This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
SMA-MVScopyleft87.56 790.17 784.52 1091.71 390.57 1090.77 975.19 1490.67 780.50 1586.59 1888.86 878.09 1789.92 189.41 190.84 1195.19 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNVR-MVS86.36 1488.19 1784.23 1391.33 589.84 1590.34 1275.56 1187.36 1978.97 1981.19 2986.76 1878.74 1289.30 588.58 290.45 2894.33 10
SteuartSystems-ACMMP85.99 1688.31 1683.27 2290.73 1189.84 1590.27 1574.31 1684.56 3175.88 3187.32 1585.04 2577.31 2589.01 788.46 391.14 593.96 12
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP86.52 1389.01 1183.62 1890.28 2090.09 1490.32 1474.05 2188.32 1579.74 1787.04 1685.59 2476.97 3089.35 488.44 490.35 3194.27 11
HPM-MVS++copyleft87.09 988.92 1384.95 692.61 187.91 4190.23 1676.06 588.85 1381.20 1187.33 1487.93 1279.47 988.59 988.23 590.15 3793.60 21
DeepC-MVS78.47 284.81 2786.03 2983.37 2089.29 3390.38 1288.61 2876.50 186.25 2477.22 2575.12 4080.28 4677.59 2388.39 1088.17 691.02 793.66 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SED-MVS88.85 291.59 385.67 290.54 1692.29 391.71 376.40 292.41 383.24 292.50 390.64 481.10 389.53 388.02 791.00 995.73 3
DVP-MVS++89.14 191.86 185.97 192.55 292.38 191.69 476.31 393.31 183.11 392.44 491.18 181.17 289.55 287.93 891.01 896.21 1
DVP-MVScopyleft88.67 391.62 285.22 490.47 1892.36 290.69 1076.15 493.08 282.75 592.19 690.71 380.45 689.27 687.91 990.82 1295.84 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS88.09 590.84 584.88 790.00 2491.80 691.63 575.80 791.99 481.23 1092.54 289.18 680.89 487.99 1587.91 989.70 4694.51 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepPCF-MVS79.04 185.30 2288.93 1281.06 3388.77 3790.48 1185.46 4773.08 3090.97 673.77 3884.81 2385.95 2177.43 2488.22 1187.73 1187.85 8594.34 9
NCCC85.34 2186.59 2583.88 1791.48 488.88 2689.79 1875.54 1286.67 2277.94 2476.55 3684.99 2678.07 1888.04 1287.68 1290.46 2793.31 22
DeepC-MVS_fast78.24 384.27 3085.50 3282.85 2490.46 1989.24 2287.83 3474.24 1884.88 2776.23 2975.26 3981.05 4477.62 2288.02 1387.62 1390.69 1792.41 29
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DPE-MVScopyleft88.63 491.29 485.53 390.87 992.20 491.98 276.00 690.55 882.09 793.85 190.75 281.25 188.62 887.59 1490.96 1095.48 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
zzz-MVS85.71 1786.88 2384.34 1290.54 1687.11 4589.77 1974.17 1988.54 1483.08 478.60 3386.10 2078.11 1687.80 1787.46 1590.35 3192.56 27
ACMMPR85.52 1887.53 2083.17 2390.13 2189.27 2189.30 2273.97 2286.89 2177.14 2686.09 1983.18 3377.74 2187.42 2087.20 1690.77 1492.63 26
HFP-MVS86.15 1587.95 1884.06 1590.80 1089.20 2489.62 2174.26 1787.52 1680.63 1386.82 1784.19 3078.22 1587.58 1887.19 1790.81 1393.13 25
MP-MVScopyleft85.50 1987.40 2183.28 2190.65 1389.51 2089.16 2574.11 2083.70 3578.06 2385.54 2184.89 2877.31 2587.40 2387.14 1890.41 2993.65 20
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APDe-MVS88.00 690.50 685.08 590.95 891.58 792.03 175.53 1391.15 580.10 1692.27 588.34 1180.80 588.00 1486.99 1991.09 695.16 6
DPM-MVS83.30 3384.33 3682.11 2889.56 2988.49 3590.33 1373.24 2983.85 3476.46 2872.43 5282.65 3473.02 5086.37 3786.91 2090.03 3989.62 55
X-MVS83.23 3485.20 3480.92 3589.71 2888.68 2988.21 3373.60 2582.57 3971.81 4777.07 3481.92 3871.72 6186.98 3086.86 2190.47 2492.36 30
3Dnovator+75.73 482.40 3682.76 4181.97 3088.02 3989.67 1886.60 3871.48 3881.28 4478.18 2264.78 8677.96 5377.13 2887.32 2486.83 2290.41 2991.48 37
SD-MVS86.96 1089.45 984.05 1690.13 2189.23 2389.77 1974.59 1589.17 1180.70 1289.93 1289.67 578.47 1387.57 1986.79 2390.67 1893.76 17
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PHI-MVS82.36 3785.89 3078.24 5086.40 4989.52 1985.52 4569.52 5082.38 4165.67 7081.35 2882.36 3573.07 4987.31 2586.76 2489.24 5391.56 36
PGM-MVS84.42 2986.29 2882.23 2790.04 2388.82 2889.23 2471.74 3782.82 3874.61 3484.41 2482.09 3677.03 2987.13 2686.73 2590.73 1692.06 33
CSCG85.28 2387.68 1982.49 2689.95 2591.99 588.82 2671.20 3986.41 2379.63 1879.26 3088.36 1073.94 4386.64 3386.67 2691.40 294.41 8
TSAR-MVS + ACMM85.10 2588.81 1580.77 3689.55 3088.53 3488.59 2972.55 3287.39 1771.90 4490.95 1087.55 1374.57 3887.08 2886.54 2787.47 9293.67 18
CP-MVS84.74 2886.43 2782.77 2589.48 3188.13 4088.64 2773.93 2384.92 2676.77 2781.94 2783.50 3177.29 2786.92 3286.49 2890.49 2393.14 24
APD-MVScopyleft86.84 1288.91 1484.41 1190.66 1290.10 1390.78 875.64 1087.38 1878.72 2090.68 1186.82 1780.15 787.13 2686.45 2990.51 2293.83 15
