6598.49 15397.79 127
MIMVSNet88.99 15391.07 13886.57 17986.78 19895.62 15291.20 17275.40 19890.65 15476.57 14684.05 13682.44 13991.01 14295.84 10895.38 10298.48 15493.50 191
CR-MVSNet90.16 13791.96 13088.06 15593.32 12995.95 14193.36 13275.99 19692.40 13375.19 15883.18 14085.37 11892.05 12795.21 12594.56 12698.47 15597.08 152
test20.0382.92 19385.52 18879.90 19687.75 19491.84 19882.80 20082.99 17182.65 20060.32 20378.90 15670.50 18567.10 20392.05 17790.89 18098.44 15691.80 196
RPMNet90.19 13692.03 12988.05 15693.46 12695.95 14193.41 13074.59 20192.40 13375.91 15284.22 13586.41 11192.49 12394.42 13993.85 14598.44 15696.96 155
PMMVS94.61 7495.56 6493.50 9294.30 11596.74 11894.91 10889.56 10795.58 8287.72 9696.15 3492.86 7196.06 7195.47 11995.02 11298.43 15897.09 150
v14887.51 17286.79 18088.36 14889.39 17395.21 16889.84 18288.20 12287.61 17877.56 13973.38 18170.32 18886.80 17590.70 18592.31 17398.37 15997.98 125
LTVRE_ROB87.32 1687.55 17188.25 16086.73 17790.66 15395.80 14993.05 13784.77 15983.35 19660.32 20383.12 14167.39 19793.32 11694.36 14194.86 11698.28 16098.87 83
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
baseline94.83 6695.82 6193.68 8994.75 10597.80 9396.51 7688.53 11897.02 4589.34 8492.93 6192.18 7594.69 9195.78 11196.08 8098.27 16198.97 74
TinyColmap89.42 14488.58 15690.40 12593.80 12495.45 16093.96 12486.54 13792.24 13876.49 14780.83 14970.44 18693.37 11594.45 13893.30 15598.26 16293.37 193
CHOSEN 1792x268892.66 10792.49 11692.85 10097.13 6498.89 5595.90 9188.50 11995.32 8583.31 11471.99 18788.96 9894.10 10396.69 7796.49 7098.15 16399.10 51
MS-PatchMatch91.82 11392.51 11491.02 11595.83 7996.88 11095.05 10484.55 16493.85 11182.01 11982.51 14491.71 7690.52 15495.07 12993.03 15998.13 16494.52 178
FMVSNet590.36 13290.93 14089.70 13487.99 19292.25 19792.03 15983.51 16892.20 13984.13 11085.59 12686.48 10992.43 12494.61 13394.52 12998.13 16490.85 198
Anonymous2023120683.84 19185.19 19082.26 19287.38 19692.87 19485.49 19583.65 16786.07 18863.44 19968.42 19569.01 19375.45 20093.34 15592.44 17198.12 16694.20 182
MIMVSNet180.03 19680.93 19778.97 19772.46 21090.73 20180.81 20382.44 17580.39 20163.64 19857.57 20464.93 20476.37 19891.66 17991.55 17998.07 16789.70 200
TAMVS90.54 13190.87 14290.16 12891.48 14696.61 12293.26 13486.08 14287.71 17681.66 12383.11 14284.04 12890.42 15594.54 13594.60 12398.04 16895.48 174
pmmvs-eth3d84.33 19082.94 19585.96 18584.16 20190.94 20086.55 19283.79 16684.25 19375.85 15370.64 19256.43 20987.44 17492.20 17290.41 18497.97 16995.68 171
test-mter90.95 12493.54 10687.93 16190.28 15996.80 11491.44 16682.68 17492.15 14074.37 16589.57 9888.23 10590.88 14696.37 9294.31 13497.93 17097.37 143
GG-mvs-BLEND66.17 20294.91 7832.63 2081.32 21696.64 12191.40 1670.85 21494.39 1042.20 21690.15 9495.70 602.27 21396.39 8995.44 10197.78 17195.68 171
PatchT89.13 15191.71 13186.11 18392.92 13395.59 15583.64 19875.09 19991.87 14275.19 15882.63 14385.06 12392.05 12795.21 12594.56 12697.76 17297.08 152
test-LLR91.62 11793.56 10489.35 14093.31 13096.57 12392.02 16087.06 13392.34 13675.05 16190.20 9288.64 10090.93 14396.19 10094.07 13897.75 17396.90 158
TESTMET0.1,191.07 12393.56 10488.17 15190.43 15596.57 12392.02 16082.83 17392.34 13675.05 16190.20 9288.64 10090.93 14396.19 10094.07 13897.75 17396.90 158
IterMVS-SCA-FT90.24 13492.48 11887.63 16692.85 13594.30 18993.79 12581.47 18092.66 12569.95 18484.66 13288.38 10389.99 16095.39 12294.34 13397.74 17597.63 136