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_030481.73 4083.86 3779.26 4386.22 5189.18 2586.41 3967.15 6775.28 5670.75 5474.59 4283.49 3274.42 4087.05 2986.34 3090.58 2191.08 41
xxxxxxxxxxxxxcwj85.35 2085.76 3184.86 891.26 691.10 890.90 675.65 889.21 981.25 891.12 861.35 12078.82 1087.42 2086.23 3191.28 393.90 13
SF-MVS87.47 889.70 884.86 891.26 691.10 890.90 675.65 889.21 981.25 891.12 888.93 778.82 1087.42 2086.23 3191.28 393.90 13
TSAR-MVS + MP.86.88 1189.23 1084.14 1489.78 2788.67 3290.59 1173.46 2888.99 1280.52 1491.26 788.65 979.91 886.96 3186.22 3390.59 2093.83 15
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CDPH-MVS82.64 3585.03 3579.86 4089.41 3288.31 3788.32 3171.84 3680.11 4667.47 6482.09 2681.44 4271.85 5985.89 4386.15 3490.24 3491.25 39
MCST-MVS85.13 2486.62 2483.39 1990.55 1589.82 1789.29 2373.89 2484.38 3276.03 3079.01 3285.90 2278.47 1387.81 1686.11 3592.11 193.29 23
DELS-MVS79.15 5581.07 5076.91 5783.54 6387.31 4384.45 5264.92 8369.98 7069.34 5671.62 5676.26 5769.84 7086.57 3485.90 3689.39 5189.88 52
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ACMMPcopyleft83.42 3285.27 3381.26 3288.47 3888.49 3588.31 3272.09 3483.42 3672.77 4282.65 2578.22 5175.18 3786.24 3985.76 3790.74 1592.13 32
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TSAR-MVS + GP.83.69 3186.58 2680.32 3785.14 5686.96 4684.91 5170.25 4384.71 3073.91 3785.16 2285.63 2377.92 1985.44 4485.71 3889.77 4392.45 28
CANet81.62 4183.41 3879.53 4287.06 4488.59 3385.47 4667.96 6076.59 5474.05 3574.69 4181.98 3772.98 5186.14 4085.47 3989.68 4790.42 48
train_agg84.86 2687.21 2282.11 2890.59 1485.47 5689.81 1773.55 2783.95 3373.30 3989.84 1387.23 1575.61 3686.47 3585.46 4089.78 4292.06 33
3Dnovator73.76 579.75 4780.52 5478.84 4684.94 6187.35 4284.43 5365.54 7878.29 5073.97 3663.00 9475.62 6174.07 4285.00 5085.34 4190.11 3889.04 57
OPM-MVS79.68 4979.28 6180.15 3987.99 4086.77 4888.52 3072.72 3164.55 9967.65 6367.87 7574.33 6574.31 4186.37 3785.25 4289.73 4589.81 53
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVS_111021_HR80.13 4481.46 4678.58 4885.77 5385.17 6083.45 5869.28 5174.08 6270.31 5574.31 4475.26 6273.13 4886.46 3685.15 4389.53 4989.81 53
MAR-MVS79.21 5380.32 5677.92 5287.46 4188.15 3983.95 5467.48 6674.28 6068.25 6064.70 8777.04 5572.17 5585.42 4585.00 4488.22 7287.62 68
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MSLP-MVS++82.09 3882.66 4281.42 3187.03 4587.22 4485.82 4370.04 4480.30 4578.66 2168.67 7181.04 4577.81 2085.19 4884.88 4589.19 5691.31 38
CLD-MVS79.35 5281.23 4877.16 5685.01 5986.92 4785.87 4260.89 13280.07 4875.35 3372.96 4973.21 6968.43 7985.41 4684.63 4687.41 9385.44 89
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
canonicalmvs79.16 5482.37 4475.41 6482.33 7186.38 5280.80 6663.18 9882.90 3767.34 6572.79 5076.07 5969.62 7183.46 6684.41 4789.20 5590.60 46
LGP-MVS_train79.83 4581.22 4978.22 5186.28 5085.36 5986.76 3769.59 4877.34 5165.14 7275.68 3870.79 7971.37 6584.60 5384.01 4890.18 3690.74 44
ACMM72.26 878.86 5778.13 6579.71 4186.89 4683.40 7486.02 4170.50 4175.28 5671.49 5163.01 9369.26 9073.57 4584.11 5883.98 4989.76 4487.84 66
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DROMVSNet79.44 5081.35 4777.22 5582.95 6584.67 6381.31 6263.65 9272.47 6868.75 5773.15 4878.33 5075.99 3386.06 4183.96 5090.67 1890.79 43
ETV-MVS77.32 6478.81 6275.58 6382.24 7283.64 7279.98 7064.02 9069.64 7463.90 7870.89 6069.94 8573.41 4685.39 4783.91 5189.92 4088.31 62
HQP-MVS81.19 4283.27 3978.76 4787.40 4285.45 5786.95 3670.47 4281.31 4366.91 6779.24 3176.63 5671.67 6284.43 5683.78 5289.19 5692.05 35
EPNet79.08 5680.62 5277.28 5488.90 3683.17 7983.65 5672.41 3374.41 5967.15 6676.78 3574.37 6464.43 9983.70 6283.69 5387.15 9688.19 63
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CS-MVS77.88 6280.66 5174.64 7379.87 9482.07 8678.63 8659.93 14672.57 6763.22 8373.66 4777.72 5475.97 3585.12 4983.58 5490.23 3589.93 51
IS_MVSNet73.33 8377.34 7468.65 11681.29 7783.47 7374.45 12563.58 9565.75 9148.49 15167.11 7970.61 8054.63 16884.51 5583.58 5489.48 5086.34 79
CS-MVS-test78.10 6179.79 6076.13 6080.59 8581.68 8981.31 6263.65 9268.34 7664.91 7472.52 5176.25 5875.99 3386.06 4183.55 5690.31 3390.16 50
ACMP73.23 779.79 4680.53 5378.94 4585.61 5485.68 5485.61 4469.59 4877.33 5271.00 5374.45 4369.16 9171.88 5783.15 6783.37 5789.92 4090.57 47
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
QAPM78.47 5880.22 5776.43 5985.03 5886.75 4980.62 6866.00 7573.77 6365.35 7165.54 8278.02 5272.69 5283.71 6183.36 5888.87 6290.41 49