PM-MVS84.72 18984.47 19385.03 18684.67 20091.57 19986.27 19382.31 17687.65 17770.62 17976.54 16356.41 21088.75 16892.59 16689.85 18797.54 17696.66 163
IterMVS90.20 13592.43 12087.61 16792.82 13794.31 18894.11 12181.54 17892.97 12169.90 18584.71 13188.16 10689.96 16195.25 12494.17 13697.31 17797.46 140
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu91.78 11493.59 10389.68 13692.44 14097.11 10794.40 11884.94 15892.43 13175.48 15491.09 8583.75 13193.55 11396.61 8095.47 10097.24 17898.67 92
EPNet_dtu92.45 10995.02 7689.46 13798.02 5295.47 15994.79 11192.62 6494.97 9370.11 18394.76 5092.61 7484.07 19295.94 10595.56 9797.15 17995.82 169
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs685.98 18484.89 19287.25 17388.83 18794.35 18789.36 18485.30 15478.51 20475.44 15562.71 20375.41 16387.65 17193.58 15192.40 17296.89 18097.29 146
CVMVSNet89.77 14291.66 13287.56 16993.21 13295.45 16091.94 16389.22 11189.62 16269.34 18983.99 13785.90 11584.81 18794.30 14295.28 10596.85 18197.09 150
DeepPCF-MVS95.28 297.00 3998.35 1995.42 5797.30 6198.94 4794.82 11096.03 3898.24 792.11 4795.80 3898.64 3195.51 8298.95 598.66 596.78 18299.20 38
CHOSEN 280x42095.46 5797.01 4293.66 9097.28 6297.98 9196.40 7985.39 15196.10 6491.07 5496.53 3296.34 5495.61 7997.65 4996.95 6196.21 18397.49 139
new-patchmatchnet78.49 19878.19 20078.84 19884.13 20290.06 20277.11 20780.39 18279.57 20359.64 20666.01 20055.65 21175.62 19984.55 20080.70 20296.14 18490.77 199
EPMVS90.88 12692.12 12689.44 13894.71 10697.24 10493.55 12776.81 19095.89 7181.77 12191.49 7986.47 11093.87 10690.21 18790.07 18595.92 18593.49 192
SCA90.92 12593.04 11088.45 14793.72 12597.33 10392.77 14076.08 19596.02 6678.26 13791.96 7290.86 8193.99 10590.98 18490.04 18695.88 18694.06 185
dps90.11 13989.37 15290.98 11693.89 12196.21 13393.49 12977.61 18891.95 14192.74 4488.85 10178.77 15192.37 12587.71 19687.71 19495.80 18794.38 181
ADS-MVSNet89.80 14191.33 13688.00 15994.43 11396.71 11992.29 15274.95 20096.07 6577.39 14088.67 10486.09 11393.26 11788.44 19389.57 18895.68 18893.81 189
tpm87.95 16489.44 15186.21 18292.53 13994.62 18391.40 16776.36 19391.46 14569.80 18787.43 10975.14 16491.55 13489.85 19190.60 18295.61 18996.96 155
EU-MVSNet85.62 18587.65 17283.24 19188.54 19092.77 19687.12 19085.32 15286.71 18264.54 19678.52 15775.11 16578.35 19692.25 17192.28 17495.58 19095.93 167
CostFormer90.69 12790.48 14590.93 11794.18 11696.08 13694.03 12278.20 18693.47 11789.96 7390.97 8680.30 14593.72 11087.66 19788.75 19095.51 19196.12 166
PatchmatchNetpermissive90.56 12992.49 11688.31 15093.83 12396.86 11392.42 14876.50 19295.96 6978.31 13691.96 7289.66 9093.48 11490.04 18989.20 18995.32 19293.73 190
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
N_pmnet84.80 18785.10 19184.45 18789.25 17992.86 19584.04 19786.21 13988.78 16766.73 19372.41 18674.87 16885.21 18488.32 19486.45 19795.30 19392.04 195
RPSCF94.05 8594.00 9394.12 8396.20 7496.41 12896.61 7291.54 8095.83 7589.73 7696.94 2992.80 7295.35 8591.63 18090.44 18395.27 19493.94 186
MDTV_nov1_ep13_2view86.30 18288.27 15984.01 18887.71 19594.67 18188.08 18776.78 19190.59 15668.66 19180.46 15280.12 14687.58 17389.95 19088.20 19295.25 19593.90 188
MDTV_nov1_ep1391.57 11893.18 10889.70 13493.39 12896.97 10893.53 12880.91 18195.70 7781.86 12092.40 6789.93 8893.25 11891.97 17890.80 18195.25 19594.46 180
new_pmnet81.53 19482.68 19680.20 19483.47 20389.47 20482.21 20278.36 18487.86 17460.14 20567.90 19769.43 19282.03 19489.22 19287.47 19594.99 19787.39 203