test250671.72 9472.95 9870.29 9681.49 7583.27 7575.74 10967.59 6468.19 7849.81 14561.15 9749.73 19158.82 13584.76 5182.94 5988.27 7080.63 137
ECVR-MVScopyleft72.20 9073.91 8970.20 9881.49 7583.27 7575.74 10967.59 6468.19 7849.31 14955.77 13162.00 11858.82 13584.76 5182.94 5988.27 7080.41 141
AdaColmapbinary79.74 4878.62 6381.05 3489.23 3486.06 5384.95 5071.96 3579.39 4975.51 3263.16 9268.84 9676.51 3183.55 6382.85 6188.13 7686.46 78
test111171.56 9673.44 9269.38 10981.16 7882.95 8074.99 12067.68 6266.89 8346.33 16555.19 13760.91 12257.99 14384.59 5482.70 6288.12 7780.85 134
Vis-MVSNetpermissive72.77 8777.20 7567.59 12874.19 14184.01 6676.61 10861.69 12660.62 13250.61 14170.25 6371.31 7755.57 16483.85 6082.28 6386.90 10588.08 64
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UA-Net74.47 7777.80 6770.59 9385.33 5585.40 5873.54 14365.98 7660.65 13156.00 11072.11 5379.15 4754.63 16883.13 6882.25 6488.04 7981.92 126
IB-MVS66.94 1271.21 10171.66 10970.68 9079.18 9982.83 8272.61 14961.77 12559.66 13663.44 8153.26 15359.65 12959.16 13476.78 14682.11 6587.90 8287.33 70
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_part174.24 7873.44 9275.18 6682.02 7482.34 8583.88 5562.40 11860.93 12968.68 5849.25 18169.71 8765.73 9781.26 8881.98 6688.35 6888.60 61
CPTT-MVS81.77 3983.10 4080.21 3885.93 5286.45 5187.72 3570.98 4082.54 4071.53 5074.23 4581.49 4176.31 3282.85 7081.87 6788.79 6492.26 31
PVSNet_Blended_VisFu76.57 6777.90 6675.02 6780.56 8686.58 5079.24 8066.18 7264.81 9668.18 6165.61 8071.45 7467.05 8284.16 5781.80 6888.90 6090.92 42
Effi-MVS+75.28 7476.20 8074.20 7681.15 7983.24 7781.11 6463.13 10066.37 8560.27 8964.30 9068.88 9570.93 6881.56 7981.69 6988.61 6587.35 69
EIA-MVS75.64 7276.60 7974.53 7482.43 7083.84 6878.32 9162.28 12065.96 8963.28 8268.95 6767.54 10171.61 6382.55 7281.63 7089.24 5385.72 83
OMC-MVS80.26 4382.59 4377.54 5383.04 6485.54 5583.25 5965.05 8287.32 2072.42 4372.04 5478.97 4873.30 4783.86 5981.60 7188.15 7588.83 59
OpenMVScopyleft70.44 1076.15 7076.82 7875.37 6585.01 5984.79 6278.99 8462.07 12171.27 6967.88 6257.91 12272.36 7270.15 6982.23 7581.41 7288.12 7787.78 67
MVS_111021_LR78.13 6079.85 5976.13 6081.12 8081.50 9280.28 6965.25 8076.09 5571.32 5276.49 3772.87 7172.21 5482.79 7181.29 7386.59 11887.91 65
TranMVSNet+NR-MVSNet69.25 12170.81 11367.43 12977.23 11679.46 11473.48 14569.66 4660.43 13339.56 18558.82 11353.48 16555.74 16279.59 11281.21 7488.89 6182.70 116
ET-MVSNet_ETH3D72.46 8974.19 8770.44 9462.50 20081.17 9779.90 7362.46 11764.52 10057.52 10271.49 5859.15 13172.08 5678.61 12681.11 7588.16 7483.29 114
UniMVSNet_NR-MVSNet70.59 10572.19 10468.72 11477.72 11180.72 10373.81 14069.65 4761.99 11943.23 17760.54 10257.50 13858.57 13779.56 11481.07 7689.34 5283.97 106
DCV-MVSNet73.65 8275.78 8271.16 8780.19 9179.27 11677.45 10061.68 12766.73 8458.72 9465.31 8369.96 8462.19 11281.29 8780.97 7786.74 11186.91 73
CANet_DTU73.29 8476.96 7769.00 11377.04 11782.06 8779.49 7856.30 16967.85 8053.29 12671.12 5970.37 8361.81 12181.59 7880.96 7886.09 12784.73 100
FC-MVSNet-train72.60 8875.07 8469.71 10481.10 8178.79 12273.74 14265.23 8166.10 8853.34 12570.36 6263.40 11456.92 15381.44 8180.96 7887.93 8184.46 104
TSAR-MVS + COLMAP78.34 5981.64 4574.48 7580.13 9385.01 6181.73 6065.93 7784.75 2961.68 8585.79 2066.27 10571.39 6482.91 6980.78 8086.01 13385.98 80
EPP-MVSNet74.00 8177.41 7270.02 10180.53 8783.91 6774.99 12062.68 11265.06 9449.77 14668.68 7072.09 7363.06 10782.49 7480.73 8189.12 5888.91 58
GBi-Net70.78 10273.37 9567.76 12172.95 15378.00 12975.15 11562.72 10764.13 10251.44 13458.37 11769.02 9257.59 14581.33 8480.72 8286.70 11282.02 120
test170.78 10273.37 9567.76 12172.95 15378.00 12975.15 11562.72 10764.13 10251.44 13458.37 11769.02 9257.59 14581.33 8480.72 8286.70 11282.02 120
FMVSNet168.84 12570.47 11666.94 14071.35 17077.68 13774.71 12362.35 11956.93 15149.94 14450.01 17664.59 10957.07 15081.33 8480.72 8286.25 12382.00 123
ACMH65.37 1470.71 10470.00 11971.54 8582.51 6982.47 8477.78 9568.13 5756.19 15846.06 16854.30 14151.20 18368.68 7780.66 9780.72 8286.07 12884.45 105
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
NR-MVSNet68.79 12670.56 11466.71 14577.48 11479.54 11273.52 14469.20 5261.20 12739.76 18458.52 11450.11 18951.37 17780.26 10580.71 8688.97 5983.59 112
UGNet72.78 8677.67 6867.07 13871.65 16583.24 7775.20 11463.62 9464.93 9556.72 10671.82 5573.30 6749.02 18181.02 9380.70 8786.22 12488.67 60
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EG-PatchMatch MVS67.24 14766.94 15467.60 12778.73 10281.35 9473.28 14759.49 14946.89 20051.42 13743.65 19353.49 16455.50 16581.38 8380.66 8887.15 9681.17 132
PCF-MVS73.28 679.42 5180.41 5578.26 4984.88 6288.17 3886.08 4069.85 4575.23 5868.43 5968.03 7478.38 4971.76 6081.26 8880.65 8988.56 6791.18 40
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UniMVSNet (Re)69.53 11771.90 10766.76 14376.42 12080.93 9972.59 15068.03 5961.75 12241.68 18258.34 12057.23 14053.27 17379.53 11580.62 9088.57 6684.90 98
Fast-Effi-MVS+73.11 8573.66 9072.48 8277.72 11180.88 10278.55 8858.83 15965.19 9360.36 8859.98 10662.42 11771.22 6681.66 7680.61 9188.20 7384.88 99
DU-MVS69.63 11670.91 11268.13 12075.99 12279.54 11273.81 14069.20 5261.20 12743.23 17758.52 11453.50 16358.57 13779.22 11880.45 9287.97 8083.97 106
Anonymous20240521172.16 10680.85 8381.85 8876.88 10565.40 7962.89 11446.35 18867.99 10062.05 11481.15 9180.38 9385.97 13584.50 103
FMVSNet270.39 10872.67 10267.72 12472.95 15378.00 12975.15 11562.69 11163.29 11051.25 13855.64 13268.49 9957.59 14580.91 9580.35 9486.70 11282.02 120
anonymousdsp65.28 15667.98 14562.13 16658.73 20873.98 16667.10 17250.69 19248.41 19647.66 15954.27 14252.75 17561.45 12576.71 14780.20 9587.13 10089.53 56
Anonymous2023121171.90 9272.48 10371.21 8680.14 9281.53 9176.92 10362.89 10364.46 10158.94 9143.80 19270.98 7862.22 11180.70 9680.19 9686.18 12585.73 82
thisisatest053071.48 9873.01 9769.70 10573.83 14678.62 12474.53 12459.12 15364.13 10258.63 9564.60 8858.63 13364.27 10080.28 10480.17 9787.82 8684.64 102
tttt051771.41 9972.95 9869.60 10673.70 14878.70 12374.42 12859.12 15363.89 10658.35 9864.56 8958.39 13564.27 10080.29 10380.17 9787.74 8884.69 101
CDS-MVSNet67.65 14169.83 12265.09 15075.39 12976.55 14774.42 12863.75 9153.55 17649.37 14859.41 11062.45 11644.44 18879.71 11179.82 9983.17 16377.36 161
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSTER72.06 9174.24 8669.51 10770.39 17675.97 15276.91 10457.36 16664.64 9861.39 8768.86 6863.76 11263.46 10481.44 8179.70 10087.56 9185.31 91
PVSNet_BlendedMVS76.21 6877.52 7074.69 7179.46 9783.79 6977.50 9864.34 8869.88 7171.88 4568.54 7270.42 8167.05 8283.48 6479.63 10187.89 8386.87 74
PVSNet_Blended76.21 6877.52 7074.69 7179.46 9783.79 6977.50 9864.34 8869.88 7171.88 4568.54 7270.42 8167.05 8283.48 6479.63 10187.89 8386.87 74
DI_MVS_plusplus_trai75.13 7576.12 8173.96 7778.18 10581.55 9080.97 6562.54 11468.59 7565.13 7361.43 9674.81 6369.32 7481.01 9479.59 10387.64 9085.89 81
FMVSNet370.49 10672.90 10067.67 12672.88 15677.98 13274.96 12262.72 10764.13 10251.44 13458.37 11769.02 9257.43 14879.43 11679.57 10486.59 11881.81 127
TAPA-MVS71.42 977.69 6380.05 5874.94 6880.68 8484.52 6481.36 6163.14 9984.77 2864.82 7568.72 6975.91 6071.86 5881.62 7779.55 10587.80 8785.24 92
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMH+66.54 1371.36 10070.09 11872.85 8182.59 6881.13 9878.56 8768.04 5861.55 12352.52 13251.50 17054.14 15668.56 7878.85 12379.50 10686.82 10883.94 108
MVS_Test75.37 7377.13 7673.31 8079.07 10081.32 9579.98 7060.12 14369.72 7364.11 7770.53 6173.22 6868.90 7580.14 10879.48 10787.67 8985.50 87
Vis-MVSNet (Re-imp)67.83 13773.52 9161.19 17078.37 10476.72 14666.80 17562.96 10165.50 9234.17 19667.19 7869.68 8839.20 19979.39 11779.44 10885.68 13976.73 166
GeoE74.23 7974.84 8573.52 7880.42 8981.46 9379.77 7461.06 13067.23 8263.67 7959.56 10968.74 9767.90 8080.25 10679.37 10988.31 6987.26 72
casdiffmvs76.76 6678.46 6474.77 7080.32 9083.73 7180.65 6763.24 9773.58 6466.11 6969.39 6674.09 6669.49 7382.52 7379.35 11088.84 6386.52 77
PLCcopyleft68.99 1175.68 7175.31 8376.12 6282.94 6681.26 9679.94 7266.10 7377.15 5366.86 6859.13 11268.53 9873.73 4480.38 10179.04 11187.13 10081.68 128
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
gg-mvs-nofinetune62.55 17065.05 16859.62 17978.72 10377.61 13870.83 15753.63 17239.71 21222.04 21336.36 20564.32 11047.53 18381.16 9079.03 11285.00 15177.17 162
baseline170.10 11272.17 10567.69 12579.74 9576.80 14473.91 13664.38 8762.74 11548.30 15364.94 8464.08 11154.17 17081.46 8078.92 11385.66 14076.22 167
thisisatest051567.40 14568.78 13565.80 14870.02 17875.24 15969.36 16257.37 16554.94 16953.67 12355.53 13554.85 15258.00 14278.19 13078.91 11486.39 12283.78 110
LS3D74.08 8073.39 9474.88 6985.05 5782.62 8379.71 7668.66 5472.82 6558.80 9357.61 12361.31 12171.07 6780.32 10278.87 11586.00 13480.18 143