MVS-HIRNet85.36 18686.89 17983.57 18990.13 16194.51 18483.57 19972.61 20388.27 17371.22 17768.97 19481.81 14188.91 16793.08 16091.94 17694.97 19889.64 201
tpmrst88.86 15689.62 14887.97 16094.33 11495.98 13892.62 14476.36 19394.62 9976.94 14485.98 12482.80 13792.80 12286.90 19887.15 19694.77 19993.93 187
pmmvs379.16 19780.12 19978.05 19979.36 20586.59 20678.13 20673.87 20276.42 20657.51 20870.59 19357.02 20884.66 18890.10 18888.32 19194.75 20091.77 197
tpm cat188.90 15487.78 17090.22 12793.88 12295.39 16293.79 12578.11 18792.55 12989.43 8081.31 14779.84 14791.40 13584.95 19986.34 19994.68 20194.09 184
CMPMVSbinary65.18 1784.76 18883.10 19486.69 17895.29 8995.05 17188.37 18685.51 15080.27 20271.31 17668.37 19673.85 17185.25 18387.72 19587.75 19394.38 20288.70 202
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MDA-MVSNet-bldmvs80.11 19580.24 19879.94 19577.01 20793.21 19378.86 20585.94 14582.71 19960.86 20079.71 15451.77 21283.71 19375.60 20486.37 19893.28 20392.35 194
ambc73.83 20276.23 20885.13 20782.27 20184.16 19465.58 19552.82 20623.31 21773.55 20191.41 18285.26 20192.97 20494.70 177
PMMVS264.36 20365.94 20562.52 20467.37 21177.44 20964.39 21069.32 20961.47 20934.59 21146.09 20741.03 21348.02 21074.56 20678.23 20391.43 20582.76 205
DeepMVS_CXcopyleft86.86 20579.50 20470.43 20690.73 15263.66 19780.36 15360.83 20579.68 19576.23 20389.46 20686.53 204
Gipumacopyleft68.35 20066.71 20370.27 20174.16 20968.78 21163.93 21171.77 20583.34 19754.57 20934.37 20831.88 21468.69 20283.30 20185.53 20088.48 20779.78 207
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FPMVS75.84 19974.59 20177.29 20086.92 19783.89 20885.01 19680.05 18382.91 19860.61 20265.25 20160.41 20663.86 20475.60 20473.60 20687.29 20880.47 206
PMVScopyleft63.12 1867.27 20166.39 20468.30 20277.98 20660.24 21259.53 21276.82 18966.65 20860.74 20154.39 20559.82 20751.24 20773.92 20770.52 20783.48 20979.17 208
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt66.88 20386.07 19973.86 21068.22 20933.38 21196.88 4680.67 12888.23 10778.82 15049.78 20882.68 20277.47 20483.19 210
E-PMN50.67 20447.85 20753.96 20564.13 21350.98 21538.06 21369.51 20751.40 21124.60 21329.46 21124.39 21656.07 20648.17 20959.70 20871.40 21170.84 210
EMVS49.98 20546.76 20853.74 20664.96 21251.29 21437.81 21469.35 20851.83 21022.69 21429.57 21025.06 21557.28 20544.81 21056.11 20970.32 21268.64 211
MVEpermissive50.86 1949.54 20651.43 20647.33 20744.14 21459.20 21336.45 21560.59 21041.47 21231.14 21229.58 20917.06 21848.52 20962.22 20874.63 20563.12 21375.87 209
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs12.09 20716.94 2096.42 2093.15 2156.08 2169.51 2173.84 21221.46 2135.31 21527.49 2126.76 21910.89 21117.06 21115.01 2105.84 21424.75 212
test1239.58 20813.53 2104.97 2101.31 2175.47 2178.32 2182.95 21318.14 2142.03 21720.82 2132.34 22010.60 21210.00 21214.16 2114.60 21523.77 213
uanet_test0.00 2090.00 2110.00 2110.00 2180.00 2180.00 2190.00 2150.00 2150.00 2180.00 2140.00 2210.00 2140.00 2130.00 2120.00 2160.00 214
sosnet-low-res0.00 2090.00 2110.00 2110.00 2180.00 2180.00 2190.00 2150.00 2150.00 2180.00 2140.00 2210.00 2140.00 2130.00 2120.00 2160.00 214
sosnet0.00 2090.00 2110.00 2110.00 2180.00 2180.00 2190.00 2150.00 2150.00 2180.00 2140.00 2210.00 2140.00 2130.00 2120.00 2160.00 214
9.1499.28 10
SR-MVS99.45 997.61 1499.20 14
our_test_389.78 16593.84 19185.59 194
test_part199.38 15
MTAPA96.83 999.12 19
MTMP97.18 498.83 25
Patchmatch-RL test34.61 216
mPP-MVS99.21 2398.29 37
NP-MVS95.32 85
Patchmtry95.96 14093.36 13275.99 19675.19 158