CNLPA77.20 6577.54 6976.80 5882.63 6784.31 6579.77 7464.64 8485.17 2573.18 4056.37 12969.81 8674.53 3981.12 9278.69 11686.04 13287.29 71
UniMVSNet_ETH3D67.18 14867.03 15367.36 13174.44 13978.12 12774.07 13566.38 7052.22 18346.87 16048.64 18251.84 18056.96 15177.29 13878.53 11785.42 14482.59 117
MSDG71.52 9769.87 12073.44 7982.21 7379.35 11579.52 7764.59 8566.15 8761.87 8453.21 15556.09 14665.85 9678.94 12278.50 11886.60 11776.85 165
tfpn200view968.11 13168.72 13767.40 13077.83 10978.93 11874.28 13062.81 10456.64 15346.82 16152.65 16353.47 16656.59 15480.41 9878.43 11986.11 12680.52 139
thres40067.95 13468.62 13967.17 13577.90 10678.59 12574.27 13162.72 10756.34 15745.77 17053.00 15853.35 16956.46 15580.21 10778.43 11985.91 13780.43 140
HyFIR lowres test69.47 11968.94 13370.09 10076.77 11982.93 8176.63 10760.17 14159.00 13954.03 11940.54 20165.23 10867.89 8176.54 14978.30 12185.03 15080.07 144
Baseline_NR-MVSNet67.53 14468.77 13666.09 14775.99 12274.75 16372.43 15168.41 5561.33 12638.33 18951.31 17154.13 15856.03 15879.22 11878.19 12285.37 14582.45 118
CHOSEN 1792x268869.20 12269.26 12969.13 11076.86 11878.93 11877.27 10160.12 14361.86 12154.42 11542.54 19661.61 11966.91 8778.55 12778.14 12379.23 17783.23 115
diffmvs74.86 7677.37 7371.93 8375.62 12780.35 10779.42 7960.15 14272.81 6664.63 7671.51 5773.11 7066.53 9279.02 12177.98 12485.25 14786.83 76
thres20067.98 13368.55 14067.30 13377.89 10878.86 12074.18 13462.75 10556.35 15646.48 16452.98 15953.54 16256.46 15580.41 9877.97 12586.05 13079.78 147
pm-mvs165.62 15367.42 15063.53 16273.66 14976.39 14869.66 15960.87 13349.73 19343.97 17651.24 17257.00 14348.16 18279.89 10977.84 12684.85 15479.82 146
thres600view767.68 13968.43 14166.80 14277.90 10678.86 12073.84 13862.75 10556.07 15944.70 17552.85 16152.81 17355.58 16380.41 9877.77 12786.05 13080.28 142
WR-MVS63.03 16667.40 15157.92 18575.14 13177.60 13960.56 19866.10 7354.11 17523.88 20753.94 14753.58 16134.50 20373.93 16277.71 12887.35 9480.94 133
TransMVSNet (Re)64.74 15965.66 16263.66 16177.40 11575.33 15869.86 15862.67 11347.63 19841.21 18350.01 17652.33 17645.31 18779.57 11377.69 12985.49 14277.07 164
thres100view90067.60 14368.02 14467.12 13777.83 10977.75 13673.90 13762.52 11556.64 15346.82 16152.65 16353.47 16655.92 15978.77 12477.62 13085.72 13879.23 150
GA-MVS68.14 13069.17 13166.93 14173.77 14778.50 12674.45 12558.28 16155.11 16548.44 15260.08 10453.99 15961.50 12378.43 12877.57 13185.13 14880.54 138
gm-plane-assit57.00 19457.62 20156.28 19176.10 12162.43 20747.62 21546.57 20633.84 21623.24 20937.52 20240.19 21259.61 13379.81 11077.55 13284.55 15572.03 186
v1070.22 11069.76 12370.74 8874.79 13580.30 10979.22 8159.81 14757.71 14756.58 10854.22 14655.31 14966.95 8578.28 12977.47 13387.12 10285.07 95
v114469.93 11469.36 12870.61 9274.89 13480.93 9979.11 8260.64 13455.97 16055.31 11353.85 14854.14 15666.54 9178.10 13177.44 13487.14 9985.09 94
v7n67.05 14966.94 15467.17 13572.35 15878.97 11773.26 14858.88 15851.16 18950.90 13948.21 18450.11 18960.96 12677.70 13477.38 13586.68 11585.05 96
IterMVS-LS71.69 9572.82 10170.37 9577.54 11376.34 14975.13 11860.46 13861.53 12457.57 10164.89 8567.33 10266.04 9577.09 14277.37 13685.48 14385.18 93
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v119269.50 11868.83 13470.29 9674.49 13880.92 10178.55 8860.54 13655.04 16654.21 11652.79 16252.33 17666.92 8677.88 13377.35 13787.04 10385.51 86
PEN-MVS62.96 16765.77 16159.70 17873.98 14475.45 15663.39 19167.61 6352.49 18125.49 20653.39 15049.12 19340.85 19671.94 17477.26 13886.86 10780.72 136
v2v48270.05 11369.46 12770.74 8874.62 13780.32 10879.00 8360.62 13557.41 14956.89 10555.43 13655.14 15166.39 9377.25 13977.14 13986.90 10583.57 113
MS-PatchMatch70.17 11170.49 11569.79 10380.98 8277.97 13477.51 9758.95 15662.33 11755.22 11453.14 15665.90 10662.03 11579.08 12077.11 14084.08 15777.91 157
V4268.76 12769.63 12467.74 12364.93 19678.01 12878.30 9256.48 16858.65 14156.30 10954.26 14457.03 14264.85 9877.47 13777.01 14185.60 14184.96 97
tfpnnormal64.27 16263.64 17865.02 15175.84 12575.61 15571.24 15662.52 11547.79 19742.97 17942.65 19544.49 20552.66 17578.77 12476.86 14284.88 15379.29 149
v124068.64 12867.89 14769.51 10773.89 14580.26 11076.73 10659.97 14553.43 17853.08 12751.82 16950.84 18566.62 9076.79 14576.77 14386.78 11085.34 90
v14419269.34 12068.68 13870.12 9974.06 14280.54 10478.08 9460.54 13654.99 16854.13 11852.92 16052.80 17466.73 8977.13 14176.72 14487.15 9685.63 84
v870.23 10969.86 12170.67 9174.69 13679.82 11178.79 8559.18 15258.80 14058.20 9955.00 13857.33 13966.31 9477.51 13676.71 14586.82 10883.88 109
v192192069.03 12368.32 14269.86 10274.03 14380.37 10677.55 9660.25 14054.62 17053.59 12452.36 16651.50 18266.75 8877.17 14076.69 14686.96 10485.56 85
baseline269.69 11570.27 11769.01 11275.72 12677.13 14273.82 13958.94 15761.35 12557.09 10461.68 9557.17 14161.99 11678.10 13176.58 14786.48 12179.85 145
DTE-MVSNet61.85 17964.96 17058.22 18474.32 14074.39 16561.01 19767.85 6151.76 18821.91 21453.28 15248.17 19437.74 20072.22 17176.44 14886.52 12078.49 154
LTVRE_ROB59.44 1661.82 18262.64 18460.87 17272.83 15777.19 14164.37 18758.97 15533.56 21728.00 20352.59 16542.21 20863.93 10374.52 15876.28 14977.15 18482.13 119
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs662.41 17362.88 18161.87 16771.38 16975.18 16267.76 16859.45 15141.64 20842.52 18137.33 20352.91 17246.87 18477.67 13576.26 15083.23 16279.18 151
Fast-Effi-MVS+-dtu68.34 12969.47 12667.01 13975.15 13077.97 13477.12 10255.40 17157.87 14246.68 16356.17 13060.39 12362.36 11076.32 15076.25 15185.35 14681.34 130
TDRefinement66.09 15265.03 16967.31 13269.73 18076.75 14575.33 11164.55 8660.28 13449.72 14745.63 19042.83 20760.46 13175.75 15175.95 15284.08 15778.04 156
CP-MVSNet62.68 16965.49 16459.40 18171.84 16175.34 15762.87 19367.04 6852.64 18027.19 20453.38 15148.15 19541.40 19471.26 17775.68 15386.07 12882.00 123
PS-CasMVS62.38 17565.06 16759.25 18271.73 16275.21 16162.77 19466.99 6951.94 18726.96 20552.00 16847.52 19841.06 19571.16 18075.60 15485.97 13581.97 125
Effi-MVS+-dtu71.82 9371.86 10871.78 8478.77 10180.47 10578.55 8861.67 12860.68 13055.49 11158.48 11665.48 10768.85 7676.92 14375.55 15587.35 9485.46 88
COLMAP_ROBcopyleft62.73 1567.66 14066.76 15668.70 11580.49 8877.98 13275.29 11362.95 10263.62 10849.96 14347.32 18750.72 18658.57 13776.87 14475.50 15684.94 15275.33 176
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
pmmvs467.89 13567.39 15268.48 11771.60 16773.57 16774.45 12560.98 13164.65 9757.97 10054.95 13951.73 18161.88 11873.78 16375.11 15783.99 15977.91 157
WR-MVS_H61.83 18165.87 16057.12 18871.72 16376.87 14361.45 19666.19 7151.97 18622.92 21153.13 15752.30 17833.80 20471.03 18175.00 15886.65 11680.78 135
EPNet_dtu68.08 13271.00 11164.67 15479.64 9668.62 18575.05 11963.30 9666.36 8645.27 17267.40 7766.84 10443.64 19075.37 15374.98 15981.15 16977.44 160
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline70.45 10774.09 8866.20 14670.95 17375.67 15374.26 13253.57 17368.33 7758.42 9669.87 6471.45 7461.55 12274.84 15774.76 16078.42 17983.72 111
USDC67.36 14667.90 14666.74 14471.72 16375.23 16071.58 15360.28 13967.45 8150.54 14260.93 9845.20 20462.08 11376.56 14874.50 16184.25 15675.38 175
PatchMatch-RL67.78 13866.65 15769.10 11173.01 15272.69 17068.49 16561.85 12462.93 11360.20 9056.83 12850.42 18769.52 7275.62 15274.46 16281.51 16773.62 184
IterMVS-SCA-FT66.89 15069.22 13064.17 15671.30 17175.64 15471.33 15453.17 17757.63 14849.08 15060.72 10060.05 12763.09 10674.99 15673.92 16377.07 18581.57 129
v14867.85 13667.53 14868.23 11873.25 15177.57 14074.26 13257.36 16655.70 16157.45 10353.53 14955.42 14861.96 11775.23 15473.92 16385.08 14981.32 131
pmmvs-eth3d63.52 16562.44 18764.77 15366.82 19170.12 17969.41 16159.48 15054.34 17452.71 12846.24 18944.35 20656.93 15272.37 16773.77 16583.30 16175.91 169
PMMVS65.06 15769.17 13160.26 17555.25 21463.43 20166.71 17643.01 21062.41 11650.64 14069.44 6567.04 10363.29 10574.36 16073.54 16682.68 16473.99 183
pmmvs562.37 17664.04 17560.42 17365.03 19471.67 17467.17 17152.70 18250.30 19044.80 17354.23 14551.19 18449.37 18072.88 16673.48 16783.45 16074.55 179
CR-MVSNet64.83 15865.54 16364.01 15970.64 17569.41 18065.97 18052.74 18057.81 14452.65 12954.27 14256.31 14560.92 12772.20 17273.09 16881.12 17075.69 172
PatchT61.97 17864.04 17559.55 18060.49 20467.40 18856.54 20548.65 20056.69 15252.65 12951.10 17352.14 17960.92 12772.20 17273.09 16878.03 18075.69 172
IterMVS66.36 15168.30 14364.10 15769.48 18374.61 16473.41 14650.79 19157.30 15048.28 15460.64 10159.92 12860.85 13074.14 16172.66 17081.80 16678.82 153
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TinyColmap62.84 16861.03 19364.96 15269.61 18171.69 17368.48 16659.76 14855.41 16247.69 15847.33 18634.20 21662.76 10974.52 15872.59 17181.44 16871.47 187
TAMVS59.58 18962.81 18355.81 19266.03 19265.64 19563.86 18948.74 19949.95 19237.07 19354.77 14058.54 13444.44 18872.29 16971.79 17274.70 19666.66 198
MIMVSNet58.52 19261.34 19255.22 19460.76 20367.01 19066.81 17449.02 19856.43 15538.90 18740.59 20054.54 15540.57 19773.16 16571.65 17375.30 19566.00 199
SixPastTwentyTwo61.84 18062.45 18661.12 17169.20 18472.20 17162.03 19557.40 16446.54 20138.03 19157.14 12741.72 20958.12 14169.67 19171.58 17481.94 16578.30 155
CVMVSNet62.55 17065.89 15958.64 18366.95 18969.15 18266.49 17956.29 17052.46 18232.70 19759.27 11158.21 13750.09 17971.77 17571.39 17579.31 17678.99 152
FC-MVSNet-test56.90 19565.20 16647.21 20666.98 18863.20 20349.11 21458.60 16059.38 13811.50 22165.60 8156.68 14424.66 21371.17 17971.36 17672.38 20369.02 194
FMVSNet557.24 19360.02 19653.99 19856.45 21162.74 20565.27 18347.03 20555.14 16439.55 18640.88 19853.42 16841.83 19172.35 16871.10 17773.79 19964.50 202
CMPMVSbinary47.78 1762.49 17262.52 18562.46 16570.01 17970.66 17862.97 19251.84 18651.98 18556.71 10742.87 19453.62 16057.80 14472.23 17070.37 17875.45 19475.91 169
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test0.0.03 158.80 19061.58 19155.56 19375.02 13268.45 18659.58 20261.96 12252.74 17929.57 20049.75 17954.56 15431.46 20671.19 17869.77 17975.75 19064.57 201
test-mter60.84 18564.62 17256.42 19055.99 21264.18 19665.39 18234.23 21554.39 17346.21 16757.40 12659.49 13055.86 16071.02 18269.65 18080.87 17276.20 168
test-LLR64.42 16064.36 17364.49 15575.02 13263.93 19866.61 17761.96 12254.41 17147.77 15657.46 12460.25 12455.20 16670.80 18369.33 18180.40 17374.38 180
TESTMET0.1,161.10 18464.36 17357.29 18757.53 20963.93 19866.61 17736.22 21454.41 17147.77 15657.46 12460.25 12455.20 16670.80 18369.33 18180.40 17374.38 180
test20.0353.93 20256.28 20351.19 20272.19 16065.83 19353.20 20961.08 12942.74 20622.08 21237.07 20445.76 20324.29 21470.44 18769.04 18374.31 19863.05 205
MIMVSNet149.27 20553.25 20544.62 20844.61 21661.52 20853.61 20852.18 18341.62 20918.68 21728.14 21441.58 21025.50 20968.46 19769.04 18373.15 20162.37 207
Anonymous2023120656.36 19657.80 20054.67 19670.08 17766.39 19260.46 19957.54 16349.50 19529.30 20133.86 20846.64 19935.18 20270.44 18768.88 18575.47 19368.88 195
CostFormer68.92 12469.58 12568.15 11975.98 12476.17 15178.22 9351.86 18565.80 9061.56 8663.57 9162.83 11561.85 11970.40 18968.67 18679.42 17579.62 148
testgi54.39 20157.86 19950.35 20371.59 16867.24 18954.95 20753.25 17643.36 20523.78 20844.64 19147.87 19624.96 21170.45 18668.66 18773.60 20062.78 206
CHOSEN 280x42058.70 19161.88 19054.98 19555.45 21350.55 21664.92 18440.36 21155.21 16338.13 19048.31 18363.76 11263.03 10873.73 16468.58 18868.00 21273.04 185
RPMNet61.71 18362.88 18160.34 17469.51 18269.41 18063.48 19049.23 19657.81 14445.64 17150.51 17450.12 18853.13 17468.17 19868.49 18981.07 17175.62 174
RPSCF67.64 14271.25 11063.43 16361.86 20270.73 17767.26 17050.86 19074.20 6158.91 9267.49 7669.33 8964.10 10271.41 17668.45 19077.61 18177.17 162
SCA65.40 15566.58 15864.02 15870.65 17473.37 16867.35 16953.46 17563.66 10754.14 11760.84 9960.20 12661.50 12369.96 19068.14 19177.01 18669.91 190
ambc53.42 20464.99 19563.36 20249.96 21247.07 19937.12 19228.97 21216.36 22441.82 19275.10 15567.34 19271.55 20575.72 171
MDTV_nov1_ep1364.37 16165.24 16563.37 16468.94 18570.81 17672.40 15250.29 19460.10 13553.91 12160.07 10559.15 13157.21 14969.43 19367.30 19377.47 18269.78 192
GG-mvs-BLEND46.86 20967.51 14922.75 2150.05 22676.21 15064.69 1850.04 22361.90 1200.09 22755.57 13371.32 760.08 22270.54 18567.19 19471.58 20469.86 191
dps64.00 16462.99 18065.18 14973.29 15072.07 17268.98 16453.07 17857.74 14658.41 9755.55 13447.74 19760.89 12969.53 19267.14 19576.44 18971.19 188
PM-MVS60.48 18660.94 19459.94 17658.85 20766.83 19164.27 18851.39 18855.03 16748.03 15550.00 17840.79 21158.26 14069.20 19467.13 19678.84 17877.60 159
MDTV_nov1_ep13_2view60.16 18760.51 19559.75 17765.39 19369.05 18368.00 16748.29 20251.99 18445.95 16948.01 18549.64 19253.39 17268.83 19566.52 19777.47 18269.55 193
PatchmatchNetpermissive64.21 16364.65 17163.69 16071.29 17268.66 18469.63 16051.70 18763.04 11153.77 12259.83 10858.34 13660.23 13268.54 19666.06 19875.56 19268.08 196
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDA-MVSNet-bldmvs53.37 20353.01 20653.79 19943.67 21867.95 18759.69 20157.92 16243.69 20432.41 19841.47 19727.89 22152.38 17656.97 21365.99 19976.68 18767.13 197
EU-MVSNet54.63 19958.69 19749.90 20456.99 21062.70 20656.41 20650.64 19345.95 20323.14 21050.42 17546.51 20036.63 20165.51 20164.85 20075.57 19174.91 177
tpm62.41 17363.15 17961.55 16972.24 15963.79 20071.31 15546.12 20857.82 14355.33 11259.90 10754.74 15353.63 17167.24 19964.29 20170.65 20774.25 182
tpm cat165.41 15463.81 17767.28 13475.61 12872.88 16975.32 11252.85 17962.97 11263.66 8053.24 15453.29 17161.83 12065.54 20064.14 20274.43 19774.60 178
pmmvs347.65 20649.08 21145.99 20744.61 21654.79 21450.04 21131.95 21833.91 21529.90 19930.37 21033.53 21746.31 18563.50 20463.67 20373.14 20263.77 204
tpmrst62.00 17762.35 18861.58 16871.62 16664.14 19769.07 16348.22 20462.21 11853.93 12058.26 12155.30 15055.81 16163.22 20562.62 20470.85 20670.70 189
EPMVS60.00 18861.97 18957.71 18668.46 18663.17 20464.54 18648.23 20363.30 10944.72 17460.19 10356.05 14750.85 17865.27 20362.02 20569.44 20963.81 203
Gipumacopyleft36.38 21235.80 21437.07 21145.76 21533.90 21929.81 21948.47 20139.91 21118.02 2188.00 2228.14 22625.14 21059.29 21061.02 20655.19 21740.31 215
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
pmnet_mix0255.30 19857.01 20253.30 20164.14 19759.09 20958.39 20450.24 19553.47 17738.68 18849.75 17945.86 20240.14 19865.38 20260.22 20768.19 21165.33 200
ADS-MVSNet55.94 19758.01 19853.54 20062.48 20158.48 21059.12 20346.20 20759.65 13742.88 18052.34 16753.31 17046.31 18562.00 20760.02 20864.23 21460.24 210
MVS-HIRNet54.41 20052.10 20757.11 18958.99 20656.10 21349.68 21349.10 19746.18 20252.15 13333.18 20946.11 20156.10 15763.19 20659.70 20976.64 18860.25 209
FPMVS51.87 20450.00 20954.07 19766.83 19057.25 21160.25 20050.91 18950.25 19134.36 19536.04 20632.02 21841.49 19358.98 21156.07 21070.56 20859.36 211
N_pmnet47.35 20750.13 20844.11 20959.98 20551.64 21551.86 21044.80 20949.58 19420.76 21540.65 19940.05 21329.64 20759.84 20955.15 21157.63 21554.00 213
new-patchmatchnet46.97 20849.47 21044.05 21062.82 19956.55 21245.35 21652.01 18442.47 20717.04 21935.73 20735.21 21521.84 21761.27 20854.83 21265.26 21360.26 208
PMVScopyleft39.38 1846.06 21043.30 21249.28 20562.93 19838.75 21841.88 21753.50 17433.33 21835.46 19428.90 21331.01 21933.04 20558.61 21254.63 21368.86 21057.88 212
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet38.40 21142.64 21333.44 21237.54 22145.00 21736.60 21832.72 21740.27 21012.72 22029.89 21128.90 22024.78 21253.17 21452.90 21456.31 21648.34 214
MVEpermissive19.12 1920.47 21723.27 21717.20 21812.66 22425.41 22110.52 22534.14 21614.79 2236.53 2258.79 2214.68 22716.64 21929.49 21841.63 21522.73 22338.11 216
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS225.60 21329.75 21520.76 21628.00 22230.93 22023.10 22129.18 21923.14 2201.46 22618.23 21816.54 2235.08 22040.22 21541.40 21637.76 21837.79 217
tmp_tt14.50 21914.68 2237.17 22510.46 2262.21 22237.73 21328.71 20225.26 21516.98 2224.37 22131.49 21729.77 21726.56 222
E-PMN21.77 21518.24 21825.89 21340.22 21919.58 22212.46 22439.87 21218.68 2226.71 2239.57 2194.31 22922.36 21619.89 22027.28 21833.73 22028.34 219
EMVS20.98 21617.15 21925.44 21439.51 22019.37 22312.66 22339.59 21319.10 2216.62 2249.27 2204.40 22822.43 21517.99 22124.40 21931.81 22125.53 220
test_method22.26 21425.94 21617.95 2173.24 2257.17 22523.83 2207.27 22137.35 21420.44 21621.87 21739.16 21418.67 21834.56 21620.84 22034.28 21920.64 221
testmvs0.09 2180.15 2200.02 2200.01 2270.02 2270.05 2280.01 2240.11 2240.01 2280.26 2240.01 2300.06 2240.10 2220.10 2210.01 2250.43 223
test1230.09 2180.14 2210.02 2200.00 2280.02 2270.02 2290.01 2240.09 2250.00 2290.30 2230.00 2310.08 2220.03 2230.09 2220.01 2250.45 222
uanet_test0.00 2200.00 2220.00 2220.00 2280.00 2290.00 2300.00 2260.00 2260.00 2290.00 2250.00 2310.00 2250.00 2240.00 2230.00 2270.00 224
sosnet-low-res0.00 2200.00 2220.00 2220.00 2280.00 2290.00 2300.00 2260.00 2260.00 2290.00 2250.00 2310.00 2250.00 2240.00 2230.00 2270.00 224
sosnet0.00 2200.00 2220.00 2220.00 2280.00 2290.00 2300.00 2260.00 2260.00 2290.00 2250.00 2310.00 2250.00 2240.00 2230.00 2270.00 224
RE-MVS-def46.24 166
9.1486.88 16
SR-MVS88.99 3573.57 2687.54 14
our_test_367.93 18770.99 17566.89 173
MTAPA83.48 186.45 19
MTMP82.66 684.91 27
Patchmatch-RL test2.85 227
XVS86.63 4788.68 2985.00 4871.81 4781.92 3890.47 24
X-MVStestdata86.63 4788.68 2985.00 4871.81 4781.92 3890.47 24
abl_679.05 4487.27 4388.85 2783.62 5768.25 5681.68 4272.94 4173.79 4684.45 2972.55 5389.66 4890.64 45
mPP-MVS89.90 2681.29 43
NP-MVS80.10 47
Patchmtry65.80 19465.97 18052.74 18052.65 129
DeepMVS_CXcopyleft18.74 22418.55 2228.02 22026.96 2197.33 22223.81 21613.05 22525.99 20825.17 21922.45 22436.25 218